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ABSTRACT

EVAN UNMANN. Performance analytics of graph algorithms using intel optane dc
persistent memory. (Under the direction of DR. ERIK SAULE)

The increased size of data sets is driving the need for increased memory storage and

speed. Persistent memory, PMEM, has emerged as a new solution to the problem. It

places itself in between main memory and storage in the memory hierarchy. PMEM

offers the ability to increase the amount of addressable memory or the use of dynamic

random access memory, DRAM, as a hardware managed cache with PMEM acting as

main memory for the machine. In both cases, it becomes paramount to understand

the strengths and weaknesses of PMEM. As PMEM is different hardware from DRAM,

it has different performance which implies that code written for DRAM might not be

optimized for PMEM. This manuscript delves into the performance metrics of PMEM

to determine its effectiveness for standard graph algorithms. It also will serve as a

guideline as to how to optimally use PMEM and when PMEM becomes advantageous

to use.

To overcome the physical storage limits of memory, solutions such as distributed

computing and out-of-core computing arose. Distributed computing allows multiple

nodes of a computing cluster to compute and communicate in parallel. The disadvan-

tage of this approach becomes the communication overhead between nodes. Out-of-

core computing adds layers of slower memory closer to the node to avoid distributed

computing. The additional memory typically comes in the form of hard drives or

solid-state drives, SSD. Because of how programs interact with drives, code needs

to be rewritten to take advantage of this approach, including accessing the mem-

ory, reordering the data in a more efficient read order, and localizing computations

to minimize reading from drives. PMEM offers the first solution in which current

programs can fully utilize the memory with little to no changes in code. This of-
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fers a plug-and-play solution where distributed computing and out-of-core computing

cannot.

This manuscript measures the performance of PMEM by running benchmarks to

measure bandwidth, latency, and graph algorithm performance. Each benchmark is

ran on PMEM and DRAM to compare against each other. The graphs selected for

benchmarking are a combination of real-world graphs. Results shows that PMEM

can be utilized to achieve performance comparable to DRAM.
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CHAPTER 1: INTRODUCTION

In current times, there is an abundance of data. It seems there is an infinite

amount of ways to gather information, form it into a data structure, and analyze it.

As this continues, it generates an overwhelming need to compute optimally and at

large scale. Typically, distributed memory systems are used to solve these problems.

Each machine starts with a partition of data, and then sends and receives information

as needed until the solution is found. In theory, adding more machines increases the

parallelism, thus reducing the overall time of the computation. In practicality, most

systems and algorithms do not scale well and are limited by a requirement, such as

cost or space. So in an effort to both optimize computation and practical means,

specialized hardware is created. This manuscript examines a new form of memory

hardware named persistent memory, PMEM.

For many large scale computations, distributed memory architecture is required, as

the entire data set cannot fit onto one machine. This allows the use of multiple nodes

to compute in parallel. However, the major disadvantage of this approach is when the

nodes need to communicate. For example, if a node needs data in which it does not

have, but another node does, it needs to stall until it can ask and retrieve the data.

Additionally, the bandwidth between nodes is low, so the system scales negatively with

how much communication is required. Furthermore, programs need to be designed to

take full advantage of distributed computing, so scaling from a single node to multiple

nodes requires large amounts of effort. Another solution for data not being able to fit

into main memory is out-of-core computing. With this solution, an additional layer of

storage is added that can store all of the data. In this way, there can be a single node

so all communication overhead from distributed computing is removed. This solution
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can offer performance exceeding distributed systems. A drawback of this approach is

the effort required to get that performance. For out-of-core computing, the additional

layer of storage is typically a hard drive or SSD, which are typically slow. Accessing

memory from these drives requires communication with the operating system, so

incorporating this method would require dramatic restructuring of code. This often

includes a layer of abstraction where parts of the graph are cached by software in

main memory. Furthermore, to gain the performance, the data must be structured

in such a way to minimize accesses to the drive. This requires preprocessing of the

data.

PMEM inserts itself into the memory hierarchy in between main memory and

storage. It offers a unique combination of acting similar to main memory and storage

in that it can be directly addressable and also persist data between power cycles. It

can be setup as main memory and used without any other changes to the machine.

Also, it can be setup as an extension of main memory, where a simple library is

used to allocate memory for use exactly like allocating memory using mmap. In this

method, the memory would persist and is accessible for later use.

Another major benefit of using PMEM is cost. In distributed systems, each node

is an entire computer which is expensive. Reducing the number of nodes significantly

reduces costs in terms of initial costs and maintenance. For example, if each node has

1.5TB of main memory, then 4 machines are required to compute in parallel on 6TB

of data. A single machine with PMEM can have 6TB of main memory, so the cluster

of 4 nodes can be reduced to a single node. This completely removes the costs of 3

nodes. Additionally, PMEM does not require power to keep state, meaning it does

not require a refresh like volatile DRAM. This can lead to power efficient storage of

the data in main memory, reducing maintenance costs. Even if PMEM cannot fit

the data into a single machine, it can still reduce the number of nodes required for

distributed computing.
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Graph algorithms were chosen specifically because of their access pattern nature,

varying sizes, distinct characteristics, and wide-spread use. Graph algorithms tend

to hop from vertex to vertex by edges. For the machine, this creates non-sequential

memory accesses, which stresses memory performance. However, for a benchmark, it

helps to test the latency of the memory. Some graph algorithms perform operations

per vertex, creating sequential memory accesses and effectively computing a sparse

matrix-matrix multiplication, SpMM, or sparse matrix-vector multiplication, SpMV.

