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ABSTRACT

EKTA PRAKASH BHOJWANI. Efficient and Scalable Highway Asset Detection.
(Under the direction of
DR. HAMED TABKHI)

. The roads and highways are a valuable asset for the state department of trans-

portation. It takes massive investment and a huge amount of time to maintain the

road assets condition. Therefore, it becomes important to automate the maintenance

process with minimum manual inspection. There has been significant research in

the domain of classical computer vision techniques and machine learning methods

concerning highway and road assets maintenance. However, the time consumed to

assess and maintain and the amount of manual inspection involved is considerably

large. Although, adding automation to speed up the inspection process has been

investigated by many studies, they overshadow the importance of scalable and light

frameworks detecting the assets like storm drain and drop inlet in real-time. Thus,

this thesis focuses on integrating a reliable and scalable AI Deep Learning frame-

work customized for highway assets localization and detection of the assets in a road

infrastructure environment mitigating the need for large and bulky model sizes. Fur-

thermore, utilizing the advantage of the less computational cost and the lightweight

framework architecture along with reasonably higher accuracy, it is possible to build

an end-to-end framework that supports object localization and detection followed

by the inference on the mobile edge embedded platforms. In a nutshell, this thesis

presents a Deep Learning localization platform, customized to predict the position or

the location of the asset items on the Highways such as drop inlets and storm drains.

Moreover, it also provides results on the scalability of the localization task to the

multi-object detection task with the help the state of the art EfficientDet-D0 model

with a test accuracy of 73.4% mAP on the annotated test dataset and achieving vali-

dation accuracy of 51.67% mAP on the customized merged data of highway asset item
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drop inlet and 5 other COCO classes for object detection application. Additionally,

various analyses based on mIOU and classification scores are described in the experi-

mental section below. It also represents that the model framework is edge deployable

friendly and can be quantized to an Fp16 lighter version of the model with help of the

NVIDIA TensorRT engine showing the benchmarking performance of 50.55 FPS on

the NVIDIA Jetson AGX Xavier mobile embedded platform. Moreover, it highlights

the challenges and the future scope expansion of the work to the real-time onboard

drone visual analytics for Highway assets defect detection.
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CHAPTER 1: INTRODUCTION

The highways automated assessment, maintenance, and surveillance is one of the

highest demands in the Computer Vision community with a perspective to allevi-

ate the manual labor burden, and most importantly reducing the risk of the work-

ers/laborers working [1] [2] in the work zone. Moreover, the assessment is essentially

deployed with the help of AI for the broad analysis of the conditions of the highways

ensuring the safety of the humans and the environment in a shorter time. The AI

automated framework in this thesis involves an end to end pipeline from capturing

the frames to pre-processing it, fitting it in framework, and then realizing it for the

inference benchmarking on the mobile-edge devices [3] predicting the condition of the

asset item. To start with implementing the framework, the dataset [4] [5] is the pow-

erhouse of this pipeline, which requires a significant exploration such as organizing

it into the desired structure, curating it to fit to the desired framework, with aug-

mentations and various other processing techniques. After the dataset is organized

and structured, to execute the task effectively with a lightweight framework meeting

the demands of real-time automated assessment in the near future, a selective Deep

Learning Convolutional Neural Network (CNN) [6] [7] framework customized for the

desired task is extremely important. Furthermore, it also describes the lightweight

model architecture design since the large model sizes [8] [9] and expensive compu-

tation costs deter their deployment in many real-world applications such as robotics

and self-driving cars where model size and latency are highly constrained. Given

these real-world resource constraints, model efficiency [10] [11] becomes increasingly

important for object detection. Speaking about the Deep Learning tasks best suited

for the implementation of the research study, the best-suited task was starting with
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the preliminary approach which is localization, i.e, detecting the position of the as-

set item in the scene to localizing and classifying the difference between the other

asset items known as detection in the Machine Learning and AI community. Figure

1.1 shows an example of multi-scaled object detection involving a drop inlet to show

the custom dataset item. Moreover, the Figure 1.2 below shows the example of the

highway drop inlets assets of the dataset.

Figure 1.1: Object detection of different objects in a scene

Object Localization and Object Detection [12] [13] [14] [10] are few of the very

trending topics and demand huge attention for specialized and customized tasks.

With the view to implement such specialized object detection tasks there are many

famous open-source datasets available such as COCO 2017 [15], COCO 2014, Pascal-

VOC 2017 [16], etc used for object detection, image segmentation [17] [18] and so on.

These datasets [19] consists of data in the form of images and annotations or label

files to suggest the location of the object present in the image with the label to which

category the object belongs. Going forward with the customized tasks, it requires a

custom dataset which means integrating the desired data and to work on that data.

Broadly speaking, the custom dataset would consist of the images as the desired
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objects for the scalable multi-object object detector. Thus, to address the concerns

of the importance of the data collection from the Leidos, the industry collaborator

with this project, and inspecting its quality and materializing it into an AI framework

to complete the assets detection task this thesis study is based on the data processing

and the implementation method with the proof of concept that the efficient and scaled

framework can be optimized for the future real-time [3] deployment on edge embedded

devices.

Figure 1.2: Examples of highway drop inlet asset item

1.1 Motivation

According to the state department of transportation, the highway maintenance [1]

[20] and assessment [21] is a must so as to ensure the quality of the highways, the

power and the cost efficiency, avoiding the unforeseen natural calamities like floods,

cyclones, and overall driving experience for the drivers on the highways. The main

motive behind executing the research is to assess the highway assets [2] such as drop

inlets, storm drains, pipes, culverts, etc. To assess and maintain the assets with AI

and Deep Learning in Computer Vision strategies, the pipeline shown in the figure

below, gives the overall picture of the localization and the classification of the highway
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asset item as the output. To achieve this, an efficient lightweight model architecture

EfficientDet-D0 [21] [21] is chosen. The real time execution pipeline includes the

inference framework as discussed below. The framework is benchmarked to validate

its performance on the mobile edge embedded platforms with an aim to deploy it on

the on-board real-time drone visual analytics in the near future. The current detector

proves to be edge deployable with reasonable FPS benchmarking as a preliminary step.

