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ABSTRACT

SASHANK SANTHANAM. Towards Adapting Cognitive Architectures for
Knowledgeable & Personalized Dialogue Systems. (Under the direction of DR.

SAMIRA SHAIKH)

State-of-the-art conversational agents have advanced significantly in conjunction

with the use of large transformer-based language models. However, even with these

rapid advancements, the current generation of conversational agents suffers from

three major problems: (i) long-term context modeling; (ii) producing informative and

factually accurate responses; (iii) robust evaluation of the NLG systems. Our work

tackles these three gaps: (i) To address the issue of long-term context modeling, we

present a novel end-to-end approach inspired by neurocognitive memory processes.

We also implement a novel action selection mechanism that helps identify the relevant

utterances containing salient information from long-term memory to working memory

to better incorporate the context of the conversation during the generation process than

state-of-the-art systems. (ii) To integrate knowledge into conversational agents, we also

propose a dialog framework that incorporates both local knowledge as well as users’ past

dialogues to generate high-quality personalized conversations. Using our framework, we

demonstrate that incorporating local knowledge can largely improve informativeness,

coherency and realisticness measures using human evaluations. However, even with

these advancements, we find that knowledge grounded conversation models are prone

to hallucinations. We address this issue by proposing a new dataset called “CONV-

FEVER” to build a fact consistency detector. We show that our detector outperforms

the current SOTA and can be integrated with existing models to increase the factual
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consistency of the knowledge grounded models. (iii) In the last part of this thesis, we

focus on the aspect of the impact of experiment design in conversational AI systems

by conducting two large-scale studies. In the first study, we compare four different

experimental designs and study how each experiment design affects the quality of

outputs obtained from the human evaluation. In the second study, we study the

impact of cognitive biases particularly anchoring bias, and demonstrate its impact on

human evaluation of NLG systems.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Language Generation is a sub-field of the field of Natural Language Processing(NLP),

Artificial Intelligence(AI), and Cognitive Science(CS) that has been studied since the

1960s. Yet, it is still one of the major challenges that researchers in Natural Language

Processing and Computational Linguistics face.

Figure 1: Overview of the different applications belong to sub field of language
generation.

Some of the early success in the field of text generation was through the domain

of dialogue systems by the building of systems like Eliza [217] and PARRY1. These

1https://en.wikipedia.org/wiki/PARRY
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systems generated language through a set of rules. However, such rule-based systems

were too constrained and brittle and cannot be generalized to produce a diverse set of

responses.

The field of text generation systems shifted from traditional approaches to statistical

approaches where the focus was on exploiting the patterns in data and building models

to make a prediction based on the data it has seen. However, Mikolov et al. [144]

argued that there has not been any significant progress in using statistical approaches

as the means for the modeling language which led to his experimentation on using

recurrent neural networks. This experimentation achieved state-of-the-art results

which set the wheels in motion for neural networks becoming a model of choice for

modeling sequential data like text. Neural Networks belong to a class of machine

learning models that are capable of identifying patterns in text and identify features

that help solve different problems related to computer vision, object recognition, image

captioning, and speech recognition [201]. Another phenomenon that suited the rise of

neural networks is the large number of corpora and significant computational resources

that were available to be used. In the applications of language generation, neural

networks have helped achieve state-of-the-art results in problems related to parsing

machine translation [7], storytelling [73], dialogue systems [223, 225, 43] and poetry

generation [238].

More recently the field of NLG has rapidly advanced with the development of

transformer-based models [208]. Transformer models [208] and large transformer-

based language models such as GPT, GPT-2, XLNet, BERT [163, 164, 229, 40] have

helped achieve the SOTA performance across several natural language tasks. With
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these rapid advancements, transformers models are widely used across a wide range of

NLG tasks including conversational agents.

1.2 Motivation

An analysis of the recent progress on open-domain conversational agents built using

transformer models and LSTM models has shown these agents to be incapable of

holding engaging, informative, and consistent conversations [173, 79]. In this section,

I present various challenges that motivate my work in this dissertation:

1. One of the main challenges in conversational AI is to produce engaging responses

and overcome the issue of producing dull and generic responses. Prior

research has shown one possible cause for dull and generic responses might be

due to their reliance on the last utterance in the dialogue history as contextual

information [204]. We posit this problem as modeling long-term context

modeling. To address this issue, we present a novel end-to-end model that is

inspired by the cognitive science approach. This model provides the framework

with which to conceptually and practically address both long-term memory and

short-term memory (working memory) - to incorporate the longer context of

conversation along with the immediate context. Besides, the model provides a

novel action-selection mechanism acting as a bridge between long and short-term

memory. To the best of our knowledge, our work is the first to use the Standard

Model of Cognition to more closely tie the NLG system to the way human

cognition works.

2. Another issue that affects conversational agents is the ability to produce informa-
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tive responses that are grounded in knowledge. To produce informative

responses, we propose a dialog framework that incorporates both local knowl-

edge as well as users’ past dialogues to generate high-quality conversations.

We introduce an approach to build a dataset based on Reddit conversations,

where outbound URL links are widely available in the conversations and the

hyperlinked documents can be naturally included as local external knowledge.

Using our framework and dataset, we demonstrate that incorporating local

knowledge can largely improve informativeness, coherency and realisticness

measure using human evaluations. However, qualitative analysis of responses

reveals that these knowledge grounded models suffer from the issue of being

faithful and factually consistent. Consistency in conversational agents is crucial

to gain confidence and trust [79]. To reduce hallucinations in conversational

agents, we introduce a new dataset “CONV-FEVER” that can be used to build

a factual consistency detector that can be used to rerank responses and increase

faithfulness in conversational AI.

3. Another possible reason for the conversation agents to be inconsistent and not

coherent might be because the end-to-end approaches compress the notion of

planning and generation into a single step and demanding too much from the

network [147]. Traditional approaches to NLG incorporate a sequence of steps in

the NLG system, including content determination, sentence planning, and surface

realization [167, 169]. We investigate the impact of decoupling the generation

process into separating planning and realization in open-domain dialogue and
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compare it into end-to-end approaches and find that the approach produces

better responses per automated metrics and detailed human evaluations.

4. An important component apart from developing models is to evaluate them. My

last part of the dissertation focuses on addressing issues related to the human

evaluation of conversational AI systems. Human evaluation is the primary

source of evaluation since automated metrics show poor correlation with human

ratings[154, 123]. We look at the evaluation of dialogue systems from the

perspective of experiment design. We conduct two large-scale studies that study

how different experiment designs affect the quality of the ratings obtained from

the human evaluation.

1.3 Contributions

In this section, I summarize the high-level contributions in this thesis.

1. We present a novel architecture, that adapts a cognitive architecture called

Standard Model of Cognition for augmenting traditional seq2seq systems. This

novel architecture provides the model capable of identifying the right contextual

utterances for dialogue systems to maintain context. We demonstrate this work

in Section 3.

2. We present a knowledge grounded & personalized response generation framework

that allows conversational AI to produce informative responses. Further, We

address the issue of hallucination by releasing two new datasets that can be used

to address the issue of factual inconsistency in knowledge grounded models. We

demonstrate this work in Section 4.



6

3. We investigate the impact of separating planning and realization in open-domain

dialogue and find that the approach produces better responses per automated

metrics and detailed human evaluations. We demonstrate this work in Section 5.

4. From an evaluation perspective, we conduct two large-scale studies that are

focused on experiment design. In the first study, we perform a systematic com-

parison of 3 different designs and demonstrate that continuous scales outperform

discrete scales in obtaining more consistent ratings. In the second study, we

study the impact of anchoring bias and show that anchoring bias is an important

element that helps continuous scales outperform discrete scales. We demonstrate

this work in Section 6.

1.4 Outline

This section provides an overview of the dissertation. we provide an overview of the

work done in the area of language generation and traditional approaches that were

used before the rise of deep learning models. In Section 2.4, we provide a summary

of Dialogue Systems and identify the drawbacks of dialogue systems, that forms the

backbone for the upcoming chapters (2).

In Chapter 3, we introduce a novel architecture for modeling context and generating

dialogue based on the standard model of cognition. We find that our model outperforms

the current state-of-the-art models in context identification which was verified through

the use of human annotators and also finds a higher correlation with humans.

In Chapter 4, we introduce a dynamic personality and knowledge-powered conversa-

tional framework that is targeted towards using localized knowledge for conversational
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agents. Further, We also introduce a new dataset that helps tackle the issue of

hallucination and factual consistency in conversational agents.

In Chapter 5, we study the effectiveness of decomposing the generation process into

planning and generation phases moving away from an end-to-end approach. We study

the efficacy of this approach against commonly used end-to-end models. Further, we

also introduce a new novel NLU component which is used in the planning phase.

In Chapter 6, we show the impact of different experiment designs in the evaluation

of NLG systems along with how cognitive biases, namely anchoring bias, impact the

quality of ratings.



CHAPTER 2: RELATED WORK

2.1 Introduction

Deep Neural Networks are powerful machine learning models that have helped

researchers achieve state-of-the-art performance on problems related to computer

vision, object recognition, image captioning speech recognition, and other Natural

Language Processing tasks [201]. One such problem that has received a lot of attention

is natural language generation which is a fascinating but hard area of research [55]

as it combines the fundamental aspects of artificial intelligence and cognitive science

[169]. Natural Language Generation (NLG) is defined as “the sub-field of artificial

intelligence and computational linguistics that is concerned with the construction of

computer systems than can produce understandable texts in English or other human

languages from some underlying non-linguistic representation of information that can

be in the form of structured data or knowledge bases” by Reiter and Dale [169].

Some examples of NLG are domain-based systems that produce weather reports

[1] and sports reports [14] using traditional approaches, including template-based

methods or hand-crafted grammar rules. However, using template-based methods is

not sustainable in the longer term as it creates constraints on making the systems

more generalizable or produces variations in text generated without the presence of a

human in the loop. With the rise in the amount of data being generated, researchers
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moved towards using neural network models to do language modeling and generating

language as a probabilistic task of predicting the next word ignoring the cognitive

aspect behind the process. Figure 2 provides an overview of the different approaches

Figure 2: Taxonomy of approaches used in text generation process

that have been used to solve the problem of language generation. In this chapter, we

provide an overview of the traditional approaches to language generation (Section 2.2)

before shifting towards deep learning approaches for language generation (Section 2.3).

In Section 2.4, we provide a comprehensive overview in the area of dialogue systems

and we conclude this chapter with an overview of the cognitive architectures (Section

2.5) that provides the base for upcoming chapters.

2.2 Traditional Approaches to Text Generation

Traditional approaches to NLG followed the standard architecture (Figure 32) that

comprised of six components each performing an important task to generate a coherent

2https://tinyurl.com/ydgyawvw
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output. Their architecture was motivated by the fact that there were many NLG

systems for different applications but no well-defined architecture. Before the six-stage

pipeline, Reiter introduced a simple three-stage pipeline of 1) content determination; 2)

sentence planning, and 3) surface realization and named it the “consensus” architecture

[167]. Cahill et al. conducted experiments and argued that the pipeline process is

not detailed or generic and the architecture was too constrained. To overcome the

issues, the authors suggested a finer architecture based on linguistic operations such

as 1) lexicalization; 2) referring expression generation, and 3) aggregation [26]. One

drawback of the architecture suggested by Cahill et al. was that no details were

provided about how the systems get input and in what form. Reiter and Dale iterated

on the initial architecture and suggested a new standard architecture for the NLG

systems comprising of 4 tuples 〈k, c, u, d〉 where k is the knowledge source, c is the

communicative model, u is the user model and d is the discourse theory [55] and

the iterated model also implemented some of the aspects of Cahill’s work into the

architecture.

In the upcoming subsections, we explain the functionality of the six components

and extensive research work that has been carried out to address that component.

2.2.1 Content Determination

Content Determination is the problem of deciding the domain of the information

that is needed to generate text for a given input. Content determination is affected by

communicative goals i.e Different communicative goals from different kinds of people

from the same data may require different contents to be expressed by the system that
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Figure 3: Three stage pipeline architecture proposed by Reiter and Dale

satisfies the parties involved. Content determination is affected by the expertise of the

end-user and also by the content of the information source present in the system [169].

The problem of content determination has been approached from two different

perspectives.

1. Schemas or templates

2. Statistical data-driven approaches

Schemas or Template-based content determination methods focused on generating

content by an analysis of the corpora and they are prominent in tasks while are

standardized like weather forecast systems like FOG [64] where rhetorical relations can

be encoded as schemas or schemata [138]. The schemata are made up of identification,

constituency, attributive and contrastive. Each component of the schemata is used to

describe the different predicate patterns [138]. Schemas or Templates can be improved

upon by using rule-based approaches. Rule-based approaches for the task of content
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determination have been used for the domain-specific systems where the implicit

knowledge of the domain expert is used for more knowledge acquisition [170, 51].

Reiter et al. list the different techniques such as sorting, thinking aloud, expert

revision for knowledge acquisition in the STOP system that generated personalized

smoking-cessation leaflets [170].

With the availability of more data, the process of content determination became a

data-driven process. Duboue and McKeown [46] developed a system that automated

the process of producing constraints on every input and deciding if it should appear

as a part of the output with the help of a two-stage process of exact matching and

statistical selection, where the semantic data is clustered and text corresponding to

each cluster is used to measure its degree of influence with regards to the other clusters.

An alternative method was suggested by Barzilay and Lee [14] where content selection

can be applied to domains where the knowledge base has not been provided by using

a novel adaptation of Hidden Markov Models, in which the states correspond to the

type of information characteristic to the domain of interest. Barzilay and Lapata [12]

suggested another method along similar lines to the method suggested by Duboue

and Mckeown, in which the content selection is treated as a collective classification

problem by capturing the contextual dependencies between the input items.

Liang et al. [118] extended the work done by Barzilay and Lapata, by describing a

probabilistic generative model that combines text segmentation and fact identification

in a single unified framework using Hidden Markov Models. The generative model

proposed is of three stages of selecting a set of records, identifying the fields from

the records, and choosing a sequence of words from the fields and each stage is
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optimized using Expectation-Maximization(EM). The work done by Liang et al.

proved instrumental in combining the process of content determination and linguistic

realization into a unified framework. An example of this is the work done Angeli et

al.[1] where the process of generation is broken down into a sequence of local decision

and using a classifier on three types of decisions that include choosing the records

from the database, choosing a subset of fields from records and choosing a template to

render the generated text. However, Kim and Mooney identified a drawback with the

method suggested by Liang et al. of just using a bag of words and a simple Hidden

Markov Model and not considering the context-free linguistic syntax. To address this

issue, Kim and Mooney used a generative model with hybrid trees which expresses

correspondence between the word in natural language and grammatical structure

(meaning representation) and Iterative generation strategy learning, a method similar

to EM that iteratively improves probability to determine which event likely to be

received as input from the human [87]. Another example of end to end generation

is the work done by Konstas and Lapata, where the set of records are converted

into probabilistic context-free grammar (PCFG) that describes the structure of the

database and encode the grammar as a weighted hypergraph and generation process

is based on process find the best derivation of the hypergraph [93]. In the next

section, we will be covering document structuring, the next sub-problem of language

generation.
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2.2.2 Document Structuring

The second sub-problem specified by Reiter and Dale is a document or text struc-

turing that is aimed at the process of determining the order in which the text is to be

conveyed back to the user once the content is determined. Document Structuring and

Content Determination are closely linked. A method that had a significant impact on

the understanding of discourse relations was with the help of Rhetorical Structure

Theory (RST) [132].

RST has four elements consisting of “relations” which identifies relationships between

different parts of the text in the form of satellite and nuclei where nuclei represent the

important part of the text and satellite represents the supplementary part of the text,

“schemas” defines patterns in a part of the text can be analyzed with regards to other

spans (nodes of a tree), “schemas application” and “structures” and helps in creating

coherent texts [133].

Moore and Paris found issues with the RST when they tried to use the individual

segments and rhetorical relations between segments to construct a text plan for their

dialogue system and RST was not able to generate proper responses for follow-up

questions [145]. Due to the problems with RST, Moore and Pollack suggested a

two-level discourse analysis process. The first level is called “information level” which

involves the relation conveyed between two sentences in discourse and the second level

is called “intentional level” which deals with the discourse produced to effect change in

the mental state of the participants [146]. Dimitromanolaki and Androutsopoulos use

supervised machine learning that learns a new representation of document structuring
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tasks and apply this approach to the task of document structuring for a specific

domain [42]. A lot of other researchers have interlinked the process of text structuring

and content determination into a single one which has been described in the previous

subsection.

2.2.3 Lexicalization

Lexicalization or the task of choosing the right words to express the contents of

the message is the third sub-problem defined by Reiter and Dale. They broke down

the task of lexicalization into two categories, namely, Conceptual Lexicalization and

Expressive Lexicalization. Conceptual Lexicalization is defined as converting data

into linguistically expressible concepts and Expressive Lexicalization is how lexemes

available in a language can be used to represent a conceptual meaning [169]. Bangalore

and Rambow [10] characterized the process of choosing the best lexeme to realize the

meaning as a very hard task and they called this phase the syntactic phase. To solve

the problem, Bangalore and Rambow suggested using a tree representation of the

syntactic structure and independently hand-crafted grammar. One of the drawbacks

of this method was not using a part of speech tagger and using a casual mechanism of

making a union of all the synonyms from the synset.

Another issue that makes the task of lexicalization difficult is figuring out the

vagueness, in terms of a crisp word meaning. The issue of vagueness with regards to

adjectives was investigated by Kennedy and McNally [84], who did a semantic analysis

of the predicates with the help of degree modifiers and parameterized along with two

core features.
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While the traditional approaches to NLG view the process of lexicalization as belong-

ing to the sentence planning phase along with the process of sentence aggregation and

Referring Expression Generation, however, recent research in NLG views lexicalization

as the part of the linguistic realization phase [60].

2.2.4 Referring Expression Generation

Referring Expression Generation (REG) is the fourth sub-problem defined by Reiter

and Dale and it is aggregated with the sentence planning phase of the architecture.

REG is characterized by Reiter and Dale as the ability to produce a description of

an entity and distinguish itself from the other domain entities [169]. An entity might

be referred to in many different ways. For example, consider the following sentence,

“Adrian arrived late to an event and he missed a majority of it”. There can be two

ways in which an entity can be referred to. The first one is the “initial reference”

(“Adrian” in the example) when an entity is brought into the discourse and the other

is “subsequent reference” (“he” in the example) which refers to the entity after it is

in the discourse [169]. The first step of the solution suggested by Reiter and Dale

is to identify the type of reference for the target, such as pronoun or description or

proper name. The identification of proper names is the easiest, while identification of

pronoun can be based on a rule which depends on “if the target is referred to in the

previous sentence and if the sentence contained no other entity of the same gender”

[96].

Reiter and Dale evaluated the Gricean maxims in terms of conversational implicature

and how efficiently the properties to be involved in the description can be computed
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with the help of the target and distractors [36].

There are multiple existing algorithms for the task of REG. The first one is an

algorithm called Full Brevity that generates very short descriptions referring expres-

sions by checking one different referring expression component one at a time. A major

drawback of this method is that it is computationally expensive. An improvement

over the Full Brevity was the Greedy Heuristic algorithm, which picks a property

of target that rules out most of the distractors (they don’t co-reference with the

target) and adding that property to the description. This algorithm was later eclipsed

in terms of performance by the Incremental Algorithm (IA). The Incremental

Algorithm sequentially picks the properties and then rules out the distractors until a

distinguishable expression is generated [36]. The drawback of all these algorithms was

that the target was one object and the properties were relevant and not ambiguous or

vague.

To address these drawbacks, Kees and Van Deemter explored how the incompleteness

of the IA could be overcome with the help of a two-stage algorithm to generate boolean

descriptions [206]. The first stage is the process of generalization of the IA by taking

a union of the properties that help in singling out the target set and the next stage

was to optimize the expressions produced [206, 96]. One of the issues was that Van

Deemter failed to address the notion of vagueness which was addressed in the work

done by Horacek[76]. Horacek introduced two complementary measures to increase

the likelihood of object identification and representing the uncertainty in terms of

probabilities and a triple of the object, attribute of the object, and value to the

pair. The uncertainties introduced were pk - the user is acquainted with the terms
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mentioned, pp- the user can perceive the properties uttered, pA - the user agrees with

the applicability of the terms used, and with the help of the three probabilities, the

probability of recognition p is calculated as the product of the three probabilities and

this helps in distinguishing vagueness along with misinterpretation and ambiguity [76].

