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ABSTRACT

YAQIN FENG. Limit theorems for reaction diffusion models. (Under the direction
of DR. STANISLAV A. MOLCHANOV)

We introduce two different reaction diffusion models: evolution of one-cell popula-
tions in the presence of mitosis and continuous contact model.

In the first model we consider the time evolution of the supercritical reaction
diffusion-equation on the lattice Z¢ when each particle together with it spatial coor-
dinate has an extra parameter (mass). In the moment of the division the mass of
the particle which is growing linearly after the birth is divided in random propor-
tion between two offspring (mitosis). Using the technique of moment equations we
study asymptotically the mass-space distribution of the particles. For each site in the
bulk of the population mass distribution of the particles is the solution of the special
differential-functional equation with linearly transformed argument. We prove several
limit theorems for such population and study in detail the statistics of the masses of
the particles.

The continuous contact model describes the space and time stationary behavior
of the particles. The central result here is the existence of limit distributions for
continues time critical homogeneous-in-space branching processes with heavy tails
spatial dynamics in dimension d = 2. In dimension d > 3, the same results are
true without any special assumptions on the underlying (non-degenerated) stochastic

dynamics.
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INTRODUCTION

We present here two different models: mathematical model of plankton and con-
tinuous contact model.

One of our central goals is explanation with appropriate models of the following em-
pirical facts: Firstly, biopopulations, at least those which are not strongly suppressed
by civilization, may exhibit stationary in space and time. Secondly, the spatial dis-
tribution of many species has a pattern of patches, which is strongly deviated from
the Poissonian point field. Thirdly, the distribution of parameters of some species,
such as mass, size etc is non-Gaussian.

The main ideas are based on the Fisher-Kolmogorov-Petrovsky-Piscunov model of
the evolution of a new gene after mutation. Classical FKPP equation which was
introduced by Fisher [Fisher, 1937] and studied in details by Kolmogorov, Petrovsky
and Piscunov[Kolmogorov et al., 1937] had appeared in the biological context. It
describes the early stages of growth of the population of a new species (appeared as
result of mutation somewhere in the space) due to their random motion (diffusion).
Our central object will be, as in FKPP theory, the branching process with random
dynamics in the space. We'll exclude the direct interaction between particles, but
the birth-death processes will create, however, some type of attractive mean field
interaction.

Our plankton model generalizes of the classical FKPP scheme. Cell growth in
plankton is characterized by cell division [Round et al., 1990]. Cells grow and segre-
gate a full complement of components to each offspring cell. Some related works on
Plankton can be found in [Hall and Wake, 1989],[Begg, 2007] and [Begg et al., 2008].
However, their work has in general not included the space dynamics of population.
Thus, we will consider the particles with masses as the model for the population of

plankton. In the process of the division of such particles (mitosis), their masses are
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randomly distributed between offspring. As a result, the FKPP equations have now
not a differential but a functional-differential nature. We are interested in the limit
theorems for such population as well as the statistics of masses of the particles.

The continuous contact model can be used to describe the spatial plant ecology
like the model of a forest. One of the aims of this model is to study existence of the
evolution states for the contact process. A key idea to approach the problem is the
study of corresponding correlation functions. We describe the collection of positions
of n particles z,--- ,x, as configuration of particles. They can be interpreted as a
cloud of particles and there is at most one element of particles occupying a single
position z;. We will focus on the existence of limit distribution through the study of
the correlation function.

In Chapter 1, we introduce the FKPP model and present some classical results.
We begin with moment generating function for Galton-Watson process and list the
limit distribution for supercritical, critical and subcritical case. We then discuss the
FKPP equation and the moment equations for the correlation function. In order to
study the behavior the population, we consider large deviation for the random walk
based on Crammer’s approach. The definition of the population Front is then given
and we describe the shape of the front in different cases.

In Chapter 2, we introduce the reaction diffusion model of one-cell populations in
presence of mitosis. It is different from the classical FKPP model due to the presence
of extra parameter mass. This population can be described by non-linear FKPP-type
functional differential equations for the generating function of the number of particles
in the fixed domain D; and Laplace transform of the total mass in the domain D.
From these equations one can derive the linear moment equations. The operator of the
moment equations implies two independent Markov processes: underlying symmetric
random walk and Mass process. The Mass process has very good property and we

prove the limit distribution as time ¢ — oco. Asymptotic of mass distribution around
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0 and oo is also studied. Furthermore, we present the limit distribution of number of
population at each site in the lattice, we prove that it convergences to the same limit
distribution as in classic Galton-Watson process. Finally, a special solvable model is
also given. With the assumption of the constant growth rate of the mass, the joint
limit distribution has a simple form. Also, central limit theorem is obtained for the
conditional mass process.

In the last chapter, we describe the continuous contact process in R?. For critical
case, it was shown by [Kondratiev et al., 2008] the existence of limit distribution
in the dimension d > 3 for the underlying random walk with finite second moment.
However, for d = 1, 2 ,the second moment of the underlying process diverges. To avoid
the divergence, we add long jumps to the underlying process. Under some regularity
conditions, we prove the existence of the ergodic limiting states. We also prove the
estimation for the variance of the number of particles in a region which can be used

for future investigation of central limit theorems.
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CHAPTER 1: THE CLASSIC FKPP MODEL

1.1 FKPP Model

In the classical FKPP theory we start from the single particle at the point 2 € Z9 (
one can consider also the case R? ) instead of Z?. The particle performs the symmetric
random walk on Z¢ (time is continuous) with generator kA, where xk > 0, A®(z) =

Z (®(2") — ®(x)). The particle can die at the time interval (¢,¢ + dt) with
iz’ —z||=1

probability pdt ( p is the mortality rate ) or can be splitted into two particles (at the
site x € Z%) with probability 3dt ( (3 is the birth rate ). For two offspring we have the
same independent stochastic dynamics. Let n(¢,z)=numbers of particles at the site

r € Z¢ and moment t, N(t) = Z n(t,x) is the total number of the particles. Since

x€Z
i, 3 are constant, the process N(t) is the classical Galton-Watson process with gen-

erating function ¢(t,z) = E2N® which is the solution of the backward Kolmogonov

equation:
5}
= 86— (5 o+ (1.1
#(0,2) =z

The distribution of N(t) due to particular simplicity of the equation (1.1) can be
calculated explicitly, see [Gikhman and Skorokhod, 1974].
(z —a) — (z — DaetB~m

_ _H
o(t,2) = (z —a)—(z—1)etB—n) ’ a= B

(n# 5) (1.2)

1 — etB—n)
P(N(t)=0) =

t—00

> (1.3)

et(ﬁ—ﬂ)
==



Then
EN(t) = ¢/(t, 2)].1 = P71

Let’s consider three cases:

e 5> ,iea>1,then P(N(t) =0) — 1 as t — oo, the branching process is

degenerated for t — oo.

e J < pu,iea <1, then P(N(t) = 0) - o < 1 as t — oo, the process is
degenerated with some probability @ < 1. However for any fixed P(N(t) =
k) — 0,k — oo, it means that in the case of non-degeneracy, the process N(t)

will tend to for oco.

e If = 1, which corresponds to the critical case, the calculations are a bit
different:
d
90— B~ 0)?, with 9(0,2) = =
Then
1—=2
t =1-— 1.5
61:2) = 1= 15— (15)
We then have
PN =0) = 2L 115 00 (1.6)
146t ’ '
(B!
PINt)=k)= —7F——k>1 1.
(V) =) = e k> (17)

For large t, one can find approximations for the distribution of N (t):



Lemma 1.1. Assume that o < 1 (supercritical case), then

- <a) — G(a) (1.8)

The limit distribution G(a) has an atom a = % at 0 and exponential density for a > 0.

Formally

O;—G = ady(a) + (1 —a)re™, a>0 (1.9)
a

where EN(t) = =Mt o = A =1—a. The atom ady(a) corresponds to the

possibility of degeneration of the population on the initial stages of evolution.

