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ABSTRACT

SATYAM SHUKLA. A finite element approach for analysis of damping capabilities
of polymer composites. . (Under the direction of

DR. ALIREZA TABARRAEI)

Mechanical vibrations are a part of several industrial equipment,machinery, systems

and vehicles being used in our day to day life. Damping of such unwanted vibrations

have been of utmost importance for several industrial operations. Polymer composites

have proven to be an effective solution for damping of such vibrations. This study uses

finite element methods to analyze the effect of change in key influential parameters on

the damping capability of the polymer composite models. The damping capability is

measured in terms of ’loss factor’ tan δ which can be expressed as the ratio of of loss

to storage modulus of the composite model. Finite element software ABAQUS is used

for modelling the polymer composites. This study analyzes the damping properties

of two types of polymer composites. The first polymer composite model is made of

spherical elastic inclusions dispersed in a cubical viscoelastic matrix. The composite

model also consists of a viscoelastic interphase region between the spherical inclusions

and the matrix. The finite element model is subjected to mixed boundary conditions

and a normal strain is applied on one of the faces. The damping properties are

studied over a range of vibration frequency from 10−8/s to 102/s. The study analyzes

the effect of interphase region, volume fraction of inclusions and loading frequency on

overall damping capability of the composite model.

The second part of the study analyzes the damping properties of a model with

sinusoidal carbon nanotube as inclusions dispersed in a cuboidal viscoelastic matrix.

The finite element model is again subjected to mixed boundary conditions with a

normal strain acting on one of the faces with frequency ranging from a 10−8/s to

102/s. The effect of change in input parameters like waviness of nanotube inclusions

,volume fraction and loading frequency is studied. A sensitivity analysis is conducted
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to understand how the peak damping capability is effected by change in input param-

eters of composite material properties. Sensitivity analysis is conducted on second

model with nanotube inclusions inside a viscoelastic matrix. The elastic modulus of

inclusions and matrix is varied within a pre-decided range while keeping the boundary

and loading conditions same.



v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Alireza Tabarraei at University of North Carolina

at Charlotte. The door to Prof. Tabarraei’s office was always open whenever I ran

into a difficulty or had a question, during the course of my research. He consistently

steered me in the right the direction whenever he thought I needed it. I would like to

thank my committee members Dr. Ronald E. Smelser and Dr. Navid Goudarzi for

their guidance. I would also like to thank my parents for their love and support, my

friends Akshith Subramanian, Pauras Sawant, Wilfred Tuscano and many others for

lifting me up when I felt low.



vi

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES x

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: THESIS PROBLEM AND APPROACH 7

2.1. Polymer Composite With Spherical Elastic Inclusions In A Vis-
coelastic Matrix

7

2.1.1. Problem 7

2.1.2. Approach 7

2.1.3. Effect of Frequency 8

2.1.4. Effect of Volume Fraction 9

2.1.5. Effect of Interphase 9

2.1.6. Effect of Inclusion Distribution or Arrangement 9

2.2. Polymer Composite With Carbon Nanotube Inclusions In A Vis-
coelastic Matrix

9

2.2.1. Problem 9

2.2.2. Approach 10

2.2.3. Effect of Waviness 10

2.2.4. Effect of Volume Fraction 11

2.2.5. Effect of Loading Frequency 11

CHAPTER 3: MATERIAL MODEL 12

3.0.1. Matrix Material 12

3.0.2. Spherical Elastic Inclusions 15



vii

3.0.3. Interphase 15

3.0.4. Carbon Nanotube Inclusion Material 15

CHAPTER 4: FINITE ELEMENT MODEL 16

4.1. Composite with Spherical Inclusions 17

4.1.1. Random sequential absorption 19

4.1.2. Boundary and Loading Conditions 21

4.2. Composite with Carbon Nanotube Inclusions 22

4.2.1. Boundary and Loading Conditions 23

CHAPTER 5: RESULT AND DISCUSSION 25

5.1. Polymer Composite with Spherical Inclusions 25

5.1.1. Effect of Volume Fraction 25

5.1.2. Effect of Interphase 28

5.1.3. Ensemble Averaging 28

5.2. Carbon Nanotube Polymer Composite 29

5.2.1. Effect of Waviness 30

5.2.2. Effect of Volume Fraction 32

5.3. Sensitivity Analysis 35

CHAPTER 6: CONCLUSION 40

REFERENCES 42



viii

LIST OF FIGURES

FIGURE 1.1: Two Dimensional Representation of RVE With Spherical
Inclusions

3

FIGURE 1.2: Two Dimensional Representation of RVE With Nanotube
Inclusions

4

FIGURE 2.1: 3 D representation of polymer matrix with glass inclusions. 8

FIGURE 2.2: Schematics of modeling parameters for inclusions with wavi-
ness 0.05

11

FIGURE 4.1: Phase lag between input strain wave and output stress wave
[1].

17

FIGURE 4.2: 3 D meshing of polymer matrix with spherical inclusions. 18

FIGURE 4.3: Interphase mesh. 18

FIGURE 4.4: Inclusion mesh . 18

FIGURE 4.5: Flow chart for random sequential absorption technique. 20

FIGURE 4.6: Boundary conditions for model with spherical inclusions. 21

FIGURE 4.7: Boundary conditions for polymer with nanotube inclusions. 24

FIGURE 5.1: tan δ for Volume Fraction 5% 26

FIGURE 5.2: tan δ for Volume Fraction 10% 27

FIGURE 5.3: tan δ for Volume Fraction 15% 27

FIGURE 5.4: Comparison of peak tan δ with and without interphase
against volume fraction

28

FIGURE 5.5: Ensemble Averaging for polymer with 5% volume fraction. 29

FIGURE 5.6: tan δ response with 5% volume fraction. 30

FIGURE 5.7: tan δ response with 10% volume fraction. 31

FIGURE 5.8: tan δ response with 15% volume fraction. 31



ix

FIGURE 5.9: tan δ response for 0.05 waviness against all volume fraction. 32

FIGURE 5.10: tan δ response for 0.1 waviness against all volume fraction. 33

FIGURE 5.11: tan δ response for 0.2 waviness against all volume fraction. 34

FIGURE 5.12: Comparison of peak tan δ. 34

FIGURE 5.13: Sensitivity analysis against matrix modulus for volume
fraction 5% and 0.05 waviness.

