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ABSTRACT 

 

 

MATTHEW C. BROWN.  The Microbiota Multiverse: From Gut to Brain and Beyond. 

(Under the direction of DR. ANTHONY A. FODOR) 

 

 

This work explores the microbiomes of diverse biological contexts with various 

stakeholders and collaborators. It consists of six objectives: the first two relate to 

interaction between the gut microbiome and host health, the second two investigate the 

microbiota-gut-brain axis and the last two move beyond the host to consider the 

microbiomes of the external environment and controversy in the enterotype hypothesis, a 

major conceptual framework in human gut microbiome research. The first objective 

confirms findings in previous research by providing further evidence as to the lack of 

strong microbial associations seen in the healthy aging of the gastrointestinal tract in a 

non-human primate. The second objective contributes a negative finding to the discussion 

of an area of gut health where previous studies claimed to have found associations, but 

themselves had problems in study design, cohort size, or flawed reporting of statistics. In 

the third objective, a small anorexia nervosa cohort revealed the persistence of 

individualized microbiome characteristics even in the course of recovery from severe 

illness. The findings of a sex-stress interaction in the fourth objective underscore the need 

for future experiments involving the microbiota-gut-brain axis to use mixed-sex cohorts 

to yield results suitable for translational research, but also provides further evidence of 

associations of differentially abundant microbes with stress and anxiety which correspond 

well with other studies in this field. The evaluation of wastewater processing treatment 

plants in the fifth objective showed that such facilities are effective in removing 
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pathogens and many genes associated with antibiotic resistance, but may elevate 

concentrations of antibiotics during the treatment process. The last objective has found 

that algorithmic methods of determining enterotypes are not robust or consistent subject 

to dataset choice, normalization strategy and corrections for compositional data. This 

research is unified through its investigations into what constitutes the proper statistical 

treatment of metagenomics data, especially in the light of its nature as compositional 

data, and how this may interact with the creation of meaningful benchmarks and “gold 

standards” which remain to be discovered or invented for this field in order to support 

reproducible research. 
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CHAPTER 1: OVERVIEW AND OBJECTIVES 

 

 

1.1 Introduction 

Initial estimates of the oft-stated ten-to-one ratio of microbial cells to human cells inside 

our bodies have been revised to a near one-to-one parity1. While not as numerically 

dominant as initially thought, microbes still offer their host organisms a plethora of 

functional capabilities not present in the host’s own genome2,3. In cattle and other 

ruminants, the microbiota permit the digestion of the cellulose of grasses, and in many 

plant species it is microbes that facilitate the acquisition of nitrogen. Microbes assist the 

absorption and production of nutrients in humans as well4. Our commensal microbiota 

also play an important role in training our immune systems to recognize and destroy 

pathogens5,6. In turn, the host provides protection from environmental extremes, and 

nutrients, among other necessities. It has been demonstrated that the microbiomes of 

humans have individual signatures and are robust to many forms of perturbation7,8, which 

can lead us to pondering the true meaning of “self” when so much of the biological work 

involved in sustaining a healthy existence is done outside of our own genetic legacies9,10.  

In many biological contexts we are still in the process of conducting a microbial census11 

of “who” is present or absent in a discriminating fashion between the healthy and 

diseased state12–14. There is also the matter of assessing if microbial associations are even 

strong enough to be considered biologically relevant or experimentally feasible given the 

costs of sampling from large cohorts, as well as formulating standardized laboratory best 

practices to better enable comparisons between cohorts and develop modeling strategies 

to account for such confounders15,16. Specific microbes from these metagenomes have 

been implicated in a diverse array of diseases with many initial discoveries naturally 
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focused on gastrointestinal diseases. However, it has also been appreciated that microbes 

can have influences distant from the gut. The role of the microbiome in carcinogenesis is 

a key example of the complex interplay between microbes and host at the systems level 

of inflammation and at the level of specific molecular mechanisms, which is discussed in 

our review article “Carcinogenesis and therapeutics: the microbiota perspective”17 by 

Tsilimigras, Fodor and Jobin. Initial investigations of microbial relationships with 

cancers of the gut quickly extended to seemingly unrelated extra-intestinal cancers17,18. 

Interestingly, some microbes are associated with the onset of some cancers19 while at the 

same time may offer protection against other cancers20. This simultaneous importance of 

systematic perturbations of the microbiota in response to inflammation and specific 

molecular mechanisms has been seen in other instances of host-microbiome interactions. 

There has been increasing support of the role of inflammation in precipitating depression-

related mental illnesses, for example, in addition to imbalances of specific 

neurochemicals21. The reach of these organisms extends so far as to influence human 

behavior and the progression of mental illness, like the well-known example of 

behavioral changes due to infection by Toxoplasma gondii, a parasitic apicomplexan 

acquired from domestic cats22. Other non-infectious mental illnesses, such as anorexia 

nervosa23, are now believed to have microbial associations through the microbiota-gut-

brain axis24,25.  

Beyond the actions of individual species of microbes in these various biological contexts, 

some of which act through known molecular mechanisms26, lies the complexity of 

microbial community interactions. These communities can act as a biological buffer 

against invasive pathogens and bring to light the importance of the biological context 
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which most microbes find themselves in determining their contribution to host health or 

disease. Here dysbiosis, the disruption of normal functions and structure of microbial 

populations at the systems level, can trigger all manner of negative health outcomes 

through inflammation and immune system activation27,28. Interestingly, the dynamics of 

these communities can also foster the rapid evolution and dissemination of antibiotic 

resistance genes through horizontal gene transfer29,30.  

Owing to years of investigations as to the “who” and recent mechanistic explorations of 

“how”, therapeutic interventions to microbe-driven ailments now complement the 

punitive actions of antibiotics with probiotics and microbe-supporting prebiotics31–34. 

These interventions are can largely either be restorative, returning the flora to a healthy 

baseline35, or supplemental and encouraging a “new normal.” The commensal microbiota 

even play a role in cancer therapeutics through their metabolism of several prodrugs into 

active compounds, but they can also interfere with cancer treatments17. Understanding 

and utilizing the microbiome to improve human health is thus a delicate and complicated 

matter of rethinking intervention strategies against “bad bugs” while supporting our 

microbial benefactors.  

However, investigations of both lab-made communities of probiotics and natural 

communities present a problem for traditional forms of statistical analysis: most of our 

current sequencing efforts towards investigating microbiomes can only meaningfully 

return this census-like data as relative abundances since the actual counts of microbial 

populations present in these samples have been transformed by the stochastic 

subsampling processes of sequencing36. This reconsideration should not be wholly 

surprising as most researchers routinely normalize all data from next generation 
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sequencing because the number of sequenced reads from each sample can vary widely for 

technical replicates of the sample biological sample in the same sequencing reaction 

which makes working from raw count data alone unreliable and prone to cause errors in 

making accurate biological inferences. This makes it unreasonable to conclude, for 

example, that a taxon is considered differentially abundant in sample B versus sample A 

if the raw sequence counts of that taxon doubles from A to B, when the sequencing depth 

may vary greatly between the samples which gives the raw counts a very different 

numerical context. The procedure of using relative abundances from such sequencing 

data are thus a form of compositional data, data wherein the individual components 

(microbial taxa) of the mixture are subject to the constraint of summing to a constant, 

which is usually interpreted to be percentages of a whole36–38. Standard statistical 

analyses will produce artifacts owing to the mathematical differences in this proportional 

non-Euclidean geometric space39, and a fuller explanation of these details are presented 

in section IV of the Background. A summary of working with compositional data in the 

context of metagenomics and a survey of some approaches to address these statistical 

concerns appears in our review article “Compositional Data Analysis of the Microbiome: 

Fundamentals, Tools, and Challenges” by Tsilimigras and Fodor37. In short, while many 

solutions exist as publicly available software packages, some biological questions and 

popular analytic approaches, such as microbial association networks, can only 

meaningfully be answered and used if additional quantitative measurements are collected 

during the sequencing experiment40. However, a fuller understanding of the impact on 

biological interpretations and the limitations in the questions that the structure of such 

data can answer are only beginning to be investigated36,37,41. Such field-introspective 
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investigations are crucial in the current atmosphere of the ‘reproducibility crisis’ in 

science, and the Microbiome Quality Control Consortium has begun to answer some 

questions related to the laboratory and bioinformatics processes involved in the analysis 

of microbiome data42. 

1.2 Overall Scope of the Dissertation   

This thesis investigates the associations of microbial abundances determined through 16S 

rRNA sequencing or metagenome whole-genome sequencing (WGS) along with the 

measurement of various metabolic biomarkers, behavioral assessments, and other 

metadata covariates. This is done across a variety of biological contexts from model 

organisms like mice in a controlled laboratory research settings, to more human 

representative model animals such as non-human primates, to healthy and diseased 

human cohorts, and to the opposite extreme of samples collected from a wastewater 

treatment ecosystem. The work is unified by its consideration of the reproducibility of the 

results of metagenomics studies as seen by replication cohorts, different normalization 

methods and corrections for compositionality. 

1.3 Research Objectives  

1.3.1 Objective I: The Influence of Age on Intestinal Microbial Translocation in a Non-

Human Primate 

Microbial abundances from 16S rRNA gene sequencing of three sample tissue types are 

assessed alongside biomarkers to investigate age-related differences in the community 

structure and composition of the microbiota of female vervet monkeys. 
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1.3.2 Objective II: Microbial Associations with Colonic Diverticulosis 

Diverticulosis is a condition wherein the patient has small pouches along the lining of the 

digestive system called diverticula, but these are usually present without any health 

problems. However, diverticula can become inflamed or infected leading to diverticulitis 

through largely unknown etiologies. 16S rRNA sequences of mucosal biopsies from a 

large cohort of 226 subjects with diverticula and 309 subjects without diverticula were 

used to assess associations between the microbiota and diverticulosis.  

1.3.3 Objective III: Case Study of Daily Changes in Microbial Composition and Diversity 

in Three Patients with Anorexia Nervosa 

Anorexia nervosa has been shown previously to have associations with the intestinal 

microbial community. Here the microbiomes of a small cohort undergoing hospital-based 

renourishment is assessed through daily 16S rRNA sampling alongside patient metabolic 

measures in order to investigate the interactions between the microbiome and recovery 

from acute anorexia nervosa. 

1.3.4 Objective IV: Stress-Sex Interaction Influences the Microbiota-Gut-Brain Axis in a 

Mouse Model 

16S rRNA gene sequencing of a mouse cohort consisting of both males and females is 

used to investigate differences in microbial abundances according to sex in response to 

chronic physical stressors. The microbiome data is also assessed for associations with 

specific behavioral scores from various assessments of anxiety and stress-related 

behaviors. 
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1.3.5 Objective V: Microbial Community Composition, Antibiotic Concentrations and 

Antibiotic Resistance Genes Upstream, Downstream and Within a North Carolina Urban 

Water System  

Microbial abundances and antibiotic concentrations are tracked through two wastewater 

treatment plants and upstream and downstream of the associated waterways in the 

Charlotte, North Carolina metropolitan area across multiple time points using whole-

genome sequencing in order to study the influence of treatment on relative abundances of 

pathogenic organisms, genes associated with antibiotic resistance, and concentrations of 

several common antibiotics.  

1.3.6 Objective VI: Probing the Robustness of the Enterotype Hypothesis 

Enterotypes are the hypothesized discrete patterns of microbes in the human gut thought 

to indicative of disease propensity. However, the enterotype hypothesis remains a 

controversial entity. This aim assesses the robustness of enterotypes through investigating 

how normalization techniques and compositional corrections influence the clustering 

methods used in the creation of enterotypes. This will be evaluated on some of the initial 

datasets used in the formulation of enterotypes in addition to datasets containing much 

larger human cohorts. 

1.4 Expected Significance 

This work explores the microbiomes of diverse biological contexts with various 

stakeholders and collaborators. The first objective confirms findings in previous research 

by providing further evidence as to the lack of strong microbial associations seen in the 

healthy aging of the gastrointestinal tract in a non-human primate. The second objective 

contributes a negative finding to the discussion of an area of gut health where previous 
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studies claimed to have found associations, but those other experiments themselves had 

problems in study design, cohort size, or flawed reporting of statistics. The case study of a 

small anorexia nervosa cohort revealed the persistence of a microbiome characteristic of 

the individual even in the course of recovery from a severe illness. The findings of a sex-

stress interaction in the fourth objective underscore the need for future experiments 

involving the microbiota-gut-brain axis to use mixed-sex cohorts to yield results suitable 

for translational research, but also provides further evidence of associations of 

differentially abundant microbes with stress and anxiety which correspond well with other 

studies in this field. The evaluation of wastewater processing showed that such facilities 

are effective in removing pathogens and many genes associated with antibiotic resistance, 

but may elevate concentrations of antibiotics during the treatment process. The last 

objective finds that algorithmic methods of determining enterotypes are not robust or 

consistent subject to dataset choice, normalization strategy nor corrections for 

compositional data, and suggests several revisions to methods to support the 

communication of biomarkers like enterotypes in a more rigorous manner. Taken as a 

whole, this research is unified through its investigations into what constitutes the proper 

statistical treatment of metagenomics data, especially in the light of its nature as 

compositional data, and how this may interact with the future creation of meaningful 

benchmarks and “gold standards” which remain to be discovered or invented for this field 

in order to support reproducible research.
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CHAPTER 2: METHODOLOGIES EMPLOYED 

 

 

2.1 Sequencing and Taxonomic Classification Methods 

2.1.1 Amplicon and Whole-Genome Sequencing 

Woese famously redefined the “Tree of Life” by his discovery that the 16S rRNA gene 

could be used as a marker of phylogenetic taxonomy within bacteria43. Different variable 

regions of the gene can be used, and it is well-known that the choice of the 16S variable 

region being sequenced has the potential to favor some taxa over others44. 16S 

sequencing may not have the strain resolution capabilities of methods based on whole-

genome sequencing, but it considered by some researchers to better sample rare taxa45. 

