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ABSTRACT

MOINUL HOSSAIN. Security Assessment of Dynamic Spectrum Access in
Emerging Wireless Networks. (Under the direction of DR. JIANG (LINDA) XIE)

The proliferation of wireless technologies in a licensed manner has resulted in the

scarcity of the radio spectrum. Therefore, spectrum availability has become a chal-

lenge for new and existing wireless technologies. Federal Communications Commis-

sion (FCC) has proposed a new spectrum sharing strategy, i.e., dynamic spectrum

access (DSA), to opportunistically access the underutilized spectrum resources of li-

censed users and to fairly share the unlicensed spectrum with others. Cognitive Radio

(CR) works as a promising technology to enable this opportunistic or dynamic spec-

trum access. Moreover, DSA and CR also work as fundamental building blocks of

future spectrum coexistence, which aims to improve spectrum equity. This disser-

tation serves as a means to achieve secure and fair coexistence of different wireless

technologies in the same spectrum—whether licensed or unlicensed.

In this research, a novel attack surface, off-sensing interval, is introduced. It high-

lights a novel room of vulnerabilities in state-of-the-art channel sensing processes.

This vulnerability illustrates how an attacker can ingeniously avoid the sensing inter-

val of the victim and can intelligently interfere with the transmission or reception of

the victim to trick it into believing that it is interfering with a licensed user. Such a

scenario pushes the victim to perform a spectrum handoff and influences its spectrum

utilization. It is named an off-sensing attack. Furthermore, a cross-layer attack in

CR-based wireless mesh networks is proposed, where the attacker deploys the off-

sensing attack as an auxiliary attack to influence the traffic flow around the victim

to divert traffic through a target node. It is named an off-sensing and route manip-

ulation attack. Then, a strategy to thwart the off-sensing attack is proposed, where

the defender hops through different channels in the spectrum band to confuse the
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attacker. The interaction between attackers and a defender is modeled as a Markov

decision process to assist the defender in making optimal decisions.

In addition, another attack surface is discovered in state-of-the-art rendezvous and

spectrum handoff processes in infrastructure-less CR-based networks. As infrastructure-

less networks operate without a central entity, the lack of vigilance in current spectrum

handoff strategies engenders this vulnerability where a selfish SU can trigger an early

handoff to reserve the best available channel sooner than benign SUs. This research

helps to design secure spectrum handoff processes.

Finally, as the rapid commercialization of Internet-of-Things (IoT) is taking place,

the density of spectrum hungry devices are increasing. This dense deployment of

IoT devices—that may follow different wireless technologies—in the shared spectrum

creates a new challenge to solve: secure coordination among co-located IoT devices

from different IoT networks. This dissertation sheds light on this unique challenge

and introduces a novel security vulnerability where an attacker can pose as a hidden

terminal from a different network and compromise the victim device, namely hidden

terminal emulation (HTE) attack. As the dense deployment of IoT devices will natu-

rally aggravate such hidden terminal interference, it facilitates the HTE attacker with

plausible deniability to interfere with its alleged hidden counterparts. This disserta-

tion assesses this issue and proposes detection and defense measures, namely Third

Eye and Jump and Wobble, receptively.

In summary, dynamic spectrum access promises to be one of the significant ideas

to solve the spectrum scarcity problem. This research is essential to conduct an in-

depth security assessment of spectrum sharing operations—which are unique to the

dynamic spectrum access—before the commercialization of such technologies.
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CHAPTER 1: INTRODUCTION

1.1 Background on Dynamic Spectrum Access and Spectrum Coexistence

The number of network devices is expected to radically increase—with an estimate

of above 50 billion connected devices by 2025—to support new services and applica-

tions. As we are moving towards a world where each thing could probably have some

form of wireless connectivity, we are facing new challenges along the way. Moreover,

these new services and applications demand higher data rates, with reduced latency

and increased system capacity.

To conform to these rising demands, wireless networks must undergo suitable

changes, and one of the biggest challenges in meeting these demands is limited spec-

trum resources because there is not enough room for growing wireless demands. The

constrained amount of radio resource and the licensed way of utilizing this resource

have made it a challenge to meet the ever-increasing demand for wireless services.

On the other hand, the Federal Communications Commission (FCC) has concluded

that the radio spectrum is not balanced in terms of resources and traffic-load; a sig-

nificant portion of the radio spectrum remains underutilized, whereas a high volume

of traffic appears in another portion. In light of such an inefficient utilization of

precious radio resource, the FCC proposed a new spectrum sharing paradigm, where

an unlicensed user (or secondary user (SU)) can opportunistically utilize a licensed

channel when the licensed user (or primary user (PU)) is idle; this represents one

of the aspects of opportunistic or dynamic spectrum access (DSA). One underlying

idea that has emerged as a promising technology to realize this aspect is cognitive ra-

dio (CR). With the capability of sensing the frequency bands in a time-space varying

spectrum environment and adjusting the operational parameters based on the sensing
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outcome, CR technology allows an SU to exploit these underutilized licensed channels

opportunistically, and an example of this mechanism is IEEE 802.22 (WRAN) where

underutilized resources in the TV frequency spectrum is utilized by unlicensed users

on a non-interference basis. However, the opportunistic use of licensed channels does

not represent the full scope of DSA because it considers the presence of licensed and

unlicensed users in only licensed spectrum. Another aspect of DSA is the coexis-

tence of heterogeneous networks in the unlicensed spectrum, such as 2.4 GHz and 5

GHz bands. An example of this strategy is the spectrum coexistence between LTE

and WiFi in the 5 GHz band. Therefore, the full scope of DSA represents spectrum

sharing in both licensed and unlicensed spectrum.

Like traditional wireless networks, CR-based networks (CRNs) are prone to con-

ventional network attacks [1] (e.g., jamming, packet drop, and eavesdropping). In

addition, new genres of attacks have emerged in CRNs due to its unique way of oper-

ation, i.e., DSA [2, 3, 4]. The two most studied attacks specifically in CRNs that try

to compromise the spectrum sensing process are primary user emulation (PUE) [5]

and spectrum sensing data falsification (SSDF) [6]. Depending on the motive of the

attacker, these attacks help to either maximize attacker’s own channel utilization (i.e.,

selfish attacker) or to sabotage the network operation of the victim (i.e., malicious

attacker). In PUE, an attacker masquerades as a PU during the sensing interval to

trick the victim into avoiding the channel. In SSDF, an attacker shares false sens-

ing information with victims to manipulate the consensus on channel availability in

cooperative spectrum sensing techniques. Hence, both attacks have the same attack

objective—to reduce the spectrum utilization of the victim.

Unfortunately, these two attacks do not represent the complete picture of security

vulnerabilities in DSA, and security researchers are required to perform a thorough

investigation of the vulnerabilities in the CR technology before deploying it com-

mercially. Though aforementioned attacks are distinct in their strategies, they have
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the same attack surface, i.e., the sensing process. Nonetheless, there could be other

attack surfaces unique to the operational characteristics of the CR technology—or

DSA—that require rigorous security assessments. Moreover, the deployment of het-

erogeneous wireless networks in the unlicensed spectrum may expose the spectrum

sharing process to additional security threats.

This research discovers three novel attack surfaces that are vulnerable to intelligent

attacks. Such attacks exploit the off-sensing interval of a victim, the heterogeneity

among different coexistent networks, the shared nature of spectrum utilization, and

the proximity to the victim device in a dense network scenario to interrupt the vic-

tim’s communication. These attack surfaces are: (1) communication interval, (2)

spectrum handoff, and (3) spectrum access. However, before explaining these new

attack surfaces, the unique operational characteristics of DSA and spectrum coexis-

tence that enable the creation of such novel attack surfaces require discussion. These

unique operations are:

• Spectrum Sensing: SUs can sense the frequencies in a certain spectrum band

and access an underutilized channel opportunistically without harmful inter-

ference to PUs. It is an important requirement of CR networks to sense the

spectrum holes. Detecting PUs is the most efficient way to detect spectrum

holes. Spectrum sensing techniques can be classified into three following cat-

egories. (1) Primary transmitter detection: CRs must have the capability to

determine a signal from a primary transmitter [7]. (2) Cooperative spectrum

sensing: multiple SUs share sensing information with each other and fuse this

information for PU detection [8]. (3) Interference based detection: PU presence

is inferred based on the interference experienced by SUs [9]. As SUs have to

perform spectrum sensing and transmission, both in a half-duplex radio, the

state-of-the-art works suggest that they must do it periodically. Figure 1.1

illustrates the sensing-transmission schedule of the MAC layer.
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Figure 1.1: Periodic sensing and transmissions.

• Channel Rendezvous and Absence of Control Channel among Heterogeneous

Networks: In prior research, most works either considered the availability of a

dedicated common control channel (CCC) to exchange control information [10,

11, 12, 13] or did not consider at all [8, 14, 15]. In reality, due to the difference

in spectrum usage by PUs (in both space and time), spectrum availability may

differ depending on SU locations, and a single common channel is highly unlikely

to be available. Hence, two SUs must find a common available channel between

them to establish a connection. The state-of-the-art work usually proposes

that two SUs hop onto different channels from one time slot to another (i.e.,

channel-hopping process) until they rendezvous on a common available channel

[16, 17, 18, 19], and they can exchange control information afterward. However,

the rendezvous process is only feasible when participating devices follow same

network protocols, and there is no universal CCC among heterogeneous wireless

networks. Therefore, managing spectrum coexistence among different networks

is a crucial research issue.

• Spectrum Handoff: As the channel availability is random, SUs change their

operating frequency based on its radio environment. CR technology aims to

use the licensed spectrum in a dynamic manner by allowing SUs to operate in

the best available frequency band, while maintaining seamless communication

requirements during the transition to a better spectrum. This introduces a

new type of handoff called spectrum handoff, which refers to the process that

a SU switches to a new available channel to resume the transmission when the

current channel is not available. Based on the moment when the spectrum

handoff is carried out, two types of spectrum mobility are introduced: reactive
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and proactive approaches. Though both approaches have different strengths,

when ensuring permissible interference to PUs, the proactive approach works

better than the reactive approach [20].

1.2 Problem Statement

1.2.1 Off-sensing Attack

The etiquette of spectrum sharing on a non-interference basis can turn this into

a vulnerability. As discussed earlier, an attack that exploits this vulnerability is the

PUE attack. Under this attack, a perpetrator transmits signals whose radio properties

emulate the PUs, thereby causing unlicensed users to falsely detect the transmission

as a benign PU. As a result, SUs abstain from transmitting on that channel. To defend

such an attack, several solutions are proposed based on spectrum sensing approaches.

Under most existing spectrum sensing approaches, SUs periodically sense the spec-

trum for returning PUs. Therefore, sensing period has to be designed in such a way

that the sensing interval coincides with the transmission of PU’s. When a PU’s trans-

mission does not coincide with the sensing interval of a SU, the SU will fail to detect

the PU and may interfere with the PU’s transmission. Consequently, the throughput

of both networks is impacted. This creates a new window of vulnerability (Figure 1.2)

where attackers will interfere only when no neighboring SUs are sensing but transmit-

ting. Using this approach, an attacker can corrupt the transmission of a victim SU.

This will trick the SU into believing that it is interfering with a benign PU. Because

FCC regulations require a SU to leave a channel within 2 seconds of the arrival of

a PU [21], the SU will perform a spectrum handoff and hop to the next available

channel. This research names it an off-sensing (OS) attack, meaning to interfere with

the victim’s transmission when it is not sensing and force it into believing that the

victim is interfering with PUs.
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Sensing Communication
T

Sensing Communication

Attack window Attack window

Figure 1.2: The attack window of OS attack.

1.2.2 Cross-layer Attack

One of the promising applications of the CR technology is wireless mesh networks

(WMNs)[22, 23], because WMNs usually suffer from inter-flow interference [24] and

insufficient channels to mitigate it, whereas the CR technology offers an intelligent

solution to the interference problem in WMNs via accessing licensed bands in an op-

portunistic manner. However, since CRs adapt to the surrounding radio environment

based on sensing the radio channels around them and collaborating with peer nodes,

it is crucial that the belief of their surroundings is not compromised and diverted in

the wrong direction by an attacker.

A CR-WMN consists of CR-enabled wireless mesh routers/access points (CR-

WMRs or SUs interchangeably), mobile devices connected to the CR-WMRs, and

a gateway which is connected to the Internet. Internet traffic between mobile devices

and the gateway is carried by the CR-WMRs, and CR-WMRs can opportunistically

access the spectrum when no PUs are using it. However, as discussed, the policy of

accessing licensed channels on a non-interfering basis can make it a potential vulner-

ability; such vulnerabilities are utilized in OS, PUE, and SSDF attacks.

Furthermore, in CR-based networks, the cross-layer nature of some networking

protocols may create a new degree of vulnerability because the coupling of multiple

layers entails that the decisions made in one layer can be altered by changing the

dynamics of other layers. This proposal proposes such an attack under which an

attacker can manipulate the routing decisions in the network layer by employing the

off-sensing attack as the front-end attack to change the channel availability in lower

layers. As a result, the attacker can influence the traffic flow traversing around it and
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Figure 1.3: Traffic heat map.

direct them to a target node (i.e., route manipulation). In particular, the attacker

will create a Denial-of-Service (DoS) situation for the victim SU node and divert the

traffic flow which initially should go through the victim SU. This lower layer auxiliary

attack is named as off-sensing DoS (OS-DoS) attack. With the careful selection of

which neighboring SU to perform the OS-DoS attack on, the attacker can direct the

diverted traffic flow to a designated target node. The proposal names this cross-layer

attack as off-sensing and route manipulation (OS-RM) attack.

In Figure 1.3 (color and number coded), the changes in traffic flow due to the

rebalancing effect caused by the OS-DoS attack on the victim node can be observed.

Without attack, two neighboring CR-WMRs carry most of the traffic (Figure 1.3(a))

except the target node. However, after the OS-RM attack, it is observed that a

portion of previous routes are disrupted (Figure 1.3(b)). As a result, traffic flows

change directions and a few nodes who were carrying less traffic are exposed to higher

traffic load now. Most significant change in traffic is observed in the target node.

1.2.3 Defense Against Off-sensing Attack

Prior work on OS attack considered two attack scenarios: the attacker always stays

on a particular channel and attacks anyone who tries to access the channel (i.e., selfish
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attacker), or the attacker knows the channel-hopping sequence of the victim SU and

interferes with each transmission attempt of the victim to create a Denial-of-Service

(DoS) situation (i.e., DoS attacker). In either case, the attacker plays a deterministic

role from a victim’s perspective in terms of the operating channel (i.e., the victim

can infer the future attack channel). This deterministic hopping sequence of OS-

attackers makes it difficult to fortify against traditional defense techniques [2, 4].

Similarly, the assumption that the attacker has the perfect knowledge of the victim’s

hopping sequence makes it a critical disadvantage for the victim and creates unrealistic

scenarios (hopping sequence depends on each SU’s surrounding environment, which

varies in time and space). Therefore, in realistic conditions, OS-attackers require a

random sequence.

Previous work on the defense and detection of the PUE and SSDF attack focused on

the sensing interval and the cooperative nature of CRNs, respectively. However, these

proposed methods cannot detect OS-attack due to different attack surfaces. Hence,

the OS-defense requires focused efforts into the off-sensing interval to safeguard SUs.

As the channel-hopping process is random, SUs can follow any channel-hopping

process to rendezvous with each other [16]. Moreover, the rendezvous channel (the

channel where two SUs meet) and the transmission channel may differ [25]. Therefore,

it is difficult for an attacker to find the operating channel of the victim to perpetrate

an OS-attack without any predetermined knowledge. In addition, the OS-DoS attack

requires successive detection of victim’s operating channel, which is more challenging.

From the defense perspective, a straight-forward approach to identify an OS-

attacker is to sense the channel when transmitting. However, hardware limitations

(e.g., the transmission antenna would overwhelm the sensing antenna), design con-

siderations (e.g., half-duplex radio), and a decrease in channel utilization (e.g., the

victim SU could use an extra sensing time to utilize another white space) restrain this

approach. Therefore, the defense and detection process of OS-attacks must adhere to
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these constraints.

Moreover, most previous research on defense considered that attackers are always

present and safeguard process(es) are deployed regardless of the presence of attack-

ers. This assumption costs SUs networking, computational, and energy overhead.

Therefore, in resource-constrained networks, the safeguarding process must be aware

of the presence of attackers and deploy the safeguard process(es) only when under-

attack. Additionally, it must provide the flexibility to trade-off between networking

and security performance.

1.2.4 Covert Spectrum Handoff

Currently, research on spectrum handoffs in CRNs falls into two approaches based

on the moment when SUs initiate handoffs. In the reactive approach, SUs perform

spectrum switching and radio frequency (RF) front end reconfiguration after detecting

a PU reappearance. In the proactive approach, SUs predict the future channel activity

and initiate spectrum switching and RF reconfiguration before a PU reappears on the

current channel (based on observed channel usage statistics).

Moreover, most related works on spectrum handoffs and rendezvous processes had

assumed identical channels in terms of service rate [20, 26, 14, 27, 17, 28, 29, 30] (i.e.,

all channels have equal bandwidth). In reality, the available channels are not always

going to be identical, the diversity in service rate must be considered to manage

handoff more efficiently (e.g., a faster target channel could compensate the handoff

delay). Furthermore, in existing proactive handoff approaches, a handoff is triggered

only when an SU finds the current channel unavailable for the next frame. Otherwise,

it keeps transmitting on the current channel until all frames end.

The concepts of channel-hopping, rendezvous, spectrum handoff, non-identical

channels, and handoff trigger time have mostly been studied in isolation. In reality,

these functionalities must be considered together in a CRN and identify vulnerabilities

before designing corresponding network protocols.
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Figure 1.4: The covert spectrum handoff in the proactive handoff process.

When all these functionalities are considered together, it engenders a novel vul-

nerability in the proactive spectrum handoff process where an attacker (or a selfish

SU) can trigger an early handoff to reserve the best available channel sooner than

benign SUs. An illustration of the vulnerability is provided in Figure 1.4. Here, a

common hopping sequence-based rendezvous method is assumed and activity in five

channels with non-identical service rates is shown. This illustration considers that

each SU packet consists of two frames, a transmission attempt must be preceded by a

rendezvous, and SUs must follow the hopping pattern to initiate a new packet trans-

mission. The SU frame length in CH1, CH2, CH3, CH4, and CH5 is 5, 4, 3, 2, and

1 time slots long, respectively. Here, dotted lines represent the hopping pattern. In

Figure 1.4(a), we can see SU1 switching from CH1 to CH5 (in slot-7) as it predicts an

imminent reappearance of PU1 after transmitting the first frame. To select the target

channel, SU1 finds the channel that is not occupied by any SU (e.g., CH3 occupied
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by SU2), is least likely to affect by the returning PUs, and has a faster service rate.

Hence, SU1 selects CH5 as the target channel. In contrast, a selfish SU can initiate a

handoff promptly after the first rendezvous (Figure 1.4(b)) and reserve CH5 sooner

(in slot-2). In doing this, the selfish SU is motivated to finish its transmission faster

(4 time-slots faster in the example) rather than acting benignly. In this proposal, this

selfish attack is named as the covert spectrum handoff, which represents performing

spectrum handoff secretly to gain access to the best available channel sooner.

1.2.5 Hidden Terminal Emulation Attack

In a coexistence scenario, each heterogeneous network tries to share the same spec-

trum in a harmonious way among them, which assumes that participating networks

are benign. Unfortunately, as the world moves to make spectrum coexistence a re-

ality, we will face the inevitable risk that a participating network (or device) may

utilize the coexistence for illicit and selfish purposes, and this participating network

may potentially be malicious. Currently, very few existing works have addressed the

security implications of spectrum coexistence [31, 32, 33, 34]. This dissertation has

discovered a novel vulnerability where attackers can exploit a natural interference

scenario to corrupt transmissions or receptions of particular victim IoT devices, i.e.,

interference from hidden-terminal devices of a different coexistent IoT network [35].

Fig. 1.5 provides an illustration of this vulnerability where networks A and B are two

coexisting IoT networks sharing the same spectrum resource, presumably smart-home

networks of two neighboring apartments. Here, nodes B2 and B4 are hidden termi-

nals to nodes A1, A3, and A5, and vice versa. Note that these two sets of nodes are

from two different networks (or even follow different wireless technologies), and under

the given scenario, each of these two sets has no idea about the transmissions of the

other set because there is no resolution technique to solve the hidden-terminal problem

among different networks/technologies. Therefore, it is probable that, as these two

sets of nodes are out of each other’s radio range, they may utilize the same radio
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Figure 1.5: Hidden-terminal interference between two coexisting IoT networks.

channel and create interference at nodes that are exposed to both of these sets, i.e.,

A2 and A4. Hence, if a denial-of-service (DoS) attacker can emulate the transmission

and physical characteristics of a hidden terminal, it can justifiably interfere with its

hidden counterparts, this research calls it hidden terminal emulation (HTE) attack.

Though successive interference cancellation (SIC) provides a solution to this interfer-

ence problem [36, 37, 38, 39, 40, 41], an intelligent attacker with crafted interference

signal will make SIC inoperative because the decodability of SIC depends on the re-

ceived signal strength and the decoding threshold. Therefore, appropriate security

considerations are required for the natural interference scenarios in coexistent IoT

networks.

1.2.6 Detection of Hidden Terminal Emulation Attack

In coexistent IoT networks, it is impossible to differentiate between a benign hidden

node and a reactive DoS attacker using existing techniques because hidden-terminal

interference bears the signature of reactive attacks. Moreover, as hidden-terminal

interference is never considered as a benign interference source, current DoS attack

detection methods [42, 43, 44, 45, 46, 47, 48, 49, 50, 30] based on network performance

measurements, e.g., packet delivery rate, received signal strength (RSS), channel busy
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ratio, and the number of retransmission attempts, categorize hidden terminals as

DoS attackers, which results in significant false positives. Therefore, new detection

strategies are needed that consider hidden terminals as benign interference sources

and that can recognize malicious interference from hidden terminals. This dissertation

proposes a context-aware detention strategy, namely Third Eye.

1.2.7 Defense against Hidden Terminal Emulation Attack

Most existing counter-mechanism strategies to defend unwanted interference have

the strong assumption that both the transmitting and receiving nodes can per-

ceive the unwanted interference signal. This assumption does not hold here be-

cause hidden-terminal interference only affects the receiving node. Therefore, these

counter-mechanism techniques are not directly applicable to avoid hidden-terminal

interference, especially when it is intelligently engineered malicious hidden-terminal

interference. In addition, in order to avoid unwanted interference (including the jam-

ming attack), previous research in multi-channel wireless networks mostly adopt the

channel-hopping (CH) strategy [51, 52, 53, 54, 55, 56, 57, 58, 59]. However, the enor-

mity of densely deployed IoT networks that may coexist on the same channel, space,

and time is not considered. The dense deployment of IoT devices will aggravate the

hidden-terminal interference scenario; hence, it will create even more unwanted inter-

ference, which will have adverse effect on all the channels of the shared spectrum band.

Therefore, new practical evasive strategies are desired to defend unwanted interfer-

ence in multi-channel dense IoT networks. This dissertation proposes a Markov-based

evasive strategy, namely Jump and Wobble.

1.3 Overview of the Proposed Research

Figure 1.6 shows an overview of the proposed research. It discusses three novel

attack surfaces that are unique to the DSA and CR-based networks and proposes

how these attack surfaces can be exploited.
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At first, this dissertation introduces a new room of vulnerability in the conventional

sensing approaches, where a perpetrator attacks only when no one is sensing the

channel. This attack will decrease the channel utilization by victim SUs and could

potentially create a Denial of Service (DoS) situation for victim SUs. This is named

an off-sensing attack. This research also proposes an analytical model to analyze the

impact of the off-sensing attack in a CRN. Numerical analysis and simulation results

show that this attack possesses a serious threat to CRNs.
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Figure 1.6: The overview of the proposed research.

Then, this dissertation introduces a new room of vulnerability in cross-layer routing

protocols and demonstrates how a perpetrator can exploit this vulnerability to manip-

ulate traffic flow around it. This research proposes the mentioned cross-layer attack

in CR-based wireless mesh networks (CRWMNs), which is named an off-sensing and

route manipulation (OSRM) attack. In this cross-layer assault, off-sensing attack is

launched at the lower layers as the point of attack but the final intention is to manip-

ulate traffic flow around the perpetrator. This dissertation also introduces a learning
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strategy for a perpetrator, so that it can gather information from the collaboration

with other network entities and capitalize this information into knowledge to acceler-

ate its malice intentions. If conducted in a proper way, this attack would be far more

detrimental than what we have experienced in the past and needs to be addressed

before commercialization of CR-based network.

To realize the best strategy for off-sensing DoS attackers without having any prior

knowledge, this research proposes a new random approach, the random-OS attack,

which adapts to realistic scenarios and is difficult to detect using conventional tech-

niques. Then, to counteract the off-sensing attack, a novel safeguard approach based

on the Markov decision process to defend the proposed attack—namely hide and

seek—is proposed. It also introduces an OS-attack detection strategy, which utilizes

the sensing history to detect the presence of attackers without violating any policy

or design constraints and without any networking overhead. This research advents a

direction in designing safeguard strategies without amending the current FCC poli-

cies.

Afterwards, a vulnerability in the spectrum handoff process is introduced where

spectrum handoff is an integral part of CR-based networks. It ensures the operational

integrity of opportunistic spectrum access, the avoidance of harmful interference with

licensed or primary users (PUs), and the delay requirement during a handoff. Under-

standing the significance of the spectrum handoff process, this research introduces a

vulnerability and demonstrate how a selfish attacker can exploit this vulnerability to

achieve personal gain. It is named as covert spectrum handoff. To the best of our

knowledge, this is the first research to consider security aspects of spectrum handoffs

and to introduce an attack in the proactive spectrum handoff process.

In security research, a detection or defense strategy is as strong as the attack

model. Therefore, the instrumental step to devise an effective counter-mechanism

technique is to devise a strong attack strategy. This research proposes an intelligent
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attack model that exploits the natural hidden-terminal interference in coexistent IoT

networks and that trade-offs between the attack performance (e.g., degrading victim’s

throughput) and the risk of exposure. In particular, the attack model lays out into

two co-dependent multi-layer steps: (1) the reconnaissance and emulation phase that

pertains to the smart-array antenna manipulation in the PHY layer and (2) the

reactive interference phase that pertains to two different interference scenarios (based

on different assumptions of the attacker’s ability) in the MAC layer. This dissertation

designs these steps by establishing analytical models, and the intelligent synthesis of

these two steps will allow the attacker to impersonate a hidden-terminal.

Furthermore, we require a context-aware detection strategy to identify such at-

tacks. Context-awareness helps an IoT device assess the in-hand information and

deals with changes in the environment. To provide context-awareness, (1) this re-

search proposes to design mathematical models that encompass the behavior of a be-

nign hidden-terminal and a malicious hidden-terminal (or an HTE attacker). Based

on this mathematical model and the observed behavior of a hidden-terminal, (2) this

research proposes a signature-based detection and an anomaly-based detection; these

context-aware detection strategies consider hidden terminals as both benign and mali-

cious interference sources. The proposed detection strategy runs on the victim device

and takes radio sensing and packet reception information into account to deduce the

parameters of the introduced context-aware model.

Lastly, a defending IoT device must employ practical evasive strategies as a proac-

tive measure to avoid HTE attacks. Therefore, this research proposes a safeguard

approach to counteract the proposed HTE attack. In particular, this research intro-

duces a Markov decision process (MDP) based safeguard strategy to thwart the HTE

attack where a defender exploits the channel diversity in a multi-channel network

by randomly hopping through different channels and exploits the proximity in dense

IoT networks by diverting traffic through intermediate devices. Unlike the detection
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strategy, the defense module runs on the transmitter of the affected link. As the

transmitter has the primary ownership of a communication link, it is responsible for

the successful reception of the packet. Thus, it will elude HTE attacks by taking the

above mentioned proactive measures.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, related work on

the proposed research is introduced. In Chapter 3, the off-sensing attack is proposed

and different strategies of an attacker is discussed.In Chapter 4, a cross-layer attack

is proposed where off-sensing attack is launched in the lower layer. In Chapter 5,

a counteract strategy is proposed to defend off-sensing attacks. In Chapter 6, a

vulnerability in the spectrum handoff process is proposed. In Chapter 7, the hidden

terminal emulation attack is proposed. The corresponding detection and defense

strategies are proposed in Chapter 8 and Chapter 9, respectively. Following that, the

publication and future work is listed in Chapter 10.