Later, Khan et al. addressed the issue of structural ambiguity in the coordinated

phrases in the form of “Adjective Noun1 Noun1” where the issue was whether the

adjective was associated with noun1 or noun2. Khan et al. conducted user studies and

suggested how the generator can avoid these issues [86]. However, Engonopoulos and

Koller had some issues with the idea of the algorithms generating distinguishing unique

expressions and argues that there is a chance that the listeners might misunderstand the

generated expression. To address their concerns, Engonopoulos and Koller proposed

an algorithm to maximize the likelihood that a referring expression is understood by

the user with the help of a probabilistic referring expression model P (a|t), t refers to

the expression and a to the object in the domain [53].

2.2.5 Sentence Aggregation

Sentence aggregation is characterized as the process of removing redundant informa-

tion during the generation of discourse without losing any information and to produce

text in a concise, fluid and readable manner [37]. Dalianis, in his survey, suggested that

aggregation can be done in all the stages of the NLG process except during content

determination and surface realization. Reiter and Dale marked this subproblem as

belonging to the sentence planning or microplanning phase [169]. Reiter and Dale

characterized the problem of aggregation to be closely interlinked with lexicalization
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as both deals with understanding the knowledge source and linguistic elements of

words, phrases and sentences [169].

One of the initial approaches to tackle the problem of sentence aggregation was

put forward by Cheng and Mellish by using Genetic Algorithms, where they used a

constraint-based program with a preference function to evaluate the coherence of a

text [30]. Walker et al.. [213] used a data-driven approach to overcome the issue of

using a hand-crafted preference function used by Cheng et al. [30]. In their work, they

used two phases; the first phase generated a large sample of sentences for input and the

next phase ranked the sentences with the help of rules generated from training data.

Barzilay and Lapata (2006) [13] presented an automatic method to learn the grouping

constraints with the help of a parallel corpus of sentences and their corresponding

database entries by looking at the number of attributes shared by the entries.

2.2.6 Linguistic Realization

Linguistic Realization was characterized by Reiter and Dale as the task of ordering

different parts of a sentence and using the right morphology along with punctuation

marks which are governed by rules of grammar to produce a syntactically and ortho-

graphically correct text [169]. Different NLG systems adopt different methods like

template-based or abstract syntactic structures to represent the sentences internally

which captures the grammatical knowledge within the linguistic realizer. In this

section, we will be covering the three different approaches namely template-based,

hand-coded grammar-based systems, and statistical approaches.
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2.2.6.1 Hand coded grammar-based systems

Grammar-based NLG systems are systems that make their choice depending on the

grammar of the language which can be manually written with the help of multilingual

realizers like KPML, developed by Bateman in 1997 that depended on the systemic

grammar that helps us understand the syntactic characteristic of a sentence [60, 15].

Another popular realizer is SURGE developed by Elhadad and Robin [51], which

is based on functional unification formalism. Another popular realizer was called

Halogen, which was introduced by Langkilde in 2002. This system uses a small set of

hand-crafted grammar as a feature to generate alternative representations [104]. A

downside of using these realizers is that they are complicated to use and have a steep

learning curve for the users which made the researchers and the NLG community

move towards simple realization engines.

2.2.6.2 Templates

Template-based NLG systems are systems that represent sentences as placeholder

text and values are used to replace the placeholder and the basic template-based

systems just replace the placeholder without further processing. Templates are often

used in systems that require limited syntactic variability in their output. [168]. For

example, consider the template “[Person] is leaving [country] ” and in this scenario

person and country act as templates whose values are then replaced by the system in

the output. One of the issues with template-based NLG systems was the low quality

of text generated.McRoy et al. suggested a method to overcome these issues with the

help of declarative control expressions to augment the traditional templates. McRoy
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et al. addressed the issue of producing low-quality text by incorporating Attribute

Grammar without slowing down the system. Van Deemter et al. argue that as new

NLG systems have been developed, the difference between standard NLG systems

and template-based systems have blurred as the modern systems use handcrafted

grammars to help with realization [207].

Another disadvantage of using templates is the need for a knowledge expert to

construct templates for the system [139, 60]. Angeli et al. used a probabilistic

approach to learn temporal utterance and use compositional grammar to learn the

rules for parsing time expressions [2] and Kondadadi et al.. used k means clustering

to create template banks derived using named entity tagging and semantic analysis

[92]. Despite the advantage of using template-based methods, most of the recent NLG

systems have moved to a statistical-based approach.

2.2.6.3 Statistical Approaches

Statistical approaches have been used in NLG systems to reduce the manual effort of

using handwritten grammar rules and to deal with large corpora to acquire probabilistic

grammar to get better realizations of text. Langkilde (2000) was one of the seminal

works and early papers to use a statistical approach to sentence generation. In his

approach, Langkilde used corpus-based statistical knowledge, and with the help of

small hand-crafted grammar, he was able to generate many different representations

of sentences that were packed in the form of a forest of trees. Langkilde ranked each of

the phrases by calculating a score which was decomposed into an internal and external

score, former known to be context-independent and latter is context dependent[103].
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The method introduced by Langkilde served as the base for subsequent research in

this field.

Bangalore and Rambow suggested improvements to work done by Langkilde by

introducing a tree-based model to improve to performance of the syntactic choice or

the ranker method of Langkilde [10]. Cahill et al. presented a different method to

rank and suggested using a log-linear ranking system, and they show that log-linear

ranking ranks the correct solution considerably higher than the existing systems [25].

One major downside of the approaches specified by Langkilde; Banglore and Rambow;

Cahill et al. is that they are computationally expensive as they generate a lot of

possible sentences and then do the filtering with the help of the ranking mechanism.

To overcome this drawback, Belz and Anja, introduce the Probabilistic Context-free

Representationally Underspecified (pCRU) which uses probabilistic choice to inform

generation instead of going through all the choices and then selecting a phrase [16].

The approaches described above all use a set of hand-crafted rules as the base

generation and only use statistical methods for filtering the output generation. The

alternative approach would be to use statistical on the base-generation systems and

there have been approaches where grammatical rules have been derived from treebanks

[60]. Hockenmaier and Steedman presented a method to extract dependencies and

combinatory categorical grammar(CCG) from the Penn Treebank which consists of

one million word sub-corpus from the Wall street journal. The algorithm method

presented had four main functionalities: 1.) determining the constituent types of

heads, complements, and adjuncts, 2.) binarizing the tree, 3.) assigning categories,

and 4.) assigning the dependency structure [70]. The grammar and dependencies
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extracted by Hockenmaier and Steedman were used to do a more precise analysis

of punctuation and also to help the parsers to arrive at the correct parse [221]. In

the next subsection, we would be covering the deep neural networks and the recent

surge in interest in these architectures towards solving natural language processing

problems.

2.3 Deep Learning Approaches to Text Generation

Applying deep neural networks to Natural Language Processing has helped achieve

state-of-the-art performance across different tasks, including the task of language

generation due to the capability of neural networks to learn representations with

different levels of abstraction [106, 65]. The simplest and most widely used type of

neural network is the feed-forward neural network or multilayer perceptron [174] in

which the data flow is in one direction and feed-forward neural networks are acyclic

graph structures. Bengio et al. demonstrated the ability to feed forward neural

networks on language modeling tasks [19].

Another type of neural network architecture that is more suited for dealing with se-

quential data x(1), ....., x(n) is the Recurrent Neural Networks (RNN) architecture. RNN

has the capability to handle long sequences using the knowledge gained (“memory”)

from previous sequence computations, unlike networks without sequence-based spe-

cialization. Application of memory to neural networks was demonstrated as early as

1982 through the Hopfield Network that was used to store and retrieve memory from

a pre-trained set of patterns or memories, similar to a human brain. The network

relied on neurons each producing a value of +1 or -1 depending on the input from the
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previous layer [75].

Hopfield’s network was the inspiration behind Jordan’s network [80], represented

in Figure 4A, for doing supervised learning on sequences with the help of a single

hidden layer and special units which receive input from the output unit which then

forwards the values to the hidden nodes [121]. Elman simplified Jordan’s architecture

represented in Figure 4B, by adding a context unit with each hidden unit receiving its

input from the units at the previous time step with a fixed weight of 1 and Elman

showed that the network can learn dependencies by training the network on the

sequence of 3000 bits. The model achieved an accuracy rate of 66.7% on predicting the

third bit in the sequence [52, 121]. The Elman architecture played a substantial role

A B

Figure 4: A. Represents the Jordan Architecture. B. Represents the Elman Architec-
ture [121]

in the discovering of the long short-term memory networks (LSTM) [69] which helped

in tackling a very important problem of vanishing and exploding gradients caused by
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backpropagation while training the neural networks [183]. During backpropagation,

the neural network weights receive an update proportional to the gradient of the error

function. These gradients are multiplied across layers and sometimes the gradients

become too small or vanish and in certain cases, the gradients grow exponentially and

explode.

In the next four subsections, we list the different approaches such as language mod-

eling, encoder-decoder, memory networks, and transformer models-based approaches

for the task of language generation.

2.3.1 Language Modelling

Language models are probabilistic models that are capable of predicting the next

word given the preceding words in a sequence and are widely used in the generative

modeling tasks in the field of NLP. The ability of language models to model sequential

data of fixed length context using feed-forward neural networks was first demonstrated

in the work done by Bengio et al. [19]. However, the usage of fixed length context

was a major drawback in the approach that was overcome in the seminal work done

by Mikolov et al. [144] demonstrating the efficiency of RNN based language models.

Similarly, another seminal work in the area of language models is the work done by

Sutskever et al. [200] demonstrating the effectiveness of LSTM in predicting the next

character of a sequence. Conditional language models are also used as a variant of

language models where the language models are conditioned on a different variable

apart from the preceding words like the work done by generating product reviews

based on sentiment, author, item or category[122] or generating text with emotional
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context [63].

2.3.2 Encoder-Decoder

Another important architecture that enhanced the task of language generation

was the usage of two RNNs in an end-to-end model (Figure 5) [32] that overcame a

significant limitation where the neural networks can only be applied to problems where

input and target can be encoded with fixed dimensionality. The encoder converts

the input sequence into a fixed vector representation “c” by Equation 1 where “ht”

refers to hidden state at time step t, “f” represents any non-linear function and “x”

represents the input sequence. The decoder tries to predict sequence of symbols with

the help of the context vector “c”. The hidden state of the decoder depends on the

context vector “c” and is represented by Equation 2 and next symbol to be predicted

is based on a condition probability 3 where g is a softmax function.

Figure 5: Encoder-Decoder architecture proposed by Cho et al.[32].

h(t) = f(h(t−1), xt) (1)



27

si = f(si−1, yi−1, c) (2)

P (yt|yt−1, yt−2, ..., y1, c) = g(s(t), yt−1, c) (3)

Along similar lines to the work done by Cho et al. [32], seq2seq was introduced

by Sutskever et al. [201] which uses two LSTMs, one to map the input sequence to a

fixed vector and the other RNN to decode the fixed vector into a sequence of target

symbols of varying lengths. A key difference between the work done by Cho et al.[32]

and Sutskever et al.[201] was discovering that reversing the order of the input sequence

improves the performance of the model and this also helps with creating short term

dependencies between input and target sequence. Bahdanau et al. [7] identified the

bottleneck caused by encoding the entire sequence into a fixed vector in the simple

encoder-decoder architecture and proposed a modification that allows the decoder to

“attend” to different parts of the source sentence that are relevant for predicting the

next word/character of the sequence. In the attention mechanism, the context vector

“ci” is calculated as the weighted combination of all the encoder hidden states (see

Eq.19), and “α” refers to how much importance should be given to respective input

states.
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ci =
Tx∑
j=1

αijhj

αij =
exp(eij)∑Tx

k=1 exp(eik)

eij = a(si−1, hj)

(4)

A majority of the work done for the task of language generation was done using the

encoder-decoder architecture. Zhang and Lapata [238] proposed a model for Chinese

poetry generation with the help of RNN and the process of content determination

and realization was jointly combined as one by the generator. Another example would

be the NLG system developed by Wen et al. [218] who modified the architecture of

the LSTM to constrain it semantically and be able to predict the next utterance in a

dialogue context. The architecture of the modified cell the traditional LSTM cell is

used for surface realization and the dialogue act cell which acts similar to the memory

cell is used for the sentence planning phase. On similar lines to the work done by

Wen et al. for language generation, Goyal et al. [67] presented a character level RNN

for dialogue generation and addressed the issue of delexicalization and sparsity issues.

Mei et al. [141] used the encoder-decoder architecture proposed by Cho et al. [32]

to perform the task of content selection and realization on a set of weather database

event records as a joint task by using an encoder-aligner-decoder model. The aligner

is based on the attention mechanism[228, 7]. The encoder-decoder architecture was

also used to generate emotional text as demonstrated by the work done by Asghar et

al [3], Zhou et al.[241] and Ke et al. [83] .
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2.3.3 Memory Networks

Memory networks, a type of learning model, were introduced by Weston et al. [219]

to overcome to short memory encoded in the hidden states. These networks were

used for a variety of question-answering tasks where the answer is produced from a

set of facts into the model. The answer produced by the model can be a one-word

answer or paragraph of text. The memory networks introduced by Weston et al. [219]

had four major components input feature map, generalization, output feature map,

and a response. Kumar et al. [98] introduced a different type of memory networks

based on episodic memory and were able to solve a wider range of question-answering

tasks and also on questions related to the part of speech and sentiment analysis. The

work done by Kumar et al. [98] was extended for visual question answering by Xiong

et al. [227]. Other works on visual question answering included the work done on

using hierarchical attention on question-image pairs [128], using relational networks

for visual question answering[181], using facts for visual question answering [214].

2.3.4 Transformer Models

The Transformer models (Figure 6) introduced Vaswani et al. [208] has helped

achieve improvement over a wide range of NLP tasks. The transformer models are

purely based on attention mechanisms that draw global dependencies between the

input and output. The transformer is made of the encoder-decoder architecture but

each encoder is a stack of six encoders with each encoder containing a self-attention

and pointwise fully connected feed-forward neural networks. The decoder is also a

stack of six decoders with each decoder containing the same components as the encoder,
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Figure 6: Transformer architecture as represented in Vaswani et al. [208]

but with an additional attention layer that helps the decoder focus on relevant parts

of the input sentence. The work done in the space of the transformer models is still in

its infancy. Some of the other works along this line include the work done by Radford

et al. [163] and Devlin et al. [39] that achieve impressive results along with several

NLP tasks such as Natural language inference, question-answering. Radford et al.

[164] modified the base transformer architecture by (i) shifting the layer normalization

as input to each sub-block; (ii) including a layer normalization at the final self-

attention block. This work improved the existing state across a wide range of tasks

such as language modeling, children’s book test, reading comprehension, machine

translation, question answering, modeling long-range dependencies (LAMBADA),

Winograd Schema challenge, summarization.
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2.4 Dialogue Systems

Dialogue systems or conversational agents (CA) are designed to generate meaningful

and coherent responses that are easy to respond to, informative, and coherent when

engaged in a conversation with humans. A good dialogue model incorporated in

conversational agents should be able to generate dialogues with high similarity to how

humans converse [115]. Conversational agents are of great importance to a large variety

of applications and can be grouped under two major categories, namely, (1) Closed

Domain goal-oriented systems that help users with a particular goal, (2) Open Domain

Conversational agents engage in a conversation with a human and are also referred

to as chit-chat models. Research in the area of dialogue systems has been pursued

for a long period of time, starting from the mid-60s. “ELIZA” is one of the early,

well-known dialogue systems [217] developed by Weizenbaum that used hand-crafted

rules and pattern matching to mimic a psychotherapist. With the availability of large

corpora [186] for training, researchers have shifted from traditional approaches such

as template-based to statistically data-driven approaches [171] and more recently,

building end-to-end systems using neural networks [211, 189] which is our primary

focus of this section.

We provide a summarized version (Table 1) of the research done in this area, focusing

on the key aspects of the dataset, architecture, optimization, evaluation metrics and

we also identify potential research gaps and explain which gaps in existing research

are key components that should be focused on in future work on dialogue systems.
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Table 1: Survey of Deep Learning based Open Domain Dialogue Systems

Authors Corpora
Architec-

ture

Optimiz-

ation

Evaluation

Metrics

Research

Gaps

Vinyals

& Le [211]

1. Open

subtitles

2. IT Help

Desk

Seq2Seq
Cross

entropy

Human

evaluation

1. Lack of

consistent

persona.

2. Dull &

generic

responses.

Sordoni

et al. [195]

1. Twitter

Conversat-

ion Triples

Language

model

MMI

1. BLEU

2. METEOR

3. Human

evaluation

1. Incorporat-

ing context &

word order.

Li et al.

[109]

1. Twitter

Conversat-

ion Triples

2. Open

subtitles

Seq2Seq SGD

1. BLEU

2. Distinct-1

3. Distinct-2

4. Human

evaluation

1. Lack of

consistent

persona.

Shang

et al. [189]

1. Weibo

Conversat-

ion

SeqSseq +

attention

N/A
Human

evaluation

1. Lack of

context.
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Yao

et al. [230]

1. Helpdesk

chat service

Seq2Seq +

Attention &

Intention

Network

N/A 1. Perplexity

1. Lack of

context.

2. Dull &

generic

responses.

Serban

et al. [187]

1. Movie

Triples

Hierarchic-

al Encoder

Decoder

Adam 1. Perplexity

1. Equal

importance

to contexts

Li

et al. [112]

1. Twitter

Persona

Dataset

2. Twitter

Conversat-

ion Dataset

3. TV series

transcripts

Seq2Seq +

Persona

Embed-

dings

MMI

1. Perplexity

2. BLEU

3. Human

Evaluation

1. Limited

persona

information.

Luan

et al. [129]

1. Ubuntu

Dialogues

LSTM

Language

Model

Learning

with LDA

SGD

1. Perplexity

2. Response

Ranking

1. Lack of

consistent

persona.

2. Dull &

generic

responses.
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Li

et al. [113]

1. Open

Subtitles

Seq2Seq +

RL

MMI +

Policy

Gradient

1. BLEU

2. Dialogue

Length

3. Diversity

4. Human

Evaluation

1. Lack of

consistent

persona.

2. Rewards

may lead to

suboptimal

generation.

Dušek

et al. [47]

1. Public

Transport

Information

Seq2Seq +

Attention

& Context

Encoder

Cross

Entropy

1. BLEU

2. NIST

3. Human

Evaluation

1. Lack of

incorporat-

ing context.

Mou

et al. [149]

1. Baidu

Teiba

forum

Seq2Seq +

PMI

SGD

1. Human

Evaluation

2. Length

3. Entropy

1. Lack of

incorporat-

ing context.

Serban

et al. [188]

1. Twitter

Dialogue

2. Ubuntu

Dialogue

Latent

Variable

Hierarchic-

al Encoder

Decoder

Adam

1. Human

Evaluation

2. Length

3. Entropy

1. Equal

importance

to contexts.
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Mei

et al. [142]

1. Movie

Triples

2. Ubuntu

Dialogue

Language

Models

+ Attention

+ LDA

Reranking

Adam

1. Human

Evaluation

i. Grammar &

Fluency

ii. Logic

Consistency

iii. Semantic

Relevance

iv. Scenario

Dependence

v. Generality

1. Lack of

consistent

persona.

Xing

et al. [225]

1. Baidu

Teiba

forum

Seq2Seq

+ LDA

+ Joint

Attention

Ada

Delta

1. Perplexity

2. Distinct-1

3. Distinct-2

4. Human

Evaluation

1. Lack of

consistent

persona

Cao

& Clark

[27]

1. Open

Subtitles

Variational

autoencoder
MMI

1. Human

Evaluation

1. Lack of

context.

2. Lack of

consistent

persona.
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Ghazvini-

nejad

et al.[62]

1. Four

Square

2. Twitter

Conversat-

ion

Seq2Seq +

World Facts

+ Context-

ual Facts

Adam

1. Perplexity

2. BLEU

3. Diversity

4. Human

Evaluation

1. Equal

importance

to contexts.