The use of 16S sequencing in these datasets does restrict the microbiome investigated in 

these experiments towards being primarily bacteria. WGS sequencing was performed on 

samples collected in aim five in order to characterize the genes and therefore putative 

mechanisms for conferring antibiotic resistance. It should be noted that WGS approaches 

to metagenomics also produce compositional data46. The specifics of the sequencing 

experiments are discussed in greater detail in each of the respective sections. 

2.1.2 Software for Taxonomic Classification 

Taxonomic classification for 16S rRNA gene sequencing is achieved either by mapping 

using the naïve Bayes-based RDP  algorithm47 using the RDP database48 or with the 

QIIME49 metagenomics analysis suite using the Greengenes database50. Results tended to 

be in high agreement between the two methods when QIIME is set to use a closed-

reference to pick OTUs, and this agreement has been observed by others51. Unless 

otherwise specified, only the forward reads were used in classifications as the process of 

merging reads can drop high-quality forward reads if their lower-quality reverse read fails 
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to pass quality filtering. Taxonomic classifications of WGS sequencing efforts were 

conducted using MetaPhlAn252. The settings and parameters for each classifier are 

discussed in each objective. In some objectives, but not all, a software suite being 

developed by the Fodor lab called BioLockJ towards managing the complexity and 

reproducibility of bioinformatics and metagenomics pipelines was used. 

2.2 Data Transformations and Normalizations 

For aims one through four, the taxa counts from these pipelines were log normalized as 

described in53. This is technically considered as a variant of the Total Sum Scaling (TSS) 

method of normalization. Objective five used relative abundances calculated by the 

MetaPhlAn2 pipeline for classifying WGS metagenomic data. Objective six considered 

additional normalization methods or transformations that corrected for compositional 

data. Many of these normalizations strategies come from Weiss et al.54 and Pereira et al.55 

and a formula or algorithmic summary for each is presented in Table 2.1. The data 

transformations that correct for the compositional nature of the data, which should be 

considered a separated entity from data normalization methods, are covered in section IV 

of the Background. 

Table 2.1: Table of normalizations and their formulas or reference RC = raw counts in a 

cell, n = number of sequences in a sample, Σx = total number of counts in the table, N = 

total number of samples, PC = pseudo-count, usually taken to be equal to “1”. 

Name Formula 

Raw Counts No normalization is performed 

Rarefied Relative 

Abundance 

Samples are subsampled (without replacement) to a pre-

specified number of counts (usually the smallest number of 

counts amongst all samples) 

Relative 

Abundance/Naïve 

Proportion 

RC/n 
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Relative 

Abundance 

(Logged) 

log10 (
𝑅𝐶

𝑛
+ 𝑃𝐶) 

Log normalized 

(Fodor Lab) log10 (
𝑅𝐶

𝑛
×

∑ 𝑥

𝑁
+ 𝑃𝐶) 

Cumulative Sum 

Scaling (CSS) 

[Method from metagenomeSeq used]56 

Trimmed Mean by 

M-Values (TMM) 

[Method from edgeR used]57 

Relative Log 

Expression (RLE) 

[Method from edgeR used] 

Log Upper Quartile 

(logUQ) 

Scales counts by the upper quartile value (75th percentile) 

[Method from edgeR used] 

Median Ratio Performs scaling based on median counts  

[Method from edgeR used] 

DESeq Variance 

Stabilization 

[Method from DESeq used]58 

 

The most simple normalization to be explored is the naïve/simple proportion or relative 

abundance, in which the counts of each taxa within a sample is divided by the total 

number of counts within the sample. This normalization scheme is the default output of 

several widely used pipelines, including MetaPhlAn2, though in MetaPhlAn2 it takes into 

account the size of the genomes against which marker sequences are being compared. 

The log upper-quantile (logUQ) normalization was introduced to scale counts by their 

upper-quartile/75th percentile such that they are in better agreement with qRT-PCR 

experimental results. The median ratio normalization uses properties of the median to 

reduce the influence of potential outliers. Cumulative sum scaling (CSS) uses a sample-

determined value in place of the fixed upper-quantile threshold, but the scaling is 

performed on only the subset of taxa that remain invariant across all samples. Other 

normalization methods considered, DESeqVS and edgeR-TMM, were developed as parts 

of bioinformatic tools (DESeq and edgeR respectively) for the analysis differential gene 

expression data. An underlying assumption for both methods is that the number of genes 
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that are differentially expressed does not constitute a large percentage of the gene 

expression levels measured, which may not be a reasonable assumption for their usage 

with metagenomics data. The “VS” in “DESeqVS” stands for variance stabilization. Here 

OTUs with large count values are scaled such that they do not overwhelm the smaller 

values present for OTUs. This scaling is done by both row and column. The first scaling 

factor comes from dividing the count of each OTU by its geometric mean (the product of 

its mean across all samples). The second divides the count by the median of the scaling 

factors calculated in the first normalization. These scaled values are then assumed to be 

taken from a Negative Binomial distribution to evaluate the mean-variance relationship 

for these abundances. Generalized linear models are then used with these scaled values 

and distributional assumptions to produce a relationship in which the variance of the 

OTUs is independent of its mean. The edgeR-TMM (Trimmed Mean by M-Values) 

normalization also involves steps to limit the influence of OTUs with large count values. 

This is done by using thresholding to remove those with the highest counts, but the OTUs 

showing the highest fold changes between the experimental conditions are also removed, 

which again is telling of the origin of this method in detecting differential gene 

expression. Then the weighted means of the log-ratios between sample pairs is taken. The 

final normalization is a function of these scaling factors and the initial library sizes. Note 

that like other methods that take the logarithms of count data, special accommodations 

must be made to avoid taking the logarithm of zero values, and this most often takes 

place by the addition of some pseudo-count value, which is arbitrary determined in many 

transformations. The normalizations considered could also include rarifying the data in 

which the counts of all samples are randomly subsampled (without replacement) to a 
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prespecified total number of counts or depth. However, the statistical justification or 

permissibility of performing rarefication is not without controversy59. It should also be 

mentioned that most of these normalization methods make some assumptions about the 

structure of the underlying count data, but there remain no firm guidelines in place for 

selecting an optimal normalization60. The ability of such normalization methods to 

remove the influence of technical artifacts such as sequencing depth on influencing 

biological conclusions remains an area of active study.  

2.3 Statistical Methods 

2.3.1 Linear and Mixed Linear Models 

Metagenomics datasets tend to be high-dimensional, but underdetermined with the 

number of different microbial taxa vastly outnumbering the number individual samples 

collected in all but the largest of studies. This, necessarily, restricts the utility of many 

analytical tools developed to take advantage of ever-increasing sample sizes in other 

analytical contexts—microbiome data is “big,” but not in the way the term “big data” is 

most frequently used with regards to having a large number of records or samples. This 

data also tends to have a pronounced degree of sparsity, with a large portion of zeros 

present in the count table. Various forms of linear regression thus form the backbone of 

our analytical toolkit in determining the differential abundance of microbes between 

conditions. More complex methods exist and some methods of assessing differential gene 

expression have been leveraged for use with determining significant differential 

abundance in metagenomics datasets56–58. However, these methods involve making 

additional assumptions about the distribution of the data, and their true utility in making 

biologically correct inferences has yet to be rigorously assessed61,62. In contrast, the 
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assumptions of linear models are well-known: normality of data, independence, fixed X, 

and the homogeneity of variance, and nonparametric counterparts free of such 

assumptions may be used in the cases of larger sample sizes, albeit with decreased 

power63–65. Specialized mixed linear models and other methods for accounting for 

correlations between samples that would be in violation of the assumptions of the simple 

linear model can be used for the nesting of individuals into groupings dictated by 

experimental design or repeated measurements are also used. Such approaches are 

required to capture the influence of “cage effects” when laboratory animals, especially of 

concern in the case of mice, share housing with one another to statistically correct for the 

fact that co-housed animals are expected to have more similar microbiomes than those 

living in another cage53.  

2.3.2 Nonparametric Models 

Nonparametric models are also used as an alternative to safeguard against making 

biological interpretations of results that could simply be the assumptions of linear 

modeling carrying through65. In this work these mainly comprise the Wilcoxon test (also 

called the Mann-Whitney U test) for comparing across two conditions, like case and 

control, the Kruskal-Wallis test for variables representing more than two categories, and 

Kendall’s tau test of correlation between continuous variables. Note that these three tests 

are unified in their formulation as they all use the U statistic to derive a minimum-

variance unbiased estimator, and that the Kruskal-Wallis test is the direct extension of the 

Wilcoxon test on a categorical variable with more than two levels. 
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2.3.3 Dimensionality Reduction Through Ordination 

Another toolset to assist in both the visual understanding and statistical modeling of high 

dimensional metagenomics data is that of techniques of dimensionality reduction, also 

called ordination. In the context of microbiome research, these methods also perform the 

tasks of assessing the beta-diversity to compare similarities and differences within and 

across experimental conditions. In this work this is mainly achieved through a 

constrained version of principal coordinate analysis (PCoA) using the Bray-Curtis 

dissimilarity by means of the capscale function of the R package vegan66–68. The 

ordination recasts the abundance data into mutually orthogonal vectors explaining the 

differences between samples. This characterization can also be treated as a response 

variable for conducting statistical inference. Other ecological measures, like that of 

alpha-diversity, used in these studies include species richness and Shannon diversity, and 

these are also calculated using functions from the vegan package.  

2.3.4 Multiple Hypothesis Correction Through False Discovery Rate 

Important to any statistical analysis, but especially those of high throughput next 

generation sequencing experiments, is correcting the p-values of the statistical inference 

to account for the large numbers of hypotheses being tested since a number of p-values 

will be less than some threshold designating significance by chance. In this work this is 

done through controlling the Benjamini-Hochberg false discovery rate69. Results are said 

to be significant when FDR-corrected p-values < 0.05, and trends are said to be observed 

when corrected p-values < 0.10. 
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2.4 The Compositional Nature of Sequencing Data 

2.4.1 Stochastic Origins of Sequencing Data 

Sequencing experiments can be thought of a stochastic process sampling randomly from 

the sequence amplicons to fill up the capacity or number of “slots” in the sequencing 

chip/machine36,70. This stochastic process can produce dramatically different read depths 

even in technical replicates, and, as mentioned in the normalization section, such data is 

usually converted to relative proportions or abundances so that taxa can be comparable 

across samples60. Sequencing data is therefore “compositional” by definition in that there 

is now a constant sum (unity) of the various individual components making up a 

sample39.  

2.4.2 Familiar Analogy and Spurious Correlation 

In everyday life such data appear as the percentages of diet coming from fats, proteins or 

carbohydrates, for example, as a separate consideration from raw total calories 

consumed71. This numerical constraint introduces negative artifactual correlations that 

cannot be separated from real biological signals36. This phenomenon has been noticed as 

far back as the late 1800s by Karl Pearson, who observed that three independent and 

random variables (x, y, z) showing no correlations, two would, upon division by the third 

(x/z versus y/z), yield substantial spurious correlations72 [Figure 2.1]. 
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Figure 2.1: Three vectors of 1000 random samples from a standard normal distribution A-

C) Random vectors are uncorrelated when considered pairwise D) Upon division by the 

third vector, spurious correlations occur.  

2.4.3 Techniques for Working with Compositional Data 

Statistical transformations invented to make compositional data amenable to traditional 

statistical techniques have their origins in geology where it is used to study mineral 

compositions of various ores39,73. These transformations usually take the form of ratios of 

logarithms.  
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This essentially means that the “counts” of biological features of such data (genes or 

organisms) are not highly correlated to the numerical presence of corresponding 

sequences, and so it is instead the ratios between features that should be analyzed. This 

does necessarily represent a fundamental loss of information, and limits the scope of 

biological questions being asked37. For example, questions involving absolute abundance, 

and potentially even correlations between taxa, require additional evidence beyond such 

sequencing alone, like qPCR or cell-flow cytometry74. Working with such relative data 

also limits inference. The apparent doubling of the proportion of component A in a three-

component mixture (A, B and C) cannot be unambiguously assigned to the absolute 

increase in the numerical abundance of component A alone as the same pattern would 

result if B and C decreased in absolute abundance [Figure 2.2].  

 

Figure 2.2: Counts versus proportions A) Counts of taxa A, B, C contributing to Sample 1 

B) Representation of the proportional doubling of A while B and C remain equal in 

proportion to each other C) If taxa B and C do not change count relative to panel A) then 

the absolute count of A would need to quadruple (grow to 40) for a doubling of 

proportion of taxon A D) If taxon A does not change count relative to panel A) then taxa 

B and C would need to be reduced to one-quarter (2.5) the original count of 10 for the 

proportion shown in panel B).   
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This construction informs an alternative definition of compositional data in that samples 

C and D are said to have the same “equivalence class” in that when viewed in terms of 

proportions, they are the same. The ramifications of integrating or ignoring compositional 

data corrections in the statistical inference of metagenomics is a question that has yet to 

be fully explored, but it can be broadly considered to be context sensitive to the biology 

and experiment in question via the sparsity, sample sizes, and microbial interaction 

network37,41,75.  

