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ABSTRACT 

 

 

XING ZHANG. Asymptotic normality of entropy estimators. 

                                 (Under the direction of DR. ZHIYI ZHANG) 

 

 

Shannon's entropy plays a central role in many fields of mathematics. In the first 

chapter, we present a sufficient condition for the asymptotic normality of the plug-in 

estimator of Shannon's entropy defined on a countable alphabet. The sufficient condition 

covers a range of cases with countably infinite alphabets, for which no normality results 

were previously known.  

In the second chapter of this dissertation, we establish the asymptotic normality of a 

recently introduced non-parametric entropy estimator under another sufficient condition.    

The proposed estimator, developed in Turing's perspective, is known for its improved 

estimation accuracy. 
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CHAPTER 1: A NORMAL LAW FOR THE PLUG-IN ESTIMATOR

1.1 Introduction

Let {pk} be a probability distribution on an alphabet X = {`k; 1 ≤ k ≤ K},

where K denotes either a finite integer or∞. Let PX be a random variable such that

P (PX = pk) = pk. Entropy in the form of

H = E(− lnPX) = −
∑
k

pk ln pk

was introduced by Shannon (1948) and is often referred to as Shannon’s Entropy.

The estimations of entropy-like quantities have become growingly important for their

wide applications in the fields of neural science and information theory, etc.

Let X1, · · · , Xn be an iid sample from X according to the probability distribution

{pk}, and {yk,n =
∑n

i=1 1[Xi = `k]} be the sequence of observed counts of letters, and

{p̂k,n = yk,n/n}. The plug-in estimator for H, given by

Ĥn = −
∑
k

p̂k,n ln p̂k,n (1.1)

plays a central role in the literature. Ĥn is simple and intuitive; and it often serves as

a reference estimator for other estimators, many of which were derived based on Ĥn.

When K is fixed and finite,

√
n(Ĥn −H)

D−→ N(0, σ2)
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where σ2 = V ar(− lnPX) > 0 has long been known. See Miller and Madow (1954)

and Basharin (1959). In this case, it is also known that

E(Ĥn −H) = −K − 1

2n
+

1

12n2

(
1−

K∑
k=1

1

pk

)
+O(n−3). (1.2)

V ar(Ĥn) =
1

n

(
K∑
k=1

pk ln2 pk −H2

)
+
K − 1

2n2
+O(n−3). (1.3)

See Miller (1955), Basharin (1959) and Harris (1975).

When K = K(n) is assumed to dynamically vary as the sample size n increases,

i.e., {pk,n; k = 1, 2, · · · , K(n)}, Paninski (2003) established a normal law for Ĥn,

stated as Lemma 1.1 below.

When K is infinite, Antos and Kontoyiannis (2001) obtained different rates of

convergence for Ĥn under a variety of tail conditions on {pk}.However, no results

regarding the asymptotic normality of Ĥn were known. We seek to lay down a pebble

in that blank space by presenting a sufficient normality condition for Ĥn when the

cardinality of X is countably infinite. More specifically, the sufficient condition is

satisfied by distributions with tails decaying at the rate of [k ln(ln k)]−2(ln k)−1, but

not by those with tails decaying at the rate of k−2(ln k)−1.

1.2 Main Results

Theorem 1.1. For any non-uniform distribution {pk; k ≥ 1} satisfying E(lnPX)2 <∞,

if there exists an integer valued function K(n) such that, K(n)→∞, K(n) = o(
√
n)

and
√
n
∑

k≥K(n) pklnpk → 0, as n→∞, then

√
n(Ĥn −H)/σ

D−→ N(0, 1)

where σ2 = V ar(− lnPX).
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A proof of Theorem 1.1 requires Lemmas 1.1 and 1.2 below. Lemma 1.1 is due to

Paninski (2003).

Lemma 1.1. Let {pk,n; k = 1, · · · , K(n)} be a probability distribution, PX be a ran-

dom variable such that P (PX = pk,n) = pk,n, and

τ 2n = V ar(− lnPX) =
∑K(n)

k=1 pk,n ln2 pk,n −
(∑K(n)

k=1 pk,n ln pk,n

)2
.

If K(n) = o(
√
n) and lim infn→∞ n

1−ατ 2n > 0 for some α > 0, then

√
n(Ĥn −H)/τn

D−→ N(0, 1).

Lemma 1.2. For a probability distribution {pk; k ≥ 1}, if there exists an integer val-

ued function K(n) such that as n → ∞, K(n) → ∞, and
√
n
∑

k≥K(n) pk ln pk → 0,

then

√
n lnn

∑
k≥K(n)

pk → 0

.

Proof. Let p∗n =
∑

k≥K(n) pk. Since 1 < − ln p∗n for a sufficiently large n,

0 ≤
√
np∗n ≤ −

√
np∗n ln p∗n = −

√
n
∑

k≥K(n) pk ln p∗n ≤ −
√
n
∑

k≥K(n) pk ln pk → 0.

(1.4)

√
np∗n → 0 implies p∗n = αnn

−1/2 where αn = o(1). On the other hand, since

αn lnαn → 0, −
√
np∗n ln p∗n = αn(ln

√
n − lnαn) → 0 implies αn = βn/ ln

√
n where

βn = o(1). Hence
√
n lnn

∑
k≥K(n) pk = 2βn → 0. 2

Proof of Theorem 1.1.
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Consider a modified probability distribution {pk,n; k = 1, · · · , K(n)} based on {pk}

as follows. Let

pk,n =

 pk, for 1 ≤ k ≤ K(n)− 1∑
k≥K(n) pk ≡ p∗n, for k = K(n).

