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ABSTRACT

ABHIJITH R BAGEPALLI. Visual sonar: Estimating depth using sound waves and
neuromorphic cameras. (Under the direction of DR. ANDREW WILLIS)

This thesis proposes a novel method to recover depth of scene objects using an acoustic

source and a calibrated neuromorphic camera or event camera sensor. The proposed

system is a non-contact, monocular depth estimation method that observes subtle

mechanical vibrations in scene objects induced by sound waves and uses geometric

image formation models to recover depth.

Neuromorphic cameras are high speed cameras that are capable of capturing subtle

motion and vibrations on the surface of scene objects caused by sound waves. The

neuromorphic camera observes a change in intensity at every pixel which triggers an

asynchronous output of an event characterized by its pixel coordinates, (x, y), polarity

(p) (i.e positive or negative change in intensity) and the time stamp (ts). Using this

event data in conjunction with the geometric setup of the optical system, we recover

depth by estimating the time of flight for an emitted sound wave to strike an object’s

surface. The method proposed in this thesis to estimate depth using an acoustic

excitation signal and a neuromorphic camera is the first of its kind.

Experiments were conducted by subjecting a sheet of paper to an impulse-like

sound wave and a sinusoidal sound wave. The results show that the proposed method

is able to estimate depth with an error of ±1cm. Further, we demonstrate how

we can reconstruct a sinusoidal excitation signal that was emitted by analyzing the

vibrations of the scene object and estimating the signal’s frequency. Results indicate

that our proposed method is able to estimate the signal’s frequency with an error of

2.2 Hz. The proposed acoustic-optical sensing mechanism shows potential uses cases

in estimating the structural properties of the object, vibration analysis, robotics, etc.
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CHAPTER 1: INTRODUCTION

Estimating depth from 2D images is a crucial step in tasks such as scene recon-

struction, 3D object recognition, segmentation, and detection. The problem of depth

estimation can be defined as the derivation of the distance from the camera to each

point of the scene in a 2D image. The human visual system perceives the depth of

objects in front of us and makes sense of our 3D world with ease. However, depth

perception and the ability to understand the 3D structure of scene objects are still

complex tasks for computers to perform accurately and quickly. These tasks play an

important role in computer vision and computer graphics and have numerous appli-

cations such as robot navigation, 3D modeling, autonomous driving, medical imaging

and structural engineering [1, 2].

Prior work on 3D reconstruction have focused on methods that use multiple images

such as stereo vision [1] and rely on triangulation to estimate depth. These algorithms

tend to be inaccurate when the baseline distance between the two camera positions

is large. They also tend to fail for texture-less regions where correspondences cannot

be reliably found [3]. Furthermore, these methods cannot be used when only a single

image is available.

In more recent years, monocular depth estimation algorithms have gained traction

as stereo reconstruction methods require more resources, complex physical setups and

large amounts of data when compared to monocular depth estimation. Monocular

cues such as texture variations, texture gradients, light, and shading can provide

useful depth and 3D information and hence several authors [3, 4, 5, 6] have developed

methods for depth estimation from a single image.

Data acquisition for depth estimation and 3D reconstruction can occur from a
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multitude of methods including 2D images using visible light, infrared light used by

RGB-D cameras such as the Microsoft Kinect [7] or radio waves used in Synthetic

Aperture Radar(SAR) [8]. Sound waves is another type of excitation signal that is

used to estimate depth in methods such as SONAR [9], ultrasonic techniques for 3D

reconstruction and 3D room reconstruction from sound [10, 11, 12].

This thesis proposes the use of an acoustic-optical method for depth estimation.

The proposed method uses an acoustic source and a calibrated neuromorphic cam-

era to estimate the depth of scene objects. When an object is subjected to sound

waves, the vibrations on the surface are typically hard to see with the naked eye

and traditional CMOS based cameras. However, recently introduced event cameras

or Dynamic Vision Sensor (DVS) cameras [13] are capable of sensing changes in the

observed intensities at a pixel level with each event sampled in the order of microsec-

onds per pixel. This allows us to sense and capture subtle motion in scenery such as

vibrations on an object’s surface caused by sound waves.

1.1 Neuromorphic cameras

Neuromorphic cameras or event cameras [13] are bio-inspired imaging sensors which

sense at the pixel-level and output only up/down changes in the observed intensities

as continuous stream of pixel events rather than image frames. This architecture has

a number of benefits including:

• High dynamic range since exposure for each pixel is independently adjusted.

• Asynchronous pixel event data streams which reduces redundant information

thus resulting in increased update rates by several orders of magnitude which in

turn reduces CPU usage and, by extension, CPU power consumption [14, 15].

• The event data streams have latencies of ∼12-15 µsec allowing nearly continuous

visual control loops [16, 17].
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• The events generated are time stamped which is accurate within 1 µsec provid-

ing unprecedented per pixel temporal resolution.

1.2 Overview

The method proposed in this thesis observes subtle mechanical vibrations in scene

objects induced by sound waves and estimates the Time of Flight (ToF) for an emitted

acoustic wave to hit the surface of an object using the events observed by an event

camera. The ToF is used in conjunction with the geometric setup of the optical

system, which is used to derive the calculation for depth.

An overview of the steps involved in the methodology is shown below:

1. Generate acoustic excitation waves.

2. Calibrate the camera to obtain estimates of the intrinsic and extrinsic parame-

ters for optical image formation.

3. Estimate time instance at which sound is emitted.

4. Estimate time instance at which sound waves strike the object.

5. Estimate time-of-flight for the acoustic wave.

6. Estimate the speaker-to-object distance using the time of flight.

7. Estimate the object depth using the geometric model for the system’s optical

image formation and the estimated speaker-to-object distance.

1.3 Contribution

This thesis proposes a novel non contact, monocular depth estimation method

using an acoustic source and a calibrated neuromorphic sensor. This acoustic-optical

setup using a neuromorphic sensor is a new area in the existing literature and thus a

significant intellectual merit of this thesis is the development of mathematical models
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and experimental methods to estimate depth using the event data generated by the

neuromorphic sensor. We propose a geometrical setup for the optical system and

derive an equation to estimate depth using this geometry and the output generated

by the event camera.

Additionally, we demonstrate that it is possible to recover the frequency of a sinu-

soidal excitation signal by analyzing the vibrations in the scene by fitting a sinusoid

to the magnitude of motion in the image. Recovering the sound signal emitted and

modeling the vibrations on the object’s surface shows potential to estimate the struc-

tural properties of an object akin to vibration analysis [18, 19, 20] and modal analysis

[21, 22], employed in structural and civil engineering.

1.4 Outline

This thesis is outlined as follows: Chapter 2 presents background information and

concepts that apply to subsequent chapters such as a taxonomy of the existing data

acquisition methods, the pinhole camera model for image formation and the physics

of acoustic wave propagation. Chapter 3 is dedicated to neuromorphic cameras. It

introduces the novel sensor, compares them with traditional frame based cameras

and, describes in detail the principle of operation and how data from these sensors

are represented. In Chapter 4, the methodology used in this thesis is described in

detail and lays down the theory of all the components involved in the methodology.

We provide specifications of the experimental setup used and present the results of

the experiments conducted in Chapter 5. Finally, we summarize the work done as a

conclusion in Chapter 6.



CHAPTER 2: BACKGROUND

This chapter provides background information and describes concepts that are ap-

plied in the subsequent chapters. Topics include existing data acquisition methods

used for depth estimation and 3D reconstruction, neuromorphic image sensors, acous-

tic wave propagation, camera model and camera parameters.

Figure 2.1: Taxonomy of data acquisition methods for depth estimation

Data acquisition for 3D reconstruction and depth estimation can be broadly clas-

sified into two categories namely, passive and active systems. In passive systems, the

acquisition is done without any interaction with the object whereas active systems

acquire data by interacting with the object using direct contact or a projection of

some form of energy onto the object. The taxonomy of these systems are shown in

Figure 2.1.
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2.1 Passive systems

Passive systems do not use any external light and only use the ambient light to

determine the 3D structure of an object. Examples of passive systems include shape

from shading [23] and stereo vision.

• Shape from shading: This system infers the 3D shape of an object’s surface from

one image of the object using its shading information [23]. It uses variations in

the brightness to recover the shape of the object.

• Stereo vision system:

- In a stereo vision system, the 3D structure of an object is obtained using two or

more images, each acquired from different viewpoints. The depth information

in this case, is obtained in the form of a disparity map.

- In a two camera system or binocular stereo system, given two images acquired

from different viewpoints, stereo matching algorithms identify the corresponding

points in both the images related to the same scene.

- Knowing these correspondences and the camera geometry, the 3D world co-

ordinates can be reconstructed through triangulation [24]. Triangulation is the

process of determining the location of a 3D point given its projections onto two

or more images.

2.2 Active systems

Active sensors operate by projecting energy wave or excitation signal on an object

and then analyzing the transmitted or reflected wave. Active systems are subdivided

based on the type of wave projected: electromagnetic waves and acoustic waves.