CHAPTER 2: RELATED WORK

This chapter discusses the related work in attacks and defenses in traditional wire-

less networks and more importantly in CR-based networks.

2.1 Existing Attacks in CR-based Networks

The presence of a PUE attacker can severely hamper the operations of a CRN.

Therefore, new solutions to counteract such attacks are proposed. The idea of the

PUE attack was first envisioned in [5], where the attacker aims to have a higher pri-

ority to access a vacant channel by imitating the signal characteristics of a PU. A

defense strategy is proposed which utilizes the distance ratio and distance difference

to detect the PUE attack. In [60], a location based transmitter verification scheme

is proposed which verifies the transmission of a PU by estimating its location and

transmission characteristics. In [61], an analytical model based on energy detection

is proposed to calculate the probability of a successful PUE attack. In this approach,

a lower bound on the probability of a successful PUE attack is obtained by using

a Markov inequality approach. In [62], a received signal strength based defense ap-

proach is proposed, where SUs compare the received signal strength of a PU and an

attacker. A cooperative spectrum sensing approach is proposed in [63], where the

sensing information of different users is combined at a base station and the combined

results are optimized to maximize the detection of PUE attacks. All the above men-

tioned counter-mechanism approaches consider that SUs would sense the signal of

the attacker. However, an attacker can ingeniously avoid the sensing time of SUs and

attack by interfering their transmission.
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2.2 Existing Defenses in CR-based Networks

In [64], a cross-layer route manipulation attack is proposed where OS-DoS attack is

utilized as a front-end attack to manipulate the traffic-flow in the network. A sweep

jammer strategy is also proposed in [56] where jammers sweep through all channels to

find the operating channel of any user. However, the proposed attack strategies are

either ineffective in realistic scenarios or does not consider the DoS situation. Unlike

previous research, this research devises a sophisticated attack strategy for OS-DoS

attackers to adapt to realistic conditions.

A game theoretical approach has been proposed in [65, 66] to counteract PUE

attacks by adopting a combination of extra-sensing and surveillance process. In [67],

an MDP-based anti-jamming strategy is proposed to counteract jamming attacks in

CRNs. A zero-sum Markov game is proposed in [55] and an optimal strategy to defend

against reactive-sweep jammer is devised. In [56], an MDP-based strategy is proposed

to thwart jamming attacks in multi-channel networks, where radios are equipped with

in-band full-duplex capability. However, all these works neither consider an iterative

attack model to prevent DoS attacks nor an attack detection model. In contrast, this

proposal considers a more sophisticated attack model where the attacker can identify

an individual victim’s transmission and perpetrate a DoS attack on the victim, and

our model can detect the presence of attackers.

2.3 Existing Cross-layer Attacks in CR-based Networks

In recent years, some cross-layer attacks have been proposed in the CR based

networks. Cross-layer attacks have proven to be more detrimental than single-layer

based attacks, due to their immunity to the single-layer based defense strategies. In

[68], the coordination of two cross-layer attacks at the PHY layer and MAC layer

is studied. The use of PUE attack as an auxiliary attack in order to degrade the

throughput performance of TCP has been studied in [69]. In [70], the authors pro-
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pose a MAC-TCP cross-layer attack where an attacker periodically preempts itself

to use the shared channel and impacts the TCP performance by creating large vari-

ations in round-trip-time (RTT). Though the study of cross-layer attacks in terms

of PHY-MAC-Transport layer has gained significant attention, very few efforts have

been focused on security vulnerabilities in the network layer. A network layer attack

in CR-based networks named routing-toward-primary-user (RPU) is proposed in [71],

where a malicious node intentionally directs a large amount of traffic toward the PUs,

aiming to cause interference to them. However, this is not a cross-layer attack and

the perpetrator is an active participant in the attack, hence, less difficult to identify.

In Hammer and Anvil attack [72], a jamming aided cross-layer attack is proposed in

the multihop infrastructureless network. Nevertheless, a CR-based network is inher-

ently immune to jamming attacks due to their ability to change operating channels

dynamically.

Neither of the attacks mentioned above have considered an intelligent attacker who

can gather information and learn about the whole network by leveraging the control

information flowing in the collaborative CR-based network. With this knowledge, an

attacker can conduct more sophisticated attacks with less risk of being flagged.

2.4 Existing Spectrum Handoff Techniques in CR-based Networks

In [20], a distributed proactive spectrum handoff process and a channel selection

scheme are proposed. It considers most of the functionalities in the MAC layer. In

[10], a Hidden Markov model-based prediction is used to provide a smart spectrum

mobility scheme. It considers the idle duration of the channel and the reappearance

probability of PUs on the channel to perform proactive handoffs. In [11], a volun-

tary spectrum handoff is proposed where SUs perform handoff voluntarily to reduce

the handoff and channel selection delay based on probabilistic methods. In [14], a

preemptive resume priority-based M/G/1 queuing model is proposed to minimize the

total service time of SUs. Nonetheless, the queuing model is not distributed and
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considers a central authority to maintain the queue. Moreover, the model does not

consider a CCC and network coordination in the design. In [27], a distributed proac-

tive spectrum handoff and channel selection method is proposed. It incorporates

the channel rendezvous and the network coordination issue together in the spectrum

handoff process. However, it does not consider collisions between SUs in multi-handoff

scenarios.

Though all mentioned works contribute to the spectrum access in CRAHNs, no

work has considered non-identical channels and the effect of non-identical channels in

spectrum handoff decisions. In addition, security concerns of the proactive spectrum

handoff process are overlooked.

2.5 Existing DoS Attacks in Wireless Networks

As discussed, an HTE attacker tries to emulate the radiation characteristics of a hid-

den terminal and creates a different physical scenario than the actual one. Thereby,

a comparison is made to conventional location spoofing attacks in the localization

paradigm, especially with received signal strength (RSS) based methods. In [73], it

is experimentally shown that, by manipulating the RSS at the anchors, the localiza-

tion method can be made futile. Directional antennas are exploited in [74], where

the attackers have the ability to bias the location estimation to a direction of their

choice. In [75], a mathematical analysis of beamforming-based perfect location spoof-

ing against RSS-based localization techniques is proposed, where an attacker mimics

the path-loss signature at the anchor nodes to manipulate the results of RSS-based lo-

calization algorithms. The vulnerability of WLAN-based Skyhook positioning system

[76] is investigated in [77] where authors demonstrated the susceptibility of Skyhook

against location spoofing attacks. However, location spoofing is more challenging in

an exponentially denser network environment. Unlike previous works, this research

addresses these challenges and formulate a mathematical model to test the feasibility

of the HTE attack.
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2.6 Existing Detection Strategies against DoS Attacks in Wireless Networks

In wireless networks, jamming is one of the well-researched attacks. The detection

of traditional jamming attacks has been extensively studied in [78, 79, 80, 81, 82, 47,

83, 84, 85, 43, 86, 42]. In [78], the influence of different jamming strategies on the

PDR and the RSS of network links is analyzed and a thresholding algorithm is pro-

posed. In addition to the PDR and the RSS, the channel busy ratio and the number

of retransmission attempts are employed in [80, 81], and a machine learning based

technique is proposed to detect jamming attacks. Jamming attacks in time-critical

networks are studied in [82], and numerical results on the impact of jamming on the

network message invalidation ratio is presented. Moreover, in [87], an anomaly-based

detection technique is proposed to detect anomalous behaviors of external neighbor-

ing nodes in dense IoT scenarios. An approach based on group testing to identify

which node triggers the reactive attack is proposed in [47], in wireless sensor networks.

In [48, 49, 50, 30], the impact of jamming attacks on the theoretical performance of

IEEE 802.11 networks is presented and analyzed for different types of jamming strate-

gies; these theoretical analyses are based on Bianchi’s Markov chain model of 802.11

distributed coordination function (DCF) [88]. In CR-enabled networks, DoS attacks

are studied in [89, 64, 90, 91, 29], where the attacker attacks in the off-sensing inter-

val and creates an illusion of PU reappearance to force the victim out of its current

operating channel. In [84], a mathematical model of an optimal jamming strategy is

proposed, where an attacker can regulate its jamming probability to trade-off between

the reward of jamming and the penalty of exposure.

Although there is no direct comparable work to compare HTE with (except an

earlier work [87]), differences between existing work on jamming and our proposed

research can be noted as follows. Interestingly, [84] considers the slotted Aloha pro-

tocol, which does not incorporate the carrier sensing multiple access (CSMA)—an

essential tool in modern wireless networks; in contrast, our research is based on the
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widely accepted CSMA approach. While the influence of in network hidden terminal

interference is considered in [92], it did not explain how a reactive attacker can listen

to the transmission of its hidden counterparts; in contrast, this research captures the

impact of hidden terminal interference from external networks, based on the carrier

sensing, and this research proposes how an HTE attacker can listen to its hidden

counterparts via antenna manipulation. Moreover, though an anomaly-based detec-

tion technique is proposed in [87], it fails to efficiently identify HTE attacks when

there are multiple anomalies in the network. In summary, compared to all these prior

works, this research addresses the hidden terminal interference issue among different

co-located networks/technologies, and an attack model is devised based on this. As

prior work on attack detection mostly depends on the network performance and does

not consider hidden terminals as benign interference sources (except [92, 87]), they

may mis-categorize hidden terminals as reactive attackers. This research considers

hidden terminals as benign interference sources, address the way attackers can inap-

propriately use it for malice intentions, and propose a signature-based context aware

detection model to uniquely identify HTE attacks.

2.7 Existing Defense against DoS Attacks in Wireless Networks

The security research community has discovered numerous vulnerabilities and pro-

posed their defenses in IoT [93, 94, 95, 96, 97]. In [98], a distributed DoS attack is

studied where Mirai botnet was used to compromise 0.6 million IoT devices. Honey-

well home controllers are shown to be vulnerable to a pair of bugs in their authentica-

tion system [99]. In a recent work [100], it is demonstrated that home assistant devices

can be compromised by an attacker using inaudible voice commands. A large-scale

coordinated attack on the power grid is shown in [101] where attackers can compro-

mise high wattage devices to manipulate the load demand and create blackouts. Yet,

these works focus on upper-layer vulnerabilities only. In contrast, this research stud-

ies the vulnerabilities caused by the changes in lower-layers in dense IoT networks
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under shared spectrum operation. In addition, unlike [35, 87], this research proposes

a constrained attack model and designs a safeguard strategy against the HTE attack.

Note that, in contrast to traditional jamming attacks, the HTE attack does not

rely on a strong noise signal to corrupt the wireless reception of the victim. Instead, it

exploits the proximity to the victim and utilizes regular data transmissions to corrupt

the victim’s reception.



CHAPTER 3: PROPOSED OFF-SENSING ATTACK IN CR NETWORKS

This chapter proposes a new attack in CR-based networks that exploits the off-

sensing interval in periodic channel-hopping processes to influence the spectrum avail-

ability of victims.

3.1 Network Coordination Scheme

In the absence of a CCC, rendezvous is a pre-requisite step to establish a successful

handshake between two SUs. After the rendezvous, the two SUs can initiate data

transmissions. In [17, 18, 19], a successful rendezvous is achieved when a request-to-

send and clear-to-send (RTS/CTS) exchange on a common available channel of two

SUs is completed. Throughout this chapter, the term "rendezvous" and "RTS/CTS

exchange" is used interchangeably.

This chapter considers the common frequency-hopping strategy as the network co-

ordination scheme [102]. Figure 3.1 illustrates the operation of a conventional common

frequency-hopping approach, where the system is time slotted and SUs communicate

with each other in a synchronized manner. When there is no packet to transmit, a

SU keeps hopping through all the channels in the band (i.e., the hopping pattern

periodically goes through 1, 2, · · · , M, where M is the total number of channels).
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SU transmission
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IDLE

IDLE
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Figure 3.1: An example of conventional network coordination scheme.
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Whenever it has a packet to send, it sends an RTS message in each time slot and

waits for the CTS from the intended destination SU. If an RTS/CTS exchange fails in

a time slot, the SU sender continues this process in the next time slot. After a success-

ful RTS/CTS exchange between a SU sender and receiver, they stop channel-hopping

and start data transmissions on the same channel. Meanwhile, other non-transmitting

SUs continue the channel-hopping. After finishing the transmission, both SUs con-

tinue the channel-hopping by following the common hopping sequence. In [26], a time

slot is defined as the transmission time of an RTS and a CTS. This research considers

that every transmission of SUs and collision with PUs only happens at the beginning

of a time slot, and ends at the end of a time slot. Throughout this chapter, it is

considered that a SU can always detect a PU (i.e., no mis-detection) and does not

trigger false-alarms.

In an effort to rendezvous, RTS/CTS packets may collide with an ongoing PU

transmission and cause interference to PUs. Therefore, we require a new channel

access mechanism where the rendezvous process is preceded by channel sensing. This

research proposes a modified network coordination scheme where any transmission

attempt is preceded by channel sensing. In Figure 3.2, each time slot is considered as

the time to perform sensing and the transmission of an RTS/CTS pair. Throughout

this chapter, it is considered that N number of SUs form a cognitive radio ad-hoc

network and try to opportunistically access M identical licensed channels. To better

illustrate the activity of a SU under the proposed network coordination scheme, Figure
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Figure 3.3: An illustration of the proposed network coordination scheme with an
ON/OFF PU model.

3.3 provides an example. In the example, the SU always has a packet to send.

3.2 Proposed Analytical Model

A multi-dimensional discrete-time Markov model to analyze the network perfor-

mance in the absence and presence of our proposed off-sensing attack is proposed.

For simplicity, this research ignores the propagation delay, processing time, and col-

lision between SUs in the model. It also assumes that the receiver is always available

to receive a packet, that is, the destination of a packet is always available.

From the above descriptions of spectrum sensing and rendezvous under our pro-

posed network co-ordination scheme, each SU has the following different states:

• Idle: when a SU has no packet to transmit.

• Busy for rendezvous : when a SU has a data packet to transmit but cannot find

an available channel to rendezvous with its destination. Until the SU achieves

a successful rendezvous, the packet will be kept in the buffer of the SU.
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• Successful rendezvous : when a SU has a data packet to transmit and achieves

a successful rendezvous with the destination on a common available channel.

• Transmission: when the transmission of a SU does not collide with a PU’s

transmission in a time slot.

• Collision: when the transmission of a SU collides with a PU’s transmission in

a time slot.

An SU sender learns whether a transmission is successful or not at the end of

the packet transmission (by receiving an acknowledgment from the destination SU).

After an unsuccessful attempt of transmission due to collision, the SU will try to

retransmit. It keeps retransmitting until the maximum number of retransmission

attempts exceeds and then it drops the packet.

Based on the above assumptions, the state of a SU at time slot t is defined as

[At(t), Ac(t), Aa(t), Ab(t)]. Descriptions of the state variables are:

At(t)- denotes the number of time slots including the current time slot that have been

used for successful transmission. This value goes from 0 to h.

Ac(t)- denotes the number of time slots including the current time slot that have

encountered collisions with a PU. This value goes from 0 to h.

Aa(t)- represents the number of transmission attempts for the current packet. This

value goes from 0 to m.

Ab(t)- represents the deferral in data transmission due to unsuccessful rendezvous.

This value goes from 0 to 1. "1" means that there is a packet in the buffer and

waiting for a successful rendezvous, and "0" means that a successful rendezvous has

happened. In Transmission and Collision states, this value always remains 0.

The notations used in our proposed Markov model are listed in Table I.

In Figure 3.4, (At(t)=0, Ac(t)=0, Aa(t)=0, Ab(t)=0) represents the Idle state of a

SU. Similarly, (At(t)∈[1, h], Ac(t)=0, Aa(t)∈[1,m], Ab(t)=0) represents the Transmis-
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Table 3.1: Notations Used in the Markov Model

p Probability that a channel is available in a time slot
pat Probability that a channel is available in a time slot under

attack (under no attack, pat=p)
s Probability that a SU packet arrives in a time slot
h The length of a SU data packet in terms of time slots
m Maximum number of transmission attempts before

dropping a packet

sion states, (At(t)∈[0, h − 1], Ac(t)∈[1, h], Aa(t)∈[1,m], Ab(t)=0) represents the Colli-

sion states, (At(t)=0, Ac(t)=0, Aa(t)∈[1,m], Ab(t)=1) represents the Busy states for

unsuccessful rendezvous, and (At(t)=0, Ac(t)=0, Aa(t)∈[1,m], Ab(t)=0) represents the

Successful rendezvous states.

3.3 Steady-State Probabilities

To derive the steady-state probabilities of each state, first the single-step transition

probabilities are calculated. Here, (i, j, k, l) and (At(t)=i, Ac(t)=j, Aa(t)=k, Ab(t)=l) is

used interchangeably, where i∈[0, h], j∈[0, h], k∈[0,m], l∈[0, 1]. The single step transi-

tion probability from time slot t to t+1 represented as P (it+1, jt+1, kt+1, lt+1|it, jt, kt, lt).

The single-step transition probabilities are given as follows. Here i′∈[1, h], i′′∈[0, h−1],

j′∈[2, h], and k′∈[1,m].
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P (0, 0, 0, 0|0, 0, 0, 0) = 1− s

P (0, 0, 1, 1|0, 0, 0, 0) = s(1− p)

P (0, 0, 1, 0|0, 0, 0, 0) = sp

P (0, 0, k′, 0|0, 0, k′, 1) = p

P (0, 0, k′, 1|0, 0, k′, 1) = 1− p

P (i′, 0, k′, 0|i′ − 1, 0, k′, 0) = pat

P (i′′, 1, k′, 0|i′′, 0, k′, 0) = 1− pat

P (i′, j′, k′, 0|i′, j′ − 1, k′, 0) = 1

P (0, 0, k′, 1|i′′, h− i′′, k′ − 1, 0) = 1− p

P (0, 0, k′, 0|i′′, h− i′′, k′ − 1, 0) = p

P (0, 0, 0, 0|h, 0, k′, 0) = 1− s

P (0, 0, 1, 1|h, 0, k′, 0) = s(1− p)

P (0, 0, 1, 0|h, 0, k′, 0) = sp

P (0, 0, 0, 0|i′, h− i′,m, 0) = 1

(3.1)

Now, the steady-state probabilities of each state can be derived.

Though sensing can guide a SU to make a decision on the channel availability, it

cannot guarantee collision-free transmissions between SUs and returning PUs on that

channel. Therefore, the probability of channel availability in a time slot is always less

than one (i.e., 0≤p<1). It implies that the steady-state probability of the Collision

state is non-zero. In the following, the steady-state probabilities are derived in terms

of the first Rendezvous state P (0, 0, 1, 0).

First, Successful rendezvous states,

P (0, 0, k, 0) = (1− phat)k−1P (0, 0, 1, 0), (3.2)
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Figure 3.4: The proposed multi-dimensional Markov model.
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where k > 1.

Second, Busy states for rendezvous,

P (0, 0, k, 1) =
1− p
p

(1− phat)k−1P (0, 0, 1, 0), (3.3)

where k > 1.

Third, Transmitting states,

P (i, 0, k, 0) = piat(1− phat)k−1P (0, 0, 1, 0), (3.4)

where 1 ≤ i ≤ h, 1 ≤ k ≤ m.

Fourth, Collision states,

P (i, j, k, 0) = piat(1− pat)(1− phat)k−1P (0, 0, 1, 0), (3.5)

where 0 ≤ i ≤ h− 1, 1 ≤ j ≤ h, 1 ≤ k ≤ m, and i+ j ≤ h.

Lastly, Ideal state,

P (0, 0, 0, 0) =

1

s

[
(1− s){1− (1− phat)m}+ (1− phat)m

]
P (0, 0, 1, 0).

(3.6)

Since
∑h

i=0

∑h
j=0

∑m
k=1

∑1
l=0 P (i, j, k, l) = 1, the steady-state probabilities of every

state in the proposed Markov model can be deduced. Here, the summation of the

steady-state probabilities of all the Transmission states represents the normalized

throughput of a SU:

Normalized Throughput =
m∑
k=1

h∑
i=1

P (i, 0, k, 0). (3.7)

In this chapter, a homogeneous traffic characteristic for each PU channel is con-

sidered. Without loss of generality, each PU is designated to a unique channel and
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model the activity of each PU as an ON/OFF process [103, 104, 105, 106]. SUs can

only access the channel if the PU is in the OFF state while sensing. It assumes a

buffer for each PU where it can hold at most one packet while transmitting and it

keeps the packet in the buffer until the packet is successfully transmitted. Hence, the

OFF period of a PU follows the geometric distribution, under which the probability

mass function (pmf) can be expressed as

Pr(NOFF = n) = pn(1− p), (3.8)

where NOFF is the number of time slots of an OFF period and p is the probability

that a channel is available in a time slot.

3.4 Adversary Model

Conventional PUE attacks are usually carried out by two types of users: selfish

user, whose purpose is to maximize its own spectrum availability and throughput,

and malicious user, who has an ill-intention of sabotaging the network operation and

making it unavailable for the victim nodes. In our proposed off-sensing attack, the

perpetrator’s goals remain the same. However, the approach a perpetrator takes

to achieve these goals is different. It does not emulate PU signals, rather transmits

concurrently with the victim SU, to create interference and mislead the victim’s belief.

To perform this attack, perpetrators must have the knowledge of the channel-hopping

sequence and the sensing schedule of the victim SUs. As the perpetrator is a legitimate

SU inside the network, it has the knowledge of the channel-hopping sequence.

In [107], a window-based transport protocol for CR ad-hoc networks is proposed to

perform end-to-end packet delivery. In this protocol, SUs exchange their physical and

MAC layer information which includes the sensing schedule. In addition, in IEEE

802.22, the quiet period is used to perform reliable sensing. During a quiet period, all

the nodes sense the spectrum and do not transmit. In both cases, a perpetrator can



34

CH1

CH2

CH3

CH

1

CH1 CH2 CH3

SU 

activity

Hopping 

sequence
CH1 CH2 CH3 CH1 CH3CH2 CH1 CH3CH2

CH

2

CH

2

CH

3

CH1

Attacker s 

activity

CH2 CH3 CH1 CH2

CH

3

CH

1

CH

1

CH

2

PU packet
Sensing + 

RTS/CTS
SU packet Collision

Attacker s 

packet

CH1

CH1 CH1

CH1 CH2

T

Figure 3.5: An illustration of the proposed attack in scenario-1.

easily learn the sensing schedule of all the nodes and conduct attacks in off-sensing

intervals. As the victim cannot detect the transmission, it will think it is interfering

with PU’s transmission. Thus, according to the FCC regulation, the victim SU will

leave the channel within 2 seconds [21] and perform a spectrum handoff.

Now, some probable scenarios of these attacks are proposed:

Scenario-1: In this scenario (Figure 3.5), a perpetrator tunes to a certain channel

of interest and keeps using it by avoiding the sensing intervals of neighboring SUs.

When a benign SU has a packet to send, it exchanges RTS/CTS packets with its

destination SU. Because RTS/CTS can be heard by the perpetrator, whenever it

overhears any RTS/CTS exchange, it performs attacks and keeps doing it on that

particular channel. The goal of this attack is to selfishly use the channel for its own

advantage. In this scenario, there is no particular victim SU. Whoever tries to access

the channel becomes a victim.

Scenario-2: In this scenario (Figure 3.6), a perpetrator attacks an individual SU

to sabotage its network operation by creating a Denial-of-Service (DoS) situation. As

a perpetrator has the knowledge of the channel-hopping pattern and sensing sched-

ule, it can easily infer every transmission attempt of the victim SU from overhear-

ing RTS/CTS messages. After an unsuccessful attempt of transmission, the victim
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Figure 3.6: An illustration of the proposed attack in scenario-2.

will hop to a new channel (a new channel will be selected according to the hopping

sequence) and try to retransmit the packet. However, as the perpetrator has the

knowledge of the channel-hopping sequence, it can figure out the new channel and

attack again. The perpetrator will keep doing it and create a DoS situation for the

victim SU. As a result, the victim SU’s operations will stop.

Scenario-3: In this scenario, multiple malicious nodes collude to sabotage the

network operation. Each malicious node tunes to a designated channel and attacks

whenever any benign SU tries to access the channel. When the malicious nodes attack

on every channel in the band, they can create a network-wide DoS within their attack

range.

The disruptive nature of this attack can engender a fatal impact where, impact on

the physical layer (i.e, DoS) can also affect the functionality of upper layers.

3.5 Performance Evaluation

In this section, the proposed off-sensing attack is evaluated under different sce-

narios by numerical analysis, and confirm our analysis by conducting simulations.

Parameters used in our simulation are listed in Table II. Each PU is assigned to a

designated channel. Four scenarios are considered in this simulation. No attack, rep-
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resents normal network condition under no off-sensing attack. Attack-10%, Attack-

30%, and Attack-50%, represent the scenario where 10%, 30% and 50% of the total

channels are under attack, respectively.

Table 3.2: Simulation Parameters: Off-sensing Attack

Simulation area 500x500
Simulation time 10000 time slots
SU sensing range 50
The number of PUs 10
The number of SUs 400
Channel data rate 2 Mbps
The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
Sensing duration 1 ms (802.22)
Maximum no. of transmission attempts 3
SU traffic Saturated (i.e., s=1)
SU packet size 1 time slot (284 byte)
Number of channels 10

3.5.1 Throughput Performance

To understand the impact of the attack on throughput performance, we calcu-

late the average normalized throughput of all SUs. It is shown in Fig. 3.7(a), the

simulation results match well with the numerical results obtained through our pro-

posed analytical model with the average difference only 3%, 4%, 7%, and 7% for

no-attack, attack-10%, attack-30%, and attack-50% case, respectively. We can also

observe the throughput performance under different percentage of attacked channels.

As the percentage of attacked channels (or attackers) increases, throughput decreases

significantly.

3.5.2 Collision Probability and Packet Drop Rate

Based on the proposed Markov model, the collision probability between SUs and

PUs is the summation of all the steady-state probabilities of the Collision states.

From Fig. 3.7(b), it is observed that the collision probability decreases as the channel

availability increases. In the absence of a PU, the collision probability goes to zero

in the no attack scenario, whereas collision still persists under attacks. This influx of
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Figure 3.7: Impact of off-sensing attack on (a) normalized throughput, (c) SU and
PU collision probability, and (c) packet drop rate.
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Figure 3.8: Performance comparison between off-sensing and PUE attack (a) normal-
ized throughput and (b) SU and PU collision probability.

collisions are generated from the collision between victim SUs and attackers.

With increasing collisions, packets start to drop more. The trend of packet drop

is shown in Fig. 3.7(c). We can observe that the impact of this attack is significant,

even when the channel availability is high.

3.5.3 Performance Comparison between Off-sensing and PUE Attack

We compare the performance between off-sensing attack and PUE attack under

similar boundary conditions. In off-sensing attack, nodes will waste more time on

collisions due to the collisions between victims and attackers. Whereas in PUE attack,

nodes will not experience such extra collisions. In Fig. 3.8(a), we can observe the

difference in throughput between both attacks.

As SUs will encounter extra collisions in off-sensing attack, the collision probability

increases (Fig. 3.8(b)). Moreover, it is interesting to see that the collisions in PUE

attack reduces more than under no attack scenario. As PUE victims have to defer

their transmission attempts more often than the no attack case, they have less room

for transmission and hence less collisions.



CHAPTER 4: PROPOSED OFF-SENSING AND ROUTE MANIPULATION

ATTACK IN CR-BASED WIRELESS MESH NETWORKS

This chapter illustrates a cross-layer attack model where the off-sensing attack is

exploited as a front-end attack to manipulate the traffic flow in CR-based wireless

mesh networks.

4.1 System Model

In this section, we provide an outline of the assumptions made for the basic func-

tionalities of the PHY, MAC, and network layers in our considered CR-WMNs.