37

FIGURE 5.14: Sensitivity analysis against inclusion modulus for volume
fraction 5% and 0.05 waviness.

37

FIGURE 5.15: Sensitivity analysis against matrix modulus for volume
fraction 5% and 0.1 waviness.

38

FIGURE 5.16: Sensitivity analysis against inclusion modulus for volume
fraction 5% and 0.1 waviness.

38

FIGURE 5.17: Sensitivity analysis against matrix modulus for volume
fraction 5% and 0.2 waviness.

39

FIGURE 5.18: Sensitivity analysis against inclusion modulus for volume
fraction 5% and 0.2 waviness.

39



x

LIST OF TABLES

TABLE 3.1: Relaxation moduli and relaxation time for matrix material
[2]

14

TABLE 4.1: Dimension and mesh size of RVE 19

TABLE 4.2: SWCNT Polymer Matrix Parameters [3] 23

TABLE 5.1: Parameter range for sensitivity analysis. 35



CHAPTER 1: INTRODUCTION

Although beneficial in some cases, vibrations are mainly a source of energy loss and

inaccuracy in various systems and machinery. Over time, many attempts have been

made to deal with such unwanted vibrations. Polymer composites have proven to

be an effective solution for damping of vibrations. Viscoelastic polymer composites

are widely used for damping of vibrations in several industrial areas. One of the

primary reason for effectiveness of polymer composites as damping agents is due to

the viscoelastic nature of the matrix. As the name suggests, viscoelastic materials

possess both viscous and elastic properties. The dual nature of the matrix plays an

important role in the damping of the vibrations, specially in automotive, aerospace,

civil engineering etc. Roeder and Stanton [4] studied the use of elastomeric bearings

by structural engineers in wide variety of areas. Their primary aim was to understand

the behaviour of these elastomeric bearings, their failure modes and design processes

to spread more knowledge among the structural designers using these bearings. Such

bearings were used in bridges to accommodate creep and thermal expansions. They

were also used for seismic pad isolation and damping of machinery vibrations.

Rao [5] studied the application of viscoelastic damping in automotive and aerospace

industry. Damping of vibrations can be classified into three main categories as active,

passive and semi-active damping. Active damping involves use of speakers, actuators

and microprocessors to produce an out of phase sound wave to cancel out the noise.

In his study, Rao focused on the passive damping methods. These methods involve

use of viscoelastic damping materials to reduce vibrations using free layer damping

and constraint layer damping. He also studied the recent technological advancements

which use a combination of these techniques for cancellation of noise and structural
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vibrations. Tsai [6] studied the use of viscoelastic materials in construction industry.

He studied the energy absorbing behaviour and capacities of the viscoelastic dampers.

Duncan [7] studied the applications of polymer composites and nano-composites being

used in the food packaging industry.

One of the major advantages of using polymer composites in damping processes

is the freedom of tweaking its properties depending upon the area of usage. Fillers

are added to the matrix to increase the strength and stiffness of the composite. The

desired properties of the polymer composites can be achieved by tweaking the shape,

size, volume fraction, stiffness etc. of the fillers and matrix. Various attempts have

been made in the past to study how change in inclusion properties changes damping

properties of the polymer composite. Adam and Bacon [8] studied the effect of fiber

orientation in a fiber reinforced plastic. They developed a micro-mechanical model to

study the effect of orientation on the fluxural and torsional damping along with the

modulus of the polymer composite. Hwang and Gibson [9] proposed a finite element

method to model the damping and stiffness of discontinuous fiber reinforced plastic.

Kaliske and Rothert [10] derived an analytical method to determine the damping

properties of the polymer composites. One of the main highlights of their work was

the derivation of six damping coefficients for six different stress components.

Brinson and Lin [2] used the homogenization techniques developed by Mori -

Tanaka and Halpin Tsai [11]for determining the loss and storage modulus of a fiber

reinforced composite. The ratio of loss to storage modulus is referred to as tanδ.

Brinson and Lin used this technique on a composite with single inclusion. As the

number of inclusion increased, the accuracy of their results reduced. Kulkarni [12]

studied the damping properties of filled elastomers and how it is affected by factors

like inclusion property and volume fraction. Kulkarni [13, 14] also studied the damp-

ing properties of elastomers through wave propagation along with wave attenuation

characteristics of epoxy polymer composites.
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Figure 1.1: Two Dimensional Representation of RVE With Spherical Inclusions

Apart from inclusions and matrix, several polymer composites consist of a third

region known as interphase. The interphase region can be considered as a thin layer

present where the inclusions come in contact with the matrix. Due to considerable

difference in the properties of inclusions and matrix, the properties of interphase

region can be significantly different than that of inclusions and matrix. Presence of

interphase region may pose a problem in accurate prediction of properties of polymer

composites. Brinson and Fisher [15] studied the prediction of mechanical properties

of multi-phase viscoelastic materials. They used the Mori - Tanaka method and its

extension developed by Banviste to compare the predictions of moduli and impact of

interphase regions in polymer matrix composites.

The fist part of the study determines the damping capability of polymer composites

and how it is affected by presence of interphase region. The matrix is in shape of a

cube with each side equal to 0.3 mm. The spherical elastic inclusions are dispersed in

the matrix using Random Sequential Absorption (RSA) technique. Figure 4.5 shows

the algorithm used for dispersing the inclusions in a matrix. A detailed explanation

of the technique is given in later sections. The interphase region is modelled as a
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Figure 1.2: Two Dimensional Representation of RVE With Nanotube Inclusions

thin hollow spherical shell surrounding the solid spherical inclusions. The interphase

region is considered to be viscoelastic in nature with elastic modulus lower than that

of the elastic inclusion but higher than the matrix.