2.2.1 Electromagnetic waves

These systems use waves that lie in the electromagnetic spectrum such as visible

light, infrared light or radio waves (Radar). The measurement principles used are
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active triangulation or active stereo and time of flight.

• Active triangulation/stereo:

- Active triangulation or active stereo vision systems are similar to the passive

stereo vision systems but have an additional light source such as a laser or an

infrared light pattern (structured light) which is projected onto the scene.

- The cameras in the system detect this pattern and using the difference be-

tween the known pattern and the detected pattern, depth is calculated using

triangulation.

- Active stereo systems are useful in regions where there is a lack of light and/or

texture on the object. The infrared projector or another light source will flood

the scene with texture which reduces the dependency of an external light source.

- A number of common RGB-D sensors utilise the structured light technology

including the Microsoft Kinect [7], the Asus Xtion [25], and the Orbbec Astra

[26].

• Time of Flight(ToF):

- These systems measure the time that a wave emitted by a transmitter unit

requires to travel to an object and back to a detector.

- Examples of ToF systems are LIDAR where the wave emitted is a laser beam

and Synthetic Aperture Radar(SAR) [8], a form of imaging radar where the

wave emitted is a Radio wave.

2.2.2 Acoustic waves

This category of systems emit acoustic waves for 3D reconstruction and 3D sound

localization. Examples include the imaging Sonar or synthetic aperture sonar(SAS)

[10] which uses ultrasound signals whose frequencies are above 20kHz. SAS combines

many acoustic pings to form an image with much higher resolution than conventional
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sonars. SAS has useful applications in marine research, underwater construction

work, offshore oil and gas, and in the military sector.

Another application of an acoustic wave system is 3D sound localization for surveil-

lance applications where humans or cameras have no direct line of sight with the sound

sources. In such cases, the ability to estimate the direction of the sources of danger

relying on sound becomes extremely important.

The localization model in [11] is based on a neuromorphic microphone that takes

advantage of the biologically-based monaural spectral cues to localize sound sources

in a plane. The authors of [12] proposed a method to reconstruct the 3D structure

(sensing the shape) of generic convex rooms from acoustic signals. They achieve

microphones and sources localization and wall estimation by calculating the Time

of arrival (TOA) of the direct path and echoes of the signal from the source to the

microphone.

2.2.3 Acoustic-Optical

Based on the existing literature on the taxonomy of data acquisition methods for

3D reconstruction, the method proposed in this thesis work can be classified into a

third category of active sensors which uses images and acoustic waves to estimate the

depth of an object.

The proposed sensor setup directs acoustic signals at an object’s surface. Next,

the vibrations on the object’s surface are captured using calibrated neuromorphic

cameras. Using the time stamps generated by the camera, we estimate the Time of

Flight (ToF) for an emitted acoustic wave to hit the surface of an object. The ToF

is then used in conjunction with the geometric setup of the optical system, which is

used to derive the calculation for depth.
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2.3 Pinhole camera model

The pinhole camera model provides a mathematical relationship between the co-

ordinates of a 3D point in the world coordinate space and its projection onto the 2D

image plane. It describes a camera with a pinhole aperture and image plane as shown

in Figure 2.2.

Figure 2.2: Pinhole camera model showing the relationship between 3D world points
and their projection onto the image plane.

The centre of projection, C, is referred to as the camera centre or optical centre

and is the origin of the Euclidean coordinate system. The plane Z = f is called the

image plane or focal plane. The line from the camera centre perpendicular to the

image plane is called the principal axis. The point where the principal axis meets the

image plane is called the principal point. The distance between the image plane and

the camera centre is the focal length, f .

The pinhole model provides a projection mapping between 3D world points P =

[XY Z]T , and 2D points on the image plane p′ = [xy]T . It defines this perspective

projection in terms of a set of parameters intrinsic to the camera like focal length, f in

meters, principal point (cx, cy), in pixels and pixel size (sx, sy), in meters/pixel. The

simplifications fx = f
sx

and fy = f
sy

are often made to express the focal length in units
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of pixels. Using these equations, the resulting 2D pixel coordinates after projection

can found using:

x = fx
X

Z
+ cx

y = fy
Y

Z
+ cy

(2.1)

If the distance from the image plane (Z) is known for a given pixel value, the

associated 3D point can be reconstructed using the inverse mapping:

X =
Z

fx
(x− cx)

Y =
Z

fy
(y − cy)

(2.2)

2.3.1 Intrinsic Parameters

The pinhole camera model discussed above provides a relationship between points

in 3D space to their corresponding 2D image pixel locations in terms of a set of

parameters intrinsic to the camera. These intrinsic parameters can be expressed in a

matrix form as:

K =


f
sX

0 cx

0 f
sy

cy

0 0 1

 =


fx 0 cx

0 fy cy

0 0 1

 (2.3)

The perspective projection of the 3D point (X, Y, Z) to the image point (x, y) can

be expressed as:
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
x

y

1

 =


fx 0 cX

0 fy cy

0 0 1



X

Y

Z

 (2.4)

2.3.2 Extrinsic Parameters

The extrinsic camera parameters are a set of geometric parameters used to deter-

mine accurately the fixed transformation between the camera frame and the world

frame. Unlike with intrinsic parameters, the world origin is no longer located at the

camera focal point as the camera is allowed to translate and rotate in space. The

extrinsic parameters are now expressed in terms of a rotation matrix R3×3 and a

translation vector t3×1. Thus the relationship between image coordinates and the

world coordinates can be expressed as:

Pimage = K

[
R | t

]
Pworld (2.5)

or:


x

y

1

 =


fx 0 cx

0 fy cy

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz





X

Y

Z

1


(2.6)

2.4 Cameras

For the task of depth estimation, RGB-D cameras are typically used. They are

popular low cost, high performance that combine a traditional color camera with an
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infrared depth sensor to produce full HD color and range images at real-time frame

rates. A common class of RGB-D sensors is those that leverage structured light

approaches for depth estimation. Structured light sensors are active sensors that

project a known infrared pattern out into the scene. These sensors are also equipped

with infrared cameras located at a known baseline from the projector, which detect the

pattern. Using the difference between the known pattern and the detected pattern,

depth is calculated using triangulation.

2.4.1 Neuromorphic Cameras

In this thesis, we use a high frame rate, event camera or a neuromorphic camera

[13]. Neuromorphic cameras are dynamic vision sensors that responds to changes in

brightness. They do not capture images using shutters the way traditional cameras

do which have a common exposure time. Instead, each pixel in the event camera

independently measures changes in brightness/intensity as a continuous stream of

pixel events.

Event cameras are used in applications such as object tracking [27, 28, 29, 30, 31],

surveillance and monitoring [32, 33] where the high speed motion of scene objects

causes changes in intensity which in turn leads to events generated by the event

camera. Objects of interest are identified as a coherent event activity of neighboring

pixels within a time window. Additionally, event cameras are used in applications

such as object recognition when the objects are in motion [34, 35, 36, 37] and action

recognition [16, 38]. These methods take a temporal approach to object recognition

and utilize the precise timing information inherently present in the output of these

biologically inspired sensors typically by using deep learning architectures.

Prior work related to the application of depth estimation - the topic covered in

this thesis, use complex multi camera setup and visible light [39, 40, 41, 42, 43, 44]

to capture depth and structural information on scene objects. The method proposed

in this thesis differs from these existing depth estimation methods as it uses a single
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camera setup with a novel acoustic-optical sensing mechanism to estimate depth.

The benefits of the neuromorphic or event cameras have led to an increase in their

popularity in both academic and commercial worlds. Examples of commercially avail-

able event cameras include Samsung’s DVS [45] and DAVIS (Dynamic and Active-

Pixel Vision Sensor) by iniVation [46]. A more detailed comparison of the different

types of sensors and their working is described in Chapter 3.

2.5 Acoustic wave propagation

An acoustic wave is a vibration that typically propagates as an audible wave of

pressure, through a transmission medium such as a gas, liquid or solid. In terms of

human physiology, sound is the reception of such waves and their perception by the

brain. When the frequency of the wave lies between about 20 Hz and 20 kHz, it is

in the human audible range. Sound waves above 20 kHz are known as ultrasound

and are not perceptible by humans while sound waves below 20 Hz are known as

infra-sound.

Figure 2.3: Frequency ranges of sound.

2.5.1 Physics of sound

Sound waves are longitudinal waves or waves that have the same direction of vibra-

tion as their direction of travel. The sound waves are generated by a sound source,

such as the vibrating diaphragm of a stereo speaker. The sound source creates vibra-

tions in the surrounding medium. As the source continues to vibrate the medium,

the vibrations propagate away from the source at the speed of sound, thus forming

the sound wave. At a fixed distance from the source, the pressure, velocity, and
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displacement of the medium vary with time.

Sound waves are often simplified to a description in terms of sinusoidal plane waves,

which are characterized by frequency, amplitude or sound pressure and speed of sound.

The speed of sound is the distance traveled per unit time by a sound wave as it

propagates through an elastic medium. In this application, the medium considered

is air. At 20 ◦C (68 ◦F), the speed of sound in air is about 343 metres per second.