4.1.1 Primary User and Secondary User Model

This chapter considers totally M homogeneous channels each with a fixed band-

width for the PUs and SUs in the network, and N CR-WMRs trying to opportunis-

tically access the channels. Each PU randomly selects a channel to access. An SU is

allowed to access a channel when it senses no PU is using it. During the transmission,

if an SU senses the channel busy, it stops transmitting on that channel and performs

a spectrum handoff. Each SU is equipped with only one radio for spectrum sensing,

control information exchange, and data transmission. Each PU alternates between

the ON and OFF state according to a continuous-time Markov process. In Figure

4.1, let λ denote the transition rate from the OFF to ON state, and let µ denote

the transition rate from the ON to OFF state. Thereby, the mean sojourn time in

the ON and OFF state is 1/µ and 1/λ, respectively, and both follow the exponential

distribution.
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4.1.2 Network Coordination Scheme

Rendezvous is a pre-requisite step before two SUs can communicate and exchange

control information with each other in the absence of a dedicated CCC. A success-

ful rendezvous happens when both transmitting and receiving SUs are on the same

channel and have completed a successful handshake between them, e.g., a Request-

to-Send/Clear-to-Send (RTS/CTS) exchange.

The common frequency-hopping as the network coordination scheme [26, 20] is

considered, which means that the channel-hopping pattern is the same for all SUs.

Figure 4.2 illustrates the operation of the common frequency-hopping-based network

coordination. We consider a time-slotted system. Each time slot consists of a sensing

interval (sensing) and a contention interval (CI) with the transmission of an RTS/CTS

pair. When there is no packet in the buffer of an SU, it keeps hopping through the

channels from one time slot to another based on the predetermined common channel-

hopping pattern.

The MAC model is adopted from [28, 108] for network coordination. Whenever
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a SU has a packet to send, it first senses the channel. If the channel is idle, the

SU chooses a random number between 0 and CW − 1 (in terms of mini-slots) as its

backoff time to avoid contention on the channel. If it hears no RTS before the backoff

time runs out, it sends an RTS on the channel. Otherwise, it saves the remaining

time in the backoff timer and will try to resend the RTS in the next time slot. After

sending an RTS, the source SU waits for the CTS from the intended SU receiver. If

the RTS sender fails to receive a CTS, it means the RTS/CTS exchange has failed

in this slot and the source SU will continue the same process in the next time slot.

After a successful RTS/CTS exchange, both SUs stop channel-hopping and start the

data transmission on the same channel. After a successful transmission, both SUs

start channel-hopping again by following the common hopping sequence. Meanwhile,

all other SUs keep hopping through the channels. To better illustrate the activity of

a SU under the coordination scheme,an example in Figure 4.3 is provided. In this

example, the SU always has a packet in its buffer, wins contentions and a SU packet

length is two time slot long.

4.1.3 Routing Scheme

Many routing protocols have been proposed for CR-based networks[109, 110, 111,

112]. In all these papers, spectrum availability has been given the highest weight

for routing decisions. Therefore, it is clear that CR-based routing protocols consider

spectrum availability as a significant cost metric.

This chapter does not focuses into proposing a new routing protocol. Instead,

it adopts a link-state based routing protocol with channel availability as the only

cost metric for routing decisions. The goal is to show the impact of the proposed

attack on routing performance. In our CR-WMN, CR-WMRs calculate their link

cost periodically with a period of ‘∆‘ and broadcast it. We also define an activity

threshold τ (in ∆ interval) above which a PU will be considered busy and hence the

channel is not available. Along with cost, nodes also share their available channel
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Figure 4.3: An illustration of the network coordination with an ON/OFF PU model.
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Figure 4.4: An illustration of a network graph.

list (ACL). For the calculation of the shortest path from a CR-WMR to the gateway,

we consider the CR-WMN as an undirected graph G = {V,E}, called a connectivity

graph. Each node i ∈ V = {1, · · · , N} represents a CR-WMR, which is characterized

by a circular transmission range and an interfering range. Each edge E represents

the connectivity between neighboring CR-WMRs and the edge cost is characterized

by the spectrum availability. Figure 4.4 illustrates a network graph with 9 nodes and

a gateway (Gn). Link cost between node i and j is defined as eij.

4.2 Proposed Off-Sensing and Route Manipulation (OS-RM) Attack Model

In reality, it is very unlikely for one to take control of a significant portion of the CR-

WMRs in a CR-WMN without being flagged. However, under our proposed attack

model, without even compromising a significant amount of routers, the perpetrator

can still have the control over a significant portion of traffic flow around him. This can

be done by exploiting and taking advantage of the many cross-layer routing protocols

in CR enabled networks, where affecting lower layers can result in influencing decisions

in the network layer.

The configuration of the proposed HMM-based system for the OS-RM attack is

shown in Figure 4.5. Time is slotted into a duration of routing updates ∆. Therefore,

we consider a discrete-time model, where the time variable takes values in {0, 1, ...,

T}. The attacker has a separate HMM block for each channel. The input to the

system at time t consists of the routing updates received from the neighboring nodes.
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The attacker model consists of three components: OS-DoS attack node selection,

channel state prediction, and HMM-based channel parameter estimator. The OS-

DoS attack node selector chooses the best node as the victim node based on the

updated network graph G = {V,E}. The output of the system consists of the best

neighbor to perform the OS-DoS attack, in order to divert traffic flow through the

target node. The attacker updates the network graph G depending on the adjacency

list (i.e., neighboring list of the SUs) and prediction of the future state of the channels,

and the HMM-based channel parameter estimator facilitates to estimate the channel

activity based on the routing updates.

We consider the frequency of routing updates comparable to the frequency of chan-

nel status change. Also, due to computational and physical efforts by the attacker, we

consider a constant delay between when the routing update arrives and the attacker

conducts an OS-RM attack without learning. We will see that this delay degrades

the attack performance and hence it indicates the importance of predicting network

conditions beforehand to counteract the effect of the delay.

4.2.1 OS-DoS Node Selection

The victim of the OS-DoS attack will be disconnected from the network (or has a

very high cost to use it) and traffic flows that have been going through it, will switch
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to the next best available route. The performance of the OS-RM attack depends

on the right neighbor node to perform the OS-DoS attack on. Depending on the

predicted network graph, the attacker finds the neighboring node whose traffic flow

is most likely to traverse through the target node, if attacked. Here, the attacker’s

goal is to choose a neighbor in such a way that the rebound effect will divert most

traffic flows to the target node.

The attacker will use a shortest-path algorithm (i.e., Dijkstra’s algorithm) to figure

out the best route for each node in the network to reach the gateway. At every step,

the attacker first calculates the number of routers choosing the target router as a

forwarder, under no attack (i.e., successor routers, πmax). Then, it finds the best

neighbor router to perform the OS-DoS attack which will maximize its objective.

It does it by measuring what would happen if it attacks a neighbor. If there is no

neighbor that offers π > πmax, it will not conduct the OS-DoS attack and wait for

the next update to come. Here, π is the number of successor nodes, under attack.

Algorithm 1 and 2 show the pseudocode for calculating the successor CR-WMRs of

the target CR-WMR and OS-DoS node selection, respectively. Next, we will discuss

how an attacker can update the network graph G. Here, the target node and the

gateway node are denoted as Tn and Gn, respectively.
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Algorithm 1 Calculating the number of nodes that has the target node in their
forwarding set to the gateway
Input: G, Tn, Gn

Result: Tn’s successor node quantity φTn

Function : Compute_Successors (G, Tn, Gn)

φTn = 0;

for i = 1 : N do
Use Dijkstra’s algorithm to calculate the shortest path to the gateway,

Pi ={i,· · · forwarding nodes · · · , Gn}

if Tn ∈ Pi then
φTn = φTn + 1;

end

end

return φTn ;
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Algorithm 2 Selecting the best node to perform OS-DoS attack
Input: G, Tn, Gn

Result: OS-DoS node

πmax= Compute_Successors(G, Tn, Gn);

OS-DoS node = empty;

for i = 1 : all the neighbors do
Detach the neighbor i from G . i= neighbor index

Update network graph, G′ = {V ′, E ′} . i /∈ V ′, (·, i) /∈ E ′

π= ComputeSuccessors(G′, Tn, Gn);

if π > πmax then
πmax = π;

OS-DoS node = i;

end

end

if OS-DoS node 6= empty then
Perform OS-RM attack

else
Wait for the next update

end

4.2.2 Channel State Prediction

Channel state predictor assists in updating the network graph G in each period,

based on routing updates. In this section, we propose the prediction model to forecast

future channel activity to update the network graph.

By utilizing the periodic routing update, an attacker can make predictions of the

channel availability before the next route update arrives. Based on the prediction

results, an attacker decides whether to change the link costs or not. We propose two

criteria for determining whether the channel should be considered busy or idle: 1)

the predicted probability that the channel is busy or idle and 2) the expected length
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Figure 4.6: The PU activity on channel i; Ni(t1) = 1.

of the activity or inactivity.

In Figure 4.6, t0 represents the last moment PU becomes active, t1 represents the

last moment route update arrives, and t2 represents the expected moment of the

next route update. Figure 4.6 shows the PU traffic activity on channel i, where Xk
i

represents the inter-arrival time of the kth packet. We denote Y (t2) as the number

of PU packets that arrive between t1 and t2 and Ni(t2) as the status of the channel

at time t2, which is a binary variable between 0 and 1 representing the idle and busy

state, respectively.

In the following, we calculate the probability that the channel state is active upon

the next route update. All the figures are normalized to routing update length ∆. As

shown in Figure 4.6(a), where Ni(t1) = 1, the probability that the next channel state

will be active and no PU packet arrives between t1 and t2 is



49

Pr{Ni(t2) = 1, Y (t2) = 0}

= Pr{X1
i > t2 − t0}Pr{α > τ}

= Pr{X1
i > t2 − t0}Pr{L0

i − (t1 − t0) > τ},

(4.1)

where Li(k) denotes the length of the kth new PU packet in channel i and τ represents

the activity threshold of PU. Xi(k) and Li(k) depend on the channel parameters λi

and µi.

As shown in Figure 4.6(b), the probability that the channel state will be active and

only one PU packet arrives between t1 and t2 is

Pr{Ni(t2) = 1, Y (t2) = 1}

= Pr{β < 1− τ}Pr{α + L1
i > τ}

= Pr{X1
i − L0

i < 1− τ}Pr{α + L1
i > τ}.

(4.2)

Similarly, in Figure 4.6(c), the probability that channel i is active and two packets

come between t1 and t2 is,

Pr{Ni(t2) = 1, Y (t2) = 2}

= Pr{β1 + β2 < 1− τ}Pr{α + (L1
i + L2

i ) > τ}

= Pr{X1
i +X2

i − (L0
i + L1

i ) < 1− τ}

Pr{α + L1
i + L2

i > τ}.

(4.3)

Assume that U is the maximum number of PU packets that could come between t1

and t2. Hence, the probability of having the channel active and arriving h (h ∈ [1, U ])
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PU packets is

Pr{Ni(t2) = 1, Y (t2) = h}

= Pr{
h∑
k=1

βk < 1− τ}Pr{α +
h∑
k=1

Lki > τ}

= Pr{
h∑
k=1

Xk
i −

h−1∑
k=0

Lki < 1− τ}Pr{α +
h∑
k=1

Lki > τ}.

(4.4)

Therefore, the probability that channel i is active at time t2 can be obtained by,

Pr{Ni(t2) = 1|Ni(t1) = 1}

= Pr{X1
i > t2 − t0}Pr{L0

i − (t1 − t0) > τ}

+
U∑
h=1

[
Pr{

h∑
k=1

Xk
i −

h−1∑
k=0

Lki < 1− τ}Pr{α+
h∑
k=1

Lki > τ}

]
.

(4.5)

Likewise, in Figure 4.7(a), where Ni(t1) = 0, the probability that next channel

status will be active and one PU packet arrives between t1 and t2 is
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Pr{Ni(t2) = 1, Y (t2) = 1}

= Pr{β < 1− τ}Pr{L1
i > τ}

= Pr{X1
i − L0

i − α < 1− τ}Pr{L1
i > τ}.

(4.6)

Similarly, in Figure 4.7(b), the probability that channel i is active and two packets

come between t1 and t2 is,

Pr{Ni(t2) = 1, Y (t2) = 2}

= Pr{β1 + β2 < 1− τ}Pr{(L1
i + L2

i ) > τ}

= Pr{X1
i +X2

i − (L0
i + L1

i )− α < 1− τ}

Pr{L1
i + L2

i > τ}.

(4.7)

Therefore the probability that channel i is active at time t2 can be obtained by,

Pr{Ni(t2) = 1|Ni(t1) = 0}

= Pr{X1
i − L0

i − α < 1− τ}Pr{L1
i > τ}

+

U∑
h=1

[
Pr{

h∑
k=1

Xk
i −

h−1∑
k=0

Lki − α < 1− τ}Pr{
h∑
k=1

Lki > τ}

]
.

(4.8)

Thus, if the channel statistics (e.g., λ and µ) are known, the predicted probabilities

can be calculated. Therefore, based on the prediction, the policy that we consider

the channel as active, when

Pr{Ni(t2) = 1} > Γ, (4.9)

where Γ is the threshold above which the channel is considered active by the predictor

model. After making channel decisions, the attacker will calculate the corresponding

link costs.

However, learning the channel statistics requires significant efforts and hence, we

design and propose a HMM based technique to estimate the channel parameters λ
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and µ.

4.2.3 HMM based Parameter Estimator

A slotted discrete-time model is used for the channel activity. The decision on

whether a channel is busy or not is made based on the channel activity during the

last period. If the channel activity exceeds the given threshold τ , then it is assumed

to be in the ON state or otherwise OFF.

We first present the structure of the HMM and then we give a brief introduction

of the forward-backward procedure in Baum-Welch (BW) algorithm[113]. Finally, by

analyzing the estimated parameters, we calculate the channel parameters.

Hidden Markov Model: A Hidden Markov process is a Markov process consist-

ing of two states, where X is the hidden process that is never observable and Z is

the observation process that can be seen by the observers (i.e., the OS-RM attacker).

Xt and Zt denote the hidden state and observation state at time t, respectively. The

hidden process follows a Markov process with a finite number of states and the ob-

servable process is another probabilistic function which generates symbols based on

the hidden states. The set of symbols comes from a defined alphabet A. In our case,

A = {0, 1} (i.e., 0 = OFF and 1 = ON).

Xt-1 Xt Xt+1

Zt-1 Zt+1Zt

Hidden states

Observable states

Figure 4.8: The hidden Markov model.

The general concept of an HMM is illustrated in Figure 4.8. A system of discrete

time is changing randomly from one state to another, within a finite state space

S. In our case, the finite space S = {0, 1}. The evolution of the hidden sequence
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X1, X2, ..., XT is hidden, which represents PU states. However, it can be expressed by

a sequence of observed symbols from the alphabet A (i.e., Zt ∈ A), which represents

routing updates. In order to model the HMM, it is necessary to define the parameters

first:

• Number of hidden states, s = 2

• Number of symbols, a = 2

• Initial state distribution, π = {πi}, where i = 0, · · · , s− 1

• One-step state transition probabilities, P = pij, where i, j = 0, · · · , s− 1

• Symbol emission probability, B = bj(k), where j = 0, · · · , s − 1 and k =

0, · · · , a− 1

Therefore, the one-step state transition probability is

Pr(Xt = j|Xt−1 = i,Xt−2 = it−2, · · · , X2 = i2, X1 = i1)

= Pr(Xt = j|Xt−1 = i)

= pij,

(4.10)

where, i1, i2, .., it−2, i, j ∈ {0, 1} and t ≥ 2. And the emission probability is

bj(k) = Pr(Zt = k|Xt = j). (4.11)

The BW algorithm is an iterative approach to estimate the HMM parameters η =

[π, P,B] such that the Pr(Z|η) is maximized. To estimate the parameters, we define

the following parameters:

• Forward probability, αt(i) = Pr(Z1, Z2, · · · , Zt, Xt = Si|η), for Si ∈ {0, 1}

• Backward probability, βt(i) = Pr(Zt+1, Zt+2, · · · , ZT−1, ZT , Xt = Si|η), for Si ∈

{0, 1}
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• Estimate of state transitions, γt(i, j) = Pr(Xt = Si, Xt+1 = Sj|Z, η), for Si, Sj ∈

{0, 1}. It represents the probability of being in state Si at instant t and in state

Sj at instant t+ 1, given the observation sequence Z and the model parameters

η = [π, P,B]

• Estimate of the state at each observation, δt(i) = Pr(Xt = Si|Z, η), for Si ∈

{0, 1}. It represents the probability of being in state Si at instant t, given the

observation sequence Z and the model parameters η = [π, P,B]

The estimation variables for the HMM parameters are expressed in terms of γt(i, j)

and δt(i) :

pij =

∑t=T−1
t=1 γt(i, j)∑t=T−1
t=1 δt(i)

. (4.12)

bj(k) =

∑t=T
t=1,Zt=k

δt(j)∑t=T
t=1 δt(j)

. (4.13)

πi = δ1(i). (4.14)

In (12) the numerator represents the expected number of transitions from state Si

to state Sj over the interval T − 1, while the denominator represents the expected

number of times a transition happens from state Si. The numerator in (13) represents

the expected number of transitions from state Sj at which symbol k is observed. In

(12)-(14), γt(i, j) and δt(i) are calculated as follows:

γt(i, j) =
αt(i)pijbj(Zt+1)βt+1(j)

Pr(Z|η)
. (4.15)

δt(i) =
∑

all Sj∈{0,1}

γt(i, j). (4.16)

The forward and backward probabilities in the above equations are calculated re-

cursively as follows:

Initialization:
α1(i) = πibi(1), 0 ≤ i ≤ s− 1. (4.17)
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βt(i) = 1, 0 ≤ i ≤ s− 1. (4.18)

Recursion:
αt+1(j) =

[
s−1∑
i=0

αt(i)pij

]
bj(Zt+1). (4.19)

βt(i) =
s−1∑
j=0

pijbj(Zt+1)βt+1(j). (4.20)

The recursion process terminates when Pr(Z|η) maximizes, which is the probability

of observing the sequence Z given the parameter η = [π, P,B].

Pr(Z|η) =
s−1∑
i=0

T∏
t=1

αt(i). (4.21)

Analysis of PU Activity: In this section, we need to extract the PU activity

from the estimated HMM parameters η = [π, P,B]. To do this, we first introduce a

new set of PU parameters, θ = [λ, µ], where λ means the traffic arrival rate and µ

means the traffic departure rate. From our network model, the length of the ON and

OFF state are exponentially distributed. In [114], a useful method to compute the

state transition rate matrix from the state transition probability matrix is provided.

We denote the transition rate matrix as Q and

Q =

 −λ λ

µ −µ

 . (4.22)

As described in η, P is the one-step state transition probability matrix. We know

that P = exp(Q∆) and Q = log(P )/∆, where ∆ is the route update period. However,

the computational procedure is cumbersome and log(·) has a limitation when P has

a non-positive eigenvalue. Therefore, we adopt the mapping approach introduced in

[114], which provides an easier computational approach and provides enough degree

of accuracy. If the two-dimensional transition rate matrix is the form shown in (22),
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then the transition probability matrix is:

P =

 p00 p01

p10 p11

 =

 exp−λ∆ 1− exp−λ∆

1− exp−µ∆ exp−µ∆

 . (4.23)

In (23), the relation between P and Q unfolds the relationship between η and θ.

4.3 Performance Evaluation

We evaluate the impact of the OS-RM attack by conducting simulations in Matlab.

We consider a grid size distribution of 25 CR enabled nodes, with 24 being CR-

WMRs and a gateway (Fig. 4.9). The attacker and the target node are colored with

red and green color, respectively. The gateway has three neighboring CR-WMRs

via which other routers can communicate with the gateway. In reality, traffic is not

uniformly distributed among these three CR-WMRs due to their different spectrum

availability. We consider a uniform distribution of PUs in the network. Parameters

of our simulations are listed in Table I.

Table 4.1: Simulation Parameters: OS-RM Attack

Simulation area 1000x1000
Simulation time 50 seconds
Training time 25 seconds
SU sensing range 200
The number of PUs 10
The number of SUs 25
Bandwidth 2 Mbps
The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
Sensing duration 1 ms (802.22)
SU traffic ρ = λs/µs= 0.05 ∼ 0.25
SU packet size 750 bytes
Number of channels 10

4.3.1 HMM Estimation

The performance of the OS-RM attack relies significantly on how accurately HMM-

based estimators can estimate the parameters of PUs in the network. Furthermore,
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Figure 4.9: Simulation scenario.

the length of a training sample is instrumental to the learning performance. In Fig.

4.10, we can observe the trend of estimation error over the time for packet arrival rate

(λ) and service rate (µ). Estimation errors reduce to below 4% when the estimator

is trained to 50 seconds.

In our simulations, we train the HMM estimator with 25 seconds of data and

observe the impact of the attack for the next 25 seconds without changing the PU

activity rate. Nevertheless, in reality, the PU activity rate is not going to be constant

all the time and the HMM estimator should reestimate to track changes. The optimal

training time length based on the traffic change rate is out of this research’s scope.

In the future, we plan to propose a strategy for the attacker in a time-varying PU

network.

4.3.2 Impact on Traffic Flow

In Fig. 4.11 (color and number coded), we observe changes in traffic flow due to

the rebalancing effect caused by the OS-DoS attack on the victim node. Without

attack, two neighboring CR-WMRs carry most of the traffic (Fig. 4.11(a)) except the

target node. However, with the OS-RM attack, we can see that a portion of previous

routes are disrupted (Fig. 4.11(b)). As a result, traffic flows change directions and a
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Figure 4.10: HMM estimation performance.

few nodes who were carrying less traffic are exposed to higher traffic load now. Most

significant change in traffic is observed in the target node. This strategy works as the

driving force to maneuver traffic to any node an attacker wants. Though we discussed

only about diverting traffic towards a particular node, the same kind of strategy can

be employed to divert traffic from one.

4.3.3 Impact on Network Performance

We compare the impact of lower-layer attacks, e.g., conventional jamming, random

jamming, OS-RM attack without learning, and OS-RM attack with learning, used

as an auxiliary attack in an effort to manipulate routes. In Fig. 4.12(a)-(d), we

compare the impact of these front-end attacks with an increasing SU activity. From

Fig. 4.12(a), we can observe the increased number of traffic flows going through the

target node. Though the jamming attack can also influence traffic flows, it is less

significant as compared to the OS-RM attack. In the jamming attack, all the nodes

within the radio range of the jammer get affected, hence, the traffic flows disperse in

the whole network. Moreover, it is inefficient to use the jamming strategy due to the

high energy required by the jammer. Furthermore, as the attacker is an authorized

network entity and has the similar power requirement as other entities, it is unrealistic
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Figure 4.11: Traffic heat map: (a) no attack and (b) OS-RM attack.

to perform jamming. However, unlike the jamming attack, an OS-DoS attack can be

performed on an individual node of choice. Thus, we can observe more than 50%

increase in traffic flows to the target node.

In Fig. 4.12(b)-(d), we can observe the change in key performance metrics of the

flows going through the target node (i.e., throughput, delay, and packet drop). If the

perpetrator’s objective is to increase congestion at the target node, then from Fig.

4.12(b)-(c), it is quite evidential that this attack reduces throughput and increases

delay experienced by the flows going through the target node. The effect of delay

stems from the queuing delay in intermediate nodes. In addition, a virtual blackhole

creates in the network as more packets are being dropped. The increase in packet drop

stems from the packet drop in intermediate nodes due to the timeout and blocking

of new sessions. From Fig. 4.12, we can observe the performance improvement by

implementing learning strategy of the attacker when Γ ≥ 0.6.

4.3.4 Influence on Traffic vs. Distance

We also observe that the attacker is more influential when it is situated higher up

in the routing tree (gateway is the root of the tree). In another word, the attacker
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Figure 4.12: Impact of lower-layer attacks on route manipulation: (a) number of
traffic flows, (b) throughput, (c) mean dealy, and (d) packet drop rate.
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is more influential when more number of traffic flows go around it. In Fig. 4.13,

we can observe that the number of traffic flows actually increases when the distance

between the attacker and the target node changes from 1-hop to 2-hop, which is

counterintuitive to what we just mentioned. However, when the attacker is a direct

neighbor to the target node, it cannot perform the OS-DoS attack on the target node.

Therefore, the attacker has one less neighbor to maneuver the neighbor’s traffic flows

and hence the decrease in the number of flows. Therefore, we can deduce that the

attacker is more potent when it is 2-hop away from the target node.
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Figure 4.13: Impact on traffic flows vs. distance between the attacker and target
node.

Depending on the end objective of the attacker, the impact of the OS-RM attack

can affect other network layers also. In our proposed attack, the target node could be

actually a pre-compromised node to perform wormhole attacks, black-hole attacks or

perhaps a benign node to create network congestion. From the above observations,

one could imagine the atrocities an attacker can perpetuate if it achieves a significant

amount of control over the traffic flow.



CHAPTER 5: PROPOSED DEFENSE AGAINST OFF-SENSING ATTACKS IN

CR NETWORKS

In this chapter, a safeguard approach based on the Markov decision process is

proposed to counteract the off-sensing attack.

5.1 System Model

We consider two SUs that are trying to communicate between themselves in the

presence of OS-attackers. These two SUs could be network entities of either an

infrastructure-based network (i.e., one SU is a CR access point that opportunistically

accesses the licensed spectrum, and the other is a CR user communicating with other

network users through the access point) or an ad-hoc network. They are located

within the interference region of OS-attackers, and OS-attackers are authorized and

authenticated entities in the network.

5.1.1 Network Model

PU and SU Model: We consider the presence ofM homogeneous channels (and M

PUs), each with a fixed bandwidth. Time is divided into equal slots. Transmissions

are packet based for both PUs and SUs, and a packet starts at the beginning of a

mini-slot and finishes at the end of a mini-slot. A mini-slot is the time to perform a

fast-sensing [115] and to exchange a request to send/clear to send (RTS/CTS) pair,

and a slot is a multiple of mini-slots. Each PU randomly selects a channel to access

and alternates between the ON and OFF states, according to an ON-OFF model.

Let α and β denote the transition probabilities from the ON to OFF state and from

the OFF to ON state, respectively. We consider a saturated SU traffic scenario,

which means SUs always have a packet in their buffer to transmit. Hence, an SU
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Figure 5.1: The SU schedule.

continuously transmits on a channel until it finds the current channel busy during a

sensing interval or experiences a transmission failure (e.g., if an ACK is not received

from the other SU). Transmission failures can result from two reasons: collision with

a reappeared PU and interference from an OS-attacker. However, SUs are unable to

determine the exact reason of transmission failures due to their inability to sense the

channel during transmission or reception.

SU Access Protocol: Each transmission attempt of an SU must be preceded by a

sensing interval. As shown in Figure 5.1, SUs periodically run between sensing and

transmission intervals. An SU is allowed to access a channel when it finds the sensing

result suitable to transmit (e.g., senses that no PU is present). After sensing the

channel available, two SUs exchange RTS/CTS messages to reserve the channel. Each

SU is equipped with one half-duplex radio for spectrum sensing, control information

exchange, and data transmission. With one radio, an SU can sense the channel only

before initiating the transmission (i.e., in the sensing interval).

5.1.2 Network Coordination Scheme

In this chapter, we assume that a common control channel (CCC) is unavailable

and two SUs must find a common available channel between them to initiate a data

transmission. Rendezvous technique works as the process to find a common available

channel, where two SUs follow a channel-hopping process to meet and exchange con-

trol information on a common available channel. A significant amount of research has

been conducted on rendezvous techniques. However, the choice of a specific scheme

does not impact the performance of our proposed attack and defense mechanism, as
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long as attackers have no prior knowledge of the victim’s hopping sequence. Thereby,

we assume that benign SUs have successfully performed rendezvous with each other,

using any existing rendezvous scheme, and they share a time-seeded pseudo-random

channel-hopping sequence for future communications.

5.1.3 OS-DoS Attack

An OS-attacker detects the transmission of a particular victim SU from the RTS/CTS

message that precedes each transmission attempt. Figure 5.2 provides an illustration

of the OS-DoS attack under a periodic channel-hopping process.
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Figure 5.2: OS-DoS attack under periodic channel-hopping process.