Since E(lnPX)2 =
∑

k pk ln2 pk <∞ implies H = −
∑

k pk ln pk <∞, we have

0 ≤ p∗n ln2 p∗n =
∑

k≥K(n)

pk ln2 p∗n ≤
∑

k≥K(n)

pk ln2 pk → 0,

and

0 ≤ −p∗n ln p∗n =
∑

k≥K(n)

(−pk ln p∗n) ≤
∑

k≥K(n)

(−pk ln pk)→ 0. (1.5)

Let τ 2n = V ar(− lnPX) under the modified distribution {pk,n}. After a few alge-

braic steps,

σ2 − τ 2n = (
∑

k≥K(n) pk ln2 pk − p∗n ln2 p∗n)− (−
∑

k≥K(n) pk ln pk + p∗n ln p∗n)

×(−
∑

k≥K(n) pk ln pk − p∗n ln p∗n − 2
∑K(n)−1

k=1 pk ln pk).
(1.6)

It is clear that the first term in (1.6) converges to zero, that the first factor of the

second term converges to zero, and that the second factor of the second term converges

to 2H <∞. Therefore τn → σ, and hence by Lemma 1.1,

√
n

K(n)∑
k=1

(−p̂k,n ln p̂k,n + pk,n ln pk,n)
D−→ N(0, σ2). (1.7)

However,

√
n(Ĥn −H)−

√
n
∑K(n)

k=1 (−p̂k,n ln p̂k,n + pk,n ln pk,n)

=
√
n
∑

k≥K(n)(−p̂k,n ln p̂k,n)−
√
n
∑

k≥K(n)(−pk ln pk) +
√
np̂∗n ln p̂∗n −

√
n p∗n ln p∗n

(1.8)

where p̂∗n =
∑

k≥K(n) yk,n/n. The proof is complete if it is shown that the right hand
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side of (1.8) is op(1). Toward that end, it is to show that each of the four terms in

the last expression of (1.8) is op(1).

The second term converges to zero in probability by the condition of Theorem

1.1. The fact that the fourth term converges to zero is established in the proof of

Lemma 1.2. For the first and third terms, we first observe −p̂k,n ln p̂k,n ≤ p̂k,n lnn

and −p̂∗n ln p̂∗n ≤ p̂∗n lnn, and then observe the following two inequalities

0 ≤
√
n
∑

k≥K(n)

(−p̂k,n ln p̂k,n) ≤
√
n(lnn)p̂∗n (1.9)

and

0 ≤ −
√
np̂∗n ln p̂∗n ≤

√
n(lnn)p̂∗n. (1.10)

Since, by Lemma 1.2,

E[
√
n(lnn)p̂∗n] =

√
n(lnn)p∗n → 0 (1.11)

and, noting
√
n(lnn)p̂∗n ≥ 0,

√
n(lnn)p̂∗n = op(1). By (1.9) and (1.10), both the first

and the third terms converge to zero in probability. The theorem follows by Slutsky’s

lemma. 2

Let σ̂2
n =

∑
k p̂k,n ln2 p̂k,n − (

∑
k−p̂k,n ln p̂k,n)2.

Corollary 1.1. Under the condition of Theorem 1.1,

√
n(Ĥn −H)/σ̂n

D−→ N(0, 1).

Corollary 1.1 provides a means of large sample inference on H. A proof of Corol-

lary 1.1 requires the following lemma due to Devroye (1991).

Lemma 1.3. Let X1, · · · , Xn be independent random variables on X , and assume
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that F̂n: X n → R satisfies, for 1 ≤ i ≤ n,

supx1,··· ,xn,x′i∈X |F̂n(x1, · · · , xn)− F̂n(x1, · · · , xi−1, x′i, xi+1, · · · , xn)| ≤ ci.

Then V ar{F̂n(X1, · · · , Xn)} ≤ 1
4

∑n
i=1 c

2
i .

Proof of Corollary 1.1. Let

F̂n ≡ F̂n(X1, · · · , Xn) =
∑

k f(p̂k,n) =
∑

k p̂k,n ln2 p̂k,n.

We first want to show limn→∞E(F̂n − F )2 = 0 for F ≡
∑

k pk ln2 pk <∞.

For all integers 0 ≤ i < n and n ≥ 21 > e3,
∣∣ i+1
n

ln2( i+1
n

)− i
n

ln2( i
n
)
∣∣ ≤ ln2 n

n
.

Therefore

supx1,··· ,xn,x′i∈X

∣∣∣F̂n(x1, · · · , xn) −F̂n(x1, · · · , xi−1, x′i, xi+1, · · · , xn)
∣∣∣ ≤ 2 ln2 n

n
.

By Lemma 1.3, V ar(F̂n) ≤ ln4 n
n
→ 0. For each k, p̂k,n

as→ pk, f(p̂k,n)
as→ f(pk),

f(p̂k,n) ≤ e−2 ln2 e−2 = 4e−2, so Ef(p̂k,n)→ f(pk).

Since 0 ≤ f(p̂k,n) ≤ 4e−2, by Fatou’s Lemma,

lim supn→∞
∑

k Ef(p̂k,n) ≤
∑

k lim supn→∞Ef(p̂k,n) =
∑

k f(pk) and

lim infn→∞
∑

k Ef(p̂k,n) ≥
∑

k lim infn→∞Ef(p̂k,n) =
∑

k f(pk); and therefore

limn→∞EF̂n = limn→∞
∑

k Ef(p̂k,n) =
∑

k f(pk) = F.

By Theorem 1.1, Ĥ2
n

p→ H2, and therefore σ̂2
n

p→ σ2. Finally the corollary follows by

Theorem 1.1 and Slusky’s lemma. 2

Corollary 1.2. If a probability distribution {pk} satisfying pk = Cλk
−λ where λ > 1,
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and
√
n(Ĥn −H)

D−→ N(0, σ2), as n→∞, then we have λ ≥ 2

Proof. Antos and Kontoyiannis (2001) proved that

E[(Ĥn −H)] ∼ n−(λ−1)/λ and V ar(Ĥn) ≤ O(
ln2(n)

n
).

Assume to the contrary that λ < 2, then there exists a sequence {an} converging

to zero (for example, an = − ln−α(n) with α > 1) such that E[an
√
n(Ĥn−H)]→ +∞

, V ar(an
√
nĤn)→ 0 and hence an

√
n(Ĥn − EĤn)

p→ 0,

It leads to

an
√
n(Ĥn −H) = an

√
n(Ĥn − EĤn) + an

√
n(EĤn −H)

p→ +∞,

which contradicts the assumption that an
√
n(Ĥn − H)

p→ 0 implied by
√
n(Ĥn −

H)
D−→ N(0, σ2). Therefore, λ must be greater or equal to 2.

2

Example 1.1. If pk = Cλk
−λ where λ > 1, the sufficient condition of Theorem 1.1

holds for λ > 2 but not for 1 < λ ≤ 2.