Proof. Clearly,

N(t)
(G = 0) = P(N(1) = 0)
1 — et(B—w) Pa——
- ] _ C-w
Meanwhile,
N(t
(% >a) = P(N(t) > ae® M)
e
(B—p)ty_
1—et(B—p))(ee )7L t(B—w)
(1 - a)2( ) (B—mw)ty 1

(]_—aet(ﬁfﬂ))(ae

1 _ l—et(ﬁfﬂ)
1—cet(B—w)

(1- et(ﬁ—u))(ae(ﬁ—w)_l

= (-«
( ) (1-— aet(ﬁ—u))(aew*”)t)

1 1
l—a |1+ (1—a)etB-n

ae(B—mt

= (1-0a%

6_ (1—a)

— (1—a2)1
—«

Therefore, the density of G(a) satisfies

e

= ado(a) + (1 —a)e™, a>0
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Lemma 1.2. Let o =1 (f = p , critical case), then E[N(t)|N(t) > 0] =1+ pt and
P<l+,8t > z|N(t) >0> — e ",z >0.

t—o00

Proof. First

PN() = KIN() > 0) = Bresg = —
148t
It gives
(B!
P(N(t) = kIN(t) > 0) = N
and
B(ZMOIN (D) Z : 1 n Bt T 118t 2)

Differentiation this conditional generating functions provides the conditional expec-

tation
z
E(N®IN({t) >0)=[————]].c1 =1 t
(NOINE) > 0) = [l =1+
A
@) T 1¥se 1
Ele” 7 |N(t) > 0] = ‘ , \
14 Bt(1 — e mpr) oo 1+ A
It is the Laplace transform of the exponential distribution with parameter 1. O
1.2 FKPP equation

Let’s consider now the random variable n(t,xy), -« -- ,n(t,x), N(t) and their

joint generating function
. _ n(t,z1) n(t,xr) N (t)
w(t,m; 21, 2k, 2) = Fozy cee 2y z

elementary and well-known calculations provides the FKPP-type equation:



0
8_1: = kAu+ Bu® — (B+ p)u+p (1.10)
212, = X7
o — )
22, T = Tk
zox ¢ wpi=1,--k

Of course, we can assume that all z; are different.
From (1.10), one can get the moment equations or equations for the correlation

functions. The simplest one has a form: If my(t,x2) = Egn(t, x), then

om(t, x)
ot
m1(0,x) = do(x)

= rAmy + (8 — p)my (1.11)

ie
my(t,z) = P(t,z,0)eP~M!
Here P(t,z,0) is the transition probability of the random walk with generator kKA.

It is well known that P(¢,x,y) satisfy the standard heat equation:

oP(t, x,y)
ot
P(O,I’,y) = 5y($)

- KAmP(twrvy) = HAyP(twruy) (112)

Let’s solve (1.12) by using the Fourier transform. For any function ®(.) € I*(Z%),
H<I>H1:Z |®(y)|, one can define the Fourier transform ®(¢), ¢ = (¢1, - - - , ¢q) € T4 =

yezZd

[—7,7]% as a continuous function on the dual group (Euclidian forms) 7¢. Applying

this transform to equation (1.12) with respect to, say the first variable z, and y = 0,



we'll get
P(t A g
OP(t, ) = kA(Q)P (1.13)
ot
P0,9) = 1
d
Here —®(¢) = 22 (cos¢p; — 1) is the Fourier transform or the discrete

7j=1
Laplacian A. It follows from (1.13) that

= Z P(t,:)j,O)e"(‘b’x) = Z P(t,O,x)ei(¢’x)

zeZd T€ZY
d
2%t E cos ¢; — 1)]
Jj=1

= Eye®X0) = ¢ — oitA (@)

i.e. We know the characteristic function of the random variable X (¢). Due to the

inverse Fourier transform formula we get

1 —t®(p)—i(p,x
P(t,x,O)—(%)d/_ }de (@)=ie2) g

d
Z 1 — cos ¢;) is the Fourier symbol of discrete Laplacian A.

1.3 Large deviations for the random walk

We'll need large deviations asymptotic for |y| = O(t) in the study of the front of
the population for FKPP model. Corresponding estimations will be proven using
Crammer’s approach ([Molchanov, 2009])( which in our case is related to the Doob
transformation of the transition probabilities). Let’s start from equation (1.12) but
apply not Fourier but Laplace transform:

= > P(t,0,y)e*, AeR* (1.14)

yezd



The same calculation as before shows that:
d
P(t,\) = ™, =2 (cosh\; — 1) (1.15)
7j=1
Lemma 1.3. For fized A € RY, the kernal
Ox(t, 2, y) = eV [e A P(t 2, y)eM)) (1.16)

is the transition probability for the Markov chain X*(t) on Z% with continuous time

and generator

Lyf(x

IIM&

flx+e) — f(@)ed + (f(x —e;) — f(x))e_’\j) (1.17)
Proof. The Chapman-Kolmogonov equation

Z Q)\(ta xz, Z)Q)\(Sa Z7y) = Q)\(t + s, , y)

2€7Z4
follows directly from (1.15),(1.16) and the fact thatQ (¢, z,y) = Qa(t,x —y,0). Using
the definition

B, f(a)(At) — f(2)
At—0 At

= lim ZyeZdQA(At,x,y)[f(y) — f(2)]
At—0 At

and explicit formula for Q\(At, z,y), we will get (1.17). O

Consider the process X*(t), s > 0 with the generator Ly, it has( like X (s) with the

generator kKA = Lg) independent increments. Let’s note that
EX)Ndt) = 2ksinhdt, i=1,2,--- ,d,

cov(XNdt), X]f\(dt)) = EXMNdt) ® X;\(dt) = 2Kcosh;dté;;

(one can neglect EX{\(dt)EX;‘(dt))



ie.
art) = EXMt)= (2ktsinh);) i=1,2,---.d,
(" (0= ) s
BMt) = covX?(t) = (2ktcosh \;0y;) i =1,2,--- ,d.
If X< Aandt— oo, then uniformly over A
1
P{Xt) = [EXt)]} ~
X0 [ ( )}} (2m)4/2 /det BA(t)
1
= (1.19)
d

From (1.17) and (1.19) we’ll derive asymptotic formula for P(¢,0,y) acting uniformly

ony = (y, - ,¥a):||4|| <A For fixed y, find X from the equation:

7EO‘XA(t>|j — Y% _ 9psinh )\,
t t I

SO

Aj = arcsinh < Yj )
2Kt

Then from (1.16)
P(t,0,y) = e Ne”MQ,(t,0,y)

Rt () =(\)

~Y

d 2
47”“ 72 H 4 2t2
K

J=1

Plug the expression of A;,

Zy]arcsmh— +2 tz 2t2 - 1)

e J=1

Y

d 2
47mtg H 1 2752
K

J=1




ly \6)>

(t),then using the Taylor expansion, we’ll find

If ly| = O(t),
d
1 1,
(= 2 10
1 ;( (ot T 52 Toms¥ + i
7¢’”
2
(ti) in Cramer case it

P(t,0,y) ~ (k)
T
2 related in our situation to the

It means that the Gaussian approximation acts up to |y|
3 . 2
> 3

= O(t3). Higher degree 1

is true in general for |y
vanishing of the third moments of X ()

Y
— exp(— 2mt(H2—m))

For |y| ~ ct
P(t,0,y
( )~ (47rt)t

d d
Here H(Z) sz arcsinhz; — Z(\ /1427 —1)

7) = »
j=1 j=1

From the above discussion, we can summarize the asymptotic of P(t,0,x) for dif-
ferent relations between t and x by the following large deviation theorem.

Theorem 1.1.

||
exp P

P(t,0,y) =%
(£:0.9) (d7kt)?