Commercial finite element software ABAQUS by Dassault Systems is used for mod-

elling and simulations. To accurately predict the response of the polymer composites,

a representative volume element (RVE) is modeled. RVE is the smallest volume whose

properties represent the properties of whole model. This study analyzes the effect of

interphase region on the overall damping properties of the polymer model. It also

compares the results with the damping properties of the polymer with no interphase

region.

The second part of the study aims at determining the damping capability of a poly-

mer composite model with carbon nanotubes as inclusions in a viscoelastic matrix.

Figure 1.2 is the RVE representation of polymer with carbon nanotube inclusions.

Carbon nanotube composites are one of the most widely used composites for various

industrial applications. They have a set of extra ordinary mechanical properties which
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make them one of the highly sought-after option. Their high strength to weight ratio,

stiffness to weight ratio and high geometric aspect make them a suitable choice for

wide range of applications [16, 17, 18]. The mechanical abilities of the carbon nan-

otube composites depend on several factors. One of the main factors is the bonding

between the matrix and the dispersed nanotubes. Pantano[3] suggested that these dis-

persed nanotubes in the matrix can act as a reinforcing component for the composites.

Also, at the same time these nanotubes can act as holes or cavities in the composite

which can hamper the mechanical properties of the structure. Carbon nanotubes can

be classified into two categories, single wall carbon nanotubes and multi wall carbon

nanotubes. Attempts have been made to study the effects of nanotube inclusion as

inclusion in polymer matrix on physical properties of the model. Pantano[3] analyzed

the effect of multi wall carbon nanotube curvature and interface interaction of the

composite on the overall composite stiffness. Andrew [19] used mixing to produce a

multi wall carbon nanotubes (MWCNT) with 5 % volume fraction and obtained a 15

% increase in the overall composite stiffness as compared to that of just the matrix.

Xia[20] analyzed a polypropylene MWCNT composite. An 8.8 % increase in stiffness

composite was observed for 3 % weight MWCNTs. Song [21] also obtained similar

results for an epoxy composite. 17 % increase in elastic composite was obtained for a

1.5 % wt MWCNTs. Models like [22, 23, 24] studied the stiffening effect of MWCNT

inclusions in polymer matrix.

The second part of the study aims at determining the damping properties of a com-

posite model with viscoelastic matrix and elastic carbon nanotubes as inclusions. The

inclusions are in shape of a hollow single wall sinusoidal carbon nanotubes (SWCNT)

dispersed in the matrix. The geometry for the RVE is taken from Pantanos [3] model

in which the carbon nanotubes are dispersed like sinusoidal waves in the matrix. The

matrix material chosen for this study is viscoelastic in nature. This study analyzes

the damping capability of the model with carbon nanotubes as inclusions and how it
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is affected by change in parameters like inclusion volume fraction, inclusion waviness

and loading frequency. Damping capability of the model is analysed using the same

finite element methods as for the previous model with spherical inclusions. Mixed

boundary conditions are applied to the model with normal strain on one of the faces

of the matrix. The aim is to determine the effect of waviness,volume fraction and

loading frequency on damping capability of the composite model. The waviness of

the carbon nanotubes is altered by altering the amplitude of the sinusoidal shaped

inclusions.

In the last part of the study, a sensitivity analysis is performed for carbon nanotube

polymer composite models with 5% inclusion volume fraction and waviness of 0.05,

0.1 and 0.2. This sensitivity analysis studies the effect of change in parameters like

elastic modulus of inclusions and matrix on the damping capability of the polymer

composite. Latin hypercube sampling technique is used to generate a sample set of

Young’s moduli within a pre-decided range. Peak damping capability is calculated for

different combinations of elastic modulus of matrix and inclusions. The sensitivity

analysis compares the results and analyzes how the change in modulus affects the

damping capability of the carbon nanotube polymer composite model.



CHAPTER 2: THESIS PROBLEM AND APPROACH

In this section, thesis problem and the approach to towards its solution is presented.

This thesis consists of two parts. The overall theoretical approach to solve both the

parts is fundamentally same but the model geometry is different. Both model and

the approach is presented in the sections below.

2.1 Polymer Composite With Spherical Elastic Inclusions In A Viscoelastic

Matrix

2.1.1 Problem

In this part of the study, damping capability of a polymer composite with spherical

glass inclusions in a viscoelastic matrix is analyzed. The polymer model has three

parts, the matrix,the inclusions and the interphase layer between the matrix and the

inclusions. The aim is to determine the effect of interphase region on the damping ca-

pability of the polymer. The effect of change in volume fraction and loading frequency

is also studied.

2.1.2 Approach

The study uses principles of finite element to solve the problem at hand. Commer-

cial finite element software ABAQUS by Dassualt Systems is used for modelling and

analysis. The RVE is subjected to set of mixed boundary conditions and a normal

strain is applied on one of the faces. The matrix material is modeled as a homoge-

neous viscoelastic material. The inclusions are in shape of a solid sphere and material

is elastic in nature. The interphase region is also modeled as a spherical shell around

the solid elastic inclusion. Interphase is viscoelastic in nature with modulus higher

than that of the matrix but lower than of inclusions. The inner radius of an inter-
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Figure 2.1: 3 D representation of polymer matrix with glass inclusions.

phase shell is equal to the outer radius of the inclusion its surrounding with center

of origin same for both. Both inclusions and interphase shells are dispersed in the

matrix using Random Sequential Absorption technique. Figure 2.1 represents the 3D

matrix with 15% glass inclusion volume fraction.