Note

√
n
∑

k≥K(n)(−pk ln pk) ∼
√
n
∫∞
K(n)

Cλ
xλ

ln
(
xλ

Cλ

)
dx

= Cλλ
λ−1

√
n lnK(n)

(K(n))λ−1 +
(

Cλλ
(λ−1)2 −

Cλ lnCλ
λ−1

) √
n

(K(n))λ−1 ∼ Cλλ
λ−1

√
n lnK(n)

(K(n))λ−1 .

If λ > 2, letting K(n) ∼ n1/λ, Cλλ
λ−1

√
n lnK(n)

(K(n))λ−1 = Cλ
λ−1

lnn
n1/2−1/λ → 0.

If 1 < λ ≤ 2, for any K(n) satisfying K(n) ∼ o(
√
n) and a sufficiently large n,

Cλλ
λ−1

√
n lnK(n)

(K(n))λ−1 ≥ Cλλ
λ−1

√
n

nλ/2−1/2 ≥ Cλλ
λ−1 ≥ 2Cλ > 0.

Example 1.2. If pk = Cλe
−λk for any λ > 0, then the sufficient condition of Theorem

1.1 holds.
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Letting K(n) ∼ λ−1 lnn, for a sufficiently large n,

√
n
∑

k≥K(n)(−pk ln pk) ∼ −
√
n
∫∞
lnn1/λ Cλe

−λx ln(Cλe
−λx)dx ∼ Cλ

λ
(lnn)n−1/2 → 0.

Example 1.3. If pk = C/(k2 ln2 k), then the sufficient condition of Theorem 1.1 holds.

Letting K(n) ∼
√
n/ ln lnn, for a sufficiently large n,

√
n
∑

k≥K(n)(−pk ln pk) ∼
√
nC
∫∞
K(n)

2 lnx+2 ln lnx−lnC
x2 ln2 x

dx

∼ 2
√
nC
∫∞
K(n)

1
x2 lnx

dx ≤ 2C
√
n

K(n) lnK(n)
→ 0.

Example 1.4. If pk = C
k2 ln k ln2(ln k)

, the sufficient condition of Theorem 1.1 holds.

First, note that

∫∞
K(n)

lnx−1
x2

dx =
∫∞
K(n)

lnx
x2

dx−
∫∞
K(n)

1
x2

dx =
∫∞
K(n)

lnx
x2

dx−
∫∞
K(n)

1
x2

dx

= [− lnx
x
|∞K(n) +

∫∞
K(n)

1
x2

dx]−
∫∞
K(n)

1
x2

dx = lnK(n)
K(n)

.

Then, for sufficient large n, we have

1
2C

√
n
∑

k≥K(n)(−pk ln pk) = 1
2

√
n
∑

k≥K(n)
ln(k2 ln k ln2(ln k))−lnC

k2 ln k ln2(ln k)

∼
√
n
∑

k≥K(n)
1

k2 ln2(ln k)
∼
√
n
∫∞
K(n)

ln kd[k ln(ln k)]−ln k ln(ln k)dk
k2 ln2(ln k)

=
√
n
∫∞
K(n)

ln kd[k ln(ln k)]

k2 ln2(ln k)
−
√
n
∫∞
K(n)

ln k ln(ln k)

k2 ln2(ln k)
dk

=
√
n[− ln k

k ln(ln k)
|∞K(n) +

∫∞
K(n)

1
k2 ln(ln k)

dk]−
√
n
∫∞
K(n)

ln k
k2 ln(ln k)

dk

=
√
n[ lnK(n)

K(n) ln(lnK(n))
+
∫∞
K(n)

1
k2 ln(ln k)

dk]−
√
n
∫∞
K(n)

ln k
k2 ln(ln k)

dk

=
√
n lnK(n)

K(n) ln(lnK(n))
−
√
n
∫∞
K(n)

ln k−1
k2 ln(ln k)

dk

≤
√
n lnK(n)

K(n) ln(lnK(n))
−
√
n
∫ √n lnn

K(n)
lnx−1

x2 ln(lnx)
dx

≤
√
n lnK(n)

K(n) ln(lnK(n))
−
√
n lnK(n)−1

ln(lnK(n))

∫ √n lnn

K(n)
1
x2

dx

=
√
n lnK(n)

K(n) ln(lnK(n))
−
√
n(lnK(n)−1)

K(n) ln(lnK(n))
+

√
n(lnK(n)−1)√

n lnn ln(lnK(n))

=
√
n

K(n) ln(lnK(n))
+ lnK(n)−1

lnn ln(lnK(n))
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If we choose K(n) =
√
n

ln(ln(lnn))
, the above expression approaches 0.

Example 1.5. If pk = C/(k2 ln k), the sufficient condition of Theorem 1.1 does not

hold.

For any K(n) satisfying with K(n) ∼ o(
√
n), for a sufficiently large n,

√
n
∑

k≥K(n)(−pk ln pk) ∼
√
nC
∫∞
K(n)

2 lnx+ln lnx−lnC
x2 lnx

dx

∼
√
nC
∫∞
K(n)

2
x2
dx = 2C

√
n

K(n)
→∞.

1.3 Remarks

Under distributions pk = C/kλ, a necessary condition for
√
n(Ĥn − H) to hold

asymptotic normality is λ ≥ 2, because bias terms E[(Ĥn−H)] has a rate of n−(λ−1)/λ,

no faster than n−1/2 if λ ∈ (1, 2], e.g., see Theorem 7, Antos and Kontoyiannis (2001)

. On the other hand, as shown in Example 4,
√
n(Ĥn − H) does have asymptotic

normality when pk = C/(k2 ln k ln2(ln k)). Even though Theorem 1.1 gives only a

sufficient condition, the band of distributions which are not covered by the sufficient

condition but may still support asymptotic normality of Ĥn must be, if existed, very

narrow.



CHAPTER 2: ASYMPTOTIC NORMALITY OF A NEW ESTIMATOR

2.1 Introduction

The plug-in estimator Ĥn is known for its large bias in an undersampled regime.

We can see from (1.2) that when K is finite, the first bias term is hardly negligible for

an often unknown large K and a small sample size n. Many have provided various

ways to adjust bias terms based on (1.2), for examples, see Treves and Panzeri (1995,

1996), Paninski (2003) and Schürmann (2004); some of these procedures were able to

greatly reduce the bias at a moderate expense of an increase in variance.

