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ABSTRACT

JOHNSON OPADERE. Improvement of Customer Baseline Calculation
Methodologies of Demand Response using Maximal Overlap Discrete Wavelet

Packet Transform. (Under the direction of DR. PETER SCHWARZ )

Demand response is a reduction in electricity consumption designed to prevent sys-

tem emergencies stemming from demand spikes during peak periods. While demand

response has been embraced as a cheaper alternative than adding peaking generation,

the implementation has been challenging, especially for residential customers. The

peak period baseline load of residential customers is di�cult to estimate due to the

load pattern randomness emanating from weather or behavioral variations. In this

thesis, a novel clustering-based customer baseline load (CBL) is proposed to improve

the error performance of the traditional baseline estimation methods. The proposed

method assumes there are true underlying clusters of consumption pro�les of res-

idential customers, which di�er only with respect to some feature(s). The spectral

features obtained, via Shannon entropy (SE) estimates, from maximal overlap discrete

wavelet packet transform (MODWPT) decomposition of the historical consumption,

were harnessed to compute a set of new CBLs for existing baseline methods. The

proposed method shows signi�cant error performance improvement with respect to

peak period baselines. The thesis is extended to a case study of a Dynamic Peak

Rebate (DPR) pricing demand response program. The amount of rebate payment

was estimated by clustered linear regression (CLR). Finally, the demand reduction

costs of the DR event load reduction are calculated for various CBL estimation meth-

ods. The proposed CBL method comparatively provides the lowest demand reduction

costs in all the DR events considered.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Demand response (DR) enables electricity consumers to signi�cantly contribute to

the operation of the electric grid by optimizing its electricity usage in response to

time-based or incentive-based rates. The customers respond by either reducing or

shifting their energy consumption. The response has the capability of averting the

cost of peaking generators and eliminating blackouts [1]. DR is usually implemented

through programs facilitated by utility companies and aggregators as well as govern-

ment [2] as resource options for balancing supply and demand. Moreover, the DR

program savings from the avoidance of the cost of incurring new peaking capacity can

be signi�cant, in addition to the savings from peak period energy cost. For example,

in the US alone, a �ve percent peak time rebate (PTR) via DR programs over 20

years is estimated to yield a savings of up to $35 billion [3].

The most commonly utilized demand response program mechanisms are the Direct

Load Control (DLC) such as in [4, 5, 6], and price-based programs [7]. The DLC pro-

grams allow a utility or an aggregator (DR operator) to directly alter or time-shift a

customer's consumption via remote control switches. The targeted consumer loads in

DLC are mainly air conditioners, but electric water heaters and pool pumps can also

be included [8]. The limitation of the DLC programs is the low degree of trust the

customers have in surrendering the direct control of their equipment to the utilities

[9]. In addition, centralized controlling of the remote devices installed on customers'

sites could be cumbersome as the size of the participants gets large [4].

In price-based programs, customers are incentivized, usually with time-based rates

or a rebate, to adjust their consumption during peak periods [6]. Price-based rates
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can be broadly categorized into time-of-use pricing (TOU) and dynamic pricing. A

TOU pricing plan divides the day into intervals with �xed retail prices regardless of

system conditions. Since prices are �xed in the intervals regardless of the system con-

ditions (wholesale price availability or stressed system), customers are not motivated

to reduce demand based on real-time conditions with a TOU pricing plan.

Dynamic pricing plans entail charging varying prices in response to system con-

ditions. The price variation encourages the customers to reduce their demand with

wholesale price o�ers or a stressed system condition. The common plans under dy-

namic pricing include real-time pricing (RTP), critical peak pricing (CPP), and crit-

ical peak rebates (CPR). In the case study DR programs employed in this thesis, the

CPP and CPR are referred to as dynamic peak pricing (DPP) and dynamic peak

rebate (DPR), respectively, following the data source program report [10]. Since the

terms are essentially the same [11], I use DPP and DPR to refer to CPP and CPR,

respectively, for the rest of this thesis.

The strategies proposed and the DR events used in this thesis are for the DPR

pricing plan. According to behavioral science theory, people always have a stronger

preference to avoid losses than to acquire gains. The same applies to electricity dy-

namic pricing plans, where there is a higher likelihood of customers subscribing to

DPR than DPP DR programs [8]. The particular focus of the thesis as regards DPR

DR programs is on the estimation of customer baseline load (CBL), and the impact

of the CBL accuracy on the demand reduction costs of the load reduction in the peak

periods.

A novel clustering-based CBL estimation method is proposed in this thesis with

the view to improving the accuracy of the customer baselines. In addition, the rebate

payment of actual DPR events is estimated using clustered linear regression. With the

estimated rebate, comparative evaluation of the demand reduction costs of the DR

programs, using the proposed CBL method and the existing methods, are presented.



3

Since one of the objectives of a DR operator is to motivate the consumers to reduce

their electricity usage during peak periods, the utility or the operator is required

to estimate the customer baseline (CBL) for the event period. The CBL enables

the operator to compute a customer's load reduction during the event period, and

to gain insights into the customer's incentive for participating in the DR program [12].

1.2 Motivation

Accurate estimation of CBL is a key element in the successful realization of the

objectives of DR. The CBL of residential customers is particularly challenging to

estimate due to the randomness in the load pattern emanating from weather or be-

havioral variations.

There is an adverse consequence from an underestimation or overestimation of

CBL, especially in a rebate based DR program. With inaccurate baselines, the ap-

propriate rebate will not be paid to the customers. CBL underestimation results in

under-calculated peak time actual load reduction resulting in an underpayment of re-

bate. Ultimately, the motivations of the customers to participate in the DR program

will diminish. Such customers may even consider canceling the contract or refuse to

participate in subsequent DR programs. On the other hand, overestimation of CBL

makes the DR operator overpay rebate. And overpayment of incentive can lead to a

decrease in motivation for the operator to continue the program [13].

Since there is still no universally accepted method for computing CBL, it is up

to DR operators to develop or apply a suitable CBL estimation method for their

customers. For instance, California Independent System Operator (CAISO), New

York ISO (NYISO), Pennsylvania Jersey Maryland Power Pool (PJM), and ISONE

are known to have employed CBL averaging methods. The averaging methods are

of di�erent types and more explicitly discussed in Chapter 2. The main demerit of

the averaging methods is their vulnerability to signi�cant errors when dealing with
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residential customers.

Recently, a machine learning technique called clustering is gaining popularity for

estimating CBL of residential customers. [7, 14, 15, 16]. Clustering undermines the

strategic behavior of customers to in�ate rebates. If CBLs are based on individual

customer demands, and if customers know the dates and hours the utility is using to

determine the baseline, they can arti�cially in�ate their usage by turning on appli-

ances or increasing the intensity of use above what they would ordinarily choose. If

their CBL is based upon a cluster of customers, the individual's action will only have a

small e�ect on that customer's baseline[17, 18]. Authors in [7, 14] show their proposed

discrete Fourier transform (DFT) based clustering CBL methods have signi�cantly

better accuracy than the averaging methods. However, the existing clustering CBL

methods are vulnerable to errors and instability due to sensitivity to the starting

point of the employed consumption time-series data.

In this thesis, I leverage the characteristics of maximal overlap discrete wavelet

packet transform, whose decomposition is not sensitive to the starting point of the

time-series data [19], to extract clustering features for consumption pro�les of res-

idential customers. The proposed method in this work is robust to the mentioned

drawback of the existing clustering-based method methods.

1.3 Contribution of the Thesis

In this thesis, I show the e�ectiveness of clustering-based strategies in the reduction

of randomness, causing inaccuracy of the conventional CBL estimation methods. In

particular, with the integration of the novel maximal overlap discrete wavelet packet

transform decomposition-based technique with the existing CBL estimation methods,

the accuracy of the resultant baselines are improved considerably. The performance

is evaluated with dynamic peak rebate (DPR) structure DR programs.

This thesis further exposes the e�ect of CBL estimation accuracy on the demand

reduction costs of the load reduction in a DPR demand response event. The principal
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contributions of this thesis are:

• I propose a novel clustering-based CBL estimation method, which leverages

the entropy features obtained from maximal overlap discrete wavelet packet

transform (MODWPT). The proposed method shows the overall highest CBL

estimation accuracy as compared to all the benchmark techniques.

• Unlike in most studies where the data used are not from a real-world DR pro-

gram, I evaluate the performance of the proposed method and the benchmarks

with data from an actual dynamic peak rebate program. Using the estimated

load impact from an actual DR program, I evaluate the baseline error perfor-

mance and rebate payment errors from using various CBL methods.

• I leverage the clustered linear regression (CLR) to deduce the amount of rebate

paid to customers, in a dynamic peak rebate DR program, for evaluation of

program-level demand reduction cost.

• The DFT-based method is used as the representative of the existing clustering

methods in this work. When proposed in [7, 14], the DFT-based method's

accuracy was evaluated using data that are not from actual DR programs. In

this thesis, I implemented the estimation technique, and its evaluation shows

a signi�cantly better performance than the conventional methods. Although

the performance of the DFT-based clustering is somewhat comparable to the

proposed method in this thesis, the accuracy of the latter outperforms the former

in all the DR events evaluated.

• Finally, I present a program-level evaluation of the rebate payment in order to

determine the associated cost of load reduction during DR events. The obtained

results are presented as the demand reduction costs of the dynamic peak rebate

demand reduction, whose values depend on the employed CBL method.
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1.4 Organization of the Thesis

This work is subsequently organized as follows.

• Chapter 2 reviews the existing CBL estimation methods. The formulas, the eli-

gible days, and discussions of each conventional baseline method are presented.

Also reviewed is the DFT-based clustering baseline estimation method.

• Chapter 3 introduces the novel clustering-based baseline method proposed in

this thesis. Wavelet energy and entropy features extraction from maximal over-

lap discrete wavelet transform decomposition is described. The clustering of the

participating customers based on wavelet entropy features is also discussed.