2. Facts

may not be

available

for all

contexts.

Young

et al. [232]

1. Twitter

Conversat-

ion

Tri-LSTM

Encoder
SGD 1. Recallk

1. Lack of

consistent

persona.

2. Fixed

Concept

net.

Asghar

et al. [5]

1. Cornell

Movie

Dialog

Seq2Seq +

Online

Active

Learning

Cross

Entropy

1. Human

Evaluation

2. Syntactic

coherence

3. Relevance

4. Interest-

ingness

5. Relevance

1. Manual

user

feedback

during

training.
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Lewis

et al. [107]

1. Negotiat-

ion dataset

Seq2Seq +

self play +

RL

SGD

1. Score

2. Agreement

3. Pareto

Optimality

4. Perplexity

1. Lack of

consistent

persona in

negotiation.

Li

et al. [115]

1. Open

Subtitles
GAN N/A

1. Human

Evaluation

2. Adversarial

Evaluation

1. Reward

Sparsity.

2. Mode

Collapse

and word

order.
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Qian

et al. [162]

1. Weibo

Dataset

2. Profile

Binary

Subset

3. Profile

Related

subset

4. Manual

Dataset

Encoder

Decoder +

Profile

Detector

SGD

1. Human

Evaluation

i. Natural-

ness

ii. Logic

iii. Correct-

ness

iii. Semantic

Relevance

iv. Consist-

ency

v. Variety

2. Profile

Detection

3. Position

Detection

1. Limited

profile

information

as persona.

Qiu

et al. [162]

1. Chat log

of online

customer

service

Attentive

Seq2Seq

+ IR

+ Rerank

N/A

1. Human

Evaluation

2. Precision

3. Recall

4. F1

1. Lack of

consistent

persona.
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Serban

et al. [185]

1. Ubuntu

Dialogue

2. Twitter

Dialogue

MrRNN Adam
1. Human

Evaluation

1. Lack of

incorporat-

ing context.

2. Lack of

consistent

persona.

Shen

et al. [191]

1. Ubuntu

Dialogue

Hierarchic-

al Encoder

Decoder +

context

KL

Diverg-

ence

1. Embedding

Evaluation

i. Greedy

ii. Average

iii. Extrema

2. Human

Evaluation

1. Lack of

consistent

persona.

2. Hand

crafted

rules.

Tian

et al. [204]

1. Baidu

Tieba

Hierarchic-

al Encoder

Decoder

Ada

Delta

1. BLEU

2. Length

3. Entropy

4. Diversity

1. Order of

sequence not

taken into

consideration

during weight

calculation.

Xing

et al. [226]

1. Dataset

from

Douban

Group.

Hierarchic-

al Recurrent

Attention

Network

N/A

1. Perplexity

2. Human

annotation

1. Lack of

consistent

persona.
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Zhou

et al. [241]

1. NLPCC

dataset

2. STC

dataset

3. Weibo

Emotion

dataset

Encoder

Decoder +

External

Memory +

Internal

Memory +

Emotion

Embedd-

ing

Cross

Entropy

1. Perplexity

2. Accuracy

3.Human

Evaluation

1. Need

extrinsic

input of

desired

emotion.

Ghosh

et al.[162]

1. Fisher

English

Training

Speech

Parts

2. Distress

Assessment

Interview

Corpus

3. SEMA-

INE dataset

4. CMU

MOSI

Language

Model

N/A

1. Perplexity

2. Human

Evaluation

1. Depends

heavily

on external

linguistic

information.
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Asghar

et al. [4]

1. Cornell

Movie

Dialogs

Seq2Seq +

Affective

Embedd-

ings

1. Cross

Entropy

2. Min

Affective

Disson

-ance

3. Max

Affective

Disson

-ance

4. Max

Affective

Content

1. Human

Evaluation

i. Syntactic

Coherence

ii. Natural

iii. Emotion

Appropri-

ateness

1. Lack of

consistent

persona.

Zhang

et al. [234]

1. STC

dataset

Specificity

Controlled

Seq2Seq

Adam

1. BLEU-1

2. BLEU-2

3. Distinct-1

4.Distinct-2

5. Average

embedding

6.Extrema

embedding

1. Lack of

incorporat-

ing context.

2. Lack of

consistent

persona.
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Zhang

et al. [235]

1. PERSO-

NA-CHAT

dataset

1. Baseline

Ranking

Models

2. Ranking

Profile

Memory

Network

3.Key-Value

Memory

Network

4.Seq2Seq

5.Generat-

ive Profile

Memory

Network

N/A

1. Perplexity

2. Hits@1

3.Human

Evaluation

i.Fluency

ii. Engagin-

gness

iii. Consist-

ency

iv. Persona

Detection

1. Artificial

persona

assignment.

Mazare

et al. [137]

1. Reddit

dataset

Transformer

+ Persona

+ Context

+ Response

Encoder

Adamax 1. hits@1

1. Limited

persona

information.
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Rashkin

et al. [166]

1. Empathet-

ic Dialogue

Transformer

Model

Adamax

1. Perplexity

2. Avg. BLEU

3. P@1,100

4. Human

Evaluation

i. Empathy

ii. Relevance

iii. Fluency

1. Lack of

usage of

persona

information

available in

dataset.

Huang

et al. [78]

1. Open

Subtitles

2. CBET

Seq2Seq Adam 1. Accuracy

1. Lack of

longer

context to

understand

emotions

generated.

Kottur

et al. [95]

1. Movies-

DiC dataset

2. TV-Series

3. Open

Subtitles

dataset

Context-

aware

Persona

based

Hierarchic-

al Encoder

Decoder

Adam

1. Perplexity

2. Recall@1

3.Recall@5

1. Needs a

lot of data

per speaker.
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Niu &

Bansal

[151]

1. Stanford

Politeness

Corpus

2. Stack

Exchange

1. Seq2Seq

2. Fusion

model

(Seq2Seq +

polite-LM)

3. Label fine

tune Model

4. Polite-RL

Model

Adam

1. Perplexity

2. Perplexity

@L

3.Word Error

Rate

4.Word Error

Rate@L

5. BLEU-4

6. Human

Evaluation

i. Politeness

ii. Quality

1. Lack of

longer

context.

Chen

et al. [29]

1. Ubuntu

Dialogue

2. Douban

Conversat-

ion

3. JD

customer

service

Hierarchic-

al Variation-

al Memory

Network

Adam

1. Avg

Embedding

2. Greedy

Embedding

3. Extrema

Embedding

4. Human

Evaluation

i. Appropri-

ateness

ii. Informat-

iveness

1. Lack of

consistent

persona.
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Bhatia

et al. [20]

Yik Yak

dataset

1. Seq2Seq

+ Locations

2. Seq2Seq

+ User

model

N/A
1. Perplexity

2.ROUGE

1. Lack of

encoding

longer

context.

Dinan

et al. [43]

1. Wizards

of Wikipe-

dia

1. Retrieval

Transformer

Memory

Network

2.Generative

Transformer

Memory

Network

NLL

1. Recall@1

2. Perplexity

3.Human

Evaluation

1. Lack of

consistent

persona.

Wolf

et al. [223]

1. PERSO-

NA-chat

dataset

Transformer

Model

Adam

1. Perplexity

2. Hits@1

3. F1 metrics

1. Limited

persona

information.

Zheng

et al. [240]

1. PERSO-

NALDIAL-

OG dataset

Seq2Seq +

Personality

Fusion

Adam

1. Perplexity

2.Distinct-1

3. Distinct-2

4. Accuracy

5. Human

Evaluation

1. Limited

persona

information.

2. Explicit

persona.

We identify three main issues found in prior works done in the area:

1. Dull and generic responses - One problem with building end-to-end conver-

sational agents based on vanilla seq2seq is that they are prone to generating dull
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and generic responses such as “I don’t know”, “I am not sure.” etc. [211, 109].

These trivial responses make the conversational agents unable to hold long

conversations with a human. Li et al.[109] suggested a mechanism to overcome

this issue with an optimization function (see equation 5, T is the target and S is

the source) as the authors only considered the likelihood of the responses when

given input and proposed using Maximum Mutual Information (MMI) as the

optimization objective function (see equation 6) where λ is a hyperparameter to

penalize generic responses.

T̂ = arg max
T
{logp(T |S)} (5)

T̂ = arg max
T
{logp(T |S)− λlogp(T )} (6)

Recent approaches to the task of conversational modeling have all tackled this

issue through the use of the previous utterance as contextual information or

with the help of an attention mechanism that helps of a particular part of the

input utterance or using reinforcement learning that penalizes the agent when it

produces trivial responses or repetitive utterance, [113, 115, 125].

2. Personality - Endowing conversational agents with a coherent persona is a key

to building an engaging and convincing conversational agent [151]. The concept

of personality has been well studied in psychology. Traditionally, research

on using personality traits has been based on the standard Big Five model

(extraversion, neuroticism, agreeableness, conscientiousness, and openness to
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experience) and some of the early works on building personalized dialogue

systems have been based on this [131].

However, identifying personality traits through Big Five model is difficult and

expensive to obtain [240, 235]. Alternative approaches to take advantage of

the psycholinguistic findings are still in their infancy. Some of the proposed

approaches to solve this problem have been through explicit or implicit modeling

of personality [240]. Explicit modeling involves creating profiles of users with

features such as age, gender [240] or assigning artificial persona to users and

asking them to interact about it [235]. Implicit Modeling of persona involves

creating vectors about the users based on similar features such as age, gender

and other personal information [112, 95].

3. Encoding Context - Encoding contextual information such as world facts,

knowledge base or previous turns of the conversation are important issues

to ensure that the conversational agent has enough information to produce

a coherent, informative, and novel response that is in tune with the context

of the conversation. A lot of prior research in this field demonstrated the

working of the system through a one-to-one mapping between an input utterance

and the generated response. This makes it hard to judge the quality of the

response generated or the performance of the model with regards to the context

of the conversation or how the model performs when it comes to multi-turn

conversations.

To overcome this issue, researchers have focused on including the previous
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turn of the conversation as a contextual piece of information to the model

and this mechanism has been done in two different ways. Prior research has

used both sequential [195] and hierarchical models [187] as the mechanism of

encoding contexts into the conversation. In the sequential encoding of the

context, the previous turn of the conversation is concatenated to the current

input utterance. In the hierarchical encoding of the context, a two-step approach

is followed by performing an utterance level encoding and then followed by

an inter-utterance encoding. Tian et al conducted an empirical study that

evaluates the advantages and disadvantages of sequential and hierarchical and

show evidence that hierarchical model outperforms sequential models when

encoding contextual information [204].

The transformer model by Vaswani et al.[208] is another mechanism that provides

a way of encoding context through the self-attention mechanism incorporated in

the model. The transformer architectures have demonstrated the capabilities to

outperform other architectures for the task of machine translation and parsing.

More recently, the transformer models have been used for conversational agents

[223, 43, 166]. Wolf et al. [223] demonstrate the usage of the transformer model

for personalized response generation on the PERSONA-CHAT dataset where the

model concatenates each artificial persona provided along with the utterances

of the conversation. Encoding factual knowledge to augment the model was

demonstrated by Dinan et al. [43] and Young et al.[232] using the transformer

models and Tri-LSTM encoder approach respectively.
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2.5 Cognitive Architectures

Cognitive architectures provide a blueprint for intelligence. These architectures

identify the structures and processes in the brain and facilitate understanding the

interactions between them [150, 199]. More concretely, while building intelligent

artificial agents, cognitive architectures help to understand how perception, vision,

action selection along with the ability to store knowledge using memories (short-term

and long-term) make agents function with human-level intelligence [199, 105, 94].

Cognitive Architectures are also able to simulate human’s cognitive and behavioral

characteristics such that these architectures can be run in both virtual and physical

intelligent agents[231]. Prior research in the area of cognitive architecture can be

grouped into three main categories of Symbolic, Emergent, and Hybrid as

represented in Figure 7.

Figure 7: Types of Cognitive Architecture

Symbolic architectures also known as cognitivist architectures, use symbols to

represent concepts and these symbols can be manipulated using if-then rules. These

architectures maintain a consistent knowledge base for symbols and formal logic is
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used reasoning about the facts known about the world [94, 231]. SOAR [99, 101]

is a classic symbolic architecture, developed by John Laird, Allen Newell, and Paul

Rosenbloom and has been primarily used in the area of robotics.

Emergent Architectures differ from symbolic architectures by building parallel

models, similar to neural networks, and represent the process of human cognition from

a bottom-up approach. These architectures are easy to design and must be trained

carefully to achieve optimal behavior, a property that is shared by neural networks. A

major difference between symbolic architecture and emergent architecture is the lack

of knowledge base and this lack of knowledge may inhibit emergent architectures from

picking up new behaviors.

Hybrid Architectures achieve a sort of middle ground between symbolic and

emergent architectures and there are no restrictions in how the hybridization is done

[94]. Hybrid architectures adopt hierarchical structure, just like emergent architectures,

and can also perform symbolic processing. In our work, we focus on the standard

model of cognition (Explained in Section 3.3), a hybrid approach-based cognitive

architecture that forms a consensus from three cognitive architectures, namely SOAR,

ACT-R, and Sigma [100].

Cognitive Architectures are designed to act as the blueprint for intelligent agents

that can perform a multitude of different tasks such as Perception, Attention,

Action Selection, Memory, Learning, Reasoning [94]. We focus on action

selection and memory functionalities from established cognitive architectures. The

action selection mechanism in cognitive architecture determines the type of action

to take for a given situation and is involved in the decision-making process. Action
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selection can be performed in two ways: (i) Planning based; (ii) dynamic action

selection. Planning-based action selection is commonly used in symbolic cognitive

architectures where is dynamic action selection is designed to simulate the behavior of

humans. We focus on performing action selection mechanisms using the Attention

process. The attention process helps focus on different parts of the sensory inputs

in cognitive architectures which are adopted to perform action selection on dialogue

history in our work.

Memory plays a significant role in cognitive architectures and every cognitive

architecture has some type of memory to store the results. There are four types of

memory within cognitive architectures such as sensory memory, working memory,

long-term memory, and global memory. Sensory memory acts as a pipeline that

transfers inputs to the other memory structures [94]. We focus our attention on

Working Memory and Long-Term Memory (refer to Section 3.3). Working memory

is required for the action selection to work optimally. Long-Term Memory stores

factual knowledge and other knowledge for a long period of time and can be divided

into procedural and declarative which is further divided into semantic and episodic

memory. Procedural memory stores routine behaviors and declarative memory stores

the knowledge. Within declarative memory, semantic memory is known for storing

the facts and episodic memory is known for storing past experience.



CHAPTER 3: COGNITIVE ARCHITECTURE BASED DIALOGUE SYSTEM

3.1 Introduction

Natural language generation entails not only incorporating fundamental aspects

of artificial intelligence but also cognitive science [169, 199]. Extant approaches to

natural language generation have typically been formulated as sequence-to-sequence

(seq2seq) frameworks, an adaptation of machine translation systems [211, 196, 112,

110, 187, 189, 201]. Dialogue systems built using the seq2seq framework can be used

to generate interesting, coherent dialogue [114]. However, it has been shown that

engaging with these systems for longer interactions could result in dull and generic

responses in open-domain situations due to their reliance on a shorter context of the

conversation - namely, the last utterance in the dialogue history [211, 110, 4]. To make

better use of context, researchers have used both hierarchical and non-hierarchical

models [204], but these models still suffer from sub-optimal performance due to the

inclusion of entire conversation history that may contain irrelevant utterances [215].

The challenge thus becomes: How do we encode longer context into the

natural language generation system such that the algorithm can focus on

the salient information in the conversation (e.g. topics, entities) while

appropriately discounting parts of the conversation that may primarily

serve to preserve social conventions (e.g. utterances such as ”ah”, ”ok”
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Figure 8: Standard Model of Cognitive Architecture containing two forms of long-term
memory (Procedural and Declarative) and Working Memory to address given input.

etc.)?

To address this challenge, we take a cognitive science approach. Our approach

relies on an adaptation of the Standard Model (8) [152, 100], an established model

of memory in cognitive science. This model provides the framework with which to

conceptually and practically address both long-term memory and short-term memory

(also known as working memory), along with an action-selection mechanism acting as

a bridge between them. According to this model of human cognition, given an input

(for example, through perception), an output is generated by taking into account

elements stored in the working memory as well as long-term storage (explained in

detail in Section 2). Our system architecture closely mirrors the Standard Model, as

described in Section 4.

The concept of memory, conceptualized as encoding contextual information in

dialogue, has been explored in prior literature in question-answering systems [198,

98, 227]. For instance, Weston et al. [220] introduced a new class of learning models

called the memory networks for question answering systems. However, the usage of

memory networks for dialogue generation is still in its infancy. To the best of our

knowledge, the model proposed in this article is the first to use the Standard Model

of Cognition to more closely tie the natural language generation system to the way
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human cognition works.

In addition to building dialogue generation systems that are cognitively inspired,

there is also a pressing need for more meaningful metrics to evaluate their output [123].

We present a preliminary step in this direction, with the adoption of a new metric -

the Gunning-Fog index - that can be used to automatically evaluate the readability of

generated output as a part of the conversation.

We make the following contributions as a part of this work:

1. A novel cognitively-inspired natural language generation model that

accounts for larger contexts through long-term and working memory.

2. Novel method of identifying and computing saliency of the context in long-term

memory.

3. Introduction of additional metrics to evaluate the readability of dialogue output,

including the Gunning-Fog index.

3.2 Motivation

Consider the example shown in Table 2 between two interlocutors A and B. Given

the query utterance, the task is to generate a response to this utterance. We note

that in the query utterance, interlocutor B mentions it in the first sentence - pre-

sumably referring to the novel mentioned in the prior context. We also note the

presence of interesting entities further in history (windmill in the first utterance by

A). Some utterances do not add much salient information for response generation

(socio-behavioral information notwithstanding). For example, got it and so did i by B
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Table 2: Example of a conversation between A and B with the dialogue history of 7
utterances and the query utterance.

A: you know how to get back to the windmill, right?

B: got it.

A: i had a good time tonight. i really did

B: so did i.

A: see you around

B: um. did you still want to read my novel?

A: oh, yeah. sure. of course.

Query Utterance

B: hope you like it. free to stop reading at any time.
i will take no offense.

are such instances. Our primary objective thus is to build a generative model that

produces an appropriate response by identifying the salient contextual utterances

from conversational history while appropriately discounting the non-informative (for

response generation) utterances such as got it.

The problem can be divided into two parts:

1. Action Selection - Given a set of utterances as part of conversation history

(Ut), the primary goal for the Action Selection mechanism is to capture the

meaning of conversation history and weight the importance of each utterance in

history with regards to the query utterance (Q) and inform the working memory

(Cn) (Eq. 7).

Ut∈1≤t≤8
ActionSelection−−−−−−−−−→ Cn∈1≤n≤3. (7)

Our formulation stems from the observation that encoding the entire dialogue

history as the context for the conversation might lead to sub-optimal performance

when there is noise present in the dialogue history.
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2. Response Generation - Our second task is to generate a response Y =

y1, y2, ..., ym that is coherent with the context of the conversation. We create a

context vector (Venc) as sum of all hidden states weighted by their respective

importance scores. The response generator predicts the next word yt (Eq. 8):

P (yt|yt−1, yt−2, ...., y1, venc) = g(yt−1, venc) (8)

where g is a nonlinear activation function.

3.3 Standard Model of Cognition

The standard model proposed by Laird et al [100] was to provide a consensus model

that can be used for research and application and can also act as a coherent baseline

that facilitates progress. The standard model of cognition encapsulates structures and

processes found in cognitive architectures such as ACT-R, Sigma, Soar .

The standard model of cognition combines different components that perform

different tasks. Some of the core components of the model include perception and

motor, working memory, declarative long-term memory, and procedural long-term

memory. In our work, we focus on the working memory, procedural long-term

memory, and declarative long-term memory.

The working memory, also known as short-term memory provides a temporary space

that can store the information needed to solve a particular task. Working memory can

retrieve information from long-term memory through an action-selection mechanism.