2.4.4 The Principal Transformations of Compositional Data Analysis 

There are three main statistical transformations for working with compositional data, and 

all have R or Python packages associated with their use for metagenomic data. The R 

package ANCOM uses the first developed transform, the additive log ratio (ALR), and 

normalizes the counts of all taxa to some fixed taxon believed to be invariant across 

experimental conditions39,76. This method is limited in its utility because of the lack of 

information in selecting the appropriate invariant taxon, as well as the severe consequences 

for picking one that fails to be invariant, but others have assessed its performance in 

comparison to normalization methods60. 

alr(x) = [ln
𝑥1

𝑥𝐷
, ln

𝑥2

𝑥𝐷
, … , ln

𝑥𝐷−1

𝑥𝐷

] 

Another method, ALDEx277, uses the centered log ratio transform where the log ratio is 

between an individual component and the geometric mean of all components. Zeros in the 

denominator are replaced by Monte Carlo draws from the Dirichlet distribution which 

closely resembles the stochastic processes in the sequencing experiment itself. The 

mapping between the original taxa counts and the transformed values is one-to-one as the 

dimensionality of the problem remains the same, and so the results tend to be very 
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intuitively interpretable. However, CLR transforms pose limitations as to what downstream 

statistical tests can be performed with such data as the resulting covariance matrix is 

singular78. It is therefore common practice to transform back to the CLR transformed 

coordinates owing to the ease of interpretation in this space after performing statistical tests 

using a transform with more amenable characteristics, but perhaps posing difficulties to 

interpretation.  

clr(𝐱) = [ln
𝑥1

g(𝐱)
, ln 

𝑥2

g(𝐱)
, … , ln

𝑥𝐷

g(𝐱)
] , g(𝐱) =  √𝑥1 ⋯ 𝑥𝐷

𝐷   

The last of the main transformations, the isometric log ratio (ILR)79, can be seen as an 

improvement to other methods of transforming compositional data in that it is both 

orthonormal and metric so that angles and distances between the two spaces correspond 

as expected. However, the transformation moves the data from a D dimensional space to 

a D – 1 dimensional space, which poses problems for intuitive interpretation of the 

resulting transformed data73. In the ILR transformation requires the creation of an 

orthonormal basis (V) from the data, and a sequential binary partition is used to 

iteratively assign the features of the data (taxa) into non-overlapping subgroups called 

principal balances. There are also many equivalent ways of performing the sequential 

binary partition required to create the principal balances, which can also lead to 

interpretation issues. The R package PhILR (Phylogenetic ILR)80 uses the ILR 

transformation with the phylogeny guiding the sequential binary partition so that it retains 

biological interpretability. The Python module gneiss also performs the ILR 

transformation and uses experimental or environmental covariates, like pH, to guide the 

sequential binary partitions81. 

ilrV(𝐱) = clr(𝐱) ∙ 𝐕 = ln(𝐱) ∙ 𝐕, for matrix 𝐕  D ×  (D − 1)such that 𝐕 ∙ 𝐕𝐭 = 𝑰𝐷−1 
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The impact of these transformations in the context of determining enterotypes is explored 

in objective VI, where versions of the transformations are used from the R package 

coseq82.
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CHAPTER 3: INTESTINAL AGING AND MICROBIAL TRANSLOCATION IN A 

NON-HUMAN PRIMATE 

 

 

3.1 Abstract 

3.1.1 Background 

Aging has the potential to negatively impact gut health through the weakening of 

mucosal barriers leading to microbial translocation. However, the frequent usage of 

prescription medicines for other age-related diseases in aging human populations makes 

studying these interactions in humans difficult, suggesting the use of a non-human 

primate model. 

3.1.2 Methods and Materials 

Here 16S sampling of fecal, lumen and mucosal tissue samples from female vervet 

monkeys classified as either “old” or “young” to investigate changes in microbial 

associations with age. 

3.1.3 Results 

No significant associations with age were seen with individual taxa. There are limited 

differences in the microbial diversity between young and old animals. 

3.1.4 Discussion 

The limited microbial associations with age agree with other similar studies. However, it 

should be stressed that this experiment only considers female animals, and whether or not 

these are consistent with associations in male vervet monkeys remain to be investigated. 

3.2 Introduction and Background 

The establishment of microbial communities in various human body sites upon birth and 

infancy is the subject of many ongoing investigations. In many ways, the more 
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challenging questions relate to deciphering the relationships between microbes and aging 

subject to confounders such as environment and host lifestyle. Advanced age decreases 

the integrity of the mucosal barrier in the gut leading to more microbial translocation 

(MT) to extraintestinal sites and the resulting associated inflammation83,84. The body’s 

mucosal barriers can be thought of as a kind of internal “skin” separating host from the 

environment, including food and microbes. This dysfunction of the mucosal barrier of the 

intestine with age is colloquially known as “leaky gut.” The increase in MT is associated 

with higher levels of endotoxins85, which have been correlated with insulin resistance 

leading to metabolic disease86. MT is only one of several mechanisms that contribute to 

immunosenescence, the deterioration of the immune system with age87,88. However, there 

have not been consistent observations of shifts with microbial communities associated 

with advanced age89,90.  

The use of human cohorts investigating immunosenescence poses many difficulties due 

to the confounding effects of age, dietary changes and environmental changes. As non-

human primates also experience immunosenescence91 and have a gastrointestinal 

anatomy similar to that of humans, this makes such animal models attractive alternatives 

for such studies. These animal models become especially helpful in light of the fact that 

many non-antibiotic pharmaceuticals impact members of the human microbiome92, and 

that pharmaceutical use is prevalent in aged human populations. This aim investigates the 

changes to the microbial communities associated with age using 16S rRNA gene 

sequencing within an all-female cohort of vervet monkeys (Chlorocebus aethiops sabeus) 

subjected to a Western diet.  
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3.3 Attributions 

This work is part of a larger study of led by Dr. Kylie Kavanagh of Wake Forest 

University and the Wake Forest Clarkson Campus/Primate Center. My roles in this 

project were the processing of sequencing data, and the development and evaluation of 

statistical modeling pertaining to the microbial analyses present in this work. 

3.4 Materials and Methods 

3.4.1 Experimental Design 

The all-female cohort of vervet monkeys included 9 young and 10 old animals (where 

“old” denotes an animal more than 18 years old) from the Wake Forest Vervet Research 

Colony93. The animals were fed a standard laboratory diet supplemented with fresh fruits 

and vegetables. Housing consisted of indoor/outdoor enclosures with ab libitum exercise 

and socialization time. Samples collected for sequencing included fecal, lumen and 

mucosal scrapings. In this study the collection of different sample types is especially 

important because the mucosa is involved with host immune defense and is in close 

contact with the epithelial microbiome, but is often overlooked in favor of the easier to 

acquire fecal samples94,95. Other biomarkers included in this study were qPCR counts 

from the fecal and mucosal samples, and measurements of the concentration of 

lipopolysaccharide binding protein 1 (LBP-1), a protein involved in the detection of 

bacteria and subsequent activation of the immune system96. The Wake Forest University 

Institutional Animal Care and Use Committee gave approval of the protocol in following 

with the recommendations in the Guide for Care and Use of Laboratory Animals. This 

included participation in guidelines established by the USDA Animal Welfare Act and 

Animal Welfare Regulations. 
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3.4.2 Sequencing and Sequence Processing 

The DNA was sequenced using Illumina MiSeq PE250 by the HudsonAlpha Institute for 

Biotechnology (Huntsville, AL). Demultiplexed sequences are available at the SRA via 

accession SRP139357. Taxonomic classification was performed using the forward 

sequencing reads by the RDP algorithm (version 2.6) using the RDP database48 with 

default settings and a confidence threshold of 80%47. QIIME version 1.849 was used 

alongside for closed-reference taxonomic classification using default parameters against 

the Greengenes50 database version 13.5 at a 97% OTU identity. These count tables were 

log normalized as described previously53. 

3.4.3 Statistical Modeling  

Linear modeling was done on each of the three tissue types separately and mixed linear 

models were created using the lme function of the nlme package in R for all three sample 

types nested in the source animal as a random effect accounting for the individual 

signature of the animal. Initial modeling approaches attempted to account for the shared 

housing of different animals, but the small overall number of subjects and the numerical 

instabilities inherent to these models ultimately made such an approach unfeasible (data 

not shown). The response variables included the log normalized abundance of each taxa 

across the phylum, class, order, family and genus taxonomic levels, the Shannon diversity 

index for each taxonomic level, and the first several principal coordinates from the beta-

diversity ordination. Explanatory variables include age and age-group. Additional models 

included the Wilcoxon test using age-group as the explanatory variable. The within-

sample alpha-diversity was calculated using the Shannon diversity function within vegan. 

The between-sample beta-diversity was calculated using the capscale function within 
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vegan using the Bray-Curtis dissimilarity. Statistical tests were corrected for multiple 

hypotheses via the Benjamini-Hochberg FDR correction to a threshold of 0.05. The 

relevant R scripts are available through GitHub at 

https://github.com/mcbtBINF/IntestinalAging/ 

3.5 Results 

3.5.1 Microbial Community Assessment Through Beta-Diversity 

Methods of assessing the microbiome at the community level demonstrated differences 

with respect to the sample type, but presented limited differences with respect to age or 

age-group. Ordination by principal coordinate analysis (PCoA) shows no clear separation 

by age or age group across all taxonomic levels considered (phylum, class, order, family 

and genus), but it does show the expected clustering by sample type [Figure 3.1]. 



27 

 

Figure 3.1: Ordination separates on sample type and not on age grouping or numeric age. 

Figure from Wilson et al. 201897 (Author’s own work).  

3.5.2 Intra-Sample Alpha-Diversity as Seen with Shannon Diversity 

Similarly, the Shannon diversity of the mucosal samples is significantly less than that of 

the other sample types at the phylum taxonomic level [Figure 3.2].  
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Figure 3.2: The mixed linear model pooling sample types showed significant differences 

in the Shannon diversity at phylum (depicted) p-value < 0.001, class: 0.001, order: 0.021, 

family: 0.148, and genus: < 0.001. Figure from Wilson et al. 201897 (Author’s own 

work).  

 

At various taxonomic levels, the Shannon diversity index was significantly different 

between the young and old animals [Figure 3.3].  

 

Figure 3.3: The Mann-Whitney-Wilcoxon test showed significant differences between 

young and old animals at various taxonomic levels (phylum depicted, p-value = 0.033; 

class: 0.041, order: 0.051, family: 0.016, and genus:  0.286) for the fecal samples, but not 

for the other sample types. Figure from Wilson et al. 201897 (Author’s own work).  

  

3.5.3 Modeling of Associations Between Specific Taxa and Age 

An analysis of individual taxa across the different taxonomic levels did not reveal strong 

evidence for associations with the animal’s age or age-group [Figure 3.4]. 
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Figure 3.4: Histograms of uncorrected p-values at the genus level for each tissue type 

Bottom right panel is for the mixed linear model pooling all tissue types grouped by 

animal of origin. These patterns suggest that there are no strong associations between 

age-group and specific genera. Figure from Wilson et al. 201897 (Author’s own work).  

 

In addition to evaluating associations between age or age-group with the microbiome, 

associations between other biomarkers measured in the study and the microbiome were 

also evaluated. However, there was similarly a lack of strong associations between the 

microbiome and the biomarkers.  



30 

3.6 Discussion 

Overall, there is little evidence for the association of individual taxa with age, but this 

result reproduces what has been seen in previous studies in this host model90 and helps to 

establish the robustness of these results. It is therefore concluded that the loss of mucosal 

barrier function does not have its origins in the microbiome. The discovery of lower 

diversity in the mucosal tissues is attributed to with function of the mucosa in favoring 

the survival of select taxa to reduce disease development98,99.  

Other experimental methods used within the study suggested that microbial translocation 

was occurring at a higher rate in older monkeys. qPCR data also yielded visual trends 

suggestive of bacterial overgrowth in the mucosal tissues of older monkeys, but these 

were not statistically significant. These data suggest that aging may lead to lower control 

over microbial selectivity and colonization at the mucosal surface which is permissive for 

MT. It should be reiterated that these findings are for a female-only cohort, and results 

using male animals may differ.  

3.7 Communication of Results 

These findings have been published in Scientific Reports under the title “Greater 

Microbial Translocation and Vulnerability to Metabolic Disease in Healthy Aged Female 

Monkeys” by Wilson et al97.
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CHAPTER 4 – MICROBIAL ASSOCIATIONS WITH COLONIC DIVERTICULOSIS 

 

 

4.1 Abstract 

4.1.1 Background 

The potential microbial associations with the development of diverticula have been 

previously explored, but not in a large cohort such as this one with appropriate statistical 

methodology. 

4.1.2 Methods and Materials 

16S sequences were generated from mucosal biopsies of 226 subjects with diverticula 

and 309 subjects without diverticula. These microbial communities were assessed for 

associations with multiple patient demographic data as well as the presence or absence of 

diverticula and their count if present.  

4.1.3 Results 

There are limited microbial associations with the presence/absence of diverticula and 

with the number of diverticula if present.  

4.1.4 Discussion 

The null findings of this study conflict with reports from previous literature on the 

subject, but those studies had small cohort sizes and errors in their reporting of statistics. 

However, as with any negative result, alternate means of assessing the two experimental 

groups may result in differences between the conditions.  

4.2 Introduction and Background 

Diverticulosis, also called symptomatic uncomplicated diverticular disease (SUDD),  is 

the normally asymptomatic condition of having millimeter-scale pouches called 

diverticula along the intestinal tract100, and it is prevalent within the aged US 
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population101. When these pouches become inflamed or infected, diverticulitis, a 

condition is associated with numerous negative health outcomes, is the result. This study 

assessed whether the microbiomes were different between healthy control subjects and 

otherwise asymptomatic patients with diverticulosis. Associations between the 

microbiome and the number of diverticula were also investigated. Understanding such 

relationships could help to prevent the transition from asymptomatic diverticulosis to 

complications from diverticular diseases.  

4.3 Attributions 

This work is part of a larger study of led by Dr. Temitope Keku at UNC. My primary role 

in this project was the verification and independent implementation and extension of 

statistical models initially explored by Dr. Roshonda Barner-Jones and Dr. Fodor, and to 

ensure correctness and robustness of results as well as pursuing analytical approaches 

suggested by reviewers, such as LefSe102 and microbial association network analysis. 

4.4 Materials and Methods 

4.4.1 Experimental Design 

The study consisted of 226 subjects with diverticula and 309 subjects without diverticula. 

The tissue samples for the 16S rRNA gene sequences were mucosal biopsies rather than 

fecal samples owing to the adherent nature of such bacteria and convenience surrounding 

the logistics of the colonoscopy. These samples and other pertinent patient data were 

collected by specialists in endoscopy at the Meadowmont Ambulatory Endoscopy Center, 

UNC Hospitals, Chapel Hill, NC. The subjects provided informed consent according to 

the appropriate guidelines and the study was approved by the UNC Office of Human 

Research Ethics.  
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4.4.2 Sequencing and Taxonomic Assessment 

DNA was extracted and the V2 region of the 16S gene was amplified using PCR primers. 

The study design also included the sequencing of a positive control using known bacteria. 