In this case, it helps to benchmark bandwidth. In both cases, benchmarking against

those algorithms gives a general idea of how the memory will perform in real world sit-

uations. Distributed memory solutions for large scale graph algorithms see dramatic

decrease in performance when scaled from shared memory to distributed memory

systems. Since access patterns in graph algorithms are typically not sequential but

disordered, significant communication between machines is required. That overhead

causes the dramatic decrease in performance. The two graph algorithms chosen are

PageRank and breadth-first search, BFS.

1.1 Related Works

An evaluation of PMEM on data structure primitives showed that common data

structures code needed to be tweaked to perform well on PMEM [1]. They concluded

that there is not a design that is universally great, but application specific designs can

perform well. Furthermore, they found that certain operations tend to be expensive

and should be avoided, such as PMEM allocation and persist transactions. In terms

of algorithm design, much of the typical DRAM guidelines are suggested for PMEM,

like locality.

A study of PMEM was conducted [2]. It includes an exhaustive study into PMEM,

measuring latency, bandwidth, and database performance in both Memory Mode and

App Direct Mode. The research shows that using PMEM instead of SSDs signifi-

cantly increases performance. Also, it shows using PMEM as main memory shows no
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sign of degradation until the DRAM cache misses become frequent. Performance of

App Direct Mode was comparable to DRAM performance. They observe that "the

major performance difference between Optane DC memory and previous storage me-

dia means that software modifications at the application level may reap significant

performance benefits" [2].

An evaluation of PMEM for graph applications using Memory Mode was conducted

[3]. It showed that PMEM can outperform distributed systems on large graphs. The

geometric mean of speedup over the distributed system was 1.7x. Furthermore, the

paper showed using PMEM as an out-of-core solution was significantly slower than

using PMEM in Memory Mode.

A metric to determine the scalability of distributed systems was developed [4]. The

metric offered insight for when a distributed system actually becomes more useful,

after considering the overhead the system introduces. The paper continues to show

that some modern distributed systems must have a significant amount of cores before

it becomes effective. And for some configurations, the distributed system will always

under perform.

Research into out-of-core computing found that integrating larger but slower mem-

ory closer to the node can significantly reduce performance bottlenecks in large dis-

tributed memory systems [5]. Some algorithms are bound by the performance of

memory, the CPU cores wait idle for data to arrive. In these cases, reducing the

amount of idle time is key to increase performance. Since PMEM offers the unique

feature of increasing addressable memory, it is possible to store more data closer to

the CPU.

GraphChi [6], a disk-based system for efficiently computing on graphs, further

exemplifies the efficacy of keeping data local instead of distributed computing. The

results showed that a large graph with billions of edges can be efficiently computed

upon on a single machine. Again, since the graph can be stored entirely on disk, the
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overhead of distributed computing is completely removed.

Locality and accessibility of data are crucial components of a machine’s capability

to achieve high performance. As the research shows, moving data closer to the CPU

removes additional overhead while also simplifying the overall architecture. From

these studies, it makes PMEM a viable consideration for aiding this cause.

1.2 Problem Statement

The foremost objective of this manuscript is to understand how to effectively use

PMEM. The goal is to create benchmarks capable of measuring critical attributes

of the memory, such as bandwidth and latency. Additionally, benchmarks running

standard graph algorithms will provide insight on how the memory performs against

real-world graphs.

1.3 Intel Optane DC Persistent Memory

Intel Optane DC Peristent memory takes the form of dual in-line memory module,

DIMM. It adheres to the Double Data Rate 4, DDR4, physical module specification.

It is a form of non-volatile memory, so data persists between power cycles and data

storage does not require power. The memory was designed with the intention of being

used with 2nd Generation Intel Xeon Scalable processors. Each socketed CPU can

have up to 6 modules for a maximum of 3TiB of PMEM.

There are two modes which PMEM can operate in; App Direct Mode and Memory

Mode. In App Direct Mode, PMEM is mounted like a drive. It can be accessed

similarly to memory mapping to a file. Once opened, the memory is returned as a

raw pointer to memory and can be operated on exactly like normal DRAM mem-

ory. Writes to PMEM are persisted, but to ensure persistence, a transactional pro-

gramming paradigm must be followed. The transactions add overhead to writing to

PMEM. AES 256 bit hardware encryption is used for security. "The encryption key is

stored in a security metadata region on the module and is only accessible by the Intel
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Optane DC persistent memory controller. If repurposing or discarding the module, a

secure cryptographic erase and DIMM over-write is utilized to keep data form being

accessed [7]".

In Memory Mode, PMEM is used as the main memory for the machine. DRAM

becomes a hardware managed cache controlled by the CPU memory controller. In

this way, DRAM effectively becomes another level of cache for the CPU. However,

the persistence feature of PMEM is forfeited in this mode. The key for the AES 256

bit hardware encryption is discarded and regenerated at each boot.