»hloa

), then

a) If [y| = ot

b) For fized y = O(t), as t — oo
—exp(— 2Kt%(2l€t))

P(t,0,y) ~
(£:0.9) (dmkt)z

where
d
H(d) = sup [ h) — Zcoshh—l]

h
i€
a; aj
Z ajarcsin —K) —2r\[1 4+ — 4,%2

Jj=1
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1.4 The front of population

The behavior of the spreading region is of great interest. Each path along the
genealogical tree of the population on the time interval [0,¢] is a random walk with
the typical range O(y/t). The number of the particles is growing exponentially like
exp {ft} and due to small large deviation probabilities the “radius” of the population
has order O(t). Kolmogorov [Kolmogorov et al., 1937] described the traveling wave

front is the solution of the following Reaction-diffusion equation:

% = kAv + fu(1 —v) (1.20)

(1.20) was first suggested by Fisher [Fisher, 1937] as a model for spread of a favored
gene in a population. We can view v as the population density with one representing
the saturation density, then the first term describes the diffusion in space and the
second term describes the birth and death of the population[Kadanoff, 2006]. It is
(1.10) after substitution v = 1 — u. In one dimension case, see [Kolmogorov et al.,

1937], the particle solution like solution (1.20) is given by

v(t,x) = ¢(x — ct)

As z —» —o0, ¢(2) — 1 and z — oo, ¢(2) — 0. The function ¢(.) presents the

parametrization of the separatrix connecting two critical points of the ODE

k¢" +cd' + (1l — ) =0

Such definition of the ”‘front”’ is not the only interesting one. In the classical work

of FKPP, the definition of the front is a bit of different. The front is defined by

F(t) ={z :u(t, z,z) = EgzN® <

}

N =
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From the point of view of the population dynamics, another definition are also pos-

sible. Let my(t,z, ") = E,n(t,T),

aTnfl (tv xz, y)
ot

my (07 z, y) = dx(y)

= kAymy(t,z,y) + Bma(t, z,y)

i.e.
exp (— = o Bt)
(drmt)?

Define the ”‘density front”’ by the relation my(t,0,y) = 1 will give |y| ~ 2+/k5t. This

ml(t> Oa y) =

is not a Kolmogorov’s definition of the front, however, it also propagates linearly in
time-space. It is convenient for the future moment’s calculations. We will use this
definition in the future. From this definition of the front F(t) = {z : my(t,z) ~ 1},

ie. InP(t,z,0) +t(S — p) = 0, we can formulate our front equation as follows:

e For |z| = o(t1),

zd:(—(— R SR P i
Plt.2.0) ~ 1 = Akt 8r2t27 7 192kr3t3 Y |t]°
(4rkt)z
which gives the Front equation
d
; 4mf /<;2t2 x2 ~ (B =t
Therefore,
o] = 2t/w(B — )
e For x = O(t),
P(t,z,0) ~ exp{—t?—l(%)}
since

—tH tz il —"



X,

B—u
K

Front of particles if

Figure 1.1: Front of the particles

the front F; of the population now is given by

Z‘xzh xiwﬂ—ﬂ
n—~=
. Kt Kt K

1=

d
and it means Z |zi| = (B — p)t.

=1

<1 Front of particles if

B—u

K

v

=1

12



CHAPTER 2: MATHEMATICAL MODEL OF PLANKTON

2.1 Introduction

In this part, we study a mathematical model of evolution of plankton based on the
FKPP equation. In order to identify further reasonable types of plankton model, we
may look into some existing literatures. Hall A. J. and Wake G.C. [Hall and Wake,
1989] had studied a functional differential equation for the steady size distribution
of the plankton population. Basse B., Wake G.C., Wall D.J.N. and van Brunt B.
[Basse et al., 2004]studied a stochastic model for cell growth in plankton based on a
modified Fokker-Planck equation. More work can be found in [Begg et al., 2008].

We extended the above model by considering the space dynamics of plankton pop-
ulation. Cell growth in plankton is characterized by cell division [Round et al., 1990].
Cells grow and segregate a full complement of components to each offspring cell. To
describe the characteristic of plankton, we equip our FKPP model with the intro-
duction of the extra parameter mass. In the moment of the division the mass of
the particle which is growing linearly after the birth is divided in random proportion
between two offspring. We study asymptotically the mass-space distribution of the
particles and prove several limit theorems. In cases where all the parameter are con-
stants and mortality rate is neglectable, the joint distribution can be found explicitly

and thus provides a benchmark for future’s investigation for more complex situations.
2.2 Main model

Here 5 > u (supercritical case). As in the original FKPP model, put n(0,z) =

So(z),x € Z¢ a single initial particle. The main difference from the classical FKPP



14

situation is the presence of an extra parameter for each particle, called its mass.
The initial particle has mass m at t = 0 and position z € Z¢. For t > 0, the
particle performs a random walk with generator £ = kA, its mass increases linearly:
m — m(t) = m + vt,v > 0, ie., the underlying Markow process (z(t),m(t)) in
Z* x RL has the generator £ = kA + v%. At the moment of the first transformation
71 (exponentially distributed with parameter 8 + p), the particle either dies or splits
into two particles at the point (7). The mass m; = m + vry of the particle at the

moment of splitting is distributed between two offspring in random proportion:
my =mif, my =m(l—0),

0 has distribution ¢(d#). The random variable # is independent on the prehistory and

has the symmetric distribution ¢(d#) on [0, 1]:
619

(to preserve the symmetry between offspring). The new particles perform independent
evolutions with the same parameters p,5,k,q(df) (starting from x(7;) and masses

my = 0m(r),my = (1 — 0@)m(m)). They can be considered as single point
x1 = z(11), mh, T2 = x(71), my € (Z* x R})?

Like in the standard theory of the reaction-diffusion equations, we can present the
evolution of the particles field as a Markov Process in the Fock space
X=0oU(@Z"xRU-- (ZxR})"U- -

—_—— N ——
" Fn

Remark 2.1. This model gives the realistic description of the one-cell species popula-
tions (like plankton) which demonstrate the long time exponential growth (the Malthu-
sian behavior). Of course, even in this case, some limitations (Oxygen, light etc.) will

stop sooner or later the further growing. It is very important that our model includes
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my =(1- O)ym,

Figure 2.1: Evolution of the particles

the mass of particles and the phenomenon of the mitosis. The only essential devi-
ation on the exponential distribution of the “life time” T of the particles (between
the birth and the transformation or the reaction). It is better but harder to study the
semi-Markovian models with the general distribution of T. This topic will be discussed

later in the construction of semi-Markovian “mass” process.

For each open set I' C Z% xR, in particular for Dy x D, where D; € Z¢, D € (0, 00),

Let’s define the following notations:

n(t, x) = numbers of particles at the site x € Z* and moment t;

n(t,x)
N(t) =Y n(t,z); np(t,z) =Y ILnep; Np(t)=>_ np(t z);
zeZd i=1 zeZd
np(t,x)
m(t,x, D) = Z my; M(t) = total masses at moment t.
=1

To find the finite dimensional distributions for np(t), we calculate the corresponding

generating functions and Laplace transforms. In the simplest case, it is the function:

uz(tax>y>m; D) = Ex,mZnD(t’y)a ‘Z| S 1
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We also introduce the generating function of the form:
uz,k(t> T, y,m; D) = Ez,mZnD(t7y)e_km(t7y’D), ‘Z| <1, k>0

The following results are the basis for the further analysis:

Theorem 2.1. Let u,(t,z,y,m; D) = E,,,z"?Y)  then u,(t,z,y,m; D) satisfy the

following functional differential equation:

Qu(t,z,y,m;D) . Au(t,z,y,m;D)
el = kAu(t, z,y,m; D) + T R

+4 fol u(t, z,y,0m; D) - u(t,z,y, (1 — 0)m; D)q(df)

(2.1)
_(6 + :u)u(t7 x,y,m; D) +u
u.(0,2,y,m;T) = 2%W [ (D)
Proof. The proof is similar to the proof of Theorem 2.2 in the following. O

Theorem 2.2. Let u, 4(t,z,y,m; D)=E, ,2"PEW e kmtuD) then v, (t,z,y,m; D)
satisfy the following functional differential equation:

auz,k(t7m7y7m;D

0D — Ayt 3y, m; D) + Letlrvmdl,

om

+B fol uz,k(t> x,Y, em) D) ’ uz,k(tu z,Y, (1 - 8>m7 D)Q(de) (2 2)
_(6 + M + kv)uzﬂf(t? xr,y,m, D) + %

U, x(0,7,y,m;T) = 2%Wekm[ (D).

The proofs of both theorems are practically identical. Let’s give the sketch of the

calculations in Theorem 2.2.