In Figure 5.2, the OS-attacker knows the channel-hopping sequence of the victim

SU and interferes with each transmission originating from and to the victim (by

overhearing RTS/CTS messages). Here, the attacker interferes the whole packet time

to make sure that the victim cannot decode the packet and tries to create a DoS

situation for the victim SU by causing consecutive successful collisions. However,

in reality, it is likely that the attacker does not have any knowledge of the victim’s

hopping sequence, and it requires shrewder efforts from the attacker to perpetrate

successive transmission failures. Next, we propose a novel strategy for an attacker to

perpetrate the OS-DoS attack, without any knowledge of the victim’s hopping sequence

and operating channel.
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5.2 Proposed Random-OS Attack Model

In our proposed OS-DoS attack, the short-term goal is to cause successive trans-

mission failures, and the long-term goal is to reach the maximum limit of transmission

attempts to force the victim to drop the current packet. In Figure 5.2, if the max-

imum transmission attempt is 3, then the SU packet would be dropped. However,

the assumption that attackers know the channel-hopping sequence of the victim is

unrealistic and so is the strategy of an attacker to interfere with each transmission

of the victim (due to the deterministic hopping sequence of the attacker); the victim

can infer the attacker’s activity and detect the attacker with a longer fine-sensing

(explained in Section 5.3). Therefore, we propose a random strategy for OS-DoS

attackers, where attackers have no prior knowledge of the victim’s channel-hopping

sequence, and they hop to different channels in each slot to detect the victim and to

perpetrate the OS-DoS attack.

Basic Principles: We assume the presence of m OS-attackers (m<M) with the

same hardware configuration as benign SUs. We consider that these OS-attackers

coordinate among themselves using an out-of-band secure channel (i.e., a secure con-

trol channel for attackers only), and they attack non-overlapping channels to increase

their chance to detect the operating channel of the victim sooner. Attackers detect a

transmission of a particular victim by listening to the RTS/CTS message. After the

detection, they perform OS-attack in the transmission interval.

Short-term Strategy: With the help of coordination, attackers visit m different

channels during each slot. Here, attackers randomly generate a channel-hopping

sequence after each successful attack (i.e., transmission failure) and hop through the

sequence periodically until they find the operating channel of the victim SU. This

strategy of channel-hopping helps attackers to put an upper bound on how long (i.e.,

the channel residence time) a victim SU can continuously use a channel. The upper

bound will be discussed later in this section. Figure 5.3(a) shows an illustration of
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Figure 5.3: First phase of the random-OS attack.

the attack sequence with M = 10 and m = 2. It shows the hopping sequence of

attackers before a successful OS-attack. Here, the operating channel of the victim SU

is channel-3 and, in slot-3, attackers detect and perpetrate the attack. ai represents

the channels where attackers have conducted OS-attack and i represents the number

of successive attacks (or transmission failures).

In the OS-attack, a victim cannot determine the exact reason of the transmission

failure. Thereby, the victim will randomly hop to a new channel (believing that it

has interfered with a reappeared PU), will try to stay on that channel as long as

plausible, and will not hop back to the previously attacked channels (i.e., ai) until

it achieves a successful packet transmission. Hence, it is inefficient for attackers to

revisit the previously attacked channels for a particular packet. After each successful

perpetration of the attack (or transmission failure), attackers randomize their hopping

sequence, excluding ai. Therefore, after i successive transmission failures, attackers

have M − i channels to randomize. Figure 5.3(b) illustrates a new hopping sequence

of attackers.

Long-term Strategy: As OS-DoS attack considers that the victim must experi-

ence G consecutive transmission failures (G<M) before discarding the current packet,

attackers stay persistent to increase their chance of successful attack after each succes-

sive OS-attacks. Hence, they keep excluding channels that they have already attacked

earlier, for the current packet. Figure 5.4 shows an illustration of a scenario, where
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Figure 5.4: A scenario of successful OS-DoS attack with G = 4.

G = 4, and attackers are successful to drop the packet with successive attacks.

After ith successful attack, if attackers are not successful in the subsequent slot, they

consider that the victim had a successful transmission. Hence, they will randomize

their hopping sequence (i.e., nullify ai), excluding the channels they have visited in

the current slot (since currently visited channels are free, there is no need to visit

again in this period), and begin a new period (one period = dM/me slots).

If attackers cannot detect the operating channel and one period has finished, they

will revisit the channels following the same sequence. Given M channels and m

OS-attackers, if the victim SU stays on the same channel, the operating channel of

the victim will be detected within dM/me slots. Thereby, the maximum number of

consecutive successful transmissions an SU can have in a channel is K = dM/me− 1.

This is the upper-bound that has been discussed earlier in this section.

Summary: The proposed OS-DoS attack strategy introduces uncertainties in ac-

tions of attackers; hence, we name it random-OS attack. Unlike the deterministic

approach in Figure 5.2, the proposed strategy introduces a random hopping sequence
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for attackers. Due to this randomness, it is not guaranteed that the victim can detect

an attacker’s interference by a single fine-sensing [116], rather it may require multiple

attempts to detect an attacker. Therefore, the victim SU must use the fine-sensing

interval (explained in the next section) wisely to maximize the chance of detection.

5.3 Proposed Safeguard Approach: Hide and Seek

In this section, we propose a solution to the random-OS attack problem by modeling

it as an MDP-based game with three actions: stay, hop, and extra-sense. Besides

stay and hop, we propose an action extra-sense to increase the diversity of defense

(Figure 5.5). In extra-sense, instead of transmitting in the transmission interval, an

SU tries to detect OS-attackers by fine-sensing the channel which we call the extra-

sensing interval. With fine-sensing, an SU can differentiate between the transmission

of a PU and an attacker. Now, with these available actions, the MDP deduces an

optimal policy, which provides the optimal action to take at each state that maximizes

the reward of playing this MDP-based game. In this section, we model the attack

and defense problem as an MDP, and we develop a single agent (i.e., a victim SU)

MDP-based defense method to counteract the random-OS attack.

5.3.1 Formation of the MDP

We assume that the channel-hopping sequence of the victim SU is unknown to the

attacker; however, the attacker can iteratively sweep through the available channels

and detect the presence of the victim SU. As we consider the presence of multiple

(i.e., m) OS-attackers and coordination among themselves, they will not hop to the

same channel together. Instead, they will hop to m different channels to determine

the operating channel of the victim SU faster. The SU will decide its action at the
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end of each time slot, based on the observation of the current state. The SU receives

an immediate reward U(n) in the nth time slot,

U(n) = R.1(Successful transmission)

− L.1(Transmission failure)− C.1(Hopping cost)

−B.1(Busy channel)

− F.1(Penalty for policy violation)

−Q.1(Packet drop) + E.1(Attacker detection),

(5.1)

where 1(·) is an indicator function of the event in brackets.

As the employed strategy impacts the current state and also the future states, the

expected reward of this game is,

U =

∞∑
n=1

δn−1U(n), (5.2)

where δ represents the discount factor (0 < δ ≤ 1). It measures the significance of

the future reward values.

5.3.2 Markov Model

This subsection demonstrates the proposed MDP model and defines state space,

action space, rewards, and transition probabilities. We assume that attackers sweep

through all channels periodically; hence, the probability of an operating channel being

detected depends on the channels that have been visited earlier in the sequence. This

consideration helps us to conform the requirement of a Markov process (i.e., a future

state of the Markov process depends only on the current state).

Markov States: The state denotes the status of an SU at the end of a time slot.

Here, the proposed Markov model (Figure 5.6) has six kinds of states:

P : The SU senses that the channel is occupied by a PU.

Ti : The SU hopped onto a new channel and had i consecutive successful transmis-

sions (1 ≤ i ≤ K).
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Dj : The SU had j consecutive transmission failures in j different channels (1 ≤ j ≤

G).

ES0 : The SU employed the action extra-sense and found the channel is free (i.e.,

no PU or OS attacker).

ES1 : The SU employed the action extra-sense and found the channel is reoccupied

by a PU.

ESa : The SU employed the action extra-sense and detected an OS-attacker success-

fully.

We represent the whole state space as X
∆
= {P, T1, T2, · · · , D1, D2, · · · , ES0, ES1, ESa}.

D1 D2 D3 DG-1 DG

P

ES0 ES1 ESa

T1 T2 T3 TK-1 TK

Figure 5.6: The proposed MDP.

Actions: Here, we have three actions available at each state:

stay (s): The SU remains on the current channel in the next time slot and initiates

a transmission.

hop (h): The SU hops to a new channel in the next time slot and initiates a trans-

mission.

extra-sense (es): The SU hops to a new channel in the next time slot and fine-senses

the channel for interference.

We represent the whole action space as A
∆
= {s, h, es}.

Rewards: Let U(S, a, S ′) represent the reward when an SU takes action a ∈ A in

state S ∈ X and enters into state S ′ ∈ X. Now using (5.1), we define rewards:
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U(S, a, S ′) =



R, if {S, a, S′} = {Ti, s, Ti+1}, i = 1, · · · ,K − 1

R− C, if {S, a, S′} = {X, h, T1}

−L, if {S, a, S′} = {Ti, s,D1}, i = 1, · · · ,K − 1

−L− C, if {S, a, S′} = {X, h,Dj}, j = 1, · · · , G− 1

−Q− C, if {S, a, S′} = {DG−1, h,DG}

−B, if {S, a, S′} = {Ti, s, P}, i = 1, · · · ,K − 1

−B − C, if {S, a, S′} = {X, h, P}

−F, if {S, a, S′} = {Z, s,X}, Z ∈ {D,P}

−Q, if {S, a, S′} = {X, es, Z}, Z ∈ {ES0, ES1}

E −Q, if {S, a, S′} = {X, es, ESa}.

(5.3)

Transition Probabilities: As m attackers are going through their attack channel

sequence, at state Ti, only max(M − im, 0) channels have yet to be visited by attack-

ers, and another m channels will be visited in the subsequent slot. Therefore, the

probability of an OS-attack (with action stay) in absence of a PU on the channel,

Prat|s =


m

M − im
, if i < K

1, otherwise.
(5.4)

The transition probabilities from state Ti with action stay is,

Pr(Ti+1|Ti, s) = (1− β)l+1(1− Prat|s),

P r(D1|Ti, s) = (1− β){1− (1− β)l}

+ (1− β)l+1Prat|s,

P r(P |Ti, s) = β,

(5.5)
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where an SU packet is l mini-slots long, and each SU packet is preceded by 1 mini-slot

long sensing interval. Note that the action stay is a violation of hard-coded network

policy in state P and Dj and subject to penalty (i.e., −F ).

When there are plenty of channels in the network, the time interval of visiting back

to a channel is long; hence, we can approximate the probability of finding the channel

busy with action hop as the steady-state probability,

Pr(P |S, h) =
β

α+ β
= ρ, S ∈ X. (5.6)

Now, the SU takes action hop and selects a new channel randomly from M − 1

channels (the SU does not hop to the same channel it found busy in the current

slot) from the current state P and hands off to that channel. Provided that the new

channel is available, the probability of an OS-attack is,

Prat|h,P =
1

M
· m− 1

M − 1
+
M − 1

M
· m

M − 1
. (5.7)

The transition probabilities from state P with action hop is,

Pr(T1|P, h) =(1− ρ)(1− β)l(1− Prat|h,P ),

P r(D1|P, h) =(1− ρ){1− (1− β)l}

+ (1− ρ)(1− β)lPrat|h,P .

(5.8)

When an SU takes action hop from state Ti, it randomly selects a channel from

M−1 channels (excluding the current one). The probability that attackers will attack

the new channel in the next slot depends on two cases:

• The new channel is already visited by attackers: The new channel is one of the

im channels visited by attackers.
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• The new channel is not visited by attackers: The new channel is among one of

the M − im − 1 channels that are not visited by attackers, and it will not be

visited by attackers in the next slot.

Therefore, the probability of OS-attack,

Prat|h,T = 1−
(

mi

M − 1
+
M − im− 1

M − 1
(1− Prat|s)

)
. (5.9)

The transition probabilities from state Ti with action hop is,

Pr(T1|Ti, h) =(1− ρ)(1− β)l(1− Prat|h,T ),

P r(D1|Ti, h) =(1− ρ){1− (1− β)l}

+ (1− ρ)(1− β)lPrat|h,T .

(5.10)

When an SU takes action hop from state Dj, it randomly selects a channel from

M−j channels. As the SU has experienced transmission failures j times in j different

channels, it does not visit back to these channels until it successfully transmits the

current packet. Since attackers also randomize their attack sequence, excluding these

j channels, the probability that attackers will attack the new channel in the next

slot is uniformly distributed over M − j channels. Therefore, the probability of an

OS-attack is,

Prat|h,D =
m

M − j
. (5.11)

The transition probabilities from state Dj with action hop is,

Pr(T1|Dj , h) =(1− ρ)(1− β)l(1− Pat|h,D),

P r(Dj+1|Dj , h) =(1− ρ){1− (1− β)l}

+ (1− ρ)(1− β)lPrat|h,D.

(5.12)
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The transition probabilities from state Dj with action es is,

Pr(ES0|Dj , es) = (1− ρ)(1− β)l(1− Prat|h,D),

P r(ES1|Dj , es) = (1− ρ){1− (1− β)l},

P r(ESa|Dj , es) = (1− ρ)(1− β)lPrat|h,D,

P r(P |Dj , es) = ρ.

(5.13)

Here, the more successive attacks attackers can perpetrate, the higher the chance

of successful attack in the next slot, i.e.,

Pr(T1|Dj , h) > Pr(T1|Dj+1, h). (5.14)

5.3.3 Optimal Defense Strategy

An MDP consists of four components: a finite set of states, a finite set of ac-

tions, transition probabilities, and immediate rewards. We have modeled the defense

problem as an MDP. Now, we can find the optimal defense strategy by solving it.

For an MDP, a policy is defined as the action to take in each state, i.e., π : Sn →

an. In other words, a policy maps each state S ∈ X to an action a ∈ A and is

represented by π(S). Among all possible policies, the optimal policy returns the

maximum expected total discounted payoffs. The value of a state S is defined as the

highest expected payoff, starting from the state S and represented as,

V ∗(s) = max
π

E
[ ∞∑
n=1

δn−1U(n)
∣∣∣S = s

]
. (5.15)

Here, the optimal policy π∗(S) returns the maximum expected payoff. One impor-

tant point is that, after making a move from the current state, the remaining part of

an optimal policy should still be optimal. Therefore, the first move should maximize

the immediate payoff and the future expected payoff, which are conditioned on the
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current action. This is called Bellman equation [117],

Q(S, a) =
∑
S′

Pr(S′|S, a)
(
U(S, a, S′) + δV ∗(S′)

)
,

V ∗(S) = max
Q

Q(S, a),

π∗(S) = argmax Q(S, a).

(5.16)

Now, we can use the value iteration method to derive the optimal defense strategy

and show that the solution has a structure mentioned in Proposition 1.

Proposition 1: The optimal policy can be represented by two critical states k∗ ∈

{1, 2, · · · , K} and g∗ ∈ {1, 2, · · · , G}, i.e.,

π∗(Ti) =


s, if Ti < Tk∗

h, otherwise,

π∗(Dj) =


h, if Dj < Dg∗

es, otherwise.

(5.17)

Proof: From (5.4) and (5.5), the probability of a successful transmission with action

stay (i.e., Pr(Ti+1|Ti, s)) decreases over i. Therefore, from the definition of Q(S, a)

from (5.16), Q(Ti, s)−Q(Ti−1, s) < 0. Now, (5.9) indicates that the probability of a

successful transmission with action hop (i.e., Pr(T1|Ti, h)) increases over i. Therefore,

Q(Ti, h) − Q(Ti−1, h) > 0. Now, the optimal action at state Ti is stay if Q(Ti, s) ≥

Q(Ti, h), or hop if Q(Ti, h) ≥ Q(Ti, s). Since Q(Ti, s) is decreasing and Q(Ti, h)

is increasing, there exists a k∗, where Q(Tk∗−1, s) ≥ Q(Tk∗−1, h) and Q(Tk∗ , h) >

Q(Tk∗ , s), and k∗ ∈ {1, 2, · · · , K}. This concludes the first part of the proof.

Similarly, from (5.11)-(5.14), we can show thatQ(Dj, h) < Q(Dj−1, h) andQ(Dj, es) >

Q(Dj−1, es). Therefore, there exists a g∗, where Q(Dg∗−1, h) ≥ Q(Dg∗−1, es) and

Q(Dg∗ , es) > Q(Dg∗ , h), and g∗ ∈ {1, 2, · · · , G}. This concludes the second part of

the proof.
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Summary: An SU’s strategy to use an underutilized channel as long as plausible

and the iterative process of random-OS attack facilitates the design of the attack and

defense problem as an MDP. The proposed defense can be summarized in two aspects:

(1) an SU keeps utilizing an underutilized channel for k∗ time slots and then hops

to another channel, and (2) after g∗ successive transmission failures, an SU takes the

action extra-sense. In this chapter, we consider that the strategy of attackers remains

unchanged, and the strategy of attackers can be learned over time. Nevertheless, an

attack and defense problem is comparable to an arms race: the attacker and defender

will change their strategies to outsmart each other.

5.4 Proposed Attack Inference Model

In this section, we propose an attack inference model to detect the presence of

attackers. The proposed model has two features: 1) it utilizes the in-hand sensing

history of the victim; hence, no networking overhead occurs to estimate PU parame-

ters, and 2) it does not violate any policy and hardware constraints; hence, no policy

change and extra hardware required. Depending on the parameters of the model, it

helps the safeguard process to detect the presence of attackers.

In reality, it is impossible for a victim to know the exact network parameters (i.e.,

α, β, m) to devise the MDP. Therefore, an SU must learn the MDP over time. A

model-based learning technique requires the Markov process to exhibit constant pa-

rameters over time, and it has a limitation in scalability; hence, a model-free learning

is best suitable for this scenario. We employ the Q-learning technique that works as

a model-free off-policy method, learns the game without the need of transition prob-

abilities, and fits well with sudden changes in MDP parameters. Figure 5.7 shows the

framework of the proposed attack inference model and Q-learning.

5.4.1 Q-learning

The Q-learning tries to approximate the unknown transition probability by the

empirical distribution of states that have been experienced over time. It iteratively
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Figure 5.7: The Q-learning and attack inference model.

calculates and updates Q-value based on the state-action tuple (S, a, S ′).

Qn(S, a) =Qn−1(S, a) + γ
[ {
R(S, a, S′) + δVn(S′)

}
−Qn−1(S, a)

]
,

Vn(S) =max
Q

Qn(S, a),

(5.18)

where γ is the learning rate and δ is the discount factor.

In Q-learning, there is no fixed policy while learning the MDP and agents take

random actions (with probability ε) to discover the MDP. However, the randomness

decreases over time (i.e., ε → 0) and defenders are more likely to take actions with

highest Q-values. After Q-values converge, the learning process ends. The optimal

policy after the learning period is,

π∗(S) = argmax Qn(S, a), a ∈ A, S ∈ X. (5.19)

In quest of learning the optimal policy, the defender makes mistakes and takes

random decisions to explore the MDP. Hence, Q-learning engenders a cost in perfor-

mance, and it is represented by regret, which quantifies the difference between the

expected rewards (while learning) and the optimal rewards. Therefore, the more the

defender learns, the fewer mistakes it makes (i.e., regret is a decreasing function of

time).

Hence, to minimize the learning cost, the attack inference model reinitializes the
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learning process (i.e., reinitialize ε) when the model detects the presence of OS-DoS

attackers.

5.4.2 Attacker’s Presence Detection

In this approach, benign SUs initiate their operation with three policies: 1) stay

on the current channel until a transmission failure (i.e., π(T ) = s) occurs, 2) hop to

another channel after sensing the channel busy in the sensing interval (i.e., π(P ) = h),

and 3) hop to another channel after a transmission failure (i.e., π(D) = h). Without

detecting the presence of OS-attackers, Q-learning does not employ the action es.

With recorded historic states and actions, SUs are able to compute the occurrences

of transitions given any action. For example, the notation NS,S′
a represents the total

number of transitions from state S to S ′, taking action a.

We define Tp
∆
= max{T : NTi,Ti+1

s = 0} (e.g., under-attack, Tp = K). From (5.5), we

can understand that the absence of attack (i.e., Prat|s = 0) will result in an empirical

probability P̂ r(D1|Ti, s) =
NTi,D1
s

NTi,D1
s +NTi,P

s +NTi,Ti+1
s

that is close to the probability

of transmission failure by PUs only,

Pr(D1|Ti, s, Prat|s = 0) = (1− β̂){1− (1− β̂)l}, (5.20)

where β̂ represents the PU traffic parameter from empirical observations, which will

be explained later in this section.

Now, with the presence of attackers (i.e., Prat|s > 0), P̂ r(D1|Ti, s) > Pr(D1|Ti, s).

We represent this by,

Xn
i =

P̂ rn(D1|Ti, s)− Prn(D1|Ti, s;Prat|s = 0)

Prn(D1|Ti, s;Prat|s = 0)
, (5.21)

where P̂ rn and Prn represent empirical probabilities after n time slots (i.e., P̂ rn and

Prn are running parameters).

SUs track these values of Xi over time. From (5.4) and (5.5), we can observe that
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Prat|s increases with the residence time of SUs on a channel. Therefore, to deduce

the presence of attackers, Xi values should conform to the requirement below,

Xn
1 < Xn

2 < · · · < Xn
p−1 < Xn

p . (5.22)

This inequality characterizes the primary condition to detect the random-OS attack.

It differentiates the random-OS attack from the naive attack where m attackers ran-

domly choose m channels in each slot with equal probabilities (i.e., m/M), and it

does not consider which channels have been detected in the past. Therefore, Xn
i will

not meet the requirement in (5.22), instead, the values of Xn
i will lie within a close

approximation,

Xn
1 = Xn

2 = · · · = Xn
p−1 = Xn

p ≈ c, (5.23)

where c is a constant.

Since each channel has an equal probability of encountering attack in the naive

approach, hopping strategy cannot reduce the risk of attacks. Moreover, the hopping

cost makes it a futile effort to avoid the attack by hopping from one channel to

another. Hence, SUs stay on the same channel until they sense the PU reappearance

or experience a transmission failure.

Next, we consider a safety margin τ to finally trigger the presence of attackers in

the network. Besides a safety margin, τ also works as a trade-off parameter between

performance and security. We compare the value of Xn
1 to τ to decide the presence of

attackers. Since the state T1 is visited more frequently than other T states, we make

an educated choice of comparing the safety margin with Xn
1 . Therefore, the second

requirement is,

Xn
1 > τ. (5.24)
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We can further control it by starting a counter when (5.22) and (5.24) are met, then

triggering the attack flag once these requirements are consistently met for a certain

time.

5.4.3 PU Traffic Parameter Estimation

We define S
∆
= {T1, T2, · · · , Tp − 1} and H

∆
= {P,D, Tp}. Now, given the state tran-

sition history NS,S′
a over time, we can deduce the empirical value of the PU traffic

parameter,

β̂ =

∑
T∈SN

T,P
s∑

T∈S
(
NT,P
s +NT,D

s +NT,T+1
s

) . (5.25)

The empirical value of β̂ remains unaffected by the presence of attackers. It depends

on the results from the sensing interval, and OS-attackers remain inactive during this

interval. Therefore, (5.25) provides a close estimation of the actual PU parameter to

decide the presence of attackers in the network.

Summary: Unlike previous research, we consider the absence and the presence of

attackers. When attackers initiate an OS-DoS attack, the proposed attack inference

model detects the attack and reinitializes the Q-learning process to minimize the

regret (i.e., learning cost) and to take appropriate action.

5.5 Performance Evaluation

In this section, we present simulation results to evaluate the performance of our

proposed research. Here, we consider that the victim SU detects an attacker, but

does not oust it from the network; the appropriate attack response (e.g., network

isolation, bandwidth limitation, and network elimination) is an open research issue.

Unless otherwise stated, the simulation parameters are:

The presented simulation results are the average of 100 independent trials.
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Table 5.1: Simulation Parameters: Hide and Seek

Parameter Value
Communication gain, R 5
Cost of transmission failure, L 5
Hopping cost, C 1
Cost of busy channel, B 1
Penalty for policy violation, F 50
Maximum transmission attempt, G 7
Cost of packet drop, Q G · L
Reward for detecting an attacker, E 20
SU packet length l 5
Discount factor, δ 0.95

Learning rate, γ 1/
√
number of time slots

PU parameters β = 0.01, ρ = 0.1
Number of channels, M 60

5.5.1 Random-OS Attack

In this research, we consider that attackers do not have any predetermined knowl-

edge of the victim’s channel-hopping sequence and operating channels. Therefore, we

discard the comparison with conventional OS-DoS attack where the victim experi-

ences null throughput regardless of the number of attackers (i.e., unrealistic scenario).

Fig. 5.8 demonstrates the performance of the random-OS strategy in contrast to the

naive approach, where attackers do not consider the knowledge of which channels

have been visited in the past, instead randomly select channels at each time slot.

In Fig. 5.8(a), the normalized throughput is shown, where victims experience

less throughput in the random-OS attack due to the iterative process and the re-

randomization technique of random-OS. Likewise, victims of the random-OS attack

suffer more transmission failures (Fig. 5.8(b)) and higher rate of packet drop (Fig.

5.8(c)). However, transmission failures are not enough to cause significant packet

drop or DoS attack unless attackers can perpetrate it consecutively. This reflects

in Fig. 5.8(c) where the packet drop rate follows a different trend than the rate

of transmission failure; the packet drop rate starts to increase exponentially after
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(c) Normalized packet drop rate.

Figure 5.8: Performance of the random-OS attack.

m = 10. Therefore, in this scenario, more than 10 attackers are required to cause

significant damage to the victim.

5.5.2 Critical States

We demonstrate the critical states k∗ and g∗ of the optimal policy (Fig. 5.9) derived

from the value iteration of the MDP, with the change in the number of attackers (m),

the cost of transmission failure (L), the reward of attacker detection (E), the cost of

channel-hopping (C), and the number of operating channels (M).

Effect of m: In Fig. 5.9(a)-(h), both k∗ and g∗ decrease with the increase in the

number of attackers. As m increases, attackers can visit more channels in each time
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slot; hence, K starts to decrease, and SUs have less channels to hop on after each

transmission failure. Therefore, the channel residence time decreases and SUs have

to hop more frequently to avoid the attack.

Effect of L: In Fig. 5.9(a) and Fig. 5.9(e), as the cost of transmission failure

L increases, SUs tend to hop more to avoid imminent transmission failures, thus k∗

decreases. However, g∗ demonstrates relatively less sensitivity towards changes in

L due to the significantly high cost of Q. In transmission failure states, choosing

action es over h means that the defender has to compromise its packet transmission

regardless of the outcome of the action es; hence, the defender is reluctant to take

action es.

Effect of E: In Fig. 5.9(b), k∗ remains almost insensitive to the change in the

reward of attacker detection E. Because E largely dictates the action es only, stay

and hop from transmission states remain out of its influence. For the similar reason,

in Fig. 5.9(f), g∗ illustrates linear sensitivity to the change in E. Therefore, as the

reward for detecting an attacker increases, SUs become more motivated to take the

action es instead of hop, to detect attackers. The parameter E works as a trade-off

parameter between the networking performance and the security performance. Lower

and higher values of E mean that victims have more tendency toward avoiding and

victims have more tendency toward detecting OS-attackers, respectively.

Effect of C: As discussed in Section 5.3, channel-hopping engenders insignificant

cost in terms of channel throughput; we quantify this cost by C. In Fig. 5.9(c), we

can observe that k∗ increases with C. As C increases, defenders become reluctant

to take action hop and stays in a channel longer. Therefore, the cost of hopping

significantly impacts the proposed defense strategy because defenders become limited

in their capability to utilize the channel diversity a multi-channel network has to offer.

However, unlike k∗, g∗—though exhibits very low sensitivity—decreases with C (Fig.

5.9(g)).
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Effect of M : As the number of channels M increases, the maximum channel res-

idence time K increases. Therefore, attackers have more channels to sweep through

and defenders have more time to stay on a channel. In Fig. 5.9(d), we can observe

that k∗ increases linearly with the increase ofM . Similarly, asM increases, defenders

experience more incentive to hop through different channels than to detect attackers.

As a result, g∗ increases with M .
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Figure 5.9: The sensitivity of optimal values to the changes in L, E, C, and M .

5.5.3 Hide and Seek

Fig. 5.10(a) compares the performance of our proposed hide and seek strategy

with three scenarios: no defense, hide and seek with no reward (E = 0), and hide

and seek with a high reward (E = 50). It illustrates that both E = 0 and E = 50

follow the same line until the number of attackers surpasses m = 10 (when E = 50);

the throughput drops below the no defense line afterwards. We call this moment the

switching point after which the victim prefers to detect attackers (using the action es)

rather than avoiding them (using the action hop); hence, the throughput drops. As E

increases, the victim becomes more motivated to detect attackers and the switching

point moves to the left. As discussed earlier, E works as a tuning parameter between

the networking and security performance. Likewise, in Fig. 5.10(b), we can observe

that the transmission failure decreases after the switching point. However, after

m = 12, it starts to increase again due to the increasing number of attackers.