App Direct Mode offers the ability to have persistence like a drive, but much faster

latency and bandwidth. Additionally, the user can choose to use the memory as

an extension of DRAM. This offers the unique ability to choose where memory is

allocated, either from PMEM or DRAM. This manuscript will focus on using PMEM

in App Direct Mode without transactions.

The Storage Network Industry Association formed a technical workgroup which

created a unified programming model for persistent memory [7]. The three main

capabilities of the model designed are "The management path allows system ad-

ministrators to configure persistent memory products and check their health. The

storage path supports the traditional storage APIs (Application Programming Inter-

face) where existing applications and file systems need no change; they simple see the

persistent memory as very fast storage. The memory-mapped path exposes persistent

memory through a persistent memory-aware file system so that applications have di-

rect load/store access to the persistent memory. This direct access does not use the

page cache like traditional file systems and has been named DAX by the operating

system vendors.[7]"

To adhere to the programming model, the Persistent Memory Development Kit,

PMDK, was developed. It offers libraries to solve different use cases of PMEM. For

example, libpmemobj offers a library for object based transactions, libpmem offers a
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low level access to persistent memory, and libpmemlog provides APIs to log to files

easily. PMDK is validated and performance-tuned by Intel.

1.4 Organization

This manuscript is structured as follows. Chapter 1 is an introduction into the

topic, detailing current solutions to computing on large data sets. It discusses the

weaknesses to those solutions, namely scalability in terms of efficient computing and

cost. PMEM is introduced as another solution with potential to increase efficiency

in computing while also reducing costs. The problem statement is outlined as inves-

tigating PMEM by measuring its performance against DRAM in memory and graph

algorithm benchmarks. PMEM is explained in more detail as to its configurations,

usage, and libraries which support it.

Chapter 2 describes the environment setting for the experiments. The machine

used for benchmarks is described in detail. The outcomes of the memory benchmarks

are outlined and discussed.

Chapter 3 explains the setup and outcomes of the graph benchmarks. First, the

different type of memory configurations are explained, meaning the combinations of

where data resides in memory. Then, PageRank is described with the optimizations

that were implemented. Next the results of the PageRank benchmarks are shown and

discussed. After, BFS is detailed in two variations, top down and bottom up. The

optimizations for both are described. Then the results for both variations are shown

and discussed. Finally, a discussion section combines the results of PageRank and

BFS for deeper analysis.

Chapter 4 is the conclusion where the results are generalized. Insight into PMEM

is offered as well as thoughts about the future of PMEM. Discussion about next steps

in terms of research and possible applications are presented.



CHAPTER 2: Environment Setting

2.1 Machine Specifications

The machine consists of dual socketed Intel Xeon Gold 6254 CPUs, 192 GB DRAM,

and 768 GB Intel Optane DC Persistent Memory. Each CPU has 18 physical cores,

36 logical cores, operating at 3.1 GHz with hyperthreading enabled. The CPU has

an L1 cache size of 1.125MiB, L2 cache size of 18MiB, and an L3 cache size of

24.75MiB. Each CPU socket has 12 DIMM slots. All memory modules are installed

on the first socket. Because of this, only the CPU in the first socket is being used for

benchmarking, so all threads are bound to that CPU at application startup. There

are 6 DIMM modules per memory type, so 6 32GB DRAM modules and 6 128GB

PMEM modules. Both DRAM and PMEM are operating at 2666MHz. PMEM is

operating in App Direct Mode. The compiler used was GCC 7.5.0. The libpmem

library version 1.1 was used. The operating system used was Ubuntu 18.04.5 LTS.

To ensure the proper thread placement, OpenMP offers a specification for thread

affinity. The specification allows the user to define a thread allocation strategy before

program execution. Each time a thread is spawned, it is assigned to a place. A place

can either be a hardware thread, core, or a socket. This allows the user to define

exactly where threads will execute. For the purposes of this manuscript, it allows the

usage of only the first socket, and to run comparisons between using hyperthreading

and not. When using hyperthreading, a maximum of 36 threads are spawned and

each is allocated to a unique hardware thread. When not using hyperthreading, a

maximum of 18 threads are spawned and each is allocated to a unique core. For

denote the use of hyperthreading in results, HT is used. To denote the use of no

hyperthreading, NHT is used.
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2.2 Memory Benchmarks

The benchmarks developed serve to measure the memory’s core metrics, bandwidth

and latency for reading and writing. These benchmarks provide insight on what the

memory is capable of while also showing its strength and weaknesses. Additionally,

the STREAM[8] benchmarks were modified to run on PMEM. Table 2.1 shows the

peak performance claimed by Intel [7].

Table 2.1: A table of peak bandwidth per module of PMEM.

Module Capacity 128GB 256GB 512GB
Bandwidth Read 256 B 6.8 GB/s 6.8 GB/s 5.3 GB/s
Bandwidth Write 256 B 1.85 GB/s 2.3 GB/s 1.89 GB/s
Bandwidth Read 64 B 1.7 GB/s 1.75 GB/s 1.4 GB/s
Bandwidth Write 64 B 0.45 GB/s 0.58 GB/s 0.47 GB/s

The memory benchmarks first run using DRAM, then PMEM on the same machine.