2.1.3 Effect of Frequency

The finite element model is subjected to a normal strain on one face with frequency

ranging from 10−8/s to 102/s. The study analyzes the damping response of the

polymer composite model over this range of frequency.
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2.1.4 Effect of Volume Fraction

The volume fraction is calculated as the ratio of total volume of inclusions over

volume of the matrix. Volume fraction is increased by introducing more inclusions in

the matrix. Volume fraction can be calculated as,

Volume fraction =
n × Volinclusion

Volmatrix
(2.1)

This study analyzes the effect of volume fraction on the damping properties of the

composite model. Three models with volume fraction 5% , 10% and 15% are analysed.

2.1.5 Effect of Interphase

The interphase is modelled as a thin shell of viscoelastic material surrounding the

elastic inclusion with center of origin for both being same. Thickness of the interphase

region is taken to be 0.001 mm. This study analyzes the effect of interphase region

on the overall damping capability of the polymer composite.

2.1.6 Effect of Inclusion Distribution or Arrangement

The elastic inclusions are randomly distributed in the matrix using Random Se-

quential Absorption Technique (RSA). To minimise the impact of randomness, the

damping properties are studied on several model RVE with same volume fraction but

different inclusion arrangement. Peak damping capability is calculated for each in-

stance. The variation in peak damping capability with increasing number of instances

is studied.

2.2 Polymer Composite With Carbon Nanotube Inclusions In A Viscoelastic

Matrix

2.2.1 Problem

The second part studies the damping capability of a polymer composite model with

single wall carbon nanotubes as inclusions. The nanotubes are modelled as sinusoidal
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tubes of radius 5 nm using the ABAQUS shell element. The study analyzes the effect

of inclusion and its waviness on the damping capability of the model. The study

also analyzes the effect of change in volume fraction and loading frequency on the

damping capability of the model.

2.2.2 Approach

The study uses principles of finite element to analyze the damping properties of the

composite model. Commercial software ABAQUS by Dassault Systems is used for

modelling and analysis. A representative volume element (RVE) is created which has

sinusoidal nanotube inclusions inserted in a cuboidal viscoelastic matrix. This RVE

is subjected to a set of mixed boundary conditions, with normal strain with vibration

frequency ranging from 10−8/s to 102/s acting on one of the faces. The waviness of

the nanotubes is calculated as a ratio of amplitude and wavelength . Table ?? lists

all the parameters used to model the nanotube composite. The elastic modulus of a

carbon nanotube ranges from 106 MPa to 10 TPa depending on the arrangement and

number of walls. For this study, the elastic modulus and density of the nanotubes

are chosen to be 1 TPa & 1 gr/cm3 respectively.

2.2.3 Effect of Waviness

The study analyzes how the damping properties of the polymer composite model

is changed upon changing the waviness of the nanotube inclusions. Three models are

created, each with nanotube inclusion 0.05, 0.1 and 0.2. The figure 2.2 shows the

parameters ’a’ and ’λ’ for the nanotube inclusions. Here ’a’ represents the amplitude

and’λ’ is the wavelength.
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Figure 2.2: Schematics of modeling parameters for inclusions with waviness 0.05

2.2.4 Effect of Volume Fraction

Volume fraction of the carbon nanotube inclusions is varied by introducing more

inclusions of same waviness. Affect of volume fraction the damping capability of the

polymer model is analysed.

2.2.5 Effect of Loading Frequency

The finite element model of the polymer composite is subjected to a set of mixed

boundary conditions. One of the faces of the model is subjected to a normal strain.

The loading frequency is varied from 10−8/s to 102/s. The study analyzes the affect of

this change in loading frequency on the damping capability of the polymer composite.



CHAPTER 3: MATERIAL MODEL

Constitutive equations form the basis of predicting material behaviour. Constitu-

tive equations can be defined as the relation between any two parameters or phys-

ical quantities which defines the behaviour of the material when put under stress.

Such equations are widely used in engineering and physics and are very important in

achieving accurate results in finite element study. One example of such equations is

the widely used Hooke’s Law used for predicting the elastic behaviour of materials.

3.0.1 Matrix Material

The matrix of the polymer composite in this study is modeled to exhibit viscoelastic

properties. This viscoelastic nature of the matrix imparts a high loss over storage

bulk modulus which is referred to as ’loss factor’. When such materials are put under

stress their deformation exhibits both viscous and elastic behaviour. The viscous

part deforms slowly under stress while the elastic part tends to return to original

state upon relaxation. In case of viscoelastic materials, the stress vs strain curve is

in form of a hysteresis loop, the area under which represents energy loss. This energy

loss is the reason why viscoelastic materials have good damping capabilities. There

are several relations which will help in understanding the behaviour of such materials.

The viscoelastic response of the material can be analysed as a complex modulus of

elasticity and their ration. The constitutive relation for a visco elastic material is,

σij(t) =

∫ t

0

Cijkl(t− τ)
dϵkl(τ)

dτ
dτ, (3.1)



13

where σij denotes the stress tensor and ϵkl denotes the strain tensor. Cijkl is the time

dependent modulus for the matrix material. The following equation,

σij(t) =

∫ t

0

2G(t− τ)
dϵij
dτ

dτ + I

∫ t

0

K(t− τ)dϵV ol
ij dτ, (3.2)

represents the linear viscoelastic material. Here ϵij is deviatoric strain, ϵV ol
ij is the

volumetric strain, G(t) is the shear relaxation modulus and K(t) is the bulk relaxation

modulus. By applying a harmonic time deformation, represented by,

ui(x, t) = u0
i (x, ω)e

iωt, (3.3)

the strain field can be represented as ,

ϵij(x, t) = ϵ0ij(x, ω)e
iωt, (3.4)

where x is the position vector and ω is the frequency. Using equation 3.4 in the

original relation for viscoelastic material given by equation 3.2, the expression for

deviatoric and dilatational stress components can be stated as,

Sij = 2G∗(ω)ϵij, (3.5)

and

σkk = 3K∗(ω)ϵkk, (3.6)

respectively.