Proof. The formal derivation of this equation based on the standard technique: bal-
ance of the probabilities in the infinitesimal initial time interval (0, dt). Namely, let’s
consider

Uy, k(t —+ dt, T,Y,m; D) — Ew man(t-l-dt,y)6—km(t+dt,y,D)

and then let’s split the interval [0,¢ + dt] into two parts [0, dt] U [dt,t + dt].At the

moment ¢ = 0, we have one particle in the point  with mass m and during [0, dt],
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we observe one of the following hypothesis:
e Hj: nothing happen, the particle remains in x, no annihilation, no splitting:
P(H.) =1— Bdt — pdt — 2dkdt
e H!: transition of the initial particle in one of the neighboring points z’, ||z —

=1

P(H)) = kdt
e H . : splitting of the initial particle into two particles:

P(Hy) = pdt

e H_: annihilation of the initial particles:

P(H,) = pdt

After annihilation, np(t,y) = 0,for ¢ > dt. Now one can apply the full expectation

formula:
Uy k(t + dt,x,y,m; D) = u(t,x,y,m+ vdt; D)(1 — fdt — pdt — odrdt)eFol@mdt Lyt

1
—i—ﬁdt/ uy k(t+dt,x,y,0(m+vdt; D) - u, (t + dt,x,y, (1 — 0)(m + vdt); D)q(df)
0

Theorem 2.2 is obtained by letting dt — 0 U

Due to the nonlinearity, moment generating function is not the best source of the
information about the particle field, it is better to work with the statistical moments.
The factorial moments of np(t,y) can be calculated by partial derivative of moment
generating function with respect to z at z = 1. The moments of mass can be obtained

by differentiated with respect to k at k = 0.
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a) I L(t,@,y,m; D) = B, pnp(t,y) = Lek=olbovmD))

8ll (t@,ymﬁD

ot ) = /ﬁAll(t,x,y,m; D) —+ M

om
— (B4 w)li(t,x,y,m; D)+ 2 fol L(t,x,y,0m; D)q(do)

(Y

If Ly (¢, ,y,m; D) = B, ym(t,y, D) = —Le=talbymD))

8L1(t,g£1/,m;D) _ K,ALl (t,l’, Y, m: D) + {)Ll(t,;;g,m;D) v
aChe (B + :U’)Ll(t7 Z,y,m; D) + 26 fol Ll(t7 x,Y, ema D)Q(de)

Li(0,z,y,m; D) = 0,(y)mI,(D)

If we repeat the similar calculations with the second derivatives, we will get

b) If by(t, 2, y,m, D) = Eypnp(t,y)(np(t,y) — 1) = Lrzsolbowmb) |

7alz(t7x£’m;m = kAl (t,z,y,m; D) + 7812(@:5;/”{771@) v
_(6 + M)ZQ(t7 T, y,m; D) + 25 fol l2(t7 T, Y, emv D)Q(de)
+26 Jy Li(t, 2.y, 0m; D) (¢, @y, (1 — 0)m; D)q(do)

| 2(0,2,y,m; D) =0

If Ly(t,z,y,m;T") = E,um(t, x, D)? = 82%:1’%2’;’%%[)) k=0

OhataymiD) _ N[ (t,x,y, m; D) 4 22E28mD) ()
+20Ly(t, x,y,m; D) — (B + p) Lo(t, x,y,m; D)
+28 [ La(t, =, y,0m; D)q(df)

+26 fol Ll (t7 x,Y, 8m7 D)Ll(t7 x,Y, (1 - e)m) D)Q(de)

\ L2(O7xayam7D) = 5I(y)m2]m(D)
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82u,, i (t,x,y,m;D
C) If C2 (tv x,y,m; D) = Ex,mnD(t> y):u(t> Y, D) - _%‘221,1620

;
802 (t7m7y7m;D)
ot

802 (t7m7y7m;D)
om

—(B+ p)ealt, z,y,m; D) + 28 [ ea(t, x,y, Om; D)q(db)
+26 fol ll (t> x,Y, ema D)Ll(tv x,Y, (1 - e)ma D)q(de)
c2(0,z,y,m; D) = md,(y)

= kAcy(t,x,y,m; D) + cv + vl (t, z,y,m; D)

Similar equation can be presented for moments of any order. Using the Leib-
niz formula, the higher order factorial moments has similar structure with the

following recurrent relation:

d) It (t @y, m; D) = By mnp(t,y)(np(t,y) = 1) - (np(t,y) —p —1)]

o apuz,kZO(ta Z,y,m; D) |
N OzP =t

(
etz = 25 [yt 2.y, 0m, D) = L, (t, x,y, m, D)) q(db)]

—i-ialp(t?,ym[) v+ kAL(t, x,y,m, D)+ (8 — p)l,(t,z,y,m, D)
p—1

+B [y (Z) i(t, .y, 0m, D)l,_i(t, x,y, (1 — 6)m, D) q(df)
=1

my(0,z,y,m, D) =0

Theorem 2.3. Put E, ,,np(t,y)=[pp(t, (x,m), (y,w))dw, then p(t, (x,m), (y,w)) sat-

isfy the following functional differential equation:

Geltlem) wwl) — 98 [ p(t, (x,0m), (y, w)) — p(t, (z,m), (y, w))]q(db)

(2.3)
_,_w.v—kﬂAp(t (z,m), (y, w)) + (8 = wp(t, (z,m), (y, w))

From (2.3), we observe that the operator without (5 — ) describe two independent
Markov processes:

L.f=rAf
It is the symmetric random walk with diffusive coefficient £ > 0.

s = 03250 [ 15(6m) — smlatan)
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m, = my +vr,

6m,

v

Figure 2.2: Mass process

It is the mass process on half axis m > 0.
2.3 Mass process

Let’s consider the mass process with the generator

Enf = v +25( [ Lf6m) ~ Fm)la(a9)

Process m(t) is the Markov chain with continuous time and Poissonian jumps. Mass
process with ”Poissonian jump” linearly depending on mass the generator of the mass
has the following meaning: one particle starts at ¢ = 0 with initial mass m, it grows
with the linear rate v, after exponential time 7 with parameter 23, one particles with

mass m split into two particles with corresponding masses
mq = (m + 2171)9

my = (m+vm)(1—0)

Where 0 and 1 — 6 has the same law ¢(df). See figure 2.2.

The transition density of the mass process p(t,m, m’), i.e. the fundamental solution
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of

Ap(t,m,m’
p(tat ) - me(t7 m, m,)

p(0,m,m’) = 0,y (m)
have a limit II(m’) = tlim p(t,m,m").
—00
According to the definition of the conjugate operator, applying method of change

of variable and integration by parts, it is easy to find the conjugate operator.

Lemma 2.1. The conjugate operator

L9 = v+ 28( [ [o() — glm)a(a0)

Theorem 2.4. Process m(t) has the invariant density 11(m) such that L1 = 0.
This density has the same law as the distribution density of the random geometric
series

E =0T+ Vb 4+ 0Ty Oy - (2.4)

Where 1;,i > 0 are i.i.d exp (203) random variable and 6;,i > 0 are i.i.d random

variable with the law q(df), 7; and 0; are independent.