• Chapter 4 presents the case study DR programs with which the existing and

the proposed CBL estimation techniques are evaluated.

• Chapter 5 focuses on the estimation of the rebate amount paid to customers in

the case study DR programs of Chapter 4. In this chapter, I apply clustered

linear regression to estimates the amount of rebate from the actual event rebate

payment for the peak time load reduction in the DR program.

• Chapter 6 describes the implementation of the proposed baseline estimation

method using the datasets from the case study programs. The results are pre-

sented using the CBL accuracy metrics. Rebate payment errors and demand

reduction costs of the load reduction during the DR events, for the considered

CBL methods, are also presented.

• Finally, Chapter 7 concludes this thesis. The chapter points out that the pro-

posed CBL method outperforms all the benchmark methods in all the consid-

ered DR events. The superior performance of demand reduction costs of the

peak time load reduction of the proposed method over the benchmarks is also

discussed.



CHAPTER 2: OVERVIEW OF CBL ESTIMATION METHODS

This chapter presents an overview of the conventional CBL estimation methods

and an existing clustering-based technique. First, I present the terms in the CBL

models.

Consider a set of customers subscribed to a speci�ed DR program event. The set

of customers is indexed by I = {1, 2, · · · , I}. Let the energy consumption measured

by the smart metering device on day d at timeslot t be denoted by Li(d, t). To dis-

tinguish between the daily measurement horizon and that of the DR event period,

I represent the daily consumption measurement set by T = {1, 2, · · · , T}, in which

t ∈ T . The peak period on an event day d is depicted by P = {1, 2, · · · , P}, where

P ⊂ T .

Many CBL estimation methods are employed in practice. The literature is also

being updated with new methods in a bid to provide better accuracy than the ex-

isting ones. The existing baseline methods include LowXofY, MidXofY, HighXofY,

exponential moving average (EMA), and regression. The methods are reviewed and

employed as benchmarks in this work. With the recent trend of utilizing machine

learning (ML) approaches to improve accuracy in estimation theory and predictive

modeling, there is an advent of the application of various ML algorithms to CBL esti-

mation in recent literature. One of the ML-based CBL estimation methods, with sig-

ni�cantly better error performance over the existing methods, is the Discrete Fourier

Transform (DFT)-based clustering [7, 14]. The DFT-based Clustering method is re-

viewed and also added to the benchmarks in this work.

I de�ne an eligible day as a type of days counted during the non-DR days, which

is used to calculate the CBL. For simple averaging methods (LowXofY, MidXofY,
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and HighXofY), EMA and regression, weekdays, non-holiday days, and non-past DR

event days are the eligible days preceding the actual DR event day for computing the

CBL baseline. I depict the set of eligible days for customer i participating in a DR

on event day d as Die.

2.1 LowXofY

LowXofY is one of the averaging methods for CBL estimation. The CBL is com-

puted as the arithmetic mean of the consumption from the lowest X days of the Y

eligible days preceding the DR event day d, where X ≤ Y and Y ≤ De. I de�ne the

LowXofY days of customer i preceding the DR event day d as Low(X, Y, d) ⊆ Die.

Therefore, the LowXofY CBL of customer i for time slot t ⊂ T on the event day d is

computed as

CBLi(d, t) =
1

X

∑
d∈Low(X,Y,d)

Li(d, t). (2.1)

In this paper, I use Low4of5 as one of the benchmark CBL estimation methods.

2.2 MidXofY

MidXofY CBL estimation method makes use of X middle days of the Y days of

the eligible days preceding the DR event day d to compute the CBL. To determine

the middle X days out of the Y eligible days, a particular number, denoted by Z,

of the lowest day(s) and highest day(s) are dropped. Given X ≤ Y and Y ≤ De,

Z = (Y −X)/2. It is required for Z to be an integer, hence (Y −X)mod2 = 0. The

MidXofY CBL of customer i for the time t ⊂ T on the event day d can be expressed

as

CBLi(d, t) =
1

X

∑
d∈Mid(X,Y,d)

Li(d, t), (2.2)

where Mid(X, Y, d) is the MidXofY days of customer i preceding the DR event day

d. I adopt the Mid4of6 in this research as one of the conventional baseline methods.
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2.3 HighXofY

HighXofY is the opposite of LowXofY. The highest X days of the Y of the eligible

days denoted by High(X, Y, d), preceding the DR event day d, are used in computing

the CBL. X ≤ Y and Y ≤ De. The HighXofY CBL is the arithmetic mean of the

energy consumption in the selected X days. The HighXofY CBL the customer for

time slot t ⊂ T on the event day d is computed as

CBLi(d, t) =
1

X

∑
d∈High(X,Y,d)

Li(d, t). (2.3)

HighXofY CBL estimation method is popularly used by many utility company and

ISOs, such as SDGE (High3of5), Ontario (High4of5), PJM (High3of10), New York

ISO (High5of10), and PowerCents DC (High3of20, High5of20, High10of20) [20]. The

High5of10 is included in the CBL estimation methods employed in this work.

2.4 Exponential Moving Average

Exponential Moving Average (EMA), unlike the other averaging CBL estimation

methods, uses weighted average of a customer's historical consumption. The weight

decreases exponentially with time. The days that make up the historical load data,

from the measurement start day up to the day before the DR event day d, are all

eligible days.

Let M = {m1, · · · ,mK} be the measurement days (all eligible), and the last mea-

surement day is the day before the event day, that is mK = d − 1. If 1 ≤ τ ≤ k is

de�ned as a constant, the initial average consumption customer i at timeslot t can be

expressed as

vi(mτ , t) =
1

τ

τ∑
k=1

Li(mk, t). (2.4)
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Furthermore, the EMA for τ < k ≤ K is

vi(mk, t) = (λ · vi(mk−1, t)) + ((1− λ) · Li(mk, t)) , (2.5)

where λ ∈ [0, 1]. Thus, the EMA CBL of customer i at timeslot t on the DR event

day is computed as

CBLi(d, t) = vi(mK , t). (2.6)

The λ value of 0.9 is adopted in this work, which means a weight of 10% is put on

the current day and 90% is put on the previous day. The idea of apportioning more

weight to the previous day than the current is to reduce the possibility of customers

to "game" the DR program [21].

2.5 Regression

This method employs regression to estimate a customer's baseline for a DR event

day. Consumption data from historical eligible days are used for determine the re-

gression parameters for the event day d CBL computation. The regression method

CBL customer i for time slot t ⊂ T on the event day d is stated as

CBLi(d, t) =
(
βi,t
)>
xi,t + εi,t, (2.7)

where xi,t is the feature vector, βi,t is the regression coe�cient vector, and εi,t is the

error term. xi,t consists of explanatory variables such as the historical consumption,

weather variables (e.g temperature, humidity) or daylight variables (e.g sunrise and

sunset time). However, since the datasets made available for the events considered in

this thesis do not include weather and daylight measurement, I follow the approach

of [12] to constitute the feature vector with the historical consumption.
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2.6 DFT-based Clustering

DFT Clustering is the representative machine learning technique considered in this

work. Authors in [22] proposed transforming the historical consumption time do-

main data into the frequency domain using Discrete Fourier Transform (DFT). The

objective of the transformation is to separate high frequency and low-frequency com-

ponents.

The frequency components are separated using low-pass and high-pass �lters. The

former isolates the low-frequency component of the signal, and the latter allows only

the high-frequency. Both �lters are designed with a cut-o� frequency as a thresh-

old for attenuating undesired frequencies. Each separated frequency component is

reconstructible into a corresponding low or high-frequency portion of the original

time-domain signal. An index called predictability index is computed by subtracting

the ratio of the sum of the absolute values of the reconstructed high frequency portion

shfi of the signal to the sum of the original time-domain signal si from one. That is,

Pindex = 1−

∑I
i=1

∣∣∣shfi ∣∣∣∑I
i=1 si

. (2.8)

The idea relies on the assumption that the frequency portion of the signal indicates

high randomness, which is di�cult to predict. The customers are subsequently clus-

tered, using clustering algorithms such as K-means, and conventional CBL estimation

methods are applied to the clusters. It was shown by the same authors, through sim-

ulation, that CBL estimation by DFT clustering yields increased error performance

when compared to the standalone conventional CBL estimation methods and other

clustering methods.

2.7 Adjustment of CBL estimation methods

Many factors, such as weather and symmetry of a period to the DR event, may

a�ect a household's consumption pro�le prior to the DR event period [23]. Therefore,
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a mechanism can be introduced to adjust the baseline more appropriately to re�ect

estimated customer usage during the event. Figure 2.1 illustrates the concept of CBL

adjustment. The actual consumption decreases relative to the non-event period as a

result of the DR notice. However, the decrease in actual consumption, which began

at the notice time, is not signi�cant until the start of the DR event. This discrepancy

can be adjusted in order to create a sort of "symmetry" in the consumption�baseline

relationship in the non-event and event periods. The adjustment is created with the

adjusted CBL baseline in the period referred to as the adjustment window, which is

usually some hours before the start of the event.

Baseline adjustment is usually computed using historical data of temperature or

consumption pro�le prior to a DR event [24]. In this study, baseline adjustment

is estimated with the consumption data. The most common adjustment methods

are additive adjustment and multiplicative adjustment. The former employs absolute

change between actual consumption and initial baseline to compute the adjusted CBL,

while the latter uses the percentage change and applies it to the initial baseline.