Raw sequences are available from the NCBI’s SRA repository via SUB3467354 within 

BioProject PRJNA429136. 

Taxonomy was assigned to these sequencing using both the RDP (version 2.10.1) 

classification algorithm on the RDP database at the 50% confidence level as well as the 

QIIME 1.91 pipeline using the Greengenes database. Samples with less than 1000 

assignments were excluded from downstream analysis, but more than 90% of all samples 

exceeded this threshold. 

4.4.3 Statistical Modeling  

Statistical modeling included univariate linear regression where the metadata 

(case/control, sex, race, diverticula count or waist circumference) served as the 

explanatory variable with the log-normalized taxon abundance, Shannon diversity or 

MDS axis serving as the dependent variable. Nonparametric models were similarly 

constructed using the Wilcoxon, Kruskal-Wallis or Kendall test as appropriate. 

4.4.4 Additional Analytical Methods Used 

Reviewers to the initial manuscript submission suggested pursuing a linear discriminant 

analysis via the LEfSe tool, as well as looking for differences in the microbial association 

networks between patients with and without diverticula. SPIEC-EASI103, a microbial 

association network analysis package that corrects for data compositionality was used to 

investigate the microbial association networks.  
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4.5 Results 

4.5.1 Microbial Community Comparisons Through Beta-Diversity 

Case and control were not significantly different with respect to the largest PCoA axes 

[Figure 4.1]. 
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Figure 4.1: Case (red) and control (black) showed no significant associations with largest 

MDS axes when using the unpaired Wilcoxon testFigure from Jones et al. 2018104 

(Author’s own work). 

The assessment of the alpha-diversity of case and control samples yielded weakly 

significant differences between case and control [Figure 4.2]. 
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Figure 4.2: Wilcoxon test of case versus control samples at the class taxonomic level 

yields p-values = 0.011 and 0.012, respectively. An analysis of the same data using linear 

models produced r-squared values <1%. Figure from Jones et al. 2018104 (Author’s own 

figure). 

In terms of differential abundance of specific taxa, the principal findings of this 

investigation were that only the phylum Proteobacteria and its family Comamonadaceae 

were marginally significantly differentially abundant between patients with and without 

diverticula (corrected p-values of 0.038 and 0.035, respectively), but with effect sizes on 

the order of 2% [Figure 4.3]. 

 
Figure 4.3: The existence of diverticula (case) is weakly significant for two taxa one 

(Proteobacteria) at the phylum level (p-value = 0.038) and one (Comamonadaceae) at the 

family level (p-value = 0.035) when assessed with a Wilcoxon test. A similar analysis 

using a linear model yielded effect sizes on the order of 2%. Figure from Jones et al. 

2018104 (Author’s own work). 



37 

Similarly, limited associations were seen between the diverticula counts and their 

location, proximal or distal, within the sigmoid colon (data not shown). Results from the 

RDP and QIIME pipelines were in good agreement [Figure 4.4]. 

 

Figure 4.4: Assessment of RDP and QIIME taxonomic classifications using p-values of a 

t-test between case and control patient status the sign of the p-value was flipped when 

control is greater than case. General agreement supports the robustness of these findings 

subject to taxonomic classification method. Figure from Jones et al. 2018104 (Author’s 

own work) 

The LEfSe analysis suggested by reviewers did not yield any significant hits when using 

case versus control status to segment our data. It should be noted that the statistical 

methodology underpinning LEfSe makes use of the Wilcoxon test, which was already 

performed as part of our analytic pipeline. The analysis of the microbial co-occurrence 

networks between case and control status via SPIEC-EASI demonstrated similarity in not 
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only the visual appearance of the case and control microbial networks, but also in graph 

properties of the networks including degree, natural connectivity and graph similarity, 

among others (data not shown). Taken together, these observations suggest no strong 

differences exist between the microbial networks of the case and control samples. 

4.6 Discussion 

The large size of this study and the small effect sizes of the limited numbers of 

associations detected suggests that the microbiome is not strongly indicated in the 

development of diverticula and that there are limited differences in the microbiota of 

patients with asymptomatic diverticulosis and healthy controls. While convincing 

evidence of the role of the gut microbiome in the development or severity of 

gastrointestinal illnesses has been demonstrated numerous times elsewhere, this is not 

true of previous related findings that were interpreted as being suggestive of a role for the 

microbiota to play in the development of diverticulosis. For example, a small study of 38 

patients discussed visual trends of a decrease in relative abundance of Clostridium IV 

bacteria for patients with diverticula, as well as shifts in the abundances of 

Enterobacteriaceae and the ratio of abundances of Bacteroides to Prevotella, but these 

results were not statistically significant105. This disagreement serves as a reminder of the 

difficulties in assessing reproducibility between microbiome experiments due to the small 

effect sizes, sensitivity to sampling and sequencing techniques and differences in 

potential analytical pipelines.  However, our study does differ in that its samples consist 

of adherent bacteria to biopsies rather than fecal samples, which are likely more tightly 

associated with the colonic mucosa. As with any negative result, alternative methods may 



39 

yield differences between the case and control groups, such as via functional assessments 

of the microbiome.  

4.7 Communication of Results 

These findings have been published in Scientific Reports under the title “An Aberrant 

Microbiota is not Strongly Associated with Incidental Colonic Diverticulosis” by Jones et 

al104.
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CHAPTER 5: CASE STUDY OF DAILY CHANGES IN MlCROBIAL 

COMPOSITION AND DIVERSITY IN THREE PATIENTS WITH ANOREXIA 

NERVOSA 

 

 

5.1 Abstract 

5.1.1 Background 

Previous investigations of anorexia nervosa have revealed limited, but significant 

microbial associations. Renourishment treatment is frequently prescribed to help return 

anorexic patients to a healthy BMI, but mechanisms of action and its ultimate 

effectiveness are still largely unknown. This aim investigates microbial associations with 

renourishment treatment in a small anorexia cohort.  

5.1.2 Materials and Methods 

Nutritional measurements of three patients undergoing renourishment treatment for 

anorexia nervosa were measured alongside fecal samples collected for 16S sequencing. 

Associations were investigated using models that account for each patient’s characteristic 

microbial signature. 

5.1.3 Results 

Significant fluctuations in the abundance of many specific microbes occurred over the 

course of treatment. 

5.1.4 Discussion 

While this pilot case study reveals that individual microbial signatures persist through 

microbial dysbiosis caused by anorexia, larger cohorts are necessary to fully evaluate the 

associations between microbes and renourishment treatment. 
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5.2 Introduction and Background 

Anorexia nervosa (AN) is a mental illness with high morbidity. In addition to psychiatric 

and behavioral modifications, it presents many gastrointestinal symptoms. There has been 

some evidence of association between AN and the dysbiosis of the gut microbiome106. 

Treatment for acute AN typically includes hospitalization and renourishment until the 

patient reaches a goal BMI. However, the evidence for this method of treatment is not 

strong and an underlying mechanism is still being sought107. While it is generally 

accepted that the healthy adult microbiome is robust to perturbations over long time 

periods8, it is unknown as to whether or not such trends persist in individuals undergoing 

treatment for AN. Here daily microbiome samples for three patients are assessed 

alongside energy measurements associated with renourishment treatment in order to 

evaluate the potential impact of the microbial composition on patient recovery from acute 

AN. 

5.3 Attributions  

This work is part of a multi-year study led by Dr. Ian Carroll and Dr. Cynthia Bulik at 

UNC. My primary role was in the processing of sequencing data and taxonomic 

classifications, the construction and evaluation of statistical models, and I also 

contributed to the biological interpretation of the results. 

5.4 Materials and Methods 

The Biomedical Institutional Review Board at UNC approved this study and all patients, 

or their guardians provided written consent. For this case study there were three female 

patients between the ages of 15 and 64 meeting the DSM-5 criteria for the diagnosis of 

AN. Samples were collected daily by trained medical professionals, and upon release into 
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the partial hospitalization program, patients received training prior to collecting their 

samples at home with at-home collection kits. Energy intake and weight measurements 

were conducted daily. Metabolic assessments were made on a weekly basis, and included 

resting energy expenditure, daily physical activity expenditure, and active energy 

expenditure.  

The V4 region of the 16S rRNA gene was sequenced on an Illumina MiSeq at the High-

Throughput Sequencing Facility in the Carolina Center for Genome Sciences at the UNC 

School of Medicine. The BioProject for this study (PRJNA382889) is available from 

NCBI. Taxonomic classification utilized QIIME 1.5.0 and RDP version 2.10.1 on the 

forward reads with a 50% confidence threshold. Post-classification, 141 samples meeting 

a minimum threshold of 10000 assignments were carried forward for downstream 

analysis.  

The principal model used in the statistical evaluation of this study is an ANOVA linear 

model which was used to test the both the associations between time undergoing 

treatment and the patient, including the interaction between these terms.  Other models 

constructed evaluated the associations between microbiome assessments and patient 

health measures, like BMI, energy intake, etc. Statistical significance in these models was 

assessed by comparing the full model to a reduced model.  

5.5 Results 

All patients experienced significant changes in relative abundances at all taxonomic 

levels over the course of treatment [Figure 5.1, Table 5.1]. This included fluctuations in 

the relative abundance of consistently detectable taxa as well as taxa which were 

undetectable for periods of time before returning to detectable levels. 
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Figure 5.1: Patients preserve individual trajectories during renourishment across 

taxonomic levels (panels A-D) 

Table 5.1: Numerous significant changes to taxa across taxonomic levels Listed from 

phylum (depicted) to genus over the course of treatment and in a patient-specific manner, 

as indicated by the significance of the interaction term. 

Phylum adjANOVA-

>Day 

adjANOVA-

>patient 

adjANOVA-

>Day:patient 

Actinobacteria 2.07E-12 1.16E-22 1.59E-02 

Bacteroidetes 2.91E-01 1.66E-12 2.32E-02 

Crenarchaeota 1.15E-01 3.85E-04 7.80E-01 

Cyanobacteria.Chloro

plast 

9.59E-01 4.56E-03 7.07E-01 

Firmicutes 7.61E-03 2.28E-20 2.32E-02 

Proteobacteria 1.28E-02 6.73E-09 2.60E-01 



44 

Verrucomicrobia 1.50E-04 9.44E-37 2.70E-02 

 

BMI and energy intake were correlated with length of treatment and with each other, so 

increasing the model complexity by including these terms does not benefit interpretation, 

especially given the small cohort size [Table 5.2].  

Table 5.2: Demonstration of collinearity between length of treatment, BMI and energy 

intake A similar pattern in significant associations with each individual covariate exists. 

Cova

riate 

Phylum adjANO

VA-

>Covaria

te 

adjANO

VA-

>patient 

adjANOVA-

>Covariate:

patient 

adjC

ovari

ate 

adjp

atie

ntB 

adjp

atie

ntC 

adjCova

riate:pati

entB 

adjCova

riate:pati

entC 

Day Actinobac

teria 

2.07E-12 1.16E-

22 

1.59E-02 3.46

E-04 

1.53

E-

02 

1.37

E-

03 

4.63E-

03 

9.39E-

01 

Day Bacteroide

tes 

2.91E-01 1.66E-

12 

2.32E-02 1.44

E-02 

8.68

E-

01 

2.26

E-

01 

2.93E-

02 

5.28E-

01 

Day Crenarcha

eota 

1.15E-01 3.85E-

04 

7.80E-01 6.81

E-01 

5.55

E-

01 

1.73

E-

02 

6.63E-

01 

7.07E-

01 

Day Cyanobact

eria.Chlor

oplast 

9.59E-01 4.56E-

03 

7.07E-01 7.77

E-01 

5.55

E-

01 

4.81

E-

01 

4.05E-

01 

7.07E-

01 

Day Firmicutes 7.61E-03 2.28E-

20 

2.32E-02 6.81

E-01 

5.55

E-

01 

1.73

E-

02 

2.79E-

02 

5.28E-

01 

Day Proteobact

eria 

1.28E-02 6.73E-

09 

2.60E-01 3.93

E-01 

1.81

E-

01 

4.34

E-

01 

1.60E-

01 

5.28E-

01 

Day Verrucomi

crobia 

1.50E-04 9.44E-

37 

2.70E-02 6.81

E-01 

6.67

E-

20 

1.73

E-

02 

1.46E-

02 

6.59E-

01 

BMI Actinobac

teria 

2.92E-04 1.22E-

13 

2.59E-02 2.21

E-02 

4.19

E-

02 

8.08

E-

01 

2.24E-

02 

7.47E-

01 

BMI Bacteroide

tes 

3.01E-07 3.42E-

06 

2.59E-02 2.36

E-01 

2.17

E-

01 

6.22

E-

01 

1.43E-

01 

2.36E-

01 

BMI Crenarcha

eota 

3.26E-03 9.96E-

03 

7.87E-01 2.80

E-01 

4.65

E-

01 

6.31

E-

01 

4.81E-

01 

7.02E-

01 

BMI Cyanobact

eria.Chlor

oplast 

9.87E-01 2.22E-

02 

7.87E-01 6.23

E-01 

6.79

E-

01 

8.08

E-

01 

5.83E-

01 

7.47E-

01 
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BMI Firmicutes 9.10E-16 3.82E-

06 

2.59E-02 7.05

E-01 

4.19

E-

02 

6.31

E-

01 

2.24E-

02 

6.82E-

01 

BMI Proteobact

eria 

9.74E-01 8.43E-

05 

7.87E-01 8.68

E-01 

7.50

E-

01 

8.08

E-

01 

5.83E-

01 

7.02E-

01 

BMI Verrucomi

crobia 

6.37E-06 7.42E-

28 

1.23E-01 7.05

E-01 

1.15

E-

02 

6.31

E-

01 

5.41E-

02 

7.02E-

01 

Ener

gy 

Intak

e 

Actinobac

teria 

1.50E-10 5.22E-

24 

5.47E-03 1.05

E-04 

5.04

E-

01 

8.64

E-

01 

1.15E-

03 

3.70E-

01 

Ener

gy 

Intak

e 

Bacteroide

tes 

6.29E-03 8.12E-

12 

3.27E-02 1.65

E-02 

4.66

E-

01 

6.71

E-

01 

2.73E-

02 

8.20E-

01 

Ener

gy 

Intak

e 

Crenarcha

eota 

8.76E-01 8.10E-

05 

7.01E-01 5.09

E-01 

5.84

E-

01 

1.65

E-

01 

5.95E-

01 

5.70E-

01 

Ener

gy 

Intak

e 

Cyanobact

eria.Chlor

oplast 

8.76E-01 3.90E-

03 

7.75E-01 5.09

E-01 

8.62

E-

01 

6.71

E-

01 

5.95E-

01 

8.50E-

01 

Ener

gy 

Intak

e 

Firmicutes 8.76E-01 3.26E-

21 

3.27E-02 5.09

E-01 

5.84

E-

01 

6.71

E-

01 

5.44E-

02 

5.70E-

01 

Ener

gy 

Intak

e 

Proteobact

eria 

1.18E-01 2.00E-

09 

7.01E-01 5.09

E-01 

8.57

E-

01 

8.64

E-

01 

4.03E-

01 

5.70E-

01 

Ener

gy 

Intak

e 

Verrucomi

crobia 

4.91E-07 9.67E-

36 

5.77E-02 5.09

E-01 

3.87

E-

08 

1.65

E-

01 

2.73E-

02 

5.70E-

01 

 

Weekly metabolic measures were similarly highly correlated with length of treatment and 

did not yield significant associations with microbial measures (data not shown). 