5.5.4 Q-Learning and Attack Inference Model

We evaluate the performance of Q-learning (Fig. 5.11 (a)) by showing the difference

in mean reward after each episode between an SU that knows the optimal values and
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Figure 5.10: Performance of hide and seek.

0 200 400 600 800 1000
Number of episodes

0

5

10

15

20

25

30

35

M
ea

n 
re

w
ar

d

Optimal policy
Q-learning

m=3

m=2

(a) Q-learning.

0 200 400 600 800 1000
Number of episodes

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 m
ea

n 
re

gr
et

Without AIM
With AIM;  = 0.6
With AIM;  = 0.2

Attack detection

No-attack

region

Under-attack

region

(b) Attack inference model.

Figure 5.11: Performance of Q-learning and attack inference model.
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an SU that learns the MDP over time via Q-learning. Here, we can observe that in

both cases (i.e., m = 2 and m = 3), the reward converges to the optimal reward.

However, with m = 3, the agent converges more quickly due to the fewer amount of

states.

In Fig. 5.11(b), the performance of our proposed attack inference model is shown

with different values of the threshold τ . We change the scenario from m = 0, M = 10

to m = 2, M = 10 at epsiode = 501. As the MDP progresses, an SU takes fewer

random actions (i.e., ε decreases); hence, it takes more time to track the changes

without the assistance from the attack inference model. The proposed model assists

the Q-learning to detect changes in the MDP and re-initializes the parameter ε to

minimize the regret based on the threshold τ . With τ = 0.2 and τ = 0.6, the

attack inference model detects the presence of the attacker on epsiode = 549 and

epsiode = 753, respectively. Hence, a lower value of τ assists the SU to track the

changes sooner and yields in less regret.



CHAPTER 6: PROPOSED COVERT SPECTRUM HANDOFF ATTACK IN CR

NETWORKS

In this chapter, a vulnerability in proactive spectrum handoff processes is discussed

and an attack model is proposed.

6.1 System Model

PU and SU Model: We consider that all PUs are under the sensing range of SUs

and that PUs do not interfere with each other’s transmission. Here, M channels (i.e.,

M PUs) have different service rates, and a PU randomly selects a channel to access. N

SUs can opportunistically access theseM channels. An SU can access a channel when

it senses no PU is using it. In addition, an SU can detect a collision with a PU only

after the SU finishes the frame transmission (e.g., if an ACK is not received). After

detecting a collision, the SU stops transmitting on the current channel and initiates a

spectrum handoff. Each SU is equipped with one radio for spectrum sensing and one

radio for control information exchange and data transmission. The sensing radio has

two key functions: 1) observe the channel usage characteristics and store the channel

statistics to predict future channel activity and 2) confirm that the newly selected

channel is idle for the transmission of SU.

Each PU alternates between the ON and OFF state according to a continuous-time

Markov process. In Figure 6.1, let λ and µ denote the transition rate from the OFF

to ON state and from the ON to OFF state, respectively. Thereby, the mean sojourn

time in the ON and OFF states is 1/µ and 1/λ, respectively, and both follow the

exponential distribution.

Network Coordination Scheme: Rendezvous is a prerequisite in establishing
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Figure 6.1: PU activity model.
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Figure 6.2: Network coordination scheme.

a connection between two SUs in the absence of a dedicated CCC. A successful ren-

dezvous happens when both transmitting and receiving SUs are on the same chan-

nel and have completed a successful handshake between them, e.g., a Request-to-

Send/Clear-to-Send (RTS/CTS) exchange.

We consider the common channel-hopping as the network coordination scheme [27],

which means that the hopping pattern is the same for all SUs. Figure 6.2 illustrates

the operation of the common frequency-hopping network coordination. We consider

a time-slotted system. Each time slot consists of a sensing interval (sensing) and a

contention interval (CI) with the transmission of an RTS/CTS pair. When there is

no packet in the buffer of an SU, it keeps hopping through the channels from one

time slot to another, based on the predetermined common channel-hopping pattern.

Then, we adopt the MAC model from [17] for network coordination. Whenever

an SU has a packet to send, it first senses the channel. If the channel is idle, the

SU chooses a random number (in terms of mini-slots) as its backoff time to avoid

contention.
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Figure 6.3: PU and SU activity on channel i.

Proactive Spectrum Handoff Model: Proactive spectrum handoff helps to

decrease the unwanted interference between PUs and SUs. In this section, we briefly

discuss the proactive model we use in our simulations.

We consider that each SU calculates the likelihood of PU reappearance after per-

forming a successful rendezvous. Using the sensed channel statistics, an SU can

predict the channel availability before the transmission of the current frame ends.

Based on the prediction, an SU decides whether to transmit on the current channel,

switch to another channel, or pause the on-going transmission and remain on the

current channel. We set a threshold (τ) for PU reappearance, above which an SU

will not initiate the transmission. Figure 6.3 shows the PU and SU traffic activity on

channel i, where Xk
i represents the inter-arrival time of the kth PU packet on channel
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i. Lki and Hk
i denote the length of the kth PU and kth SU packet on channel i, respec-

tively. Here, t0 represents the last sensed arrival of a PU packet and Ni(t) denotes

the status of PU reappearance within time t. Ni(t) is a binary random variable with

values 0 and 1, representing no PU reappearance and PU reappearance, respectively.

As shown in Figure 6.3(a), the probability that channel i will be idle till the first

frame ends (t3) is given by,

Pr(Ni(t3) = 0) = Pr(X1
i > L1

i + α+ β +H1
i ). (6.1)

where β and α represent the time to successfully perform a rendezvous (i.e., 1 time

slot), and the time between when the PU packet finishes the transmission and the

rendezvous starts, respectively. In Figure 6.3(b), the probability that channel i will

be idle till the second frame ends (t4) is given by,

Pr(Ni(t4) = 0) = Pr(X1
i > L1

i + α+ β +H1
i +H2

i ). (6.2)

Therefore, the probability that an SU successfully transmits a packet on channel i,

consisting of h frames, (Figure 6.3c) is,

Pr(Ni(t4) = 0) = Pr(X1
i > L1

i + α+ β +

h∑
l=1

H l
i). (6.3)

Hence, based on the above predictions, the probability that an SU will handoff to a

new channel is,

Pr(Ni(t) = 1) = 1− Pr(Ni(t) = 0) > τ. (6.4)

Here, we consider the same threshold to make the decision on whether to switch from

the current channel and to select a target channel. Every transmission on a new

channel must be preceded by a sensing and contention attempt (i.e., rendezvous). In

addition, the highest priority to access channels is given to handoff SUs to maintain
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low handoff delays.

6.2 Covert Spectrum Handoff

Although the distributed nature of proactive spectrum handoff processes provide

such protocols with significant performance gain in terms of avoiding collisions with

PUs, it also exposes such approaches to new security vulnerabilities (e.g., covert

spectrum handoff). In this section, we first identify the motivating reasons to exploit

this vulnerability and then discuss the strategy of an attacker. We consider that

a selfish SU is compromised, is authorized to use the secondary network, and has

similar hardware configurations as benign SUs. To exploit this vulnerability, both

transmitter and receiver SU must act selfishly. Throughout this chapter, we will use

the term attacker and selfish SU interchangeably.

6.2.1 Vulnerability Analysis

Here, we shed light on the reasons behind this vulnerability and how a selfish SU

can remain undetected in current proactive approaches.

Underutilized Radio Resources: Previous works on rendezvous ([17, 28, 19])

focus only on achieving guaranteed and fast rendezvous. However, the radio resource

utilization is not considered as a performance metric. SUs’ waste radio resources in

the rendezvous process until they successfully handshake with each other. Figure

6.4(a) shows the amount of wasted radio resources in the common-hopping sequence-

based rendezvous system in saturated SU traffic (i.e., SUs always have a packet to

send). We consider non-identical service rates for each channel ranging from 1 to 10

Mbps for channel-1 to channel-10, respectively (i.e., channel-1 offers the lowest service

rate and channel-10 offers the highest). Here, we show the normalized wasted radio

resources of each channel and vary the value of threshold (τ) to observe the channel

wastage trend. It clearly exhibits the ramifications of using the periodic hopping

sequence approach, even with a higher threshold and saturated SU activity.
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Figure 6.4: The motivating reasons behind the attack.

Less Prompt in Handoff Initiation: As we discussed in the introduction, most

proactive handoff processes trigger handoff only when the next frame is likely to

collide with a reappeared PU on the channel. As they consider identical channels

and emphasize on reducing the delay constituting from handoff operations, prior

handoff processes are inherently reluctant to handoffs. However, if we consider non-

identical channels, it is likely to manage a trade-off between the delay constituting

from switching to a faster channel and the service rate of that channel. In this

process, an SU can initiate the handoff process instantly after the rendezvous (if

a faster channel is available to off-set the handoff delay), and we call it preemptive

proactive handoff process. In Figure 6.4(b), we can observe a significant increase in the

normalized throughput between the conventional and preemptive proactive handoff

process. Here, the preemptive process considers non-identical channels, likelihood of

PU reappearance, and channel bandwidth as handoff criteria. Therefore, this finding

indicates that the preemptive trigger offers a sizable performance gain for an attacker

if it exploits this vulnerability.

Absence of a Central Entity: The absence of a central entity in CRAHNs makes

it difficult to detect an attacker with selfish intentions. Current research on the
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detection and defense of deviant behaviors in distributed networks are based on long-

term monitoring of neighboring nodes and exchanging this monitored information

with each other to make a consensus [118, 119, 62]. However, this is difficult to

perform in a network without a dedicated CCC, especially when the attacker and

defenders are not on the same channel. Here, the attacker avoids detection by covertly

utilizing channels that are not currently used by any SUs.

These three aspects of distributed CRNs can motivate an SU to deviate from es-

tablished protocol and to act selfishly.

6.2.2 Attacker Model

The attacker acts benignly during the hopping process to avoid suspicion. It starts

to exploit the vulnerability only after performing a successful rendezvous (Figure

1.4(b)). According to the common-hopping process, an SU pair stays on the ren-

dezvous channel and initiates a transmission, and other SUs hop to the next channel

in the sequence. Prior defense techniques against selfish SUs work only if they would

stay on the same channel. Therefore, the integral part of remaining undetected is to

handoff to a channel that is not used by any other SU (e.g., the subsequent channel

in the hopping sequence).

However, after a successful rendezvous, the attacker pair tries to search for a better

channel to switch. The strategy of the proposed attack model to exploit the vulnera-

bility in proactive spectrum handoff processes is given in Algorithm 3. In Algorithm

1, we include the additional strategy of the selfish attacker only, and the general

processes are not included.
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Algorithm 3 Attacker’s Activity
Input: hopping sequence S, time t, PU reappearance threshold τ

Result: decision

rendezvous_status := unsuccessful;

while rendezvous_status = unsuccessful do
i := (t− 1)%length(S) + 1; . follow channel-hopping

currnet_channel := S(i);

if current_channel=free & contention_status=win then
rendezvous_status := successful;

rch := current_channel;

else
t := t+ 1; . proceed to the next time slot

end

end

C := Compute Target Channel(S,t,rch);

decision := Handoff Preemption (C,rch,τ);

Preceded by a successful rendezvous, the attacker pair tries to find a suitable target

channel. Algorithm 4 shows the pseudocode of the channel selection process. It first

sorts all the channels according to the prediction of PU reappearance and service rate

in each channel, then starts checking them one by one to select the most suitable

target channel.
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Algorithm 4 Computing the Target Channel for Selfish SU
Input: hopping sequence S, time t, rendezvous channel rch

Result: target channel C

Function : Compute Target Channel(S,t,rch)

CH := sort channels according to the likelihood of PU reappearance and service rate;

j := 1;

while CH(j) = busy‖CH(j) = next channel in sequence do
j := j + 1;

end

return C := CH(j);

The criteria for selecting the most suitable channel is described in the steps below.

Less Likely to Be Affected by Reappeared PUs: By utilizing the in-hand re-

sources of proactive handoff, the attacker pair can calculate the probability of PU

reappearance in each channel. Then, they will try to reserve the channel that offers

the least likelihood to be affected by a returning PU.

Faster Service Rate: An attacker’s motive is to finish packet transmission sooner

and to maximize its own channel utilization. After performing a successful rendezvous

on channel i, the target channel j needs to maintain the inequality condition,

εij + Lj < Li, (6.5)

where Li and Lj represent the packet length of the attacker in channel i and j,

respectively, and εij represents the delay of performing a handoff from channel i to

channel j.

Not Being Used by Other SUs: The attacker pair will avoid channels that are

already being used by other SUs. However, such avoidance can ensure the availability

of a corresponding channel only in the current time slot and there is a probability

that another SU might handoff to the same channel in the next time slot; hence, they

need to contend to reserve the channel. Moreover, the attacker will not handoff to
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the channel that comes next in the hopping sequence. In Figure 1.4(b), the selfish

SU would not handoff to CH2 from CH1 to avoid suspicion.

Finally, the handover decision of the attacker pair depends on the target channel. If

they are currently operating on the best available channel, then they do not perform

a handoff. Algorithm 5 shows the pseudocode of the handoff preemption decision

process. The attacker pair will handoff to a channel only if the channel satisfies

the earlier mentioned criteria. Otherwise, the attacker pair will stay on the current

channel.
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Algorithm 5 Handoff Preemption Decision
Input: target channel C, rendezvous channel rch, threshold τ

Result: decision

Function : Handoff Preemption (C,rch,τ)

if C=rch then
handoff preemption := 0; . no preemption

else
handoff preemption := 1; . activate preemption

end

if handoff preemption=0 then

if prediction(rch) ≤ τ then
decision := begin transmission;

else
decision := stay idle andwait for a better channel;

end

else

if prediction(C) ≤ τ then
decision := handoff toC;

else
decision := stay idle andwait for a better channel;

end

end

return decision

In our model, we consider that the attacker pair initiates a preemptive handoff only

after rendezvous, and they refrain from searching for better channels for each succes-

sive frames. Otherwise, attackers are likely to lose their opportunity to transmit, to

become trapped in a loop of handoffs, and to increase handoff delay significantly.

6.3 Performance Analysis

In this section, we evaluate the impact of the proposed covert spectrum handoff

by conducting extensive simulations. The parameters used to obtain the simulation
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results are listed in Table I. The arrival of PU and SU packets follow the Poisson

process, and the length of PU and SU packets are exponentially distributed and fixed,

respectively. As the attacker pair initiates its malicious act only after the rendezvous

and does not continue it for each subsequent transmitting frame, we consider a packet

as 1 frame length long to analyze the performance. In the simulation, we consider

one pair of attacker if not stated otherwise.

Table 6.1: Simulation Parameters: Covert Spectrum Handoff

Simulation area 500x500
Simulation time 50 sec
The number of PUs 10
The number of SUs 50
Number of channels 10
Channel data rate 1-10 Mbps
The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
PU ON time 0.5 (uniform for all PUs)
SU traffic rate 0.1-0.7 (uniform for all SUs)
Length of a time slot 1.5ms
Frame length 1-10 time slot long

Increased Average Throughput: One important metric to evaluate the perfor-

mance of this attack is throughput. In Section III, we discussed the difference in

throughput between the conventional and the preemptive handoff initiation. How-

ever, earlier we considered that all SUs follow the preemptive handoff initiation pro-

cess. In this section, we consider that only the attacker pair follows the preemptive

handoff initiation process, and benign SUs follow the conventional process.

Fig. 6.5 illustrates a throughput gain (19 − 30%) by the attacker pair compared

to benign SUs. As the attacker pair preempts handoff process and reserves a channel

with faster service rate earlier, it experiences significantly higher throughput. More-

over, benign SUs experience less room to utilize faster channels as the attacker pair

utilizes faster channels more often. Therefore, we can observe an increase in attackers

performance from Fig. 6.4(b) to Fig. 6.5.

Higher Channel Utilization of Faster Channels: As discussed, the attacker pair
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Figure 6.5: Normalized average throughput of benign SUs vs. the attacker pair.
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always tries to reserve the best available channel by initiating the handoff process

earlier (i.e., preemption). In Fig. 6.6(a), we can observe the channel utilization

by the the attacker pair in no-attack and attack scenarios. In the benign scenario,

they use all the channels uniformly, and this uniformity represents the fairness in

the system. However, after they become selfish (i.e., preemption in handoff), the

utilization of faster channels by the attacker pair increases. In addition, we observe

an increase in the utilization, as we increase the traffic rate of selfish SUs.

In Fig. 6.6(b), the impact of increasing the number of attackers on the channel

utilization is shown. As the number of attackers increases, they occupy the faster

channels more, and it increases the cumulative channel utilization of attackers. If we

consider 5 pairs of attackers among 50 SUs, then it shows the utilization of channel-10,

approximately 33% (i.e., 20% nodes are utilizing 33% radio resource).

Higher Collision Avoidance: In the process of increasing the throughput, the

attackers are inherently avoiding collisions with reappeared PUs. As the covert spec-

trum handoff (or preemptive handoff) happens only to a faster channel that offers

less probability of PU reappearance, attackers increase their throughput and ensure

less collisions from PUs. In Fig. 6.7, the collision rate with PUs are shown and we

can observe a reduction in the collision rate between PUs and SUs.

Handoff Delay: We observe a reduction in the average handoff delay of the at-

tacker pair compared to benign SUs. Though it might seem that attackers perform

more handoffs, their propensity toward faster channels with lower PU reappearance

probability ensures that they experience fewer handoffs later in the transmission time.

In Fig. 6.8(a), the normalized average delay of the benign and selfish SUs are demon-

strated. Here, channel index represents the channels that handoff initiated from, not

the target channel. Therefore, it indicates that more handoff takes place in slower

channels, which is expected.

Moreover, in Fig. 6.8(b), as the number of attackers increases, they occupy faster
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Figure 6.8: Normalized average handoff delay of benign SUs and selfish SUs.

channels more. Therefore, benign SUs are deprived from utilizing faster channels,

and sometimes they are forced to stop transmissions due to the unavailability of a

channel. Moreover, as handoff SUs are given higher priority to access a channel,

benign SUs lose contention to attackers; hence, benign SUs waste more time in the

handoff process to transmit each packet.



CHAPTER 7: PROPOSED HIDDEN TERMINAL EMULATION ATTACK

This chapter proposes a novel attack in spectrum coexistence between heteroge-

neous networks.

7.1 What is Hidden Terminal

In a wireless network, hidden terminals refer to the wireless devices that are out of

each other’s radio range but have a common exposed neighbor that is inside both of

their radio range. Fig. 7.1 provides an illustration of a hidden terminal scenario where

A and C are both hidden from each other, and they create interference at the exposed

node B when they try to transmit at the same time in the same channel. It is a natural

phenomenon, and the dense deployment of IoT devices will drastically increase the

occurrence of such scenarios. To manage this problem, request-to-send/clear-to-send

(RTS/CTS) handshaking is employed in IEEE 802.11.

A B C

Figure 7.1: Hidden terminal interference between wireless nodes.
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7.2 Proposed Random-HTE Attack: The Reconnaissance and Emulation Phase

In this phase, the goal of an HTE attacker is to successfully emulate the radiation

characteristics of a benign hidden-terminal, which indicates that the attacker must

spoof a location from where it can behave like a hidden terminal to the intended

transmitters, however, still can listen to their transmissions. However, realizing this

phase is not possible with conventional omni-directional antennas because the path-

loss vector is similar at each direction. Therefore, we propose to use smart antenna’s

beamforming capability to mimic the signal characteristics of the spoofed location. To

achieve this, the attacker first obtains the geometric locations of the IoT devices by

wardriving [120] and other off-the-shelf techniques, such as the angle-of-arrival or the

distance to the transmitter. Then, it deduces an optimal antenna configuration that

enables the emulation of the intended hidden-terminal location.

In reality, IoT devices are unlikely to have sophisticated tools to analyze RSS

readings received from IoT devices of external networks. Therefore, the attacker is

not required to mimic the exact RSS signature, rather it focuses on maintaining an

average signal strength equal to or above Rth (i.e., the receiver sensitivity threshold)

at the exposed node(s) and an average signal strength lower than Sth (i.e., the carrier

sensing threshold) at the hidden nodes. Now, the question is, whether such antenna

configuration is feasible that can facilitate the hidden-terminal emulation from the

attacker’s current physical location. In the following, the quest for this answer begins.

In reality, IoT nodes are unlikely to have sophisticated tools to analyze RSS readings

that are received from different IoT nodes of different networks, which makes low-

powered, computationally limited IoT nodes more vulnerable to the HTE attack. In

this case, the attacker is not required to mimic the RSS signature, rather it focuses

on maintaining a signal level above the receiver sensitivity threshold. The remainder

of this research considers that the HTE attacker is equipped with a circular smart

antenna array that consists of Iele isotropic elements put on a circle with a radius r,
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Figure 7.2: Feasibility test of the HTE attack.

and the ith antenna element is placed with a phase angle φi. The beamforming-pattern

for the circular smart antenna is characterized by,

G(θ) =

Iele∑
i=1

wi exp

[
j

2π

λ
r cos(θ − φi)

]
, (7.1)

where λ is the signal wavelength, θ represents the direction to the respective IoT

node, and w = [w1, w2, · · · , wIele ] is the complex weight vector that can be tuned to

change the radiation pattern. A circular array antenna can produce flexible asymmet-

ric radiation patterns and can deflect a beam through 2π. Nonetheless, our analysis is

not limited to circular antenna array; a different antenna model with a different geo-

metric form can be incorporated by replacing its corresponding beamforming pattern

equation in (7.1).

However, designing such an attack model requires realistic constraints to consider,

such as smart antenna design and relative distances to each IoT node. Therefore, it

is probable that not all locations are feasible to perpetrate this attack.
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7.2.1 Problem Overview

To understand how we analyze the condition that an attacker at a certain location

can launch the HTE attack, let us look at the illustration in Fig. 7.2 where an

attacker is trying to reveal its transmission to nodes E1, E2, and E3 and to hide its

transmission from nodes H1, H2, and H3. To reduce the radio coverage at unwanted

directions and to steer the radio transmission to intended directions, we use log-

distance path-loss model to infer the mean RSSs at given distances. According to the

log-distance path-loss model, the mean path-loss at distance d is,

PLd(dB) = 10α log10 d+ PLd0(dB), (7.2)

where PLd0 is the path-loss at the reference distance d0 = 1m and α is the path-loss

exponent. Moreover, the path-loss at distance d can be expressed as,

PLd(dB) = P0(dBm)− PRd
(dBm), (7.3)

where P0 is the required transmission power to keep a good connection with the

receiver if omni-directional antenna is used and PRd
is the received signal strength at

distance d. Therefore, combining (7.2) and (7.3), we have,

PRd
=

P0

PL0dα
. (7.4)

For a smart antenna with a steering capacity, the transmission power in direction

θ is represented by P0|G(θ)|2 instead of P0. So we rewrite (7.4) as,

PRd
(θ) =

P0|G(θ)|2

PL0dα
, (7.5)

where PRd
(θ) represents the received signal strength at distance d along the direction

θ. Now, for e exposed nodes and h hidden nodes,

PRdi
(θEi) =

P0|G(θEi)|2

PL0(dEi)
α
, (7.6)
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PRdj
(θHj ) =

P0|G(θHj )|2

PL0(dHj )
α
, (7.7)

where i = 1, 2, · · · , e and j = 1, 2, · · · , h.

From (7.1), the beamforming directional gain in the direction of the ith node can

be written as,

|G(θEi)|2 = |wci|2, (7.8)

where

ci =



exp[j
2π

λ
r cos(θEi − φ1)]

exp[j
2π

λ
r cos(θEi − φ2)]

.

.

.

exp[j
2π

λ
r cos(θEi − φIele)]


. (7.9)

Letting,

hi =
[ P0

PL0(dEi)
α

]1
2 ci, i = 1, 2, · · · , e

gj =
[ P0

PL0(dHj )
α

]1
2 cj , j = 1, 2, · · · , h,

(7.10)

the feasibility of the HTE attack can be modeled as,

find any w

subject to |wHhi|2 ≥ Rth, i = 1, · · · , e

|wHgj |2 < Sth, j = 1, · · · , h

(7.11)

where Rth and Sth represent the receiver sensitivity and carrier sensing threshold,

respectively. It can be seen that the above problem belongs to the class of quadrat-

ically constrained quadratic programming (QCQP) problems. The constraints are

concave homogeneous quadratic constraints. The problem contains a special case of
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the problem considered in [121]; hence, it is NP-hard.

7.2.2 Solving HTE Problem

As the feasibility problem of HTE defined in (7.11) is an NP-hard problem, it is not

possible to analyze the properties of HTE by directly solving it. Therefore, we first

formulate the derivation of a relaxed problem, which will incorporate a solution that

provides an upper bound for the feasibility answers to the HTE problem; that is, if the

relaxed problem is infeasible, (7.11) is definitely infeasible. Afterward, we provide a

randomization technique, which in most of the cases finds a feasible solution through a

local search around the point generated by the relaxed problem. This randomization

algorithm essentially serves with a lower bound on the HTE problem (7.11); that is,

if the randomization algorithm can find a feasible solution, (7.11) is certainly feasible.

Relaxation: To deduce the relaxed problem, first, we include an objective function

to the problem (7.11); therefore, when multiple solutions exist, the one with the

minimum objective value is returned. We reformulate the HTE feasibility problem to

minimizing the transmission power problem,

minimizew ||w||22

subject to |wHhi|2 ≥ Rth, i = 1, · · · ,m

|wHgj|2 < Sth, j = 1, · · · , n

(7.12)

where || · ||2 stands for the Euclidean norm of a vector.

Now using the fact that hHwwHh = trace(hHwwHh) where trace(·) represents the

trace of a matrix, (7.11) can recast as,
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minimizeX trace(X)

subject to trace(XQ) ≥ Rth, i = 1, · · · ,m

trace(XQ) < Sth, j = 1, · · · , n

X � 0,

rank(X) = 1,

(7.13)

where X = wwH , Q = hhH , rank(·) denotes the rank of a matrix, and X � 0 means

that X is a Hermitian positive semidefinite matrix.

Note that since (7.11) is an NP-hard problem, so is (7.13). Therefore, in the

following, a heuristic solution is utilized to analyze a relaxed version of (7.13). The

relaxation is based on the observation that (7.13) is almost similar to a semidefinite

programming problem except for the last constraint; that is, rank(X) = 1, which is

non-convex. As a semidefinite problem can be solved in polynomial time, we relax

(7.13) by discarding the rank constraint and deduce an SDR problem,

minimizeX trace(X)

subject to trace(XQ) ≥ Rth, i = 1, · · · ,m

trace(XQ) < Sth, j = 1, · · · , n

X � 0

(7.14)

The optimal solution Xopt of the SDR problem provides a lower bound for the ob-

jective value of (7.12). If the problem does not yield in a solution, (7.11) is infeasible.

This is because the feasible region of the actual problem (7.11) is actually a subset

of the feasible region of the relaxed problem (7.14). However, the solution Xopt of

the SDR problem does not necessarily solve the NP-hard problem. Nonetheless, the

rank relaxation of a general QCQP problem results in the Lagrange bi-dual problem,

which is the closest convex problem to the original NP-hard problem. Therefore,

though Xopt may not be the optimal solution for the HTE problem, it conforms to
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other constraints in (7.13), which means that it could be close to the feasible region

of the original HTE problem. Based on this observation, we employ a local-search

based randomization algorithm to search for a feasible solution to (7.11).

Randomization Algorithm: If the solution Xopt is rank-one, w can be deduced

by finding the principal eigenvector corresponding to only the non-zero eigenvalue.

However, as the SDR relaxes the rank-one constraint, Xopt may not be rank-one in

reality. Similar to [121], once the SDR problem is solved, a randomized technique can

be used to obtain an approximate solution to the original HTE feasibility problem.

Numerous randomization techniques have been proposed so far, and we modify the

one proposed in [121]. The general idea of this method is to create a set of candidate

vectors {w̃can,i}Li=1 (L = number of randomizations) using Xopt and choose the op-

timal solution from these candidate vectors. In our application, first, to deduce the

candidate vectors, the eigencomposition of Xopt is expressed in the form,

Xopt = AVAH , (7.15)

and the candidate beamforming vector in the form,

w̃can,i = AV1/2λl, (7.16)

is selected as a candidate vector, where A is a unitary matrix of eigenvectors, V is a

diagonal matrix of eigenvalues, and λl is the random vector that consists of uniformly

distributed independent random variables on the unit circle in the complex plane.