Let the pre-event adjustment window be denoted by P ′, and each adjustment time

slot by t′, such that t′ ∈ P ′. Additive adjusted CBL can be computed as

CBLadj
i (d, t) = CBLi(d, t) +

∑
t′∈P ′ (Li(d, t

′)− CBLi(d, t
′))

|P ′|
, (2.9)

and the multiplicative adjusted CBL is

CBLmult
i (d, t) = CBLi(d, t)×

∑
t′∈P ′ Li(d, t

′)∑
t′∈P ′ CBLi(d, t

′)
. (2.10)
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CHAPTER 3: PROPOSED CBL ESTIMATION METHOD

Clustering algorithms rely on similarity and dissimilarity in the feature(s) of signals

to group them into unique clusters. In the DFT clustering discussed in Chapter 2,

households are grouped based on their Performance Index with similar values in this

same cluster. Although the DFT clustering has been shown to provide improved CBL

estimation accuracy, in this study, I exploit the advantage of wavelets over DFT to

further improve the CBL accuracy. Wavelets represent signals in terms of functions

that are localized in both time and frequency, whereas the Fourier transform is only

localized in frequency. Thus, transforming signals by DFT loses information about

time. In this study, I leverage the advantage of wavelets to extract features from the

signals representing the customers' time-series consumption pro�les to estimate the

CBL via clustering.

Various wavelet-based approaches are employed for feature extraction from a signal

depending on the targeted application. The traditional Discrete Wavelet Transform

(DWT) decomposes the signal into scaling coe�cients. However, the signal repre-

sentation (coe�cients) are too coarse for practical in-depth multi-resolution analy-

sis. Maximal Overlap Discrete Wavelet Transform (MODWT) is a modi�ed version

of DWT. In MODWT, the coe�cients are "non-decimated," which implies that the

number of the original signal sample observations is the same as the number of scaling

and wavelet coe�cients at every level of the transform [19]. Wavelet Packet Trans-

form (WPT) provides a richer resolution than the DWT. Unlike DWT where only

the low frequency coe�cients are decomposed to the next level, both low and high

frequency coe�cients are decomposed in WPT. In this study, I exploit the undeci-

mated form of the wavelet packet decomposition�Maximal Overlap Discrete Wavelet
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Packet Transform (MODWPT)�for the feature extraction required for the clustering

of the customers.

The application of MODWPT in the estimation of DR event CBL is delineated in

Figure 3.1.

DR Event 
Data

Admissible Days 
Selection

Kmeans

Adjusted 
and 

Unadjusted
LowXofY

PRE-PROCESSING

Normalization

MODWPT 
Decomposition

Wavelet Entropy
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and 
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Figure 3.1: Block diagram showing the procedure of the proposed CBL estimation
method.

3.1 Overview of Maximal Overlap Discrete Wavelet Packet Transform

(MODWPT)

In addition to the relative �ner resolution of MODWPT, the motivation of har-

nessing MODWPT over DWT is the �exibility in the selection of the starting point of

the considered time-series signal. For instance, the application of MODWPT is not

sensitive to any chosen starting point in the historical pro�le of a household's con-

sumption data. Figure 3.2 depicts the illustration of decomposition of a time-series

signal S.

The MODWPT �lters used to decompose signal S, whose dimension N is indexed

by t = 0, 1, · · · , N − 1, can be expressed in terms of the discrete WPT quadrature

mirror �lters: the wavelet �lter gl and the scaling �lter hl. The �lters are equivalent

to high pass and low pass �lters, and are used to compute the approximation and
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detail coe�cients, respectively. Let the decomposition level of MODWPT be indexed

by j = 0, 1, · · · , J . Furthermore, the node (equivalent to frequency index) of jth level

of the decomposition tree is indexed by n = 0, 1, · · · , 2j − 1. The jth level coe�cient

vector of the MODWPT is denoted by Z̃j,n, whose decomposed frequency into 2j

equal widths is in interval [0, fs/2]. fs is the sampling frequency. Thus, the nth node

in the jth level is associated with frequency interval fs
2j+1 [n, n+ 1].

Figure 3.2: Illustration of wavelet decomposition of a time domain signal Z̃0,0 = S into

MODWPT coe�cients Z̃j,n of levels j=1, 2 and 3. In terms of frequency, MODWPT
transforms time domain signal S into frequency bands and central frequencies called
nodes. For example, wavelet coe�cients in Z̃3,5 represent the frequency content in S
for frequencies f such that |f | ∈

[
5
16
, 3
8

]
.

For illustration, the MODWPT decomposition tree for J = 3 presented in Figure
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3.2. shows the associated frequencies (as a function of sampling frequency) at the 3rd

level.

The tth element coe�cient of Z̃j,n is obtained from the �ltering of the original

time-series S as [19]

Z̃j,n,t =

Lj−1∑
l=0

ṽj,n,lSj−l mod N , t = 0, · · · , N − 1, (3.1)

where ṽj,n,l is a composite �lter vj,n,l derived from DWPT �lter as

ṽj,n,l =
vj,n,l
2j/2

. (3.2)

The vj,n,l �lter is realized as

vj,n,l =
L−1∑
k=0

vn,kvj−1,bn2 c,l−2j−1k, l = 0, · · · , Lj − 1, (3.3)

where Lj = (2j − 1)(L− 1) + 1, and

vn,l =


gl, if nmod 4 = 0 or 3

hl, if nmod 4 = 1 or 2,

(3.4)

and v1,0,l = gl and v1,1,l = hl. The scaling �lter gl is the quadrature mirror of the

wavelet �lter hl, that is, gl = (−1)l+1hL−1−l.

The details at the nth node of the jth level MODWPT is depicted by D̃j,n, whose

tth element is derived as

D̃j,n,t =
Lj−1∑
l=0

ṽj,n,lZ̃j,n,t+lmodN . (3.5)
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Thus, the original time-series signal can be reconstructed in terms of the details as

St =
2j−1∑
n=0

D̃j,n,t. (3.6)

3.2 Feature Extraction from MODWPT Coe�cients

As it has been shown so far in this section, the output of the MODWPT decom-

position is a vector of coe�cients that cannot directly be used as clustering features.

The coe�cients are reduced to feasible high-level features: energy and entropy. The

features in the MODWPT detail coe�cients exactly align with the features in the

original signal. As stated in Eq. (3.6), summing up the MODWPT details for each

sample, at a speci�ed level, gives the exact original signal. Similarly, the MODWPT

coe�cients energies are equal to the sum of the energy in the original signal. Since

the energy of the original signal is preserved in the MODWPT coe�cients energies,

I compute entropy from the energies and use the calculated entropy as the original

signal's representative features.

Signal S is a vector made up of stacked observations from a single household con-

sumption over the days under consideration. The energy of MODWPT coe�cient of

each node at the jth level for a signal vector S is computed as

Ej,n,t =
∣∣∣Z̃j,n,t∣∣∣2 . (3.7)

where t refers to each point (coe�cient), n the node, and j the level. And the total

energy of all the points in a node is obtained as

Ej,n =
N∑
t=1

Ej,n,t, (3.8)
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where N is the number of the corresponding coe�cients in the node.

The probability value of the tth coe�cient at its corresponding node can be calcu-

lated via normalization as

Pj,n,t =
Ej,n,t
Ej,n

. (3.9)

Pj,n,t, also known as relative wavelet energy, denotes the probability distribution of

energy and
∑

n Pj,n,t = 1.

Shannon information entropy has been prevalently used in information theory, sig-

nal processing, arti�cial intelligence, genomics, etc. However, the combination of

wavelet analysis with entropy is more e�ective than pure information entropy in the

signal analysis of power systems. The combination provides a rich representation of

features information due to the full use of localization ability of wavelets in both time

and frequency domain [26]. When used to analyze a power signal, the wavelet en-

tropy statistically re�ects the distribution of the important energy information in the

signal. The identi�cation of the important features is otherwise referred to as feature

extraction. The goal of feature extraction is to transform the original feature-space

of a signal into a new space that represents the important characteristics that are

otherwise not directly observable in the original space. The wavelet entropy feature

is expressed in terms of relative wavelet energy via Shannon entropy formula as

WEj,n = −
∑
n

Pj,n,t · log(Pj,n,t), (3.10)

which depicts the value of wavelet energy entropy at each node. Since there are 2J

number of nodes in a J-level MODWPT,WEj,n can be alternatively denoted asWEp,

for clarity, to form the stack of P = 2J energy entropy of a signal as

W = [WE1, · · · ,WEP ] , (3.11)
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where the dimension of W is 1× P . For instance, dimension of W would be 1× 16

with a four-level MODWPT.

3.3 Household Clustering

Clustering implies the organizing of unlabeled data into similarity groups (called

clusters) based on some feature(s). Since the data to be grouped is unlabeled, cluster-

ing techniques are regarded as unsupervised learning algorithms. K-means [27, 28], a

widely-known and e�cient partitioning clustering technique, is used to form a small

number of clusters from a large number of observations. As each household con-

sumption is represented by its corresponding wavelet entropy, K-means is employed

to group the households, with respect to the entropy observations.

Suppose for the household set participating in a DR event is represented by the set

I = {1, · · · , I} and each household wavelet entropy described as W i ∈ W , the goal

of K-means is to �nd K centroids and the corresponding label for each observation

(household). The algorithm starts initializing some random numbers of cluster cen-

troids µ1, · · · , µK . The resulting procedure aims at minimizing the total intra-cluster

variance:
K∑
k=1

H∑
h=1

‖W i − µk‖2 , (3.12)

where ‖W i − µk‖2 is the Euclidean distance function iterated overall h observations

in the jth cluster and for all K clusters. Calinski-Harabasz.

The changes in the cluster distribution after several runs of clustering (Kmeans)

algorithm is evaluated by clustering robustness. The smaller the change after many

repeated runs of a clustering algorithm, the more robust the clustering. The clustering

robustness can be used to obtain the appropriate number of clusters to group the data

observations. In the survey and evaluation of methods for choosing the number of

clusters in [29], the Calinski-Harabasz [30] is found to be the most robust. Thus,
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in this work, the number of clusters is determined using Calinski-Harabasz method.