Figure 1.3: End-to-end pipeline for Highway Assets Detection

1.2 Contributions

EfficientDet is a family of lightweight scalable networks for high-resolution and effi-

cient object detection with great accuracy and efficiency. It unifies the state of the art

backbone EfficientNet network, which avails the flexibility of tuning the width, depth

of the layers and the input resolution and the Bidirectional Feature Pyramid Network

[22] [23] [24] followed by the Class and Box prediction network. The EfficientDet[22]

framework for customised task depends on the custom dataset essentially. A popular
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method transfer learning is implemented, where the new customised dataset is fine-

tuned based on the pre-trained weights of the pre-trained model, which is trained on

a large open source COCO2017 dataset. For the sensible and the best training model,

the hyperparameters tuning is involved. The evaluation and the inference pipeline

proves to achieve high performance FPS. For the clarity of the main steps taken in

order to make this project a successful one, as shown in the Figure 1.3. In summary,

this study has the following major contributions:

Towards front-end algorithms:

• Curating, analyzing and pre-processing the dataset to make it fit for the highway

assets detection task. Moreover, filtering out the COCO dataset into 5 classes

and merging the highway drop inlets class along with the filtered COCO dataset

so as to prove the multi-object detector scalibility of the model.

• Building a customized dataloader where the images and the annotation of the

dataset are fed to the model and arranging the dataset format accordingly.

• Building an augmentation pipeline to mitigate the effect of meagre dataset on

the training framework. The augmentation pipeline includes offline augmenta-

tion such as Random scale, Random zoom in and zoom out, and so on.

• Evaluating the qualitative results based on the results generated by the model

on the random test dataset identifying the objects in the image based on the

categories and the confidence scores so as to make it easily available for the

inference pipeline.

• Creating optimized C++ vision pipeline with TensorRT models for efficient

agile execution on embedded edge devices.

• Evaluation of vision pipeline on NVIDIA Jetson Xavier platform as an early

proof of concept for real-time on-board processing.
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1.3 Thesis Outline

The Thesis is based on the collaboration with the Leidos and VDOT industry

outlined as follows: Chapter 2 gives a detailed report on background related work of

Transfer Learning pipeline, class imbalance methods and inference optimization with

the current market trend in the field of inference on the embedded platforms. Chapter

3 introduces the network architecture of EfficientDet - both localization of 1 asset

item and object detection. It explains the backbone CNN as well as the Architecture

details and how is it customised for the task. Chapter 4 is the Inference Optimization

description on NVIDIA Jetson AGX Xavier. Chapter 5 is the experimental results

section where an exhaustive evaluation of the framework on the Leidos dataset of

highway asset items and the relevant COCO classes is conducted. Experimental

results also include inference benchmarking performance on TensorRT engine for this

project’s developed custom model.



CHAPTER 2: RELATED WORK

This section is an amalgamated set of related work relevant to the thesis. First, it

represents the background of the transfer learning useful to train the networks with

smaller datasets. It also includes the challenges with a small or a meager dataset.

The background highlights popular class balancing techniques to mitigate the class

imbalance problem. Lastly, a survey for new and emerging optimizing framework for

the inference has been discussed.

2.1 Road pavement Damage detection

There has been research in the field concerning the pavement damage detection. In

particular, some works focus on detecting only the existence of the damage regardless

of its type [25] [21]. Other works focus on classifying the road damages into a few

types. For example, [26] devised an approach for detecting two directional cracks

(i.e., horizontal and vertical), while [27] developed another approach for detecting

three categories of damages, namely horizontal, vertical, and crocodile. Due to the

fact that differentiating among damage types is critical for proper road maintenance

planning, [28] have implemented an approach for a thorough classification of road

damage types. There have been research with road damage classification and detec-

tion tasks which [28] [25] use bulky networks. However, the accuracy and efficiency

is the main concern for identifying the damage. The [25] [26] uses YOLO [29] which

is a network generating requiring many bounding box regression anchors making the

network bulky and not suitable for mobile edge deployment. While the work in [30]

highlights on the automated technology for damage detection but uses a large dataset

to analyse. While, we prove in our study that the automated detection can work based
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on the meagre dataset availability of highway assets.

2.2 Road Asset Classification

There have been a significant contribution to this study which delivered solutions

on the Road Asset Classification using transfer learning approach with multi-level

classification. For the classification, the dataset used had 14 road asset items including

the pavements [31], ditches, pipes, culverts, drains, etc. The road asset images dataset

collected for this work were originally taken for manual inspection purposes, and

mostly all of the images were from defected road assets which made the classification

task more challenging comparing to when all images collected were from non-defective

[21] road assets because defects could be of various forms and degrees. The challenges

mentioned above made the model design a more complex task. Considering these

challenges, a clear representation learning of similar and dissimilar features [32] among

images under each class and between different classes was studied to further the

classification [32] task. Hence, a very productive approach i.e., transfer learning

was adopted to solve these challenging tasks. Moreover, in this way the model was

potential to overcome the sparsity and data limitation challenges. ImageNet [19] as

a base knowledge source provided valuable information regarding general features

[33] [34] [35] of the objects that existed in the scenes of the target dataset i.e., the

road assets dataset. This helped the model to recognize intra-class similarity and

inter-class differences [36]. Thus, learning about such parameters, and addressing the

concerns of the data limitations, this work included model representation to learning

the differences between the contextual features [5] [4] of the classes. To reduce the

negative effect of classes with high inter-class confusion, using a separate classifier

[37] [32] as the second stage of network is proposed in this study. First the main

classifier is used to classify all road assets. The results of main classifier is analyzed

by generating a confusion matrix. Based on confusion analysis, challenging classes

are picked to be classified by a binary classifier [38]. The dataset for main classifier
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is modified and the challenging classes are combined under the input dataset of main

classifier. In the case of this study, since unpaved ditch has a low accuracy and high

confusion rate with paved ditch [31], these two classes are combined as ditch in the

main classifier and a binary classifier is used to classify them. It can improve the

accuracy for unpaved ditch and reduce the negative effect of unpaved ditch on paved

ditch and as a result an increase in paved ditch class accuracy will be gained. This

happens due to the fact that binary classifier will be specialized in distinguishing

between paved ditch and unpaved ditch by optimizing the networkâs weights only on

ditch images. Hence,this previous work was a great motivation to lead forward the

task in the case of road assets classification.