It helps us to ensure that w̃can,iw̃
H
can,i = AV1/2λlAH(V1/2)

H
λl
H = trace(VλlλlH) =

trace(V) = trace(Xopt). If any constraint in (7.12) is not met by w̃can,i, a new ran-

domization round begins. If multiple feasible candidates are found, the one with the

smallest norm is selected.

Summary: We formulate a numerical method to test the feasibility of the emulation

phase. (7.11) belongs to the class of QCQP problems. It contains a special case of
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the problem considered in [121]; hence, it is NP-hard, and it is not possible to analyze

the properties by directly solving it. Therefore, we first formulate the derivation of a

relaxed problem which will provide an upper bound for the feasibility answers to the

emulation problem; that is, if the relaxed problem is infeasible, (7.11) is definitely

infeasible. Afterward, we use a randomization technique which finds a feasible solution

through a local search around the point generated by the relaxed problem. This

randomization algorithm essentially serves as a lower bound on the HTE problem

(7.11); that is, if the randomization algorithm can find a feasible solution, (7.11) is

certainly feasible.

7.2.3 Performance Analysis of the Reconnaissance and Emulation Phase

In this section, we simulate the SDR problem and the randomization algorithm

described in Section 7.2 to analyze the feasibility of HTE attack under different sce-

narios.

7.2.3.1 Simulation Setup

In the simulation, this research considers a possible beamforming aiming error

(γθ = 1o) when the attacker directs its beam towards a certain direction. Hence,

G(θ) is replaced by G(θ ± γθ). First, we analyze the feasibility of HTE attacks with

the fixed location of the victim or exposed nodes and under randomly generated

locations of the hidden nodes. We consider a 20 × 20 2-D space. The path-loss

exponent α = 3.5, victim’s true location is (0, 0) (with two victims (0, 5) and (0,−5)),

the required transmit power when omnidirectional antenna is used P0 = 10 dBm,

receiving antenna sensitivity Rth = −70 dBm, carrier sensing threshold Sth = −100

dBm, and the path loss at do = 1m is Pd = 30 dB.
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IoT Node Model: We consider that the victim IoT node has n neighbors in

its radio range, and they use omni-directional antennas for communications. Every

benign IoT node is equipped with one radio for spectrum sensing and one radio for

control information exchange and data transmission.

Channel Access: In shared spectrum operations, each transmission attempt of an

IoT node must be preceded by a sensing interval. As shown in Fig. 7.3, IoT nodes

employ longer fine-sensing to sense the current channel before initiating a transmis-

sion, and they continue to sense the channel—using shorter fast-sensing—during the

transmission to negate the collision with co-located IoT nodes. An IoT node is al-

lowed to access a channel when it finds the channel available. After accessing the

channel, two IoT nodes exchange RTS/CTS messages to reserve the channel.

Though the scope of this research is to illustrate the PHY-layer constraints and

configurations of the attacker (i.e., the reconnaissance and emulation phase), we incor-

porate MAC-layer information to help readers grasp a more comprehensive overview

of the HTE attack.

7.2.3.2 Success Rate of HTE

We use the Monte Carlo simulation to estimate the success rate of HTE attacks—in

terms of successfully impersonating as a hidden terminal—with different combinations

of the number of antenna elements (Nele) and the number of hidden nodes (n). In

each simulation, the location of each node is randomly generated, except the victim

node (i.e., (0, 0)).

For each combination, totally 1000 trial runs are launched, and the values in Table

7.1 represent the average of these trials. The table contains the number of times

where the SDR problem finds a solution (ASDR), the number of times where the

randomization algorithm finds a feasible solution (Alocal), and how tightly these two

results are bounded (Alocal/ASDR). As the SDR solution provides an upper bound

and the local-search provides a lower bound on the original HTE feasibility problem,
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the number of times that the original problem has feasible solutions lie between ASDR

and Alocal.
Table 7.1: Successful Cases: Emulation of Hidden Terminal

n Nele = 4 Nele = 6 Nele = 8 Nele = 10

4
84/80
95%

141/137
97%

154/149
97%

310/303
98%

5
71/65
92%

112/107
96%

121/113
93%

289/271
94%

6
62/53
85%

98/92
94%

117/102
87%

258/230
89%

8 2/0
14/12
86%

73/60
82%

217/186
86%

10 0/0
5/3
60%

29/22
77%

91/67
74%

Table 7.1 demonstrates two important trends. First, both ASDR and Alocal increases

as we increase the number of antenna elements (Nele). It happens because a smart

array antenna with more antenna elements offers more flexibility in tuning the radi-

ation pattern; hence, it makes an attacker more capable to perpetrate HTE attacks.

In addition, mathematically, more antenna elements means that w is more tunable

and hence larger degree of freedom in solving the problem. Second, both ASDR and

Alocal decrease as n increases. Intuitively, we can understand that adding more hidden

nodes represents adding more constraints to the original problem; hence, reducing the

feasible space. We can also observe the feasibility of HTE attack with a compara-

tively lower number of antenna elements than the number of hidden nodes. In the

simulation, we observe only two cases where HTE is not feasible, i.e., n = {8, 10} and

Nele = 4. It signifies the weakness of dense IoT deployment against the HTE attack.

7.2.3.3 Impact of Exposed and Hidden Node Density

In this part, we investigate how the feasibility of HTE is impacted by the number of

exposed or victim nodes (m) and hidden nodes (n), more importantly, how the relative

positions and angles of all nodes impact the feasibility problem. In the simulation,
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Figure 7.4: The geometric statistics of HTE feasibility problem.
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all nodes are fixed, and we vary the true location of the attacker along a square grid

in the simulated 2-D space to identify the location where the attacker can find a

feasible solution and can launch HTE attacks. A group of simulations are shown in

Fig. 7.4. The parameters used in generating the figure are Nele = 10, m = 1, and

n = {4, 6, 8, 10}. In Fig. 7.4 and 7.5, the locations marked by green filled squares,

blue filled circles, red unfilled diamonds, and blue pluses represent the location of

the victim(s) (m), hidden nodes (n), SDR feasible points, and HTE feasible points,

respectively.

Hidden Node Density: In the figure, most of the locations where SDR is feasible,

are also marked by blue pluses; it means that solutions to the HTE feasibility problem

are tightly bounded by solutions to the SDR and the randomization algorithm. By

comparing the figures in Fig. 7.4, we can observe that as the number of hidden nodes

in the attacker’s transmission range increases, the number of locations where HTE is

feasible decreases. It indicates that the higher density of IoT nodes is less susceptible

to HTE attacks. Thereby it provides an important understanding of secure IoT

deployments.

Guard Against HTE Attacks: This analysis is insightful to trace the physical

location of HTE attackers. If we can determine the presence of the HTE attacker

(using a different method), this analysis has the potential to help us narrow down

possible hiding locations of the HTE attacker, as HTE can be launched from only

certain places. Furthermore, this analysis is also helpful for finding the weaknesses

in critical IoT infrastructure in the shared spectrum operation; therefore, it can help

design a robust IoT network.

Attack Efficiency vs Risk of Exposure: Intuitively, an attacker must utilize its

resources to maximize its attack objective, i.e., attacking more IoT nodes. However,

it must also take into account the risk of detection. From Fig. 7.4 and Fig. 7.5,

we can observe that, as we increase the number of victim nodes or exposed nodes



117

-10 -5 0 5 10
-10

-5

0

5

10

(a) m = 2 and n = 4.

-10 -5 0 5 10
-10

-5

0

5

10

(b) m = 2 and n = 6.

-10 -5 0 5 10
-10

-5

0

5

10

(c) m = 2 and n = 8.

-10 -5 0 5 10
-10

-5

0

5

10

SDR HTE Victim Hidden

(d) m = 2 and n = 10.

Figure 7.5: Attack efficiency vs risk of detection.
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Figure 7.6: Activity of HTE attacker.

from m = 1 to m = 2, the feasible space to launch the attack decreases. Thereby,

it also increases the risk of exposing the attacker’s location. Hence, considering this

observation, an attacker must trade-off between the reward of attack and the cost of

exposure.

7.3 Proposed Random-HTE Attack: The Interference Phase

An omniscient HTE attacker with unrestricted resources can find the operating

channel of the victim instantly and can degrade the SINR well enough to make it in-

feasible for communication. However, in reality, an attacker has realistic constraints

and restricted knowledge of the victim. In this section, we propose a random sweep-

ing strategy for an HTE attacker, where the attacker randomly fluctuates between

acting benignly (by generating legitimate communication packets between nodes in

its own network) and maliciously. The attacker has limited sensing capability, and

the channel-hopping sequence of the victim is unknown to it, but it can hop through

different channels at each time slot to detect the operating channel of the victim. The

interference phase pans out in two parts: 1) plausible deniability and 2) detect and

interfere.

7.3.1 Plausible Deniability

Unlike a conventional jammer, an HTE attacker acts as a legitimate network device

that performs regular communications with devices in its own network (e.g., A2 in Fig.

7.7); this, along with the impersonation of a hidden terminal, provides the attacker
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Figure 7.7: Illustration of hidden terminal emulation attack.

an alibi to reactively interfere with its hidden counterparts. This behavior effectively

helps the attacker to avoid state-of-the-art jamming detection systems [87]. Thereby,

an attacker randomly generates (i.e., OFF to ON state) and terminates packets (i.e.,

ON to OFF state) at each time slot with a probability β and α, respectively. Here, β

and α are attack parameters and they impact the dynamics of the defense problem.

In Section 7.3.3, we will illustrate the influence of these parameters on the optimal

policy.

7.3.2 Detect and Interfere

In its OFF period, the attacker sweeps through different channels to detect the

operating channel of the victim. Assume that the attacker has finished its current

packet at ith time slot (Fig. 7.6), thereby it will start the channel sweeping process

from (i+ 1)th time slot. As the attacker plans to execute a DoS attack, the attacker

tries to cause successive transmission failures and to force the victim to drop the

current packet by reaching the maximum transmission failures.

Attacker’s Constraints: We assume that the attacker can only sense n channels

(n < N) at each slot and sniffs for RTS/CTS messages; it detects the transmission

of a particular victim by listening to RTS/CTS messages. After the detection, the

attacker interferes with the reception of the victim. However, the attacker has limited
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Figure 7.8: Randomization after each successful attack.

interference power that it can use in each channel; if the attacker fails to corrupt the

packet (with a probability 1− ν) in the first attempt, it will divert all its interference

power to the target channel in the next time slot to corrupt it. The attacker will be

successful in the second attempt because of the heightened interference power.

Attacker’s Strategy: Here, the attacker randomly generates a channel-hopping

sequence after each successful attack (i.e., successful transmission failure) and hops

through the sequence periodically until it detects the operating channel of the victim.

This hopping strategy fosters the attacker to put an upper bound on how long (i.e.,

the channel residence time) the victim can continuously utilize a channel when the

attacker is in the OFF state. Given N channels, if the victim stays on the same

channel, it will be detected within dN/ne slots. Therefore, the maximum residence

time in a channel is K = dN/ne − 1.

Fig. 7.8(a) shows an illustration of the attack sequence with N = 10 and n = 2,

where the attacker initiates malicious actions from slot-3. Here, the victim operates

in channel-2; at slot-6, the attacker detects it and perpetrates the attack. After a

packet drop, the defender hops to channel-9, and, at the same time, the attacker re-

randomizes its attack sequence discarding the earlier attack channel (i.e., channel-2).

This strategy helps the attacker to detect the victim faster (due to omission of earlier

attack channels) after every attack. In Fig. 7.8(b), we can see that the attacker

attacking again at the subsequent slot (i.e., slot-7).
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Figure 7.9: An unsuccessful attack preceded by a successful one.

If the attacker cannot detect the victim in the subsequent slot, it will re-randomize

its attack sequence, without altering the channels it visited in the current slot; oth-

erwise, the defender can learn the deterministic part of the random attack sequence

of the attacker, i.e., omission of earlier attacked channels. Fig. 7.9(a) illustrates an

alternative scenario if the victim had chosen channel-8 instead of channel-9 in Fig.

7.8(b), and Fig. 7.9(b) illustrates the re-randomized sequence.

Summary: The proposed attack strategy introduces uncertainties in actions of

the attacker; hence, we name it random-HTE attack. Though the attack behavior

and the attack sequence are random, random-HTE is strategically designed to detect

the victim fast. The attack model unfolds in four steps: 1) alternate between ON

and OFF states, 2) hop through the attack sequence until the victim is detected, 3)

randomize the sequence after each attack, and 4) re-randomize when an unsuccessful

attack attempt preceded by a successful one.

7.3.3 Performance Analysis of the Interference Phase

First, we present the attack performance by the normalized throughput and trans-

mission failure of the victim, then we study the proposed attack in different scenarios.

Random-HTE Attack: Fig. 7.10 demonstrates the performance of the random-

HTE strategy in comparison to the naive-random approach, where the attacker ran-

domly selects n channels at each slot (i.e., n/N), and it does not consider the channels
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(b) Victim’s transmission failure.

Figure 7.10: Performance of random-HTE attack.

that have been visited in the past. In addition, we compare it to the random-HTE

without re-randomization approach, where the attacker does not re-randomize after

each unsuccessful attempt followed by a successful one, and the defender exploits this

deterministic trait. In Fig. 7.10(a), the victim experiences the least throughput in

random-HTE attack due to the iterative process and re-randomization of random-

HTE. Similarly, in Fig. 7.10(b), the victim of random-HTE attack endures most

transmission failures.

Effect of ρex: The attacker randomly fluctuates between benign and malicious be-

haviors to reduce the risk of detection. Therefore, it denies opportunities to attack

when it is behaving benignly. The benign behavior is represented by ρex, which de-

notes the amount of time the attacker acts benignly, i.e., the attacker (A1) exchanges

regular data packets with A2. From Fig. 7.11 we can observe that the attacker’s

performance degrades with the increase in its benign behavior, i.e., ρex.
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Figure 7.11: Performance of random-HTE attack with variable ρex.



CHAPTER 8: PROPOSED CONTEXT-AWARE DETECTION AGAINST

HIDDEN TERMINAL EMULATION ATTACK: THIRD EYE

This chapter introduces a context-aware Markov-based detection strategy against

the HTE attack.

8.1 Proposed Mathematical Modeling of Hidden Terminals

The reception behavior of the defending (or victim) IoT device is considered as an

ON-OFF process: (X(t); t ≥ 0) with state space {0, 1}, where 0 and 1 correspond to

the idle and the receiving state, respectively. Let A4 denote the IoT device that is

evaluating abnormal interference, hereafter referred as the node under test (NUT),

and the hidden terminal from the external network (i.e., HTE-1) is named as the

external node (EX).

8.1.1 Proposed Markov Model

In this subsection, we formulate different components necessary to capture the

benign behavior of a co-located hidden terminal of an external network, using a five-

state Markov process that captures the key aspects of the interaction among PUs,

NUT, and EX.

Markov States: We define X(t), E(t), and Y (t) as the state of the NUT, the EX,

and the PU in the current channel at time slot t, respectively. Note that E(t)) and

Y (t) are ON-OFF processes with state space {0, 1}, where 0 and 1 correspond to the

idle and the transmitting state, respectively. The interaction between X(t), E(t),

and Y (t) is captured in a five-state discrete-time Markov model, which is represented

in Table 8.1.
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Table 8.1: State Description of the Proposed Contextual Model

Z(t) Y (t) X(t) E(t)

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 X X

The Markov state Z(t) ≡ {Y (t), X(t), E(t)} denotes the state of the proposed

contextual model in NUT’s current operating channel at the end of a time slot. The

brief descriptions of the states are:

0: The current channel is free (i.e., PU is idle), the NUT is idle (i.e., not receiving),

and the EX is either idle or transmitting on another channel.

1: The current channel is free, the NUT is idle, and the EX is transmitting.

2: The current channel is free, the NUT is receiving, and the EX is either idle or

transmitting on another channel.

3: The current channel is free, the NUT is receiving, and the EX is transmitting.

This state represents the collision or interference.

4: The current channel is busy (i.e., PU is active).

The state transition diagram of the proposed Markov model is shown in Fig. 8.1,

which depicts the interaction between the PU, the NUT, and the EX. Transitions

between non-neighboring states are presented by dashed arrows.
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Figure 8.1: The proposed Markov model.

8.1.1.1 Transition Probabilities

We consider that each neighbor of the NUT has a packet arrival rate λ that is

destined for the NUT and λin = (k − 1)λ. We capture the effect of hidden terminals

by the parameter kh ∈ {0, · · · , k− 1}, which represents the number of internal nodes

that are hidden terminals to the EX. In addition, we define the parameter α ≡

kh/(k − 1) as the fraction of internal IoT devices that are hidden to the EX. We

assume that each IoT device broadcasts its identity periodically, and IoT devices sniff

the wireless medium to discover the presence of other IoT devices—from external

networks—within their radio range. In Fig. 7.7, though A1, A3, and A5 cannot

listen to the transmission of the node HTE-1 (or EX), A2, A4, and A6 can listen to

its transmission. Hence, each device maintains a list of external nodes that are hidden

to them (by exchanging information within internal IoT devices), and it helps them

to deduce the value of α. Table 8.2 summarizes the notations used in the proposed

Markov model.

To derive steady-state probabilities, we first deduce the single-step transition prob-

abilities. We use Pij to denote Pr(Z(t + 1) = j|Z(t) = i), i.e., the probability of

transitioning to state j at the next slot from the current state i. We capture the

feature of the random channel-hopping process in our model, where an IoT device

can start a new transmission only when there is a channel available. In the following
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Table 8.2: Notations Used in the Markov Model

Symbol Definition
Pλp Pr{a PU packet arrival in a slot}
Pµp Pr{a PU packet ending in a slot}
Pλin Pr{an internal packet arrival in a slot for the NUT}
Pµin Pr{an internal packet ending in a slot}
Pλex Pr{an external packet arrival in a slot}
Pµex Pr{an external packet ending in a slot}

discussion, we use the terms states in the proposed Markov model and the status of

the NUT in a time slot interchangeably.

The transition from state ’0’ depends on PU activities (Pλp and Πb), internal traffic

parameter (Pλin), external traffic parameter (Pλex), and collision probability (P b
col).

Now, transitions from the idle state (i.e., Z(t) = 0):

P00 =

M−2∑
b=0

Πb(1− Pλp)(1− Pλin)(1− P bcol)

+ ΠM−1(1− Pλp)(1− Pλin)(1− Pλex),

(8.1)

P01 =

M−2∑
b=0

Πb(1− Pλp)(1− Pλin)P bcol

+ ΠM−1(1− Pλp)(1− Pλin)Pλex ,

(8.2)

P02 =

M−2∑
b=0

Πb(1− Pλp)Pλin(1− P bcol)

+ ΠM−1(1− Pλp)Pλin(1− Pλex),

(8.3)

P03 =
M−2∑
b=0

Πb(1− Pλp)PλinP
b
col

+ ΠM−1(1− Pλp)PλinPλex ,

(8.4)

P04 =
M−1∑
b=0

ΠbPλp , (8.5)

where Πb = the steady-state probability that exactly b channels are busy by PUs,

P bcol = (1 − ρex)PλexP
b
match, ρex = the steady-state probability that the EX is active,
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and P bmatch = 1/(M − b).

Similarly, the transition from state ’1’ depends on PU activities (Pλp and Πb), internal

traffic parameter (Pλin), and external traffic parameter (Pµex). Now, transitions from

the EX active state (i.e., Z(t) = 1):

P10 =
M−2∑
b=0

Πb(1− Pλp)(1− Pλin)

+ ΠM−1(1− Pλp)(1− Pλin)Pµex ,

(8.6)

P11 = ΠM−1(1− Pλp)(1− Pµex), (8.7)

P12 =

M−2∑
b=0

Πb(1− Pλp)Pλin

+ ΠM−1(1− Pλp)PλinPµex ,

(8.8)

P14 =

M−1∑
b=0

ΠbPλp . (8.9)

Now, the transition from state ’2’ depends on PU activities (Pλp and Πb), internal

traffic parameter (Pµin), external traffic parameter (Pλex), and collision probability

(P b
col). However, the collision probability (P b

col) changes in this scenario because the

NUT is already transmitting and a collision can only happen from hidden terminals.

Therefore, the model must account the hidden terminal factor (α). Now, transitions

from the NUT’s receiving state (i.e., Z(t) = 2):

P20 =

M−2∑
b=0

Πb(1− Pλp)Pµin(1− P bcol)

+ ΠM−1(1− Pλp)Pµin(1− Pλex),

(8.10)

P21 =

M−2∑
b=0

Πb(1− Pλp)Pµin(1− ρex)PλexP
b
match

+ ΠM−1(1− Pλp)PµinPλex ,

(8.11)
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P22 =

M−2∑
b=0

Πb(1− Pλp)(1− Pµin)(1− P bcol)

+ ΠM−1(1− Pλp)(1− Pµin)(1− αPλex),

(8.12)

P23 =

M−2∑
b=0

Πb(1− Pλp)(1− Pµin)P bcol

+ ΠM−1(1− Pλp)(1− Pµin)αPλex ,

(8.13)

P24 =

M−1∑
b=0

ΠbPλp , (8.14)

where P bcol = (1− ρex)αPλexP
b
match and α = kh/(k − 1).

Now, the NUT immediately tries to avoid a collision after detecting it, and the

transition from state ’3’ depends on PU activities (Pλp and Πb), internal traffic pa-

rameter (Pλin), and external traffic parameter (Pµex). Hence, transitions from the

collision state (i.e., Z(t) = 3):

P30 =

M−2∑
b=0

Πb(1− Pλp)(1− Pλin)

+ ΠM−1(1− Pλp)Pµex ,

(8.15)

P31 = ΠM−1(1− Pλp)(1− Pµex), (8.16)

P32 =
M−2∑
b=0

Πb(1− Pλp)Pλin , (8.17)

P34 =
M−1∑
b=0

ΠbPλp . (8.18)

After experiencing the channel busy by a PU, the NUT hops to another available

channel. The transition from state ’4’ depends on PU activities (Pλp and Πb), internal

traffic parameter (Pλin), external traffic parameter (Pµex), and collision probability

(P b
col). Now, transitions from the channel busy state (i.e., Z(t) = 4):
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P40 =
M−2∑
b=0

Πb(1− Pλp)(1− Pλin)(1− P bcol)

+ ΠM−1(1− Pλp)(1− Pλin)Pfree + ΠMPµp ,

(8.19)

P41 =
M−1∑
b=0

Πb(1− Pλp)(1− Pλin)P bcol

+ ΠM−1(1− Pλp)ρex(1− Pµex),

(8.20)

P42 =
M−2∑
b=0

Πb(1− Pλp)Pλin(1− P bcol)

+ ΠM−1(1− Pλp)PλinPfree,

(8.21)

P43 =
M−2∑
b=0

Πb(1− Pλp)PλinP
b
col

+ ΠM−1(1− Pλp)Pλin(1− ρex)Pλex ,

(8.22)

P44 =
M−1∑
b=0

ΠbPλp + ΠM (1− Pµp), (8.23)

where Pfree = ρexPµex + (1− ρex)(1− Pλex) and P bcol = (1− ρex)PλexP
b
match.

Note that all transition probabilities except the ones from the channel busy state

(i.e., Z(t) = 4) are conditioned on the fact that at least one channel is available.

Therefore, we must transform (1)-(18) and Pij ← Pij/(1−ΠM), where i ∈ {0, 1, 2, 3}

and j ∈ {0, 1, 2, 3, 4}.

8.1.1.2 Calculation of Πb

Πb represents the probability that, at a given time, b PUs are active, where b ∈

{0, · · · ,M}. Here, we consider that PU traffic is homogeneous on each channel, the

buffer in each PU can store at most one packet at a time, and a packet is kept in the

buffer until it is transmitted successfully; hence, the PU traffic follows the M/M/1/1

queuing model.

Let us consider that A(t) = b represents the number of active PUs at time slot t.
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The process {A(t), t = 0, 1, · · · } forms a Markov chain whose state transition diagram

is given in Fig. 8.2. To characterize the behavior of PU channels, we define Fγf as

the event that f PUs will finish their transmission in the next slot, given that γ PUs

are transmitting. In addition, we define Sβs as the event that s PUs will start new

transmissions in the next slot, given that β PUs are idle. Hence, the probabilities of

events Fγf and Sβs are:

Fγf =

(
γ

f

)
P fµp(1− Pµp)γ−f , (8.24)

Sβs =

(
β

s

)
P sλp(1− Pλp)β−s. (8.25)

Therefore, the state transition probability from state {A(t) = i} to state {A(t+ 1) =

j} can be written as:

Pi,j =


∑i

f=0 Pr(Fif ) Pr(SM−i+fj−i+f ), for j ≥ i∑i
f=i−j Pr(Fif ) Pr(SM−i+fj−i+f ), for j < i.

(8.26)

. . .0 M-11 M

Figure 8.2: The transition diagram of the number of busy channels in a time slot.

Hence, we deduce the steady-state probability of the number of active PUs (or

busy channels) in a time slot, denoted as Π =
[
Π0,Π1, · · · ,ΠM

]
, where Πb denotes

the steady-state probability that b channels are busy in a time slot.

8.1.1.3 Calculation of ρex

As mentioned, ρex represents the steady-state probability of an external node in

the active state. To calculate this, we design a separate Markov model without
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the influence of internal nodes. Hence, the model characterizes only the interaction

between PUs and the EX. The state transition diagram is given in Fig. 8.3; the state

PU represents the ON (i.e., 1) or OFF (i.e., 0) state of a PU on the current channel,

and the ON and the OFF states represent the activity of EX on its current operating

channel. The corresponding steady-state probabilities are given:

Πoff =
(1− Pλp)

{
1− (1− Pλp)(1− Pµex)− uPλexPλp

}
(1− Pλp)(Pλex + Pµex) + Pλp

, (8.27)

Πon =

{
1− Pλp(1− u)

}
PλexΠoff

1− (1− Pλp)(1− Pµex)− uPλexPλp
, (8.28)

Πpu =
Pλp(Πoff + Πon)

1− Pλp
, (8.29)

where Πoff + Πon + Πpu = 1, u =
∑M−1

b=0 Πb, and ρex = Πon.

OFF ON

PU
Pλp u(1-Pλp)Pλex

(1-Pλp)Pμex

(1-Pλp)Pλex

(1
-P
λ
p
)(
1
-P
λ
e
x)

(1
-P
λ
p
)(
1
-P
μ
e
x)

(1-u)+uPλp

Figure 8.3: The transition diagram of activities of the EX.

8.1.2 Proposed Parameter Estimation of Priority and External Users

In the earlier subsection, we formulated the proposed contextual model using traffic

characteristics of all entities in the network. Though the NUT knows its own traffic

parameters, traffic parameters of other entities are unknown to it. In this subsection,

we propose a Hidden Markov Model (HMM) based parameter estimation technique

to extract the required parameters (i.e., λex, µex, λp, and µp) from the interaction (i.e.,

statistics from the wide-band sensing) with other entities. In the following, we first

present the structure of the HMM, then we give a brief introduction of the forward-



133

backward procedure in the Baum-Welch (BW) algorithm[113]. Finally, by analyzing

the algorithm, we estimate the required parameters.

Hidden Markov Model: A hidden Markov process is a Markov process consisting

of two different processes, where X is the hidden process that is never observable and

Z is the observable process that is perceivable to the agent (i.e., the NUT). Xt and Zt

denote the hidden state and observation state at time t, respectively. Here, the hidden

process follows a Markov process with a finite number of states and the observable

process is a probabilistic function that generates symbols based on the hidden states.

The set of symbols comes from a defined alphabet A. In our case, A = {0, 1} (i.e., 0

= OFF and 1 = ON).

Xt-1 Xt Xt+1

Zt-1 Zt+1Zt

Hidden states

Observable states

Figure 8.4: The hidden Markov model.

The general concept of an HMM is illustrated in Fig. 8.4. A system of discrete time

changes randomly from one state to another, within a finite state space S. In our case,

the finite space S = {0, 1}. The evolution of the hidden sequence X1, X2, · · · , XT is

unknown, which represents PU or EX states. However, it can be expressed by a

sequence of observed symbols from the alphabet A (i.e., Zt ∈ A), which represents

the sensing decision on PU or EX activity. However, the sensing result is mixed with

measurement errors and differs from the actual states of the PU or EX. To model the

HMM, let us define the parameters first:

• Number of hidden states, s = 2.