When K is infinite, Antos and Kontoyiannis (2001) showed that no universal rate

of convergence exists for any sequence of estimators, and specifically, Ĥn can approach

H at an arbitrarily slow rate. They also obtained different rates of convergence for

Ĥn under a variety of tail conditions on {pk}.

Other popular estimators include the jackknifed version of the plug-in estimator

proposed by Strong et al. (1998) , the NSB estimator proposed by Nemenman, et al.

(2002), and the coverage-adjusted entropy estimator (CAE) proposed by Chao and

Chen (2003). The jackknife estimator evaluates entropy through an extrapolation

procedure which utilizes the dependence of Ĥn on the sample size. The NSB method

counts coincidences in letters and introduces a Bayeisan prior to correct the bias.

The CAE estimator recognized the loss of information on the uncovered letters of

alphabet, and hence incorporated Turing’s formula (proposed by Good (1953) but

largely credited to Alan Turing) to adjust the bias. Vu, Yu & Kass (2007) later

proved several convergence properties of CAE, but the revealing convergence rate

were quite discouraging. All these estimators are all claimed to remove bias effectively
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in simulation study, but there seems to be lack of rigorous analysis of their rates

of convergence. Also, see Paninski (2003) and Panzeri, Senatore, Montemurro &

Petersen (2007) for a comprehensive review and comparison of various estimators.

Zhang (2012) proposed a non-parametric estimator of Shannon’s entropy on a

countable alphabet X .

Ĥz =
n−1∑
v=1

1

v

{
nv+1[n− (v + 1)]!

n!

∑
k

[
p̂k,n

v−1∏
j=0

(
1− p̂k,n −

j

n

)]}
(2.1)

This new estimator, constructed in Turing’s perspective, is fundamentally different

than previous ones. Through Turing’s formula, it recovers some distributional charac-

teristics on the uncovered subset of X , and thus significantly improves the estimation

accuracy; it is worth mentioning that it has a bias decaying at a rate of O[(1−p0)n/n]

where p0 = min{pk > 0; 1 ≤ k ≤ K} on a finite alphabet where K is the cardinality.

Also, because Ĥz is a weighted sum of U-statistic, Ĥz are more analytically tractable

and its rates of convergence can be obtained under a wide range of distribution sub-

classes, see Zhang (2012). Simulation results also show that Ĥz and its bias-adjusted

versions, are quite competitive among existing estimators.

Zhang (2013) established the asymptotic normality of
√
n(Ĥz −H) on any finite

alphabet. This paper extends the normality results of Zhang (2013) to include cer-

tain cases of alphabets with countably infinite cardinality, as stated in the following

theorem and corollary.

2.2 Main Results

Let F = E[− ln(pX)]2 =
∑

k pk ln2(pk) and

F̂z =
n−1∑
v=1

{(
v−1∑
i=1

1

i(v − i)

){
nv+1[n− (v + 1)]!

n!

∑
k

[
p̂k,n

v−1∏
j=0

(
1− p̂k,n −

j

n

)]}}
.

(2.2)
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Theorem 2.1. For a non-uniform distribution {pk; k ≥ 1} satisfying E(lnPX)2 < ∞,

if there exists an integer valued function K(n) such that, K(n) → ∞, K(n) =

o(
√
n/ lnn) and

√
n
∑

k≥K(n) pklnpk → 0, as n→∞. Then for Ĥz as in (2.1), it has

√
n
(
Ĥz −H

)
D−→ N(0, σ2)

where σ2 = V ar [− ln(pX)] = F −H2.

Corollary 2.1. Let {pk; k ≥ 1} be a probability distribution on an alphabet satisfying

the condition of Theorem 2.1, Ĥz be as in (2.1), and F̂z be as in (2.2). Then

√
n

 Ĥz −H√
F̂z − Ĥ2

z

 D−→ N(0, 1).

Remark 2.1. The condition of Theorem 2.1 is slightly stronger than that of Theorem

1.1 therefore, there will be less probability distributions satisfying the condition of

Theorem 2.1 than that of Theorem 1.1. We can show that, the sufficient condition of

Theorem 2.1 still holds for pk = Cλk
−λ where λ > 2, but not for pk = C/(k2 ln2 k).

Example 2.1. If pk = C/(k2 ln2 k), then the sufficient condition of Theorem 2.1 doesn’t

hold.

For any K(n) = o(
√
n/ lnn), and a sufficiently large n,

√
n
∑

k≥K(n)(−pk ln pk) ∼
√
nC
∫∞
K(n)

2 lnx+2 ln lnx−lnC
x2 ln2 x

dx

∼ 2
√
nC
∫∞
K(n)

1
x2 lnx

dx ≥ 2
√
nC
∫ n
K(n)

1
x2 lnx

dx

≥ 2
√
nC

lnn

∫ n
K(n)

1
x2
dx = 2

√
nC

lnn
( 1
K(n)
− 1

n
) ≥ 2

√
nC

lnn
1

K(n)
→∞.
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To prove Theorem 2.1 and its Corollary, we define

ζ1,v =
∑

k pk(1− pk)v, Cv =
∑v−1

i=1
1

i(v−i) ,

Z1,v = n1+v [n−(1+v)]!
n!

∑
k

[
p̂k,n

∏v−1
j=0

(
1− p̂k,n − j

n

)]
,

and we have,

H =
∞∑
v=1

1

v
ζ1,v, Ĥz =

n−1∑
v=1

1

v
Z1,v, F =

∞∑
v=1

Cvζ1,v and F̂z =
n−1∑
v=1

CvZ1,v.

Note that

Z1,v = nv+1[n−(v+1)]!
n!