2.3 Transfer learning methods

Transfer Learning is a broad topic under the Deep Learning [5] [4] umbrella. In

the same way a human learns from previous experiences to generalize new similar

situations, the deep learning framework attempts to learn the previous knowledge

to generalize new tasks. This phenomenon of transferring the acquired information

to a new model or task is called transfer learning[33] [34] [35] [39] . It has been

practiced in many different ways such as weight transfer for super- vised learning [40]

and policy transfer for reinforcement learning [41] . One way that transfer learning

can be used for CNNs is to primarily train a CNN [6] [8] on a huge dataset [5] [4] with

similar basic visual features to the target dataset for that includes data for the new

or customized task. Utilizing pre-trained [35] [8] [42] networks not only reduces the

training time significantly but also enables the CNN to learn from small datasets with

high sparsity. In the context of object detector, transfer learning is helpful with the

freezing the network layers or using the pre-trained backbone [9] [8] [43] and feature

aggregation networks[24] [44]. While the class label prediction and bounding box

regression network can be made to start learning from weight initialization weights.
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2.4 Class Imbalance

Any dataset with unequal distribution between its majority and minority classes

can be considered to have class imbalance, and in real-world applications, the severity

of class imbalance can vary from minor to severe (high or extreme). A dataset can

be considered imbalanced [45] [46] if the classes, e.g.,healthy and defect cases, are not

equally represented. The majority class makes up most of the dataset, whereas the

minority class, with limited dataset representation, is often considered the class of

interest. [47] Most standard algorithms assume or expect balanced class distributions

or equal misclassification costs. Therefore, when presented with complex imbalanced

data sets, these algorithms fail to properly represent the distributive characteristics

of the data and resultantly provide unfavorable accuracies across the classes of the

data. There are famous data sampling techniques like Oversampling[48][47], which

is increasing the samples of the rare classes, it can be data augmentation, Random

oversampling simply replicates randomly the minority class examples. Random over-

sampling is known to increase the likelihood of occurring overfitting[49] [50] [51]. On

the other hand, the major drawback of Random undersampling is that this method

can discard useful data. There is one more technique, for instance Synthetic Minority

Oversampling Technique (SMOTE) [47] [45] [52] [53] [48] This method is considered

a state-of-art technique and works well in various applications. This method gener-

ates synthetic data based on the feature space similarities between existing minority

instances. To create a synthetic instance, it finds the K-nearest neighbors [54] of each

minority instance, randomly selects one of them, and then calculate linear interpola-

tions to produce a new minority instance in the neighborhood. One more technique

ADASYN [47] [45] generates samples of the minority class according to their density

distributions. More synthetic data is generated for minority class samples that are

harder to learn, compared to those minority samples that are easier to learn. It calcu-

lates the K-nearest neighbors[54] of each minority instance, then gets the class ratio
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of the minority and majority instances to generate new samples. By repeating this

process, it adaptively shifts the decision boundary to focus on those samples that are

difficult to learn.

2.5 Optimizing Inference Engine

There have been huge demands for the Computer Vision applications in the domain

of Healthcare, surveillance, safety, self-driving cars, defense, and many more. The

Deep Learning inference framework helps in realizing these tasks into a product.

Therefore, to gauge the real-time performance, there have been immense research in

the Deep Learning Acceleration [55] [56] [57]. Hardware companies like NVIDIA [58],

Intel [57] are focusing on the development of Deep Learning Accelerators optimized

for inference engines. The TPU [59] [60] are the other hardware accelerators for

inferencing. Despite having a much smaller and lower power chip, the TPU has 25

times as many MACs and 3.5 times as much on-chip memory as the K80 GPU. The

TPU is about 15X - 30X faster at inference than the K80 GPU [61] and the Haswell

CPU. The TPU has a higher inference speed because it uses a mix of 8-bit weights

and 16-bit activations (or vice versa), the Matrix Unit computes at half-speed, and it

computes at a quarter-speed when both are 16 bit. This offers huge acceleration at low

power. Similarly, FPGAs [57] have started to implement the deep learning framework

exploration meeting the high-intensity inference acceleration based on OpenCL and

hardware kernel languages such as Vivado based on massive task parallelism.



CHAPTER 3: Deep Learning Training Framework

This chapter consists of the methods involved in implementing the pipeline and

the architecture used to integrate it. It starts with the Deep Learning algorithm

required followed by the Data curation to run the algorithm, the architectural design,

compound scaling methodology, training setup of the architecture and the following

chapter highlights on deployment of the architecture method on the hardware module

Jetson AGX Xavier.

3.1 Deep Learning Algorithm

The department of health, transportation, highways, etc require a lot of mainte-

nance and assessment [1] due to the rigorous activities and task intensiveness. Due to

their exhaustiveness of the resources and the labor inspection, there is a need for au-

tomated tasks to prevent the risk of the laborers and the manual inspection involved.

Thus, in this study, before starting to automate the task it is important to realize

the availability of the resources and the data to be analyzed for the completion of

the task. The research is based on developing an algorithm for the VDOT highway

assets items inspection. The first and foremost task is to sense the availability of

the database since it is an automated Deep Learning task that requires massive data

[5] [4] to execute the application. The data collection and management is expensive

which comes at the cost of resources required and the safety of the workers because

of the data collection on the highways. Hence, the data collected was just bound to

a single highway asset drop inlet with the resourcefulness being the concern. There-

fore, the preliminary step was to just predict the location [62] of the single asset item

with respect to the image in the dataset. This process is known as [63] the object
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localization. Furthermore, to study the scalability of the model, learning its capacity

to train the multiple objects of different categories, an algorithm using the state of

the art EfficientDet [22] architecture has experimented thoroughly. The fine-tuning

[64] [33] of the architecture and the necessary steps taken are dictated in the chapter

below.