Proof. First, let’s find the limiting distribution of mass at the moment of the jumps
(1; +0), At the initial moment

mo =m
After the moment of the first splitting,

m(mi+) = 61 (m +vm)
Similarly, at the moment of the second splitting,

m((71+7-2)-|—) = 82(m1+v7'2)

= 81‘9277’1 + UTQ@Q + UT1¢9182

law

= 81‘9277’1 + UT161 + UT2¢9182
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In general,

law

m((ﬁ ++7’n)+) = 91---9nm—|—v¢191 ++U7—n919n
so as t — oo, the limit will have the the form

(T + -+ o))~ om0y + -+ 070y Oy + -

n—oo
Second, for fixed ¢ >> 1, the previous splitting had taken place at the time t — 7,

where 19 ~ exp (2/3), it gives

m(t) %m’o—i-vﬁ@l+~-~+an91~-~0n+-~-
—00

O

Now we’ll calculate the moment for the invariant limiting distribution II(m), the

calculation will be based on the following fact:
6 = VTy + 915

Here £ o ¢ and 7_1, 6, are independent on €. Since 7 is exponential random variable

with parameter 2/, so

1 1
Er=— Er’=_—
T 25, T 252
As a result,
E¢ = Fuory + F6,€
SO
pe= Y 4+ lpe
2682
thus,



The second moment
E&? = v’ E(1?) + 0E(16,€) + E(9%5)2

from the independence, then

2 v’
EI p—
CCEa-
SO
v? 1
varé = —( 1).
B2 1 — E63
Similarly, the third moments
303

3 _
EC = 233(1 — E63)(1 — E63)’

Let’s find the asymptotic of II(m) for large m and small m. Since

E=vrg+vmby + - FuTl Oy e

Therefore,
Eg[e—kf] — E‘e[6—)\(v70+v7161+y7—29192..,)]
= Ee[e_)‘UTO]Eg [e—)\vﬁéh] L [6—)\117291...9”] o
_ 1
(14 25)(1+ 2280 (1 + 2y
— Co + Cq " n Cn N
N v oy T T T b0,
Lo 1% T+ 55
— Co + Cq n n Cn N
1+4 1+ 1+—2—
v vy w0, 0n
Here,
1
C
"= 6)(1—616)
1
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Cn =
(1 - 91..1.9n>(1 - 92..1.9n) T (1 - i)(l - 9n+1>(1 - 9n+1‘9n+2) T

Now one can find conditional density pe(m) of random variable if 0= (61,06,

known,
20 _28m 20 _28m
= F|— o FE- v0 v
pe(m) 9[ v € co] + 9[21«916 vy +
26 28m ]_
= Eﬂ —e v
9( v € (1—81)(1—6182))
20 _28m 1
+ E-. —e v “+ ...
6(21«91 (1—%)(1—92)(1—9293)~-~)
— %e me_Eel 20[6 6_211[377:_‘_...
v 1-— ‘91
where
1
a=F

(1—01)(1 —6165)---

Let’s formulate several analytic results about the invariant density .

Theorem 2.5. Assume that Suppd = [a,1 —a], 0 < a < 3, then for large m,

2 28m
Lﬁe‘ & + R(m)

I(m) ——

m—00 v
The remainder term with the maximum on the boundary has order

2 _ m
R(m) ~ %ﬂe W= [(m)

24

-) are

(2.5)

(2.6)

Where L(m) —— 0 and L(m) depends on the structure of the distribution q(df)

m—0o0

near the mazximum point O iica = 1 — a.

Proof. From (2.5), due to the Laplace method, it is trivial to get the result.

O

The behavior of ps(m) as m — 0 is much more interesting. Here we will use the

exponential Chebyshev’s inequality, more detailed analysis in the case when ¢(df)

contains finitely many atoms, see Derfel [Derfel, 1989] and [Derfel, van Brunt, and

Wake, Derfel et al.].



Theorem 2.6. Assume that Suppd = [a,1 —a], 0 < a <

Proof. Let’s start from the

i=1,2,

A

£< m\é}

25

1

5, then if m — 0, then

P{f < m} ~ 6011n2(%)

standard calculations, for A > 0 and fix a < 6; <1 — a,

A P Ee
= P{e™ >e A} < min
A>0 e—Am
) _ Avy_ Avlyy Av10ay
— min 6)\m In(1+55)—In(1+ 55+ ) —In(1+-5472) (27)
A>0

Equation for the critical point A\g = Ag(m) has a form:

v 00y 0010y
28 283 28
e + . + R
1432 1+ 4% 1 4 2
ie.
I S S
m = QB 26 PN 25 PR
TN A oo T A
Define k(\) = min{k : Uefjf.j_ek ~ A}, then m ~ @ From v012~?~6k ~ k, we then have

In )\
Eln(3)

k(A) ~

. Hence, the critical point

1

ln(m)

AN ——m/
mEIn(3)

(2.8)

Substitute (2.8) into Chebyshev’s inequality (2.7) gives

P

&< m|§}

L vin(L vIn(L)o -
111(,11) —ln(l—i— ! (m)l )__1n(1+W)
< eEln(e) 2m[3Eln(0) 2'm[3E1n(6)
1 vin(L vin(L)ak
i) (i Y (1 vinGhet
< eEln(e) 2m[3Eln(0) 2m[3Eln(0)
ln(%) <k vln(%)ai
< eEln(%) Zi:O 1n(2mﬁE1n(l))
< —c1 IHQ(L)
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Figure 2.3: Asymptotic behavior of II(m)

2.4 Moment equations and limit theorems

In this section, we study the distribution of n(¢,0). The basic technique is the
calculation of the moments. Joint distribution of N(¢) and n(t,0) and conditional
distribution are also of our interest. Although we will not discuss in details here, our
aim is to lay a solid ground for future investigation of other limit theorems.

Consider u(t, r; 2) = E,2"*% similar to FKPP equation (1.10)

du
ot
u(0,z) = zd(x)

= rAu+Bu® — (B+pu+p (2.9)

Differentiation over z with substitution z = 1 gives the equation for the first moment
my(t,x) = E(n(t,0))
omy (t, x)

ot
m1(0,x) = do(x)

= kAmi+ (8 — p)my (2.10)

ie
my(t,x) = P(t,z,0)ef~H"

where

_le—y[?

Sl

P(t,x,y) ~ ) (2.11)

x—y|~O(t
(4mkt) | | (
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Differentiation of (2.9) over z [ times and substitution z = 1 ( gives us the equation
for the I-th moment my(¢,x) = E,[n(t,0)--- (n(t,0) — 1 + 1)],l > 2. my(t, z) satisfies
the non-homogeous equation

-1

W = kAmy+ (8 — p)my + 5; (ZZD) my(t, 2)my_p(t, x) (2.12)
m(0,2) = 0

Lemma 2.2. (Carleman C.) If [ x'dp,(z) %y and |y| < 1, then vy are

w.
moments of some measures |1 and fi, — [i.

Lemma 2.3. (Duhamel’s Principle)

sl = kAm o+ o(@)m +g(t, ) o3
m(0,z) = mo(x)

then the solution is given by:
t o
m(t, aj) — EIE |:€f0'l)($s)d8:| mo(«rt) _'_ va |i/v 6IOU(Zu)dug(t o S, IS)]
0

Our goal is to prove

Theorem 2.7. If f > 1 >0 and |z| ~ o(t1), then

P, (n(ti’o)) < a) — G(a)

ma(t, x

where G(a) is
dG

= ado(a) + (1 —a)re™, a>0

which is the same limiting distribution as for E(NT(t()t)) in Lemma(1.1).

Proof. The proof of this theorem is based on th direct calculation of the moments. It

is sufficient to check

n(tvo) ! . B B -1 B
E{ml(t,fﬂ)} I—o0 =1 (ﬁ——,u) , 1=1,2,---
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Note that the moments are increasing not to fast and we can use Carleman’s moment

theorem. It is equivalent to prove the similar relation for the factorial moments:

. n(t,O)(n(t,O)—1)"'(n(t,0)—l+1)}lHOO”“:“( b )H, [=1,2, -

l

ml(tvm) B_M

i.e.

B [n(t 0)(n(1,0) = 1)+ (n(8,0) = L+ DI = 009! (1,,0) (=),

1=1,2,---

Let’s start inductive proof from the second moment, [ = 2. The differential equation

and intial condition for the second moment are:

Oma(t
WD) ka4 (8~ nms -+ 281 )
m2(0,2) = 0

Due to Duhamel’s formula,

/25 > mi(t = s,y)eP M p(s, y, x) ds

yEZd

)i— —2y|%
8 e T 4r(t—s)

2 e(B=m)s
/ 3 Z () p(s,y, ) ds

yEZ4

The main contribution give the results of s close to 0 since m?(t — s, y) changes slowly,
therefore,
' o
tax)~ [2 £ Bmt-s) g
malt, ) /0 p Z (47?/#)‘16 °
ezd
. —3\1\2 ‘
" (B-p)(2t=s) g
e s
p (4dmkt)d /0
—2|a|?
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Assume by induction that

b
mi(t, x) ~ ke (p(t, 2, 0) (m—), k<i-1
f—p
and use the general equation for m; in terms of mym;_p, k=1,2--- [ —1 . It gives
-1
BZX)/é:mJ—MMMN—&WMW%@%@%
=1 y€eZd
-1 3
~ 8y (:)/§jlwﬂ@s (t = 5,3, 0)K(n — K522l Pp(s, . 2) ds
1 gt B—u

-
~ B ( )/Z (B—p)(t—s) t—S y,O)k'(n—k) (56 )l_26(5_“)sp(s,y,x)ds
=1

y€Z4 K

~ 5[!(—B€u)l—2pl(t7x’0)/el(ﬁ—u)t—(l—l)(ﬁ—u)s ds
0
/8 -2 1 e(ﬁ_u)lt
~ Bl t,x,0)—————
[
~ [ ’B_M)tpl t,x,0 —5 =1
(t, z,0)( 5 M)
which gives the desired result. O

Remark 2.2. Theorem 2.7 has the following interpretation: In the Malthusian pop-
ulation, the exponential growth of the total population proportionally effect population

in each site.
2.5  Solvable model with constant coefficients

Throughout the subsection we restrict ourselves to the special case. Our interest
concentrate on the limiting distribution of the mass process under the condition the
total number of particles N(t) is fixed. In particular, we assume that the entire

coefficients are constant, i.e.