∑
k

[
p̂k,n

∏v−1
j=0

(
1− p̂k,n − j

n

)]

=
∑

k
nv+1[n−(v+1)]!

n!
p̂k,n

∏v−1
j=0

n−yk,n−j
n

=
∑

k p̂k,n
∏v−1

j=0
n−yk,n−j
n−j−1

=
∑

k p̂k,n
∏v

j=1

(
1− yk,n−1

n−j

)
,

and therefore,

Ĥz =
∑n−1

v=1
1
v
Z1,v =

∑n−1
v=1

1
v

∑
k p̂k,n

∏v
j=1(1−

yk,n−1
n−j )

=
∑

k p̂k,n
∑n−1

v=1
1
v

∏v
j=1(1−

yk,n−1
n−j )

=
∑

k p̂k,n
∑n−yk,n

v=1
1
v

∏v
j=1(1−

yk,n−1
n−j )

and

F̂z =
n−1∑
v=1

CvZ1,v =
∑
k

p̂k,n

n−yk,n∑
v=1

Cv

v∏
j=1

(1− yk,n − 1

n− j
).
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Let pk,n, p̂k,n, p∗n ,y∗n and p̂∗n be defined the same way as in the proof of Theorem 1.1,

and accordingly, we have

ζ∗1,v =
∑K(n)

k=1 pk,n(1− pk,n)v,

Z∗1,v = n1+v [n−(1+v)]!
n!

∑K(n)
k=1

[
p̂k,n

∏v−1
j=0

(
1− p̂k,n − j

n

)]
,

H∗n =
∑K(n)

k=1 (−pk,n ln pk,n) =
∑∞

v=1
1
v
ζ∗1,v,

Ĥ∗z =
∑n−1

v=1
1
v
Z∗1,v =

∑K(n)
k=1 p̂k,n

∑n−yk,n
v=1

1
v

∏v
j=1(1−

yk,n−1
n−j ),

Ĥ∗n =
∑K(n)

k=1 (−p̂k,n ln p̂k,n),

F ∗n =
∑∞

v=1Cvζ
∗
1,v,

F̂ ∗z =
∑n−1

v=1 CvZ
∗
1,v =

∑K(n)
k=1 p̂k,n

∑n−yk,n
v=1 Cv

∏v
j=1(1−

yk,n−1
n−j ),

F̂ ∗n =
∑K(n)

k=1 (p̂k,n ln2 p̂k,n).

(2.3)

Also, we will need the following facts in our proofs: Zhang and Zhou (2010) established

E(Z1,v) = ζ1,v and E(Z∗1,v) = ζ∗1,v; also, Cv =
∑v−1

i=1
1

i(v−i) = 1
v

∑v−1
i=1 (1

i
+ 1
v−i) ≤

2(ln v+1)
v

.

Lemma 2.1. Under the condition of Theorem 2.1, we have
√
n(Ĥz − Ĥ∗z ) = op(1).

Proof.

Noting that for any k ≥ K(n), we have yk,n ≤ y∗n and

0 ≤
∑n−yk,n

v=1
1
v

∏v
j=1(1−

yk,n−1
n−j )−

∑n−y∗n
v=1

1
v

∏v
j=1(1−

y∗n−1
n−j )

≤
∑n−yk,n

v=1
1
v

∏v
j=1(1−

yk,n−1
n−j ) ≤

∑n−yk,n
v=1

1
v
≤ lnn+ 1,
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therefore,

0 ≤
√
n(Ĥz − Ĥ∗z )

=
√
n
∑

k≥K(n) p̂k,n
∑n−yk,n

v=1
1
v

∏v
j=1(1−

yk,n−1
n−j )−

√
np̂∗n

∑n−y∗n
v=1

1
v

∏v
j=1(1−

y∗n−1
n−j )

=
√
n
∑

k≥K(n) p̂k,n

[∑n−yk,n
v=1

1
v

∏v
j=1(1−

yk,n−1
n−j )−

∑n−y∗n
v=1

1
v

∏v
j=1(1−

y∗n−1
n−j )

]

≤
√
n(lnn+ 1)

∑
k≥K(n) p̂k,n.

By lemma 1.2,
√
n(lnn + 1)E

∑
k≥K(n) p̂k,n =

√
n(lnn + 1)

∑
k≥K(n) pk,n → 0, hence

√
n(Ĥz − Ĥ∗z ) = op(1) follows by Markov’s Inequality. 2

Lemma 2.2. As n→∞, under the condition of Theorem 2.1, we have :

√
n(EĤ∗z −H∗n)→ 0

.

Proof.

0 ≤
√
n(H∗n − EĤ∗z ) =

√
n
∑∞

v=1
1
v
ζ∗1,v −

√
n
∑n−1

v=1
1
v
ζ∗1,v =

√
n
∑∞

v=n
1
v
ζ∗1,v

=
√
n
∑∞

v=n
1
v

∑K(n)
k=1 pk,n(1− pk,n)v =

√
n
∑K(n)

k=1 pk,n
∑∞

v=n
1
v
(1− pk,n)v

≤ 1√
n

∑K(n)
k=1 pk,n

∑∞
v=n(1− pk,n)v ≤ 1√

n

∑K(n)
k=1 pk,n

(1−pk,n)n
pk,n

= 1√
n

∑K(n)
k=1 (1− pk,n)n ≤ K(n)√

n
→ 0.

Therefore, the lemma follows. 2
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Lemma 2.3. As n→∞, under the condition of Theorem 2.1, we have

√
n(EĤ∗n −H∗n)→ 0

.

Proof. Because f(x) = −x ln(x) is a concave function, by Jensen’s inequality, we have

√
n
∑K(n)

k=1 E(−p̂k,n ln p̂k,n + pk,n ln pk,n) ≤ 0.

Also, according to (1.2),

√
n
∑K(n)

k=1 (EĤ∗n −H∗n)

=
√
n
∑K(n)

k=1 E(−p̂k,n ln p̂k,n + pk,n ln pk,n)1[pk,n≥ 1
n
]

+
√
n
∑K(n)

k=1 E(−p̂k,n ln p̂k,n + pk,n ln pk,n)1[pk,n<
1
n
]

≥
√
n
[
−K(n)−1

2n
+ 1

12n2

(
1−

∑K(n)
k=1

1
pk,n

1[pk,n≥ 1
n
]

)
+O(n−3)

]
+
√
n
∑K(n)

k=1 (pk,n ln pk,n)1[pk,n<
1
n
]

≥ −
√
nK(n)
2n

−
√
nK(n)n
12n2 −

√
nK(n) lnn

n
→ 0.

Therefore,
√
n(EĤ∗n −H∗n)→ 0. 2

Lemma 2.4. If a and b are such that 0 < a < b < 1, then for any integer m ≥ 0,

bm − am ≤ mbm−1(b− a).