Figure 3.1: Dataset curation and organization

3.2 Data Curation

Dataset organization and management is a skillful art to run an AI pipeline. The

equation of the data to training the model is quite proportional. The better the data

the better the accuracy and the learning capability of the model. Thus, for a success-

ful implementation of the scalable multi-object detection architecture, a reasonable

number of classes images samples were taken for training and the corresponding evalu-

ation. By dataset organization, it deeply means that the images and their annotations
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are organized and cleaned to fit it to a particular annotations format. As discussed

in the previous sections, the framework is mainly built for the custom dataset col-

lected by the industry partner Leidos, i.e., the drop inlet highway asset item, the

dataset was labeled in the Labelbox [65] labeling tool followed by the generation of

an export annotations ready file. This annotations file is then converted to COCO[66]

[67] [68] format annotations with an aim to maintain the consistency between further

added classes to the dataset. This helped in building a model for the single class

object detection since the availability of the single class. Furthermore, to create a

scalable multi-class framework, the COCO classes were merged with few classes from

the popular COCO dataset. To make a flexible training setup, it was just important

to filter particular categories relevant to highway objects. Thus, 5 other classes from

the COCO dataset [66] [15] namely the bus, car, person, train, truck were merged

with the existing highway asset dataset bringing the total to a dataset of 6 classes.

The training and the evaluation results are based on these 6 classes mentioned in the

Experimental Results section. After merging the dataset as shown in Figure 3.1, the

data before feeding to the training pipeline is preprocessed thoroughly to fit in the

framework which is discussed in the chapter later. Apart from all the dataset orga-

nization which was a 6 classes COCO format annotated dataset the number of the

samples of the images in each class was studied thoroughly to gauge the class balance

[46] [45] across the dataset. The number of training and validation samples given

below show the number of the images originally in the dataset. Notably, the training

samples, for the drop inlet class depict that there can be a reasonable class imbalance

which means the ratio of the samples concerning the samples in the other classes could

be less than or equal to 1. Like the drop inlet images are significantly less than the

sample images in each of the other classes. This class imbalance [47] [52] [53] could

hurt the performance of the model over training and evaluation such that the class

with very less number of samples could be hard to classify. Therefore, to mitigate this
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Table 3.1: EfficientDet scaling configuration

Model Input size Backbone BiFPN #channels BiFPN #layers Box/class #layers
(Rinput) network Wbifn Dbifpn Dclass

D0 (φ = 0) 512 B0 64 3 3
D1 (φ = 1) 640 B1 88 4 3
D2 (φ = 2) 768 B2 112 5 3
D3 (φ = 3) 896 B3 160 6 4
D4 (φ = 4) 1024 B4 224 7 4
D5 (φ = 5) 1280 B5 288 7 4
D6 (φ = 6) 1280 B6 384 8 5
D7 (φ = 7) 1536 B7 384 8 5

issue, class balance comes in handy. To solve these issues, the plausible solutions are

adding focal loss [69] or augmentation techniques referenced in the chapter Related

Work Data Augmentation section. We necessarily try many online augmentations

such as Random Rotate, Random Flip, Random Scale, Random Translate, and many

more. But to augment 1 class amongst all the classes, offline augmentation, which

means populating the data with more number of images as a part of the dataset such

that the ratio of the class with the meager number of images approaches to 1 with

respect to other classes in the database. Different results with various techniques are

mentioned below. In this way, the data is structured into a particular format and

stored on the disk. The data management visualization is important to understand

the gravity of the concept. Hence, it is visualized in the Figure 3.1.

3.3 Network Architecture

The widely acknowledged compound scaling and the lightweight factor of the

Google founded EfficientNet and EfficientDet architecture are accepted typically with

an aim to build the framework customized applications like detection, classification,

and segmentation as an end product ready to be deployed in real-time. However, the

beauty of this architecture family is the fact that it is scalable detection architecture

with both higher accuracy and better efficiency across a wide spectrum of resource

constraints (e.g., from 3B to 300B FLOPs). The EfficientDet configuration over dif-

ferent models of the family is shown in Table 3.1 below. The paper [22] mentions
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Table 3.2: EfficientDet Parameters

Model Input size #Params FLOPs
EfficientDet-D0 512 3.9M 2.5B
EfficientDet-D1 640 6.6M 6.1B
EfficientDet-D2 768 8.1M 11B
EfficientDet-D3 896 12M 25B
EfficientDet-D4 1024 21M 55B
EfficientDet-D5 1280 34M 135B
EfficientDet-D6 1280 52M 226B
EfficientDet-D7 1536 52M 325B

how the other object detectors like single stage object detectors like SSD [12] and

the anchor free generation [14] are efficient but they compromise accuracy which is

a very important factor when it comes to the precise and correct bounding box pre-

diction and its corresponding class label. EfficientDet architecture is light, efficient,

and proven to be the state of the art object detector since it beats the YOLO-V4

[29] [13] and RetinaNet [69] in the terms of accuracy and is lighter when compared

to the parameters of the other popular object detectors. Acknowledging the useful

considerations regarding the EfficientDet from the description above, it is possible to

build an end to end pipeline with fulfilling the requirements of detecting the object

from the distance with high-resolution input without compromising the accuracy and

efficiency. The Table 3.2 shows the different configurations of EfficientDet family.

From the Table 3.2 and the Table 3.1, the EfficientDet-D0 looks the best fit as this

was the lightest model with a decent input image resolution with 3M parameters

weights configuration. Moreover, the motive behind selecting the lightest model was

to deploy it on the drone mountable low power edge embedded device shortly. The

current chapter focuses on how the EfficientDet-D0 is customized to fit in the pipeline

for this research and also discusses briefly the key components of the architecture.

The key components are 1) Backbone, 2) BiFPN Network,3) Class/Box prediction

network
Backbone Network Previous works for the object detection scale the base net-

work by using bigger backbone networks like ResNet [9] and VGGNet [8], using large
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input resolution, or using multi-scale training to achieve high accuracy. However,

these methods rely on scaling only a single dimension, which has inadequate effec-

tiveness. Thus, to tackle the scaling method, and maintaining the efficiency, the

EfficientNet family [44], show outstanding performance on image classification by

jointly scaling the width, depth, and input image resolution. Thus, the EfficientDet

architecture is the extension of this state of the art backbone network. Starting with

the baseline EfficientNet-B0, the EfficientNet family scales up to B7 with the help

scaling coefficients below:

depth : d = 1.2φ

width : w = 1.1φ

resolution : r = 1.15φ

(3.1)

Every EfficientDet-Dx detector architecture has a corresponding scaling of EfficientNet-

Bx backbone where x ranges from 0 to 7. The main purpose of the extractor in

this work is to serve the purpose of deep feature extraction followed by the Feature

Pyramid network. The EfficientDet Architecture consists of two main components -

Backbone + BiFPN network. As you can see in the figure, 3.2 the BiFPN Layer only

interacts with the feature maps extracted by the backbone network at level 3-7 of the

backbone network.