We use Attention mechanism, a form of action selection that helps in retrieval

of relevant pieces of information within cognitive architectures [8].
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The declarative memory contains episodic memory [105], a form of which was

introduced as a component of dynamic memory networks for question answering

systems [98]. The procedural memory is responsible for storing information that helps

with everyday activities [33] and has knowledge about internal or external actions.

3.4 Cognitive Memory Architecture Model

In this subsection, we introduce our end-to-end model - Cognitive Memory Archi-

tecture (CMA) - a memory augmented encoder-decoder model inspired by the work

done in the field of cognitive architectures. As illustrated in Figure 20, the model

comprises of the following components:

Figure 9: Architecture of CMA model with two memory components namely, long-term
and working memory that hierarchically augments the input utterance.

1. Long Term Memory - The Long Term memory stores the history of the

conversation. The input to the long term memory is the historical sequence of

utterances Ut where the sequence t∈1≤t≤8. We make a simplifying assumption

that only a maximum of 8 utterances is stored in long-term memory (we shall

discuss this assumption and its implications in the Conclusion and Discussion
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section). Each utterance in history is represented by a set of words (w1....wn)

and each word is represented by its respective word embedding. We adopt an

approach similar to Tian et al. [204] and convert each utterance in the history

into its respective sentence embedding as the sum of the word embeddings

(Eq. 9). Similarly, we also convert the input utterance (Q) into its sentence

embedding (Eq. 10). Next, we compute the cosine similarity between the

sentence embeddings of each of the utterances in the dialogue history eui
and

the sentence embedding of input utterance eq (Eq. 11):

eui
=
∑
w∈ui

ew, (9)

eq =
∑
w∈q

ew, (10)

sui
= sim(ui, q) =

eui
· eq

||eui
|| · ||eq||

. (11)

We improve Eq. 11 by introducing two additional parameters λ and τ that

incorporate additional constraints to consider the order of utterance in the

history of the utterances. λ represents the order of the sequence (in the range

of 0.1 ≤ λ ≤ 0.8 in our work) and τ is the ratio between the number of words

in the utterance to the maximum length of the target utterance. Our intuition

behind defining these additional parameters in Eq. 12 is that (a) the most

important utterances to focus on when generating a response may be present



59

in the early part of dialogue history and (b) these utterances should be given

relative importance that is meaningfully encoded when generating the response.

Accordingly, we reformulate Equation 11 as follows (Eq. 12):

sui
= sim(ui, q) + λ · τ. (12)

In order to attain the importance scores of each utterance in the history relative

to the query utterance, we perform the Action Selection using the attention

mechanism proposed by Bahdanau et al. [8]:

αui
=

exp(sui
)∑t

j=0 exp(suj
) + exp(sq)

, (13)

αq =
exp(sq)∑t

j=0 exp(suj
) + exp(sq)

. (14)

where sq is 1 as the query utterance similarity is computed against the same

vector and αui
represents the importance score of each historical utterance and

αq is the importance of the query utterance.

2. Working Memory - The working memory stores the utterances necessary

for generating an appropriate response within the context of the conversation

while appropriately down-weighting the not useful utterances. The working

memory stores Cn utterances that have the highest score produced by the Action

Selection Mechanism (Equation 13). In our model, the value of n depends on the

number of utterances present in long-term memory; we choose a value between

one and three i.e. n∈1≤n≤3.
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3. Input Module - The input module works with the utterances in the working

memory Cn and query utterance Q. We use a two-step hierarchical model

similar to Serban et al. [187]. The first step is the production of an utterance

vector, which is computed as the hidden state produced after the last token

of the particular utterance is processed through a GRU [31]. This process is

followed for all the utterances in the working memory and the query utterance.

The second step is the inter-utterance modeling that processes the utterance

vector through the use of another GRU and produces a hidden vector that

represents the dialogue until that utterance. The final vector Venc is the sum

of the hidden vectors produced in the inter-utterance modeling phase and each

vector is weighted by the saliency score from the action-selection mechanism

(Eq. 15):

Venc =
N∑
i=0

αui
hui

+ αqhq. (15)

where hui
represents the hidden vector from inter-utterance modelling of ut-

terances in working memory and hq represents the hidden vector from inter-

utterance modelling of the query utterance.

4. Response Generator - The response generator is responsible for generating

an appropriate response Y within the context of the conversation. We use

another GRU, which updates the hidden states and then generates the responses

Y = y1, y2, ..., yt. and it uses the Venc produced by the Input Module.
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3.5 Experiment

3.5.1 Dataset

We used the MovieTriples dataset made available upon request by Serban et al.

[187]. The dataset contains triplets of dialogues, namely D1, D2, D3 between two

interlocutors. In our experiment, we processed the dataset to leverage more contextual

information about the conversation. We combined all the dialogues based on the

dialogue ID (available in the dataset) of a particular movie. Next, we divided the

resulting dataset into sequences St where t∈3≤t≤10 and t indicates the number of

utterances present in a sequence. Each sequence is further divided into dialogue

history, query and target utterances. The historical sequence is represented Ut, where

t∈1≤t≤8. The input and target sequences are represented by Qt and At respectively.

We limited the maximum length of an utterance in a sequence to 20. The basic

pre-processing of the text in the dataset was carried out by Serban et al. [187]. The

statistics of our dataset after pre-processing are provided in Table 3.

Table 3: Descriptive statistics of the corpus used in our experiments

Training Testing

Number of sequences 42738 1000

Avg. context utterances 5.5 5.24

3.5.2 Metrics

Evaluating the quality of responses generated by the model in open domain situations

where the goal is not defined is an important area. Prior work in this regard includes

PARADISE [212], one of the well-known metrics for evaluating spoken dialogue
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systems, however, this metric relies on human-generated supervised signals like task

success. Researchers have also adopted methods such as BLEU [157], METEOR [9],

ROUGE [120] from machine translation and text summarization [123] tasks. Metrics

like BLEU and METEOR are based on word overlaps between the proposed and

ground truth responses; they do not adequately account for diverse responses that

are possible for a given input utterance and show little to no correlation with human

judgments [123, 210]. Crowdsourced judgments have also been used as an alternative

form of evaluating the quality of the responses. Researchers have used different metrics

such as ease of answering, coherence, information flow [114], naturalness [4], fluency

[235] and engagement [210] for human-based judgments. However, such evaluations

are expensive to obtain and infeasible when a large volume of responses needs to be

evaluated.

Gunning Fog index: With the need for meaningful yet automated metrics for

evaluation, we propose using the Gunning Fog Index3 as a new metric for evaluating the

quality in terms of readability of the generated text. Gunning-Fog index (Equation

16) provides a score between 0 and 20 indicating the readability of the sentence.

GunningFogScore = 0.4 ∗
[(

words

sentences

)
+ 100 ∗

(
complexwords

words

)]
(16)

where complex words refer to words containing three or more syllables.

Li et al. [114] previously proposed Ease of Answering as a metric for human evalua-

tion of generated responses. We consider the Gunning Fog index as a complementary

3https://en.wikipedia.org/wiki/Gunning_fog_index



63

Table 4: Importance of recent utterances when compared to earlier utterances present
in dialogue history.

Type of dialogue history
Recent
utterances

Earlier
utterances

Long (n=91) 63.95% 36.05%

Medium (n=16) 64.29% 35.71%

Short (n=13) 8.33% 91.67%

measure to the Ease of Answering metric, since it can be used to evaluate if generated

response as part of the conversation is easy to comprehend and respond to.

3.6 Evaluation

3.6.1 Action Selection Approach

We conducted several experiments to evaluate the efficacy of our proposed approach

on the selection of appropriate contextual utterances and the downstream natural

language generation output. Experiments 1 and 2 described in the following subsection

are focused on the performance of the action section mechanism.

We analyzed the ability of the action selection mechanism to pick the relevant

contexts from long-term memory to working memory and compare it against human

judgments of relevance. We recruited 60 annotators to annotate 120 randomly sampled

conversations from the test data. We asked each annotator to rank order each utterance

in order of saliency from the dialogue history Ut where t ∈ 1 ≤ t ≤ 8. An example

ranking can be found in Table 4 in the column labeled Human Ranking. We took the

majority vote for each utterance to be its rank. As seen in the example in Table 4, the

utterance before the query utterance was rated most salient by the human annotators,

while the second utterance (thanks) by B was labeled least salient.
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Table 5: Example demonstrating action selection, with Human Ranking compared to
CMA model and Tian et al.

Dialogue History
Human
Ranking

CMA
Model

Tian
et al.

A: hey, they would not let up, man! they keep calling
you an accomplice in that burglary murder.

7 6 5

B: thanks 8 8 8

A: by the way, what are your doing with <person>? 6 5 3

B: she needed a lift. 5 7 7

A: oh. okay! this calls for a beer! a lot of beer! 3 4 6

B: thanks, but i have some business to take care of. 4 3 2

A: well. take care of that later. here. i will get the beer. 2 1 1

B: how’d you know this was <person>’s place? 1 2 4

Query Utterance

A: <person>told me all about it.

Experiment 1: What is the relative importance of context utterances

when generating a response? Are more recent utterances more important?

Table 4 shows the importance of recent utterances when compared to the earlier

utterances in the dialogue history as rated by the human annotators. In Table 4 we

refer to dialogue histories of length 6, 7, or 8 as Long, dialogue histories of length

4 or 5 as a medium, and dialogue histories of length less than 3 as Short. Recent

Utterances refer to the two utterances immediately before the query utterance. Earlier

Utterances refer to the utterances in dialogue history beyond the two utterances before

query utterance. We observe the following from the human annotator’s rankings: 1)

For long and medium dialogue histories, only around 63% , the recent utterances are

labeled as the most salient in capturing the context of the conversation. This means

that around 36% of the time, salient information is included in the history of dialogue
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beyond the immediate one or two utterances before the query utterances. 2) For short

conversations, the situation is even worse. 91.67% of the time the earlier dialogue

histories are referred to as most important. The salient entities or information to

respond to would not be present in the one or two utterances immediately preceding

the query utterances, but earlier in dialogue history (however, we note lower sample

sizes for short and medium vs. long histories).

Finding 1: Our empirical results show that salient information is indeed present

earlier in dialogue history, even while varying history length.

Experiment 2: How does the action selection mechanism in our proposed

CMA model address the relative importance of context utterances from

the history of conversation?

To evaluate the performance of the action selection mechanism, we compare our

results with an existing state-of-the-art model proposed by Tian et al. [204], as their

work is most similar work to ours which also attempts to identify and encode context

importance. Table 5 shows an example conversation along with the performance of

our CMA model action selection mechanism compared with Tian et al. and ranking

given by human annotators (1=most salient, 8=least salient). Figure 10 shows the

accuracy of our CMA model and Tian et al. model in identifying the top three salient

contexts (as judged by human annotators). We compare the performance of both

models when dialogue histories are Long (length 6, 7, or 8), Medium (length 4 or 5),

and Short (length 3 or below). CMA model refers to saliency scores attained by the

action-selection mechanism using equation Eq. 12. We demonstrate using Figure 10

the ability of our method to identify salient utterances and outperform the existing
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Figure 10: Accuracy of identifying salient utterances by action selection mechanism
in our proposed CMA model compared to state of the art method used by Tian et
al [204].

state-of-the-art methods in longer historical dialogue histories (statistically significant

p<0.001 while achieving comparable performance in shorter dialogue histories.

Finding 2: CMA model can identify salient utterances in dialogue histories of

varying length (compared with human judgments) and also outperform state-of-the-art

models in this task.

Experiment 3: How well does the action selection mechanism in our

proposed CMA model correlate with the rankings provided by humans?

We did correlation analysis to evaluate the performance of the action-selection

mechanism. We compare our results with an existing state-of-art model proposed by

Tian et al. [204]. Table 6 shows Spearman and Kendall tau correlation results of our

action selection mechanism and Tian et al. method to the rankings provided by the
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Table 6: Spearman and Kendall Tau Rank Correlation Analysis between CMA Action
Selection mechanism and Tian et al. method to the rankings from human annotators.
*** p < 0.001; * p < 0.05

Long Medium Short

Spearman
CMA ∼ Human Ranking 0.46*** 0.27* 0.13

Tian et al ∼ Human Ranking 0.33*** 0.12 0.25

Kendall Tau
CMA ∼ Human Ranking 0.37*** 0.23* 0.12

Tian et al ∼ Human Ranking 0.26*** 0.10 0.24

human annotators. We find that CMA action selection mechanisms show a higher

correlation to humans than the current state-of-the-art method. On a fine-grained

analysis, we find a higher correlation on dialogue histories of Long (length 6, 7 or

8), Medium Medium (length 4 or 5) to ranking judgments provided by human

annotators. Finding 3: We find that the CMA Action selection mechanism has

shown a higher correlation to the humans on dialogue history histories of length ≥ 4.

3.6.2 Response Generation

We report the performance of our CMA model on the task of dialogue generation

using traditional metrics such as BLEU, Diversity, and Length to be consistent with

existing literature. We also report the performance on the new metric adopted in our

work, the Gunning Fog index. In the tables, CMA refers to the model implemented in

this paper, No Context Seq2Seq model represents the model with no context provided

(only the query utterance is input to the model during the generation process) and

Context Seq2Seq represents the model which takes the last utterance of the dialogue

history as context (Query utterance+one prior utterance).
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3.6.2.1 Dialogue Evaluation Metrics

Table 7: Performance of CMA model and baselines on BLEU score, diversity, length
and Gunning-Fog Index. *** p < 0.001

Model BLEU score Diversity Length Gunning-Fog

CMA 0.0910*** 0.00089 9.24*** 4.20***

Context seq2seq 0.0604 0.00091 6.76 3.94

No context seq2seq 0.0633 0.00091 6.56 3.96

We investigate the ability of our proposed model to generate diverse responses. For

calculating Diversity, we use the Distinct-1 metric proposed by Li et al. [110]. Distinct-

1 computes the number of distinct unigrams over the total number of generated tokens.

We also report on the length of the generated responses and BLEU score in Table 7.

Finding 4: We find that while the CMA model is less diverse than the baselines (but

not statistically significant), it can generate longer, coherent sentences and significantly

outperform baseline on the other metrics.

3.6.2.2 Readability Metrics

Table 7 shows the Gunning-Fog Index scores obtained between the existing conversa-

tion in the dataset and the conversation with the new response generated. Finding 5:

The model achieves a significant increase in readability compared to baseline models.

An ideal Gunning Fog index score is considered to be within the range of 7-8; hence

there is room for improvement on this metric.

3.7 Discussion

We have shown how the long-term and working memory as described by cognitive

architectures can be adapted to augment seq2seq models for dialogue generation. We
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find that the action selection mechanism can identify salient utterances and outper-

form extant methods to maintain the conversation context. We make a simplifying

assumption that long-term (declarative) memory has at most 8 prior utterances made

for practical reasons such as training time and compute resources. In future work, we

plan to (a) incorporate more context, including world knowledge (e.g. Wikipedia) and

(b) transformer models (e.g. BERT) [41].

We also proposed the adoption of a new metric to evaluate performance, the

Gunning-Fog index. This index identifies the readability of the conversation and can

be used alongside existing metrics for evaluation such as ease of answering to get a

better understanding of the efficacy of output generated by the NLG system.



CHAPTER 4: PERSONALIZED AND KNOWLEDGE INFUSED DIALOGUE
SYSTEMS

We have seen in Section 2.4 of Chapter 2 that the current state of conversational

agents suffers from a myriad of issues. A couple of those issues relate to endowing a

conversational agent with a personality so that agent can gain the user’s confidence

and trust. Apart from adding personality to conversation agents, another issue that

plagues conversational agents is making responses more informative. In this chapter,

we present a new model that infuses personality and knowledge into the conversational

agent. Further, we also explore an important issue of factual consistency in dialog

systems.

4.1 Introduction

One of the biggest challenges in conversational AI and dialog systems is building

human-like conversational agents that are capable of generating realistic, informative,

and coherent responses, so that users find them engaging and enjoy the ongoing

conversation. Traditionally, conversational agents are built using RNN-based seq2seq

models [211]. However, these models tend to generate vague and generic responses

that are less engaging [111]. Recent advances in large-scale language models [164,

192, 165, 24] have pushed the state-of-the-art in Natural Language Generation (NLG),

paving the way to use transformer-based models [208] in end-to-end dialog systems.

There have been several efforts [223, 66] to apply the large-scale language models to
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Figure 11: An excerpt from a Reddit conversation between a speaker and a listener
about a particular topic. As the conversation proceeds, a new piece of evidence is
introduced by the listener through an URL.

build more engaging personalized conversational agents on the supervised Persona-Chat

dataset [236]. These models can produce conversations that adhere to the reference

profile facts but are devoid of unique personality and instead exhibit a mean average

style [23]. Most recently, [23] introduced a dataset based on conversations from Reddit

comments and built a conversational agent that conditions on a knowledge base of past

reference conversations to model the speaker’s persona. However, it only considers

past dialogues and did not use any external knowledge to ground the generations.

In this work, we aim to improve dialogue’s coherence and informativeness by

incorporating local knowledge in a self-supervised framework for a large, web-scraped

persona dataset. We use references to external links in the current dialog as the source

for local knowledge. Indeed, local references for external knowledge widely exist in

online conversations between humans. For example, we find that during conversations

on platforms such as Reddit, users often use hyperlinked documents (e.g., by URLs) as

additional pieces of evidence to ground their statements. Consider the example shown

in Figure 18, a small snippet of a conversation between a speaker and a listener, where

the listener posts a URL in the last turn. These hyperlinked documents usually contain
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relevant pieces of information that are closely related to the current conversation.

Despite that, they were ignored or filtered out by previous work [239, 23].

Our primary goal here is to learn a model that can generate high-quality responses

by modeling the past dialogues of the speaker as well as attending to any external

document that has been referred to throughout the conversation. To do so, we present

a dialog framework that combines the retrieval and generation process. We build upon

[23] by using Reddit comments as our data source, and build an external knowledge

base with the user-posted outbound links referenced throughout dialogues. We perform

a K-Nearest-Neighbour (KNN) based search to retrieve relevant evidence phrases

from the external documents and use them to context prime the model. Recent work

by [56] also incorporates external knowledge into the conversational agents through

information retrieval. Unlike their approach that uses Wikipedia, pre-defined images,

and dialogue knowledge bases, our work ensures that diverse sources of knowledge are

used by performing retrieval from hyperlinked documents introduced in a conversation.

We also find that limiting the search space for KNN to a local knowledge base,

rather than a global knowledge base such as Wikipedia, ensures that the most relevant

and informative context is retrieved when generating a response. Also, similar to

[23] we incorporate persona into the responses using user’s past dialogues to ensure

that the generated response is consistent with the speaker’s style of writing and their

opinion on certain topics.

With the infusion of knowledge as a conditional parameter to the model, another

issue that conversational agents need to address is the aspect of consistency. Consis-

tency is considered an important factor to gain the trust of the user. Previous studies
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have evaluated a neural model’s factual correctness in several fields. For example,

for large pre-trained models, works such as [159, 126, 172] have shown that these

generative models can memorize knowledge, but still generate factually incorrect

responses. There is also active research in areas such as summarization [136, 130, 97],

document-level generation [135] and NLG [48, 202]. In contrast, there is limited work

within open-domain systems. [117] focused on decoding strategies to generate factually

consistent responses. [143] proposed an annotation schema for the correctness and

confidence of a model’s response and calibrated the response such that its correctness

aligns with its confidence. However, their work focused on a Q/A dataset and on the

knowledge that a model has learned during training.

In this work, we conduct a thorough study to evaluate how factually consistent

neural response generation models are with respect to the provided knowledge sentence

retrieved from a knowledge base. We include a variety of GPT2-based models with

different sizes, decoding strategies, and quality of knowledge sentences. For our

annotation of factual correctness, we categorize responses into three types as shown in

Figure 12: chit-chat responses that don’t contain information that needs to be verified,

factually consistent responses with respect to the input knowledge, and hallucinated

responses that contain information not found in the input knowledge. Such annotations

are different from previous work in that we are dealing with open-domain conversations,

where there are chitchat responses, and we are using both dialog context and knowledge

to evaluate responses. After showing that state-of-the-art neural response generation

models do produce factually inconsistent responses, we propose to build a factual

consistency detection model that is trained from an automatically generated corpus
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...
Speaker 1: What do you think about Murray?
Speaker 2: I think Murray is a great player he just needs to stay healthy in order to
compete more. Who do you like best?