• Number of symbols, a = 2.
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• Initial state distribution,
∏f = {πf

i }, where i = 0, · · · , s− 1 and f ={PU, EX}.

• One-step state transition probabilities, Pf = pfij, where i, j = 0, · · · , s− 1.

• Symbol emission probability, Bf = bfj(k), where j = 0, · · · , s − 1 and k =

0, · · · , a− 1.

The one-step state transition probability is:

Pr(Xf
t = j|Xf

t−1 = i,Xt−2 = it−2, · · · , Xf
2 = i2, X

f
1 = i1)

= Prf (Xf
t = j|Xf

t−1 = i)

= pfij ,

(8.30)

where, i1, i2, · · · , it−2, it−1, i, j ∈ {0, 1} and t > 1. Therefore, the joint distribution of

X f
1 , X

f
2 , · · · , X f

t is expressed as:

Pr(Xf
1 = i1, X

f
2 = i2, ..., X

f
t = it) = πfi1P

f
i1i2 · · · P

f
it−1it . (8.31)

The emission probability, which represents the probability of observing Zf
t = k when

X f
t = j, i.e., Bf = bfj(k), j = 0, · · · , s− 1 and k = 0, · · · , a− 1. Therefore,

bfj(k) = Pr(Zf
t = k|Xf

t = j). (8.32)

Now, as the sensing process is mixed with measurement errors, the sensing mech-

anism may experience misdetection and false-alarms. The probability of inferring a

PU (or EX) idle while it is actually active is called the probability of misdetection.

Similarly, the probability of inferring a PU (or EX) active while it is actually idle is

called the probability of false-alarm. These are mathematically expressed as:
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Pr(Zf
t = 0|Xf

t = 0) = bf0(0),

Pr(Zf
t = 1|Xf

t = 0) = bf0(1),

Pr(Zf
t = 0|Xf

t = 1) = bf1(0),

Pr(Zf
t = 1|Xf

t = 1) = bf1(1).

(8.33)

The BW algorithm proposes an iterative approach to estimate the HMM param-

eters ηf =
[∏f ,Pf ,Bf

]
, such that the Pr(Zf |ηf ) is maximized. For simplicity, we

discard the notation f from the following calculations. Now, to estimate the param-

eters, we define the following:

• Forward probability, αt(i) = Pr(Z1, Z2, · · · , Zt, Xt = Si|η), for i ∈ {0, 1}

• Backward probability, βt(i) = Pr(Zt+1, Zt+2, · · · , ZT−1, ZT , Xt = Si|η), for i ∈

{0, 1}

• State transition estimation, γt(i, j) = Pr(Xt = i, Xt+1 = j|Z, η), for i, j ∈

{0, 1}. It represents the probability of being in state Si at instant t and in state

Sj at instant t+ 1, given the observation sequence Z and the model parameters

η = [π, P,B]

• Estimate of the state at each observation, δt(i) = Pr(Xt = i|Z, η), for i ∈

{0, 1}. It represents the probability of being in state Si at instant t, given the

observation sequence Z and the model parameters η =
[∏

,P,B
]

The estimation variables for the HMM parameters are expressed in terms of γt(i, j)

and δt(i):

pij =

∑t=T−1
t=1 γt(i, j)∑t=T−1
t=1 δt(i)

, (8.34)

bj(k) =

∑t=T
t=1,Zt=k

δt(j)∑t=T
t=1 δt(j)

, (8.35)
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πi = δ1(i). (8.36)

In (8.34), the numerator represents the expected number of transitions from state

i to state j over the interval T − 1, while the denominator represents the expected

number of times a transition happens from state i. The numerator in (8.35) represents

the expected number of transitions from state j at which symbol k is observed. In

(8.34)-(8.36), γt(i, j) and δt(i) are calculated as follows:

γt(i, j) =
αt(i)pijbj(Zt+1)βt+1(j)

Pr(Z|η)
. (8.37)

δt(i) =
∑

all Sj∈{0,1}

γt(i, j). (8.38)

The forward and backward probabilities in the above equations are calculated re-

cursively as follows:

Initialization:

α1(i) = πibi(1), 0 ≤ i ≤ s− 1. (8.39)

βt(i) = 1, 0 ≤ i ≤ s− 1. (8.40)

Recursion:

αt+1(j) =

[
s−1∑
i=0

αt(i)pij

]
bj(Zt+1). (8.41)

βt(i) =

s−1∑
j=0

pijbj(Zt+1)βt+1(j). (8.42)

The recursion process terminates when Pr(Z|η) maximizes, which is the probability

of observing the sequence Z given the parameter η =
[∏

,P,B
]
:
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Pr(Z|η) =
s−1∑
i=0

T∏
t=1

αt(i). (8.43)

Extraction of Traffic Parameters: Here, we extract traffic parameters of the

PU and EX from the estimated HMM parameters ηf =
[∏f ,Pf ,Bf

]
, such that the

Pr(Zf |ηf ) is maximized. To do this, let us recall the parameters, θf = [λf , µf ], where

λ means the traffic arrival rate, µ means the packet service rate, and f ={PU, EX}.

From the network model, the length of the ON and OFF state are exponentially

distributed. In [114], a useful method to compute the state transition rate matrix

from the state transition probability matrix is provided. We denote the transition

rate matrix as Qf and

Qf =

 −λf λf

µf −µf

 . (8.44)

As described in η, P is the one-step state transition probability matrix. We know

that P = exp(Q∆) and Q = log(P)/∆, where ∆ is the sensing period. However,

the computational procedure is cumbersome and log(·) has a limitation when P has

a non-positive eigenvalue. Therefore, we adopt the mapping approach introduced

in [114], which provides an easier computational approach and provides a sufficient

degree of accuracy. If the two-dimensional transition rate matrix is the form shown

in (8.44), then the transition probability matrix is:

P =

 p00 p01

p10 p11

 =

 exp−λ∆ 1− exp−λ∆

1− exp−µ∆ exp−µ∆

 . (8.45)

In (8.45), we can calculate Q from P inversely. In other words, the relation between

P and Q unfolds the relationship between η and θ.
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8.1.3 Summary

In this section, we explained the mathematical structure to formulate the build-

ing blocks of the proposed context-aware detection strategy. The calculations in this

section helps to identify the accepted behavior of a benign hidden terminal of an

external network. Though many parameters to deduce the context-aware model are

unknown, we proposed an HMM-based estimation strategy to estimate the required

parameters. Again, we utilized only the in-hand sensing statistics to compute the es-

timation without any hardware and networking overhead. The required probabilities

can be expressed in terms of the estimated parameters (i.e., λ̂f and µ̂f ) as follows:

Pλf = 1− exp−λ̂f∗t, (8.46)

Pµf = 1− exp−µ̂f∗t . (8.47)

Here, t represents the length of a time slot. Next, we will discuss the strengths and

weaknesses of different attack strategies against the proposed context-aware detection

model.

8.2 Proposed Reactive Interference Models

As discussed earlier in this research, a strong detection strategy requires a strong

attack model. In this section, we discuss different attack models and their efficacy

against the proposed context-aware detection strategy.

8.2.1 Attack Models

Though an aggressive attack strategy that constantly interferes with the reception

of the victim results in better attack performance, it deviates significantly from benign

behaviors and to an reactive attacker. A context-aware detection strategy, which

regularly monitors external nodes, can identify this malicious interference; hence, an

attacker must haggle between the attack objective and the risk of exposure. In the

following, we discuss three different attack strategies.
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Figure 8.5: Markov chain between a naive attacker and the NUT.

8.2.1.1 Naive Reactive Attacker

The interaction between the NUT and the EX is modeled as the Markov chain

illustrated in Fig. 8.5, when the EX is a naive reactive attacker. The behavioral

difference between a benign hidden terminal and a naive reactive attacker is that

a benign hidden terminal transmits irrespective of the transmission from its hidden

counterparts, whereas a naive reactive attacker transmits only when it senses trans-

missions from its hidden counterparts on the wireless channel (i.e., P23=1). Thereby,

the transition rates of the corresponding discrete time Markov chain (DTMC) from

states 0, 1, and 4 to state 1 is zero. Now, if we observe Fig. 8.1 and Fig. 8.5, the state

transition structures are distinct. It means that the Neyman-Pearson test of differ-

entiating these two Markov chains is degenerate, i.e., it becomes a singular detection

problem [122], meaning that the test results in an arbitrarily small error [123].

8.2.1.2 Naive Random Attacker

The only difference between a naive random attacker and a naive reactive attacker

is that the naive random attacker does not interfere with each reception of the victim,

i.e., P23 6= 1. Instead, it randomly chooses its attack window to interfere. Nonethe-

less, both of these attack models follow the similar state transition structures (i.e.,

P01=P11=P41=0) and yield a singular detection problem. Therefore, though this at-

tack strategy introduces randomness in its behavior, it still remains ineffective against
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the context-aware detection model.

8.2.1.3 Intelligent HTE Attacker

To avoid the singular detection problem, we propose a more advanced random

reactive attacker, called the intelligent HTE attacker, that better disguises its mali-

cious behavior by mimicking characteristics of benign hidden terminals. In this attack

model, the HTE attacker generates regular data packets and communicates with its

neighbor (i.e., the passive attacker, HTE-2) regardless of the state of the PU and the

victim, meaning that P01=P11=P41 6= 0. This attack model increses the detection

difficulty since the incorporation of random behaviors makes the HTE attacker similar

to a benign hidden terminal. Therefore, an attacker acts benignly by performing reg-

ular communications with its neighbor, and—if in its idle period (when the attacker

is not transmitting to its neighbor) it finds the victim is receiving—it interferes with

the reception of the victim (i.e., interference rate=1). We can make the strategy more

random by changing the interference rate; nonetheless, without loss of generality, in

this research, we assume interference rate=1. Hence, unlike the benign model, the

transition probability from state 2 is:

P20 =

M−2∑
b=0

Πb(1− Pλp)Pµinρex, (8.48)

P21 =

M−2∑
b=0

Πb(1− Pλp)Pµin(1− ρex)

+ ΠM−1(1− Pλp)Pµin ,

(8.49)

P22 =

M−2∑
b=0

Πb(1− Pλp)(1− Pµin)(1− P bcol)

+ ΠM−1(1− Pλp)(1− Pµin)(1− α),

(8.50)

P23 =

M−2∑
b=0

Πb(1− Pλp)(1− Pµin)P bcol

+ ΠM−1(1− Pλp)(1− Pµin)α,

(8.51)
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P24 =

M−1∑
b=0

ΠbPλp , (8.52)

where P bcol = (1− ρex)α and α = kh/(k − 1).

8.2.2 Summary

Three different attack traits, including naive, naive-random, and intelligent, are

discussed. Though a naive behavior yields a better attack performance, it increases

the risk of exposure because of its distinct state transition structures. In contrast, the

proposed intelligent HTE attack model that closely imitates a benign hidden terminal

offers a different attack detection challenge. In Section 8.4, we will illustrate the

detection performance of our proposed context-aware detection strategy against these

attack models. Next, we formulate the detection challenge as a binary hypothesis test

to differentiate an observed behavior between benign and malicious.

8.3 Proposed Detection of the Hidden Terminal Emulation Attack

The proposed detection approach is comprised of two steps: i) designing a contex-

tual model to characterize the behavior of benign hidden terminals and ii) formulating

the detection problem as a binary hypothesis testing problem to identify whether a

sequence of observed behaviors is likely to be produced from the established benign

model or attack model. In Section 8.1, we comprehensively illustrated the first step,

and now, we shed light on the second one.
8.3.1 Binary Hypothesis Test

The NUT monitors activities on all channels and collects transmission patterns of

all wireless nodes in its surroundings over a time window of d = w/t equal-length

slots, where w is the observation time length and t is the length of a time slot. To

test whether or not the NUT is experiencing HTE attacks, we collect the sequence

of observations of the NUT’s status zd ≡ {Z(t)}d+1
t=1 , called a sample path of the

discrete time Markov chain that is generated by the influence of either a benign

hidden terminal or by an HTE attacker. Now, let us denote transition probability
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matrices that characterizes a benign hidden terminal as P0, that characterizes an

HTE attacker as PA, and that is generated from the observations as P. Thus, a

binary hypothesis testing problem can be formed:

H0 : P = P0 HA : P = PA. (8.53)

Though most binary hypothesis testing problems require supervised learning, the

proposed detection model does not require supervised training as we have formu-

lated closed-form expressions to characterize benign and malicious behaviors. It is

reasonable to assume that the initial-state probability distribution is similar to the

steady-state probabilities of the states. However, as indicated in [82], the initial dis-

tribution has an effect on the detection threshold, which decreases to 0 in d as 1/d.

Hence, it is insignificant when d is large.

Let us define the number of transitions from state i to state j of zd as Nij =∑d
t=1 1{zt=i,zt+1=j}, where zt denotes the t-th element of the sequence zd and i, j ∈

{0, 1, 2, 3, 4}. Now, the counts Ni ≡
∑4

j=0Ni,j =
∑d

t=1 1{zt=i}. The log-likelihood of

zd under hypothesis Hb is (where b ∈ {0, A}):

log Pr(zd|Hb) = log Πb
z1

d∏
t=1

Pb
zt,zt+1

= log Πb
z1 +

4∑
i=0

4∑
j=0

Nij logPb
i,j .

(8.54)

Therefore, the log-likelihood ratio between HA and H0 is:

log
Pr(zd|HA)

Pr(zd|H0)
= log

ΠA
z1

Π0
z1

+

4∑
i=0

4∑
j=0

Nij log
PA
i,j

P0
i,j

. (8.55)

The log-likelihood ratio test with threshold τ :

log
ΠA
z1

Π0
z1

+
4∑
i=0

4∑
j=0

Nij log
PA
i,j

P0
i,j

HA

R
H0

τ. (8.56)



143

We can further fine-tune the threshold by dynamically adjusting it to compensate for

the observation window size d:

4∑
i=0

4∑
j=0

Nij log
PA
i,j

P0
i,j

HA

R
H0

τ(d)− log
ΠA
z1

Π0
z1

,

4∑
i=0

4∑
j=0

Nij

d
log

PA
i,j

P0
i,j

HA

R
H0

τ ′ ≡
τ(d)− log

ΠA
z1

Π0
z1

d
.

(8.57)

Here, τ(d) varies with the observation window size d to balance the trade-off

between the false alarm rate and mis-detection rate. The educated approach is

τ(d) = τ0d for which τ ′ ≈ τ0 as d increases. The test statistics of the log-likelihood

ratio test is:

Z ≡
4∑
i=0

4∑
j=0

Nij

d
log

PA
i,j

P0
i,j

, (8.58)

where d,P0
i,j, and PA

i,j are constants, and to derive the distribution of Z under Hb,

we must know the distribution of Nij. According to [124], Nij are asymptotically

Gaussian distributed; hence, as a linear combination of Nij, the test statistic Z is also

asymptotically Gaussian.

8.3.2 Summary

The detection model captures the interference pattern an IoT device experiences

under the influence of a hidden terminal and flags the HTE attack when observa-

tions deviate towards the established attack model. The proposed Markov model

accumulates all required information into five states, and the binary hypothesis test

verifies how well the observed sequence fits with the established benign or malicious

behavior model. Our proposed detection technique requires only the carrier sensing

information, which is readily available for channel access purposes.
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8.4 Performance Analysis of the Third Eye

In this section, we present numerical and simulation results to evaluate the per-

formance of our proposed research. Our research employs a five-state Markov model

that is a tractable model, and it can capture the key characteristics of the network

transmission patterns. Here, we consider that all CR-enabled IoT devices physically

reside within the proximity of each other and share the same ACL at a given time.

The simulation parameters are listed in Table 8.3.

Table 8.3: Simulation Parameters: Third-eye

Parameter Value
Simulation time 100 seconds
SU sensing range 50
The number of channels (or PUs) 10
PU traffic rate (in pkts/sec) λp = 50; µp = 100
Bandwidth 2 Mbps
The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
Fast and fine sensing duration 1 ms (802.22) and 2 ms
IoT traffic rate (in pkts/sec) λ = 20, 30, 40, 50, 60;

µ = 100
SU packet size 1024 bytes
Hidden terminal factor, α 5/7

During the simulation, we assume that the NUT is able to capture the transmission

pattern of all adjacent IoT devices, and it knows the number of IoT devices in its

vicinity (via wireless sniffing). The objective of the NUT (which is receiving) is to

determine if the observed interference maintains the pattern set by the mathemat-

ical model. During the HMM training phase, IoT devices may estimate the traffic

parameters in a long enough training time, so that the estimated values are close to

the true values. In contrast, the attacker tries to maintain a stable data packet rate

to avoid suspicious behaviors and attacks in its inactive intervals.

8.4.1 Hidden Terminal Emulation Attack

This subsection shows the impact of the proposed HTE attack on the network

performance of the NUT.
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(c) Impact of µin on channel utilization.
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(d) Impact of µin on collisions.
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(e) Impact of λex on throughput.
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(f) Impact of λex on collisions.
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(g) Impact of µex on channel utilization.
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(h) Impact of µex on collisions.

Figure 8.6: The impact of different traffic parameters (λin, µin, λex, and µex) on
NUT’s throughput, channel utilization, and collision.

8.4.1.1 Impact of λin on the HTE Attack

A higher rate of incoming traffic (i.e., λin = (k − 1)λ) to the NUT increases the

opportunity for the attacker to interfere with the NUT’s reception. As the attacker

tries to interfere each time it is inactive and the victim is receiving, in Fig. 8.6(a), we

can observe that the effect of the attack increases with the increase of the incoming

traffic rate. However, the effect is not clearly perceivable from this figure because the

mean time (or the steady-state probability) in collision state (i.e., state ’3’ in Table

8.1) is insignificant as compared to the normalized throughput.

Fig. 8.6(b) helps to grasp a better picture where the collision rate experienced by

the NUT increases rapidly with the increase of the internal traffic rate. As we consider

that the NUT can perceive collisions and discard packets instantly, it minimizes the

total amount of time the NUT stays at the collision state. Nonetheless, these incidents

engender in packet drops, stifle the throughput, and increase the collision rate.
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8.4.1.2 Impact of µin on the HTE Attack

A higher service rate represents faster throughput and shorter packet length for

a given data. Therefore, we use a different performance indicator than normalized

throughput to illustrate the impact of µin, i.e., normalized channel utilization. Chan-

nel utilization represents the portion of time the NUT utilized the network successfully

for communication purposes. Intuitively, we can understand that as we increase the

service rate of each packet, the channel utilization decreases. Fig. 8.6(c) provides

the corresponding impact of internal packet service rate on the channel utilization.

Likewise, the collision rate decreases because attackers have less time to perpetrate

the attack. Fig. 8.6(d) shows the change in collision rate with the increase of packet

service rate.

8.4.1.3 Impact of λex on the HTE Attack

Note that the attacker can only interfere if it is inactive during the transmission

of its hidden counterparts; otherwise, it must continue and finish its own data packet

transmission. As the traffic rate of the EX rises, the time it stays in the active state

also increases (i.e., ρex). Hence, the room for interference decreases. Therefore, to

augment the impact of the attack, the attacker must decrease its packet arrival rate.

In Fig. 8.6(e)-(f), we can observe that under no attack (i.e., when the EX is benign),

the EX’s traffic has an insignificant effect on the throughput and the collision of the

NUT. However, under attack, it illustrates sensitivity to the change in λex. Besides

attack performance, λex also influence the detection accuracy. Later, we will discuss

the effect of λex on the detection performance.

8.4.1.4 Impact of µex on the HTE Attack

Similar to µin, we consider normalized channel utilization as a performance metric

instead of normalized throughput. As we increase the service rate of the attacker

(i.e., µex), it shortens the amount of time the attacker remains busy with benign
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(a) Impact on throughput.
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(b) Impact on collisions.

Figure 8.7: Different attack performance.

actions and provides the attacker with more opportunities to perpetrate the attack.

As a result, the normalized channel utilization of the NUT decreases (Fig. 8.6(g)).

Similarly, the normalized collision rate increases with the increase in µex (Fig. 8.6(h)).

8.4.1.5 Different Attack Models

As discussed in Section 8.2, different attack models have their own advantages

and disadvantages. In Fig. 8.7(a)-(b), the normalized throughput and collision rate

of the NUT are shown for the naive, naive-random, and proposed HTE attack. It is

evident that the naive and naive-random attack results in superior attack performance

than the proposed HTE attack. Nonetheless, they suffer from singular detection

problem and have a negligible immunity against the proposed context-aware detection

technique, even with a small observation time.
8.4.2 PU and EX Parameter Estimation

The performance of the proposed Third Eye depends on how accurately HMM-

based estimators can estimate the required traffic parameters of PUs and EX in

victim’s sensing range. In addition, the length of a training sample is instrumental to

the learning performance. In Fig. 8.8, we can observe the trend of estimation error
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for PU packet arrival rate (λp) and service rate (µp) (showed for 5 PUs). Estimation

errors reduce to below 4% when the estimator is trained to 50 seconds.

In this research, we train the HMM estimator with 25 seconds of data and observe

the impact of the attack detection for the next 75 seconds without changing the PU or

EX activity rate. Nevertheless, in reality, the PU and EX activity rate is not going to

be constant all the time and the HMM estimator must re-estimate to track changes.

8.4.3 Attack Detection

The proposed mathematical model can effectively distinguish the activity of an

attacker through carrier sensing and detect the interference created by HTE attackers.

This subsection analyzes the performance of the detection model.

8.4.3.1 ROC Curve

To illustrate the effectiveness of our proposed detection strategy, we compare it with

the jamming detection approach that considers the RSS and BER as the primary

metrics of jamming detection [42]; here, we name it as the naive method. In this

approach, the intuition is that when there is a bit error whereas the RSS value is

high, this indicates jamming attack. In addition, we compare the performance to

an earlier work [87], which detects anomalies in hidden nodes’ behavior. We point

out that, to the best of our knowledge, there is not yet a signature-based detection

method for the proposed HTE attack to compare with. Our effort is to compare the

ability of attack activity detection, with the naive method [42], the anomaly-based

method [87], and the proposed Third Eye.

Fig. 8.9(a) illustrates the receiver operating characteristic (ROC) curve that repre-

sents the efficiency of detection by plotting the true positive rate (i.e., the probability

of detection) versus the false positive rate (i.e., the probability of false alarm). Com-

paring these four ROC curves, we find that the proposed context-aware detection

strategy results in a large area under the curve (AUC). Thus, it achieves significantly
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Figure 8.8: HMM estimation performance.

more reliable detection results. In the case of false negatives, the attacker conducts a

very low level of interference, which the detector identifies as statistically insignificant

to match with the behavior of an attacker.

Though the anomaly-based detection technique provides almost similar results—if

not better—it fails to uniquely identify an HTE attacker because it does not consider

exclusive characteristics of an HTE attacker in its detection approach; it only performs

well when the goal is to detect anomalous behavior. Conversely, the naive method

has a much smaller AUC and suffers extensively from poor false positive rate. As

the naive approach does not consider that an interference source could be benign,

it detects the interference from co-located benign neighboring nodes as malicious

interference; hence, it exhibits poor performance.

8.4.3.2 Impact of Observation Window Size on the Detection

The observation window size plays an instrumental role in the effectiveness of

HTE attack detection. Fig. 8.9(b) represents the ROC curves with respect to

d = 200, 1000, 5000, and 10000. We can observe that the detection performance

declines as d decreases; with d = 200, it performs very close to the random detection

approach. A larger observation window size provides the NUT with better abilities to
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see through the randomness in an attacker’s behavior and to differentiate an attacker

from a benign one. Therefore, a larger observation window size is required to extract

better performance from the detection strategy. As different window sizes offer dif-

ferent performance, a proper choice of d depends upon the cost and time-criticalness

of the application.

8.4.3.3 Impact of λex and µex on the Detection

The traffic parameters of the attacker impact the performance of the proposed

detection model. In Fig. 8.9(c), we represent the true positive rate vs. λex (with a

fixed false positive rate, 0.05) to illustrate the relationship between them. We can

observe from the figure that the true positive rate decreases with the increase in λex.

Though a lower λex facilitates heightened attack performance (Figs 8.6(c)-(d)), it also

increases the probability of detection. Moreover, µex also impacts the true positive

rate. Hence, these findings create a practical design challenge for an attacker who

wants to maximize the attack efficiency and remain undetected at the same time.

8.4.3.4 Impact of M and α on the Detection

The proposed signature-based detection model weighs in different network param-

eters to model a benign hidden terminal and a malicious one. Among them, the

number of channels (M) and the hidden terminal factor (α) play pivotal roles. In-

tuitively, as the number of channels increases, the probability of collision decreases

because co-existing IoT nodes have more channels to utilize. However, the number of

channels does not make significant difference in collision rate after it passes a certain

threshold, such as M = 5 in Fig. 8.9(d) where the normalized collision rate dif-

ference represents the difference between state transition probabilities P23 of benign

and malicious hidden terminals. Here P23 represents the probability of experiencing

interference from hidden terminals while the NUT is receiving.

However, as α increases, the difference increases significantly. Though higher values
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Figure 8.9: The HTE attack detection.
of α offers more performance increase for the attacker, it also exposes the attacker

to higher risks of detection. Thereby an attacker remains constrained in its attack

performance to avoid detection.

8.4.4 Qualitative Comparison with the Literature

The proposed signature-based detection strategy depends on learning the context

of each transmission from its neighboring nodes; therefore, it requires different set

of information than traditional strategies and, in some cases, may incur additional

computational and memory resources. In this subsection, we shed light on these from

a qualitative perspective.



153

8.4.4.1 Detection Parameters

Unlike general network performance indicators—such as packet delivery ratio, sig-

nal strength, bad packet ratio, throughput, delay—the proposed context-based detec-

tion strategy relies on the traffic characteristics of neighboring nodes from external

networks (i.e., λex and µex) and the network topology (i.e., α).

Traditional detection strategies try to determine whether the NUT is under attack,

and they do not consider the source of interference (or jamming). In contrast, our

proposed strategy tries to determine whether the NUT is under attack based on

the source of interference. Besides identifying the attack, this approach provides

the ability to identify the attacker; this allows us to build a context-based detection

model.

8.4.4.2 Computational and Memory Cost

The computation tasks are divided into two stages: i) offline phase: the NUT

captures behaviors of a benign and a malicious node using the proposed Markov

model and, afterward, the Markov model produces closed-form expressions to feed

into the detector module. Note that, learning finishes in this phase and no further

learning is required in the online phase and ii) online phase: the NUT keeps track

of PUs’ traffic parameters (λp and µp), EX’s traffic parameters (λex and µex), and

network topology (α), which are available from the sensing process. The computation

steps are constant for each external node and increase linearly with the number of

neighboring external nodes. Therefore, the computational cost, though higher than

some traditional techniques, is tractable to support dense networks. However, unlike

most traditional jamming detection strategies, this strategy incurs memory cost to

maintain the tracking of the required parameters.



CHAPTER 9: PROPOSED DEFENSE AGAINST HIDE AND SEEK ATTACK:

JUMP AND WOBBLE

This chapter proposes a safeguard approach to counteract the random-HTE attack

by modeling the interaction between the attacker and the defender as an MDP-based

game with three available actions: stay, handoff , and route. Besides stay and

handoff , it utilizes the routing diversity in dense IoT networks to increase the het-

erogeneity of defense. In route, instead of transmitting the packet directly to the

intended device, an IoT device utilizes intermediate devices to forward the packet to

that receiver. The route action is based on the constraint that it is highly unlikely for

an HTE attacker to remain hidden to the victim and impersonate an exposed termi-

nal to all neighboring nodes of the victim (because of the proximity of IoT devices in

dense scenarios) at the same time. In the following subsections, a single agent (i.e.,

a defender/victim) MDP-based defense method to avoid the random-HTE attack is

modeled.

9.1 Formation of the MDP

As discussed, the attacker has a limited sensing capability, and the channel-hopping

sequence of the defender is unknown to the attacker. Therefore, the attacker itera-

tively sweeps through the available channels—following a random attack sequence—to

detect the operating channel of the victim. Meanwhile, the defender takes an action

at the end of each time slot, based on the perceived current state. The defender

receives an immediate reward U(t) in the tth time slot,
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U(t) = R1.1(Direct successful transmission)

− F.1(Transmission failure)− C.1(Handoff cost)

− P.1(Penalty for policy violation)

−Q.1(Packet drop) +R2.1(Routing reward),

(9.1)

where 1(·) is an indicator function of the event in brackets.