The clustering robustness by Calinski-Harabasz method is obtained as [31]

CR (k) =

∑k
i nid

2 (ci, c) /(k − 1)∑k
i

∑
x cid

2 (x, c) /(n− k)
, (3.13)

where n is the number of observations, K the number of clusters, Ci the ithe cluster,

ni the number of observations in Ci, ci the center of Ci, x is a point in cluster Ci,

and d (·) is the Euclidean distance between two points. From any K set of clusters

evaluated, the optimal number of clusters can be obtained by maximizing the function

CR (k).

kopt = argmax
k

CR (k) . (3.14)



CHAPTER 4: CASE STUDY DR PROGRAM

The trial demand response (DR) program was part of the Smart Grid, Smart City

(SGSC) customer applications program [10]. The SGSC was an Australian govern-

ment's energy e�ciency initiative targeted to deliver a commercial-scale DR program

over smart grid infrastructures.

The Ausgrid consortium was selected as the program tenderer by the Australian

government. Ausgrid is an electricity distribution company that maintains and op-

erates electric grids in New South Wales, Australia. EnergyAustralia was the collab-

orating partner of Ausgrid in the demand response program. EnergyAustralia is an

electricity retailing company in Australia. In the DR program, Ausgrid served as the

distribution network service provider (DNSP), and EnergyAustralia was the electric-

ity retailer. The DR events were conducted from 2010 to 2014, but the available DR

data in [32] spanned from 2013 to 2014.

The program was focused on greater Newcastle and Sydney CBD areas, in addition

to four additional zones (Ku-Ring-Gai, Newington, Scone, Nelson Bay areas). Thus,

the covered areas are a mix of both urban and rural areas, but captured customers are

all residential. The deployment of smart meter infrastructure with meter management

systems and back-o�ce systems facilitated the SGSC implementation. Smart meters

were allocated for Customer Applications, Grid Applications, Distributed Generation

and Storage, and Electric Vehicle trials. The scope of this study is con�ned within

Customer Applications since our interest is on CBL.

The events records provided in [32] consists of a total of 28 events. Events were

designed to last between one and four hours and were only to be called between 2 pm

and 8 pm on working weekdays.
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4.1 Enabling Technologies

Some devices were employed for household electricity consumption usage and mon-

itoring customer behaviors. For usage measurement, 17,134 smart meters were de-

ployed for the Customer Applications trial [10].

Also utilized were feedback technologies. These are devices or platforms used to

measure the behavioral changes of electricity customers based on their use [10]. The

technologies are in-home display (IHD), an online portal, and smart plugs.

IHD is a small portable device used to inform customers of price changes or DR

events. The device displays electricity usage and real-time pricing information. The

IHD's display comprises of a simple interface where the metering, price, and message

data are presented. The IHD employed in the SGSC program is shown in Figure 4.1.

Figure 4.1: In-home display device [10].

The online portal is an online electricity usage management website designed to

provide information about household meter data in almost real-time. The portal is

accessible from a computer, tablet, and smartphone. Figure 4.2 displays an example

of the online portal interface designed for the DR program.
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Figure 4.2: Online portal [11].

Smart plugs are devices used to sub-meter and control multiple appliances con-

nected to the general power outlet. The appliances can be controlled (switched on

or o�) via the setup online portal or a mobile device. The smart plug computed the

electricity consumption of the appliances and wirelessly transmit the periodic total

usage to the smart meter. Figure 4.3 shows the Jetlun smart plug used in the SGSC

program.

Customers in the trials were randomly assigned to one of no feedback technology,

one feedback technology, or two feedback technologies. Since the focus of this paper

is on CBL estimation, the analysis of customer behavioral changes will be studied in

future works.
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Figure 4.3: Jetlun smart plug [11].

4.2 Pricing Structures

Two peak event pricing plans were used to incentivize customers to reduce their

electricity consumption during speci�ed peak events. Before the introduction of the

DR programs, participating customers were on one of the two pricing structures: All-

Time and Time-of-Use (ToU). Customers on the All-Time plan paid a �at rate all

day, every day. Conversely, the ToU plan has varied rates based on the time of the

day. The two pre-DR pricing plans are illustrated in Figure 4.4.

During the DR events, the pricing plans could be largely grouped into three cate-

gories: the existing (pre-DR) plan, Dynamic Peak Price (DPP) tari�, and Dynamic

Peak Rebate (DPR) tari�. For evaluation of DR program, only the DPP and DPR

are relevant.

Once the DPP DR program started, the participants' consumption on the DPP

event days resumed a time-varying tari�. The tari� is shown in Figure 4.5. Con-

sumption is billed 13.09 cents/kWh from 12am to 7am and 10pm to 12am. 24.53

cents/kWh is the rate between 7am and 10pm, except for the peak period that the
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tari� spikes to 330.00 cents/kWh. Ten peak events with DPR were conducted as

recorded in [32]: 3 in Summer 2013, 1 in Autumn 2013, 2 in Spring 2013, and 4 in

Summer 2014. Although DPP event dates are listed in the information publicly made

available in [10], the DPP DR response consumption and payment information are

not included in the DR response data. Therefore, I focus on the evaluation of DR

with respect to DPR in this study.

Figure 4.4: All-Time (top) and Time-of-Use (bottom) pre-DR pricing plans [11].

DPR is the other tari� plan o�ered to the DR program participants. 18 DPR peak

events were conducted as recorded in [32]: 4 in Summer 2013, 4 in Autumn 2013, 5

in Winter 2013, 2 in Spring 2013, and 3 in Summer 2014. In DPR, the participants

received a rebate based on their reduction in electricity consumption during the DR

events. However, the exact rebate computation formula was neither revealed to the

customers nor in the reports [11]. In order to evaluate the DR programs with respect

to the rebate paid, I estimate the rebate payment using clustered linear regression.
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Figure 4.5: Dynamic peak pricing [11]. The shaded stripes area shows the peak period
(2pm to 8pm) savings from DPP plan relative to ToU plan.

4.3 Datasets

The proposed CBL estimation method and Dynamic Peak Rebate (DPR) pricing

were analyzed using the data from actual DPR demand response events. The data

subsets for the selected events were extracted from the data �les made publicly avail-

able by the Australia Government in [32]. The list of the 28 DR events and their

corresponding pricing structure was posted. In addition, the data source website

includes the data for the actual household consumption during the DR period, the

baseline consumption, and the paid rebates for the participants in DPR events.

The data source includes the Electricity Use Interval Reading �le, which is a time-

series data of households' electricity usage in 30-minute intervals from 2012 to 2014.

Since there was no uniform sign-up date, the interval consumption record is not

consistent across households. Based on the DPR events and the participant IDs,

corresponding customer's consumption interval data were extracted.
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4.4 Selection of the Case Study DR Events

The �fth column of Table 4.1 shows the number of participants whose data are

captured in the DR response data �le made available in [32]. Although the partici-

pants in the DPR demand response programs are residential customers, the covered

regions are a mixture of both urban and rural areas.

To avoid the risk of working with data that are very unrepresentative of the pop-

ulation, I decided to use DR events where participants are at least a thousand. The

rationale is that a larger sample size will reduce the imbalance of customer represen-

tation in favor of either rural or urban households. In event 1000261, the participants

inexplicably got rebates for exceeding baselines. Standard methods cannot deduce

rebates paid in event 1000265. Therefore, events 1000261 and 1000265 are excepted

from the events evaluated in this work despite each having at least a thousand par-

ticipants. The DPR events used as case study events are labeled Event I to Event III

and written in bold letters in Table 4.1.
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Table 4.1: DR events with dynamic peak rebate (DPR) pricing structure includ-
ing the 3 selected events for this research

Event ID Event Day Season
Start
Time

End
Time

Number of
Customers

Event
Label�

1000240 2013-01-17 Summer 12:00 16:00 150
1000241 2013-01-25 Summer 13:00 17:00 217
1000242 2013-02-08 Summer 13:30 17:30 789
1000244 2013-03-07 Autumn 11:30 15:30 1042 I
1000245 2013-03-13 Autumn 13:00 17:00 1135
1000246 2013-03-22 Autumn 13:30 17:30 1185
1000248 2013-03-28 Autumn 11:30 15:30 1169 II
1000249 2013-06-25 Winter 16:00 18:00 0
1000250 2013-07-24 Winter 16:30 19:30 1159
1000251 2013-08-02 Winter 16:30 19:30 1153 III
1000252 2013-08-08 Winter 16:30 20:00 0
1000253 2013-08-22 Winter 17:00 20:00 0
1000254 2013-09-26 Spring 15:00 18:30 0
1000256 2013-11-28 Spring 14:00 18:00 0
1000258† 2013-12-04 Summer 13:00 17:00 981
1000261† 2014-01-16 Summer 13:00 17:00 1000
1000265‡ 2014-01-31 Summer 13:00 17:00 1023
1000266 2014-02-13 Summer 13:00 17:00 1021
* Number of participants with data in the DR response �le in the data source [32].
� The descriptive names used for the selected events analyzed in this research.
† Participants inexplicably got rebate for exceeding baseline.
‡ Rebate cannot be deduced by standard methods.



CHAPTER 5: ESTIMATION WITH CLUSTERED LINEAR REGRESSION

The amount of rebate paid in the case study DR program is informed by the load

reduction (the di�erence between the CBL and the actual load) at the event period.

The data exploratory (plots and inspection) of the rebate amount with respect to the

load reduction shows the partition patterns.

In the rebates paid in selected case study DR events I, II and III, two clusters are

observed: a group of customers with negative load reduction that received zero re-

bates, and the other group are the customers with positive load reduction with rebate

paid as a function of the consumption reduction. To deduce the rebate pricing from

the available paid rebate data for the events mentioned above, I employed clustered

linear regression (CLR) Model.