However, this value is is not only dependent on the ambient temperature, but also

varies depending on the medium through which the sound wave propagates.

2.5.2 Acoustic waves

The acoustic wave equation governs the propagation of acoustic waves through a

material medium. The form of the equation is a second order partial differential

equation. The equation describes the evolution of acoustic pressure p or particle

velocity u as a function of position x and time t.

• In one dimension

The acoustic wave equation for sound pressure in one dimension is given by

Equation 2.7.

∂2p

∂x2
− 1

c

∂2p

∂t2
= 0 (2.7)

Where p is sound pressure in Pa, x is particle displacement in m, c is speed of

sound in m/s and t is time in s.

The wave equation for particle velocity has the same shape and is given by

Equation 2.8 where u is particle velocity in m/s.

∂2u

∂x2
− 1

c

∂2u

∂t2
= 0 (2.8)

Equation 2.8 describes acoustic waves in only one space dimension x, because
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the only other independent variable is the time t.

• In two dimension

Equation 2.7 and Equation 2.8 provide mathematical equations which govern

vibrations in one dimension. This subsection talks about the two dimension

analog namely, the motion of an elastic membrane such as a drum head that

is stretched and then fixed along its edge, membrane in a microphone or the

surface of an object.

1. Rectangular membrane

An acoustic membrane is a thin layer that vibrates and is used to produce

or transfer sound, such as a drum, microphone, or loudspeaker.

∂2u

∂t2
= c2(

∂2u

∂x2
+
∂2u

∂y2
) (2.9)

Where

c2 = T/ρ

In equation 2.9, T represents the tension per unit length and ρ is the

mass of the undeflected membrane per unit area. The equation describes

a model for obtaining the displacement u(x, y, t) of a point (x, y) on the

vibrating membrane from rest (u=0) at time t.

2. Circular membrane

Circular membranes are important parts of drums, pumps, microphones,

telephones, and other devices. Whenever a circular membrane is plane and

its material is elastic, but offers no resistance to bending, its vibrations are

modeled by the two-dimensional wave equation in polar coordinates.

∂2u

∂t2
= c2(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
) (2.10)
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Equation 2.10 provides a mathematical model for vibrations on a circular

membrane.

2.6 Estimating structural properties of an object

When a sinusoidal excitation signal is used to induce motion in the scene objects,

we can leverage the sinusoidal, time varying signal for geometric inference. Sinusoidal

excitation signals will cause oscillatory vibrations on an object’s surface. Traditional

vibration analysis is used in structural engineering and civil engineering to estimate

material properties of objects, find defects in composite materials. Typically, these

involve the use of contact sensors or expensive laser vibrometers [18, 19, 20], which

limit sampling to only a small number of discrete points on an object’s surface.

By recovering sound from the video, it is possible to obtain a spatial measurement of

the audio signal at many points on the object as opposed to a single point [47]. These

spatial measurements can be used to recover the vibration modes of an object. The

authors of [21] show that an object’s modes of vibration are closely and predictably

related to its material properties and investigate how this connection can be used to

learn about the material properties of an object by analyzing its vibrations in video.

Their method employs image magnification [48] and uses spatial phase variations of

the complex steerable pyramid [49] to represent small local motions in video.

The authors of Davis et al.[48] state that vibration models can be useful for struc-

tural analysis. General deformations of an object can be expressed as superposition

of the object’s vibration modes. Vibration modes are characterized by motion where

all parts of an object vibrate with the same temporal frequency, the modal frequency,

and with a fixed phase relation between different parts of the object. They obtain the

modal frequencies by looking for peaks in the spectra of the recovered location motion

signals. At one of these peaks, they get a Fourier coefficient for every spatial location

in the image. Using these Fourier coefficients, they find the vibration mode shape

with amplitude corresponding to the amount of motion and phase corresponding to
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fixed phase relation between points.

In modal analysis, a solid object is modeled as a system of point masses connected

by springs and dampers [22]. Intuitively, rigid objects are approximated with stiff

springs, highly damped objects are approximated with stiff dampers, and dense ob-

jects are approximated with heavy masses. The differential equation of motion for

this system is given by:

m
∂2x

∂t2
+ c

∂x

∂t
+ kx = Cam(x, t) (2.11)

where m is mass, c is the damping coefficient, k is the spring constant and Cam(x,

t) is the 1 dimensional projection of the excitation signal into the camera frame.

Using Equation 2.11, observations of the motions induced by sound waves can provide

information about the unknown mass, damping coefficient and the spring constant

of the object. We show that is is possible to leverage the high temporal sample rate

of the DVS camera to extract vibrations more easily and perform similar analysis to

estimate the object’s structural properties.

2.7 Summary

In this chapter, we provided a literature review of existing depth estimation meth-

ods and introduced a new acoustic-optical approach to estimate depth of scene objects

using neuromorphic cameras. A brief introduction to the neuromorphic cameras, their

working and applications were discussed along with the pin hole camera model for

image formation. We provided equations which relate the 3D world coordinates to

the 2D pixel coordinates. Finally, we discussed the acoustic wave propagation and

their equations. In the subsequent chapters, we show how the topics and equations

introduced in this chapter are used in the methodology proposed by this thesis.



CHAPTER 3: NEUROMORPHIC CAMERAS

This chapter provides an overview of the novel bio-inspired technology of neuro-

morphic cameras, or event cameras [13] used in this thesis. In contrast to standard

frame based cameras, event cameras are asynchronous sensors that capture images

in a completely different way. Event cameras show strong potential, when integrated

with new event-driven computer vision algorithms to overcome some of the limitations

of standard frame based cameras.

The chapter begins by discussing the limitations and problems caused by the design

principles of conventional cameras and goes on to introduce the event based vision

sensors and the motivation behind their invention. We then provide a comparison

between event cameras and standard cameras and go on to describe the principle and

working of different neuromorphic vision sensors.

3.1 Limitations of standard frame based cameras

Computer vision applications that involve motion of scene objects or motion of

the camera itself such as in robotics or autonomous driving, the algorithms employed

for standard frame based camera face several challenges and limitations, especially

the response to rapid motion [50, 51] with low latency, its ability to handle extreme

lighting variation [52], and loss of information between frames [53].

Standard frame-rates cannot cope with rapid motion. Many real-world, real-time

vision applications require frames from cameras at a much higher rate than standard

frame rates i.e. 25-60 Hz to cope with dynamics in the world. Algorithms that operate

with these normal frame rates run into problems of vast motion displacement between

frames or diminishing image quality due to motion blur. As shown in Figure 3.1 (a),
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Figure 3.1: (a) motion blur caused by rapid camera motion destroys all the detailed
texture in the scene; (b) low dynamic range under extreme lighting variation, causing
low contrast in the areas around bright or dark regions. Image courtesy [54]

motion blur results in the loss of detailed texture in the scene which will degrade the

performance of these computer vision algorithm significantly.

Standard cameras often suffer from low dynamic range. A standard CC or CMOS

camera generates video by synchronously opening its shutter to expose all pixels, or

a line of pixels in the rolling shutter case, to capture frames. These sensors have

relatively low dynamic range, around 60 dB and are therefore unable to sense over a

high dynamic range such as in scenes that contain large intensity differences, as shown

in Figure 3.1 (b). This results in a loss of visibility in an area around the bright sun

and in the dark regions. Like motion blur, the low dynamic range in standard cameras

will have a negative effect on computer vision algorithms.

When dealing with applications such as motion tracking [50, 51], the standard

frame based cameras lose information about moving objects in the scene and in

between frames. Due to the fixed frame rate of these sensors, it will not capture

information about the moving object of interest. Even within each image, the same

irrelevant background objects are repeatedly recorded, generating excessive unhelpful

data. Thus with these sensors, static background objects end up being over sampling

while motion of objects are under-sampled which leads to a loss of important scene
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information.

The limitations of standard frame based cameras discussed above are of particular

relevance to this thesis where we observe subtle motion on the surface of scene objects

induced by sound waves. These motion occur in the order of micrometers and occur

quickly in the order of microseconds. Capturing such subtle motion would not be

possible with standard frame based cameras with low frame rates.

3.2 Neuromorphic Silicon Retina

Researchers in neuromorphic engineering have been trying to replicate the success

of neural network architectures and functions to create electrical and electronic sys-

tems with the same efficient style of sensing and computation. Within this research

branch, neuromorphic vision systems specifically aim to mimic the biological retina

and subsequent vision processing. In biology, the vertebrate retina, which is a thin

sheet of tissue lining the inner surface of the eye, converts raw light into electrical

pulses (known as spikes) in proportion to the relative change in light intensity over

time or space. The spike signals are transmitted to the brain along the optic nerve to

be interpreted as visual images and to stimulate high level perception and reaction

[54].

The cells in our eye report back to the brain when they detect a change in the scene.