Here, G∗ and K∗ are shear and bulk modulus. They can be defined in complex form
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Table 3.1: Relaxation moduli and relaxation time for matrix material [2]

τjG Gj τjG Gj

0.032 2.512 100.0 19.953
0.100 10.0 316.228 12.589
0.316 56.234 1000.0 2.512
1.0 316.228 3162.278 1.698

3.162 1000 10000.0 1.202
10.0 199.526 31622.777 1.148

31.623 50.119 100000.0 1.096
τjK Kj τjK Kj

100 3000 316.228 100
G∞ = 3.162 K∞ = 200

as ,

G∗(ω) = G′(ω) + iG”(ω),

K∗(ω) = K ′(ω) + iK”(ω), (3.7)

where G′,K ′ are shear and bulk storage modulus and G”,K” are shear and bulk loss

modulus respectively. The storage modulus represents the ability of the material to

store energy while the loss modulus represents the loss in energy. The ratio of the

loss to storage modulus is defined as,

tanδ = G”

G′ (3.8)

Prony 3.1 series can be used to represent the shear and bulk modulus of the viscoelas-

tic material as,

A(t) = A∞ +
N∑
j=1

Aje
−t
τj , (3.9)

where Aj is the relaxation modulus, τj is the relaxation time and A∞ is the long

term relaxation modulus. 3.1 lists out the relaxation time and modulus used for this

analysis. The density of the matrix chosen to be 1.0 gr/cm3 and elastic modulus as

9.4 MPa.
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3.0.2 Spherical Elastic Inclusions

The elastic inclusions modeled for the study have a Young’s modulus of 64 GPa

which is significantly higher than the matrix modulus. The density of the inclusions

is 2.47 gr/cm3.

3.0.3 Interphase

The interphase is modeled as a thin layer surrounding the inclusions. The in-

terphase is viscoelastic in nature with elastic modulus as 29.8 MPa and density 1

gr/cm3. Thickness of the interphase shell is 0.001 mm. The visco elastic nature of

the interphase material is again modeled using the same constitutive equations and

prony series parameters.

3.0.4 Carbon Nanotube Inclusion Material

The carbon nanotube inclusions have an elastic modulus of 1 TPa which is much

higher than that of the viscoelastic matrix . The nanotubes are modeled as thin

homogeneous ABAQUS shell elements with density as 1.0 gr/cm3.



CHAPTER 4: FINITE ELEMENT MODEL

The finite element modeling approach for this study is divided into two parts. The

first part deals with the modeling and analysis of a composite made up of elastic

spherical inclusions dispersed in a visco elastic matrix. The second part explains

the modeling of carbon nanotube polymer composite which has sinusoidal carbon

nanotubes as inclusions dispersed in a viscoelastic matrix. Both models are subjected

to same boundary conditions and periodic loading to study their damping capabilities.

To calculate the damping capability of the polymer composites, tanδ is used as the

measuring parameter. It is the ratios of loss to storage modulus and is also referred

to ass ’Loss Factor’. A normal strain is applied on one of the faces of RVE. This strain

can be represented by the equation,

ϵyy = ϵ0sin(ωt). (4.1)

Here, ϵ0 is the amplitude of the applied strain, ω is the angular frequency and t is

time. When a strain curve is applied to a viscoelastic material, a phase lag occurs

between the input strain curve and the output stress curve. The difference in the

phase is used to calculate tan δ. An example of phase lag between the input strain

curve and output stress curve is shown in figure 4.1.The value of phase lag δ is related

to the time lag that occurs between the input strain and the output stress wave as,

δ = ω∆t, (4.2)

where ∆t is time lag and ω is angular frequency. The amplitude ϵ0 has no effect on
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Figure 4.1: Phase lag between input strain wave and output stress wave [1].

the value of tan δ. An amplitude of 10 mm and 10 nm is chosen for the model with

spherical inclusions and nanotube inclusions respectively.

4.1 Composite with Spherical Inclusions

A commercial software Abaqus is used for modeling and solution of the problem.

These spherical inclusions with interphase shells are randomly dispersed in the matrix.

As explained earlier, this study uses random sequential absorption (RSA) technique

for distributing the inclusions and interphase within the matrix. The shape of the

matrix is chosen to be that of a cube with each side equal to 0.3 mm. The inclusion

are in shape of solid sphere with a radius of 0.03 mm.

The interphase is modeled in shape of a thin hollow sphere or shell. The interphase

shell has an inner radius equal to the outer radius of the spherical inclusion and

a thickness of 0.001 mm. The inner surface of the interphase is in contact with

the outer surface of the spherical inclusion and the outer surface of the interphase

is in contact with the matrix. The center of origin for both the interphase and the
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Figure 4.2: 3 D meshing of polymer matrix with spherical inclusions.

Figure 4.3: Interphase mesh.

Figure 4.4: Inclusion mesh .
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Table 4.1: Dimension and mesh size of RVE

Instance Dimension Seed Size

Matrix 0.3 x 0.3 x 0.3 mm3 0.015

Inclusion Rad = 0.03 mm 0.015

Interphase Rad = 0.031 mm 0.0015

spherical inclusion is same. The spherical inclusions and the interphase shells are kept

in position within the matrix by using the ’tie’ function in ABAQUS. This function

ties the common nodes of the surfaces in contact. The outer surface of the inclusion is

tied with the inner surface of the interphase shell. The outer surface of the interphase

shell is in turn tied with the viscoelastic matrix surrounding it.

4.1.1 Random sequential absorption

The first composite model under study has solid spherical inclusions surrounded by

their respective hollow spherical shell, dispersed randomly in a cubical matrix. This

study uses random sequential absorption technique for inserting the inclusion and the

interphase in the matrix. Figure 4.5 represents a flow chart of RSA technique. The

first inclusion point is randomly created within the matrix. An inclusion is introduced

in the matrix and the volume fraction is calculated. If the volume fraction is less

than desired, second inclusion is introduced at one more random point in the matrix.