Feature Pyramid Network The Feature Pyramid network [70] [23] [24] is a

medium for fusing the features extracted from the backbone. The object detector

architectures mainly rely on the feature fusion techniques. There have been advance-

ments from feature fusion to scaled feature fusion. The SSD [?] detector has its

independent technique of fusing the first 4 layers of the feature network. The fusion

technique changes with the difference in the scalability of the model. Like the NAS-

FPN [70] [24] networks maintains a cross-scale feature fusion technique but it takes

significant hours of training these bulky networks with a significant drop in efficiency.
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In the same way, the EfficientDet detector relies on the multi-scale BiFPN network,

which accounts for the top-down and bottom-up path feature network. It is clear

in the Figure 3.2 that each bidirectional (top-down bottom-up) path is treated as

one feature network layer, and repeat the same layer multiple times to enable more

high-level feature fusion.

There are bottom-up and top-down connections between the feature maps at dif-

ferent levels. Thus, there could be a need to Upsample or Downsample the features.

In Figure 3.3, the connection indicated by the red arrows pointing up between the

nodes is the Upsample and the purple arrows represents the Downsample operation.

Each Node inside a BiFPN layer can accept either 2 or 3 inputs and it combines them

to produce a single output. Since the BiFPN Network consists of multiple BiFPN

Layers the number of the BiFPN layers depends on the size of the EfficientDet. This

scaling of the BiFPN based on the sizes is determined with the help of Compound

Scaling mentioned below. In the block below 3.3, the output node like mentioned

above is a way of summation of the feature input nodes. But before, the input nodes

are added, it is made sure that they are of the same channel and size. In order to

make the input channels equal to the output channels, a Convolution2D block for

1x1 convolution between the channels followed by a Batchnorm2d and Activation is

implemented. Furthermore, in Figure 3.3, the nodes at the output layer are the fu-

sion of all the input nodes. So, a fusion of all nodes is possible with [71] Depthwise

Separable Convolution.

3.4 Compound scaling

The Deep Learning community has been contributing to scaling the large bulky

networks and architecture into a lighter, and efficient framework being able to lower

the computational cost. This also enables real-time visual analytics on the power

resource-constrained devices. Thus the EfficientNet family has overpowered other

state of the art networks because of its flexibility to scale the depth, width, and the
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Figure 3.3: A detailed illustration of the BiFPN block of the architecture which
represents Upsample and Downsample operations on the feature maps nodes. The
circle components between the connections is the node

.

resolution network parameters with the help of a Grid search algorithm. However,

the Efficientdet network jointly scales the depth, width, input resolution, the BiFPN

network, and the class/box prediction network using a compound coefficient φ based

on the Compound scaling method mentioned below. The formulation behind the com-

pound scaling according to scalability of all the components for Depth, Width, input

resolution, BiFPN layers, and class/box prediction network based on the respective

model is as below.

Input Image Resolution The EfficientNet layers downsample the original input

image resolution by 128 times. Thus, the input resolution of EfficientDet must be
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divisible by 128, and is linearly scaled down as shown in Equation 3.2

Rinput = 512 + φ · 128 (3.2)

BiFPN Depth Scaling The BiFPN layers is linearly increased and approximated

to start with the small integer. Hence, it starts with 3 for the D0 model as shown in

the Equation 3.3.

Dbifpn = 3 + φ (3.3)

BiFPN Width Scaling The width or the number of channels of the BiFPN is

decided on the heuristic grid search approach, picking the best value as 1.35 as the

width scaling factor multiplied by 64 channels as shown in the Equation 3.4

Wbifpn = 64 · (1.35)φ (3.4)

Depth for Class/Box Network The scale of the repeated layers in the block

for the class and the box prediction network are more likely scaled linearly using the

Equation 3.5

Dclass = 3 +
φ

3
(3.5)

3.5 Training setup

To integrate the aforementioned architecture customized according to the intended

task, the Hyperparameters tuning is explored along with the following steps involved,

First, The backbone EfficientNet-B0suitable for this research,is a pre-trained on the

very popular and humongous ’Imagenet’ dataset of 1000 classes. This provides well-

trained weights to ensure smooth learning of the features of the dataset with a lower

learning rate hyperparameter. Second, the BiFPN against the classical FPN in the

context of our drop inlet localization and detection would stand helpful in the follow-
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ing ways:

1. In the drop inlet detection application, features like grid orientation, brightness,

and the surrounding concrete area should be taken into consideration. Hence,

using multi-scale feature extraction can benefit from the accurate detection task.

2. Feature Pyramid Network (FPN)[23] uses a top-down approach to sum up multi-

scale features that can be used for fusing multiscale extracted features. In the

FPN, different scales do not necessarily contribute equally to the output features

that can lead to some missing features in the drop-inlet detection process. thus

the BiFPN would help in giving the features equal importance making the

framework robust.

The minimum level for the input to the BiFPN layer is the 3rd level of the Backbone

network and the maximum level is the 7th level from the backbone network as shown

in the Figure 3.2. For the training, the necessary upsample and downsample shown

by the red and violet arrows in the 3.3 looks after the proper resampling of the feature

maps. The EfficientDet-D0 according to the equation 3.3 has Dbifpn i.e., the BiFPN

block is repeated 3 times is clearly mentioned in the 3.2. These features can now be

fed into the class and box network. In this network, the class network is modified

to include the number of classes in the labeled dataset. Since there is only 1 class

in the terms of the object localization the pre-trained [33] [34] coco head is set to

1. Similarly, for the 6 classes, the head class net is modified to 6 with the help

of Depthwise Separable Convolution [71] as shown in the Figure 3.2. The box net

is responsible for the regression [72] of the bounding box coordinates. The output

of this part is the anchors’ generation, inspired by RetinaNet architecture style [69]

takes place, where the number of scales and the anchors scales is set according to

the resolution of the bounding box predictions desired. There are 9 anchors [14] [73]

generated of 3 scales with 3 aspect ratios [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)] which is
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selected as per the dataset. Moreover, the Focal Loss is employed to mitigate the

class imbalance problem. A study on 2 different γ values of (1.5, 2) to learn its effect

on training and evaluation. The Focal Loss [69] focuses on the hard and rate training

samples which is the drop inlet class in our case.