If there is no change then the cells do not report anything. The more an object moves,

the more your eye and brain sample it. This process allows human vision to collect

all the information it needs, without wasting time and energy reprocessing images of

the unchanging parts of the scene. By only recording what changes, the eye and brain

can gather useful information from things changing at up to 1000 times a second.

Motivated by this deep understanding of how visual information is encoded by

the biological input sensor and transmitted to the brain, researchers in neuromorphic

engineering have developed a new type of visual sensors, generally called as neuromor-

phic silicon retinas [55]. In 1991, Mahowald and Mead [56] successfully reproduced
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the first three of the biological retina’s five layers in silicon, and demonstrated the

same output signals observed in real retinas in real-time. Since Mahowald and Mead’s

[56, 55] pioneering work, a variety of neuromorphic vision devices have been devel-

oped such as the Visio1 chip designed by Zaghloul and Boahen [57] which reproduced

all five layers of the retina.

3.3 Event based vision sensors

Through historical reviews of the event-based vision sensors, research in general can

be found in [13, 58, 59, 60, 61, 62]. Up to the early 2000s, neuromorphic vision re-

search was mostly aimed at creating complete neuromorphic systems mimicking their

biological counterparts as precisely as possible. Since then, many different types of

silicon retina have been developed which can be used in conjunction with conventional

processors and be used in practical applications as alternative vision devices. Inspired

by biological vision, they extract information from scenes in various forms to reduce

redundancy and latency and increase dynamic range. The event cameras originate

from the bio-inspired silicon retina research in neuromorphic engineering [56, 55, 63]

whose goal is to emulate some superior properties of biological vision.

Event cameras are bio-inspired vision sensors that work radically differently from

conventional cameras. Event cameras measure changes in intensity asynchronously

at the time they occur, rather than synchronous full image frames, as illustrated in

Figure 3.2. This results in a stream of events, which encode the time, location, and

polarity of brightness changes.

These cameras sample light based on the scene dynamics, rather than on a clock

that has no relation to the viewed scene which gives the even camera the following

advantages: very high temporal resolution and low latency (both in the order of

microseconds), very high dynamic range (140 dB vs. 60 dB of standard cameras),

and low power consumption. Hence, event cameras show a lot of potential for robotics

and wearable applications, that present high speed and high dynamic range in the
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Figure 3.2: A standard CMOS camera sends images at a fixed frame rate (blue). An
event camera instead sends spike events at the time they occur (red). Each event
corresponds to a local, pixel-level change of brightness.

scene and which are challenging scenarios for standard cameras. Although event

cameras have become commercially available only since 2008 [64], the recent body of

literature [65] on these new sensors as well as the recent plans for mass production

claimed by companies, such as Samsung [45] and Prophese [66], highlight that there

is a big commercial interest in exploiting these novel vision sensors for mobile robotic,

augmented and virtual reality (AR/VR), and video game applications.

3.4 Event camera vs. standard camera

In order to understand how event cameras work and appreciate how they can

be beneficial for real time computer vision applications, it is important to look at

the differences between event cameras and standard cameras, which is illustrated in

Figure 3.3. Standard cameras record scenes at fixed time intervals i.e. global or rolling

shutter, and output a sequence of image frames. For instance, as shown in Figure

3.3, when a fixed standard camera looks at the spinning disc with a black dot shown

on the left, we get a sequence of frames as illustrated in the upper spatial-temporal

graph on the right. The plot illustrates and visualizes some of the main properties of

the standard video frames:

• The blind time intervals between frames, the sensor keeps sending redundant

data even when the disc stays still: no new information produced

• They suffer from motion blur when the disc spins too fast, which is illustrated
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Figure 3.3: Visualization of the output of event camera vs standard camera looking
at a rotating dot: in contrast to a sequence of video frames from a standard camera
shown in the upper graph, a stream of events from an event camera, plotted in the
lower graph, offers no redundant data output (only informative pixels or no events at
all), no motion blur and high dynamic range. Red and blue dots represent positive
and negative events respectively. Image courtesy [54]

by the grey tails along the trajectory of the block dot

In contrast, event cameras do not output a sequence of video frames like a standard

camera, but a stream of asynchronous events, each with a pixel location, polarity and

microsecond-precise timestamp, indicating when individual pixels record log intensity

changes of a pre-set threshold size. Positive and negative changes produce positive or

ON events and negative or OFF events respectively. By encoding only image changes,

the bandwidth needed to transmit, process and store a stream of events is much lower

than that for standard video, removing the redundancy in continually repeated image

values.

If we observe the same spinning disc with an event camera, we get the stream of

events illustrated in the lower spatial-temporal graph on the right of Figure 3.3. Red

and blue dots represent positive (ON) and negative (OFF) events respectively. This

graph also visualizes some of the main properties of the event stream - in particular the



24

almost continuous response to very rapid motion and the way that the output data-

rate depends on scene motion. Hence, event cameras offer the potential to overcome

the limitations of real-world computer vision applications such as low frame rate, high

latency, low dynamic range, and high power consumption which conventional imaging

sensors suffer from.

3.5 Principle of operation

This section discusses the working principles and the advantages and disadvantages

of the 3 main types of sensors used in event cameras:

• Dynamic vision sensor (DVS)

• ATIS sensor

• Dynamic and Active pixel Vision Sensor(DAVIS)

We will discuss the operating principles and architecture of these three sensors in

detail in the following subsections.

3.5.1 Dynamic vision sensor (DVS)

The Dynamic vision sensor (DVS) was the first commercialized event camera from

iniLabs [67] based on the research paper of Lichtsteiner et al. [64]. It has a silicon

retina design where the continuous-time photo-receptor was coupled to a readout

circuit that was reset each time the pixel was sampled.

The DVS has a 128x128 resolution, 120 dB dynamic range and 15 µs latency, and

communicates with a host computer using USB 2.0. It outputs a stream of events,

each consisting of a pixel location u and v, a polarity bit p indicating either a positive

or negative change in log intensity, and a timestamp t in microseconds.

Each pixel of the event camera consists of three hardware components as shown

as an abstracted pixel schematic in Figure 3.4 (a): a logarithmic photoreceptor, a

differencing circuit and two comparators.
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Figure 3.4: . DVS pixel architecture and the principle of operation: (a) each pixel
of the DVS sensor consists of three parts: a logarithmic photoreceptor, a differencing
circuit, and two comparators (b) the output signal from the photoreceptor and the
principle of operation governed by the differencing circuit and comparators are plotted
in the upper and lower graphs respectively. Figures courtesy of Lichtsteiner et al. [64]

The photoreceptor continuously outputs a voltage signal which encodes the incom-

ing intensity. This signal is logarithmically as plotted in the upper graph in Figure

3.4 (b). The signal is then monitored by the differencing circuit and the two compara-

tors for changes compared to a log intensity value recorded when the last event was

emitted by the pixel. Once a change in log intensity which exceeds either a pre-set

ON or OFF event threshold is detected, one of the comparators generates an ON or

OFF event accordingly, and the newly generated event then resets and causes the

pixel to memorize a new log intensity value as plotted in the lower graph in Figure

3.4 (b). The event threshold can be adjusted by the sensor’s bias settings. The bias

settings of the DVS is described in detail in Section 3.6. Each DVS pixel repeats this

process continuously and independently, yielding a stream of asynchronous events

which encode relative changes in pixel illumination.

3.5.2 Asynchronous Time-based Image Sensor (ATIS)

Posch et al. [53] developed the Asynchronous Time-based Image Sensor (ATIS)

camera which provides absolute intensity values along with events. This was realized

by combining the DVS temporal contrast pixel with a new time-based intensity mea-
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surement pixel. Every scene intensity change causes three consecutive events: the

first event is the same as the one from a DVS pixel, and the other two encode an

absolute grey scale value in the inter-event time interval.

The main advantages of the ATIS sensors compared to the DVS sensors are their

higher resolution (304×240), higher dynamic range (143 dB) and lower latency (3

µs). However, the ATIS has the disadvantage that pixels are at least double the area

of DVS pixels. Additionally, in dark scenes the time between the two intensity events

can be long and the readout of intensity can be interrupted by new events.

3.5.3 Dynamic and Active pixel Vision Sensor(DAVIS)

To over come the drawbacks of the ATIS sensor, Brandli et al. [15] designed

the Dynamic and Active pixel Vision Sensor (DAVIS) which interleaves event data

with conventional intensity frames by combining the conventional Active Pixel Sensor

(APS) [68] in the same pixel with DVS. The advantage of DAVIS over ATIS is a much

smaller pixel size since the photodiode is shared and the readout circuit only adds

about 5% to the DVS pixel area. Intensity (APS) frames can be triggered at a

constant frame rate. This circuitry is shown in Figure 3.5.

Figure 3.5: . Simplified circuit diagram of the DAVIS pixel (DVS pixel in red, APS
pixel in blue). Figure courtesy of Gallego et al. [13]

As shown in Figure 3.5, the DAVIS pixel architecture comprises of an event based

dynamic vision sensor (DVS) and a frame-based active pixel sensor (APS) in the

same pixel array, sharing the same photodiode in each pixel. In this thesis, we use

the DAVIS 346 [69] camera manufactured by iniVation. This camera has a DVS and
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a gray frame resolution of 346×260 pixels, a DVS dynamic range of 120 dB and 20

µs latency, and communicates with a host computer using USB 3.0. It has bandwidth

of 12 MEvents/second.