5.6 Discussion 

While the small cohort size cautions against the over-interpretation of these findings, the 

data suggests that even in the case of acute AN, the microbial signatures of individual 

patient’s persist. This result suggests that similar longitudinal studies be conducted in 
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other gastrointestinal illnesses to investigate whether or not the disease signature 

“overwhelms” the individual microbial signature. These findings are in agreement with 

other longitudinal studies of gut microbiomes that showed periods of stability and 

volatility, but similarly they did not reveal evidence for a common core of microbiota 

shared between individuals8. Also in agreement with other studies, this cohort did not 

uncover strong associations between BMI and the gut microbiome108. These limited 

results still remain promising and suggest that larger cohorts with more frequent 

collection of metabolic assessment data, as well as functional assessments of the 

microbiome through whole-genome sequencing, may be able to explore microbial 

mechanisms underlying weight dysregulation associated with AN and its treatment via 

renourishment. 

5.7 Communication of Results 

These findings have been published in European Eating Disorders Review under the title 

“Daily Changes in Composition and Diversity of the Intestinal Microbiota in Patients 

with Anorexia Nervosa: A Series of Three Cases” by Kleiman et al23.
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CHAPTER 6: INTERACTIONS OF SEX AND STRESS STATUS MODULATE THE 

MICROBIOME IN A MOUSE MODEL 

 

 

6.1 Abstract 

6.1.1 Background 

Human males and females differ in the frequency and presentation of mental illnesses 

such as anxiety and depression. Unfortunately, experimental cohorts in animal models of 

human disease often fail to include female animals. Here the microbiota-gut-brain axis is 

evaluated in a mixed sex mouse cohort. 

6.1.2 Materials and Methods  

32 mice (16 male, 16 female) were split between a control group and a stress 

experimental group that was subject to alternating days of physical stress during the study 

period. Fecal and cecal samples were collected for 16S rRNA sequencing, and 

assessments from three behavioral tests measuring anxiety were evaluated against 

individual taxa and microbial composition shifts.  

6.1.3 Results 

Mixed linear models revealed significant shifts in microbial community with respect to 

sex, stress-status, and the interaction term of these fixed effects. Similarly, individual taxa 

were differentially abundant with respect to these model terms. No significant 

associations were seen between individual behavioral measures and specific microbes.  

6.1.4 Discussion.  

Many of the taxa seen to be differentially abundant are in agreement with previous 

studies that have evaluated sex differences or stress differences within the same sex in 

mouse. The presence of a significant interaction term can be interpreted as an indicator 
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that the sex of the mouse somehow modulates the response of the animal to stress leading 

to different changes of specific microbes and the community composition as a whole. 

These results suggest that future studies of the microbiota-gut-brain axis use mixed sex 

cohorts. 

6.2 Introduction and Background 

Experiments using animal models, even those used in pharmaceutical pipelines assessing 

drug efficacy and safety, frequently fail to include female animals109,110. In 2014 the NIH 

Director and the Director of the Office of Research on Women’s Health began to develop 

a strategy to balance male and female model animals in funded research111. However, it is 

still currently the case that grants lacking sex as a biological variable continue to receive 

acceptable scores by reviewers112. This cohort bias is particularly troublesome in animal 

studies modeling human mental illnesses113, as conditions such as anxiety and depression 

are known to differ in frequency between men and women, as well as in 

presentation114,115. There are also known differences in differences in male/female drug 

response in humans116–118. Such results are perhaps unsurprising given what is known 

about differences in the male/female psychophysiological responses to stress. In a similar 

manner, animal models have also been shown to exhibit sex-dependent responses to 

pharmaceuticals119,120. However, the negative consequences of ignoring sex differences 

can also extend to drugs where sex-based differences in results are naively thought to be 

unexpected, such as antibiotics121. Indeed, understanding potential sex-dependent 

differences with regards to pharmaceutical use may become all the more important to 

properly conducting metagenomics studies given recent results that indicate that many 

non-antibiotic pharmaceuticals significantly influence the microbiome122.  
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Chronic stressors have been shown by others to impact microbial diversity and 

differential abundances123. Potential sex-related differences in microbial abundances in 

response to stress and anxiety also underline the bi-directionality of the microbiota-gut-

brain axis. The ability of docosahexaenoic acid (DHA) to alleviate anxiety or depression-

like symptoms for male mice and not female mice would have remained unnoticed if it 

were not for the mixed sex cohort being used124. Similarly, a study of a mouse model of 

autism using BTBR mice recently enjoyed success by creating autism-trait microbial 

profiles because of employing a mixed-sex cohort125.  

This aim investigates the microbiota-gut-brain axis through assessing shifts in the 

microbiome associated the interaction of the sex of the host with the stress response. 

Associations between the changes in the microbiome and the changes in behavior due to 

stress protocols are also evaluated.  

6.3 Attributions 

This research was done in collaboration with Dr. Mark Lyte of Iowa State University. My 

primary roles in this project were in the processing of taxonomic classifications, the 

development and evaluation of statistical models, and the biological interpretation of 

results.  

6.4 Materials and Methods 

A cohort of 32 six-week-old CF-1 mice was purchased from Charles River Laboratories. 

There were 16 male and 16 female animals, and these were same-sex-housed 4 to a cage. 

This led to 8 total cages with 2 cages for the stress group and 2 cages for the control 

group per sex. Stress was induced by alternating days of physical restraint and a forced 

swimming challenge. At the end of the 19-day testing period, the mice underwent 



50 

behavioral evaluations in the form of three behavioral tests to evaluate for anxiolytic 

behavior. These tests were the light-dark box, the elevated-plus maze and the open field. 

This resulted in 39 behavioral characterizations in total across the three tests. At the end 

of behavioral testing the animals were sacrificed, and various tissues were collected 

including fecal and cecal content samples for 16S rRNA gene sequencing and blood for 

measures of hormones such as the stress-associated hormone corticosterone. These 

experiments were performed at Texas Tech University by the same female lab 

technician126. All experiments approved by the Institutional Animal Care and Use 

Committee of Texas Tech University Health Sciences Center. 

DNA sequences were isolated using the PowerSoil DNA Isolation Kit and quantified 

using a Qubit 2.0 Fluorometer. The sequences were amplified using the primer set from 

the Earth Microbiome Project for the V4 region of the 16S rRNA gene (515F-806R) and 

then quantified using the Qubit. The sequencing was completed using the Illumina MiSeq 

platform by facilities at the Argonne National Laboratory.  

The behavioral and sequencing data were evaluated using nonparametric and parametric 

statistical models. A series of mixed linear models were created to assess various fixed 

effects of explanatory variables such as the sex of the mouse, experimental group 

(stress/control), and behavioral scores on the relative abundances of microbes, with the 

random effect being the cage grouping of the animals. Response variables included the 

scores of individual behaviors, log normalized abundance of specific OTUs, the alpha-

diversity of the microbial community as measured by Shannon diversity, and the 

principal coordinate axes from the beta-diversity as determined by the Bray-Curtis 

dissimilarity.  
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6.5 Results 

There are several significant associations between the terms of the sex*stress model and 

individual measures of anxiolytic behavior [Figure 6.1]. 

 

Figure 6.1: An example subset of significant associations between specific behavioral 

measures and model terms of stress, sex and sex*stress from a mixed linear model. These 

results can be interpreted as the induction of a significant shift in behavior due to 

experimental stress protocols. 

However, the measurements of the stress hormone corticosterone were not significantly 

different between stress and control animals [Figure 6.2]. 
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Figure 6.2: Using similar mixed linear models with concentrations of the stress hormone 

corticosterone as the response variable yielded trends for the stressed animals and the 

female animals having higher concentrations, but these were not significant at the 0.05 

level. 

There were many significant differences when the microbiome data was viewed at the 

community level and when assessing specific OTUs. The ordination yielded MDS axes 

that separated the animals on each of the terms of the mixed linear model [Figure 6.3]. 
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Figure 6.3: MDS-ordination axes are significantly associated with the sex, stress, and 

sex:stress model terms of the mixed linear model. Top left, top right, and bottom left: 

ordination plots of axes associated with sex (axis 2), sex:stress (axes 4 and 7) and stress 

(axis 5). Bottom right: Plot of -log10(p-value) showing the significant axes from the 

ordination. Cage is never simultaneously significant with the model terms of interest, 

indicating that cage effect does not drive these significant differences. The dashed line 

represents the transformation of the significance threshold of 0.05.  

The male mice had higher Shannon diversity values than the females, but this trend was 

not seen with respect to the other terms in the model. Numerous OTUs were also 

significantly differentially abundant for the sex, stress and sex:stress terms of our mixed 

linear model [Table 6.1]. 
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Table 6.1: Table of significant genera and OTU identified labeled by term in the mixed 

linear model 

Genus (OTU) Wilcox 

-Sex 

Wilcox -

Stress 

Sex Stress Sex:Stress 

Interaction 

Cage 

Adlercreutzia 

(631764) 

0.02 0.57 < .001 < .001 < .001 0.49 

Odoribacter 

(170335) 

0.02 0.57 < .001 0.001 0.003 0.94 

Bacteroides 

(197537) 

0.71 0.98 0.3 0.95 0.002 0.59 

Bacteroides 

(198449) 

0.16 0.52 0.002 0.008 0.012 0.84 

AF12  

(190026) 

0.07 0.82 < .001 0.31 0.45 0.64 

Lactobacillus 

(539647) 

0.75 0.94 0.42 0.95 0.02 0.75 

Lactobacillus 

(47365) 

0.86 0.44 0.6 0.006 0.11 0.86 

Lactobacillus 

(343431) 

0.87 0.59 0.99 0.003 0.93 0.59 

Clostridium 

perfringens 

(323526) 

0.19 0.57 0.014 0.13 0.7 0.94 

Sarcina  

(446153) 

0.85 0.85 0.99 0.75 0.02 0.98 

Ruminococcus 

gnavus (family 

Lachnospiraceae) 

(269107) 

0.07 0.99 < .001 0.32 < .001 0.11 

Ruminococcus 

gnavus (family 

Lachnospiraceae) 

(348336) 

0.90 0.77 0.87 0.62 0.008 0.77 

Ruminococcus 

gnavus (family 

Lachnospiraceae) 

(352008) 

0.22 0.95 < .001 0.9 0.012 0.49 

Anaerostipes 

(534926) 

0.07 0.79 < .001 0.18 0.39 0.66 

Coprococcus 

(4476330) 

0.73 0.98 0.065 0.81 0.001 0.31 

Coprococcus 

(269828) 

0.82 0.85 0.74 0.82 0.035 0.94 
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Coprococcus 

(1107439) 

0.08 0.85 0.015 0.71 0.74 0.96 

Oscillospira 

(276386) 

0.08 0.96 < .001 0.75 0.92 0.63 

Oscillospira 

(387615) 

0.71 0.12 0.99 0.014 0.95 0.97 

Ruminococcus ( 

Ruminococcaceae) 

(320224) 

0.90 0.96 0.83 0.9 0.008 0.59 

Ruminococcus 

(family 

Ruminococcaceae) 

(339031) 

0.88 0.76 0.83 0.99 0.02 0.87 

Ruminococcus 

(family 

Ruminococcaceae) 

(405780) 

0.02 0.95 0.029 1 0.95 0.94 

Coprobacillus 

(4449984) 

0.06 0.93 0.019 0.79 0.19 0.97 

Anaeroplasma 

(835872) 

0.02 0.52 < .001 0.099 0.29 0.98 

 

However, there were no significant associations between individual behavioral measures 

and specific OTUs. The results from the microbial communities from the fecal and cecal 

samples are in broad agreement [Figure 6.4]. 

 

Figure 6.4: Extent of overlap in significant genera between fecal and cecal samples 

collected and sequenced.  
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6.6 Discussion 

The significant associations between individual behaviors and terms in the model can be 

taken as indicative of a successful stress protocol in terms of inducing a stress response. 

The lack of significant association between corticosterone and the experimental protocol 

may help to explain the lack of significant associations between specific microbes and 

specific behavioral measures indicating a sub-threshold activation of the HPA-axis.  

Several of the taxa observed to be significantly differentially abundant in this study have 

also been detected in other studies involving sex-based differences or stress-based 

differences. For example, members of Lachnospiraceae are elevated in the stress cohort, 

and this response to stress has been seen in an all-female cohort subjected to a similar 

stress protocol127. The relative abundance patterns of Clostridium perfringens, a known 

pathogen, agree with previous work that has shown it to be elevated in abundance in both 

female animals and human females128. Importantly, this experiment enabled the 

evaluation of the sex:stress interaction term and has indicated several taxa which may be 

involved in modulating the stress response due to sex. However, it should be cautioned 

that studies such as this one can only detect associations and not causality. While there 

were no significant associations between individual behavioral measurements within the 

three tests and specific microbes, this is not surprising given the large number of tests for 

which to control for the false discovery rate and the small effect sizes of microbial 

associations with human health covariates seen in large human cohorts15,16. One of the 

broad-reaching conclusions of this work is that the presence of a significant sex:stress 

interaction term in the statistical models of the behavioral and microbiome data suggests 
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that future studies of the gut-brain-microbiota axis should always be conducted using 

mixed sex cohorts.  