CHAPTER 4: Effcient Onboard Execution on Edge Devices

While training a model for the customized dataset, and looking forward to evalu-

ating on the test dataset, one needs to visualize the training data, clean it up, and

train again unless the best results to try reducing the bias-variance tradeoff. After

the model is trained to perfection it is ready for production. The production process

involves 3 stages. First, converting the model trained in the choice of framework

which is Pytorch [74] in the favor of the Thesis into an intermediate understandable

machine learning graph, which is then converted to the optimized machine learning

hardware language followed by some post-processing essentially based on the task and

application. Thus, the machine learning hardware language is the pivotal aspect of

this pipeline. For this, the very recent and advanced NVIDIA has served the inference

[3] optimizations. The NVIDIA TensorRT [58] is an SDK for high-performance deep

learning inference. It includes a deep learning inference optimizer and runtime that

delivers low latency and high-throughput for deep learning inference applications.

The core of NVIDIA TensorRT is a C++ library that facilitates high performance

inference on NVIDIA GPUs. TensorRT takes a trained network, which consists of a

network definition and a set of trained parameters, and produces a highly optimized

runtime engine which performs inference for that network. The Figure 4.1 represents

the actual conversion in simplified block diagram representation. The block indicates

the conversion process and it also depicts that finally the TensorRT engine is sent to

the Inference pipeline for actual evaluation and benchmarking.
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Figure 4.1: Model to TensorRT engine conversion process

4.1 Pytorch model to TensorRT conversion pipeline

ONNX The training framework is discussed in chapter 3 above. Starting with the

deployment production process, the first step is converting the Pytorch model into the

ONNX [75] graph format. ONNX stands for Open Neural Network Exchange. It is a

compatible graph for the trained equivalent model in any framework of choice It is an

open format built to represent machine learning models. In this study, the Pytorch

ONNX [76] API is used to convert the perfectly trained model into an ONNX graph.

The model conversion to ONNX is executed on the NVIDIA TitanV hardware.

ONNXRuntime The huge benefit of having a common format of the graph at run-

time is that the software or hardware that loads the model at run time only needs

to be compatible with ONNX. Thus, the ONNXruntime libraries were installed on

the same hardware NVIDIA TitanV for the compatibility with the ONNX graph. To

validate the ONNX model, there have been equal weightage to the onnxruntime [77]

output tensors. These output tensors are compared to the Pytorch saved network
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definition model. The output tensors generated by the runtime engine are pretty

similar to the PyTorch model outputs which then confirms the deployment of the

model on the edge device

Hardware module There has been tremendous research in the field of Machine

Learning benchmarking performance describing the necessity of the Deep Learning

hardware accelerators and low power devices to tackle the resource constraints and

reducing the latency for the model kernel execution in real-time. Thus, the hard-

ware chip manufacturing and design companies like NVIDIA, Intel, Xilinx, etc let the

user avail the hardware inferencing on the specialized deep learning accelerators like

GPUs and FPGAs. Thus, taking the maximum advantage of the available hardware

resources suitable for the execution for our framework, considering the low power

requirement and the inferencing capability, hardware module NVIDIA Jetson AGX

Xavier is used for the inference and benchmarking performance as shown in Figure

4.3 below. The specs of the Jetson AGX Xavier is in the Table 4.1.

trtexec tool In this thesis, the framework is deployed converting the ONNX model

in the TensorRT engine using the TensorRT Python API and trtexec tool. The tr-

texec tool [78] is a favorable library designed by the TensorRT committee [58] which

enables to use the C++ backend for the conversion of the ONNX graph into a se-

rialized TensorRT engine. It is a tool that has all the necessary components of the

TensorRT library. It also helps in profiling, time tracing the layers, and quantizing

the model to build the TensorRT engine.

TensorRT Engine After, the ONNX model is checked minutely to avoid errors if

any, the model is converted to an engine optimized specifically to carry out the infer-

ence application. TensorRT achieves maximum inference throughput by generating

an optimal runtime engine. The TensorRT enables to quantize the FP32 trained

model into INT8 (8-bit integer) or FP16 (16-bit floating point) arithmetic quantized

model. This decrease in precision can significantly speedup inference at a small cost
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of accuracy. Other kinds of optimizations include minimizing GPU memory footprint

[58] by reusing memory, fusing layers and tensors, selecting the appropriate data lay-

ers based on hardware, and so forth. Various customized plugins could be used to

further optimize the process [58].

Figure 4.2: Visual Analytics Pipeline

4.2 Benchmarking pipeline

As we learned in the section above regarding the conversion of the model trained

on the custom dataset to the TensorRT engine, it is crucial to know the workflow

of how the TensorRT kernel for the object detection task is executed based on the

engine file and what are the steps taken to run the kernel for the detection task and

inference benchmarking on each of the processes. The experimental results in chapter

4 shows these numbers. In the Figure 4.2 below, each block speaks about the task

involved. Hence, just to elaborate briefly, the description is as follows:

Pre-processing The engine might accept a particular format of the model to reach

out to the best output. Also, the engine would only accept the input frame size for

which the ONNX graph was converted. Hence, it is important to resize the input and

then normalize it.
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TensorRT Kernel execution The current capacity of this research is to execute

the task-specific TensorRT kernel with accepting the preprocessed input data frames

and to generate some intermediary output before finally visualizing the desired final

output bounding box prediction. Hence, the inferencing benchmarking is the time

taken by the kernel TensorRT engine to execute the frames per second. In this

region particularly the engine uses the compressed model engine weights to identify

the object of interest that is to localize the presence of the object and predicting its

category to which it belongs. Hence, the TensorRT optimization in this research is

only for the kernel execution part. While the pre-processing and post-processing is

carried out using some native Pytorch and Python Numpy methods.