CLR model is a linear regression model in which the homoscedasticity assumption

is relaxed. That is, the model allows the error terms to be heteroscedastic and cor-

related within groups. With CLR, linear approximation on multiple subspaces can

be performed. The procedures to implement CLR include �nding the number of the

clusters, determining the boundaries of the clusters, and performing individual re-

gression on observations within each cluster [33]. I employed the split-apply-combine

strategy [34] to implement the CLR procedures in this work. Figure 5.1 illustrates

the application of the strategy to CLR.
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Figure 5.1: Application of Split-Apply-Combine strategy to clustered linear regres-
sion.

5.1 Split-Apply-Combine Strategy

It is noteworthy that the CLR via the split-apply-combine strategy in this work

implies training the data. I trained the rebate dataset (with rebate amount and

load reduction as the dependent and independent variables, respectively) to obtain

the estimates of the intercept and slope for each cluster. The obtained regression

coe�cients were used to estimate the rebate amount paid for the three DR events. The

split phase involves grouping of the data feature(s) based on some criteria. Regression

is performed on the individual group (cluster) in the apply phase. Lastly, the obtained

regression results (predictors) from the clusters are combined.

Based on a simple linear regression model

Y = β0 + β1X + ε, (5.1)
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where β0 and β1 are two unknown coe�cients depicting the intercept and slope, the

rebate amount from each observation (household) can be described as

yci = β0c + βcixci + εci, i ∈ I (5.2)

where observations in cluster c = 1, · · · , C are indexed by i = 1, · · · , I. Since the

energy consumption in each household is mutually independent, εci ∼ N (0, σ2
ci). The

rebate amount estimate is the dependent variable yci, and load reduction of each

observation is denoted by xci. In the case study DR events I, II, and III, xc1 is a

positive load reduction (baseline higher than the actual consumption), and xc2 is

a negative load reduction (baseline less than the actual consumption). The paid

rebates for each yc1 and yc2 were available. Thus, the coe�cients can be estimated.

Since there could be di�erent numbers of observations per cluster, I denote the total

observation particular to a cluster as Ic. Thus, H =
∑

c∈C Ic represents the total

number of households (observations) participating in a DR event.

In the split phase, the criteria are typically user-de�ned based on values of the

observations. From the observed data patterns, I de�ne the splitting criteria for

rebate amount yi based on load reduction xi in the case study DR events I, II, and

III as

yi =


y1i, if xi >= 0

y2i, otherwise.

(5.3)

The above criteria re�ect zero rebate payment for negative load reduction (i.e., when

actual load during the event period is greater than the CBL). In the regression equa-

tions, xi is described as xci to indicate the cluster it is associated with after applying

the splitting criteria. Stacking the observations within a cluster, the model at the

cluster level can be written as

Yc = β0c + β1cXc + εc, (5.4)



33

where Yc, Xc and εc are each Ic × 1 vector, and εc ∼ N (0, σ2
c ).

In the apply phase, linear regression is performed on each individual cluster, ac-

cording to Eq. (5.2), to obtain the the estimates β̂0c and β̂1c. The coe�cient estimates

were used to compute the rebate estimate for each cluster, Ŷc = β̂0c + β̂1cXc. For a

straight line cluster, the equation of the line is used instead performing linear regres-

sion

Finally in the apply phase, cluster-level rebate estimates are stacked to form the

rebate estimate for an event. That is, Ŷ = [ŷ1, · · · , ŷC ]>, which is a H × 1 vector.

Ŷ is subsequently sorted according to the order of the original observations. That is,

Ŷ = [ŷ1, · · · , ŷH ]>. The accuracy of Ŷ for each event is validated with R-squared.

5.2 Results of Rebate Payment Estimation

Figures 5.2 - 5.4 show the original rebates (observations) and the regression lines

obtained by CLR. Moreover, the results of the cluster regression coe�cients for each

of the three events are presented in Table 5.1.

Table 5.1: The regression coe�cients and R-squared of the rebate estimate determined
by CLR model

Events Clusters
Regression Coe�cients

R-squared
Intercept (β̂0c) Slope (β̂1c)

I
1 0.0470 4.4944

1.0000
2 0 0

II
1 0.0897 4.899

0.9999
2 0 0

III
1 0.0323 4.4953

1.0000
2 0 0
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Figure 5.2: Event I rebate estimation with clustered linear regression.
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Figure 5.3: Event II rebate estimation with clustered linear regression.
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CHAPTER 6: IMPLEMENTATION, RESULTS AND DISCUSSIONS

In this chapter, the implementation of the proposed CBL estimation method is

discussed. The performance evaluation of the method, compared to the benchmark

methods and the DFT clustering technique, is also presented. Furthermore, I analyze

the performance of Dynamic Rebate Pricing using the selected three DR events with

respect to the proposed and benchmark CBL methods.

6.1 Counterfactual DR Consumption and Incentive Payment

In practice, the DR event would a�ect the consumption of a given customer. Since

DR participants are pre-noti�ed of a DPR event, customers are likely to adjust their

consumption to receive rebates. Thus, the direct prediction of event day consumption

will not be as accurate as possible. One way to approach such a problem is to compare

di�erent groups in a randomized controlled trial (RCT).

To obtain a true estimate of event day consumption will require a randomized

selection of control (non-DR participants) and treatment (DR participants) groups.

Although the case study DR program considered in this work includes the use of a

control group, the selection of customers into the group is not statistically random

[10, 35]. Another approach is the load impact computation [36, 20], which estimates

the counterfactual consumption. The counterfactual consumption is the consumption

during the peak period in the hypothetical absence of a DR event. The load impact

is determined from the estimate of baseline on real DR event day d, and used for

estimating the counterfactual consumption L̂i(d
′, t) on a proxy event day d′. I follow

the approach of [20] of estimating counterfactual consumption of a proxy event with
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the load impact from a target DR event. The load impact is obtained as

impact =

∑
i∈I
∑

t∈P (CBLi(d, t)− Li(d, t))∑
i∈I
∑

t∈P CBLi(d, t)
. (6.1)

The load impact approach to baseline evaluation relies on the assumption that the

impact obtained from known data of an actual DR event can be assumed to be

the demand reduction rate of same DR participants on a hypothetical DR event

day having the same rebate pricing structure and similar weather conditions. The

counterfactual consumption can be estimated as a given proxy day consumption after

adjusting for the load impact. Therefore, counterfactual consumption for a given

proxy day can be computed as

L̂i(d
′, t) = (1− impact) · Li(d′, t), (6.2)

where Li(d
′, t) is the actual consumption of customer i on the proxy day during the

peak period timeslot t ∈ P .

To achieve close similarity between the proxy and the target event days in terms of

load demand and weather conditions, I ensured the following. I chose a proxy day in

the same month as the target DR event day. The candidate proxy day is a weekday,

non-holiday, and a non-DR day. Since there are some months with multiple events,

the candidate proxy day with the highest daily consumption after the previous DR

event is selected as the proxy of the target future DR event. After applying the stated

criteria, the selected proxy days for the three chosen events are one day before the

target DR event days. Table 6.1 gives summary information about the selected DR

events and their corresponding proxy days.

The incentive payment evaluation via the load impact approach also requires that

the same payment rule and rebate pricing structure applied to the target DR event
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Table 6.1: Description of the selected case study DR events and corresponding proxy
days

Label DR Event Date Season
Duration
(hours)

Start
Time

End
Time

I
Actual 2013-03-07

Fall 4 11:30 15:30
Proxy 2013-03-06

II
Actual 2013-03-28

Fall 4 11:30 15:30
Proxy 2013-03-27

III
Actual 2013-08-02

Winter 3 16:30 19:30
Proxy 2013-08-01

load reduction is equally applied to the counterfactual consumption reduction [36, 20].

According to the case study DR program payment rule, customers with a negative

load reduction receive no incentive. Customers with positive load reduction receive

an incentive according to the amount of reduced load. However, the rebate rate was

not revealed by the Australian DR operator. Since data on event period consump-

tion, baseline, and rebate payment was available, I estimated the paid rebate rate for

the target DR events using clustered linear regression discussed in chapter 5. The

coe�cients β0 and β1 for the regression of the actual rebate Ract
i paid for load reduc-

tion
∑

t∈P (CBLi(d, t)− Li(d, t)) on a target event day d is obtained using the linear

regression equation

Ract
i = β0 + β1

∑
t∈P

(CBLi(d, t)− Li(d, t)) . (6.3)

With the obtained coe�cients, the same rebate rate applied to the target DR load

reduction can be applied to that of the proxy event for the evaluation of incentive

payment. The ideal rebate for the load reduction on a proxy day d′ with customer i

estimated counterfactual consumption L̂i(d
′, t) can be calculated as

Ri = β0 + β1
∑
t∈P

(
Li(d

′, t)− L̂i(d′, t)
)
, (6.4)
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where Li(d
′, t) is the actual consumption of customer i on the proxy day during the

peak period timeslot t ∈ P . Let the load reduction on the proxy day d′ estimated by

a given baseline be depicted by
∑

t∈P

(
CBLi(d

′, t)− L̂i(d′, t)
)
. Therefore, the rebate

payment estimate based on a given baseline is

R̂i = β0 + β1
∑
t∈P

(
CBLi(d

′, t)− L̂i(d′, t)
)
. (6.5)

Following the payment rule of the case study program of paying no rebate to the

customers whose actual DR event period consumption is higher than the baseline, I

apply the same rule to the proxy event as

R̂i =


β0 + β1

∑
t∈P

(
CBLi(d

′, t)− L̂i(d′, t)
)
, if

∑
t∈P

(
CBLi(d

′, t)− L̂i(d′, t)
)
>= 0

0, otherwise.

(6.6)

Similarly, the ideal rebate stated in Eq. (6.4) can also be expressed in terms of the

payment rule as

Ri =


β0 + β1

∑
t∈P

(
Li(d

′, t)− L̂i(d′, t)
)
, if

∑
t∈P

(
Li(d

′, t)− L̂i(d′, t)
)
>= 0

0, otherwise.