3.6 Event generation model

As discussed in the previous sections, event cameras have independent pixels that

respond to changes in their log photocurrent L=̇log(I) or brightness. More explicitly,

in a noise-free scenario, an event ek=̇(xk, tk, pk) is triggered at pixel xk=̇(xk, yk)T and

at time tk as soon as the brightness increment since the last event at the pixel, i.e:

∆L(xk, tk)=̇L(xk, tk)− L(xk, tk∆tk) (3.1)

reaches a temporal contrast threshold ±C, as shown in Figure 3.4 (b), where C > 0,

∆tk is the is the time elapsed since the last event at the same pixel, and the polarity

pk ∈ [−1,+1] is the sign of the brightness change.

3.7 Address Event Representation

The sparse and asynchronous nature of spikes (or events) in the neuromorphic

design principle has called for new communication protocols which can easily distin-

guish which pixel has fired a specific spike or event. One such new communication

strategy is the Address Event Representation (AER) [70, 56, 71], which is now the

defacto standard protocol used in most neuromorphic hardware including most event

cameras.

Events are transmitted from the pixel array to periphery and then out of the camera

using a shared digital output bus, using the AER readout. As shown in Figure 3.6

(a), simple AER protocol-based neuromorphic systems use two control signals req and

ack to synchronize the data transfer through the data bus between the sender and

the receiver based on a four-phase handshake.

As illustrated in Figure 3.6 (b), the sender asserts a req signal once it has written
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Figure 3.6: . The AER protocol: (a) the sender and the receiver of a simple AER
system communicate each other through two control signals (req and ack) and a data
bus; (b) a simple AER communication sequence logic diagram based on a four-phase
handshake. Figure courtesy [54]

Figure 3.7: . The AER data packet for the DAVIS 346. Figure courtesy [72]

data onto the multi line data bus to notify the receiver, and at this point, the data

on the bus can be considered valid. The receiver then reads the data and confirms

that by asserting an ack signal which yields the subsequent sequential de-assertions
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Figure 3.8: Description of each bit stored in the DAVIS 346 AER data packet. Figure
courtesy [72]

of the req and ack signals by the sender and receiver respectively, and goes back to

wait for the next transaction.

The actual AER data bus width and protocol vary depending on specific hardware.

For instance, the DAVIS 346 camera used in this thesis uses an AER bus whose

address is 32 bit wide and the timestamp also 32 bit, for a total of 8 bytes per

event, as shown in Figure 3.7. The DAVIS camera family stores polarity (luminosity

change) events, IMU (Inertial Measurement Unit) samples and pixel intensity values

(both APS reset and signal read) according to the following scheme shown in Figure

3.8.

3.8 DAVIS Biases

This section explains the on-chip parameters or biases of the Dynamic Vision Sen-

sors including the DAVIS 346 camera used in this thesis. Analogue electronic circuits

are often parameterised by currents or voltages which are held steady during opera-

tion and define the operating characteristics of the event camera. These currents and



30

Figure 3.9: DAVIS 346 bias parameters [72]

voltages are called biases.

Setting these bias values is a crucial step when using an event camera. These bias

settings control attributes such as sensitivity to brightness, number of On/OFF events

generated, thresholds for pixel events etc. These biases can be dynamically adjusted

via the camera’s USB interface. Figure 3.9 lists the biases that apply to DAVIS 346

camera and describes each setting briefly.
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The sensors contain digitally programmable bias generators which can produce

currents that can vary over many orders of magnitude (from µA down to fA). These

currents then produce voltages which can be distributed across a chip to bias many

circuits at once.

3.9 Summary

In this chapter, we discussed in detail the motivation of the event camera along with

its architecture and principle of operation. As shown in this chapter, the properties of

event cameras offer the potential to overcome the limitations of real-time, real-world

computer vision applications. The event camera is gradually becoming more widely

known by researchers in computer vision, robotics and related fields and even seeing

an increase in commercially available event cameras. We summarise and compare the

characteristics of the notable event cameras described in this chapter in Figure 3.10.

As shown in Figure 3.10, event camera technology has been improved significantly in

terms of spatial resolution, pixel size, sensitivity, latency and power consumption, and

we can expect many more innovations in this area in the near future. Manufacturers

offer neuromorphic sensors with different resolutions, sensitivity and latencies suitable

for a variety of applications.

Figure 3.10: . Comparison of common commercial event based cameras. Figure
courtesy of Gallego et al. [13]

We introduced the DAVIS 346 camera which is used in this thesis and discussed
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the attributes that control its operation such as the communication protocol used

between the camera and the computer, the representation of the data generated by

the camera and the programmable biases which control the operating characteristics of

the event camera such as sensitivity of the sensor to light, number of events generated,

thresholds for the sensors etc. These bias parameters need to be tuned appropriately

to make the event camera sensitive to changes in scene illumination in order to capture

the subtle vibrations generated by the acoustic excitation signal striking the surface

of an object.



CHAPTER 4: METHODOLOGY

This chapter discusses the methodology used in this thesis to estimate the depth

of an object using acoustic waves and neuromorphihc cameras. Our system consists

of the following components:

• Acoustic wave propagation

• Camera calibration

• Geometric setup for the optical system

The first component involves emitting an acoustic wave from a speaker which will

induce motion on the surface of an object. Two types of sound waves are discussed in

this thesis: impulse wave and a sinusoidal wave. The next component is calibrating

the camera and estimating the camera parameters including the focal length of the

lens used. The final component, the primary contribution of this thesis is detecting

and analyzing the vibrations caused by the acoustic excitation energy on the scene

objects and setting up of a geometry for our optical system to detect these vibrations.

Using this geometry, we derive an equation to calculate the depth.

4.1 Acoustic wave propagation

Sound is a pressure wave which is created by a vibrating object. These vibrations

displace the particles in the surrounding medium (typical air) in an oscillatory motion,

thus transporting energy through the medium. Since the particles move in parallel

direction to the wave movement, sound waves are referred to as a longitudinal waves.

The result of longitudinal waves is the creation of compressions and rarefactions

within the air.
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Let us consider sound generated by a speaker. A speaker produces sound waves

by oscillating a cone, causing vibrations of air molecules. In Figure 4.1, a speaker

vibrates at a constant frequency and amplitude, which produces vibrations in the

surrounding air molecules. As the speaker oscillates back and forth, it results in

compressing and expanding the surrounding air, creating slightly higher and lower

local pressures. These compressions or high-pressure regions and rarefactions or low-

pressure regions move out as longitudinal pressure waves having the same frequency

as the speaker.

Figure 4.1: A vibrating cone of a speaker, moving in the positive x-direction, com-
pressing and expanding the air in front of it. (a) The red graph shows the gauge
pressure of the air versus the distance from the speaker. Pressures vary only slightly
from atmospheric pressure for ordinary sounds. (b) Sound waves can also be modeled
using the displacement of the air molecules. The blue graph shows the displacement
of the air molecules versus the position from the speaker. Figure courtesy [73]

Figure 4.1(a) shows these compressions and rarefactions, and also shows a graph of

gauge pressure versus distance from a speaker. As the speaker moves in the positive

x-direction, it pushes air molecules, displacing them from their equilibrium positions.

As the speaker moves in the negative x-direction, the air molecules move back toward

their equilibrium positions due to a restoring force. The air molecules oscillate in

simple harmonic motion about their equilibrium positions, as shown in Figure 4.1
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(b). Since sound waves in air are longitudinal, in Figure 4.1, the wave propagates in

the positive x-direction and the molecules oscillate parallel to the direction in which

the wave propagates.

We can model sound waves emitted from a speaker as spherical waves from a point

source. If a wave spreads out form the source in all directions, it is a three-dimensional

wave. If the energy spreads uniformly in all directions in an isotropic medium (same

in all directions), the wave is said to be a spherical wave. As the wave moves outward,

the energy it carries is spread over a larger area.

Figure 4.2: A sound wave travels from point source S

In Figure 4.2, a sound wave travels from point source S through a three dimensional

medium. The wavefronts from spheres centred on S and the rays are radial to S. The

short, double headed arrows indicate that elements of the medium oscillate parallel

to the rays.

As described in Figure 4.1, the vibrations caused by the speaker will push the air

molecules, displacing them from their equilibrium positions. If we place an object in

the path of the sound waves, the displaced air molecules will cause a displacement

on the surface of the object. We use this property in our thesis to induce motion in

scene objects using a speaker emitting sound wave.