The distance between the new and old inclusions is calculated to satisfy a minimum

distance criteria and avoid intersection. The volume fraction is again calculated to

know if the desired value is achieved. This technique is used to generate model

RVEs with different inclusion distribution while keeping the volume fraction same. It

will be useful in analysing the impact of randomness in inclusion distribution on the

damping capability of the model. This study applies python scripting in ABAQUS

[25] for generating the RVE.
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Figure 4.5: Flow chart for random sequential absorption technique.
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Figure 4.6: Boundary conditions for model with spherical inclusions.

Abaqus hexahedral element C3D20 and tetrahedral element C3D10 were used for

meshing of matrix. Inclusion and interphase were meshed using the tetrahedral el-

ement C3D10. The mesh size was decreased from 0.03 mm gradually to determine

the variation in tan δ. No significant change in the ensemble averaged tan δ value

was noticed. Table 4.1 lists the dimension and mesh size used for the finite element

model. The average mesh seed size of the spherical inclusion and matrix is 0.015 mm.

Seed size for interphase is 0.0015 mm. A finer seed size increased the computational

requirements of the model without any noticeable change in the damping values.

4.1.2 Boundary and Loading Conditions

The damping properties of the composites is calculated by generating appropri-

ate constraints and displacements for the model using mixed boundary conditions.

Mixed boundary condition provide a simplified and accurate solution for models with

complex and fine meshing patterns. In general, solving such problems requires a

combination of linear displacement boundary condition, uniform traction boundary
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condition and periodic boundary condition. To avoid complexity in the composite

model, this study only used mixed boundary conditions with linear displacement.

A normal strain is applied to the top surface of the RVE. Roller supports are ap-

plied on the left , back and bottom surface. These support restrict the displacement

of left , bottom and back surfaces in x,y and z direction respectively. The figure 4.6

shows a representation of the boundary conditions. The z component of displace-

ment of the front face of the RVE is tied to the edge AB and the x component of

displacement of the right face is tied to edge BC. This is done to prevent any planar

distortion in the model upon application of strain on the top surface. The loading

frequency is varied from 10−8/s to 102/s. The above mentioned boundary conditions

are applied to different inclusion distribution configuration of the polymer model.

Damping properties for each configuration is calculated over the range of frequency

while keeping the amplitude of the loading strain the same.

4.2 Composite with Carbon Nanotube Inclusions

The second part of the study deals with modeling and analysis of a carbon nanotube

polymer composite model. This model consists of hollow single wall carbon nanotubes

inserted in a matrix. The carbon nanotubes are elastic in nature with very high elastic

modulus as compared to the matrix. The matrix is in shape of a cuboid with two

dimensions significantly larger than the third. The inclusions are in shape of hollow

tubes which are sinusoidal in nature. The wavelength and amplitude combinations

used to model the inclusions are listed in table ??. Here, ′d′ refers to the diameter

of the nanotube inclusions, ′a′ refers to the amplitude and ′λ′ is the wavelength.

Waviness is calculated as the ratio of amplitude over wavelength. The outer surface

of the inclusion is tied to surrounding matrix using ’tie’ function of ABAQUS.

Abaqus hexahedral element C3D20 and tetrahedral element C3D10 were used for

matrix mesh with seed size 3 nm. Carbon nanotube inclusions are modelled using

ABAQUS shell element S4. This element is ideal for calculations involving thin but
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stiff material response. Seed size of 1 nm was used for meshing of nanotube inclusions.

A further reduction in seed size increased the computational requirements without a

noticeable impact on the tan δ response of the polymer.

Table ?? lists all the dimensions used for modeling the RVE. All the dimensions are

in nanometers. The study analyzes the effect of inclusion waviness, volume fraction

and loading frequency on the damping properties of the polymer.

Table 4.2: SWCNT Polymer Matrix Parameters [3]

d Vf a λ a/ λ H W t

20 5 330 1320 0.25 1770 1400 50
20 5 264 1320 0.2 1800 1350 45
20 5 200 1320 0.5 1770 920 50
20 5 132 1320 0.1 1750 1300 40
20 5 80 1320 0.06 1700 1200 40
20 5 66 1320 0.05 1770 550 35
10 5 145 1320 0.1 1770 650 30
10 5 198 1320 0.15 1700 800 32
10 5 264 1320 0.2 1700 800 32
10 5 330 1320 0.25 1700 1000 32

4.2.1 Boundary and Loading Conditions

The second part of the study also utilizes mixed boundary conditions for predicting

the damping capability of the polymer. The RVE is in shape of a cuboid with two

dimensions significantly larger the the third dimension. Figure 4.7 is a 2D represen-

tation of boundary conditions used on the model. For the polymer with nanotube

inclusion, the roller supports are applied on bottom , right and back surface of the

model. These roller supported faces are restricted to move in y, x and z directions

respectively.

This study attempts to analyse the effect of change in loading directions on the

damping properties of the polymer composite. The carbon nanotube inclusions are

dispersed in the matrix in such a way that the orientation is along the direction of

periodic loading. In other cases tested in this study, an attempt has been made to
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Figure 4.7: Boundary conditions for polymer with nanotube inclusions.

notice any change in the damping properties when the orientation of the nanotubes

is perpendicular to the direction of load. This study analysis the effect of loading

direction by keeping the orientation of the nanotubes same while changing the loading

strain direction.



CHAPTER 5: RESULT AND DISCUSSION

This section contains the results and discussions relate to different cases under

consideration. The graphs are a representation of variation of tan δ over a range of

frequency. The first section deals with the results and discussion of polymer composite

with spherical inclusions. The second part has the results and discussion for carbon

nanotube polymer composite.

5.1 Polymer Composite with Spherical Inclusions

As discussed in the previous sections, polymer composite model is subjected mixed

boundary conditions with a periodic loading on one of the faces. Damping capability

of polymer model with and without interface is compared to determine the effect of

interphase region on the damping capability of the polymer model.