B>0,u=0,v(x,m)=v,q=05m=0A=][0,00),
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then (N(t), M(t)) is a Markov process. To study the behavior of the process (V(t), M (t)),

consider the moment generating function of ¢(t, 2z, k) = EzN®e™*M®) then ¢(z, k)

satisfies
Pt +dt, z, k) = ¢*(t, 2, k)Bdt + (1 — Bdt)e ™ p(t, 2, k)
Hence
O 2
— = — k
5 B¢" — (B + kv)o
9(0,2,k) = =
Solving the eugations, we have
6—Bt—kvt
o(t, 2, k) = T———=%r (2.14)
EE PR

From the above derivation, we now state the limit distribution of N(¢) and M (t) after

normalization.

Theorem 2.8. The joint distribuiton of (N (t)e P, M (t)e ") — (& 5€),where &
— 00

18 an exponential random variable with parameter 1.
Proof. let’s consider the Laplace transform
E [e—klN(t)efﬁt—kzM(t)e*Bt] _ E[(e—kle*m)N(t)6—(kze*’3t)M(t)]

—kie= Bt —pt
= ¢(ta e ’ k26 g )
e—ﬁt—kgvte_ﬁt + @6—251&—]@@1&6_&

_ B
o ekle—m + %e—,@t—i—kle—ﬁt — 1+ e—,Bt—kgvte—m
. —A
tooo —ky B —kov — 3
B 1
B N N Y

At the same time, the Laplace transform of (¢, 5€ ) is

E [e—k1§—k2%5] - B [6—(k1+k2%)§} _ 1
L4 Ky + ko
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This gives the theorem. O

If we fixed total number of particle, What is the behavior of M (¢)? The following

two theorems answer the above question.

Theorem 2.9.
n—1
1 —pBt—kvt
E [e_kM(t)|N(t) = n] = ¢ kvt
(1= ) (14 %)
Proof. From (2.14)
n—1
e —Bt—kvt B o 1— e—,Bt—kvt .
Ot k) = T e = Ze S el B
z 142k B B
From the total probability formula:
B(t, 2, k) = EzNO kM Z P(N [e_kM(t)|N(t) =n| 2"
together with the fact
P(N(t)=n)=e(1—e)
we have -
1 —Bt—kvt
Bl M O|N(f) = n] = e (2.15)
(1 —eht) <1 + v;)
O

Theorem 2.10. Given that N(t) = n,

Proof. since n(t) = et

]\l(t)—%n

t
—k(—w ) \/ kBt 1—e Vet
e ﬁf ] }N(t):feﬁt — 6k Seﬁte geﬁt [ :Ié'eﬁt

E

1+ —A)1—eB)




kBt

-8B
k §eﬁt—k—%+§em In(l—e VeePt ) In(1—e=B4)—In(1+—~—)

=€

Using Taylor expansion In(1 4+ z) = > (—1)"™% and In(1 —z) = — > £

. K2
gives ez ast — oo.

n

1
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CHAPTER 3: CONTINOUS CONTACT PROCESS

3.1 Introduction

The contact model is one of the simplest ones in the theory of interacting Particle
systems. The contact model on the lattice was first constructed and studied by T.
E. Harris [Harris, 1974] and its name is due to the interpretation as a model for
infection spreading. Lattice contact models have very reach properties and some
essential applications. See, e.g. T. M. Liggett [Liggett, 1985|, [Liggett, 1999].

In 2006, The continuous contact model was first proposed by Yu. Kondratiev and
A. Skorokhod [Kondratiev and Skorokhod, 2006]. Under certain general assumptions
on the infection spreading characteristics in the Euclidean space R?, they introduce
the continuous contact process as a spatial birth-and-death process in the configura-
tion space of the system. Series of works have been done by Yu. Kondratiev and his
group, see especially [Kondratiev et al., 2008]. For the continuous contact process,
we are especially interested in the critical case because the existence of the invariant
measure. For other cases the limiting invariant state does not exist[Kondratiev et al.,
2008]. Meanwhile, the dimensionality also plays an important role. For d > 3, we
will prove that the limiting distribution exists if the second moment of the underlying
random walk is finite. However, for d = 1 or d = 2, the second moment diverges. To
avoid the divergence, we can assume the underlying random walk to allow for long
jumps. Such assumption leads to the main models here. Detailed analysis of the
discrete and continuous models can be found in [Feng et al., 2010].

From a biological viewpoint it is a natural model of a “forest”: there is no motion

of particles in space, but each “tree” can produce a new “seed,” and the seeds are
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piée(z,z+dz)} =a(z)dz

Figure 3.1: Tree

randomly distributed around the tree.
3.2 Contact processes in R?, d > 1

Assume that the initial field of trees has a Poissonian structure with density po,

i.e., V(I' € B(RY), m(T') := |I'| < oo we have

P{n(0,T) =k} = e_’\(r)()\(ki!))k, k>0,

AT) = [Tloo.

During the time dt each tree can either die with probability udt or produce a single
seed with probability Adt. If x € R? was the location of this tree the seed jumps to the
point = + 2z € R? with density a(z). We will assume that a(z) = a(—2) (symmetry),
a(-) € C(RY) N LY(R?), and [pa(x)de = 1. Let p = j3 (criticality), the rate of the
transformation (either death or birth of a seed) be equal to 25 and at the moment of
transformation 7 (P{7T > s} = e72%%) each of two possibilities (death or the birth of
a seed) have probability 1.

Let us note (in contrast to the Z? case) that the field n(t,z) has multiplicity one
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and the correlation function k" (21, ,2,) has the sense of the densities:

k,g”) (x1,--,xp)dxy - - - dxy, = P{to find at the moment t > 0 single particles

inside the sets 1 + dxy, -+ ,x, +dzr},n>1

The first two moments have the following form:

1)
aktT(x) = =Bk @)+ 8 | alx - 2k (2) d>
t R4

K (@) = po (3.1)

and

(2)
O T1 7)oyt (ay, 25) + AR (r)alar — 2) + BED (z)a(zs — 21)

+ B/ r1 — 2)k x2, dz+6/ xg—z)k( (21, 2)dz
kD (1, m0) = 7 (32)

Section 3.3 will contain the asymptotic analysis of the moments k:t(l)( ), I>1,t—
oco. We will prove that in dimension d > 3 there exists a limiting distribution for
n(t,-), t — oo without any conditions on the moments of the density a(z) (in contrast
o [Kondratiev et al., 2008] where the limiting distribution was justified under the
conditions [p./z[?a(2)dz < oo, d > 3). In dimensions d = 1,2 (d = 2 is the most
important case for biological applications), we will prove the existence of a limiting
distribution for n(t,-), ¢ — oo under some regularity conditions on a(z), |z| — oc.

Roughly speaking, we assume that for d = 2 the density a(z) belongs to the domain
of attraction of a symmetric stable distribution with parameter 0 < o < 2 (let us
stress that symmetric for d > 2 does not mean isotropic). For d = 1 the density
a(-) must be from the domain of attraction of a symmetric stable law with parameter
O<a<l

As for the discrete case, we also derive the asymptotic for the variance of trees in a
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region, with an eye toward establishing a central limit theorem, although we do not
do that here.