(6.7)

6.2 CBL Performance Evaluation Metrics

As explained in section 6.1, DR participants are likely to reduce electricity usage on

the actual event day to receive incentives. The demand reduction makes it impossible

to evaluate the CBL methods if used to predict the actual DR event day consumption.

However, CBL evaluation using proxy event day provides a reliable way of validating

a CBL method since the aforementioned causal e�ect is zero. Customers received no

notice of any incentive program on a given proxy day. The advantage of using the

proxy day is that impact of demand reduction for an incentive, that can in�uence the
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evaluation of the CBL method prediction accuracy, is eliminated. I follow the metrics

used in [37] to evaluate the error performance of the proposed CBL estimation in

comparison to the benchmarks using a proxy day approach.

6.2.1 Mean Error

Mean Error (ME) is a measure of estimation bias. It is the mean of the di�erence

between the estimated CBL and the actual consumption on a proxy day d′, which is

averaged by the number of participating households and all the event hours. The ME

is computed as follows.

ME =

∑
i∈I
∑

t∈P (CBLi(d
′, t)− Li(d′, t))

|I| · |P|
, (6.8)

where I is the set of households participating in a DR event over period P . The

summed di�erence of the proxy day actual consumption Li(d
′, t) from the computed

CBL, averaged over |I| and |P| re�ects the program-level bias of the CBL estimation

method. Bias (or ME) can be positive or negative, but, the closer to zero the better.

An ME of zero indicates a perfect CBL estimation for a proxy event day, which implies

positive and negative errors cancel.

6.2.2 Mean Absolute Error

The mean absolute error (MAE) is a measure of the accuracy of the CBL estimation

method. MAE is also computed from the CBL estimation for a proxy event day. MAE

is the absolute value of the ME averaged over the number of households participating

in a DR program.

MAE =

∑
i∈I

∣∣∑
t∈P (CBLi(d

′, t)− Li(d′, t))
∣∣

|I| · |P|
. (6.9)

MAE is a negatively-oriented score, which means lower values are better. An ideal

score is zero for a proxy day baseline prediction.
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6.2.3 Overall Performance Index

Bias and accuracy measured by ME and MAE, respectively, are the main metrics

for evaluating the performance of a CBL estimation method. Overall Performance

Index (OPI), which is the weighted sum of accuracy and bias, provides a single-metric

overall evaluation of the estimation method.

OPI = γ |MAE|+ (1− γ) |ME| . (6.10)

The OPI allows for setting the weight of importance depending on what metric mat-

ters more to the DR operator. In this thesis, I select the weight of γ = 0.5 to

apportion equal weight to ME and MAE. A lower OPI is preferable. It implies the

CBL is capable of measuring the DR participants' response to the o�ered rebates [7].

6.3 Rebate Payment Evaluation

6.3.1 Payment Error

The customers in the case study DR program were paid rebates according to their

DR load reduction. In the selected DR events, customers are paid only if they

reduced their consumption. Customers who exceed the baseline consumption re-

ceived no rebate.1 The amount of rebate paid is also dependent on the CBL method

used to estimate the baseline [36]. Therefore, an erroneous baseline will result in

a wrong rebate estimation. In the evaluation of payment error, the counterfactual

demand L̂i(d
′, t) on a proxy event day is considered. That is, an ideal load reduc-

tion is
∑

t∈P

(
Li(d

′, t)− L̂i(d′, t)
)
, while the CBL method estimated load reduction is∑

t∈P

(
CBLi(d

′, t)− L̂i(d′, t)
)
. Following the rebate payment rules of Eq. (6.6) and

Eq. (6.7), the program-level payment error, which is the sum of the rebate payment

1Consumption above baseline was not penalized.



43

error of all customers, is calculated as

PE =
∑
i∈I

(
R̂i −Ri

)
, (6.11)

where, again, Ri is the ideal rebate, and R̂i is the estimated rebate. A positive

PE indicates a program-level overpayment of rebates by the DR operator. There

is an underpayment of rebates to customers when PE is negative. In both cases of

overpayment and underpayment, the farther from zero, the worse.

6.3.2 Demand Reduction Cost

The literature is rife with the CBL estimation aspects of DR. However, only a few

reports exist on the cost of a DR program, especially from the view of PTR demand

reduction. Next, I evaluate the impacts of various CBL estimated methods on the

Demand Reduction Cost (DRC) in a DR program.

Following the DPR structure where rebates are paid to customers and the study

in [36], I approach the concept of DRC from the perspective of program-level PTR

reduction. Therefore, the DRC represents the cost of PTR reductions. The unit of

the DRC is $/kW-year [36, 3] when multiple DR programs in a year are jointly eval-

uated, and $/kW when a DR is singly considered.

Similar to the approach for CBL accuracy evaluation, each of the three events is

evaluated separately. I use the DRC, with unit $/kW, to assess rebate payments to

customers that participated in each DR program. Simply put, the DRC of $x/kW is

the x amount of dollars in the loss (cost) incurred for demand reduction estimated

with the baseline predicted by a given CBL method.

It is noteworthy that the evaluation of the DRC computed in this work only con-

siders the rebate cost. Other actual costs associated with a DR event include cost

procured from DR program start-up, management, campaigns, event noti�cation, and

other related activities. Similar to the study in [36], the non-rebate costs are ignored
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in the DRC metric due to the non-availability of information on those costs. Since

the focus of this work is to compare the DRCs of di�erent CBL methods, the rebate

cost information su�ces. Similar to the payment error evaluation, the counterfactual

demand L̂i(d
′, t) on a proxy day is used to assess the DRC in this work.

The DRC is computed as

DRC = NP

 ∑
i∈I R̂i∑

i∈I
∑

t∈P

(
CBLi(d′, t)− L̂i(d′, t)

)
 , (6.12)

where
∑

t∈P

(
CBLi(d

′, t)− L̂i(d′, t)
)
is the CBL estimated load reduction for the ith

customer, R̂i is the paid rebate, and NP is the total duration, in hours, of the DR

event. The higher magnitude of the value, the worse. In addition, a negative value

emanates from a total peak event actual consumption being higher than the baseline.

A negative DRC means the demand reduction cost is incurred despite not having

load reduction at the peak period. The higher the magnitude of a negative DRC, the

worse.

6.4 Implementation

The proposed MODWPT-based clustering is applied to the conventional methods

to provide improved customer baselines and incentive payment accuracy. Figure 6.1

illustrates the building blocks of the implementation and evaluation of the proposed

method.
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Figure 6.1: Block diagram showing the tasks implemented in this work. The green
part is the proposed CBL method presented in Chapter 3. The application of clustered
linear regression for the estimation of DR rebates, presented in Chapter 5, is the blue
section. The red section of the block diagram delineates the CBL error performance
evaluation and the computation of the demand reduction cost, and are presented in
this Chapter.

6.4.1 Pre-Processing

The consumption pro�les of the customers who enrolled in the DPR tari� were

extracted from the Electricity Use Interval Reading data. Leveraging the advantage

of MODWPT of the �exibility of starting a time-series data at any point, the most

recent quarter data is used for analyzing each DPR DR event. The MODWPT

approach to time-series prediction is less susceptible to how far back the "look-back"

period can be. Given the non-uniform pattern in the customers' subscription and

withdrawal from the programs, the most recent 3-month data preceding each event
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most reliably captured consistent customers who participated in the DR event day.

6.4.2 Admissible days selection

One of the primary considerations in CBL estimation is the determination of

program-eligible days. The "similar" days to the event day used for the baseline

estimation process are referred to as the Admissible days. Similarity, in most cases,

is based on the day type. For instance, a non-holiday weekday is a similar day to a

weekday DR event day. Admissible days were selected from the historical consump-

tion data preceding the corresponding DR event day. Since all the three programs are

weekday DR events, admissible days selected for all CBL estimation methods were

weekdays that were neither holidays nor prior event days.

The time-series data comprising the admissible days, for each household partici-

pating in a DR event, was normalized. The min-max normalization was employed to

scale the data in range [0, 1] as

xi,norm =
xi −min(X)

max(X)−min(X)
, (6.13)

where xi is the ith electricity consumption observation and X denotes the vector of

all the observations.

6.4.3 Feature Extraction and Clustering

The proposed CBL estimation by feature extraction entails MODWPT decomposi-

tion on the normalized vector of consumption observations in the admissible days for

each household. From the original 30-minute interval electricity consumption data,

I obtained the sampling frequency fs of 55.56 microHZ. A 4-level MODWPT was

selected, which decomposes the frequency interval
[
0, 55.56

2
µHz

]
into 16 equal width

intervals. For node n = 0, · · · , 24 − 1 in the 4th decomposition level, each node is

associated with the frequency interval fs
32
[n, n+ 1], where fs is 55.56 microHZ.

The wavelet energy for each signal (household consumption) was obtained from the
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Figure 6.2: The extraction of wavelet energy and entropy features from MODWPT
decomposition for two di�erent customers. Household IDs 8147803 (top) and 8664162
(bottom). The wavelet energies in the two homes di�er signi�cantly in nodes 1 to 6.
The entropy at all nodes di�er.

decomposition, as in Eq. (3.7) and Eq. (3.8). Subsequently, the wavelet entropy was

extracted, as in Eq. (3.9) and Eq. (3.10). Figure 6.3 shows the wavelet energy and

entropy features obtained from 4th level MODWPT decomposition for households

with IDs 8147803 and 8664162.

A 1 × 16 wavelet entropy vector was obtained for each household. The stacked

vectors for all households formed a matrix to be used for clustering. A well-known

K-means algorithm with Elbow method was used to cluster the households into dif-

ferent unique groups.