This allows a side-by-side comparison while ensuring all other hardware is exactly the

same. To account for variability in results, each benchmark is ran 10 times and the

average of the results are reported. The memory allocations are aligned to 16B for

both DRAM and PMEM.

The read bandwidth benchmark measures the maximum read bandwidth from

memory to the CPU. To increase the amount of memory loaded per instruction, the

inputted array is casted to a larger element type of size 32B. Then, the summation

of the array is performed. Since the addition takes less cycles to perform than loads

and occurs in parallel with the loads, this effectively measures the time to load the

array from memory to the CPU. To completely stress the system, the summation and

loading is performed on all threads simultaneously by partitioning the array across

all threads. Since the access pattern is iterative, the memory controller can prefetch

values from memory, which maximizes memory usage. The bandwidth is calculated

by B =
N

t
where N is the size of the array in bytes, t is the time elapsed.

The read latency benchmark measures the average latency of one byte from memory
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to the CPU. To ensure that the memory being loaded is not in the cache, the access

pattern of the memory is randomized. In this way, the hardware memory controller

is unlikely to prefetch the next value in memory while also making it highly unlikely

that the same value in memory is loaded twice. In this way, the CPU’s cache is

avoided and the measurement is the time it takes for the value in memory to reach

the CPU. Furthermore, the next random index generated relies on the current value

loaded from memory. This forces the CPU to wait until the current load completes

before issuing the next load. The latency is computed by L =
t

N
where N is the

number of bytes loaded, t is the time elapsed. This effectively computes the average

latency for all loads.

The write bandwidth benchmark measures the maximum write bandwidth from the

CPU to memory. To increase the amount of memory stored per instruction, the in-

putted array is casted to a larger element type of size 32B. Then, the CPU issues store

instructions iteratively from the first element to the last in memory. To completely

stress the system, the store instructions are performed on all threads simultaneously

by partitioning the array across all threads. The bandwidth is computed the same as

the read bandwidth.

2.3 Results

Tables 2.2 and 2.3 shows the results of running the memory benchmarks with

and without hyperthreading. It is clear that bandwidth is maximize when not using

hyperthreading. According to Intel, the maximum read bandwidth 6 modules is 40.8

GB/s and write bandwidth is 11.1 GB/s. The benchmark recorded a read bandwidth

of 40.161 GB/s and write bandwidth of 3.047 GB/s. The measured read bandwidth

is nearly as high as Intel’s claims. However, the write bandwidth is 3.6x slower.

From these results, it seems that writing to PMEM is costly and should be avoided

if possible. The read bandwidth of PMEM is 2.6x slower than DRAM, but should

be sufficient for computationally bound algorithms. The latency for PMEM is 2.8x
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slower than DRAM, making cache misses more detrimental.

Table 2.2: A table of results from the memory benchmarks with HT.

Benchmark DRAM PMEM Ratio
Read Bandwidth 65.480 GB/s 32.669 GB/s 0.50
Read Latency 142.02 ns 403.83 ns 2.84
Write Bandwidth 42.782 GB/s 1.254 GB/s 0.03
STREAM Copy 53.928 GB/s 2.613 GB/s 0.05
STREAM Scale 47.512 GB/s 1.288 GB/s 0.03
STREAM Add 54.286 GB/s 3.987 GB/s 0.07
STREAM Triad 51.161 GB/s 2.180 GB/s 0.04

Table 2.3: A table of results from the memory benchmarks with NHT.

Benchmark DRAM PMEM Ratio
Read Bandwidth 106.815 GB/s 40.161 GB/s 0.38
Read Latency 137.14 ns 403.70 ns 2.94
Write Bandwidth 73.715 GB/s 3.047 GB/s 0.04
STREAM Copy 66.715 GB/s 5.523 GB/s 0.08
STREAM Scale 66.717 GB/s 5.555 GB/s 0.08
STREAM Add 75.298 GB/s 8.093 GB/s 0.11
STREAM Triad 75.367 GB/s 8.185 GB/s 0.11



CHAPTER 3: GRAPH BENCHMARKS

The graph algorithm benchmarks serve to show the performance of memory for

standard algorithms. Graph algorithms were selected particularly for their irregular

access patterns. Each graph is stored in memory as column row storage, CRS. Since

most graphs tend to be sparse in matrix form, the CRS format reduces the overall

memory size of the graph. In addition, this memory format gives the opportunity to

use single instruction multiple data, SIMD, instructions for more parallelism. Real-

world graphs were gathered from SNAP [9]. Those graphs were collected from social

media websites. Details of the graphs are shown in Table 3.1.

Table 3.1: A table of real world graphs used for the graph benchmarks.

Graph Vertices Edges Directed
Facebook 4,039 88,234 No
Epinions 75,879 508,837 Yes
Pokec 1,632,803 30,622,564 Yes
Stack Overflow 1,632,803 30,622,564 Yes
Live Journal 4,847,571 68,993,773 Yes
Orkut 3,072,441 117,185,083 No

For most algorithms, the use of temporary variables is required. For both of the

graph algorithms implemented, this is especially true. In an effort to better under-

stand the performance of the memory, each benchmark is ran in four combinations

of using DRAM or PMEM. The combinations correspond to where the graph and

temporary variables reside in memory. For this manuscript, all combinations were

tested. Table 3.2 outlines the different combinations. A key insight to running these

combinations is rooted in the operations that take place. In the case of the graph,

it is never modified. So the graph essentially becomes read-only and hence the only

difference between the DD and PD combinations becomes how fast the graph can be
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read from the memory. The temporary variables require read and write operations

which allows observations on how reading and writing to memory affect performance.