In this thesis, we use two types of sound waves:

• Impulse wave: An impulse-like audio wave form shown in Figure 4.3.
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Figure 4.3: Impulse-like audio signal

Impulsive reconstruction requires only detection of motion in scene pixels. This

approach does not require detection of the magnitude, phase, or frequency of the

wave and depends only on the wave propagation speed, c. Using the geometrical

setup described in Section 4.2, the one-way travel time, ∆t or the time taken for

the 3D wave to propagate from the emitter and induce a motion on observed

scene locations is calculated using the AER data by detecting the time and

positions at which the speaker first moves and when events are generated on

the object.

• Sinusoidal wave: The second type of excitation signal used is a sinusoidal wave

like the one shown in Figure 4.4. Using a sinusoidal excitation signal not only

allows us to compute depth using the previously described time of flight ap-

proach but also creates similar time varying vibrations on the scene object.

These vibrations can be analyzed to estimate certain structural properties of

the object, which will be described in Section 5.4.
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Figure 4.4: Sinusoidal audio signal

4.2 Camera calibration

Camera calibration is the process of estimating intrinsic and extrinsic parameters of

a camera. Each camera in a visual system will have a unique set of camera parameters

which must be determined through calibration in order to form an accurate system

model. Using this model, we can develop a mathematical understanding about the

relationship between points in a 3D scene and their projection onto the image plane,

and how image data is represented in various frames of reference.

4.2.1 Intrinsic parameters

As discussed in Section 2.3, the pinhole camera model is used to find the 2D

image pixel location or projection in the image frame of a 3D point (X, Y, Z) in the

coordinate system whose origin is at the optical center of the camera. This project

is expressed in terms of a set of parameters that are intrinsic to the camera. These

intrinsic parameters are typically expressed in a matrix for given by:
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Where (fx, fy) are the focal length in units pixels, F is the focal length typically

expressed in mm. (px, py) is the size of a pixel in the camera sensor and is expressed

in nm. This value is provided by the camera manufacturer as part of the camera of

the camera specifications. (cx, cy) is optical center or the principal point in pixels.

Matrix K is referred to as the camera matrix or intrinsic matrix whose values we

determine using through camera calibration described in Section 4.3.3.

The 2D pixel location of the 3D point is calculated using the expression:


x

y

0

 =


fx 0 cx

0 fy cy

0 0 1



X

Y

Z

 (4.2)

4.2.2 Extrinsic parameters

In the perspective projection method described in the previous section, we assumed

that the 3D points are expressed in the camera coordinate system, centered at the

optical center or the principal point. In practice, they can be expressed in any known

3D coordinate system, which is referred as the world coordinate system. The world

coordinate system can be centered about any point in the coordinate space.
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Figure 4.5: Transformation from 3D world coordinates to 3D camera coordinates

The camera’s extrinsic parameters define the location and orientation of the camera

with respect to this known world frame and are used to transform a 3D point in the

world coordinate system to a 3D point in the camera coordinate system using the

following relation:

Pc = R(P
′ − t) (4.3)

where P ′
= [Xw, Yw, Zw]t is a 3D point in the world frame and Pc = [Xc, Yc, Zc]

t is

a 3D point in the camera coordinate system.

Matrix R is a 3 × 3 matrix known as the rotation matrix. The rotation matrix

brings the corresponding axes of the two frames into alignment i.e., onto each other.

Vector t is 3×1 vector known as the translation vector between the relative positions

of the origins of the two reference frames.

Equation 4.3 can be written in a homogeneous form as:
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

Xc

Yc

Zc

1


=

R tT

O 1

 ∗


Xw

Yw

Zw

1


(4.4)

where O =

[
0 0 0

]
is a 1× 3 zero vector.

The 2D projection of the 3D point P ′ can be calculated by combining Equation

4.3 and Equation 4.2 to get the expression:

Pimage = K[R|t]P ′
(4.5)

or more explicitly:


x

y

1

 =


fx 0 cx

0 fy cy

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz





Xw

Yw

Zw

1


(4.6)

Note that if we allow the world frame to coincide with the focal point of the camera,

as it did in Section 4.3.1, then then R is a 3× 3 identity matrix and t =

[
0 0 0

]T
,

then Equation 4.6 simplifies to Equation 4.2.

In Section 4.4, we will describe how these extrinsic parameters are used to calculate

the ground truth value for depth in our experiments.

4.2.3 Calibration procedure

The projection matrix P = K[R|t] now has 10 free parameters which we can deter-

mine through calibration. The first 4 of these parameters are the intrinsic parameters

cx, cy, fx, and fy . The remaining 6 are the translation components tx, ty, tz, and the

3 angles of rotation specified in R. These parameters are estimated by establishing a
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set of known correspondences between world and image points.

The process of calibrating a camera to estimate these parameters is well defined in

literature [74, 75]. We start by taking multiple images of a 2D pattern with known

size and structure at different distances, angles and orientations. The most commonly

used pattern is the checkerboard pattern like the one shown in Figure 4.6 with the

dimension of each square known accurately.

Figure 4.6: A checkerboard pattern used for camera calibration.

The pixel locations of the corners of the checkerboard (each square) are first de-

tected. Correspondence is then computed between the physical coordinates of the

pattern features (corners) and those extracted from images, resulting in a set of mea-

surements [74, 75] that can be used to estimate the unknown parameters of the camera

model, i.e. those found in the matrix K. This is done by selecting the top-left corner

of the checkerboard as the origin of the world coordinate system and with x and y

axis as shown in Figure 4.6. This ensures that all the detected corner points lie on the

same plane and the Z component of this points is 0 in the world coordinate system.

The detected corner points and the origin for the world coordinate system is shown

in Figure 4.7
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Figure 4.7: Detected corner points and origin of the world coordinate system on a
checkerboard pattern.

4.2.4 Event camera calibration

Although the sensors of event cameras are fundamentally different from conven-

tional imaging sensors, they use the same optics to which traditional perspective pro-

jection apply, as described in Section 4.2.1 and Section 4.2.2. Therefore, a calibration

procedure is required for estimating the intrinsic parameters of event cameras.

When calibrating a DVS sensor, we would need to use a non static calibration

pattern as the event camera only responds to scene changes. We need to either move

the camera or the calibration chart, or have an active pattern such as blinking LEDs

as described in [76].

However, as described in Section 3.5.3, the DAVIS sensor interleaves event data with

standard intensity frames by combining the conventional Active Pixel Sensor(APS)

[68] in the same pixel with DVS. Therefore, since the DAVIS 346 camera [69] is used

in this thesis, the calibration procedure using a static pattern described in Section

4.2.3 can be used to calibrate the DAVIS camera using the camera’s grey frames.
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4.3 Geometric setup for the optical system

This section describes the geometric setup used for the optical system and how the

equations for calculating depth are set up. We set up our acoustic-optical system as

a triangulation problem.

Figure 4.8: Principle of the triangulation and time of flight

Consider a speaker facing an object which is in the same plane and placed in front

of the speaker. The camera is placed such that it is perpendicular to the line joining

the speaker and the object. Figure 4.8 shows the top view of this geometry.

The speaker is placed at a distance ∆X from an object. The camera is placed at

a distance Z as shown in Figure 4.8. If Xs and Xp are the world coordinates of the

speaker and object respectively, then xs and xp are the projections of these points

onto the image coordinate system.

The relationship between the world coordinates and the image coordinates is given

by:
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xs = fx
Xs

Z

xp = fx
Xp

Z

(4.7)

Subtracting the two equations we get:

xp − xs = fx
Xp −Xs

Z
(4.8)

Equation 4.8 can be rearranged to give us the equation to calculate the depth, Z.

Z = fx
∆X

xp − xs
(4.9)

Equation 4.9 gives the value of depth in (mm) with respect to the camera’s optical

center. In the following steps, we discuss how each term on the right hand side of

Equation 4.9 is calculated.

a. Finding xs and xp

The 2D points xs and xp are the pixel locations of the speaker and object in

the image coordinate system. These points are detected using image processing

algorithms on the grey frame from the DAVIS 346 camera. We apply a simple

color threshold to segment the speaker and object locations and obtain their

region of interest (ROI). We then look for events generated within these ROIs

to find the location and time instances when the speaker first emitted sound

waves and when motion was first induced on the surface of the object. The

column locations where the events generated were first generated in the speaker

and object ROIs are used as xs and xp.

b. Finding fx

fx is the focal length of the camera’s lens with units in pixels, which we esti-
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mate using the calibration procedure described in Section 4.2, specifically from

Equation 4.2.

c. Finding ∆X

∆X, or the distance between Xp and Xs, due to the geometry of our optical

system, can be calculated simply as the distance between the x-coordinates of

the two world points since the speaker and object are in the same Y-Z plane.

Hence the values of Yp − Ys and Zp − Zs will be zero hence ∆X = Xp −Xs.

To calculate this distance Xp−Xs, we leverage information about the speed of

a sound wave and the time stamps of the events generated in the speaker and

the object ROIs. Using the time stamps, we can estimate the time of flight or

the time taken for the speaker to travel from the speaker to hit the surface of

the object.