We will not present, the analysis of the moments (correlation functions) of order
n > 3, but will concentrate only on the second moment (using Fourier analysis, which
will be the main tool for the highter moments as well). It will be proven that for d > 3
and any spatial dynamics or for d = 2 and heavy tails spatial dynamics the density
of the second correlation function k) (¢, z1, x5) has a nontrivial limit k® (oo, 21, 25),
t — 0o. Together with the conservation of the first moment (density), kM (¢, ) = po,
it will provide the fundamental fact of tightness for the finite dimensional distributions
of the point field n(t,-). In any limit theorem about the ergodicity (existence of the
limit distribution) for the Markov process (in our case these processes have infinite
dimensional phase space: the space of the locally finite configurations {z;,i = 1,2, ...}
of the particles) the proof of tightness is the first and most important step.

The complete proof of the existence of the limiting distribution (the convergence

of the field n(t,-) to a statistical equilibrium) will be published later.
3.3  Correlation function and Fourier analysis

This model was introduced by Yu. Kondratiev and their work also contains exis-
tence theorems for the limiting distribution in dimensions d > 3.

Consider the initial Poissonian field in RY. The death rate of the particles is equal
to the birth rate 3. At the moment 7: p{7 > s} = ¢72% a particle either dies with
probability % or produces a new seed, which is randomly distributed with density

a(z),z € R%. Assume that a(z) = a(—z) and

/R a(z)dz =1

This is a simplified model of a forest. After a birth at the point x, the tree remains

in z but the seed produces a new tree at z+ & € R%. The central object in this model
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is the set of correlation functions:

kt(n) (1, ,xp)dxy - - - dx, = P{to find at the moment t > 0 single particles
inside the sets xy +dxy, - ,x, +dz},n>1
The derivation of the differential equations for k:t(n) (1, ,x,) based on the standard

technique:balance of the probabilities in the infinitesimal initial time interval (0, t-+dt).
Namely, let’s split the interval [0, t+dt] into two parts [0, t|U[t, t+dt]. During [¢, t+dt],

we observe one of the following hypothesis:
e nothing happen with probability 1 — Sndt
e birth of a particle from inside cloud with probability Sa(x; — z;)dt
e birth of a particle from outside cloud with probability fa(x; — z)dt

Now one can apply the full expectation formula:

Ku(an, - 2a) = (1= Bndt)k (@, )

+ Z k‘ﬁn_l)(ffl, S Ti1, Tigl, 5 Tn) Z pa(z; — x;)
i=1

Jig#i

+ Zkﬁ”)(xl,-~- ST, 2, Ti1, X)) | Balz; — 2)
i=1 R

Rewrite the above expression, we have

8kt(n) (1, ,2p)

= —Bnk{™(zy, -, x)

ot
_'_BZ Z a('ri - xj)kzgn_l)(x17 oty L1y Lj1y 0t ,an)
1=1 j:j#£i
+6 Z/ a(xi - Z)kzgn) (xb X1, 2 L1y axn) (33)
i=1 v R"

To analyze the correlation equation, let us apply a Fourier transform to the corre-

lation function and define l;:(”)(gpl, Doyt Pp) = tlim l%t(")(gol, D2, Pn)-
—00
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When n =1, it is trival that

K (2) = D (2) = po.

When n = 2, apply a Fourier transform to equation (3.2). Then:

81%152) (@17 802)

ot = —(2—alp1) — a(2) Bk (1, 02)

+(2m)po(alpr) + alp2))do(p1 + w2)

ED (p1,02) = (21)22p200(01)00(02) (3.4)

The solution of this equation is:

B (ga) = 20 pldo(ipr)do(pa)e el el

+(2m) %, (a(p1) +Ad(<ﬂ2))5oA(<P1 + 2) (1 — e~ BCalen-ale2)ty
2 —a(p1) — afwz)

Letting t — oo, we obtain:

a(p1)d0o(p1 + p2)
1 —a(p1) '

D (1, 02) = Tim B (01, 2) = (2m)* pido(i01)do(p2) + (2) o

Thus, if the inverse Fourier transform k®)(zy, z,) exists, it should take the form:

@) TR ) _ 2, o ior(ma—z1) O(¥1)
k' (21, x9) tgnogkt (21, x2) '00+(27r)d /Rde 71_&(%) dep; .

When n = 3, similarly, the limiting correlation function has the form:

kO (01, 02, 03) = (2m)> 00 (1) d0(02) 00 (03)

2 —a(p1) — a(pe)
cluster containing (:c‘;:cg), T3 is separated

(a(p1) + alp2)) a(p1 + p2)do(p1 + p2 + 3)
3—a(pr1) —alpz) —alps) 2 —aler + pa) — alps)

+two similar terms).

do(p1 + ©2)00(p3) +Htwo similar terms)

+(27) %o (

The Fourier transform of the limiting correlation function has a cluster structure.
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The general formula, although a bit complicated, is clear from the presentation of the

first three moments.

Theorem 3.1. The Fourier transform of the limiting correlation function is a solu-

tion to the recurrent system of equations:

K™ (1, pn) = (27)"pido (1) -+ So(n)

n Zn: Z (a(pi) +a @j))]%("_l)(% + 05, Pir s Pin_s)
j=1 i#j n-— &(901) - &(9071)

i <ig < <ip_g,740,]

(3.5)
Proof. Apply a Fourier transform to the correlation function kt(") (x1, - ,x,). Then,
from equation (3.3), we have:
8]%t(n) (9017 Ty ()On) o ~ 2 (n)
o = —(n—a(p1) = —alen)) Bk (01,7, @n)
+83° S (ale) +ale)) R (i v e i)
j=1 i#]

i1 <ig < <ip_3,74,j
By solving this equation with the initial conditions and letting ¢t — oo, we obtain the

recurrent formula. O

Remark 3.1. The Fourier transform of the limiting correlation function () (o1, ,¢n)
has a cluster structure, similar to the expansion of the resolvent of the multiparticle

Schrodinger operator. It contains:

e n individual 1-clusters, given by the term:
(2m)" g do(p1) -+ - Go(pn)

e one 2 cluster and (n — 2) I1-clusters, with the typical term:

(27T)(n—1)d n—1 d((pl) + &(302)

5 alpr) = d(%)%(sol + 02)d0(3) = - do(pn)
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e one 3 cluster and (n — 3) 1-clusters with the typical term:

(271_)(,1_2)11 n—2 &(801) + d(cp2> CAL(()OI + ()02> + d(@:ﬂ) .
© 3 —ale1) — alpa) — alps) 2 — a1 + ©2) — ales)
do(p1 + w2 + ©3)00(4) - - - do ()

a(e1) + ales) a(e1 +s3) +ales)
3 —alpr) — alpz) — ales) 2 — aler + p3) — ale2)

do(p1 + w2 + ©3)60(p4) - - - o (0n)

a(p2) + ales) a(p2 +p3) +alpr)
3 —a(pr) — alpz) — ales) 2 — alps + p3) — aler)

do(p1 + w2 + ©3)60(p4) - - - o (0n)

+(2m) 2 e

+(2m) "

and so forth.

Example 3.1. Assume that there are n particles grouped as (x1,xs2,x3), (x4, T5),

Tg, -+ ,Tp, then the typical expression will be:
(27T>(n—3)dpg—3 a(p1) + alp2) )

5—a(p1) — alpz) — alps) — a(ps) — ales)

a1 + p2) + alws) _ a(pa) + aps)
4 —a(p1 + @) — alps) — alps) —alps) 3 —aler + 2 + w3) — a(pa) — ales)

do(1 + P2 + ©3)00(pa + ws5)do(@e) - - - 00(n) + similar terms.

Lemma 3.1. For d > 3, let 0 < a(z) € L' (RY) be an arbitrary even function
such that [, a(x)dx = 1. Then, the Fourier transform of a(x), which is a(p) =

Jpa €79 a(2) dz, satisfies the following estimate:
11— a(p)| = O(¢?), as || = 0. (3.6)
Lemma 3.2. For d=2, suppose for the contact process that a(z) has the spatial dis-

o= e (10 (7)) ##0

with 0 < a < 2, 0 = arg 7 € [—m,m) =T, hi,hy € C*(TY), h > 0 and so satisfies

tribution
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the heavy tails assumption. Then, as |p| — 0, 1 —a(p) = O(|¢|*).