Table 3.2: A table outlining the different combinations the graph benchmarks were
run. It shows where the graph and temporary variables reside in memory.

Abbreviation Graph Temporary
DD DRAM DRAM
DP DRAM PMEM
PD PMEM DRAM
PP PMEM PMEM

3.1 PageRank

The goal of PageRank is to calculate a rank value for each vertex based on the

number and quality of neighbors. In terms of a benchmark, the algorithm iterates

through the graph multiple times, overwrites a vector on each iteration, and performs

a few arithmetic operations for each vertex. The performance hinges on the bandwidth

of the memory, as the reading and writing is sequential and is performed multiple

times.

The original purpose of PageRank was to rank web pages for search results on

Google [10]. PageRank is an important algorithm because it computes the importance

of something in relation to its peers. Therefore, it can be applied to anything in

the form of a graph. For example, a variation can compute the impact factor of

research papers [11]. Also, it can be applied to the analysis of proteins in biology

[12]. Additionally, Twitter uses a variation to find a personalized PageRank to find

suggestions for its users [13].

Let G be a graph with vertex set V and edge set E. Let d be a number representing

a dampening factor. Then, PageRank is PR(v) =
1− d
|V |

+ d
∑

u∈N(v)

PR(u)

deg(u)
. That

equation can be solved using an iterative method. First, the initial probability at time

step t = 0 is PR(v, 0) =
1

|V |
. Then, PR(v, t+1) =

1− d
|V |

+d
∑

u∈N(v)

PR(u, t)

deg(u)
is the

PageRank for the next time step. This is done for I iterations or until convergence,
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i.e. for some small ε, |PR(v, t)− PR(v, t+ 1)| < ε.

PageRank is a SpMV. Since PageRank is typically called multiple times with dif-

ferent dampening factors, it is advantageous to convert it to a SpMM. For example, it

was shown that a recommender system benefits from this approach [14]. Upgrading

PageRank from SpMV to SpMM is done by creating a matrix of ranks, instead of

the normal vector of ranks. By doing this, the core computation can load the graph

once per iteration and compute all of the PageRanks, instead of once per iteration

per dampening factor. It has been shown that upgrading a SpMV to SpMM increases

the number of operation relative to memory bandwidth [15]. Additionally, using a

SpMM approach to increase centrality in BFS showed greater performance than a

SpMV [16]. So for this manuscript, PageRank is implemented as a SpMM so both

the CPU and memory can be utilized efficiently.

For the benchmark, PageRank is always run for I = 100 iterations, regardless of

convergence. Since the PageRank values are not of interest, it is preferable to just

run PageRank for a certain amount of iterations to have consistency across multiple

experiments. This also removes the need to compare all PageRank values from the

current time step and the previous.

To increase performance the PageRank read and write matrices are of size |V |xZ,

where Z is the number of PageRanks being computed. Accessing the first PageRank

for a vertex will cause an entire cache line of PageRanks to be pulled. This increases

the loading performance when scaling to higher number of PageRanks. Additionally,

the code is vectorized based on neighbors of vertices, rather than vectorizing on the

PageRanks for a vertex. When vectorizing on neighbors, the vertex’s neighbor’s de-

gree are computed in parallel. Then, each neighbor’s PageRank is read from memory.

Because of how the PageRank read matrix is set up, the first gather for all of the

PageRanks causes the next PageRanks which will be loaded to also be pulled into the

cache line. This causes a sequential load pattern from the PageRank read matrix.
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Another optimization is swapping between two buffers for storing the PageRank

during each time step. This reduces the need to allocate a new array on each time

step iteration. Lastly, the vertices are partitioned across all threads for concurrency,

since the computation for each vertex for an iteration is independent of other vertices.

3.1.1 Results

For all PageRank results, the amount of traversed edges per second, TEPS, is re-

ported. The metric for PageRank is computed by
I · |E|·Z

t
, where Z is the number of

PageRanks being computed and t is the time elapsed. This value allows the compar-

ison between various number of PageRanks to show if increasing the computational

density also increases efficiency. To account for variability in results, each benchmark

is ran 10 times and the average of the results are reported.

1 2 4 8 16 32 64
0

20

40

60

·103

Number of PageRanks

M
T
E
P
S

Facebook HT

1 2 4 8 16 32 64
0

20

40

60

·103

Number of PageRanks

Facebook NHT

DD
DP
PD
PP

Figure 3.1: A comparison between the PageRank benchmark on the Facebook graph
with HT and NHT.