Proof. Noting that f(x) = xm is convex on interval (0, 1) and f ′(b) = mbm−1, the

results follows immediately. 2

Lemma 2.5. Under the condition of Theorem 2.1, we have
√
n(Ĥ∗z − Ĥ∗n) = op(1).
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Proof.
√
n(Ĥ∗z − Ĥ∗n) =

√
n
(
Ĥ∗z +

∑K(n)
k=1 p̂k,n ln p̂k,n

)
=
√
n
(
Ĥ∗z −

∑K(n)
k=1

∑n−yk,n
v=1

1
v
p̂k,n(1− p̂k,n)v

)
−
√
n
∑K(n)

k=1

∑∞
v=n−yk,n+1

1
v
p̂k,n(1− p̂k,n)v

:= A1 −A2.

Since

0 ≤ A2 =
√
n
∑K(n)

k=1

∑∞
v=n−yk,n+1

1
v
p̂k,n(1− p̂k,n)v

≤
∑K(n)

k=1

√
n

n−yk,n+1
p̂k,n

∑∞
v=n−yk,n+1(1− p̂k,n)v

=
∑K(n)

k=1

√
n

n−yk,n+1
(1− p̂k,n)n−yk,n+1 ≤ 1√

n

∑K(n)
k=1

1
1−p̂k,n+1/n

(1− p̂k,n)n−yk,n+1

= 1√
n

∑K(n)
k=1

1
1−p̂k,n+1/n

(1− p̂k,n)n−yk,n+11[p̂k,n < 1]

≤ 1√
n

∑K(n)
k=1

1
1−p̂k,n

(1− p̂k,n)n−yk,n+11[p̂k,n < 1]

= 1√
n

∑K(n)
k=1 (1− p̂k,n)n−yk,n1[p̂k,n < 1] ≤ K(n)√

n
,

A2
a.s.→ 0 and therefore A2

p→ 0.

Before considering A1, we first note the facts that

(
1− yk,n−1

n−j

)
≥
(
1− yk,n

n

)
= (1− p̂k,n) if and only if 0 ≤ j ≤ n

yk,n+1[yk,n=0]
:= 1

p̂∗k,n

(2.4)

and that, after a few algebraic steps, Z∗1,v may be expressed as

Z∗1,v =
∑K(n)

k=1 p̂k,n
∏v

j=1

(
1− yk,n−1

n−j

)
=
∑K(n)

k=1 p̂k,n
∏Jk∧v

j=1

(
1− yk,n−1

n−j

)∏v
j=Jk∧v+1

(
1− yk,n−1

n−j

)
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where Jk = b1/p̂∗k,nc and
∏b

v=a(·) = 1 if a > b.

A1 =
√
n
(
Ĥ∗z −

∑K(n)
k=1

∑n−yk,n
v=1

1
v
p̂k,n(1− p̂k,n)v

)
=
√
n
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

[∏v
j=1

(
1− yk,n−1

n−j

)
− (1− p̂k,n)v

]
=
√
n
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

[∏Jk∧v
j=1

(
1− yk,n−1

n−j

)∏v
j=Jk∧v+1

(
1− yk,n−1

n−j

)
−
∏Jk∧v

j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk)

]
+
√
n
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

[∏Jk∧v
j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk) − (1− p̂k,n)v

]
= A1,1 +A1,2.

(2.5)

By (2.4), we have A1,1 ≤ 0 and A1,2 ≥ 0. We want to show that E(A1,1) → 0 and

E(A1,2)→ 0 respectively.

A1,1 =
√
n
[
Ĥ∗z −H∗n

]
−
√
n
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

∏Jk∧v
j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk) −H∗n

]
=
√
n
[
Ĥ∗z −H∗n

]
−
√
n
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

∏Jk∧v
j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

(1− p̂k,n)v
]

−
√
n
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

(1− p̂k,n)v −H∗n
]

:= A1,1,1 −A1,1,2 −A1,1,3.

E(A1,1,1)→ 0 follows by Lemma 2.2. Then,

A1,1,3 =
√
n
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

(1− p̂k,n)v −H∗n
]

=
√
n
[∑K(n)

k=1 p̂k,n
∑∞

v=1
1
v

(1− p̂k,n)v −H∗n
]

−
√
n
∑K(n)

k=1 p̂k,n
∑∞

v=n−yk,n+1
1
v

(1− p̂k,n)v

=
√
n
[
Ĥ∗n −H∗n

]
−
√
n
∑K(n)

k=1 p̂k,n
∑∞

v=n−yk,n+1
1
v

(1− p̂k,n)v

:= A1,1,3,1 −A2.
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E(A1,1,3,1) → 0 by Lemma 2.3, E(A2) → 0 is established above, and therefore

E(A1,1,3)→ 0.

A1,1,2 =
√
n
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

∏Jk∧v
j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

(1− p̂k,n)v
]

≤
√
n
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

∏Jk∧v
j=1

(
1− yk,n−1

n−1

)
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

(1− p̂k,n)v
]

=
√
n

[∑K(n)
k=1 p̂k,n

∑n−yk,n
v=1

1
v

(
1− yk,n−1

n−1

)Jk∧v
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

(1− p̂k,n)Jk∧v (1− p̂k,n)0∨(v−Jk)
]

=
√
n
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

[(
1− yk,n−1

n−1

)Jk∧v
− (1− p̂k,n)Jk∧v

]
(1− p̂k,n)0∨(v−Jk)

≤
√
n
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

[(
1− yk,n−1

n−1

)Jk∧v
− (1− p̂k,n)Jk∧v

]
≤
√
n
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1
1
v

[
(Jk ∧ v)

(
1− yk,n−1

n−1

)Jk∧v−1 n−yk,n
n(n−1)

]
(by Lemma 2.4)

≤
√
n

n−1
∑K(n)

k=1 p̂k,n(1− p̂k,n)
[∑n−yk,n

v=1
1
v
(Jk ∧ v)

]
=
√
n

n−1
∑K(n)

k=1 p̂k,n(1− p̂k,n)
[∑Jk

v=1
1
v
(Jk ∧ v) +

∑n−yk,n
v=Jk+1

1
v
(Jk ∧ v)

]
=
√
n

n−1
∑K(n)

k=1 p̂k,n(1− p̂k,n)
[
Jk + Jk

∑n−yk,n
v=Jk+1

1
v

]
≤
√
n

n−1
∑K(n)

k=1 p̂k,n
(
Jk + Jk

∑n
v=1

1
v

)
≤
√
n

n−1
∑K(n)

k=1
yk,n
n

n
yk,n+1[yk,n=0]

(lnn+ 2) ≤
√
nK(n)(lnn+2)

n−1

Therefore,

E(A1,1,2) = O
(√

nK(n) lnn
n

)
→ 0.