Proof.

l—a(p)=1- /R2 e~ q(z) de = /R2(1 — cos(p, z))a(r) dz.

If ¥ = (x1,22) = r(cosb,sinb), ¢ = |p|(cosy,sin~y), then

1=ile) = [ R eos(e. D)7+ O(lol)
|Z]>0

o0

— [ [)(1 = costrel - costo — )t +O(1of?)

— [n6) [-E 1= costrel - cos(t — )b + OoP)

Using the substitution ¢ = r|¢| - | cos(§ — 7)| we obtain

1 —cost

1= (o) = Ollgl?) + 1t [@)] conto—lan - [25=ar

-7 0

™

Set ¢, = [L5=tdt, H(y) = [h(0)|cos(§ — ~)|*db, v = argp, H(y) € C(TY),
0 -
H(vy) > 0. Then:

1—a(p) = cale|*H(y) + O(l¢l*), |o] — 0.
O

Theorem 3.2. Let a(z) > 0 be an arbitrary even continous function such that

Jpaa(2)dz =1 and a(p) = [pae™"a(x)dx € L'(RY).

e Ford > 3, there exists a limiting distribution k() (1, ,x,) such that:
k:(”)(a: e T) s kM (24, @)
t 1, s 4n 1 ydbn ).
t—o0
h(6)

e Ford = 2, assume a(z) ~ e with 0 < a <2, 0 = arg 5y € [—m,m) =
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T'.h € C*(TY),h > 0. Then, there exists a limiting distribution k™ (zy,--- , x,)
such that:

k:ﬁ”)(xl, Y k(”)(xl,--- ).

t—o00

e Ford =1, assume a(z) ~ ”Zh”(—29+)a, with 0 < a <1, 0 = arg 7y € [—m,m) =

T'.h € C*(TY),h > 0. Then, there exists a limiting distribution k™ (zy,--- , x,)

such that
" (2, an) — K (@, ).
t—o0
Proof. In order to clarify the existence of the limiting distribution k™ (zy,--- , x,),

we should check

n 1 i(Q1z1+- zn) 7.(n
k:( )(xl7...’xn):W/Rd.../Rde(ﬂpl 1t tpn n)ka( )(S017’90n)d901dgpn<oo

e For d > 3, Let us consider the case n = 2. As calculated earlier, £ (1, x2) has

the expression

Po —ip1(za—2x1 d(CIOl)
k(2)(x17x2) — pg -+ (271.)(1 /Rde 4 ( 2 )%dwl

By lemma 3.1, 1 — a(p) = O(|¢|?) as ¢ — 0. 1f d = 3, then 125 = O(y) at

©=0,ie, 1%:20) € LY(R?). Therefore,

K =+ G / o) ) g, ¢ 1)
(5171,33'2) Po + (27T)d Rd € 1— &(801) Y1 ( )

For mathematical induction from (n — 1) — n, from [Kondratiev et al., 2008],

we find that the central issue turns out to be the proof that % e L'(RY),

which we have just proved for n = 2.

o For d =2, [,2%a(z)dz = oo, but if we add the extra assumption that a(z) ~

”Zh”(—fla, the integrability of

lfg’@p) at ¢ = 0 still holds. By lemma 3.2, 1 —a(p) =

O(|e]®) as ¢ — 0.

If d=2 and 0 < & < 2, then ;%)

1/(md
(@)E}L(R ).
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e For d = 1, the proof is similar to d = 2.
O

Theorem 3.3. All terms in the cluster expansion of kW (x1,--- ;) are positive.

This is the manifestation of the weak FKG-property of the limiting field.

Proof. The typical term in the cluster expansion is the product of the following three

kinds of term:
e 0o(p1+ -+ pr), k < d; it is the Fourier transform of a positive constant.

o a(p1+ -+ ¢r), k <d; it is the Fourier transform of a(z),which is positive.

1 . . . . .
L T rw T this term can be expressed in the geometric form:

1 1 1

(a(p 4 alpr)) - El _ @(501)4-'];4'@(%01@)

( ( k-+&(sok)) I (d(¢1)+'é~+&(sok))”+m)

n ~ i1 A i2 ~ i
L+l Z (ih Gg, - 7Z~k) (1) a(p2)™ -+ aler)™

i1+t Fig=n

wIH

Mg

If iy # 0, then a(py)" is the Fourier transform of @ a*---%a (2).
~—

i1 fold convolution

If 4y, -+ i, # 0,k < d, then a(py) a(g2) - --a(py)™ is Fourier transform of the

product of those convolutions, i,e.,

(axax---xa(z)) - (axax*x---xa(z)),

i1 fold convolution i fold convolution

which is positive. Therefore ) is also the Fourier transform of a posi-

1
 k—(a(p1) 4 Faler

i i ; s A1t tor)do(p1t++or)
tive measure. Hence, for the typical term in the cluster expansion =5— Gl e
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together with the locally integrability of the term, we conclude that the inverse Fourier

transform of this term is positive. O

3.4  The variance of the population for the continuous case

Finally, we prove a result for the variance of the number of particles in a region.
Our result can be used to establish a central limit theorem for the contact process,
although we do not do so in this paper.

Theorem 3.4. Assume the contact process analyzed above. Let 1—a(p) = B(|p])|¢|?,

1 ¢
assume a((|“0| is bounded, and [((0) = limoﬂ. If Q, denotes a ball of radius
o|—

||

r with the center at the origin, then as r increases, the variance of the number of

particles in Q, grows as r®+e.

Proof. Let n(@Q,) denote the number of particles in @), as t — oo , Then, the variance

of n(Q,), which we again call V| is:

V := Var (n / / — pa)dxdy.

Qr Qr

Because of the spatial invariance of k? | we set B(x — ) := k@ (z,y) — pi.

// r—y dwdy—//fgr 2)lo, (4)B(x — y)drdy

R4Rd
= / / Céfrdgd / / / 0. (02)e™ P g, (p,)e P B(p,)e "W dp,dp,dep,
RIRd RAIRIRI
— dxdy I B —i(Patz,x) ,—i(Py—¢z,Y)
/ / o) / / / o (02)1q, (py) B(p:)e e dprdp,dp,
R4Rd RARIR4

80(pz + ©2)80(0y — w2) o, (a) o, (9, B(p.)dp.dp,dp.

RARE Rd
1 X ) )
= W/]QT(—%)IQT(%)B(%)CZ%-

Rd
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We can write the Fourier transform of the indicator function [ as: :

o ) 2mr d/2
fo ()= [ e ar = (W) Jua(rlol),

T

where .J;/, is the Bessel function of the first kind of order 4 [Gikhman and Skorokhod,

1974]. Also including the result for B(p) = fﬂi(go from section 3.3, we obtain:

ot [ L el )
V= por / o (arrle)’ 72 e (37)

Together with the assumption 1 — a(p) = B(|e|)|@|¥, we now can write (3.7) in

polar coordinates. This gives:

i | i)
= 0/ ‘1+a Jd/2( |S0|)) (‘ ‘) ‘90‘

d7‘('d/2
r(g+1)

where ¢; =

We set x := r|p| to get:

(
(

)
)

Q>

318

dz.

)

318

2
V = pOCdT / xl-i—oe Jd/g )
0

a(p)

Since B is bounded, and as r — oo we have alp)

Bl

L Consequently, as r — oo,

Ble) — BO)

o0

PoC o 1 2
V — —BO(OC;TCH_ /xl+a (Jd/2(x)) dx

0

Finally, for small x, (Jd/g(as))2 < cz? and as z becomes large, (Jq/2 (x))2 < 1 which

means that [ 4= (Ja/o (x))2 dx converges, giving that:
0

V —— ¢ordte
r—00
h POCd < 1 J 2 d — M D
where ¢y — 5(0) f Zita ( d/Q(x)> X, Cq = F(%-ﬁ-l)'
0
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