Figure 3.1 shows the results for the Facebook graph. The results are a factor of 3-4

higher than other graphs because the Facebook graph is significantly smaller. The

entirety of the graph can be stored in the L3 cache of the CPU. This is also the case

for the Epinions graph, results shown in Figure 3.2. The Epinions graph does not

see the significant gains of the Facebook graph though. This may be because the

Epinions graph plus the temporary variables are evicting each other from the CPU

cache.
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Figure 3.2: A comparison between the PageRank benchmark on the Epinions graph
with HT and NHT.
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Figure 3.3: A comparison between the PageRank benchmark on the Pokec graph with
HT and NHT.

For graphs significantly larger than the CPU cache size, seen in Figures 3.3, 3.4,

3.5, 3.6, a pattern can be seen. Hyperthreading increases performance for all of

these graphs when the temporary variables are in DRAM. Hyperthreading degrades

performance for all of these graphs when the temporary variables are in PMEM. The

DD and PD combinations seem to scale well with the number of PageRanks.

When observing the affects of using temporary variables in PMEM, it is clear

that performance is severely hindered. The results for both DP and PP are nearly

identical, showing that when the temporary variables are in PMEM, the location of

the graph in memory is not as important. Because the performance increases when

not using hyperthreading, it is likely that writing to PMEM is the issue. As seen in
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Figure 3.4: A comparison between the PageRank benchmark on the Stack Overflow
graph with HT and NHT.
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Figure 3.5: A comparison between the PageRank benchmark on the Live Journal
graph with HT and NHT.

the measurements for write bandwidth, using hyperthreading decreases performance

by over a factor of 2, which is similar to the affect seen for PageRank.

3.2 Breadth-First Search

BFS is a classic graph traversal algorithm. Its popularity and wide-spread use

made it a benchmark for Graph 500. The algorithm is key in shortest path searches,

such as Bellman-Ford, Dijkstra, and A*. It also can be used to solve problems in

other fields. For example, BFS can be used to apply clausal resolution to temporal

logic efficiently [17]. Also, it can be used to help plan and optimize work of sale

persons [18]. Additionally, it can be applied to help the processing of images [19].
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Figure 3.6: A comparison between the PageRank benchmark on the Orkut graph
with HT and NHT.

Furthermore, BFS was used to implement a web structure mining algorithm [20].

The goal of BFS is to search for a path between a source vertex and a destination

vertex. The algorithm starts by inspecting all neighboring vertices of the source

vertex. Each neighbor is added to a frontier queue. Then, a vertex is dequeued from

the frontier and checked if it is the destination. If it is, then the search is complete.

If not, the vertex’s neighbors are all appended to the frontier. This is performed until

the frontier is empty or the destination vertex has been reached. This algorithm,

named top down BFS, is detailed in Figure 3.7.

Another approach to BFS is to search in the opposite direction. Instead of looking

at vertices in the frontier, all unvisited vertices can search for a neighbor in the

frontier. If there exists a neighbor, that vertex is added to the next frontier. This is

done until the frontier is empty of the destination vertex is found. This algorithm,

named bottom up BFS, is detailed in Figure 3.8.

A direction optimized approach to BFS was developed to switch between top down

and bottom up directions during a traversal [21]. Heuristics are used to determine

when to switch direction at the start of each traversal level. In this way, the optimal

direction is used at each level, thus leading to performance gains. The key compo-

nent to this method is switching when it is actually beneficial. This requires tuning
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function bfs-top-down(vertices, source)
frontier ← {source}
next ← {}
depth ← [-1,-1,...,-1]
depth[source] ← 0
level ← 1
while frontier 6= {} do

for v ∈ frontier do
for n ∈ neighbors[v] do

if depth[n] = -1 then
parents[n] ← level
next ← next ∪ {n}

end if
end for

end for
frontier ← next
next ← {}
level ← level + 1

end while
return depth

Figure 3.7: Conventional Top Down BFS

parameters that need to be tuned for each graph. To avoid tuning for each graph

and memory combination, the direction optimized BFS is not shown. Instead, both

top down and bottom up approaches are benchmarked. This allows the observation

of the approaches against the memory combination without the concern of switching

optimally.

For the benchmark, BFS does not search for a destination vertex, but continues

to traverse the graph until all vertices have been exhausted. During each layer of

traversal, the depth of visited vertices to the source vertex is recorded. In this way,

the algorithm issues a series of reads and writes to non-sequential parts of memory.

In BFS, undirected graphs will check each edge twice where directed graphs will only

check each edge once.

To optimized top down BFS, at the start of each traversal layer, the vertices in

the frontier are partitioned across all threads and the search is executed concurrently.
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function bfs-bottom-up(vertices, source)
frontier ← {source}
next ← {}
depth ← [-1,-1,...,-1]
depth[source] ← 0
level ← 1
while frontier 6= {} do

for v ∈ vertices do
if parents[v] = -1 then

for n ∈ neighbors[v] do
if n ∈ frontier then
parents[n] ← level
next ← next ∪ {v}
break

end if
end for

end if
end for
frontier ← next
next ← {}
level ← level + 1

end while
return depth

Figure 3.8: Conventional Bottom Up BFS

Because of this, additional modifications are required to keep the threads from fighting

over resources. The main concern becomes pulling vertices off of the queue. To

completely removed any locking behavior to avoid race conditions, there are two

queues implemented both as arrays. In this way, one array is the read frontier, and

the other becomes the write frontier. That means the vertices in the read frontier

can be distributed equally among all threads, without the need to coordinate. It

also means that vertices simply can be read from any position in the queue, rather

than only at the front. To avoid locking the write frontier, each thread has access

to its own local write frontier. Once each thread completes their BFS traversal,

the threads combine their local frontiers. This combining also does not require any

locking since the number of vertices in all local write frontiers is known. So each
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thread can compute a range of indices into the write frontier that is guaranteed to

not overlap with other threads. At the end of a level iteration, the read frontier is

cleared. Then, the write frontier becomes the read frontier for the next iteration, and

the read frontier becomes the write frontier for the next iteration.