Finally E(A1,2) = E(A1,1,2)→ 0. It follows that
√
n(Ĥ∗z − Ĥ∗n) = op(1).

Proof of Theorem 2.1.
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Note that

√
n(Ĥz −H)−

√
n(Ĥ∗n −H∗n) =

√
n(Ĥz − Ĥ∗n)−

√
n(H −H∗n)

=
√
n(Ĥz − Ĥ∗z ) +

√
n(Ĥ∗z − Ĥ∗n)−

√
n(H −H∗n)

=
√
n(Ĥz − Ĥ∗z ) +

√
n(Ĥ∗z − Ĥ∗n) +

√
n
∑

k≥K(n)(pk ln pk)−
√
n p∗n ln p∗n.

(2.6)

We proved
√
n(Ĥ∗n −H∗n)

D−→ N(0, σ2) in (1.7). The proof is complete if we can

show each of the four terms in the right hand side of (2.6) is op(1).

The first two terms are op(1) by Lemma 2.1 and Lemma 2.5 respectively, and the

third term goes to 0 by the condition of Theorem 2.1, and the fourth term goes to 0

by (1.4). Therefore, by Slutsky’s lemma, we conclude the theorem. 2

To prove the Corollary 2.1, we need a few lemmas as follows:

Lemma 2.6. Under the condition of Theorem 2.1, we have F̂n − F̂ ∗n = op(1).

Proof.

0 ≤ F̂n − F̂ ∗n =
∑

k≥K(n) p̂k,n ln2 p̂k,n − p̂∗n ln2 p̂∗n

=
∑

k≥K(n) p̂k,n ln2 p̂k,n −
∑

k≥K(n) p̂k,n ln2 p̂∗n

=
∑

k≥K(n) p̂k,n(ln2 p̂k,n − ln2 p̂∗n) ≤
∑

k≥K(n) p̂k,n ln2 p̂k,n

≤ ln2 n
∑

k≥K(n) p̂k,n

By lemma 1.2, ln2 nE
∑

k≥K(n) p̂k,n = ln2 n
∑

k≥K(n) pk,n → 0, F̂n − F̂ ∗n = op(1)

follows by Markov’s Inequality. 2

Lemma 2.7. Under the condition of Theorem 2.1, we have F̂z − F̂ ∗z = op(1).
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Proof. Noting that for any k ≥ K(n), we have yk,n ≤ y∗n and

0 ≤
∑n−yk,n

v=1 Cv
∏v

j=1(1−
yk,n−1
n−j )−

∑n−y∗n
v=1 Cv

∏v
j=1(1−

y∗n−1
n−j )

≤
∑n−yk,n

v=1 Cv
∏v

j=1(1−
yk,n−1
n−j ) ≤

∑n−yk,n
v=1 Cv ≤

∑n
v=1

2(ln v+1)
v

≤ 2(lnn+ 1)2,

therefore,

0 ≤ F̂z − F̂ ∗z

=
∑

k≥K(n) p̂k,n
∑n−yk,n

v=1 Cv
∏v

j=1(1−
yk,n−1
n−j )− p̂∗n

∑n−y∗n
v=1 Cv

∏v
j=1(1−

y∗n−1
n−j )

=
∑

k≥K(n) p̂k,n

[∑n−yk,n
v=1 Cv

∏v
j=1(1−

yk,n−1
n−j )−

∑n−y∗n
v=1 Cv

∏v
j=1(1−

y∗n−1
n−j )

]

≤ 2(lnn+ 1)2
∑

k≥K(n) p̂k,n.

By lemma 1.2, (lnn + 1)2E
∑

k≥K(n) p̂k,n = (lnn + 1)2
∑

k≥K(n) pk,n → 0, therefore,

F̂z − F̂ ∗z = op(1) follows by Markov’s Inequality. 2

Lemma 2.8. As n→∞, under the condition of Theorem 2.1, we have :

E(F̂ ∗z )− F ∗n → 0

.
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Proof.

0 ≤ F ∗n − E(F̂ ∗z ) =
∑∞

v=1Cvζ
∗
1,v −

∑n−1
v=1 Cvζ

∗
1,v =

∑∞
v=nCvζ

∗
1,v

=
∑∞

v=nCv
∑K(n)

k=1 pk,n(1− pk,n)v =
∑K(n)

k=1 pk,n
∑∞

v=nCv(1− pk,n)v

≤ 2(lnn+1)
n

∑K(n)
k=1 pk,n

∑∞
v=n(1− pk,n)v ≤ 2(lnn+1)

n

∑K(n)
k=1 pk,n

(1−pk,n)n
pk,n

= 2(lnn+1)
n

∑K(n)
k=1 (1− pk,n)n ≤ 2(lnn+1)K(n)

n
→ 0.

2

Lemma 2.9. Under the condition of Theorem 2.1, we have F̂ ∗z − F̂ ∗n = op(1).

Proof.

F̂ ∗z − F̂ ∗n = F̂ ∗z −
∑K(n)

k=1 p̂k,n ln2 p̂k,n

=
[
F̂ ∗z −

∑K(n)
k=1

∑n−yk,n
v=1 Cvp̂k,n(1− p̂k,n)v

]
−
∑K(n)

k=1

∑∞
v=n−yk,n+1Cvp̂k,n(1− p̂k,n)v

:= B1 − B2.