Knowledge:
In tennis, the term Big Four refers to the quartet of men’s singles players comprising
Roger Federer, Rafael Nadal, Novak Djokovic, and Andy Murray.

Chit-Chat Response:

I like Federer and Nadal. I think Federer is the best.
Informative = 2; F.C = N/A; H = N/A
Factually Consistent Response:

Rafael Nadal is my favorite of the Big Four.
Informative = 3; F.C = 1; H = No
Hallucinated Response:

I like Djokovic. He has played in the top ten singles players of the world.
Informative = 4; F.C = 1; H = Yes

Figure 12: Chit-Chat Response does not include any information that needs to be
verified and cannot be evaluated as consistent or not consistent. Factually Consistent
Response is consistent with the provided knowledge. Hallucinated Response is not
consistent with the knowledge but may still be correct. F.C = Factual Consistency.
H = Hallucination

and demonstrates the competitive performance of the classifier. We make a distinction

between factually consistent and factually correct responses. The former accurately

portrays the input knowledge, and the latter is accurate with respect to the “world

knowledge”. Therefore factual correctness is a superset of factual consistency. Our

detection model focuses specifically on factual consistency. Checking if a response is

correct against “world knowledge” is an important problem that we leave for future

exploration.

In summary, our contributions are as follows:

1. We propose a dialog framework that incorporates both local external knowledge

and user’s past dialogues to generate high-quality responses.

2. We present an approach to creating a dataset based on Reddit conversations,
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which uses outbound links in the comments as the external knowledge.

3. We demonstrate that incorporating the local knowledge consistently improves

informativeness, coherency and realisticness measures when compared to ground-

truth human responses. Also, our model outperforms the state-of-the-art conver-

sational agent on the Reddit dataset [23], as it exploits both external knowledge

and the user’s past dialogues.

4. We show that scaling up our model from 117M to 8.3B parameters consistently

decreases the validation perplexity from 20.16 to 12.38 based on a vocabulary of

50K BPE subwords [184]. In particular, our 8.3B model generates high quality

responses on par with human responses in terms of informativeness, coherency

and realisticness evaluations.

5. A large-scale study with a thorough analysis of factual correctness for knowledge-

grounded neural response generation models.

6. Release two datasets we prepared in this study: a human-annotated corpus

on factual correctness from multiple neural response generation models; and

the Conv-FEVER corpus that was adapted from the Wizard of Wikipedia

dataset [43]

4.2 Dataset

4.2.1 Reddit Dataset

To create a large-scale dataset for self-supervised learning, we rely on the publicly

available archive of Reddit comments that have been made available on pushshift.io
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4. In our work, we use conversations extracted from a subset of months ranging

from October 2018 to April 2019. We extract conversations as a sequence of turns

by traversing through Reddit ’s comment graph structure. To ensure that the large

volume of comments is of high quality, we apply the filtering strategy proposed by [23]

and add other conditions to further improve the quality of the conversations. Adding

all these filtration rules together, we extract conversations based on the following

conditions:

1. The conversation has a minimum of 5 turns.

2. The conversation has a maximum of 15 turns.

3. At least one turn has a minimum karma score of 4 within the conversation.

4. All turns in the path have at least 3 words.

5. The conversation shares a maximum of 2 turns with previously extracted paths.

6. No turns in the path originates from a “Not Safe For Work” subreddit.

7. No user in the conversation is marked as “Deleted”.

We process each month individually in parallel. Once all the conversations were

extracted from a specified month, we then extract all the URLs mentioned in each turn

of a conversation to create the knowledge base of hyperlinked documents (Ext-Docs

knowledge-base). The URLs are filtered out based on an undesirable list of domain

4https://files.pushshift.io/reddit/comments/
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names and extensions. We use the two-block lists found in the Megatron-LM repository

5.

Overall, we extracted 48M conversations and found that 10.4% of the conversations

had used a URL as a piece of evidence in the conversation. To create a more balanced

dataset between conversations that use no URLs and conversations that use URLs,

we downsample the conversations with no URLs. After downsampling, we ended up

with a total of 1,585,875 conversations where 1,232,244 of these conversations had no

URLs and 353,631 conversation had used URLs. We further split the filtered dataset

with an 80-10-10 ratio to create the training, validation, and test sets.

Additionally, we precomputed all the past dialogues made by users across the time

span of our dataset (2018-10 to 2019-04) and stored them. In the final dataset, we had

593,734 unique users and on average each user had around 21.13 historical comments.

4.2.2 Conv-FEVER Corpus

To create the Conv-FEVER Corpus, We leverage Wizard of Wikipedia(WoW) [43],

a knowledge grounded dialog dataset generated through MTurkers who play the role

of wizard and apprentice. The wizard has access to Wikipedia passages and the

apprentice is given the role of learning more about a topic by engaging in a dialog

with the wizard. At every turn, the wizard selects a knowledge sentence from the

Wikipedia passages to generate a knowledge-grounded turn. The wizard’s responses

are based on knowledge, so we hypothesize that they are consistent with respect to the

knowledge. To generate inconsistent responses, we leverage a few data augmentation

5https://github.com/NVIDIA/Megatron-LM
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strategies introduced in [97], including random pairing, negation, entity swapping.

Random Pairing (R): We perform two types of random pairing: (1) Replace the

response with a response from a random dialog; (2) Replace the annotated knowledge

sentence with a knowledge sentence from a random dialog.

Negation (N): We perform two types of negation: (1) Negation applied on the

response; (2) Negation applied to the annotated knowledge. 6

Entity Swapping (E): We performed two types of entity swapping: (1) Entity

swapping on the context if there is a common entity mentioned in the context and the

response; (2) Entity swapping on the knowledge if there is a common entity mentioned

in the knowledge and the response. The common entity is replaced by an entity of

the same type. We tag entities using the SpaCY NER tagger [74]. Table 8 shows the

statistics of the data set.

Table 8: Conv-FEVER dataset statistics

Dataset
Num.
Consistent

Num.
Inconsistent

WoW 68957 -

Random Pairing - 137914

Negation - 107845

Entity Swapping - 73178

4.3 Architecture

4.3.1 Knowledge Integration

Consider the conversation {Xi}n−1i=1 , where Xi is a turn in the conversation between

two or more users. The task is to generate the turn Xn for user A (i.e., the speaker

6We apply negation for these tokens: are, is, was, were, have, has, had, do, does, did, can, ca,
could, may, might, must, shall, should, will, would
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Past Dialogue Retriever

   Knowledge Retriever

        (User C):  ...

            (User A):  he should not have to 
worry about that. Ever … as an individual, 
to think that you "could get denied" is ... 
unthinkable.

            (User B):  Canada denies people 
this medication too… 
https://beta.ctvnews.ca/content/ctvnews/en/
national/health/2018/10/3/1_4119606.html

          (User A):  ?

q = Embed(        ) 

           = Extract-URL(        )             = Embed(             )

K = KNN(q,              ) 

Past Dialogues Database               = Past-Dialog(A)

H = Top-Karma-Score(               )

Response 
Generator

Current conversation

Figure 13: Architecture diagram of our framework consisting of the following compo-
nents: (i) Knowledge Retriever: helps retrieve relevant sentences K from the URLs;
(ii) Past Dialogue Retriever: retrieves past dialogues H from user A who is generating
our response; (iii) Response Generator: a GPT-2 model that is to be finetuned and
take the knowledge retrived along with past dialogues and the current conversation as
input.

in Figure 18) given the current conversation. It is done by using our framework

illustrated in Figure 20, which consists of three components:

1. Knowledge Retriever: To include external knowledge, we consider Xn−1, the

last turn in the current conversation, and extract the information referenced by

the outbound URL links. The extracted knowledge is then divided into sentences

{Si}ri=1 and each sentence Si is encoded to a fixed size vector Ei using Universal

Sentence Encoder [28], denoted by USE. The knowledge retriever encodes the

last turn of the conversation Xn−1 as query q using the same USE embedding,

and performs a cosine similarity search between {Ei}ri=1 and q. Then, it picks k

sentences K = {Si}ki=1 with the highest similarity scores. We simply set k = 5 in

all experiments. In our framework, we pre-compute all the sentence embeddings
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Figure 14: Illustration of input representation to the GPT-2 transformer model for
a conversation between a listener (L) and speaker (S) (to be modeled). Along with
the subword embeddings of current conversation (Ti), the model also receives past
dialogues from the speaker’s history (Hs

i ) and most relevant knowledge sentences (KL
i )

introduced by listener. We also add positional embeddings and token type embeddings
K, H, L, S for knowledge, past dialogues, listener, and speaker, respectively.

{Ei}ri=1 associated with all the external URLs and build a knowledge-base called

Ext-Docs which includes all the documents referenced within the dataset.

2. Past Dialogue Retriever: We denote Y = {Yi}mj=1 as the past dialogue turns

associated with speaker A. Note that past dialogues contain all the historical

comments made by each user but do not contain any utterances from the current

conversation. To retrieve the relevant and high-quality past dialogues emblematic

of a user’s personality, we follow the heuristic strategy used by [23]. We sort

the past dialogues based on their karma score in Reddit (which is the difference

between the up-votes and down-votes of a comment) and pick the ones with the

highest scores. We denote the retrieved past dialogues as H.

3. Response Generator: Traditionally, the goal of the response generation com-

ponent has been to produce an informative response Xn conditioned on the

current conversation turns {Xi}n−1i=1 . However, just incorporating these turns

might not provide enough information to produce an informative response

[56, 223]. For the response generator to make use of the retrieved knowledge
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and past dialogues, we concatenate them as part of the conditional input for

a left-to-right GPT-2 language model [164], in which the input context size is

1024 in our experiments. The retrieved knowledge and past dialogue sequences

are truncated to a maximum of 250 tokens each, and the current conversation is

allocated a minimum of 524 tokens in case there is no past dialog for a particular

user or outbound URL links in the current conversation.

We illustrate the input representation to the GPT-2 response generator in Figure 14.

In addition to the positional embedding, we tell the model which sequence of tokens is

from the speaker of interest or listeners in the current conversation, which are retrieved

external knowledge, and which are speaker’s past dialogue. This is achieved by adding

token type embeddings to the positional encoding and subword embeddings.

4.3.2 Consistency Evaluator

We train a factual consistency detector on the Conv-FEVER dataset. We use the

BERT-base [39] model and initialize our detector by first training on the FEVER

dataset [203] taken from the set of tasks presented in KILT [158]. The FEVER task

is aimed at determining if a claim can be supported or refuted given a Wikipedia

document. Claims that are labeled as supports can be thought of to be consistent

and refutes can be thought of as being inconsistent. To create our initial training

corpus, we extracted all data points in the FEVER corpus that contained a pointer to

the ground truth Wikipedia documents as evidence. In total, we trained on 48,451

supports and 18,625 refutes 7. We then finetune this model on the Conv-FEVER

7This number differs from the original since we dropped data points without pointer to Wikipedia
documents.
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dataset. The model takes in the dialog context and knowledge along with the response

and determines if the response is support (consistent) or refute.

4.4 Experiment

4.4.1 Models

We investigate four different models to demonstrate the benefits of incorporating

past dialogues and local knowledge:

1. Baseline (B): The simplest of the four models used in our experiments, which

is used to establish a baseline. In this model, only the current conversation, i.e.,

{Xi}n−1i=1 , is provided as an input sequence to the response generator. Despite

its simplicity, it is a strong baseline for response generation as demonstrated

by [239].

2. Baseline + Past Dialogues (B + H): This model is the state-of-the-art

response generation approach presented by [23]. In this model, a heuristic-based

approach is used to identify the retrieved past dialogues of a speaker, which

is then combined with the current conversation. The retrieved past dialogue

(denoted as H) is concatenated with the current conversation as the input to

the response generator.

3. Baseline + Knowledge (B + K): This setting measures the importance of

adding external knowledge for the response generation process. In this model,

we combine retrieved knowledge sentences from the external URLs (denoted

by K) and concatenate them as additional pieces of evidence to the current
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conversation.

4. Baseline + Knowledge + Past Dialogues (B + K + H): This setting

measures the importance of incorporating both external knowledge and retrieved

past dialogues for the response generation process. In this model, we combine

retrieved knowledge sentences K from the external URLs and the retrieved

past dialogues H from a user that is being modeled. We concatenate them as

additional pieces of evidence to the current conversation.

4.4.2 Automated Metrics

Automatic evaluation for the quality of generated responses is still an active area

of research for open-domain conversation. Previous work has used metrics such

as BLEU [157], METEOR [9], ROUGE [120] from machine translation and text

summarization [123] tasks, although several works have demonstrated that they don’t

correlate well with human judgments for open-ended tasks such as dialogue [124]. In

this work, we report the BLEU score following established reporting practices. We also

report the perplexity (PPL) on the validation set as a measure to compare different

models, which was found to correlate with fluency in generations in a previous study.

4.4.3 Human Evaluation

Human evaluation is viewed as the most effective way of evaluating the quality of

the generated text. Traditionally, human evaluation is conducted through the use of

Likert scales [119] or continuous scales as the primary experiment design. However,

prior research has shown that the usage of Likert scales affects the quality of ratings

obtained from the human annotators [154, 180], and the usage of continuous scales
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such as magnitude estimation is prone to cognitive bias [177]. To avoid these issues,

we provide pairs of conversations side by side with the last turn generated by either

the model or the human and ask the annotator to choose between the two. We also

provided a tie option. Overall, we randomly sample 100 conversations from the test set

for our evaluations. The annotators are asked to evaluate the quality of the responses

according to the following metrics:

1. Informativeness measures whether the response from the speaker is informative

for listeners (i.e. contains more detailed information).

2. Coherence measures whether the response from the speaker matches the topic

and discussion from the earlier context of the conversation.

3. Realistic measures whether the response from the speaker looks like a response

from a real human instead of a bot.

We utilize 5 unique workers per example in our evaluations. To obtain high-quality

human labels from native English speakers, the workers are required to reside in the

United States and have a Human Intelligence Task (HIT) approval rate greater than

or equal to 95%. We explicitly state in the instructions that payment is contingent on

raters spending at least 25 seconds per assignment. We tried to filter the inexperienced

raters based on their past Reddit use as in previous study [23], but we found this

is less effective as the raters tend to select the maximum hours we provided in our

survey.

To evaluate factual consistency in conversational agents, we use four GPT2 [164]

based models (small, medium, large, XL) and three different decoding mechanisms:
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Nucleus sampling [72] with p=0.9, Beam-Search, and Delayed Beam-Search(DBS) [135]

which uses top-k sampling for n delay steps followed by beam search. We use k=10,

5 delay steps, and a beam size of 5. We use two different configurations for the

knowledge sentence provided to the model: 1) the ground truth knowledge that is

provided in the WoW test set and 2) Dense Passage Retrieval (DPR) model from [82]

where the knowledge base consists of 21 million Wikipedia articles. We sample dialogs

of length 5 turns from the WoW test sets and obtain 100 responses for each model

resulting in 2400 responses in total.

We annotated these system-generated responses based on the following setup: We

propose a two-stage human annotation setup for factual correctness in the context

of open-domain agents. The annotators are given a dialog context along with a

knowledge sentence and evaluate the system-generated response. Stage 1 involves

evaluating Appropriateness and Informativeness on a Likert scale 1-5. We define

appropriateness as relevant to the dialog context and informativeness as being detailed

and informative. This stage is used to filter out incoherent and chit-chat responses. If

a response scores low on informativeness, it is categorized as a chit-chat response.

Stage 2 of our setup involves evaluating Factual Consistency and Hallucination.

We pose the Factual Consistency question: Is the response generated factually accurate

with regards to the input knowledge? with a three-point scale: factually incorrect(0),

partially correct(0.5), and completely correct(1). For Hallucination: Is the response

generated making up more information than what is provided in the conversational

context and input knowledge?, we collect a binary label whether each response contains

any hallucinated information. We follow the recommendations on describing a human
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annotation setup outlined in [77]. Figure 12 shows an example annotation.

After the completion of stage 1, we filter out responses whose appropriateness and

informativeness scores are below 3 to ensure we have responses that contain some form

of knowledge and are relevant to the dialog context. We are left with 1684 responses

to be annotated in stage 2 (959 responses using the ground-truth knowledge and 725

outputs using knowledge from DPR).

4.5 Results

In this section, we report the results of automatic and human evaluations detailed

in the previous section.

4.5.1 Automated Metrics

Table 9 provides a comparison of the different models used in our experiments.

We find that compared to the baseline model (B), the addition of knowledge or

past dialogue reduces the validation perplexity. In particular, adding past dialogue

information can improve the perplexity significantly. We also notice that the best

perplexity is achieved by adding both retrieved knowledge and past dialogues as

additional pieces of evidence. The BLEU score degrades when we add knowledge and

past dialogue separately but slightly improves as we incorporate them together. As

we will demonstrate in human evaluation results, these BLEU scores don’t correlate

well with human judgments. We don’t report the BLEU score further.

We also performed ablation studies on the best performing model (B + K + H) for

various model sizes. Table 10 gives the different configurations of models that were

trained. We find that validation perplexity drops significantly as we increase the size
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Table 9: Automated metrics results (Val PPL and BLEU) on the test set obtained
by fine-tuning the 345M model with different experimental settings. B: stands for
baseline model that only exploits current dialog context. H: stands for the heuristic
approach for retrieving past-dialogues. K: stands for retrieval of knowledge. ↑ means
the number is the higher the better, and ↓ means the number is the lower the better.

Models Val PPL(↓) BLEU(↑)
B 18.12 15.3
B + K 18.10 14.1
B + H 16.84 14.0
B + K + H 16.83 15.4

Table 10: Scaled up results for our best performing model (B + K + H). ↓ means the
lower value is the better.

Model Hidden size Layers Attention heads #Parameters Val PPL(↓)
B + K + H 768 12 12 117M 20.16
B + K + H 1024 24 16 345M 16.83
B + K + H 1536 40 16 1.2B 14.57
B + K + H 3072 72 24 8.3B 12.38

Table 11: Pairwise comparison results (X wins - Ties - Y wins) between 345M models
and human-generated text using Mechanical Turk. B: stands for baseline model that
only exploits current dialog context. H: stands for the heuristic approach for past
dialogues. K: stands for retrieval for knowledge. To make a relative comparison
between models, we highlight the last columns of the results (best viewed in color).
They indicate the percentages of cases that the models are outperformed by humans,
which are the lower the better.

Source X Informativeness Coherency Realisticness Source Y

B 28% - 20% - 52% 29% - 22% - 49% 31% - 33% - 36% Human
B + K 31% - 26% - 43% 30% - 27% - 43% 26% - 36% - 38% Human
B + H 29% - 31% - 40% 26% - 33% - 41% 29% - 21% - 50% Human
B + K + H 34% - 29% - 37% 29% - 33% - 38% 26% - 39% - 35% Human

of the models. These results are consistent with prior studies [192].

Human Evaluation

We report the human evaluation results for different models in Table 11. Specially,

we compare the generated responses from these models to human responses. To make

relative comparisons between models, we highlight the last column of the results (X
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Figure 15: Pairwise comparison results (X wins - Ties - Y wins) between our best
performing model (B + K + H) and a state-of-the-art model on Reddit data (B +
H) [23]. We also include pairwise comparisons with different model sizes. We find the
larger model always outperforms the smaller one across all three metrics. In particular,
Our model with 8.3B parameters can generate high-quality responses on par with
human responses.

wins - Ties - Y wins); they indicate the percentages of cases where the models

were outperformed by humans, thus the lower the better. We draw the following

observations:

1. Adding external knowledge significantly improves the informativeness and co-

herency metrics for both the baseline model (B vs. B + K), and previous

state-of-the-art model (B + H vs. B + K + H).

2. Incorporating past dialogues also improves both the informativeness and co-

herency measures for baseline models (B) and (B + K).

3. Our model (B + K + H) outperforms others, including the state-of-the-art

model (B + H) on the Reddit dataset [23], in terms of informativeness, coherency

and realistic measures.

In Table 15, we perform comparison between models, including pairwise comparison

between our method (B + K + H) and previous state-of-the-art model (B + H) for

this task. We also scale our model up to 8.3 billion parameters and report the human

evaluations results in Table 15. We find consistent improvements of all evaluated
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metrics when we increase the size of the model. Noticeably, our 8.3 billion models can

generate responses with quality comparable to humans in terms of informativeness,

coherency, and realistic metrics.