A follow-up study, while outside of the scope of this dissertation, includes a replication 

cohort and other mixed sex mouse cohorts with additional forms of stressors, like sleep 

deprivation and social stress, and their corresponding behavioral measurements. These 

are complemented by a more extensive assay of hormone and neurochemical 

concentrations to enable a more function-oriented perspective to changes within the 

microbiota-gut-brain axis under various stressors. The initial results of analyzing this data 

suggest the replicability of the microbiome results observed in this aim across cohorts. 

6.7 Communication of Results 

Elements of this work were presented at the UNCC Graduate Research Symposium in 

2017, and as a poster at ASM Microbe 2018 in Atlanta, Georgia. This work has been 

published as “Interactions Between Stress and Sex in Microbial Responses Within the 

Microbiota-Gut-Brain Axis in a Mouse Model” in Psychosomatic Medicine 2018 

May;80(4):361-369 by Tsilimigras et al129. 
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CHAPTER 7: MICROBIAL COMMUNITY COMPOSITION, ANTIBIOTIC 

CONCENTRATIONS AND ANTIBIOTIC RESISTANCE GENES UPSTREAM, 

DOWNSTREAM AND WITHIN A NORTH CAROLINA URBAN WATER SYSTEM 

 

 

7.1 Abstract 

7.1.1 Background 

Wastewater treatment plants are primarily evaluated on their removal of known 

pathogens. Here their ability to remove antibiotic resistance genes is evaluated. 

7.1.2 Materials and Methods 

Whole genome sequencing was used to classify the organisms present and evaluate their 

antibiotic resistance genes against a targeted database. These relative abundances were 

compared pairwise across sampling locations.   

7.1.3 Results 

The microbial community downstream of the wastewater treatment processing was 

largely restored to its upstream composition. Specific pathogens and most antibiotic 

resistance genes are not significantly elevated in samples downstream of treatment. 

Concentrations of several antibiotics remain significantly elevated after processing. 

7.1.4 Discussion 

The wastewater treatment plants performed their specified task, but the elevated 

concentrations of antibiotics post-treatment suggest that further studies could be 

developed to establish treatment protocols that better support antibiotic stewardship. 

7.2 Introduction and Background 

Wastewater treatment plants have historically been assessed by their ability to remove 

pathogenic organisms130. However, their contributions to the accumulation and 

concentration of pharmaceuticals in the ecosystem is becoming increasingly 
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appreciated131,132. This also means that wastewater treatment practices have an 

underappreciated role in antibiotic stewardship. This has the potential to limit the future 

utility of pharmaceuticals like antibiotics as the wastewater treatment process could lead 

to the evolution and dissemination of antibiotic resistance genes through horizontal gene 

transfer133. This is particularly troubling because there are numerous signs that we may be 

in the beginnings of an antibiotic resistance crisis where the ability of microbes to evolve 

and spread resistance genes is outpacing the development of novel antibiotics134. This 

situations is due, in large part, to the market failure on the part of pharmaceutical 

companies to develop antibiotics without strong guidance and incentives from 

governmental and nonprofit organizations135,136. The accumulation of pharmaceuticals 

like antibiotics can also potentially lead to problems in the wastewater treatment process 

itself if the microbes added to properly degrade sewage are sensitive to such 

compounds122,137.  

Recently a large study was conducted by UNC Charlotte faculty in collaboration with the 

sequencing resources at the David H. Murdock Research Institute (DHMRI) to collect 

many water samples upstream, downstream and within Charlotte’s Mallard and Sugar 

Creek wastewater treatment facilities. These samples were used to generate whole-

genome metagenomic sequencing data and this aim evaluates the changes to microbial 

communities before, during and after wastewater treatment, as well as to investigate the 

presence of antibiotic resistance genes throughout the process. In addition, the 

concentrations of several common antibiotics were measured to investigate the impact 

wastewater treatment had on downstream levels of common pharmaceuticals, and 

potential interactions between microbes and antibiotic concentrations.  
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7.3 Attributions 

This work represents part of a larger study led by Dr. Cynthia Gibas. My role in this 

project was to develop the analysis pipelines for the statistical inferences related to the 

microbial communities, taxa-by-taxa differential abundance, antibiotic resistance gene 

abundances, and antibiotic concentrations. I oversaw and was assisted by James Johnson 

and Dr. Anju Lulla in these analyses which rely on the results of bioinformatics pipelines 

constructed by Dr. Kevin Lambirth, Dr. Lulla, and Abrar Al-Shaer. I also assisted Dr. 

Lambirth, Dr. Gibas and others in the biological interpretation of these results. Dr. 

Lambirth collected and processed all samples prior to sequencing at DHMRI. 

7.4 Materials and Methods 

7.4.1 Experimental Design 

Water samples were collected with three technical replicates each at four timepoints at 

locations near hospital and residential areas, upstream and downstream of the wastewater 

treatment plants, and at multiple locations within both the Mallard Creek and Sugar 

Creek wastewater treatment facilities. For Mallard Creek, these sites were raw influent 

(INF), primary clarifier influent (PCI), primary clarifier effluent (PCE), aeration tank 

effluent (ATE), and final clarifier effluent (FCE). For the Sugar Creek plant, the PCI 

point was not able to be sampled, but the ultraviolet disinfected effluent (UV) was able to 

be sampled. Additionally, samples were taken in two rural streams far from Charlotte 

(one in the Appalachian mountains and one in Uwharrie forest) as controls for the fourth 

and final timepoint in mid-summer. This yielded a total of 66 samples for the first three 

timepoints and 78 samples for the last timepoint. These locations are depicted in [Figure 

7.1]. 
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Figure 7.1: Diagram of relative location of sampling sites within and before and after the 

wastewater treatment plants. Figure from Lambirth et al.138 (Author’s own work).  

7.4.2 Sequencing and Sequence Pre-Processing 

These samples were then sequenced at DHMRI using both 16S rRNA and WGS 

technologies on Illumina HiSeq 2500 lanes to investigate the microbial communities. 

WGS sequences were trimmed for quality assessments using Trimmomatic139 before 

forward and reverse reads were merged using PEAR140. The technical replicate that 

yielded the highest sequencing depth was used as the representative sample in the 

statistical analyses.  

7.4.3 Taxonomic Classification and Antibiotic Resistance Gene Profiling 

Taxonomic classifications for WGS sequencing data came from merged reads classified 

using MetaPhlAn252 using the default settings. The determination of antibiotic resistance 
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markers came from the ShortBRED141 pipeline using a custom database constructed from 

the Comprehensive Antibiotic Resistance Database (CARD)142 and the Lahey Clinic 

beta-lactamase database.  

7.4.4 Statistical Modeling 

Methods of statistical inference include linear regression models where the response 

variable for the taxonomic classifications were either the microbial abundance of specific 

taxa, and alpha-diversity or beta-diversity measures of community composition 

calculated using the R package vegan66. Other response variables came from the 

antibiotic resistance gene abundances from ShortBRED and the antibiotic concentrations. 

Explanatory variables in the model included terms of location (Mallard or Sugar Creek), 

sample site (where in the waterway the sample came from), and the timepoint at which 

the sample was collected. These models were used to compare sites in a pairwise manner. 

This means that the general format of the statistical models used two categories for Sugar 

or Mallard Creek, two categories for the sample site, and four categories for the 

timepoint. These model terms were taken as additive only since models with interaction 

terms did not achieve many significant differences. The small number of timepoints and 

the irregular intervals between collection dates led to the treatment of the different 

timepoints as categorical differences rather than terms requiring sophisticated linear 

models with temporal autocorrelation, which could not likely be justified by the small 

size of subsets of the dataset being compared. Additionally, associations between 

antibiotic concentrations and the relative abundance of specific microbes were 

investigated using standard correlation tests. 
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7.5 Results 

7.5.1 Microbial Communities Seen Via Beta-Diversity 

The investigations of the beta-diversity via Bray-Curtis PCoA showed a clear separation 

in the microbial communities of sampling sites involved in the wastewater treatment 

process as compared to stream sites pre- and post-treatment [Figure 7.2].  

 

 

Figure 7.2: Ordination of different sample subsets Results visually indicate that stream 

communities downstream resemble upstream communities after treatment. Figure from 

Lambirth et al.138 (Author’s own work). 
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7.5.2 Differences in Antibiotic Concentrations During Processing Steps 

The concentrations of several antibiotics were elevated at the sampling sites downstream 

of the wastewater treatment plant [Figure 7.3].  

 

Figure 7.3: Several antibiotic concentrations were significantly elevated between the 

upstream and downstream sampling sites. Figure from Lambirth et al.138 (Author’s own 

work). 

7.5.3 Bacterial Differences in Abundance During Treatment Stages 

In contrast to the community and antibiotic concentration differences, most potential 

pathogens were not significantly different between upstream and downstream sites, 

though there were significant differences in taxonomic abundances throughout points of 

comparison within the treatment process [Table 7.1]. 

Table 7.1: Significant differences in taxa for the site-site comparisons. Note that few taxa 

have significant differences between the upstream and downstream samples, especially in 

comparison to the other site-pairs investigated. Table from Lambirth et al.138 (Author’s 

own work). 

Taxon p Value Higher Abundance 

Peptostreptococcaceae  0.0039 Downstream to Upstream 

Afipia  0.0093 Downstream to Upstream 

Holospora  0.0039 Downstream to Upstream 

Azoarcus  0.0114 Downstream to Upstream 

Acinetobacter  0.013 Downstream to Upstream 
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Bppunalikevirus  0.0093 Downstream to Upstream 

Yualikevirus   0.0096 Downstream to Upstream 

Sphingobium  0.01 Rural to Upstream 

Kocuria rhizophila  0.0318 Residential to Hospital 

Nitrospira defluvii  0.0216 ATE to PCI 

Caulobacter sp 0.0058 ATE to PCI 

Afipia clevelandensis  0.0048 ATE to PCI 

Rhodopseudomonas 

paulustris  

0.012 ATE to PCI 

Hyphomicrobium 

denitrificans 

0.0114 ATE to PCI 

Mesorhizobium sp 0.0183 ATE to PCI 

Paracoccus sp 0.0439 ATE to PCI 

Reyranella massiliensis  0.0111 ATE to PCI 

Sphingobium xenophagum  0.0184 ATE to PCI 

Sphingopyxis sp 0.0003 ATE to PCI 

Alicycliphilus sp 0.0004 ATE to PCI 

Limnohabitans sp 0.0005 ATE to PCI 

Polaromonas sp 0.0003 ATE to PCI 

Variovorax sp 0.0014 ATE to PCI 

Azoarcus sp 0.0006 ATE to PCI 

Dechloromonas sp 0.011 ATE to PCI 

Methyloversatilis sp 0.0008 ATE to PCI 

Thauera aminoaromatica  0.0212 ATE to PCI 

Actinobacter parvas  0.025 ATE to PCI 

Turneriella parva  0.0058 ATE to PCI 

Methanobrevibacter sp 0.0357 ATE to PCI 

Gordonia amarae  0.0476 ATE to PCI 

Tetrasphera elongata  0.0218 ATE to PCI 

Rhodococcus  0.0409 Downstream to FCE 

Actinobacterium sp 0.0116 Downstream to FCE 

Polynucleobacter 

necessarius  

0.00000007 Downstream to FCE 

Limnohabitans  0.00000007 Downstream to FCE 

Methylotenera  0.0404 Downstream to FCE 

Bppunalikevirus  0.0132 Downstream to FCE 

Yualikevirus  0.0266 Downstream to FCE 
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7.5.4 Differences in Antibiotic Resistance Genes Between Sites 

The small number of significant differences between upstream and downstream sites 

indicates that the treatment process does not introduce many new antibiotic resistance 

genes to the bacterial populations upon release of the treated water.  

 

Figure 7.4: Antibiotic resistance genes as predicted by ShortBRED colored by the model 

terms significantly different between pairs of sampling sites. Figure from Lambirth et 

al.138 (Author’s own work). 
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7.5.5 Associations Between Specific Taxa and Antibiotic Concentrations 

There was no evidence of strong associations with significant p-values between antibiotic 

concentrations and specific taxa (data not shown).   

7.6 Discussion 

The lack of significant increases in microbial relative abundances between upstream and 

downstream sites can be interpreted as the treatment plants are fulfilling their established 

goals of removing pathogens in the course of the treatment process prior to release. The 

relative abundance of antibiotic resistance elements was also not broadly elevated 

downstream of processing, though wastewater treatment plants are not routinely assessed 

in their ability to remove antibiotic resistance genes themselves, other systems have 

failed to do so143,144. However, the exposure to antibiotic concentrations, even at sub-

lethal levels, has been implicated in driving the evolution and dissemination of antibiotic 

resistance elements145,146. This possible means of driving antibiotic resistance remains 

even though we did not observe any strong associations between microbial relative 

abundances and concentrations of antibiotics measured as the water samples taken only 

capture transient interactions between antibiotic and microbe. At the level of the 

microbial community, the samples collected downstream of the treatment process largely 

resembles the upstream communities, and the communities more closely resemble stream 

samples as the wastewater processing proceeds.   

Future work could include a careful assessment of the attenuation of human gut and 

wastewater treatment associated microbes downstream of processing via systematic 

sample collection and quantitative microbial load measurements (i.e. qPCR), which may 

help to guide human usage and interactions with proximal downstream waterways. Other 
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recent studies have revealed that even non-antibiotic pharmaceuticals can significantly 

impact microbial communities92, and this suggests that the expansion of small molecule 

detection to include such compounds may yield insight into the microbial interactions 

with these molecules in environmental settings after the initial interactions within the 

host. Ongoing work within this project includes similar investigations of antibiotic 

resistance in other types environmental samples like soil and sediment. 