Since

0 ≤ B2 =
∑K(n)

k=1

∑∞
v=n−yk,n+1Cvp̂k,n(1− p̂k,n)v

≤
∑K(n)

k=1
2(lnn+1)
n−yk,n+1

p̂k,n
∑∞

v=n−yk,n+1(1− p̂k,n)v

=
∑K(n)

k=1
2(lnn+1)
n−yk,n+1

(1− p̂k,n)n−yk,n+1

≤ 2(lnn+1)
n

∑K(n)
k=1

1
1−p̂k,n+1/n

(1− p̂k,n)n−yk,n+1

= 2(lnn+1)
n

∑K(n)
k=1

1
1−p̂k,n+1/n

(1− p̂k,n)n−yk,n+11[p̂k,n < 1]

≤ 2(lnn+1)
n

∑K(n)
k=1

1
1−p̂k,n

(1− p̂k,n)n−yk,n+11[p̂k,n < 1]

= 2(lnn+1)
n

∑K(n)
k=1 (1− p̂k,n)n−yk,n1[p̂k,n < 1] ≤ 2(lnn+1)K(n)

n
,
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B2
a.s.→ 0 and therefore B2

p→ 0. Next,

B1 = F̂ ∗z −
∑K(n)

k=1

∑n−yk,n
v=1 Cvp̂k,n(1− p̂k,n)v

=
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv

[∏v
j=1

(
1− yk,n−1

n−j

)
− (1− p̂k,n)v

]
=
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv

[∏Jk∧v
j=1

(
1− yk,n−1

n−j

)∏v
j=Jk∧v+1

(
1− yk,n−1

n−j

)
−
∏Jk∧v

j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk)

]
+
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv

[∏Jk∧v
j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk) − (1− p̂k,n)v

]
= B1,1 + B1,2.

(2.7)

By (2.4), we have B1,1 ≤ 0 and B1,2 ≥ 0. We want to show that E(B1,1) → 0 and

E(B1,2)→ 0 respectively.

B1,1 =
(
F̂ ∗z − F ∗n

)
−
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv
∏Jk∧v

j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk) − F ∗n

]
=
(
F̂ ∗z − F ∗n

)
−
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv
∏Jk∧v

j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv (1− p̂k,n)v
]

−
[∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv (1− p̂k,n)v − F ∗n
]

:= B1,1,1 − B1,1,2 − B1,1,3.

E(B1,1,1)→ 0 follows by Lemma 2.8. Next,

B1,1,3 =
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv (1− p̂k,n)v − F ∗n

=
[∑K(n)

k=1 p̂k,n
∑∞

v=1Cv (1− p̂k,n)v − F ∗n
]

−
∑K(n)

k=1 p̂k,n
∑∞

v=n−yk,n+1Cv (1− p̂k,n)v

= (F̂ ∗n − F ∗n)−
∑K(n)

k=1 p̂k,n
∑∞

v=n−yk,n+1Cv (1− p̂k,n)v

:= B1,1,3,1 − B2.
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As we showed limn→∞EF̂n = F in Corollary 1.1, E(B1,1,3,1)→ 0 can be proved in the

same way. Also, E(B2)→ 0 is established above, therefore, E(B1,1,3)→ 0.

B1,1,2 =
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv
∏Jk∧v

j=1

(
1− yk,n−1

n−j

)
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv (1− p̂k,n)v

≤
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv
∏Jk∧v

j=1

(
1− yk,n−1

n−1

)
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv (1− p̂k,n)v

=

[∑K(n)
k=1 p̂k,n

∑n−yk,n
v=1 Cv

(
1− yk,n−1

n−1

)Jk∧v
(1− p̂k,n)0∨(v−Jk)

−
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv (1− p̂k,n)Jk∧v (1− p̂k,n)0∨(v−Jk)
]

=
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv

[(
1− yk,n−1

n−1

)Jk∧v
− (1− p̂k,n)Jk∧v

]
(1− p̂k,n)0∨(v−Jk)

≤
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv

[(
1− yk,n−1

n−1

)Jk∧v
− (1− p̂k,n)Jk∧v

]
≤
∑K(n)

k=1 p̂k,n
∑n−yk,n

v=1 Cv

[
(Jk ∧ v)

(
1− yk,n−1

n−1

)Jk∧v−1 n−yk,n
n(n−1)

]
(by Lemma 2.4)

≤ 1
n−1

∑K(n)
k=1 p̂k,n(1− p̂k,n)

[∑n−yk,n
v=1 Cv(Jk ∧ v)

]
≤ 1

n−1
∑K(n)

k=1 p̂k,n(1− p̂k,n)Jk
∑n−yk,n

v=1 Cv

≤ 1
n−1

∑K(n)
k=1 p̂k,n(1− p̂k,n)Jk

∑n
v=1

2(lnn+1)
v

≤ 2(lnn+1)
n−1

∑K(n)
k=1 p̂k,nJk(lnn+ 1)

≤ 2(lnn+1)2

n−1
∑K(n)

k=1
yk,n
n

n
yk,n+1[yk,n=0]

≤ 2(lnn+1)2K(n)
n−1

Therefore,

E(B1,1,2) = O
(
K(n) ln2 n

n

)
→ 0.

Finally E(B1,2) = E(B1,1,2)→ 0. It follows that F̂ ∗z − F̂ ∗n = op(1).

Proof of Corollary 2.1.

F̂z − F = (F̂z − F̂ ∗z ) + (F̂ ∗z − F̂ ∗n) + (F̂ ∗n − F̂n) + (F̂n − F )

Each of the first three terms in above equation is op(1) by Lemma 2.7, Lemma
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2.9, and Lemma 2.6 respectively. Also, we showed in the proof of Corollary 1.1 that

F̂n − F = op(1). Therefore, F̂z − F = op(1).

By Theorem 2.1, Ĥ2
z

p→ H2 and hence, F̂z − Ĥ2
z

p→ F − H2 = σ2. Finally,we

conclude the corollary by Theorem 2.1 and Slusky’s Theorem. 2

2.3 Remarks

In conclusion, the sufficient condition of the new estimator supports less distri-

bution class than that of the plug-in estimator.However, simulations showed that Ĥz

always outperforms Ĥn under various distributions; also, Zhang (2012) showed that

the upper bound of the variance of Ĥz decays faster than that of Ĥn by a factor of

ln(n) at a rate O(ln(n)/n) for all distributions with finite entropy, they lead to my

conjecture that the sufficient condition of Theorem 2.1 can be further relaxed. Next

question that one would naturally ask is whether there exists a probability distribu-

tion under which the normality of one estimator holds but does not for the other.To

answer this question completely, the directions of the future research should aim to

establish the necessary and sufficient conditions of both estimators.
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