To optimize bottom up BFS, at the start of each traversal layer, all vertices are

partitioned across all threads and the search is executed concurrently. There exists

a read and write frontier, which swap roles each iteration to prevent memory alloca-

tions for each iteration. The frontiers are implemented as arrays where each index is

mapped to a vertex. This makes the lookup time to check if a vertex in the frontier

take constant time. It also removes any concern of race conditions. After each level

iteration, the read frontier is cleared.

3.2.1 Results

All results for BFS are reported in TEPS. To compute TEPS, the output of BFS

is inspected to determine which vertices were visited. Then, the number of traversed

edges can be computed by summing the degree of all visited vertices, S. The metric

can be computed as
S

t
. The purpose of this formulation of TEPS as opposed to

the traditional approach of
|E|
t

is because the graphs may be disconnected. If the

graph is disconnected, then not all vertices will be traversed, which inflates TEPS.

Additionally, checking the number of vertices visited allows runs where only a small

portion of the graph were visited to be discarded. These runs typically report TEPS

in orders of magnitude higher than a run that traverses significantly more vertices.

So the computation for this manuscript provides a more accurate measurement of

TEPS while also ensuring enough vertices were traversed. A BFS traversal must visit

at least 25% of vertices and 25% of edges in the graph, or else that traversal was not

included in the results. Instead, another vertex was selected as the the source vertex.

The results are an average of 10 BFS traversals starting at different source vertices.

The results for top down BFS are shown in Figures 3.9 and 3.10. Overall, the



22

DD combination performs the best with no hyperthreading. PD with hyperthreading

performs better or similar compared to PD with no hyperthreading. Both DP and PP

perform better with no hyperthreading, similar to PageRank and memory bandwidth

results. Comparing the combinations, DP and PP offer significantly worse perfor-

mance compared to DD and PD. This shows that temporary variables in PMEM

causes a massive decrease in performance.
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Figure 3.9: Results of the BFS benchmark top down with hyperthreading.
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Figure 3.10: Results of the BFS benchmark top down with no hyperthreading.

The results for bottom up BFS are shown in Figures 3.11 and 3.12. Overall, DD
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with no hyperthreading performs better than DD with hyperthreading. The other

combinations, DP, PD, and PP, have similar results with no hyperthreading having

slightly better performance. Similar to top down BFS, the DP and PP combinations

slower than the DD and PD combinations, showing temporary variables in PMEM

cause a dramatic decrease in performance.
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Figure 3.11: Results of the BFS benchmark bottom up with hyperthreading.
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Figure 3.12: Results of the BFS benchmark bottom with no hyperthreading.
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3.3 Discussion

From the results of PageRank and BFS, it is clear the best memory combination

is DD and PD is second. The only difference between these run combinations is

where the graph resides in memory. Additionally, the graph is only read from for

both PageRank and BFS. So the differences in these combinations show the loss of

performance when only reading the graph from PMEM. So for applications where the

data set is mostly read form, and not written to, storing the data set in PMEM offers

good performance.

Tables 3.3 shows a comparison of DD and PD combinations for the PageRank

benchmark on the Live Journal graph. Even though PMEM bandwidth is a factor 2

slower, it does not seem to be causing a severe drop in performance. Since this is the

case, it is likely that bandwidth is not the bottleneck for PageRank. This shows that

for computationally bound algorithms, PMEM is a viable option. Furthermore, the

performance of PMEM is scaling similar to DRAM.

Table 3.3: A table of results of the PageRank benchmark on the Live Journal graph
with HT.

Number of PageRanks DD PD Ratio
1 539.047 525.111 0.97
2 1059.3 1020.588 0.96
4 2083.336 1974.816 0.95
8 3983.992 3556.696 0.89
16 7233.536 6021.776 0.83
32 11207.712 9484.992 0.85
64 15574.336 13864.0 0.89

Table 3.4 shows the results of the BFS top down and bottom up benchmarks on the

Live Journal graph. The performance loses were greater than PageRank. This can

be explained by the lack of computation in BFS. So in the worst case, where most of

the operations are just reading and writing to memory, PMEM is not scaling as bad

as the memory benchmarks would suggest. Since BFS is typically used as a backbone
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for other algorithms, adding computational density would close the gap between DD

and DP.

Table 3.4: A table of results from the BFS benchmark on the Live Journal graph with
NHT.