7.7 Communication of Results 

This work was presented at the 2018 North Carolina Microbiome Consortium 

Symposium at Research Triangle Park, NC on May 15th, 2018. It has been published in 

the journal Water under the title "Microbial Community Composition and Antibiotic 

Resistance Genes Within a North Carolina Urban Water System" by Lambirth et al. as  

part of their special issue  “Antimicrobial Resistance in Environmental Waters.”138
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CHAPTER 8: PROBING THE ROBUSTNESS OF THE ENTEROTYPE HYPOTHESIS 

 

 

8.1 Abstract 

8.1.1 Background  

The enterotype hypothesis claims that discrete patterns of microbial compositions are 

indicators or biomarkers of human health. Here the algorithms defining these microbial 

clusters are evaluated for robustness and consistency across methods. 

8.1.2 Materials and Methods  

The original enterotyping methods of Partitioning Around Medoids (PAM) and the 

Dirichlet Mixture Model (DMM) are used with several large modern datasets and their 

results are compared. A method similar to PAM, coseq, originally designed for clustering 

RNA-seq while using compositional transformations of data, is also evaluated in its 

enterotype prediction. 

8.1.3 Results  

The DMM predicts an increasing number of enterotypes as the number of samples 

subsampled from a cohort increases. PAM predicts various numbers of enterotypes based 

on the normalization scheme used. The best-suited number of clusters determined by 

coseq is also sensitive to the compositional transformation used.  

8.1.4 Discussion  

While the inconsistency of results across methods alone cannot refute the enterotype 

hypothesis on their own, they do suggest that the way these methods are indicated to be 

used in the literature are insufficient to produce results that are robust to the variety of 

normalizations used on microbiome data. 
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8.2 Background and Problem Statement 

The enterotype hypothesis involves the perception of a pattern of relatively discrete 

clusters of different genera (enterotypes) in the human gut microbiome dominated by 

specific bacterial genera which give each cluster its name: Bacteroides (sometimes split 

into two groups: ET B1 and ET B240), Prevotella (ET P) and Ruminococcus (ET R)147. 

These enterotypes have been suggested as a means of classification that could simplify 

the analysis of the complex microbial relationships in the gut environment. Enterotypes 

have also been proposed for use as indicators of biological trends in disease outcomes as 

diverse as obesity, diabetes, gut cancers and chronic gut inflammatory diseases147–149. 

However, the enterotype hypothesis remains controversial as many researchers interpret 

these microbial patterns as being transitions occurring on a gradient rather than as 

discrete units, a perspective which may be further supported by the ability of individuals 

to change enterotypes in some circumstances148,150–153. There is also contention that this 

enterotype description, especially the suggestive title of “driver” for the dominant taxon, 

is overreaching in suggesting interchangeable characterizations across datasets and that 

the familiar term “biomarker” would be more appropriate terminology154.  

In addition to the controversy surrounding the biological interpretations of enterotypes, 

increasing awareness to the sensitivity of the results of microbiome analyses to data 

normalization and artifacts resulting from the improper treatment of its nature of 

compositional data, have raised concerns that the enterotype pattern could similarly be an 

artifact of or dependent on the analytic pipelines employed, calling into question its 

robustness and ultimate utility. For example, the number of enterotypes of a more 

statistically rigorous method148 like that of Dirichlet multinomial mixture (DMM) 
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modeling are known to sometimes disagree with the partitioning around medoids (PAM) 

clustering algorithm used in the initial formulation of enterotypes147,155. Additionally, as 

there is no consensus agreement as to the proper normalization strategy for general 

microbiome analyses, the PAM method’s reliance on relative abundance as its sole 

normalization strategy becomes suspect especially since related k-means clustering 

results are known to be susceptible to the normalization or standardization of the 

data60,156. Put another way, the enterotypes predicted by PAM may be an artifact of the 

sole normalization scheme used in its formulation. This concern regarding normalizations 

in enterotypes is especially important as researchers have used all manner of 

normalization in the analysis of differential abundances in, for instance, diseased versus 

healthy patients, and establishing a consistent strategy of normalizing for enterotype 

analysis and differential abundance detection may have merit. There is also some doubt 

as to the mathematical suitability of methods like k-means clustering to determine 

enterotypes given that the algorithm assigns samples to exclusive categories. Methods 

akin to generative models that permit for the discussion of hidden latent variables that 

explain distributional trends observed in taxonomic abundances, like the Dirichlet 

multinomial mixture model itself, may be more suitable to describe such data. It is also 

concerning that despite the controversy in the biological interpretation of enterotypes and 

inconclusive or limited follow-up investigations of methods characterizing enterotypes, 

several important proponents of the enterotype hypothesis have produced a website 

(http:www.enterotypes.org) for automatically converting genus-level taxonomic tables 

into enterotypes with limited discussion of caveats beyond a brief protocol in the form of 

a flowchart that essentially presupposes enterotypes. In addition to evaluating these two 
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pioneering methods in the determination of enterotypes, we further consider a k-means 

based approach to clustering that works with compositional transformations appropriate 

to microbiome data82.  

8.3 Attributions 

My role in this project was the conceptualization and experimental design, compilation of 

normalization methods from existing software packages, modifying and extending the 

DMM and PAM approaches, and evaluation of the algorithms used in the definition of 

enterotypes. Dr. Shan Sun helped with constructing bioinformatics pipelines for 

taxonomic classifications for datasets used in prototyping, but not in the final work. Dr. 

Fodor oversaw the work and aided in the experimental design. 

8.4 Materials and Methods 

8.4.1 Datasets Evaluated for Enterotypes 

The human gut microbiome studies considered in this aim are detailed in [Table 8.1]. These 

datasets include medium and large sized Western and non-Western cohorts. The inclusion 

of non-Western cohorts is important because others have observed different ratios of the 

enterotypes in such cohorts, however, the current PAM-based enterotyping method also 

includes an industrialized non-Western Chinese cohort154,157. The restriction to the use of 

16S data rather than the more detailed WGS is justified by the fact that both PAM and 

DMM were formulated using genus level information, which 16S sequencing can reliably 

provide, and the use of 16S data in the original formulation of enterotypes. The taxonomic 

classifications at the genus level are derived from OTU tables provided in the supplemental 

materials (YOC, AGP) or QIIME2 (HMP, C7K) through the Qiita database. Note that there 

are expected to be slight differences in the taxonomic classification between these datasets, 
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but the enterotype hypothesis itself does not stipulate a preferred classifier. Datasets were 

then restricted to include only samples derived from fecal materials. The only data filtering 

performed in the original enterotypes paper is the removal of taxa remaining unclassified 

after the conversion to relative abundances, resulting in a relative abundance that no longer 

sums to one within each sample. DMM and coseq have no suggested or preferred filtering 

approaches.  

Table 8.1: Datasets used in this study 

Short Name Number  

of Samples 

Reference 

Human Microbiome 

Project (HMP) 

353 (restricted 

to fecal 

samples only) 

Structure, function and diversity of the healthy human 

microbiome. The Human Microbiome Consortium. Nature 

volume 486, 207–214 (2012). 

Healthy Young/Old 

Chinese (YOC) 

1095 The Gut Microbiota of Healthy Aged Chinese Is Similar to 

That of the Healthy Young. Bian G et al. mSphere. 2017 

Sep 27;2(5). 

China Single Province 

Cohort (C7K) 

7009 Regional variation limits applications of healthy gut 

microbiome reference ranges and disease models. He et al. 

Nature Medicine volume 24, 1532–1535 (2018). 

American Gut Project 

(AGP) 

9511 American Gut: an Open Platform for Citizen Science 

Microbiome Research. McDonald D et al. mSystems. 2018 

May 15;3(3). pii: e00031-18. 

 

8.4.2 Distance Metrics Employed 

The study that originated enterotypes used the Jensen-Shannon distance on the Partitioning 

Around Medoids clustering algorithm147. The Jensen-Shannon distance is a measure of the 

similarity of probability distributions, and has been used as an alternative to the Bray-Curtis 

dissimilarity and weighted UniFrac distance in analyzing the beta-diversity of microbiome 

samples. The discarded fraction of unassigned reads in the original filtering protocol is 

problematic because as the Jensen-Shannon distance is defined for probability 

distributions, but the prescribed protocol does not restore the relative abundances to a sum 

of one after filtering, and therefore the relative abundances being used to group similar 

samples is not strictly a probability. Another problem with this approach that may limit the 
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robustness of the method is the fact that different taxonomic classifiers and databases will 

assign different amounts of unclassified reads, and that databases and classifiers have 

trended to decreased amounts of unclassified taxa as databases grow and classification 

methods have improved. The Jensen-Shannon distance is used with the normalized reads 

in keeping with the original formulation of PAM, but the normalizations are also rescaled 

to proper probabilities.  

8.4.3 Partitioning Around Medoids (PAM) 

PAM is a greedy (rather than exhaustive) algorithmic approach to k-medoids clustering, 

which itself is a discriminative method similar to k-means clustering, but actual data points 

(samples) rather than means are used to seed the clusters for which minimized distances to 

other points are sought. Additionally, k-medoids can use distances or dissimilarities apart 

from the Euclidean distance used in standard k-means clustering, and this can also act to 

make k-medoids more robust to outliers than k-means. Normalization strategies in advance 

of the PAM-based determination of enterotypes will includes a subset of normalizations 

detailed in [Table 2.1]. 

8.4.4 Clustering Evaluation Indices 

The number of clusters k is selected a priori, and in the PAM approach clustering suitability 

is evaluated using the silhouette method or the Calinski-Harabasz index158. In the 

originating work, the silhouette method is used to validate the number of clusters predicted 

by the Calinski-Harabasz index. The silhouette score is the average of the scores of each 

sample and is bound between -1 and 1, with values near zero indicating poor clustering. 

The score is given by 
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𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
, 

where a(i) is the average intra-cluster distance and b(i) is the smallest average distance to 

any cluster in which i is not a member. The Calinski–Harabasz criterion index is also a 

limited heuristic, which works best under certain assumptions of cluster properties159, and 

compares the ratio of between-cluster (B(k)) to within-cluster (W(k)) variation multiplied 

by a factor involving the dataset size (n) and number of clusters (k): 

𝐶𝐻(𝑘) =
𝐵(𝑘)(𝑛 − 𝑘)

𝑊(𝑘)(𝑘 − 1)
 

8.4.5 Dirichlet Mixture Model (DMM) 

The Dirichlet mixture model uses multinomial sampling where the prior is considered to 

be a mixture of Dirichlet components, where these components are taken to represent 

enterotypes. The parameters of these components are predicted using the distribution of the 

data to provide evidence that such a generative model (one based on enterotypes) could 

generate such data. Its authors claim that this better allows for their model to fit clusters 

(enterotypes) that may not be even in size/frequency in the human population and that such 

a method appropriately penalizes complex models155. The DMM enterotype classification 

method is built on raw counts provided by the taxonomic assignment at the genus level, 

and so different normalization methods need not be applied to it unlike the case for methods 

that use data normalization. The DMM was originally formulated when microbiome 

datasets were small, and the algorithm scales poorly with increasing dataset size. In order 

to evaluate its performance on larger datasets, a subsampling strategy is employed wherein 

100 permutations of larger random samples are used. These are then compared against each 

other and against the datasets where the whole sample size is small enough to run without 
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subsampling. The maximum subsampled size in the larger datasets is taken to be 1200, just 

larger than the size of the Flemish Gut Flora Project which the DMM has been stated as 

being successfully employed on16.  

8.4.6 coseq  

The R package coseq82 includes functionality for investigating how the compositional data 

transformations influence the results of k-means clustering, and thus potentially may be 

used in the determination of enterotypes. It was not specifically implemented for use on 

microbiome data, but it has been evaluated for the similar problem of clustering RNA-seq 

data. In contrast to the DMM and PAM methods, coseq is sensitive to the selection of initial 

cluster seeds, and so the authors recommend estimates over 5 runs to avoid such problems. 

In this study, the average number and standard deviation of 5 runs are reported. Rather than 

using a silhouette score, coseq uses a penalization for complex models like that in the DMM 

methodology, but its penalty function grows as the square-root of the number of clusters 

and the dimensions of the data multiplied by a constant calibrated from the data. The coseq 

clustering strategy can choose between the standard compositional transformations (ALR, 

ILR and CLR), in addition to a modification of the CLR transformation called “logclr” are 

employed. Here the ILR transformation is based on the original Gram-Schmidt procedure 

on the CLR-transformed data160. The “logclr” transformation is similar to zero-inflated 

models and normalizations that provide special treatment for near-zero values, but it 

assigns less importance to samples with weak proportions.   

logCLR(xj) = {

−[ln (1 − ln [
xj

g(x)
])]2,   if 

xj

g(x)
 ≤ 1

(ln [
xj

g(x)
])2                     otherwise
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8.5 Results 

8.5.1 Dirichlet Mixture Model Results 

For the HMP and YOC datasets, which are small enough to fully run through the DMM, 

the predicted number of enterotypes for the best model fit are 3 and 6 respectively. The 

selection for 6 rather than 4 in the YOC dataset is based on values the difference in score 

of model fit where this difference is greater than 400 compared to deciding between 3 

and 4 clusters (with this difference being  less than 100) in the original description of the 

DMM on the Twins dataset155. 

 

Figure 8.1: Number of enterotypes at best (minimum) model fit for HMP (left) and YOC 

(right) datasets 

Across all datasets considered, including some of the largest currently available 16S 

datasets from Western and non-Western industrialized cohorts, the DMM method of 

determining the number of clusters or enterotypes can be sensitive to sample size using 

several different datasets [Figure 8.2]. In all datasets evaluated, the DMM approach 

predicts increasingly larger number of enterotypes with larger sample sizes. Furthermore, 
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there is a lack of consistency between the number of enterotypes predicted between 

datasets, which conflicts with previous assessments of enterotypes being consistent 

between Western and non-Western industrialized cohorts. Here the different datasets are 

subsampled 100 times for each subsample size and the DMM approach is evaluated on 

each subsample and reports the optimal number of clusters for each subsample.  