In MDP, the employed policy impacts the current state and also the future states;

therefore, the expected discounted reward of this game with infinite horizon is,

U =

∞∑
t=1

δt−1U(t), (9.2)

where δ represents the discount factor (0 < δ ≤ 1). It signifies the importance of the

future reward values.

9.1.1 Markov Model

This subsection enumerates the proposed MDP model and defines state space,

action space, state transition probabilities, and rewards. As discussed, the attacker

randomly jumps between ON and OFF states and performs sweeping through the

channels only when it is in the OFF state; hence, this particular part of the attacker’s

strategy is Markovian. In addition, the probability of detecting the operating channel

of the victim (in the OFF period) depends on the channels that have been visited

earlier in the sequence. These two strategies together help to conform the essential

requirement of the Markov process, i.e., the future state depends only on the current

state.

9.1.2 Markov States

The state represents the status of the defender at the end of a time slot, which is de-

duced from the embedded SINR and RSS information of ACK and NACK messages.

a state is defined based on the state variables [ACKt, IFt,CSt], and their descriptions

are,
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Figure 9.1: The proposed Markov model.

ACKt: denotes whether an ACK message (ACKt = S) or a NACK is received

(ACKt = U) in time slot t.

IFt: denotes whether the transmitted packet experienced interference (IFt = Y) or

not (IFt = N) in time slot t.

CSt: denotes the consecutive successful or failed transmission attempts, where CSt

∈ {Z > 0}.

The states represent a combination of these state variables. Here, the proposed

MDP (Fig. 9.1) has four kinds of states:

S, Y, i : The defender hand-offs to a new channel and had i consecutive successful

transmissions, despite experiencing co-channel interference in the current slot.

S,N, i : The defender hand-offs to a new channel and had i consecutive successful

transmissions without any interference.

U, Y, j : The defender experienced j consecutive transmission failures, the current one

due to co-channel interference.

U,N, j : The defender experienced j consecutive transmission failures, the current

one due to channel fading.

For notational convenience, the commas in-between is discarded and the whole state
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space is represented as X , {SY1, · · · , SN1, · · · , UY1, · · · , UN1, · · · }. As a design

consideration, 1 ≤ i ≤ L is assumed, where after L consecutive successful transmis-

sions the defender will take action handoff , and 1 ≤ j ≤ M , where M denotes the

maximum transmission attempts after which the packet will drop.

9.1.3 Actions

Here, three actions are available at each state,

stay (s): The defender remains on the current channel in the next time slot and

initiates a transmission.

handoff (h): The defender randomly hands-off to a new channel in the next time

slot and initiates a transmission.

route (r): The defender randomly hands-off to a new channel and forwards the packet

to an intermediate node.

The whole action space is represented as A , {s, h, r}.

9.1.4 Transition Probabilities

As the attacker sweeps through its attack channel sequence, at state SNi, only

max(N − i · n, 0) channels have yet to be visited by the attacker, and another n

channels will be visited in the subsequent slot. Therefore, the probability of detecting

the victim’s transmission—with action stay—without experiencing channel fading is,

Pr
det|s
i,i+1 =


n

N − i · n
, if i < K

1, otherwise,
(9.3)

where it is considered that the attacker is in its OFF period and actively sweeping

through the channels. However, the attacker may also reside in the ON period, and the

victim may not experience malicious interference in the current cycle (i.e., successful

transmissions for L slots). The transition probabilities from state SNi with action

stay is,
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Pr(SNi+1|SNi, s) = (1− Pfad)(1− Pr
att|s|SN
i,i+1 ),

Pr(SYi+1|SNi, s) = (1− Pfad)Pr
att|s|SN
i,i+1 (1− ν),

Pr(UN1|SNi, s) = Pfad,

Pr(UY1|SNi, s) = (1− Pfad)Pr
att|s|SN
i,i+1 ν,

(9.4)

where Pr
att|s|SN
i,i+1 represents the probability of experiencing malicious interference from

the attacker in the (i+1)th slot, where 1 ≤ i ≤ L−1. Pr
att|s|SN
i,i+1 depends on two factors:

1) the current traffic state (i.e., ON or OFF) of the attacker and 2) its duration in

the OFF state (i.e., the number of channels it has swept through). It is represented as,

Pr
att|s|SN
i,i+1 = 

(1− ρex)(1− β)iPr
det|s
i,i+1+

ρexα
∑i

j=1(1− β)j−1(1− α)i−jPr
det|s
j−1,j , if i < K

(1− ρex)(1− β)KPr
det|s
K,K+1+

ρexα
∑K

j=1(1− β)j−1(1− α)i−jPr
det|s
j−1,j , otherwise,

(9.5)

where ρex =
β

α+ β
.

If the first attempt of the attacker is not successful and the defender stays on the

current channel, the attacker employs maximum interference power in the next slot.

Therefore,

Pr(UY1|SYi, s) = 1− Pfad,

Pr(UN1|SYi, s) = Pfad.

(9.6)

Now, the state transition probabilities from channel fading states (i.e., UNj) with

action stay is,
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Pr(SN1|UNj , s) = (1− Pfad)(1− Pr
att|s|UN
UN,1 ),

Pr(SY1|UNj , s) = (1− Pfad)Pr
att|s|SN
UN,1 (1− ν),

Pr(UNj+1|UNj , s) = Pfad,

Pr(UYj+1|UNj , s) = (1− Pfad)Pr
att|s|SN
UN,1 ν,

(9.7)

where 1 ≤ j ≤ M − 1. Once the defender experiences a packet drop because of

channel fading, the sweeping approach of the attacker resets (from defender’s point

of view). Therefore, the detection probability depends on the state of the attacker

and Pr
att|s|UN
UN,1 = (1− ρex)

n

N
.

Now, similar to SYi states, the transition probabilities from state UYj with action

stay is,

Pr(UYj+1|UYj , s) = 1− Pfad,

Pr(UNj+1|UYj , s) = Pfad,

(9.8)

To avoid detection, a defender exploits the diversity in multi-channel network by

taking the action handoff . When a defender takes action handoff from states SNi,

it randomly selects a channel from the remaining N − 1 channels (discarding the

current one). Therefore, the probability that the new channel is detected by the

attacker depends on three factors:

• The current traffic state of the attacker: whether the attacker is in the ON or

OFF state, and how far in the past the last state transition has occurred.

• The new channel was visited earlier in the attack sequence: whether the new

channel is one of the i · n channels visited by the attacker.

• The new channel was not visited earlier in the attack sequence: whether the

new channel is among one of the N − i · n− 1 channels, which were not visited

by the attacker, and it will not be visited in the next slot.

Hence, assuming the attacker is in the OFF state, the probability of detection from
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state SNi with action handoff is,

Pr
det|h|SN
i,1 =

N − i · n− 1

N − 1
Pr

det|s
i,i+1. (9.9)

Now, after the current traffic state of the attacker is incorporated, the probability of

experiencing malicious interference from state SNi with action handoff is,

Pr
att|h|SN
i,1 =

(1− ρex)(1− β)iPr
det|h|SN
i,1 + ρexα(1− α)i−1 n

N

+ρexα
∑i

j=2(1− β)j−1(1− α)i−jPr
det|h|SN
j−1,1 , if i < K

(1− ρex)(1− β)KPr
det|h|SN
i,1 + ρexα(1− α)K−1 n

N

+ρexα
∑K

j=2(1− β)j−1(1− α)i−jPr
det|h|SN
j−1,1 , otherwise.

(9.10)

The transition probabilities from state SNi with handoff is,

Pr(SN1|SNi, h) = (1− Pfad)(1− Pr
att|h|SN
i,1 ),

Pr(SY1|SNi, h) = (1− Pfad)Pr
att|h|SN
i,1 (1− ν),

Pr(UN1|SNi, h) = Pfad,

Pr(UY1|SNi, h) = (1− Pfad)Pr
att|h|SN
i,1 ν,

(9.11)

The transition probabilities from state SYi with handoff is,

Pr(SN1|SYi, h) = (1− Pfad)(1− Pr
att|h|SY
i,1 ),

Pr(SY1|SYi, h) = (1− Pfad)Pr
att|h|SY
i,1 (1− β1),

Pr(UN1|SYi, h) = Pfad,

Pr(UY1|SYi, h) = (1− Pfad)Pr
att|h|SY
i,1 β1,

(9.12)

where like Pr
att|h|SN
i,1 , Pr

att|h|SY
i,1 depends on the same three factors; however, unlike the

former, the attacker is in the OFF period and has detected the operating channel

in the current slot. Note that the attacker does not randomize its attack sequence

unless the attack is successful; hence, the attacker keeps hopping through the same

attack sequence. So the probability of experiencing malicious interference from state
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SAi with action hop is,

Pr
att|h|SY
i,1 =



(1− β)Pr
det|h|SA
i,1 , if i = 1

(1− ρex)(1− β)iPr
det|h|SY
i,1 +

ρexα
∑i

j=1(1− β)j(1− α)i−j−1Pr
det|h|SY
j,1 , if 1 < i ≤ K

(1− ρex)(1− β)K+1 n

N
+

ρexα
∑K

j=1(1− β)j(1− α)K−jPr
det|h|SY
j,1 , otherwise,

(9.13)

where unlike Pr
det|h|SN
i,1 , Pr

det|h|SY
i,1 has N − i · n unvisited channels. Therefore, the

probability of detection from state SYi with action handoff is,

Pr
det|h|SY
i,1 =

N − i · n
N − 1

Pr
det|s
i,i+1. (9.14)

When the defender takes action handoff from state UNj and selects a channel

randomly from N − 1 channels, the probability of experiencing malicious interference

is,

Pratt|h|UN =
n(n− 1)(N − 1)

N(N − 1)
, (9.15)

where it depends on the scenario whether the attacker visits the same channel in the

next slot that the defender visited earlier and experienced channel fading. Now, the

transition probabilities from state UNj with action handoff is,

Pr(SN1|UNj , h) = (1− Pfad)(1− Pratt|h|UN ),

Pr(SY1|UNj , h) = (1− Pfad)Pratt|h|UN (1− ν),

Pr(UNj+1|UNj , h) = Pfad,

Pr(UYj+1|UNj , h) = (1− Pfad)Pratt|h|UNν.

(9.16)
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While performing handoff in state UYj, the defender randomly selects a channel

from N − j channels. Since the attacker also discards j channels from its attack

sequence, the probability of detection increases with j. The transition probabilities

from state UYj with action handoff is,

Pr(SN1|UYj , h) = (1− Pfad)(1− Pr
att|h|UY
j ),

Pr(SY1|UYj , h) = (1− Pfad)Pr
att|h|UY
j (1− ν),

Pr(UNj+1|UYj , h) = Pfad,

Pr(UYj+1|UYj , h) = (1− Pfad)Pr
att|h|UY
j ν,

(9.17)

where Pr
att|h|UY
j =

n

N − j
.

Similar to action handoff , action route hands-off to another channel, but routes

the packet through a forwarding node. Therefore, in the case of action route, Pratt|r|X =

Pratt|h|X ·Pdet
route, where Pdet

route depends on the topology of the network and the attacker’s

configuration. Hence, Pratt|r|X is replaced in (9.11), (9.12), (9.16), and (9.17) to de-

duce the transition probabilities from corresponding states with action route.

9.1.5 Rewards

Let U(S, a, S ′) represent the reward when an IoT node takes action a ∈ A in state

S ∈ X and enters into state S ′ ∈ X. Now using (9.1), rewards are defined as:
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U(S, a, S′) =

R1, if {S, a, S′} = {Z, s, Z ′}, Z ∈ {SNi, SYi},

Z ′ ∈ {SNi+1, SYi+1}, i = 1, · · · , L− 1

−F, if {S, a, S′} = {Z, s, Z ′}, Z ∈ {SNi, SYi},

Z ′ ∈ {UN1, UY1}, i = 1, · · · , L− 1

−P, if {S, a, S′} = {Z, s,X}, Z ∈ {SNL, SYL}

R1 − C, if {S, a, S′} = {X, h, Z}, Z ∈ {SN1, SY1}

−F − C, if {S, a, S′} = {X, h, Z ′}, Z ′ ∈ {UNj , UYj},

j = 1, · · · ,M − 1

−Q− C, if {S, a, S′} = {Z, h, Z ′}, Z ∈ {UNM−1, UYM−1}

Z ′ ∈ {UNM , UYM}

R2 − C, if {S, a, S′} = {X, r, Z}, Z ∈ {SN1, SY1}

−F − C, if {S, a, S′} = {X, r, Z ′}, Z ′ ∈ {UNj , UYj},

j = 1, · · · ,M − 1

−Q− C, if {S, a, S′} = {Z, r, Z ′}, Z ∈ {UNM−1, UYM−1}

Z ′ ∈ {UNM , UYM},

(9.18)

where R2 < R1 because of the routing delay.

9.2 Optimal Policy

The required components of an MDP is deduced: a finite set of states, a finite set of

actions, transition probabilities, and immediate rewards. Now, the defense problem

is modeled as an MDP and find the optimal policy by solving it.

In MDP, a policy is defined as the action to take in each state, i.e., π : Sn → an. In

other words, a policy maps each state S ∈ X to an action a ∈ A and is represented by

π(S). Among all possible policies, the optimal policy returns the maximum expected

total discounted payoffs. The value of a state S is defined as the highest expected
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payoff, starting from the state S and represented as,

V ∗(s) = max
π

E
[ ∞∑
t=1

δt−1U(t)
∣∣∣S = s

]
. (9.19)

Here, the optimal policy π∗(S) returns the maximum expected payoff. However,

after moving from the current state, the remaining part of an optimal policy should

still be optimal. Therefore, the first move must maximize the immediate payoff and

the future expected payoff, which are conditioned on the current action. This is called

the Bellman equation [117],

Q(S, a) =
∑
S′

Pr(S′|S, a)
(
U(S, a, S′) + δV ∗(S′)

)
,

V ∗(S) = max
Q

Q(S, a),

π∗(S) = argmax Q(S, a).

(9.20)

Now, the value iteration method can be used to derive the optimal defense strategy

and show that the solution has a structure mentioned in Proposition 1.

Proposition 1: The optimal policy can be represented by two critical states l∗ ∈

{1, 2, · · · , L} and m∗ ∈ {1, 2, · · · ,M},

π∗(SNi) =


s, if SNi < SNl∗

h, otherwise,

π∗(UYj) =


h, if UYj < UYm∗

r, otherwise.

(9.21)

Proof: From (9.3) and (9.4), the probability of a successful transmission with

action stay (i.e., Pr(SNi+1|SNi, s)) decreases over i. Therefore, from the definition

of Q(S, a) from (9.20), Q(SNi, s) − Q(SNi−1, s) < 0. Now, (9.9) indicates that the

probability of a successful transmission with action handoff (i.e., Pr(SN1|SNi, h))

increases over i. Therefore, Q(SNi, h) − Q(SNi−1, h) > 0. Now, the optimal action
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at state SNi is stay if Q(SNi, s) ≥ Q(SNi, h), or handoff if Q(SNi, h) ≥ Q(SNi, s).

Since Q(SNi, s) is decreasing and Q(SNi, h) is increasing, there exists a l∗, where

Q(SNl∗−1, s) ≥ Q(SNl∗−1, h) and Q(SNl∗ , h) > Q(SNl∗ , s), and l∗ ∈ {1, 2, · · · , L}.

Similarly, from (9.10)-(9.18), it can be shown that Q(UYj, h) < Q(UYj−1, h) and

Q(UYj, r) > Q(UYj−1, r). Therefore, there exists a m∗, where Q(UYm∗−1, h) ≥

Q(UYm∗−1, r) and Q(UYm∗ , r) > Q(UYm∗ , h), and m∗ ∈ {1, 2, · · · ,M}.

A defender’s strategy to use a channel as long as plausible and an attacker’s random

and iterative strategy facilitates the design of the attack and defense problem as an

MDP. The proposed defense can be summarized in two aspects: 1) a defender keeps

utilizing a channel for l∗ time-slots, then hands-off to another channel and 2) after

m∗ successive transmission failures, the defender takes the action route to exploit the

proximity in dense IoT networks. A defender always takes action stay in UN states

because Pfad is constant, and in SY states, it takes action handoff . In reality, it

is impossible for a defender to know the exact transition probabilities to devise the

MDP; hence, it must learn the MDP over time. The Q-learning technique is employed

that works as a model-free off-policy method to learn the MDP.

9.3 Performance Evaluation

In this section, the findings are presented to evaluate the performance of the pro-

posed research.

9.3.1 Simulation Setup

Here, the simulation parameters are: communication gain R1 = 5, cost of transmis-

sion failure F = 5, handoff cost C = 1, penalty for policy violation P = 50, maximum

residence time L = 30, maximum transmission attempts M = 30, cost of packet drop

Q = M · F , communication gain for routing R2 = 4, discount factor δ = 0.95, and

channel parameters are α = 0.09, β = 0.01, and N = 60.
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Figure 9.2: The sensitivity of optimal values to the changes in n, F , and R2.

9.3.2 Jump and Wobble

We demonstrate the critical states l∗ and m∗ (Fig. 9.2) derived from the value

iteration of the MDP, with the change in the attacker’s sensing capability (n), the

cost of transmission failure (F ), and the communication gain with routing (R2).

9.3.2.1 Critical States

In Fig. 9.2(a), l∗ decreases with the increase in n. As n increases, K starts to

decrease, and IoT nodes have less channels to handoff; hence, IoT devices have to

handoff more frequently to avoid the attack. Moreover, as the cost of transmission

failure F increases, IoT nodes handoff more to avoid transmission failures (i.e., l∗

decreases).

Likewise, in Fig. 9.2(b), m∗ maintains a downward trend with the increase in

n. However, R2 largely dictates the action handoff here, and as the reward for

routing increases, IoT nodes become more motivated to route the packets through

intermediate nodes to avoid interference.
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Figure 9.3: Performance of Jump and Wobble.

9.3.2.2 Routing Gain R2

Fig. 9.3 compares the performance of this proposed strategy in three scenarios:

no defense, jump and wobble with R2 = 0, and jump and wobble with R2 = 5. It

illustrates that both R2 = 0 and R2 = 5 follow the same trend until the attacker’s

sensing capability surpasses n = 9, yet the throughput (R2 = 0 line) stays above

the no defense line. We denote this moment the switching point after which the

defender prefers to route data packets (using the action route). As R2 decreases, the

victim becomes less motivated to route data packets and the switching point moves

further to the left. Likewise, in Fig. 9.3(b), we can observe that the transmission

failure increases after the switching point. Therefore, R2 serves as a tuning parameter

between actions handoff and route.



CHAPTER 10: CONCLUSION

10.1 Completed Work

This dissertation advocates the shared approach toward spectrum utilization, sys-

tematically assesses the security vulnerabilities in such shared spectrum scenarios,

and introduces novel counter-mechanism strategies.

First, this research discussed a credible threat in CRNs. Unlike traditional PUE

attacks, the proposed off-sensing attack exploits the vulnerabilities in the periodic

sensing approach. It affects the channel availability of SUs and causes significant

reduction in throughput. Though the attack under the common-hopping sequence

is illustrated, it can also be implemented in any hopping sequence. Furthermore, it

explained a few scenarios of the proposed attack and the knowledge required by a

perpetrator to conduct such attack. Then, it explained the goals of such attack and

what strategy a selfish/malicious node should take to achieve these goals. Afterwards,

it analyzed the attack using a discrete-time Markov model and validated the numerical

results through simulations. Lastly, a comparison in attack performance is made

between off-sensing and PUE attacks. From the comparison, it can be reasoned that

the off-sensing attack is more detrimental than the PUE attack. While this analysis

and observations reveal a new kind of threat to CRNs, they also provide insights on

how to design more robust sensing approaches.

Second, a new strategy, random-OS, to perpetrate OS-DoS attack without any

predetermined knowledge of the victim’s channel-hopping sequence is proposed. Af-

terwards, an MDP-based safeguard approach is proposed, hide and seek, to avoid

and detect the proposed attack. The MDP-game showed that by hopping to random

channels, an SU can avoid OS-DoS attack, and when it becomes necessary (based
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on rewards) to detect interference it employs an extra-sensing interval to detect an

attacker. Here, the victim SU learns the optimal policy by using Q-learning. Lastly,

this research proposed an attack inference model to detect the presence of attackers

and to reinitialize the learning process to incur less regret. Furthermore, Numer-

ical investigations and simulation results showed that the random-OS outperforms

the naive approach and the hide and seek improves the network throughput without

ousting the attackers. A thorough search on previous work shows that, this is the

first research to introduce a new avenue in designing defensive measures of OS-attack

without changing the FCC policy.

Third, a cross-layer route manipulation attack in CR-WMNs, namely OS-RM at-

tack, is proposed. In this attack, a discussion is made on how the off-sensing attack

can be weaponized as an aid to influence routing decisions in the network layer. Here,

the perpetrator as an intelligent entity and it estimates necessary network information

through learning. Furthermore, this research illustrated a general model of the attack

and analyzed through extensive simulations on how to coordinate the OS-RM attack

in order to achieve the best-attacking result. The analysis and observations not only

sheds light on a new kind of threats to the CR-based network, but also provide some

insightful findings on how to design cross-layer protocols.

Fourth, this dissertation introduced a novel attack, which exploits a vulnerability in

existing spectrum handoff processes. Here, attackers maximize their personal gain by

preempting the channel switching process. As they strategically avoid channels where

benign SUs are trying to rendezvous and transmit, attackers remain undetected. This

research made an strategy to exploit this vulnerability and analyzed the impact of

this attack through simulations. While the impacts of such attack is discussed, it

also identified the reasons behind this vulnerability. A thorough search on relevant

literature concluded that, this is the first research to introduce a vulnerability in the

spectrum handoff process in CRNs.
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Fifth, this dissertation discussed a vulnerability that the dense IoT deployment

will likely bring, i.e., interference from impersonating hidden terminals of external

IoT networks, and it illustrated how an HTE attacker can exploit this vulnerability

by manipulating its antenna radiation pattern. This research is among the first to

foresee this vulnerability of IoT deployment, study it, and, a thorough search on rel-

evant literature yielded it the first to propose an attack feasibility study based on

array antenna synthesis. This research utilized the SDR technique and a random-

ization algorithm to efficiently solve the HTE feasibility problem. Simulation results

indicate that the proposed method provides a strong approximation to the HTE fea-

sibility problem. In addition, the observation from the simulation results provides

an attacker’s conundrum to trade-off between the attack efficiency (i.e., attacking

more victims) and the risk of exposure. Lastly, the analysis and observation provide

insightful guidance to narrow down the probable locations of an HTE attacker.

Sixth, this research captured the effect of external hidden terminals through a

Markov model and detected the aberrant behaviors of HTE attacks. The numerical

and simulation results showed the superior performance of the proposed detection

model as compared to the naive jamming detection approach.

In the end, this dissertation proposed a new strategy, random-HTE strategy, to

perpetrate HTE attacks without any predetermined knowledge of the victim’s oper-

ating channel. Afterward, it proposed an MDP-based safeguard approach, jump and

wobble, to avoid the proposed attack. The results showed that by randomly chang-

ing the operating channel, a defender can avoid the attack, and when it becomes

necessary, it can route packets through intermediate devices. Furthermore, numeri-

cal investigations and simulation results showed that the random-HTE outperforms

the naive approach, and the jump and wobble improves the network throughput by

avoiding the attacker. A thorough search on relevant literature showed that, this is

the first research to introduce a constrained attack model of HTE and to designe
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defensive measures against HTE-attacks.

10.2 Future Work

My Ph.D. research opens up many theoretical and practical research possibilities

in security assessments of network infrastructures, in spectrum management, and in

other related areas in wireless communications. I would like to direct—but not limit

my future efforts to—the following research topics:

• Security in Heterogeneous IoT Systems

IoT is a ubiquitous technology that can intricately integrate devices (or things) that

surround us, and these devices communicate within themselves by forming a closed

connected network to intelligently solve real-life problems. Such a broad scope re-

quires an enormous amount of IoT deployments at our homes, offices, transportation

systems, healthcare, and industries. Therefore, in reality, it will be composed of com-

ponents designed by different manufacturers along with different wireless technologies.

This heterogeneity will create unparalleled security loopholes in IoT infrastructures,

especially from the perspective of spectrum utilization with a critical question: how

can different wireless technologies securely coexist in the same spectrum? My current

research trend is based on this fundamental question, which specifically addresses

security vulnerabilities and their counter mechanisms in spectrum coexistence, spec-

trum access, and mobility within heterogeneous IoT networks.

• Security in Machine Learning based Systems

Applications of machine learning (ML) based systems are becoming mainstream in

smart grid, healthcare, security, finance, and numerous mission critical systems; as a

result, the security risk of ML-based systems is emerging as a grave concern. ML-

based applications evolve through multiple stages, such as data collection, data prepa-

ration, data labeling, model training, testing, and deployment. An attacker with

malicious intention can impact the reliability and dependability of a ML-based sys-

tem by exploiting vulnerabilities at any of these important stages. I believe that my
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approaches in assessing security threats can be extended to assess ML-driven infras-

tructures. I am particularly interested in threat identification, adversarial modeling,

and alleviation of threats in ML-driven decision processes in critical wireless network

infrastructures.

10.3 Published and Submitted Works

The following list is a summary of my publications and submitted works.

1. Moinul Hossain and Jiang Xie, “Third Eye: Context-aware Detection for Hidden

Terminal Emulation Attacks in Cognitive Radio-enabled IoT Networks," IEEE

Transactions on Cognitive Communications and Networking, vol. 6, no. 1, pp.

214-228, 2020.

2. Moinul Hossain and Jiang Xie, “Hide and Seek: A Defense Against Off-sensing

Attack in Cognitive Radio Networks," to appear in IEEE Transactions on Net-

work Science and Engineering, 2020.

3. Moinul Hossain and Jiang Xie, “Modeling of Off-sensing Attacks in Cognitive

Radio Networks," submitted to IEEE Transactions on Networking, Apr 2020.

4. Moinul Hossain and Jiang Xie, “Off-sensing and Route Manipulation Attack: A

Cross-layer Attack in Cognitive Radio based Wireless Mesh Networks," submit-

ted to IEEE Transactions on Wireless Communications, Jan 2020.

5. Moinul Hossain and Jiang Xie, “Covert Spectrum Handoff: A Threat Against

Future Spectrum Coexistence," in preparation to submit for journal publication.

6. Moinul Hossain and Jiang Xie, “Jump and Wobble: A Defense Against Hidden

Terminal Emulation Attack in Dense IoT Networks,” submitted to IEEE Global

Telecommunications Conference (GLOBECOM), 2020.

7. Moinul Hossain and Jiang Xie, “Hidden Terminal Emulation: An Attack in



173

Dense IoT Networks in the Shared Spectrum Operation," Proceedings of IEEE

Global Telecommunications Conference (GLOBECOM), 2019, pp. 1–6.

8. Moinul Hossain and Jiang Xie, “Detection of Hidden Terminal Emulation At-

tacks in Cognitive Radio-enabled IoT Networks," Proceedings of IEEE Interna-

tional Conference on Communications (ICC), 2019, pp. 1-6.

9. Moinul Hossain and Jiang Xie, “Hide and Seek: A Defense Against Off-sensing

Attack in Cognitive Radio Networks," Proceedings of IEEE International Con-

ference on Computer Communications (INFOCOM), 2019, pp. 613-621.

10. Moinul Hossain and Jiang Xie, “Covert Spectrum Handoff: A Vulnerability in

the Spectrum Handoff Process in Cognitive Radio Networks," Proceedings of

IEEE Global Telecommunications Conference (GLOBECOM), 2018, pp. 1-6.

11. Moinul Hossain and Jiang Xie, “Off-sensing and Route Manipulation Attack:

A Cross-layer Attack in Cognitive Radio based Wireless Mesh Networks," Pro-

ceedings of IEEE International Conference on Computer Communications (IN-

FOCOM), 2018, pp. 1376-1384.

12. Moinul Hossain and Jiang Xie, “Impact of Off-sensing Attacks in Cognitive

Radio Networks," Proceedings of IEEE Global Telecommunications Conference

(GLOBECOM), 2017, pp. 1-6.
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