5.1.1 Effect of Volume Fraction

In this section, the effect of volume fraction of the elastic inclusions on the overall

damping capability of the polymer is studied. The study was conducted on three

different volume fractions of 5% , 10% and 15%Ḟigure 5.1 shows the variation in

damping capability of 5% inclusion polymer with and without interphase over a range

of frequency. The figure suggests that there is minimal change in damping capability

of the polymer upon addition of interphase. No change in damping capability is

observed for low and high end of the frequency spectrum. The effect of interphase on

the damping capability can only be noticed at the peak which is not significant for

5% inclusion volume fraction.

Figure 5.2 shows the variation in damping capability of the polymer with 10%

inclusion over a range of frequency. The damping capability of polymer with and
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Figure 5.1: tan δ for Volume Fraction 5%

without interphase is compared and a slight increment in the tan δ value is observed

at the peak frequency of 10−2/s. Figure 5.3 graph shows the variation in damping

capability of the polymer with 15% inclusion over a range of frequency. An acute

peak is observed in the damping response of polymer with 15% inclusions. Unlike

the response pf polymers with 10% volume fraction and lower, the damping peak is

concentrated at a peak value of 10−1/s. Minimal change in damping capability is

observed on increasing the volume fraction.

From above results it is concluded that the interphase has minimal effect on the

damping capability of the polymer composites with 5% and and 15% inclusion volume

fraction. Slight increment in peak damping capability is observed for polymer model

with 10% inclusion volume fraction. The interphase thickness remains constant in

each case.
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Figure 5.2: tan δ for Volume Fraction 10%
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Figure 5.3: tan δ for Volume Fraction 15%
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Figure 5.4: Comparison of peak tan δ with and without interphase against volume
fraction

5.1.2 Effect of Interphase

Figure 5.4 compares the peak value of tan δ for all three volume fractions of 5, 10

and 15%. A slight increment in damping capability upon addition of interphase layer

is observed.

5.1.3 Ensemble Averaging

The first part of the study consists of polymer with spherical inclusions randomly

dispersed in a viscoelastic matrix. The study uses Random Sequential Absorption

technique for dispersion of inclusions within the matrix. Ensemble averaging is per-

formed to study the effect of randomness on predicting the peak damping capability

of the polymer model. The damping capability of polymer model with a specific

volume fraction is calculated by taking an ensemble average of 20 different RVEs.

Each of these instances have same inclusion volume fraction but the arrangement of

inclusion within the cuboidal matrix is different. This study shows how increasing
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Figure 5.5: Ensemble Averaging for polymer with 5% volume fraction.

the number of instance affects variation in peak damping capability prediction of the

polymer composite.

Figure 5.5 shows that as the number of instances taken into consideration increases,

the deviation in peak tan δ decreases. The figure shows the average of 20 iterations

of model with same volume fraction, boundary and loading conditions but different

inclusion positioning.

5.2 Carbon Nanotube Polymer Composite

This section maps the response of carbon nanotube polymers with different volume

fraction over a range of frequency. It is noticed that with loading and boundary

conditions same, the nature of response for the carbon nanotube polymer is similar to

that of spherical inclusion polymer.This is due to the same visco elastic nature of the

matrix. However, a reduction in peak tan δ values is noticed as carbon nanotubes are

used as inclusions for determining the damping capability of the polymer composite

model.
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Figure 5.6: tan δ response with 5% volume fraction.

5.2.1 Effect of Waviness

Figure 5.6 represents the damping response of polymer composite with 5% inclusion

volume fraction. The waviness of the inclusions was changed while keeping the volume

fraction same. It can be noticed that at this volume fraction, the change in waviness

does not have a significant change on the damping capability of the composite.

Figure 5.7 shows the tan δ response for polymer with 10% nanotube inclusions. It

is noticed that as the volume fraction increases the peak tan delta for the polymer

reduces. However, the inclusion waviness has a slight impact on damping property

of the polymer model. Figure 5.8 shows a similar trend in the damping response for

polymer with 15% inclusion volume fraction. A slight reduction in peak damping

capability is noticed as the waviness of the inclusions is increased while keeping the

volume fraction same. It is noticed that the damping response for all volume fractions

is identical for low and high end of the frequency range.
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Figure 5.7: tan δ response with 10% volume fraction.

Figure 5.8: tan δ response with 15% volume fraction.
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Figure 5.9: tan δ response for 0.05 waviness against all volume fraction.

5.2.2 Effect of Volume Fraction

This section lays out the effect of volume fraction by comparing the damping re-

sponse of models with same waviness but increasing volume fraction. The polymer

models are studied for inclusion volume fraction 5%, 10% and 15% with waviness as

0.05, 0.1 and 0.2.

Figure 5.9 shows the damping response of polymer model with 0.05 waviness. The

inclusion volume fraction is increased while keeping the waviness same. As the volume

fraction is increased, the damping capability of the model reduces. This change in

damping capability is only noticed at frequencies corresponding to peak tan δ values

of the model.

Figure 5.10 shows the damping response for polymer with waviness 0.1 against

increasing volume fraction. As the volume fraction is increased, the peak damping

capability of the model reduces. A slight reduction in tan δ value is observed at

peak frequency with no significant change in damping capability at other frequencies
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Figure 5.10: tan δ response for 0.1 waviness against all volume fraction.

within the range.

Figure 5.11 shows the damping response for polymer with waviness 0.2 against

all volume fraction. It is observed that the peak damping capability of models with

waviness 0.05, 0.1 and 0.2 reduces as the volume fraction is increased. No change on

damping capability is observed upon changing the input parameters for frequencies

near the low and high end of the range.

In figure 5.12, the peak tan δ of all volume fraction is compared against different

waviness. It can be observed that the peak tan δ response of the models reduces

considerable for inclusion volume fraction 5%. The tan δ response for waviness 0.05

straightens out as the volume fraction is increased. A similar observation is made for

waviness 0.1 and 0.2. However, for waviness 0.1 and 0.2, the tan δ response further

reduces as the volume fraction is increased from 5% to 15%.
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Figure 5.11: tan δ response for 0.2 waviness against all volume fraction.