 

Figure 8.2: Predicted number of enterotypes grows as sample size increases in 100 

permutations of random subsets of the indicated size Permutations were done without 

replacement for each dataset. 
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8.5.2 Partitioning Around Medoid Results 

Similar to the inconsistencies encountered across datasets and sample sizes in the DMM, 

the PAM method originally used in the determination of enterotypes also predicts various 

optimal numbers of enterotypes subject to normalization or dataset choice. Table 8.2 

indicates that the number of enterotypes depends on the normalization strategy used, but 

there is also some sensitivity to the dataset evaluated. Most values for HMP, YOC and 

AGP are near the original numbers of 2 or 3 enterotypes, but for the C7K dataset the 

number trends towards 4 or 5 enterotypes. Surprisingly, it is only for the relative 

abundance normalization used in the original formulation of enterotypes and the median 

ratio normalization that the number of enterotypes comes down to 2 or 3. The use of 

unscaled (JSD) or scaled (JSD%) data tends to not influence the number of predicted 

enterotypes for the HMP and YOC datasets, but there is a trend towards lower numbers 

of clusters as seen by the CH index in the C7K dataset for most normalizations used and 

higher values for the CH index within the AGP dataset.  In terms of replicating the 

assessment validation strategy for the number of enterotypes originally employed, it is 

frequently the case that the two assessment methods are not consistent in predicting the 

same optimal number of enterotypes.  

Table 8.2: The number of enterotypes predicted by PAM method depends on the 

normalization strategy used. SS-Silhouette Score, CH-Calinksi-Harabasz Index, JSD-

Jenson-Shannon Distance, JSD%-JSD after conversion to a percentage 

Normalizatio

n 
HMP YOC C7K AGP 

Distance JSD JSD% JSD JSD% JSD JSD% JSD JSD% 

Assessment C

H 

S

S 

C

H 
SS 

C

H 
SS 

C

H 
SS 

C

H 
SS 

C

H 
SS 

C

H 
SS 

C

H 

S

S 

Raw 9 2 2 3 2 3 3 4 5 4 2 4 2 2 3 2 



80 

Relative 

Abundance 

2 3 2 3 2 4 3 4 2 4 2 4 3 2 3 2 

Log10 2 3 2 3 3 3 2 4 4 7 5 2 4 3 2 2 

LogUQ 2 2 2 3 3 3 3 4 5 4 4 4 2 2 3 2 

RLE 2 2 2 3 2 3 3 4 5 4 4 4 2 2 3 2 

CSS 8 2 2 3 2 2 3 4 5 4 4 4 2 2 3 2 

TMM 2 2 2 3 2 2 3 4 5 4 4 4 2 2 3 2 

Median 

Ratio 

2 2 2 3 2 3 3 3 2 4 4 4 2 2 3 2 

 

Table 8.3 summarizes this data by normalization method. Unsurprisingly, the non-

normalization by the use of raw data produces the highest standard deviation, but it also 

has the absolute highest mean value. The rescaling of normalized values to lie in the 

range of 0 to 1 (JSD%) leaves the mean predicted number of enterotypes for the Calinksi-

Harabasz index unchanged or decreases it slightly, but the rescaling in the case of the 

silhouette score leads to more pronounced changes both increasing and decreasing the 

mean predicted number of enterotypes.  

Table 8.3: Summary of number of enterotypes by normalization method 

Normalization 
Distance 

Method 

CH Mean (Standard Deviation) 

 

SS Mean (Standard Deviation) 

 

Raw 
JSD 4.50 (2.87) 2.75 (0.83) 

JSD% 2.50 (0.50) 3.25 (0.83) 

Relative 

Abundance 

JSD 2.25 (0.43) 3.25 (0.83) 

JSD% 2.50 (0.50) 3.25 (0.83) 

Log10 
JSD 3.25 (0.83) 4.00 (1.73) 

JSD% 2.75 (1.30) 2.75 (0.83) 

LogUQ 
JSD 3.00 (1.22) 2.75 (0.83) 

JSD% 3.00 (0.71) 3.25 (0.83) 

RLE 
JSD 2.75 (1.30) 2.75 (0.83) 

JSD% 3.00 (0.71) 3.25 (0.83) 

CSS 
JSD 4.25 (2.49) 2.50 (0.87) 

JSD% 3.00 (0.71) 3.25 (0.83) 

TMM 
JSD 2.75 (1.30) 2.75 (0.83) 

JSD% 3.00 (0.71) 3.25 (0.83) 

Median Ratio JSD 2.00 (0.00) 2.75 (0.83) 
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JSD% 2.75 (0.83) 3.00 (0.71) 

 

8.5.3 coseq Results 

The coseq method, while not formally employed for enterotype determination, allows for 

a similar approach to that of PAM, but provides a compositional treatment of the data. 

The results of using different compositional transformations within the k-means 

clustering approach used by coseq is given in Table 8.4. Except for the ALR 

transformation where values run higher, the numbers of clusters/enterotypes predicted is 

near the 2 or 3 originally predicted and seen in Table 8.2, although the LogCLR 

transformation finds 3 or 4 clusters with high consistency. The ALR transformation tends 

to give higher variation between clustering runs, which may not be surprising given the 

construction of its transformation relative to a reference taxon, and this may also drive 

the higher number of predictions depending on the reference taxon automatically selected 

by the algorithm. The low variance of the clustering results of the LogCLR compared to 

the CLR does lend support to its authors claims of increased stability. Clustering in coseq 

does not yield higher enterotypes for the C7K dataset in contrast to the prediction by 

PAM of higher numbers of enterotypes. 

Table 8.4: Mean number of clusters predicted by coseq over 5 runs with standard 

deviation given in parentheses 

Transformation HMP YOC C7K AGP 

ALR 5.8 (1.17) 5 (0.00) 5.2 (1.17) 3.4 (0.49) 

ILR 2 (0.00) 4.4 (0.80) 3 (0.00) 2.6 (0.49) 

CLR 2.4 (0.49) 5.2 (0.98) 3 (0.00) 2.6 (0.49) 

LogCLR 3 (0.00) 6 (0.00) 4 (0.00) 4 (0.00) 

8.6 Discussion 

Taken together, these three methods: DMM, PAM-based clustering using different 

normalization strategies and coseq for compositionality-aware k-means clustering yield 
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different results in terms of the number enterotypes predicted. Importantly, these differed 

by both normalization and dataset under consideration. The difference in performance 

subject to dataset choice is problematic owing to the universal claims of applicability 

behind the enterotype hypothesis. Data transformations that correct for compositionality 

do not consistently converge on the same number of enterotypes, though some methods, 

like the ILR and LogCLR, which have more rigorous mathematical justifications 

supporting their usage, show a high degree of consistency as implemented in coseq. 

There are several ways to interpret the results observed for the performance of DMM. 

The first is that these results for the DMM method could indicate the number enterotypes 

could have been underestimated in the initial formulation of the enterotype hypothesis by 

the restrictions of their sample sizes. For both the C7K and AGP datasets there is a trend 

to predict a larger number of enterotypes present at the 1200 sample equivalency 

threshold to the Flemish Gut Flora Project data set, although this is more pronounced for 

the AGP data. However, this behavior is not entirely unexpected given the way that this 

algorithm constructs its enterotypes, but this fact has yet to be effectively communicated 

in the literature. Another interpretation is that the DMM is simply a flawed method of 

characterizing enterotypes. Yet still another interpretation is that the discrete enterotype 

hypothesis is false altogether and that the gradient hypothesis is correct, or discrete 

clusters have internal structure that these methods are not capable of deciphering. Both 

the gradient and sub-structure-containing enterotypes may do a better job of explaining 

transitions between enterotypes over time in a subject. However, it should be cautioned 

that this study only evaluated methods capable of producing discrete number of clusters 

or enterotypes. Regardless of the specifics of the interpretation of these results, it is a 
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conservative conclusion that the existing presentation and communicated protocols for 

the usage of these methods are misleading in that they do not discuss these caveats 

mentioned herein and should be revised to reflect these observations.  

While the purpose of this work was to assess these initial methods as they are currently 

presented in the literature and online tutorials from official sources, some comments for 

their improvement will be made. The DMM method is currently constrained in its 

detection of enterotypes by the shape of its clusters, which are essentially n-dimensional 

spheres of various radii. In a private communication with the corresponding author of the 

DMM method (Christopher Quince) has suggested that a transition to a Gaussian mixture 

model would allow for these n-dimensional spheres to be replaced with ellipsoids which 

provide more flexible cluster shapes that are more likely to capture distributional patterns 

of microbial compositions. This might allow multiple adjacent “enterotypes” on a curve 

in n-dimensional space to be condensed into a single enterotype facilitated by a bounding 

ellipsoid rather than a “string of pearls” of separate enterotypes. However, the reliance of 

the DMM on raw taxonomic counts subject to the stochastic nature of sequencing may 

subject the data in larger cohorts to sequencing noise related to batch effects, or other 

differences in experimental design if multiple experiments are being pooled. Neither of 

the official enterotypes methods offers suggestions to pre-filtering of data based on rarity 

or prevalence and such filtering could be potentially be used to adjust the sensitivity and 

better assess conditions that drive consistency between the two methods. It is also the 

case that more sophisticated scoring methods could be implemented in the existing DMM 

framework to allow for a hierarchical view of nested membership between enterotypes 

rather than one of simple same or different grouping. Another important perspective to 
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consider is that the taxa membership that characterizes a particular enterotype may matter 

less than their functional competency and functional metabolism in vivo, and this true 

functioning of a specific microbe can be contextual to the presence/absence, perhaps at 

some activating threshold abundance, of other microbes. Regardless of the method 

selected, the biological implications for using or not using the same normalization 

strategy for community level assessments, such as enterotyping and ordination methods, 

and those for differential abundances of individual taxa remain to demonstrated in the 

literature.  

8.7 Communication of Results 

Earlier versions of this work served as the basis for a poster that was presented at The 

Human Microbiome Symposium at the European Molecular Biology Laboratory in 

Heidelberg, Germany September 16-19th, 2018. A manuscript based on these results is in 

preparation.
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CHAPTER 9: SUMMARY 

 

 

Both dysbiosis of the overarching microbial community structure and the differential 

abundances of specific microbes have been indicated in driving disease in humans. The 

importance of these microbial communities are not restricted to diseases of the 

gastrointestinal tract, and it has been discussed here and elsewhere that microbes play a 

role in the development of cancers and mental illnesses, among other forms of disease. 

Importantly, it is beginning to be appreciated that microbes may be a source of 

therapeutic molecules or be appreciated as therapeutics themselves in the form of 

probiotics, leading to the development of new techniques to decipher function, as well as 

new methods to isolate and culture useful microbes. The field itself is still growing 

rapidly, and now questions are changing from the conduct of microbial censuses within 

these various ecosystems to a functional assessment hoping to uncover mechanisms of 

action. It has also become a time of questioning the reproducibility and robustness of 

experiments conducted so far towards making reliable “gold standards” in terms of both 

experimental and analytical techniques. This dissertation contributes to this discussion in 

its exploration of various host-microbiome interactions, as well as its investigations into 

the analytical challenges of such explorations. 

The first section of this work showed that there are only limited associations present 

between specific microbes and age in a non-human primate model. Diverticulosis, 

another age-associated condition, was investigated in a large human cohort and 

demonstrated limited associations between microbes and the presence or count of 

diverticula in the patients. The cohort size and statistical rigor of this study exceeded that 

of previous work on this topic which had seen significant associations. This study serves 
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as additional evidence of issues surrounding reproducibility and the robustness of results 

in the microbiome literature. Moving from microbial associations with aging to the 

microbiota-gut-brain axis, a small patient population case study of renourishment 

treatment for the restoration of a healthy BMI in anorexia nervosa patients revealed that 

the potential microbial dysbiosis brought about by acute anorexia does not overcome the 

characteristic microbial signature of individual patients. However, larger future cohorts 

will be needed to more thoroughly explore microbial associations with renourishment 

treatment and to more fully understand the mechanisms behind treatment itself. Another 

study of the microbiota-gut-brain axis evaluated the different microbial shifts with 

respect to stress and demonstrated how these changes are modulated by the sex of the 

animal. These results provide further evidence supporting the use of mixed sex animal 

model cohorts, which have already been indicated by funding agencies such as the NIH, 

but here we highlight the case of the microbiota-gut-brain axis. The investigation of 

microbial communities within the scope of wastewater treatment facilities and their 

upstream and downstream urban waterways brings the discussion in this dissertation to a 

full range of in vivo microbial interactions.  In that study, downstream communities were 

seen to be largely restored to that present in upstream samples, the presence of most 

antibiotic resistance genes were significantly decreased, but the concentrations of several 

antibiotics themselves remained elevated post-processing. These results contribute to the 

evolving discussion as to the potential role of wastewater treatment as a form of antibiotic 

stewardship in the face of increasing drug resistance. Finally, algorithmic methods used 

to define the microbial clusters supporting the controversial enterotype hypothesis were 
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investigated as to their robustness, but numerous inconsistencies were found between 

different methods and normalizations. 

It should be cautioned that this dissertation largely evaluated associations between 

microbes and their hosts and environment, but it is such studies that narrow the microbial 

space to be explored in follow-up experiments that work towards causal mechanisms of 

establishing certain microbes as beneficial or harmful. The caveats of working with 

compositional data have been known to the metagenomics and wider sequencing 

communities for some time. What is less appreciated are the variations in severity of 

compositionality, in part due to the distribution of relative abundances, and its potential 

influence on the biological interpretation of results. When these aspects are discussed, 

however, it is often shrouded in mathematical terminology which may fail to lead to 

biological insights in the ways that a comparison of actual results can. With that being 

said, it is also hoped that this work has been able to demonstrate the influence of 

compositionality on a popular hypothesis in the field of metagenomics like that of 

enterotypes, and can serve as a biologically-centered motivation for researchers to better 

address compositionality, and the robustness of results subject to different normalizations 

in metagenomics datasets. Even as future experimentation becomes more quantitative, 

much work remains to be done in assessing how those techniques extend current popular 

sequencing methods of exploring the microbiota that yield compositional data.
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