Post-processing The results generated as the outputs from the TensorRT engine

framework can now be post-processed to generate the output in the form of a bounding

box and the classification probability of the images or frames passed as an input to

the framework. In this research, the Post-processing step was implemented with the

help of native Pytorch Anchors and NMS algorithms.

Figure 4.3: Jetson AGX module
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Table 4.1: Jetson AGX Device Configuration

GPU 512-core Volta GPU with Tensor Cores
CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 4MB L3

Memory 32GB 256-Bit LPDDR4x | 137GB/s
DL Accelerator (2x) NVDLA Engines



CHAPTER 5: EXPERIMENTAL RESULTS

In this section, the method to train and evaluate the model utilizing the EfficientDet-

D0 architecture with a range of experiments observed in the research are discussed.

The COCO API is integrated for further evaluation on the custom dataset i.e., in-

clusive of highway asset item drop inlet and the subset of COCO classes. Then, the

respective quantitative and qualitative experiment results are presented. The Exper-

imental results also show the transition from the single-stage i.e., Object localization

to multi-stage scaled object detector. To achieve the inference on the edge devices,

FPS performance numbers are reported for the TensorRT engine equivalent of the

trained Pytorch model.

5.1 Object Localization

Dataset. As the name suggests the objective of the training setup was to first analyze

the training model based on Leidos claimed annotated highway asset item dataset i.e.,

the single object drop inlets class, each image having 1 or 2 drop inlets in each image

and thus the corresponding bounding box annotations for the respective item in the

image were fed to the model for the training and evaluation. The purpose of the

training was to localize the drop inlet as a preliminary approach. For this setup,

the database comprised of nearly 612 images for the training and 172 images for the

validation while 87 test images for evaluating the test accuracy.

Training. The training framework was built on a EfficientDet-D0 model pre-trained

on the COCO2017 dataset which has 80 classes in total. The HeadNet part of the

model i.e, the class net and the box net prediction network was modified to let the

COCO head of the pre-trained model on 80 classes change to the 1 class in the
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training setup. The total number of images for the training is 612 images while for

the validation are 180 images and 88 test unseen images. The model was trained using

the Adam weight optimizer [79].In the training setup since the drop inlet localization

was altogether a newer object for the pre-trained model, we ran the model with a

smaller learning rate 1e−5 for 10 warmup epochs which was linearly increased to 0.05

followed by training on additional 80 epochs with a cosine scheduler [80] which reduces

and adjusts the learning rate by a factor of 10 after every 30 epochs. Furthermore,

the evaluation and the test accuracy are discussed below

Evaluation The single object localization was evaluated on the metrics based on

class scores and mIOU when the dataset had intended to have groundtruth annota-

tions. The results in the Table 5.2 indicates quantitative results for both val and test

images. The images were also evaluated on the zoom-in augmentation which means

the original test image size was resized to a small resolution and the aspect ratio

of the background zoom image was maintained like that of the original image. The

zoom augmented image could be referred to as the image in the right column in the

Figure 5.2.

Testing. Similarly, for the test unseen images, the localization was observed.

The test evaluation was observed for the test images having groundtruth annotations

and thus average of IOU could be calculated over the test images. The IOU is

calculated with the help of the equation 5.1, where Bgt is the groundtruth bounding

box coordinates while Bp is the predicted bounding box coordinates on evaluation.

The results in the Table 5.2 shows the averages over the IOU of test images in the

dataset. Taking the industrial collaboration project point into the consideration, the

results were also analyzed based on the standard deviation (STD) and the variance

factor on the test images. The testing for baseline images is the normal input image

Table 5.1: Evaluation on Test set for drop inlet class
Class label AP AP50 AP75 APS APM APL AR
drop inlet 74.6 96.5 88.4 - - 74.6 78.7
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Table 5.2: Bounding box prediction evaluation metrics on drop inlet asset dataset

Experiment Image size Baseline Zoomaug

mIOU test 800 ×600 88.6% 89.6%
mIOU val 800 ×600 91.4 % 92.3%

Standard deviation test 800 ×600 7.32% 4.47 %
Variance test 800 ×600 0.535% 0.200 %

with no augmentations. The testing is also done on the Zoom augmented images

where the test images are augmented so that the asset item in the image could be

visualized at a distance. Table 5.2 shows that the IOU increases with the increase in

the pixel area of the image which validates the scaling capability of the model.

IOUBgt,Bp =
AreaofOverlap(Bgt ∩Bp)

AreaofUnion(Bgt ∪Bp)
(5.1)

5.2 Multi-class detection

The results for this section are based on fine-tuning the 6 classes i.e., the custom

dataset on the COCO pre-trained model. The 6 classes account for drop inlet, person,

car, bus, train and truck.

Dataset. Object detection is a famous Computer vision method, an algorithm that

demands rigorous work to execute. The data being the pillar of the algorithm, open-

source labeled benchmarks specialized for object detection tasks are widely avail-

able such as PASCAL-VO2017C Challenge[16] and COCO2017 dataset [15]. The

COCO2017 is a database of 80 classes based on common objects with common con-

text in the surrounding with a variety of training and validation images, while the

PASCAL-VOC [16] 2007 consists of 20 classes. Thus, taking the advantage of the

abundant open-source labeled dataset, it was possible to create a merged custom

dataset of 6 classes including the highway asset drop inlet merged with the 5 different

COCO classes namely bus, car, person, truck, and train. The reason behind selecting

these classes was the relevancy to the highway scene and make more sense in the
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Table 5.3: Number of labeled Train and validation images across the different classes