Case Study

Table 12 displays a conversation between a speaker and listener where the last turn

of the conversation is generated by the model. We also show the top two retrieved

sentences from the external URL that is used to generate the response. From the

generated response, our model can make use of the relevant spans of knowledge such

as “The men training for less than 3 months, on average, squatted 102kg (225lbs)” and

“The men training for less than 3 months, on average, benched 85kg (185-190lbs)”.

4.5.2 Factual Consistency Results

Table 16 shows the detector’s performance on this cleaned test set. We present

results for training on FEVER versus training on both the FEVER and Conv-FEVER.

We compare our model against FactCC [97] which is also a BERT-based model used

to predict factual consistency for neural summarization models. We see that training

on a dialog dataset with synthetically generated negative examples outperforms just

training on a document-level dataset. Additionally, our best-performing model requires

just using knowledge as input. We believe this is because most of the information

contained in the response comes from knowledge.

Table 17 shows the results of our annotations. We see that as models get larger,

there is an increase in factual consistency and a decrease in hallucinated responses.

In a more realistic setting where DPR is being used to retrieve knowledge from a
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Figure 16: Factual detector performance comparing the state of the art model against
the model trained on our Conv-FEVER dataset

larger knowledge base, the highest factual consistency score is 0.72, and at the lowest

18.0% of responses have hallucinated information, indicating room for improvement in

factual consistency. Additionally, we see in the DPR setting beam search performs

better for smaller models, whereas for larger models DBS is the best. Massrelli et al.

[135] showed DBS performed the best for factual verification across all model sizes;

however, that was for document-level generation.
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Figure 17: Human Annotation Results. We use Krippendorff’s alpha for inter-
annotator agreement (IAA) F = Factual Consistency(0, 0.5,1) where IAA=0.44. H =
Hallucination. where IAA=0.64
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Table 12: Conversation between a human speaker and a human listener where the last
turn of the conversation is the response generated by our 8.3B model which makes use
of knowledge introduced by the listener through the URL. The top retrieved sentences
from the document are also shown with the generated response. The generated
response is coherent with the conversation context and consistent with the retrieved
knowledge.

Conversation 1

Listener

I literally progressed linearly (with SL 5x5) to a 2 plate bench and 3 plate
squat in roughly 3 months while deployed to Iraq and eating roughly at
caloric maintenance (not by own volition.)Went from being unable to bench
185.

Speaker

You better get into professional sports then because apparently you’re in the
top 0.001% of genetics. Not sure how you expect anyone to believe that not
only did your lifts increase in probably the 99th percentile in terms of
progress, but you also did it without eating enough food to build muscle.
LMAO look around you goober. People constantly post their progress here
and it’s nowhere near what you’re describing. Here’s a post from a day ago
where it took someone 7 months to go from a 65-pound bench to 135. Go
look at the progress posts in /r/fitness. If anyones misinformed on what the
average new lifter can expect in terms of progress, it’s you.
You suggesting that is normal to add 5 pounds to the bar every session
to hit 2/3/4 plate lifts is laughable. The fact you said you did it eating at
maintenance is even more hilarious.
If you posted in /r/fitness what you just posted here, you’d get laughed
out of that subreddit. It’s not even close to realistic to expect someone to
LP to a 315 pound squat. Like not even close.
You also completely ignored the fact you contradicted yourself by calling
me a beginner yet in the same breath you say that once you can’t
LP anymore, you’re an intermediate. Here’s an article on average weight
lifting progression. Not only are the numbers you just described far above
what the average person can expect in a year of training, you supposedly
did it in 3 months while eating in caloric maintenance.

Listener
https://www.strongerbyscience.com/realistic-training-goals/

16% of lifters training for 3-6 months reached a 264lb bench and 373lb
squat. Cheers!

Speaker
(Model)

If you read your own article, you’d notice the vast majority of people hit
a set of 1-2 plates in 3-6 months. The average raw beginner could easily
hit a ∼200 pound squat and a 190 pound bench within 3 months
of starting lifting, and that’s assuming they’re eating the bare minimum
to build muscle.

Retrieved Knowledge 1: The men training for less than 3 months,
on average, squatted 102kg (225lbs), and the men training for between
3 and 6 months squatted 132kg (290lbs) on average.
Retrieved Knowledge 2: The men training for less than 3 months,
on average, benched 85kg (185-190lbs), and the men training for between
3 and 6 months benched 96kg (210lbs)on average, for a difference of about
3.4kg (7-8lbs) per month.



CHAPTER 5: LEARNING TO PLAN AND REALIZE SEPARATELY FOR
OPEN-ENDED DIALOGUE SYSTEMS

5.1 Introduction

Recent advancements in the area of generative modeling have helped increase the

fluency of generative models. However, several issues persist: coherence of output and

the semblance of mere repetition/hallucination of tokens from the training data [147,

222]. One reason could be that the generation task is typically construed as an end-to-

end system. This is in contrast to traditional approaches, which incorporate a sequence

of steps in the NLG system, including content determination, sentence planning, and

surface realization [167, 169]. A review of literature from psycholinguistics and

cognitive science also provides strong empirical evidence that the human language

production process is not a monolith [38, 21, 22, 85].

Prior approaches have indeed incorporated content planning into the NLG system,

for example data-to-text generation problems [161, 148] as well as classic works that

include planning, based on speech acts [34] (for an in-depth review c.f. [59]). Our

work closely follows these prior approaches, with one crucial difference: our planners

are not based on dialogue acts or speech acts.

Consider the example in Fig.18. An input utterance by Person B, a statement

(Unfortunately no.), followed by a question (What do they do? ), can be effectively

responded to using plans, learned and generated, before the realization phase. The
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Figure 18: Example conversation between two speakers A & B where the response
for the speaker B is generated based on the response plan from two learned planners:
Context Attention and Pseudo Self Attention.

realization output can then include the mention of provides relief, consistent with the

generated plan (PERFORM [provides [relief ]]).

Dialogue acts [197] (e.g., statements, questions), by their nature, encompass a wide

variety of realized output, and hence cannot sufficiently constrain the language model

during the generation process. Research has addressed this issue by adapting existing

taxonomies [197] towards their own goals [224, 156]. We instead use an adapted and

extended form of lexical-conceptual structures (LCSs) to help constrain the realization

output more effectively [44].

Our work makes the following contributions:

• We investigate the impact of separating planning and realization in open-domain

dialogue and find that the approach produces better responses per automated metrics

and detailed human evaluations.

• We propose the use of LCS-inspired representations based on asks and framings,

which in turn are grounded in conversation analysis literature, to generate plans,
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instead of using dialogue acts.

• We release corpora annotated with plans for all utterances, using three planners,

including symbolic planners and attention-based planners.

5.2 Approach

5.2.1 NLU using Asks and Framing

The representation we use to generate plans leverages asks and framings based on

conversation analysis literature [160, 175, 182]. An ask is closely related to the notion

of a request [233]. Perhaps most importantly, an ask elicits relevant responses from

the recipient. Framing refers to linguistic and social resources used to persuade the

recipient of an ask to comply and perform the requested social action. Put another

way, an ask creates a social obligation to respond, while framing provides an adequate

basis for compliance with the ask.

Figure 19: Example of ask and framing representations used as training for generation
of Response Plans.

In Fig.19, we show the ask/framing representational formalism that serves as the

basis of our response plans. Here the ask is a request to PERFORM the action of

check out the website. The perceived risk or reward (or framing) for this request is

that, upon performing the action, one may GAIN something, i.e., gather a lot more

information. We use two types of asks: GIVE (provide something or information)
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Figure 20: Architecture diagram of our system consisting of two phases: Planning
and Realization. The Planning phase (Context and Pseudo Self Attention) encodes
the input sequence and symbolic planner input to produce the response plans. The
Realization phase uses the response plan and input utterance to generate the response

and PERFORM (perform an action), and two types of framings: GAIN (gain some

benefit) and LOSE (lose benefit or resource). This preliminary ontology was motivated

by conversation analysis literature [176, 35, 54]: by treating utterances as actions, we

can establish what each utterance seeks to accomplish and how a sender motivates

the recipient in terms of the benefits and costs of compliant responses.

5.2.2 Symbolic Method

a. Detect Ask/Framing actions: The first step for ask/framing detection is to

extract the main action for each clause (recursively) from the dependency tree and

the constituency parse shown in Figure21a,b. This is achieved first through the

application of basic language tools and also through the application of CATVAR to

detect actions that may be implicit in non-verbal forms, such as reference (which maps

to the PERFORM form refer). Verbal constraints are then applied to rule out past

and progressive actions (VBD/VBG) as asks. If ruled out, the action is considered

as a framing candidate. If not ruled out, a priority scheme is applied, attempting to

match the action against asks PERFORM and GIVE, in that order, from the lexical

resource of interest (the thesaurus or LCS/LCS+). If this fails, an attempt is made to

match the action against framings LOSE and GAIN, in that order, using the same
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a. Dependency:

b. Constituency:

c. Semantic role labeling:
help: [V:help][ARG1:me]out[ARGM: by sending $500]
sending: [V:sending][ARG1:$500.]

Figure 21: Dependency, Constituency, and Semantic Role Labeling for Please help me
out by sending $500

lexical resource.

This priority scheme was devised to support overlapping ask actions, e.g., send

is both a GIVE and PERFORM in LCS+, but in the context of a clickable link, it

is deemed a PERFORM. In this way, structural knowledge influences the linguistic

choice of ask. Similar overlap exists for framing, e.g., retrieve is both a GAIN or a

LOSE, depending on the perspective of interest. Given that our application of ask

detection is designed for SE interactions, it is assumed that a loss is intended for the

potential victim (not for the social engineer); thus, LOSE is tested ahead of GAIN.

b. Determine Ask/Framing Arguments: Following the detection of an ask or

framing action, basic language tools identify the arguments. For example, semantic
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role labeling identifies $500 as ARG1 in the sentence sending $500 (see Figure21); this

becomes an ask argument that is subsequently assigned an ask category as described

next.

c. Assign Ask/Framing Category: Categories are associated with asks and fram-

ings, e.g., sending $500 yields a GIVE ask with argument $500, which is in the

finance money category. Other examples are shown below:

•...using your gift card : scam gift

•Sign-up with your login and password : credentials

•...confirm with us via this email...: personal

The categories are hierarchi-

cally organized, with a total number of 13 categories. From this categorization it

is possible to deduce the likely goals of a would-be attacker, for use in downstream

response generation.8

d. Detect Links: Links are detected through either basic or advanced link processing

and these are associated with ARG1 of the ask (found by basic processing tools). The

existence of a link boosts the confidence score for its associated ask. For example, a

detached link is found via advanced link processing for Contact me. I’m around Mon.

(jw11@example.com). Here, me is associated with the contact email address.

e. Apply Confidence Score: Application of confidence scores is based on preliminary

trial-and-error studies and intuitions gleaned from processing development data.

Observations are: (1) Past tense events are found not to be asks, thus assigned low or

0 confidence; (2) Non-past-tense events are more prevalently observed to be PERFORM

asks if an ask category is specified (e.g., finance money for sending $500 above), thus

8Although the full description of ask/framing categories is out of scope for this paper, these
categories provided hints to the human adjudicator for the generation of our validation set.
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assigned high confidence (0.8); (3) The vast majority of asks associated with URLs

(e.g., jw11@example.com tied to me above) are found to be PERFORM asks, thus

assigned a highest confidence (0.9); (4) GIVE combined with any ask category (e.g.,

contribute $50 above) is less frequently found to be an ask, thus assigned slightly

lower confidence (0.75); and (5) GIVE by itself is even less likely found to be an ask,

thus assigned a confidence of 0.6 (e.g., donate often). (Automatic confidence scoring,

training on actual data, is an area of future work.)

f. Select Top Ask: Upon completion of the processing above, Top Ask selection

produces the most important asks at the aggregate level of a single email. This is

crucial for downstream processing of the framing and ask (i.e., automatic response

generation). Asks are sorted based on their confidence scores, bringing those with the

highest scores to the top. Those tied for first place are returned as the “top asks” for

the email. For example, “PERFORM contact me (jw11@example.com)” is returned

as the top ask for Contact me. I’m around Mon. (jw11@example.com).

5.2.3 Automated Method

Our goal is to generate an informative response to the input utterance by first

generating an appropriate Response Plan. We train two components separately

(c.f. Fig.20). In the Planning Phase, we experiment with generating plans in three

ways:

1. Symbolic Planner : Foremost, we need to extract plans automatically from utterances.

To accomplish this goal, our symbolic planner adapts lexical representations previously

used for language analysis [45] to the problem of constructing Response Plans. We
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use lexical conceptual structures and basic language processing tools [58, 134] for

parsing the input, identifying the main action, identifying the arguments (or targets),

and applying semantic-role labeling. Fig.19 presents ask/framing examples (type,

action and target).

Once response plans are identified for all utterances in a given corpus using the

symbolic planner, we need to address automated generation of such plans. Using the

asks and framings as annotated data for a “silver” standard,9 we train models to

learn to generate “Response Plans” that are encoded with the same representation

format used for asks/framings. We use the language modeling paradigm and use

a large pre-trained model (GPT-2) [164] with the transformer architecture and the

self-attention mechanism [208]. We fine-tune this language model with the constraint

of the input utterance and the plan for this input utterance and train it to produce

the plan for the response utterance. We adopt the fine-tuning approach specified by

Ziegler et al. [242] and train two specific models (CTX and PSA) described below.

2. Context Attention Planner (CTX): based on the encoder/decoder architecture.

In this model, the decoder weights are initialized with the pre-trained weights of the

language model. However, a new context attention layer is added in the decoder that

concatenates the conditioning information to the pre-trained weight. The conditioning

information, in our case, is the plan for the input utterance.

3. Pseudo Self Attention (PSA): Proposed by Ziegler et al. [242], PSA injects

conditioning information from the encoder directly into the pre-trained self attention

(similar to the “zero-shot” model proposed by Radford et al. [164]).

9Dorr et al. [45] report precision of 69.2% in detecting asks/framings.
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In the Realization Phase , we generate responses by utilizing the response plan

generated from the planning phase as well as the input utterance. We expect a more

guided generation of responses that are constrained by the response plan. In this

phase, we only experiment with the Pseudo Self attention (PSA) model, based on

Ziegler et al. [242], who demonstrate that PSA outperforms other approaches on text

generation tasks. We use nucleus sampling to overcome some of the drawbacks of

beam search [72].

5.2.4 Corpora

Our choice of corpora is driven by the presence of information elicitation and

persuasive strategies in the utterances (i.e., asks and framings).

Accordingly, we experiment with the AntiScam [116] and Persuasion for Social Good

[216] corpora. AntiScam contains dialogues about a customer service scenario and is

specifically crowdsourced to understand human elicitation strategies. Persuasion for

Social Good corpus contains interactions between workers who are assigned the roles

of persuader and persuadee, where the persuader attempts to convince the persuadee

to donate to a charity.

All utterances in these corpora are first annotated through the Symbolic Planner

(c.f. Section 3.2) to gauge suitability based on the presence of asks and framings. In

Table13, we provide descriptive statistics of the corpora; we find an adequate number

of ask/framing types (GIVE, PERFORM, GAIN, LOSE). In cases where there are no

asks/framings or the symbolic planner fails to detect them, we use the default action

RESPOND.



102

Table 13: Statistics of AntiScam and Persuasion for Social Good (PSG), with annotated
asks and framings. Avg. conversation length - average number of turns in each
conversation; Avg. utterance length - average length of a turn in a conversation

AntiScam PSG

Number of Dialogues 220 1017

Avg. Conversation Length 12.45 10.43

Avg. Utterance Length 11.13 19.36

Number of GIVE 2192 11587

Number of PERFORM 1681 7335

Number of GAIN 70 399

Number of LOSE 73 588

Number of RESPOND 4376 8078

5.2.5 Implementation

We implement the models using Open-NMT [91] and the PyTorch framework.10

We use publicly available GPT-2 model [164] with 117M parameters, 12 layers and

12 heads in our implementations. The input utterances and the plans are tokenized

using byte-pair encoding to reduce vocabulary size [184]. Both phases are trained

separately. In the Planning Phase, the plan for the input utterance along with the

input utterance is used to generate the response plan for the response utterance; in

the Realization Phase, the response plan and input utterance are input to the model

to generate the response. In both planning and realization phase, separation tokens

are added (e.g. <plan>), as is common practice for transformer inputs [40, 223]. We

use Adam optimizer [89] with a learning rate of 0.0005 and β1 = 0.9 and β2 = 0.98.

During decoding, we use nucleus sampling both in the planning and realization phase.

All models are trained on two TitanV GPU and take roughly 15 hours each to train

10https://pytorch.org/



103

the planner and realization component.

5.3 Evaluation of Approach

The results reported in these subsections were obtained by combining both corpora

and dividing randomly in a ratio of 80/10/10 for the training, testing, and validation

set.

Figure 22: Automated Metrics on performance of models in the Planning Phase. **
indicates p < 0.01

5.3.1 Planning Phase Evaluation

This evaluation focuses on investigating the efficacy of the two automated planners

(Context Attention (CTX) and Pseudo-Self Attention (PSA)) in learning to generate

response plans.

Automated Metrics

Are the automated planners able to faithfully learn how to generate the response

utterance plans? To investigate, we compare the performance of the CTX and the

PSA planner with the symbolic planner output (which is our silver standard reference)

using common automated metrics Table 22: BLEU [157], METEOR [9], ROUGE

[120], CIDEr [209] on the test set. We use the library by Sharma et al. [190]. We find

that PSA was able to achieve higher word overlap metrics with respect to the silver

standard. We conducted an in-depth analysis of the CTX and PSA planner output on

the entire testing set. We found that the PSA model was more likely to produce ask
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actions that matched the ground truth, resulting in higher scores on the automated

metrics.

Human Evaluation

Table 14: Human Evaluation results on the performance of the planner component.
Q1: Which model plan is better suited for generating a response?; Q2: Which
model has the more appropriate ask/framing type?; Q3: Which model has the more
appropriate ask/framing action with respect to the type?; Q4: Which model has the
more informative ask/framing target?

CTX PSA Both Neither

Q1 38.75% 26.25% 25% 10%

Q2 27.5% 20% 23.75% 28.75%

Q3 22.5% 17.5% 41.25% 18.75%

Q4 32.5% 31.25% 10% 26.25%

Evaluation using automated metrics provides limited evidence for the ability to

automatically generate plans; we do not know if these plans are actually useful in a

realization task. The question then is: How well-suited is the automatically learned

plans for the task of generating responses?

Study 1: We asked two experts in linguistics to independently rate 40 randomly

sampled plans from the test set. For context, we provided the input utterance and

its plan produced by the symbolic planner. Their task was to choose which of the

learned response plans was better suited to the realization task (CTX, PSA, Both,

or Neither). They also evaluated the plan constituents: (type, action and target).

We randomized the presentation order of the planner outputs across questions to

avoid ordering/learning effects [140]. We find an inter-rater agreement [193] of 0.5

(p < 0.001) between the linguists.
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Table 15: Human evaluation results comparing CTX and PSA planner separately to
the Symbolic Planner

CTX PSA
Symbolic
Planner

Both

Quality
30% X 35% 35%

X 35% 22% 43%

Table 14 shows the results from Study 1. From Q1, we find that the CTX planner

is better suited to generate an appropriate response over the PSA planner. Similarly,

through Q2, Q3, and Q4, we find that the CTX planner is better able to generate

the appropriate ask/framing types, actions, and targets. We also find that the

linguists rated Neither plan was suited to generate a response 10% of the time. Put

differently; the automatically generated plans would work 90% of the time to generate

an appropriate utterance in the realization phase. The learned plans have trouble

associating an appropriate ask/framing type and target (28.75% and 26.75%) but

perform better with the ask/framing action (18.75% Neither rating).

This evaluation compares the automatic planners against one another, but how well

do the planners compare to the silver standard (symbolic planner)?

Study 2: We asked the same linguistic experts to independently determine which

amongst two plans (symbolic vs. each automated planner) would be more appropriate

to generate a response. This study design is consistent with prior studies in dialogue

evaluation [142]. Table 15 presents the results from Study 2.