When the speaker emits a sound wave at time instance ts, it will strike the

object’s surface and induce motion at some time instance tp. The time of flight,

tof is the time taken for the sound wave to travel from the speaker to surface of

the object and is calculated using Equation 4.10:

tof = tp − ts (4.10)

The distance ∆X can now be calculated by substituting tof and the speed of

sound in air which approximated to 343 m/s, in Equation 4.11.

∆X = (tof )(c) (4.11)

With the values obtained from Steps a, b and c discussed above, we can simplify

Equation 4.9 to:

Z = fx
(tof )(c)

(xp − xs)
(4.12)
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4.4 Calculating ground truth

To obtain an accurate ground truth value of depth with respect to the camera’s

focal length, we take advantage of the information provided by the geometry of the

3D scene including the feature points with known 3D location and their projections

from the world coordinate system back to the camera plane.

Figure 4.9: Experimental setup used to estimate ground truth of depth - as seen by
the camera

To do so, we start by placing a checkerboard pattern with a known cell size behind

the scene object and in the same plane as shown in Figure 4.9. The pixel locations

of the corners on the checkerboard pattern are then detected. As depicted in Figure

4.10, we select the origin of the world coordinate system as the top-left corner of the

checkerboard. Since the size of the checkerboard cells is known, pixel locations of the

corners act as feature points with known 3D positions in the world coordinate.

Any 3D point with respect to this world coordinate system in Figure 4.10 can then

be projected onto the camera coordinate system whose origin is at the the center of

the image and the Z axis is aligned with the camera’s optical axis. The Z coordinate

of this 3D point in the camera coordinate system will be the depth value. Thus, if we
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Figure 4.10: Word coordinate system with respect to the checkerboard

project the 3D world location of the object to the camera coordinate system, we can

obtain the ground truth estimate for depth of the object with respect to the camera.

To transform coordinates from the world coordinate system to the camera coor-

dinate, we use the camera’s extrinsic parameters as described in Section 4.2.2 and

evaluate Equation 4.4. Let xp = [x, y] be the 2D pixel location of a point on the

scene object, whose depth we wish to calculate. We can then find the 3D location of

xp with respect to the world frame denoted by [Xpw, Ypw, Zpw]. Substituting Xpw, xp,

the values of the rotation matrix R and the translation vector t (which we determine

from the camera calibration), in Equation 4.4, we get:



Xpc

Ypc

Zpc

1


=

R tT

O 1




Xpw

Ypw

Zpw

1


(4.13)

where Zpc gives the ground truth value for depth.
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4.5 Noise filter

All vision sensors are noisy due to the inherent shot noise in photons, transistor

circuit noise, and the non-idealities present. DVS sensors also suffer from noise. The

manufacturers of the DVS camera attribute three different reasons [77] why noise

occurs in the stream of a DVS camera:

• Electronic noise

• Background events

• APS crosstalk

As stated by the manufacturers of the DAVIS camera [77]- "The photodiode and

each of the transistors all contribute some electronic noise. In the complete absence of

light there is still a small current across the photodiode - this is called the dark current;

this current has a certain amount of intrinsic noise. As the light level increases,

the noise in the photocurrent increases, but it does not do so exponentially. Thus,

especially in low-light conditions, and in darker areas of the scene, the pixels may

produce spurious events."

For background noise, the authors of [77] state that "In well-lit conditions with little

electronic noise, there will nevertheless be noise events. These are all ON type, and

from each pixel they arrive with a certain regularity." They attribute noise cause by

APS crosstalk to a burst of excessive events when a global APS exposure is performed.

While noise can be reduced by changing certain thresholds and bias settings of the

DVS sensor, it can not be eliminated completely. Having noisy pixels will impact the

results of the experiments and compromise the accuracy.

Noise events, also referred to background activity (BA) noise, differ from the real

activity events of a pixel such that the BA events lack temporal correlation with events

in their spatial neighborhood unlike the real events that have a temporal correlation
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with events from their spatial neighbors. Using this difference, the BA noise can

be filtered out by detecting events generated by a pixel without the spatio-temporal

correlation with the events generated by neighboring pixels and the pixel itself [78].

This filter is called a spatio-temporal correlation filter [78]. To process an event,

erc(x, y, p, t), the spatio-temporal filter searches e’s spatial 8 × 8 neighborhood for

events with time stamps that occur within a time interval dT with respect to t, as

shown in Figure 4.11. If there exists an event with a time stamp less than a time

difference dT to the processing event’s time stamp, the processing event, erc has

support and will pass the filter. Otherwise, the processing event will be filtered out.

This principal is formulated in Equation 4.14.

Figure 4.11: Principal of spatio-temporal noise filter. An event can pass the filter if
it has correlation with its spatial neighbors within a temporal window dT .

erc(x, y, p, t) 6= BA ⇐⇒ ∃|t− tij| < dT

s.t.|i− x| ≤ 1 ∧ |j − y| ≤ 1

(4.14)

where erc is the processing event and tij is the time stamp of the most recent event
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at col = i and row = j, excluding the processing event.

Figure 4.12 compares an event stream before and after noise filtering.

Figure 4.12: Comparison of events before and after noise filtering. The top image
shows events before applying a noise filter. The image on the bottom shows the events
after noise filtering

4.6 Fitting sinusoidal curve to data using discrete Fourier series

This section describes an approach to fit a sinusoidal curve to a set of noisy data

points. This method is used to recover the audio signal emitted and model the

movement of the speaker driver and the object in the horizontal direction.

Here, the data is an array of the column positions of the pixel corresponding to a

point on the speaker or the scene object, tracked over time.
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There are three steps in reconstructing the sinusoidal signal emitted: Measured

data, Interpolation and Fitting. The following subsections discusses these three steps

in detail.

4.6.1 Measured data

We first start by tracking an edge on the speaker and paper to get a noisy repre-

sentation of their horizontal displacement. To do so, a small portion on the speaker

driver was marked in white, which allows us to segment out that region using the

camera’s grey frame and allow us to observe events generated by the movement of

this ROI. We then track the events generated by this white edge.

Figure 4.13: Region of interest on the speaker driver

When the speaker moves back and forth, the movement of this white region will

generate events at this location. This movement is elucidated in Figure 4.14 which

shows a simulation of the white region moving back and forth.

Figure 4.14: Movement of the white region on the speaker driver

In Figure 4.14, (a) the region represents the white ROI marked on the speaker
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driver with the red edge representing the right most edge of the white marking. The

movement of the white region moving to the left is shown in (b), (c) and (d). As the

white region moves back, the surrounding speaker region will be visible in its place,

which creates a black region. As the black region begins to appear, the event camera

observes this change as a negative change in intensity and will generate OFF events

on the right hand side of the red line and generate ON events on the left hand side

of the of the red line since the white region moving back causes a positive change in

intensity. Similarly, as the white region moves to the right, back to its initial rest

position, the event camera will generate ON events to the right side of the red line as

the white region begins to occupy the black background which is sensed as a positive

change in intensity and generate OFF events to the right of this red line.

Figure 4.15: Events generated by movement of speaker driver

The events generated for the driver moving back and forth is shown in Figure 4.15.

Using the events generated, it is possible to identify the edge of the white region

(the red line in Figure 4.14). Keeping track of the the position of this edge on this

horizontal axis over time will give us the horizontal displacement of the speaker which

we use as the measured data. It is important to note that the edge must be tracked at

a rate greater than 1
2f
, in accordance to Nyquist’s theorem, where f is the frequency

of the signal.
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4.6.2 Interpolation

In practice, events measured are not equally spaced in time. The measured data

described in the previous section will be noisy due to the missed detections of the

edge, or events not being generated frequently due to lighting conditions or sparse

samples of the measured data.

Hence, we perform a linear interpolation on the measured data so that the data is

uniformly-spaced on the time axis before we fit a sinusoid.

4.6.3 Fitting

We can define this problem as fitting a sinsoid of known frequency to the measured

data. The Fourier series fits N sinusoids which are harmonics of a finite length signal.

The harmonics here are the frequencies kω0 where ω0 = 2π
N
. We wish to fit a specific

frequency ωc. To fit a sinusoid with this frequency, we substitute ωc for kω0.

We start off with the equations for Fourier series, whose synthesis equation is given

by:

f(t) =
a0
2

+
∞∑
k=1

(ak cos(kΩ0t) + bk sin(kΩ0t)) (4.15)

The analysis equations are given by:

ak =
2

T

∫
T

x(t) cos(kΩ0t)dt

bk =
2

T

∫
T

x(t) sin(kΩ0t)dt

(4.16)

We then convert these equations to their discrete form. In Equation 4.16, T indi-

cates the period whose discrete form is N , t becomes nT and Ω0T will give us the

discrete frequency, ω0. Thus, the discretized form of Equation 4.16 is:
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ak =
2

N

N−1∑
n=0

x[n] cos(kω0n)

bk =
2

N

N−1∑
n=0

x[n] sin(kω0n)

(4.17)

If we consider L to be the number of periods, then Equation 4.17 becomes:

Lak =
2

N

LN−1∑
n=0

x[n] cos(kω0n)

=⇒ ak =
2

LN

LN−1∑
n=0

x[n] cos(kω0n)

Lbk =
2

N

LN−1∑
n=0

x[n] sin(kω0n)

=⇒ bk =
2

LN

LN−1∑
n=0

x[n] sin(kω0n)

(4.18)

Therefore, for a specific frequency, ωc and L number of periods, the discretized

analysis equations are:

an =
2

LN

LN−1∑
n=0

x[n] cos(ωcn)

bn =
2

LN

LN−1∑
n=0

x[n] sin(ωcn)

(4.19)

We now have the Fourier series coefficients for the form shown in Equation 4.15.