Figure 5.12: Comparison of peak tan δ.
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5.3 Sensitivity Analysis

A sensitivity analysis was performed to determine the change in damping capability

of the composite models upon changing the input parameters of material properties

like elastic modulus of matrix and inclusions. The analysis was conducted for polymer

composite models with 5% nanotube inclusions volume fraction and waviness of 0.05,

0.1 and 0.2. The elastic Young’s modulus for the inclusions and the matrix is varied

within a range to study the change in peak damping capability. This study uses

stratified sampling technique called Latin Hypercube Sampling (LHS)[26] to generate

random samples for the sensitivity analysis. LHS is a statistical method to generate

random samples within a multidimensional data set. It is based on a Latin square

which is a square grid containing only one sample in each row and column. Latin hy-

percube sampling technique extends this to multidimensional data set. For sampling

of ’n’ number of variables, each variable is divided into ’m’ equal intervals. These in-

terval are distributed to satisfy the Latin hypercube requirements.A random samples

are picked from each of these intervals which results in equal number of samples for

each variable.

Table 5.1: Parameter range for sensitivity analysis.

Part Variation Unit

Matrix 9.4 to 960 MPa

Inclusion 0.5 to 1.5 TPa

One of the main advantages of using LHS technique is that the number of sample

does not increase for increase in number of dimensions/variables. This saves compu-

tational time and cost for an effective analysis. The sections below show the results

for sensitivity analysis of the three models. This study used LHS technique to gener-

ate 100 samples of inclusion and matrix modulus within the assigned range. Table 5.1
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lists the range of variation for matrix and inclusion modulus. The inclusion modulus

is varied from -50% to +50% of 1 TPa

Figure 5.13 shows a scatter plot distribution of peak damping capability against

variation in matrix modulus. A quadratic curve is fit to the distribution using the

depicted equation. It is observed that as the elastic modulus is increased from 9.4

MPa, the peak damping capability increases and the curve flattens out as the matrix

stiffness is increased further. Figure 5.14 shows the scatter plot for variation in

inclusion modulus. The graph suggests that the peak damping capability of the

model decreases as the inclusions are made stiffer . It is noticed that the distribution

for inclusions is much more scattered than the matrix. A wider range of variation for

inclusion modulus and more number of samples will give a more accurate view. Figure

5.15 shows the analysis result for waviness 0.1. It is observed that the peak damping

capability increases up to a certain limit as the matrix is made stiffer. Figure 5.16

shows the analysis results for inclusion modulus. The damping capability reduces

as the inclusions are made stiffer. It is noticed that the peak damping value for 0.1

waviness model is less than the 0.05 which again suggests decrease in peak damping

capability as the waviness is increased. Figure 5.17 and 5.18 show the analysis result

for model with waviness 0.2 against matrix and inclusion modulus respectively. A

reduction in peak damping value for both matrix and inclusion is noticed.
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Figure 5.13: Sensitivity analysis against matrix modulus for volume fraction 5% and
0.05 waviness.

Figure 5.14: Sensitivity analysis against inclusion modulus for volume fraction 5%
and 0.05 waviness.
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Figure 5.15: Sensitivity analysis against matrix modulus for volume fraction 5% and
0.1 waviness.

Figure 5.16: Sensitivity analysis against inclusion modulus for volume fraction 5%
and 0.1 waviness.
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Figure 5.17: Sensitivity analysis against matrix modulus for volume fraction 5% and
0.2 waviness.

Figure 5.18: Sensitivity analysis against inclusion modulus for volume fraction 5%
and 0.2 waviness.



CHAPTER 6: CONCLUSION

In this study the damping capability of two types of polymer composite models is

analysed using finite element methods. The first composite is modelled as spherical

glass inclusions in a viscoelastic matrix and the second composite is modelled as elastic

single wall carbon nanotube inclusions in a viscoelastic matrix. The finite element

models for both composites are subjected to mixed boundary conditions with normal

strain on one of the faces. The damping capability is measured in terms of tan δ.

The study analyzes the damping response of the models and how it is influenced by

changing some key parameters like volume fraction and shape of inclusions, loading

frequency, constituent material modulus etc. It is observed that the loading frequency

has a profound affect on the damping capability of the models with peak at 102 /s.

Study of polymer model with glass inclusions showed that there is minimal change

in damping capability of the model due to the viscoelastic interphase layer. A slight

increment in damping capability is observed at volume fraction of 10%Ṁinimal in-

crement in damping capability is observed for volume fraction 5% and 10%Ṙesults

show that the frequency of applied loading plays an important role in variation of

tan δ value. The value of tan δ is close to zero for very low end as well as very high

end frequency within the range. Damping capability is highest around the loading

frequency of 102 /s. Study showed that the arrangement of inclusions within the

matrix played an important role in determining the damping capability of the model.

Ensemble averaging was used to study the effect of randomness on damping capability

of the models. Study of composites model with elastic carbon nanotube inclusions

was performed to analyze the effect of inclusion volume fraction, waviness and loading

frequency. Study showed that for models with inclusion volume fraction 5 % and 10
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% increase in inclusion waviness did not have a significant impact on the damping re-

sponse of the composite model. For the model with 15% inclusion volume fraction, a

slight reduction in damping capability is observed with increase in inclusion waviness.

Waviness was calculated as a ratio of amplitude to waviness of the carbon nanotube

inclusions.The study also showed that for a specific inclusion waviness, the damping

capability of the model reduces with increase in volume fraction. This reduction is

observed near the peak frequency which is 102/s.

A sensitivity analysis helped in determining the change in peak damping capability

of the model over a wide range of elastic modulus for both matrix and inclusions. The

analysis was conducted for models with inclusion volume fraction 5 % and waviness

of 0.05, 0.1 and 0.2. It is observed that the peak damping capability of the model

increases with increase in matrix stiffness. In case of inclusions, the damping capabil-

ity of the composite models decreases as the stiffness of the inclusions was increased.

An overall reduction in peak damping capability was noticed as the waviness was

increased while keeping the volume fraction.
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