We find that experts prefer the plans produced by the symbolic planner over the

CTX output but not over the PSA planner output. Inter-annotator agreement [193]

between the experts for this study was 0.54. While Study 1 compared CTX and PSA
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Table 16: Automated metric results on the responses generated on the test set of both
corpora.

Realizer Input Dataset BLEU Diversity Length BERT-score

No Plan
AntiScam 0.0658 0.0067 7.168 0.841

PSG 0.1149 0.0049 13.713 0.845

Symbolic Planner
AntiScam 0.1814 0.0062 6.245 0.844

PSG 0.1992 0.0038 11.982 0.848

Context Attention
Planner

AntiScam 0.0705 0.0064 7.298 0.84

PSG 0.1027 0.0043 14.088 0.847

Pseudo Self
Attention Planner

AntiScam 0.0692 0.0065 7.553 0.838

PSG 0.1253 0.0045 15.128 0.847

planner outputs against one another, Study 2 compared CTX and PSA outputs against

the silver standard. As we observe from the automated metrics (Table 22), PSA model

plans are more faithful to the ground truth, e.g., higher BLEU 1-4 scores than CTX

model plans. Since PSA planner outputs are more faithful to the ground truth, this

may be why human judges rate them as preferable more often when compared against

ground truth.

Planning Phase Evaluation Findings: To summarize this evaluation section,

we find: PSA outperforms the CTX planner on automated metrics. This finding is

consistent with the results from Ziegler et al. [242]. From Study 1, we find that both

the planners can generate appropriate plans, with the appropriate ask/framing type,

action, and target for the realization phase, a large proportion of the time. From

Study 2, we find that when compared to the silver standard plans, PSA planner output

is preferred over the CTX planner.
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5.3.2 Realization Phase Evaluation

While the previous section focuses on evaluating the ability to generate plans

automatically, we do not yet know whether separating the generation process into

planning and realization produces better responses than an end-to-end system?

Thus, we compare four approaches towards realizing a response given an input

utterance (through the Pseudo-Self Attention fine-tuned realization algorithm): (1) No

Planner model which receives input utterance but no plan as input; (2) Symbolic

Planner based Generation: This model receives the plan from symbolic planner

output; (3) CTX Planner-Based Generation: This model receives the CTX plan;

(4) PSA Planner-Based Generation: This model receives the PSA plan.

Automated Metrics

Prior research has shown that most automated metrics have little to no correlation

to human ratings on NLG tasks [123, 180]; however, they may provide some standard

of reference to evaluate performance. We report the following metrics: (i) BLEU [157]

(ii) length of responses, with the understanding that models that can generate longer

responses are better (iii) following, Mei et al [142], we report the diversity metric [110].

Diversity is calculated as the number of distinct unigrams in the generation scaled by

the total number of generated tokens [142, 112]. (iv) BERT-Score [237] metric, an

embedding-based score that has shown greater correlation to human ratings.

Table 16 reports on the automated evaluation against the ground truth utterances.

We find that on both corpora and across all metrics except Diversity, incorporating

plans as an additional input to the realization phase helps achieve a higher score than
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having No Planner. From Table 16, we find that the realizer without any plans can

achieve higher diversity, but the difference is not statistically significant.

Human Evaluation

Since automated metrics are not the most informative indicators of the quality

of generated responses, thorough human evaluation is necessary. We investigate

if humans prefer the responses generated by the planner-based models over those

generated without the plan (No Planner). We conducted two human evaluation studies

by recruiting workers from Amazon Mechanical Turk service with strict quality control

criteria: workers should have at least 90% HIT approval rate and at least 1000

approved HITs. In each survey, workers are asked to evaluate responses on these

metrics, following Novikova et al. [155]: (i) Appropriateness: determines whether the

response aligns with the topic of the conversation and the input utterance. (ii) Quality:

determines the overall quality in terms of grammatical correctness, fluency, and

adequacy (iii) Usefulness: determines if the response is highly informative to generate

a response.

Table 17: Average ranking of realized output from four different planners, lower score
is better

Realizer Input
Appropri-
ateness

Quality
Useful-
ness

No Plan 2.54 2.61 2.58

Symbolic Planner 2.51 2.5 2.53

CTX Planner 2.34 2.38 2.38

PSA Planner 2.59 2.5 2.51

Study 1: We tasked 30 crowd-sourced workers to rank order the four model
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Figure 23: Comparison of ground truth reference with realized output from each model
that receives learned plans as input: Symbolic, CTX or PSA. Higher values (shown as
%) darker color represent better performance.

responses from best to worst. We randomly sampled 60 examples from the test set

with an even 50% split (30 examples each) between the Persuasion for Social Good

and AntiScam corpora. We chose the best to worst ranking mechanism since it has

shown greater consistency and agreement amongst workers on tasks related to dialogue

evaluation over other evaluation designs (e.g. Likert scales) [178, 90]. The presentation

order of model outputs for each question was again randomized to avoid learning

effects [140]. Table 17 demonstrates the average rank position (1=Best, 4=Worst)

obtained by each model. We find using the plans generated by the CTX planner

helps generate better responses. On the metrics of quality and usefulness, we find

that incorporating planning as additional input performs better than no plan (i.e.

end-to-end system).

Study 2: In this study, we evaluate how well the generated responses compare to the

ground truth. The ground truth references are those produced by humans in the PSG

and Anti-Scam corpora. We recruited 11 MTurk workers with the same crowdsourcing

quality controls as Study 1. For the same randomly sampled 60 examples from Study
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1, workers were asked if they prefer the ground-truth response, the response generated

from the three planners, or both, on the three chosen metrics. This study design is also

consistent with prior work [142]. Workers were blinded to the source of the response

(ground truth or generated) and were presented the responses in a randomized order

across all questions to avoid ordering effects.

Fig.23 shows the results (higher value/darker color is better): we find that responses

generated from the symbolic planner as input do not perform well when compared

to the ground truth. In other words, the proportion of time that the ground truth

response is preferred over that generated by the symbolic planner is significant (e.g.

53% vs. 26% on the Appropriateness metric overall).

We find that on all three metrics, the responses generated using CTX and PSA

plans help generate responses that are comparable to the responses produced by

humans (ground truth). We also find that the PSA planner-based responses perform

better overall and on the Persuasion for Social Good corpus. Surprisingly, the CTX

planner-based responses perform better than Ground Truth utterances for the Anti-

Scam corpus (45%, 48%, and 48% of the time preferable vs. ground truth response

35%, 37% and 37% on the three metrics, Appropriateness, Quality, and Usefulness,

resp.). We explain this unexpected finding in the next sub-section (Section 4.3).

Realization Phase Evaluation Findings: To summarize this evaluation sub-

section, we find that the Symbolic Planner-realized output outperforms the CTX,

PSA, and No Planner output on the automated metrics of BLEU and BERT-score.

Importantly, the CTX planner-realized output has a higher rank in terms of overall

preference in human evaluation than the other models (c.f. Table17). We also find
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Figure 24: Sample outputs from realization phase with all variations of planner input,
as well as the ground truth response from the corpus

that human-generated utterances (ground truth) are preferred overall (c.f Fig.23) than

the model outputs. We found inter-rater consistency and agreement scores to be >0.6

on average across the metrics (full tables are reported in the Appendix).

Figure 25: Summary table of issues found through a qualitative analysis of the planning
and realization phase outputs
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5.3.3 Qualitative Analysis

We conduct a qualitative evaluation of the outputs and present several cherry-

and lemon-picked examples here. Additional examples of success and failure cases

are uploaded in the Appendix. In the sample conversation shown in Figure24, we

find that realized outputs using CTX and PSA plans are more consistent with the

context of conversation than the symbolic planner approach. Additionally, the No

Planner output (an end-to-end system that does not get a plan as an additional input)

produces an utterance that may not necessarily continue the conversation further.

This example is also illustrative of the finding in Study 2 of the Planning Phase

evaluation, where the crowdsourced workers rated the automated planner-based

outputs better than the symbolic planner-based outputs (c.f. Fig.25). This might

seem contradictory, as the CTX and PSA planners are trained on the silver standard

data from the symbolic planner. We contend that this is due to the ability of automated

planners (CTX and PSA) to generalize, an ability lacking in the symbolic planner.

In such cases, as shown in Fig.24, the symbolic planner defaults to the RESPOND

message plan, and this leads to generated output: That is not an exact word, which is

generic and off-topic. The symbolic planner could be improved to cover more cases;

however, the effort would not be scalable.

While we find promising results for the automatically-generated planners in Sections

4.1 and 4.2, areas of improvement do exist (Table25):

Non-Informative Ask/Framing Targets: We find several examples where the

ask/framing targets are non-informative words (e.g. this, that). Non-informative
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targets can cause the downstream realization process to generate an utterance that

is, in turn, also non-informative. One example of such a case is shown in Row 1 of

Table25.

Wrong Type and Action: Another planning phase issue category is that the

constituents of plan representation (e.g., the ask/framing type and action) can be

incorrect. As illustrated by the example in Table25, an ask target of why got is incorrect.

Typically, we would expect to find a noun or a noun phrase as the ask/framing action

(e.g., your billing date and names as shown in the plan in Row 3).

Ignored Plan: In the Realization phase, a typical issue is that the realizer may

ignore the generated plan. As can be seen in Row 3 of Table25, the plan should

constrain the response, and thus should contain phrases such as finding your billing

date and names. However, the generated response is instead a generic phrase Okay,

thanks!.

Grammatical inconsistencies: We also note that there were cases where the

grammar, e.g. pronoun usage, is inconsistent. For the example shown in Row 4 of

Table25, we see that the generated response is They help with that. whereas the

conversation is between two persons; a generated response of I can help with that

would be more consistent with the context of the conversation.

5.4 Discussion

We address the task of natural language generation in open-ended dialogue systems.

We test our hypothesis that decoupling the generation process into planning and

realization can achieve better performance than an end-to-end approach.
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In the planning phase, we explore three methods to generate response plans, including

a Symbolic Planner and two learned planners, the Context Attention and Pseudo Self

Attention models. Through linguist expert evaluation, we are able to determine the

efficacy of the response plans towards realization. In the realization phase, we use the

Pseudo Self Attention model to make use of the learned response plans to generate

responses.

Our key finding through two separate human crowdsourced studies is

that decoupling realization, and planning phases outperforms an end-to-

end No Planner system across three metrics (Appropriateness, Quality,

and Usefulness).

In this work, we have taken an initial step towards the goal of replicating human

language generation processes. Thorough and rigorous evaluations are required to fully

support our claims, e.g., by including additional metrics and more diverse corpora. In

this work, we limit the types to GIVE, GAIN, LOSE, and PERFORM. However, we

do not restrict the ask action and target at all. Also, since our symbolic planner can

be used to obtain silver standard training data, straightforward changes like adding

additional lexicons would enable us to generalize to other corpora as well as include

additional ask types in our pipeline. Another natural extension would be to explore

training the planning and realization phases together in a hierarchical process [57].

This would, in principle, further validate the efficacy of our approach.
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CHAPTER 6: IMPACT OF EXPERIMENT DESIGN IN EVALUATION OF
DIALOGUE SYSTEMS

6.1 Introduction

A tremendous amount of recent research has focused on approaches towards generat-

ing responses for conversations in an open-domain setting [164, 226, 223]. An equally

challenging task for natural language generation systems is evaluating the quality of

the generated responses. Evaluation of generated output is typically conducted using a

combination of crowdsourced human judgments and automated metrics adopted from

machine translation and text summarization [123, 153]. However, studies conducted

by Liu et al.[123] and Novikova et al. [153] show that the automated metrics have

poor correlation with human judgments. Despite their shortcomings, automated

metrics like BLEU, ROUGE, and METEOR are used due to a lack of alternative

metrics. This puts a major imperative on obtaining high-quality crowdsourced human

judgments. Previous research which employs crowdsourced judgments has focused

on metrics including ease of answering, information flow and coherence [114, 50],

naturalness [4], interestingness [6, 179], fluency or readability [236], engagement [210].

While experiment designs primarily use Likert scales, Belz and Kow [17] argue that

discrete scales, such as the Likert scales, can be unintuitive and certain individuals

may avoid extreme values in their judgments. Prior research has also shown that use

of continuous scales is more viable for language evaluation [154, 18]. Such evidence
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places more emphasis on a careful study towards obtaining reliable and consistent

human ratings for dialogue evaluation.

To address this research problem, we perform a two-part human study that focuses on

a systematic comparison of four experimental conditions by incorporating continuous,

relative and ranking scales faining crowdsourced human judgments. In this initial

study, we evaluate the use of two metrics: Readability and Coherence . In the

study, we investigate the effects of cognitive biases, specifically anchoring bias, on

decision-making around evaluating chatbot output, we designed a 2X2 experiment

with 77 crowdsourced workers. We studied how anchors (both numerical and textual)

and the presentation order of rating tasks affect the consistency of human judgments.

Our key findings are:

1. Use of Likert scales results in the lowest inter-rater consistency and agreement

when compared to other experiment conditions

2. Use of continuous scales results in higher inter-rater consistency and agreement

3. Raters who have no prior experience in evaluating dialogue system output have

greater inter-rater consistency and agreement than do those who have previously

participated in such rating tasks.

4. We find systematic effects of anchoring in the magnitude of participants’ ratings:

participants who are presented with an anchor will provide a rating that is closer

to the anchor value than those who are not presented with an anchor.

5. We find systematic effects of anchoring in the consistency of participants’
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ratings: participants who are presented with an anchor will be (generally) more

consistent in their ratings than those who are not presented with an anchor.

6. We find that interpretation of metrics affects consistency: participants were more

consistent with their ratings on Readability than in their ratings on Coherence,

potentially because the interpretation of Coherence is more subjective than

Readability.

Our findings have the potential to help the research community in the design of

their evaluation tasks to obtain higher quality human judgments for natural language

generation output.

6.2 Data and Models

To obtain ratings on conversational agent output, we trained three models from

scratch to generate responses. Code for these models was made available by Dziri et

al. [50] (https://github.com/nouhadziri/THRED). We first describe the corpus we

used to train the models.

Corpus

We used the Reddit Conversational Corpus made available by Dziri et al. [50]. This

corpus consists of conversations obtained from 95 different subreddits, curated out

of 1.1M subreddits. The date range is 20 months from November 2016 until August

2018. Table 18 shows overall descriptive statistics of the corpus, where the average

length of utterances is consistent across the Training, Validation, and Test sets.
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Table 18: Descriptive statistics of the corpus used in our experiments.

Train Valid. Test

Dialogues 9.2M 500K 400K

Avg. Length of Utterances 13.98 13.98 13.99

6.2.1 Models

All three models used in our experiments are based on seq2seq approaches that

contain an encoder and decoder component. Seq2seq approaches are commonly used

in language generation tasks, such as machine translation and dialogue generation.

For dialogue generation, the encoder receives the input sequence X = x1, x2, ...., xn

as input. Each input sequence is passed through an LSTM [69] on the encoder side

which produces a hidden state representation (Eq 17.)

henct = f(henct−1, xt). (17)

where henct−1 represents the previous hidden state and f represents a non-linear activation

function. The decoder uses the last hidden state of the encoder as the initial state

and output tokens are conditioned on the input (Eq 18.) where yt−1 represents the

ground truth input into the decoder.

sdect = f(sdect−1, yt−1) (18)

1. Seq2Seq: Our first model is a traditional seq2seq model with attention mech-

anism. We use the attention mechanism proposed by Bahdanau et al. [7].

Attention assists the decoder to attend to different parts of the input while

generating the response. The decoder produces a context vector ct at each time
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step by attending to the encoder hidden state henct along with the last hidden of

the decoder st−1 (represented through Eq 19.) where α represents the relative

importance on the input side. The output from the model yt is produced through

a softmax function (Eq 20.).

ci =
n∑

i=1

αih
enc
i

αi =
exp(ei)∑n
j=1 exp(ej)

ei = f(st−1, hi)

(19)

yt = softmax(yt−1, st, ct) (20)

2. HRED: Our second model uses Hierarchical Encoder-Decoder [187] archi-

tecture. This model is an advancement over traditional seq2seq models. HRED

overcomes the bottlenecks of traditional seq2seq models by capturing longer

context from dialogue histories. HRED model introduces a two-level hierarchy

to capture long term context. The first layer is called the utterance layer that

captures the meaning of each sentence, similar to traditional seq2seq models. It

further encodes the hidden states of the utterance layer to the inter-utterance

layers that capture the context and input information [205].

3. THRED: Our last model is the Topic Augmented Hierarchical Encoder-

Decoder [50]. This model uses topic words along with a hierarchical encoder-

decoder to produce a response. The topic words were obtained using a pre-trained

LDA model [71]. This model also makes use of the attention mechanism on the

context along with the topic words from the input sequence.
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6.3 Metrics

For this initial study, we focus on two metrics, readability and coherence. These

metrics are among those essential to evaluate the quality of generated responses

[153, 49]. We describe an automated method to compute each metric.

Readability or Fluency measures the linguistic quality of text and helps quantify

the difficulty of understanding the text for a reader [61, 153]. We use the Flesch

Reading Ease (FRE) [88] that counts the number of words, syllables, and sentences

in the text.11 Higher readability scores indicate that utterance is easier to read and

comprehend.

Coherence measures the ability of the dialogue system to produce responses

consistent with the topic of conversation [210]. To calculate coherence, we use the

method proposed by Dziri et al. [50]. This metric computes the cosine similarity on

embedding vectors of generated response and target while accounting for dull and

generic responses through a penalty factor.

To overcome the issue of dull and generic responses, Dziri et al. [50] induce a

penalty factor which takes into account

P = 1 + log
2 + L′

2 + L′′
(21)

where L′ indicates the length of response after dropping stop words and punctuation

and L′′ indicates the length of non-dull parts of the response after dropping stop words.

11https://bit.ly/1IZ0FG4
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The penalized semantic similarity (SS) score is then calculated as:

SS(utti,j, respi) = P × (1− cos(utti,j, respi) (22)

where i represents the index of the dialogue in the dataset and j denotes index of the

utterance in the conversation history.

6.4 Experiment Designs

6.4.1 Study 1

In study1, we use three well-known question types of Likert Scale, Magnitude

Estimation, and Best-Worst Ranking. We chose these question types to investigate

as these are commonly used across various language evaluation tasks [18, 4, 154, 90].

With the help of these three types of questions, we design four rating procedures that

are explained below.

Likert Scale (LS): is typically used in experiments for crowdsourcing human

evaluation of dialogue systems [4, 127]. In our experiment, we ask the raters to rate

the generated responses on a 6-point scale, following Novikova et al. [154] (where 1 is

the lowest and 6 is the highest on the metrics of readability and coherence).

Rank-Based Magnitude Estimation (RME): Prior research by Belz and Kow

[18] demonstrates through six separate experiments that continuous scales are more

viable and offer distinct advantages over discrete scales in evaluation tasks. Recently,

Novikova et al. [154] adopted magnitude estimation by providing the rater with a

standard value for a reference sentence to evaluate output from goal-oriented systems.

Following Novikova et al. [154], we also set the value of the standard (reference
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utterance) as 100 since the reference utterance was produced by humans and is

considered as gold-standard. The crowd-sourced workers are asked to provide a score

relative to 100 (from 0 to 999) for three system-generated outputs.

Biased Magnitude Estimation (BME): Our third experiment design is biased

magnitude estimation (BME). The main difference between RME and BME method

is that the standard value we provide for the reference utterance is not uniformly set

to 100 for all examples, but instead calculated by automated methods (explained in

Section 6.3). Our motivation to do so is to understand if anchoring bias may affect

the ratings when judgments are made relative to a fixed value (100) or relative to

a value calculated by automated means. Anchoring bias is the tendency to rely too

heavily on one piece of information offered (the “anchor”, in this case, the number

100) when making decisions [81].

Best-Worst Scaling (BWS): Our last experiment condition is best-worst scaling

(BWS) in which raters are asked to rank the generated responses in order of best to

worst on both metrics (readability and coherence). This approach has previously been

used to estimate emotion intensity and has been demonstrated to produce high quality

and consistent judgments from humans [90].