The sine and cosine pairs in Equation 4.15 can be expressed as a single sinusoid with

a phase offset defined by:

f(t) =
a0
2

+
LN−1∑
n=1

An cos(ωct+ φ) (4.20)
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where An and φ are given by:

An =
√
an2 + bn

2and

φ = arctan(
bn
an

)
(4.21)

Thus, we get the equation for a single sinusoid with the desired frequency, ωc, which

will give us a sinusoid curve fit to the measured data.

4.7 Summary

In this chapter, we have presented the mathematical notation conventions and ge-

ometrical foundations used throughout this thesis. We propose a geometric setup for

the optical system and derive Equation 4.9 to estimate depth based on this geometry,

which is the primary contribution of this thesis. We discuss how to estimate all the

terms on the right hand side of Equation 4.9 using the output of the event camera

and the acoustic-optical setup.

Additionally, we also design and describe an approach to estimate ground truth

value for the experiments. Finally, we describe how Equation 4.19, Equation 4.20

and Equation 4.21 can be used to extract an estimate of the acoustic wave excitation

from the apparent motion of the scene objects using the event camera data.



CHAPTER 5: RESULTS

This chapter describes the experimental set up used for the thesis and provides the

specifications and results of all the components of the system.

5.1 Experimental setup

Figure 5.1 shows the setup used to estimate depth and an overview of the algorithm

used to calculate depth is shown in Algorithm 1. The scene object used for the

experiments was a sheet of paper with dimensions 190×130 mm. A speaker, emitting

sound waves is placed in front of this paper to induce motion.

Figure 5.1: Experimental setup used

To detect the time instance (ts) at which the sound wave was emitted, a small

region on the diaphragm of the speaker is detected using the DAVIS camera’s grey

frames. Once this region of interest (ROI) is detected, the algorithm checks to see if

any events are generated within this ROI. If an event is detected, this event’s time
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Algorithm 1: Algorithm used to calculate depth using time of flight
Load AER data;
RemoveNoise();
loadCalibration();
while event(ID) <= numofevents do

if event(ID).x >= speakerROI.x and event(ID).x <= speakerROI.x +
speakerROI.width and event(ID).y >= speakerROI.y and event(ID).y <=
speakerROI.y + speakerROI.height then

ts = event(ID).timeStamp;
xs = event(ID).x;

end
if notisempty(ts) and event(ID).x >= paperrROI.x and event(ID).x <=
paperrROI.x + paperrROI.width and event(ID).y >= paperrROI.y and
event(ID).y <= paperrROI.y + paperrROI.height then

tp = event(ID).timeStamp;
xp = event(ID).x;
toff = (tp - ts);
X = toff * c;
deltax = xp-xs;
fx = DAVIScameraParams.FocalLength(1)*Px;
Z = (fx*X)/deltax;

end
ID = ID+1;

end
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stamp is saved as ts and the location on the horizontal axis is saved as xs. After the

speaker start time is detected, the algorithm checks for events generated in the right

half of the image ( where the object is in the frame). When an event is detected

here, the time stamp is saved as tp and location on the horizontal axis is saved as xp.

Equation 4.9 is then evaluated using the camera’s focal length (fx) to find the depth,

Z in millimeters (mm).

5.2 Camera calibration

To calibrate the camera using the method described in Section 4.3.3, MATLAB’s

calibration procedure [79] was used. The results of the calibration are shown below:

K =


F
sX

0 cx

0 F
sy

cy

0 0 1

 =


251.427± 0.3129 0 171.5425± 0.3070

0 252.6674± 0.3060 116.6541± 0.2809

0 0 1


(5.1)

The pixel size of the Davis346 camera is provided by the manufacturers [72] and is

18.5× 18.5µm. This indicates a variance of ∼ 6 µm in the results of the calibration.

5.3 Emitted wave type

For the time of flight calculation, two types of emitted waves were used to induce

displacement in the scene objects: impulse-like audio wave and a sinusoidal wave.

5.3.1 Impulse wave

Figure 5.2 shows a plot of the horizontal displacement of the speaker driver and

paper over time. The column indices of the pixels where movement was first detected

on the speaker and paper are shown along with their time stamps. The difference

between these two times instances is used as the time-of-flight or tof in Equation 4.11.
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Figure 5.2: Plot of the horizontal displacement of the speaker driver and paper over
time

Using the calibration values from Equation 5.1 and time-of-flight information from

Figure 5.1, the depth is calculated using Equation 4.12 as shown below:

fx = 251.427

xp = 171

xs = 141

tof = 0.0821ms

Z = fx
tof × c
xp − xs

Z = 235.72± 5.632× 10−3mm

(5.2)

The results for impulsive depth reconstruction experiments are shown in Table 5.1.



60

Table 5.1: Results for depth estimation with impulse wave

ground truth

(mm)

estimated depth

(mm)

1 231.3 235.7 ±5.632× 10−3

2 375.3 379.8 ±5.632× 10−3

3 282.2 271.9 ±5.632× 10−3

4 248.4 236.2 ±5.632× 10−3

All ground truth were calculated using the method described in Section 5.2.

5.3.2 Sinusoidal wave

For these experiments, a low frequency sine wave was used. A sine wave with

frequency of 64 Hz and sampled at 44100 Hz was used for all experiments.

The results for depth estimation using the time of flight approach with sinusoidal

signals is shown in Table 5.2

Table 5.2: Results for depth estimation with sine wave

ground truth

(mm)

estimated depth

(mm)

1 312.3 309.5 ±5.632× 10−3

2 237.2 238.2 ±5.632× 10−3

3 303.6 300.9 ±5.632× 10−3

4 254.7 256.6 ±5.632× 10−3

Figure 5.3 shows the result of fitting a sinusoidal curve to the measured data -

column positions of the pixel corresponding to the speaker driver, as described in

Chapter 4.6.3. The fit curve, shown in red indicates we are able to retrieve the

emitted audio signal.
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Figure 5.3: Result of fitting sinusoidal curve to measured data of speaker movement

The fitting experiment described in Chapter 4.6.3 allows us to extract the frequency

of the excitation signal in Hertz. As the measured data is the horizontal displacement

of the scene object in terms of pixels over time, the result of the fit sinusoid curve is

also plotted as the horizontal displacement of the object in pixels (y axis in Figure

5.3), over time (x axis in Figure 5.3). Hence the amplitude of the fit sine curve is

expressed in terms of pixels. For this experiment, a sinusoid with frequency 64 Hz was

used as the excitation signal. From Figure 5.3, we can calculate the average peak to

peak time of the fit sinusoid which is found to be 15.1 ms thus resulting in an estimated

frequency of 66.2 Hz and an amplitude of 1 which indicates the displacement of the

scene object in pixels in each direction of the horizontal axis. This indicates an error

of 2.2 Hz in our estimate of the frequency with respect to the true frequency of the

excitation signal.

5.4 Summary

In this chapter, we described the experimental setup used in this thesis and provided

the experimental results obtained. We provide the calibration results and show from

the calibration results that a variance of ∼ 6 µm is applied to all measurements. With

the help of Figure 5.2 and Equation 5.2 we elucidate how to use the event camera data
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and the camera parameters to solve for the variables in Equation 4.12 to calculate

depth. We also present the result of the fitting experiment to estimate the frequency

of the sinusoidal excitation signal which estimates the frequency with an error of 2.2

Hz.



CHAPTER 6: CONCLUSIONS

In this thesis, we successfully developed a novel non-contact, monocular depth

estimation method using an acoustic excitation signal and a calibrated neuromorphic

camera sensor. Within the taxonomy of existing depth estimation methods, this

approach can be classified as an acoustic-optical sensing mechanism - a novel and one

of its kind method to estimate depth.

The methodology described in this thesis takes advantage of the high temporal

resolution and high frame rates of event cameras to observe and calculate the time

taken by an acoustic wave to strike an object’s surface. This information is used in

conjunction with the proposed geometry for the optical system to recover depth. We

derive an equation to estimate depth using this geometry. The results show that the

proposed method is able to evaluate the depth accurately with an error of ±1cm.

We also propose a method to extract the frequency of a sinusoidal excitation signal

by observing the motion in the scene using the event data. The results indicate

that the proposed method estimates the frequency of the excitation signal with an

error of 2.2 Hz. This approach for reconstructing the emitted signal along with

the acoustic-optical sensing mechanism proposed in this thesis show potential for

estimating structural properties of the object and has use cases in fields such as

vibration analyses, estimating structural proprieties, robotics etc.
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