Benchmark DD PD Ratio
Top Down 851.299 533.13 0.63
Bottom Up 288.185 224.028 0.78

As shown in Tables 3.5 and 3.6, hyperthreading performs worse than no hyper-

threading for the PP combination. This was consistent between most benchmarks

for PageRank and BFS. This suggests that too many threads reading and writing

to PMEM concurrently can cause a reduction of performance. When combining the

results for PageRank, where hyperthreading actually improved results for PD, this

hints that the writing operations might be the cause of this. If reading were the issue,

it would have shown in the PD results for PageRank as well. Because of this, it seems

that too many threads writing to PMEM concurrently is an issue. In general, writing

to PMEM seems to bring the biggest performance loss.

Table 3.5: A table comparing the results of the PageRank benchmark on the Live
Journal graph with HT and NHT for the PP combination.

Number of PageRanks HT NHT Ratio
1 448.246 672.942 1.50
2 761.932 1044.704 1.37
4 1124.968 1691.844 1.50
8 1345.904 2164.136 1.61
16 1683.392 2719.584 1.62
32 2054.726 3420.224 1.66
64 2194.752 4275.705 1.95

Summing up all of the results and analysis, it seems that using PMEM in App

Direct mode and utilizing both DRAM and PMEM is the best option. It gives finer

control over where the data resides in memory. Then, data can be store on PMEM

or DRAM based on how much it is written to. PMEM shows great potential for
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Table 3.6: A table comparing the results from the BFS benchmark on the Live Journal
graph with HT and NHT for the PP combination.

Benchmark HT NHT Ratio
Top Down 181.847 294.115 1.62
Bottom Up 115.667 169.945 1.47

algorithms where a majority of the data is read-only.



CHAPTER 4: CONCLUSIONS

Overall, benchmarks were developed to measure and compare the performance of

DRAM and PMEM, including various combinations of each. The memory bench-

marks showed the peak performance of both. The graph benchmarks served to show

the performance for important foundational algorithms against real world graphs.

The various run combinations gave insight into how PMEM is affected by different

operations, as well as strategies to efficiently utilized DRAM and PMEM in conjunc-

tion.

As shown in this manuscript, PMEM offers performance comparable to DRAM.

Even though PMEM read bandwidth is over a factor of 2 slower than DRAM, the

DD and PD combinations results for both PageRank and BFS do not show this.

PageRank was less affected by the bandwidth difference, especially as the number of

PageRanks grew. This offers insight that for algorithms bottlenecked by operations,

PMEM is advantageous to use. However, this also means that algorithms will have

to be written to increase computational density to achieve better performance if they

are more bandwidth bound.

The use of PMEM for temporary variables showed a dramatic degradation of per-

formance. So the use of PMEM in App Direct Mode may be preferred over Memory

Mode. App Direct Mode allows greater control over where data resides in memory.

Memory Mode does not offer this and performance would hinge on the temporary

variables staying in the DRAM level cache. If that data would be evicted and written

back to PMEM, it would cause a drop in performance. Because of the lack of control

over this, App Direct Mode is preferable for HPC applications. This also means minor

changes to code is required such that memory is allocated from PMEM and DRAM
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selectively.

Furthermore, the use of PMEM seems advantageous if the memory will be read

only. As shown in the memory benchmarks, writing to PMEM is extremely slow.

For applications where data is modified minimally, PMEM can offer good bandwidth

while giving 4 times the capacity. If PMEM does need to be written to, usage of write

optimized algorithms would be preferable.

For BFS, a study into direction optimization should be conducted. It was shown

here that BFS in both top down and bottom up offer good performance using PMEM.

The next step is to figure out if switching, more specifically the conversion between

directions, is efficiently enough. Discovering the tuning parameters for direction op-

timized BFS will help to understand what operations and ideas are applicable to

PMEM performance tuning.

Additionally, a comparison between PMEM, distributed computing, and out-of-

core computing should be conducted. A computing cluster of up to 4 nodes should be

compared to a single machine with PMEM. In this way, it can be observed whether

or not PMEM can be used in place of 4 nodes, as both systems would have the

same amount of main memory. A comparison because hardware costs should also be

conducted as well as measuring power usage of PMEM.

Future studies can delve further into the performance of using DRAM and PMEM

simultaneously. For single machine systems, like the environment for this manuscript,

it was shown that using a hybrid approach still has good performance. For mobile

devices, or even personal computers, this hybrid approach may be beneficial to use.

For example, if the OS can efficiently keep state in PMEM, power cycles would have

instant time since the OS does not need to load anything. The PMEM has the

previous state and just needs to be accessed. In this way, booting performance can

be improved. Furthermore, the power reduced by having state in PMEM can extend

the life of mobile devices.
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Another study into how to configure machines with both DRAM and PMEM should

be conducted. The machine used for these experiments had 12 DIMM per socket.

However, the bandwidth of a memory module relies on how many modules are in-

stalled. So for each module of PMEM installed, it reduces the bandwidth of DRAM

and vice versa. There needs to be careful consideration about how many modules of

each are installed in order to maximize performance.

Overall, PMEM is a viable option for HPC situations with massive amounts of

data. It has the ability to perform well with computationally bound algorithms with

minimal changes to hardware and code. For applications with mostly read opera-

tions, PMEM offers comparable performance with the added features of persistence.

Because of this, reducing the amount of nodes in a distributed system without per-

formance lost is possible. Additionally, using PMEM over out-of-core computing can

be advantageous.
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