Each task includes 50 randomly sampled conversations from the test set in our

corpus along with generated responses from the three models and the ground truth

(reference utterance). For each task, we collected ratings from 40 workers with Master

qualifications through Amazon Mechanical Turk.
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Figure 26: Sample screen showing variations in the experiment conditions. (A)
represents the conversational context that is shown across all conditions. (B) is the
numerical and textual anchor presented to participants in anchoring conditions. (B’)
shows the screenshot of conditions where no anchor is presented. (C) is used in Setup
1 where both questions of readability and coherence ratings are shown together. (C’)
is used in Setup 2 where the readability and coherence are treated as individual tasks
and only one is shown at a time to the participant.

6.4.2 Study 2

To study the impact of cognitive biases, we design four experiment conditions, namely

Anchor: With or Without Anchor and Presentation Order: Both Questions or

Single Question (on a single screen). Table 19 shows the four different experimental

conditions in our experiment design, while Figure 26 shows two sample screenshots

from the study interface.

Table 19: 2X2 experiment design with four experiment conditions and number of
participants across each condition

No Anchor Anchor

Both Questions (Setup 1) 18 22

Single Question (Setup 2) 18 19

As shown in Figure 26, participants across all experiment conditions are shown

the Conversation Context (A). Participants in the Anchor conditions are shown the
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Standard Response and the Readability and Coherence value of the Standard Response

(set to 100 in this study, following prior work is done by [154]); together these form

the Numerical and Textual Anchor (B) (Figure 26-left). Participants in the No

Anchor condition are shown neither the Standard Response nor the Readability and

Coherence value of the standard response (B’) (Figure 26-right). Participants in the

Both Questions (Setup 1) condition are asked to input their ratings of Readability

and Coherence on a single screen (C) (as shown in Figure 26-left). Participants in

the Single Question condition (Setup 2) are asked to input their ratings on a single

metric on a single screen (as shown Figure 26-right (C’) for Readability), and then

input their ratings on the Coherence metric on the next screen when they click the

next button (not shown).

Figure 27: The experiment flow for each crowd-sourced worker taking part in this
study.

Figure 27 provides the flow of steps taken by workers in the experiment, beginning
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with the informed consent procedure and pre-questionnaire, followed by the task of

evaluating 50 sets of outputs on two metrics of Readability and Coherence and ending

with the post-questionnaire. In the pre-questionnaire, we asked two questions about

the prior experience of workers: (Q1) Have you taken part in previous studies involve

evaluating conversational responses? and (Q2) Have you taken part in previous studies

that involve talking to a chatbot? Our motivation behind asking these questions is

to understand if prior experience participating in similar studies affects inter-rater

consistency. In the post-questionnaire, we obtain participant demographics including

their age, gender, race, and education. We also ask them if they find it preferable

to provide ratings as magnitude estimation questions or on Likert scales. Also, we

obtain their free-form responses on which metrics they would consider important

for evaluating conversational agent output. These post-questionnaire questions are

designed to obtain qualitative data to better inform our future studies.

6.5 Experiment Results

We organize our findings along with five main research questions (RQs) outlined in

this section. In the following section, we report on statistical significance using two-

way ANOVAs on the between-subject ratings across the four experiment conditions

(Tables 20– 26).

RQ1: What is the effect of experiment design on the reliability on human

ratings? We use intra-class correlation (ICC) to measure the reliability across

multiple raters [193, 102]. To compare the scores obtained from magnitude estimation

experiments to the ratings from the task using discrete Likert scales, we perform a
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Table 20: ICC scores on the metrics of readability and coherence for each experiment
design. All values are statistically significant p-value<0.001 except those indicated by
†. n=40 for all four designs.

Likert RME BME BWS

ICC-C
Readability 0.75 0.95† 0.83 0.75

Coherence 0.83 0.92 0.81 0.80

ICC-A
Readability 0.59 0.95† 0.83 0.75

Coherence 0.77 0.92 0.81 0.80

normalization of the magnitude estimation scores on a logarithmic scale as suggested

by Bard et al. [11].

Table 20 represents the ICC scores on consistency (ICC-C) and agreement (ICC-A)

for our four experiment tasks. We observe that the use of Magnitude Estimation with

anchors (RME or BME) results in more reliable ratings than using the Likert Scale

or using Best-Worst ranking (BWS). This result is consistent with prior research by

Novikova et al. [154] and Belz and Kow [18].

Further, we find that a possible explanation for magnitude estimation to achieve

high ICC scores might be due to anchoring bias. Figure 28 provides the mean

and bootstrapped confidence interval (95%) of the responses across the experiment

conditions. In Setup 1, we find that participants with no anchor produce ratings

(M = 58.92) that are significantly lower than ratings provided by participants in

anchor condition (M = 72.94). We find a similar pattern across Setup 2 with no

anchor, resulting in a mean rating of 61.25, while ratings in anchor condition responses

have a mean of 69.02. We analyze the ratings on Readability and Coherence separately

(Figure 29): the presence of numerical and textual anchors results in higher (on

average) ratings than the absence of the anchor (statistically significant with p<0.001).
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Figure 28: Mean of the responses bootstrapped with 95% confidence intervals across
setups 1 and setup 2

Figure 29 presents ratings for the metrics of readability and coherence separately.

We find that across both setups, the difference between the anchor and no anchor

conditions to be larger for the metrics of readability than coherence (statistically

significant with p<0.001). We find that in Setup 1, readability values have a mean of

83.13 in the anchor condition, and in no anchor condition the mean of the responses

drop down to 64.97. Also in Setup 1, we find that for coherence metric, the mean of

responses in the anchoring condition is M=62.74 and without anchor M=52.89. We

find similar trends in the responses provided in Setup 2 for both metrics of readability

and coherence.

RQ2: Does time taken to complete the survey influence reliability of the

rankings? To analyze RQ2, we calculated the total time spent by each participant

from the start to the end of the experiment. We found that the BME task had the
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Figure 29: Mean of the responses bootstrapped with 95% confidence intervals across
Setups 1 and 2 on the metrics of Readability and Coherence.

longest average time to completion (43 minutes), followed by RME (42.8 minutes) and

Likert scale (33 minutes; Best-Worst ranking had the shortest average completion time

(32.5 minutes). We then test the hypothesis that raters who spent longer than average

time on the task would be more reliable in their ratings than those who completed

in less than average time. Table 21 represents the ICC scores for raters who spent

higher than average time for the task, while Table 22 represents scores for raters who

spent less than average time. Surprisingly, we find that consistency and agreement

among raters who spend less than average time is higher than those who spend more

time, for the Likert, BME, or BWS experiment designs. When using the RME design,
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raters who spend more time have higher consistency and agreement.

Table 21: ICC scores when participants spend above average time. All values in
this table are statistically significant with p-value<0.001

Likert
(n=15)

RME
(n=16)

BME
(n=15)

BWS
(n=16)

ICC-C
Readability 0.58 0.93 0.51 0.62

Coherence 0.74 0.85 0.55 0.64

ICC-A
Readability 0.52 0.93 0.51 0.62

Coherence 0.69 0.86 0.56 0.64

Table 22: ICC scores when participants spend below average time. All values in
this table are statistically significant with p-value<0.001

Likert
(n=25)

RME
(n=24)

BME
(n=25)

BWS
(n=24)

ICC-C
Readability 0.61 0.88 0.81 0.65

Coherence 0.66 0.85 0.75 0.76

ICC-A
Readability 0.36 0.88 0.81 0.66

Coherence 0.55 0.85 0.75 0.76

From Study 2, we find that In Setup 1, in the above-average group, the mean of

responses in no anchor condition was 39.65 and the mean of the responses in anchor

condition was 72.35. We find similar evidence in Setup 2 with people in anchor

condition provide higher values (83) close to the numerical anchor (100). (see 30)

RQ3: Does the prior experience of evaluating dialogue system output or

engaging with conversational agents affect the reliability of rankings? We

asked each rater two additional questions at the end of the task. The questions asked

raters to indicate whether or not they had prior experience taking part in studies (a)

to evaluate dialogue system output, and (b) to engage with a conversational agent.
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Figure 30: Mean of the responses bootstrapped with 95% confidence intervals across
Setups 1 and 2 based on amount of time spent on study.

Tables 23 and 24 show how reliable the ratings from the participants based on their

prior experience of taking part in studies about evaluating conversational response.

We find that participants who have not taken part in prior studies are more consistent

and have a higher agreement score than a participant who has prior experience. These

results are also validated by Tables 25 and 26 which shows that participants with

no prior experience of engaging with conversational agents are more consistent and

reliable.

Figure 31 demonstrates the impact of the prior experience of evaluating conversa-

tional responses (Question 1 on the pre-questionnaire) on the magnitude of ratings.
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Table 23: ICC scores when participants have prior experience evaluating dialogue
system output. All values statistically significant at p-value<0.001.

Likert
(n=15)

RME
(n=7)

BME
(n=18)

BWS
(n=13)

ICC-C
Readability 0.45 0.37 0.51 0.54

Coherence 0.38 0.48 0.55 0.63

ICC-A
Readability 0.35 0.38 0.52 0.55

Coherence 0.32 0.49 0.55 0.63

Table 24: ICC scores when participants do not have prior experience evaluating
dialogue system output. All values statistically significant at p-value<0.001 except
those indicated by †.

Likert
(n=25)

RME
(n=33)

BME
(n=22)

BWS
(n=27)

ICC-C
Readability 0.71 0.95† 0.83 0.70

Coherence 0.82 0.92 0.76 0.72

ICC-A
Readability 0.50 0.95† 0.83 0.70

Coherence 0.75 0.92 0.77 0.72

We find contrasting responses across both setups. In Setup 1, we find that people

with prior experience in the anchor condition produce higher responses (M=74.41)

close to the numerical anchor (100) and no anchor condition produces lower values

(M=38.36) whilst people with no prior experience are similar in their responses across

both conditions. In comparison to Setup 1, we find that in Setup 2 participants with

no prior experience produce higher responses in the anchor condition (M=71.45) and

no anchor condition (M=63.74).

Figure 32 shows the impact of prior experience of interacting with chatbots. Partic-

ipants who have such prior experience demonstrated signs of anchoring. We find that

mean of responses (M=80.40) for participants with prior experience in the anchor con-
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Table 25: ICC scores when participants have prior experience engaging with conver-
sational agents. All values statistically significant at p-value<0.001.

Likert
(n=18)

RME
(n=11)

BME
(n=23)

BWS
(n=18)

ICC-C
Readability 0.46 0.69 0.60 0.57

Coherence 0.44 0.65 0.62 0.67

ICC-A
Readability 0.37 0.69 0.61 0.57

Coherence 0.38 0.65 0.62 0.67

Table 26: ICC scores when participants do not have prior experience engaging with
conversational agents. All values statistically significant at p-value<0.001 except those
indicated by †.

Likert
(n=22)

RME
(n=29)

BME
(n=17)

BWS
(n=22)

ICC-C
Readability 0.70 0.95† 0.84 0.67

Coherence 0.82 0.91 0.76 0.68

ICC-A
Readability 0.48 0.95† 0.84 0.67

Coherence 0.75 0.91 0.76 0.68

dition to be significantly higher (p < 0.001) than participants in no anchor condition

(M=48.01) in Setup 1.

When comparing against Setup 1, we find that people in Setup 2 with no prior

experience produce higher responses (M=70.74) in the anchoring condition than in

the no anchor condition (M=63.12).

These findings substantiate the hypothesis that people with prior experience (an-

swered Yes on Questions 1 and 2) would be more susceptible to the anchoring effect

than those who do not have prior experience with similar tasks, however this effect

is only seen in Setup 1, while Setup 2 demonstrates the opposite effect. We find this

evidence to be particularly interesting and plan to further investigate the potential
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Figure 31: Mean of the responses bootstrapped with 95% confidence intervals across
setups 1 and setup 2 based on prior experience of being involved studies about
evaluating conversations.

of eliciting ratings on different metrics as separate tasks (Setup 2) as a means of

mitigating the anchoring bias effect.

RQ4: How well do automated methods to calculate readability and co-

herence correlate with human ratings? We report on the correlation between

readability and coherence scores that are calculated using automated methods (out-

lined in Section 6.3) with the human ratings in Table 27. Readability scores were

computed using the Flesh Reading Ease [88] and coherence scores were computed

based on the method proposed by Dziri et al. [50]. We observe that the automated
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Figure 32: Mean of the responses bootstrapped with 95% confidence intervals across
setups 1 and setup 2 based on prior experience of being involved studies about talking
to chatbot.

metrics for Readability [88] and Semantic Similarity [50] show low correlation to

human judgments ratings.

Table 27: Spearman correlation between the ratings obtained from the automated
metrics to human ratings.

Likert RME BME BWS

Automated Metric

Readability 0.26 -0.11 -0.12 -0.06

Coherence -0.12 -0.13 -0.11 0.01

RQ5: Is there any correlation between ratings of readability and coher-
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ence for each of the four experiment conditions? To evaluate whether there is

any correlation between the ratings obtained for readability and coherence through

of four experimental designs, we report the Spearman correlation values in Table 28.

We find that there is a high correlation between the human ratings of readability and

coherence obtained through RME and BME (statistically significant). One likely factor

affecting correlation may be anchoring bias towards the fixed value of the standard

utterance provided in RME (100) and reference value provided in BME. We aim to

investigate this further in future work.

Table 28: Spearman correlation between the ratings of readability and coherence
obtained on four different experiment designs. *** p-value<0.001

Likert RME BME BWS

Readability

Coherence 0.1 0.79*** 0.77*** 0.5***

6.6 Discussion

In this chapter, we present our work on designing a systematic experiment with four

experiment conditions to evaluate the output of dialogue systems. Different from prior

work where a similar study was conducted with output from goal-oriented systems

[154], our study focuses on evaluating output in open-domain situations. Consistent

with prior findings, metrics calculated using automated methods [49] were found to

have a negative correlation with human judgments (c.f. Table 27). This finding points

to the need for more effective automated metrics.

We find that the use of continuous scales to obtain crowdsourced ratings provides

more consistent and reliable ratings than ratings obtained through Likert scales or
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Best-Worst scaling. This finding is consistent with prior work conducted by Novikova

et al. [154]. Novel in our study was the testing of the Best-Worst scaling method

to evaluate responses against one another. Although the Best-Worst scaling method

is effective in obtaining crowdsourced ratings of emotions [90], we did not find it to

be effective in this study. We aim to investigate further whether this finding can be

reproduced in a different experiment.

Further, we were able to identify the effects of time taken to complete the task on

rating reliability. We find that workers who spent less than average time on the task

had higher consistency (for the Likert, BME, and BWS experiment conditions) than

did the workers who spent more than average time. This finding is counter-intuitive, we

expect that spending more time would positively impact inter-rater consistency. Our

first step in the analysis of the effects of time taken on reliability included analyzing

data from workers who spent more or less than average time, which offers admittedly

a limited perspective; an interesting next step would be to more thoroughly study the

effects of time taken on reliability by taking into account the full distribution of the

time spent data.

We also find that lack of prior experience of evaluating open-domain dialogue

system output results in more reliable ratings. One potential explanation for this

could be that workers may have pre-conceived notions based on their experience. One

limitation of our current study is that although we had output from three separate

models, we conducted the study using data from one corpus. Reproducing our findings

across additional corpora, additional metrics and other experiment designs would help

substantiate these findings further. An analysis of the interaction effects between
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independent variables such as time is taken and prior experience would also help

strengthen the findings of our study.

By using a larger sample size (n=40), we are able to make claims about statistical

significance across experimental conditions. In future work, we plan to evaluate the

impact of cognitive biases such as anchoring and confirmation bias in-depth and how

it affects consistency and reliability along with testing continuous scale ratings with

no reference value.



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

With the development of large-scale transformer models, the field of conversational

AI has also made significant progress by having the capability to produce grammatical

and fluent generations. However, even with these advancements state of the art models

suffers from context and factual inconsistencies along with the issue of hallucination.

These issues prevent conversational AI from achieving its true potential and being

deployed in products. To address the issue of contextual inconsistencies, we have

proposed planning with a generation framework to decouple the end-to-end frameworks.

First, through the planning component that understands the intent and reasoning

behind a message and can be combined with a dialog manager to strategize the

next response plan to make it effective and increase engagement. The response plan

generated by the planner component is used by the generation component to produce

a more constrained response. We found that the proposed decoupling approach

performs better than an end-to-end approach by producing a more on-

topic and constrained response to the context of the conversation.

However, this proposed framework makes use of the last turn of conversation without

making use of the rest of the conversation history. To make better use of conversation

history, cognitive architectures provide structures of memory that can be used to

augment existing frameworks to provide more accurate response plans. Memory plays

a crucial role in human cognition that allows us to encode information to be retrieved



140

later for other tasks. Similarly, in conversational AI systems, memory can be used to

store conversational history that can be used as needed to produce better responses. As

a preliminary approach, we proposed a cognitive architecture adopted framework called

the “CMA Model” that had a declarative long-term memory and working memory

working in conjunction with an encoder-decoder framework. We proposed a new type

of action selection mechanism that operates between declarative long-term memory

and working memory to help enhance conversational agents. In our work, we showed

that our action selection mechanism outperforms the current state-of-the-

art approach in identifying salient contextual utterances from the dialog

history. In the future, I want to adopt the memory structure of cognitive architectures

to transformer-based models to help navigate issues surrounding contextual consistency.

Further, memory structures can play an important role in trying to reduce hallucina-

tions and factual inconsistencies in responses produced by conversational agents that

use these transformer models. Transformer models implicitly store the knowledge in

the weights that often comprise billions of parameters. Even with the stored implicit

knowledge, these models produce statements that are incorrect by mixing up facts

about a particular entity [194]. To make progress in the area of factual consistency,

integrating long-term memory (declarative) with transformer models could help reduce

hallucinations. More recently, in the area of open domain question answering, new

approaches such as RAG[108], DPR[82], REALM[68] have been proposed that are

capable of retrieving relevant knowledge from large knowledge bases. These retrieval

mechanisms provide an opportunity to use the entire conversation history as the

query to retrieve multiple pieces of relevant knowledge that can be operated upon
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as needed and stored in the declarative long-term memory using our action selection

bridge approach. I studied the effectiveness of these neural retrievers and combining

them with the transformer models to study their effect on hallucination and factual

consistency. We found that: 1. neural retrievers have a significant impact

on the model’s ability to produce factually valid and accurate statements;

2. Delayed beam search produces more factually accurate responses from

the models compared to nucleus sampling and beam search; 3. factual

inconsistent statements can be alleviated using a fact-consistency detec-

tor. In the future, I plan to study approaches that can be combined with memory

architectures to make better use of context in conjunction with retrieved knowledge.

Further directions of research include designing better retrieval approaches that are

capable of reasoning over multiple pages or documents.

Apart from the focus on architectures that build better conversational state-of-

the-art systems, there also needs to have a focus on evaluating the performance of

these models. Prior research has shown that evaluation of NLG systems including

conversational AI systems is a pretty difficult task and the currently available auto-

mated metrics don’t do a good job at comprehensively analyzing the performance

of the system. The alternative strategy to evaluate an NLG system is to perform

a human evaluation. However, human evaluation of NLG systems is riddled with

issues such as (1) Human ratings suffer from consistency and reliability; (2) Over

the last twenty years, multiple definitions and multiple terms have been introduced

for the same task [77]. In our work, we tackled the issue of consistency and reliabil-

ity of human ratings by studying the impact of different experimental designs and
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the impact of external factors such as prior experience and time taken. We found

that Magnitude Estimation design achieves the best consistency and relia-

bility when compared to Likert Scale and Ranking approaches. However,

further careful examination showed that a possible factor for Magnitude

Estimation to outperform other experiment designs might be due to the

presence of anchoring bias, a form of cognitive bias. In the future, I plan to

work further on studying human evaluation procedures and understanding human

decision-making when it comes to evaluation. Moving in this direction, allows the

community to gather insights into the evaluation process and these insights can be

used to develop new automated metrics that might show better correlation to the

human ratings.
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[153] J. Novikova, O. Dušek, A. Cercas Curry, and V. Rieser. Why we need new
evaluation metrics for NLG. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pages 2241–2252, Copenhagen,
Denmark, Sept. 2017. Association for Computational Linguistics.
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