Finally, the CBL for each group was computed as the average of the CBL of the

members of the group. The group CBL was computed with the conventional CBL

estimation methods. The conventional techniques used as benchmarks are Low5of10,

Mid4of6, High5of10, EMA, and Regression. For the conventional benchmark meth-

ods, the CBL was directly computed from the time domain consumption data. How-
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ever, in the case of DFT-based clustering method, CBL was computed based on the

performance index described in Eq. (2.8) obtained from DFT of the consumption

signal.

6.5 CBL Estimation Results and Discussion

As shown in chapter 3, the proposed MODWPT-based clustering is intended to im-

prove the conventional methods. In the evaluation results presented, the clustering-

based CBL estimation methods are described in terms of the conventional meth-

ods they are applied to. For example, Low5of10 with DFT-based clustering implies

an improved Low5of10 achieved by the application of DFT-based clustering to the

Low5of10 method. Similarly, Low5of10 with proposed method means an improved

Low5of10 obtained by the application of the proposed MODWPT-based clustering

to the conventional Low5of10 method. For the purpose of comparative analysis, the

results from unadjusted conventional methods are presented as benchmarks.

The results presented here show the performance of the CBL methods in the se-

lected DR events. Each event is treated independently and separately. Since the

conditions (season, number of participants, etc.) of each are unique, the intent of the

metrics is not to compare events. Instead, the focus is on CBL methods.

In the results presented in Tables 6.2 - 6.4, the Unadj., A.Adj. and M.Adj. rep-

resents the adjusted, additively adjusted, and multiplicatively adjusted baselines,

respectively. To appropriately compare two CBL methods, it is imperative to com-

pare the results of the same (un)adjusted form. For example, additively adjusted

conventional Low4of5 which can be compared with additively adjusted Low4of5 Im-

provement by DFT clustering.

The ME provides the measure of CBL bias. A positive ME means a CBL method

overestimates the baseline, and a negative ME implies an overestimation of the base-

line. The closer to zero, the better. The MAE measures the accuracy of a CBL

method. Closer to zero indicates a more accurate CBL. The results of the OPI metric
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are presented in Figures 6.3 - 6.5. OPI provides a single metric for evaluating a CBL

estimation performance. Next, the results are discussed.

Table 6.2: The performance metrics of CBL estimation methods for event I

Mean Error

Baseline
Conventional Baseline DFT Clustering Proposed MODWPT

Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj.

Low4of5 -0.0221 -0.0122 0.0049 0.0003 0.0013 0.001 0.0011 -0.001 -0.001
Mid4of6 0.0019 -0.0002 0.0205 0.0178 0.0129 0.0119 0.0164 0.0102 0.0098
High5of10 0.1001 0.0709 0.0849 0.0649 0.0588 0.0568 0.0612 0.0576 0.0568
EMA 0.0223 0.0238 0.0314 0.023 0.0256 0.0247 0.0229 0.0244 0.0246
Regression 0.0312 0.0135 0.09 0.0056 0.0053 0.0055 0.0013 0.0019 0.0018

Mean Absolute Error

Low4of5 0.1331 0.1604 0.1652 0.0223 0.0245 0.023 0.0064 0.0074 0.0076
Mid4of6 0.1418 0.1695 0.173 0.0341 0.0304 0.0284 0.0164 0.0102 0.0098
High5of10 0.1952 0.2079 0.2084 0.0752 0.0713 0.069 0.0612 0.0576 0.0568
EMA 0.1438 0.1619 0.1644 0.0379 0.0407 0.0396 0.0229 0.0244 0.0246
Regression 0.2139 0.2129 0.2747 0.0336 0.0376 0.0384 0.0092 0.0086 0.0086
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Table 6.3: The performance metrics of CBL estimation methods for event II

Mean Error

Baseline
Conventional Baseline DFT Clustering Proposed MODWPT

Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj.

Low4of5 -0.1171 -0.0961 -0.0803 -0.1063 -0.0841 -0.0798 -0.1124 -0.0899 -0.0903
Mid4of6 -0.1078 -0.0947 -0.0767 -0.0966 -0.0855 -0.0813 -0.0967 -0.0846 -0.0845
High5of10 -0.0388 -0.0557 -0.04 -0.0783 -0.0748 -0.0733 -0.0787 -0.0736 -0.0734
EMA -0.0796 -0.0725 -0.0664 -0.0831 -0.0734 -0.0711 -0.0898 -0.0784 -0.078
Regression -0.0945 -0.0892 -0.0688 -0.0789 -0.0575 -0.0552 -0.0853 -0.0656 -0.0656

Mean Absolute Error

Low4of5 0.1979 0.2246 0.2222 0.1132 0.0943 0.0902 0.1124 0.0899 0.0903
Mid4of6 0.1989 0.2259 0.2223 0.1042 0.0952 0.0916 0.0967 0.0846 0.0845
High5of10 0.2019 0.2251 0.2204 0.08 0.0755 0.0742 0.0787 0.0736 0.0734
EMA 0.1933 0.2102 0.2074 0.0945 0.0831 0.0804 0.0898 0.0784 0.078
Regression 0.2453 0.2555 0.2741 0.1001 0.0799 0.0774 0.0853 0.0656 0.0656

Table 6.4: The performance metrics of CBL estimation methods for event III

Mean Error

Baseline
Conventional Baseline DFT Clustering Proposed MODWPT

Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj.

Low4of5 -0.0489 -0.0351 0.0559 -0.019 -0.0279 -0.0362 -0.0162 -0.026 -0.0362
Mid4of6 0.0109 0.0022 0.093 -0.0193 -0.0683 -0.089 -0.0155 -0.0252 -0.0353
High5of10 0.1292 0.0595 0.0473 0.0485 -0.0091 -0.0541 0.0574 0.027 -0.0073
EMA 0.0166 -0.0101 -0.0384 0.0082 -0.0251 -0.0577 0.0003 -0.0277 -0.055
Regression -0.0884 -0.2165 -0.1597 -0.0071 -0.0154 -0.0004 0.0017 -0.0018 -0.0066

Mean Absolute Error

Low4of5 0.2986 0.333 0.4632 0.0589 0.0692 0.089 0.0265 0.0307 0.0395
Mid4of6 0.309 0.3405 0.4881 0.073 0.1121 0.1461 0.027 0.0311 0.0399
High5of10 0.3501 0.3631 0.457 0.0764 0.0878 0.1201 0.058 0.0351 0.029
EMA 0.3032 0.3202 0.3995 0.0627 0.0703 0.1028 0.0305 0.0377 0.0593
Regression 0.6296 0.5457 0.4923 0.0799 0.0886 0.1283 0.0269 0.0151 0.0261
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6.5.1 E�ects of CBL Adjustment

Tables 6.2 - 6.4 show the application of the three metrics to CBL estimation meth-

ods and their additively and multiplicatively adjusted variants. A table is devoted to

each DR event. For most of the results, additive adjustment improves (with closer to

zero value) the ME performance of the conventional baselines. With the exception of

EMA and Regression of the event I, High5of10 of event II, and Regression of event

III, all additive adjustment improves the ME of conventional baselines. However, the

instances of improvement to the MEs conventional CBLs by multiplicative adjust-

ment are not more than scenarios with worse-o� MEs. For example, multiplicatively

adjusted forms of Mid4of6, EMA, and Regression of Event I have worse MEs than

their conventional forms. The same performance is observed in MEs of High5of10 of

the event I; and all conventional baselines of event II, except High5of10. Therefore,

the adjustments (additive and multiplicative) do not de�nitively improve the perfor-

mance of the MEs of the conventional baselines. In addition, no adjustment form

completely outperforms the other in all the events.

Adjustment improves the ME performance of most of the clustering methods (DFT-

based and the proposed). The ME of all adjusted forms (both additive and multi-

plicative) outperform the unadjusted forms in events I and II, except in clustered

EMA of the event I. However, only multiplicatively adjusted form of Regression with

DFT and High5of10 with proposed MODWPT have better MEs than their adjusted

forms. Thus, adjustments do not absolutely guarantee an improvement of the MEs

of the clustering methods. There is also no relatively better performing adjustment

between multiplicative and additive adjustments with respect to the ME results.

The unadjusted form of conventional baselines yielded superior MAEs than their

adjusted forms, except for additively adjusted Regression of event I and multiplica-

tively adjusted Regression of event III. On the other hand, the unadjusted form of the

clustering methods have higher accuracy than the adjusted forms, save for EMA and
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DFT-based Regression of event I; Low4of5, mid4of6, EMA DFT-based High5of10 and

MODWPT-based Regression of event II. Therefore, the adjustment does not de�ni-

tively improve the accuracy of the clustered method. OPI results from Figures 6.3

- 6.5 also con�rm that adjustments do not guarantee the improvements of the error

metrics.

6.5.2 Comparative Analyses of the CBL methods

The comparison here is made between two CBL methods of the same (un)adjusted

form. As delineated in Tables 6.2 - 6.4 and in Figures 6.3 - 6.5, the clustering-based

(DFT-based and proposed MODWPT method) methods signi�cantly outperform the

traditional CBL methods in terms of accuracy and the overall performance. Speci�-

cally, the clustering-based methods yield higher accuracy (MAE) in all 3 DR events.

Although there are some instances where the traditional methods yield relatively bet-

ter bias, the MAEs and the OPIs from the clustering-based methods are signi�cantly

much better. It can be concluded from the results that clustering-based methods

provide better overall performance than the traditional methods.

In comparing the DFT-based clustering method to the proposed MODWPTmethod,

an "apples-to-apples" comparison is made for clarity. An analogy is made between

the unadjusted clustering methods, and a separate comparison is made between each

of the adjusted forms. The unadjusted proposed MODWPT method outperforms the

unadjusted DFT-based clustering in all the events. Similarly, the overall performance

of the adjusted forms of the proposed also exceeds those of the DFT-based.
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CBL Estimation Evaluation for Event I
Unadjusted
 Additive Adj.
Multiplicative Adj.

Figure 6.3: Error performance of CBL estimation methods for event I.
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CBL Estimation Evaluation for Event II
Unadjusted
 Additive Adj.
Multiplicative Adj.

Figure 6.4: Error performance of CBL estimation methods for event II.
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CBL Estimation Evaluation for Event III
Unadjusted
 Additive Adj.
Multiplicative Adj.

Figure 6.5: Error performance of CBL estimation methods for event III.
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6.6 Rebate Payment Results and Discussion

6.6.1 Payment Error Results and Discussion

The payment errors (PEs) in the three selected events are shown in Table 6.5 -

6.7. A positive PE denotes an overpayment of the total rebate paid to the customers,

whereas an underpayment of the total rebate is indicated by a negative PE. The larger

the PE, the higher the errors from incentive payment.The closer to zero, the better

the PE. The conventional baselines resulted in higher positive payment errors than

clustering methods. And the proposed method yielded lower PEs than the DFT-base

clustering method. In fact, there are some scenarios where the proposed method gives

zero PE, for example, all baselines of event II. It can also be observed from the results

that the adjusted methods do not guarantee a reduction in PEs in all baselines.

6.6.2 Demand Reduction Cost Results and Discussion

The DRCs are computed for the case study DR events. For comparative analysis,

DRCs are calculated from multiple baselines estimated from the benchmarks and the

proposed CBL methods. A rebate estimate, obtained from clustered linear regression,

is computed using the peak time load reduction values from each CBL method. The

DRC values represent the cost of procuring demand reductions through DR programs

from rebate payment.

A DRC can either be positive or negative. A positive value is more desirable than

a negative value. As evident from Eq. (6.5), a large total load reduction would yield

a low DRC value. Thus, a lower positive value indicates a better DRC. From the

denominator of the DRC formula, a negative DRC value indicates the aggregate load

reduction is negative since R̂i is either positive or zero, and NP is always positive.

The higher the deviation from zero, the worse the negative DRC value.

Tables 6.5 - 6.7 present the DRC values for the DR events. Adjusted forms of

CBL do not de�nitively improve the DRC values of the peak time load reduction.
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The DFT-based clustering method provides better DRC values, when positive than

the traditional CBL methods in all the events. The proposed MODWPT method

provides the lowest DRCs for PTR demand reduction in all the events. Similarly,

the adjusted form of the proposed MODWPT method also has lower DRCs than the

adjustment of other baselines. Therefore, the proposed MODWPT method gives the

lowest cost of achieving load reduction through a dynamic peak rebate DR program.

Table 6.5: Assessment of rebate payment for DR load reduction for event I.

Payment Error[Aus$]

Baseline
Conventional Baseline DFT Clustering Proposed MODWPT

Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj.

Low4of5 1174.07 1839.03 1932.54 176.63 270.14 218.19 41.56 -31.17 -41.56
Mid4of6 1350.7 1963.71 2244.24 748.08 644.18 581.84 613.01 384.43 363.65
High5of10 3937.81 3459.87 3730.01 2441.65 2275.41 2171.51 2285.8 2150.73 2119.56
EMA 1568.89 2026.05 2181.9 924.71 1070.17 1018.22 851.98 914.32 914.32
Regression 2909.2 2846.86 5101.49 509.11 706.52 727.3 0 0 0

Demand Reduction Cost[Aus$/kW]

Low4of5 -38.34 -385.28 41.21 19.58 23.56 21.61 16.51 17.34 17.32
Mid4of6 34.17 58.12 27.91 16.69 18.03 17.74 16.1 16.29 16.3
High5of10 16.26 18.17 17.29 15.94 16.13 16.08 15.88 15.89 15.9
EMA 20.29 22.99 21.37 16.37 16.7 16.62 16.01 16.03 16.03
Regression 25.19 37.53 21.03 -28.38 57.73 56.14 0 0 0

Table 6.6: Assessment of rebate payment for DR load reduction for event II.

Payment Error[Aus$]

Baseline
Conventional Baseline DFT Clustering Proposed MODWPT

Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj.

Low4of5 736.47 1811.95 2104.2 46.76 140.28 -46.76 0 0 0
Mid4of6 970.27 1882.09 2045.75 58.45 128.59 140.28 0 0 0
High5of10 923.51 1706.74 1624.91 -1005.34 -771.54 -736.47 -1005.34 -771.54 -736.47
EMA 1320.97 1998.99 1928.85 -23.38 128.59 116.9 0 0 0
Regression 2104.2 2478.28 3530.38 93.52 198.73 198.73 0 0 0

Demand Reduction Cost[Aus$/kW]

Low4of5 -1.86 -6.01 -10.59 -0.12 -0.61 -0.71 0 0 0
Mid4of6 -2.89 -6.5 -12.44 -0.22 -0.54 -0.62 0 0 0
High5of10 81.93 -43.23 273.44 -0.02 0 0 0 0 0
EMA -7.72 -11.59 -15.03 -0.43 -0.65 -0.63 0 0 0
Regression -6.13 -7.65 -20.01 -0.14 -0.53 -0.56 0 0 0
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Table 6.7: Assessment of rebate payment for DR load reduction for event III.

Payment Error[Aus$]

Baseline
Conventional Baseline DFT Clustering Proposed MODWPT

Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj. Unadj. A.Adj. M.Adj.

Low4of5 1048.32 1670.4 3813.12 -483.84 -714.24 -748.8 -495.36 -794.88 -1117.44
Mid4of6 1751.04 2188.8 4803.84 -541.44 -1670.4 -1589.76 -472.32 -771.84 -1082.88
High5of10 4250.88 3110.4 3813.12 1520.64 -230.4 -1117.44 1785.6 840.96 -218.88
EMA 1589.76 1612.8 2407.68 288 -645.12 -1221.12 23.04 -852.48 -1635.84
Regression 6186.24 3006.72 3144.96 817.92 576 1416.96 403.2 0 138.24

Demand Reduction Cost[Aus$/kW]

Low4of5 55.77 30.33 14.31 11.84 12.13 13.01 11.45 11.46 11.49
Mid4of6 15.64 18.16 13.61 11.61 16.24 31.1 11.44 11.46 11.51
High5of10 11.54 13.33 15.03 11.33 11.55 15.7 11.31 11.33 11.37
EMA 14.02 18.19 28.25 11.43 12.04 18.21 11.38 11.48 12.76
Regression -13.3 -2.99 -2.36 -16.04 -3.48 -6.88 77.14 0 -0.76



CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1 Conclusion

In this thesis, it is emphasized that an accurate estimation of CBL is a key element

in the successful implementation of DR, especially for residential customers where

there is large randomness in energy consumption. In order to calculate the decrease

in demand in DR programs, it is crucial to accurately estimate the consumption

baselines at the designated peak periods. This thesis sought to improve the accuracy

of the conventional baseline estimation methods by proposing a novel clustering-based

CBL method, which leverages wavelet entropy features extracted from the maximal

overlap discrete wavelet packet transform (MODWPT) decomposition. To compare

the error performance of the proposed method with the traditional CBL methods,

some dynamic peak rebate (DPR) demand response programs were used as the case

study. The rebate payment in the DR programs was determined by Clustered Linear

Regression with high R-squared accuracy. Furthermore, demand reduction costs of

the PTR demand reduction, from using di�erent CBL estimation methods, were

computed. It was shown that the proposed MODWPT method provided the lowest

demand reduction costs compared to all the benchmark methods, in all the DR events.

The key conclusions are:

• The MODWPT variant of wavelet packet transform is chosen for its non-

sensitivity to the starting point of a time-series data. Also, MODWPT provides

higher resolution, due to the decomposition of its both low and high frequency

coe�cients, than conventional (discrete) wavelet transform.

• The wavelet energy and entropy features of MODWPT decomposition contain
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underlying features with which households can be clustered using their time-

series energy consumption pro�le.

• The formulas used to compute the rebate payment in the DPR demand response

programs were not revealed by the operators. Clustered Linear Regression was

performed on the DR events data to obtain the rebate paid with high R-squared

accuracy.

• The DFT-based clustering CBL estimation proposed in [38] was originally eval-

uated with a proxy DR event. In this thesis, actual DR events were used to

compare its error performance. The results of this thesis corroborate the supe-

rior error performance of the DFT-based clustering method over the traditional

CBL estimation methods.

• The overall performance index (OPI) of clustering-based methods signi�cantly

outperforms that of the traditional CBL methods. Moreover, the proposed

MODWPT method shows superior OPI performance over the DFT-based clus-

tering technique.

• CBL adjustment does not de�nitively improve the OPIs of customer baselines

estimation, although adjustment has a higher likelihood of improving the MAE

than the ME.

• The demand reduction costs is a metric for comparing the cost of achieving load

reductions via a DR to the cost of procuring capacity from alternative energy

sources. The proposed MODWPT method shows much better demand reduc-

tion costs than both the traditional and DFT-based clustering CBL methods.

7.2 Future Works

Based on the results of this thesis and the available related data, some directions

for future works are suggested as follows.
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• An investigation can be conducted on the behavioral changes of customers before

and during a DR event. As noted in section 4.1, appliances were controllable

(switched on or o�) using smart plugs via an online portal or a mobile device.

The setup is referred to as the Home Area Network (HAN). The HAN data

for the SGSC program is also available in the data source [32], where energy

consumption data is obtained for this thesis. The time-series data of operation

times of appliances such as microwave, television, dishwater, electric kettle,

washing machine, fridge, and air-conditioner are provided. It would be an

interesting research to study if the customers exhibited strategic behaviors in

the days prior to the DR events in a way to a�ect baseline computation.

• It will be insightful to study the impacts of electric vehicles (EVs) on peak

demand. The charging regimes of an electric vehicle add load to a customer's

consumption pro�le. A DR event data containing an EV's separate contribution

to each customer's electricity demand can be sourced to investigate the impact

of electric vehicles on peak demand.
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