Sr.No Class label #Train samples #val samples
1 drop inlet 612 172
2 bus 3953 190
3 car 12252 536
4 person 64116 2694
5 train 3589 158
6 truck 6127 251

real-world. The number of the samples per class is demonstrated in the Table 5.3

2017

Training. The training model architecture is the lightest model of the EfficientDet

family. The EfficientNet[44] being the backbone of the EfficientDet family, is already

trained on the ImageNet dataset[?] and a selective best suited pre-trained model

already on the COCO dataset is trained for the multi-object detection. Moreover,

pre-trained [33] [34] weights on MS COCO[15] are converted to Pytorch have been

utilized as initial weights. Furthermore, all layers are trained, and the weights of

the layers are not frozen. During training before each image is fed to the network,

random resizepad is used to resize and pad the input images to the desired resolutions

based on the current EfficientNet-B0 model i.e., 512*512 input resolution while the

random horizontal or random vertical flip, random scale, and random aspect ratio

and Random Zoom are some of the advanced online augmentation techniques applied

on the dataset to serve the training in the best possible learning of the model. Color

jitter was also used to randomly change the brightness, contrast, saturation, and hue

of the RGB channels using principle component analysis [6]. The images are then

normalized using per channel mean and standard deviation. The model was trained

using Stochastic Gradient Descent [81] with a weight decay of 4e− 5 and momentum

of 0.9 with optimizer epsilon of 1e − 3. The weights were initialized using the vari-

ance scaling method underwent five warm-up epochs with a learning rate of 1e − 4

that increased linearly until it reached 0.012. The network was then trained for an
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additional 100 epochs and followed the cosine annealing [80] step decay learning rate

scheduler that reduces the learning rate by a factor of 10 every 30 epochs. For the

loss function, the smooth l1 loss as the box regression loss and focal loss 5.2 were

employed[69] [82] to mitigate the class imbalance effect for the classification loss. The

quantitative and qualitative results below show the improvised effect using focal loss

with α = 0.5 and γ = 1.5 and α = 0.5 and γ = 2. However, the evaluation based

on training the model with Cross Entropy Loss other than the Focal Loss is as given

below.

FLpt = −α(1− pt)γ log(pt) (5.2)

Evaluation For the results, average precision and recall scores is reported: AP

(mean of AP scores at IOU = 0.50, 0.55,· · ·, 0.90, 0.95), AP50 (AP at IOU = 0.50),

AP75, APM for medium objects, APL for large objects, and AR (mean of recall scores).

Also, the results varying with increasing the gamma values are shown. There is one

more Table showing the per-class accuracy of the samples in the images. Since, there

was no availability of COCO test-dev, the results are based on val set. Since the

custom dataset was split into the test set, the test-dev for only 1 class drop inlet

Table 5.4: Per class accuracy on custom COCO val dataset.

Class label mAP AP50 AP75 APS APM APL AR
evaluation on custom dataset val images for model trained on 6 classes
drop inlet 74.3 97.6 83.6 - - 74.3 80

bus 59.3 74.4 66.7 13.1 37.6 79.3 50.1
car 28.0 48.3 28.3 12.5 52.3 63.6 14.5

person 46.1 72.8 48.3 18.8 57.0 73.9 18.4
train 61.8 83.0 70.5 22.2 26.8 66.7 60.9
truck 28.8 46.1 31.6 9.0 30.3 47.7 30.4

evaluation on COCO val images for model trained on COCO 80 classes
bus 59.7 74.0 67.4 7.8 38.5 79.1 49.1
car 26.9 47.3 27.5 11.8 50.1 63.6 13.4

person 43.7 70.8 45.3 17.5 53.5 71.3 17.9
train 62.5 83.6 71.4 23.2 32.7 66.9 59.7
truck 29.5 48.0 30.7 8.2 26.5 52.2 30.5
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could be calculated. The Table 5.5 refers to the models trained within this study

with γ = 1.5 and γ = 2 with α = 0.25 as in the equation 5.2. Since the training

carried on with γ = 2 showed better results on evaluation it was considered as the

perfectly trained model for further evaluation. To study, how much accuracy AP

does each class category contributes, the results were explored like in the Table 5.4.

For each category in the Table 5.4, the input image for the evaluation is 512 and the

experiment is conducted into 2 parts. The first 6 rows are for the evaluation on the

custom val dataset i.,e, the merged dataset of subset of COCO and the drop inlet

custom class. While, the second part of the Table 5.4 is explored to validate the

consistency of the custom model compared to the COCO pre-trained EfficientDet-D0

model. On observing the Table 5.4 , for instance, though the number of Person class in

the train set was the highest as in the Table 5.3 the accuracy for that particular class

is lesser than few other classes. Hence, on examining the results for the pre-trained

model evaluation, it could be confirmed that the results for the custom training are

consistent with the COCO dataset trained model. It gives the reasoning that since

the custom model is also a fine-tuned model from the COCO pre-trained model, the

trend of the accuracy is the same. Since, the testset was possibly available for the

drop inlet class, we evaluate the test data for drop inlets for the model trained on 6

classes. The results are as shown in the Table 5.1. However, the results also include

evaluation on training based on using no Focal Loss where only the cross entropy

loss was used for the classification loss. The Table 5.5 shows the 3rd row as using

cross entropy over focal loss for a deep ablation study. The FL denotes training and

evaluation based on Focal Loss while CE represents Cross Entropy in that case.

Table 5.5: Evaluation metric results on custom val dataset.
Method Input size mAP AP50 AP75 APS APM APL AR

FL (γ = 1.5) 512 48.89 69.98 54.1 13.1 40.62 66.9 42.2
FL (γ = 2) 512 49.75 70.5 54.9 15.0 41.0 67.4 42.4

CE 512 47.75 68.34 53.64 12.76 40.03 65.98 41.76
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5.3 Qualitative Results

In this section, qualitative results for the Object localization on the Leidos Drop

Inlet Dataset is shown and also the multi-object detection with all the different classes

of the merged database is shown in the figures below.

5.3.1 Qualitative Results of IOU metric on drop inlet

This is a preliminary qualitative result where the IOU is defined as a metric to prove

that the model localizes the object correctly in the image. The IOU is the overlap be-

tween the groundtruth and the predicted bounding box by the model architecture.In

the Figure 5.1 and Figure 5.2. The images are test images with groundtruth anno-

tations represented by the green bounding box, while the object localized is shown

in the red bounding box. The 2 figures are represented with a variety of background

i.e., highway concrete, and also with a grass background to portray the reality of the

images concerning the highway environment. Starting with, the images on the left

are the baseline images as part of the dataset. The column on the right shows the

zoom out images with the object and the corresponding localization. The images are

augmented as zoom out to validate that the model can also localize the object from

distance and when it is not closer to the camera perspective. It is noticeable that the

model still performs well and does not lose the IOU metric even if the image is zoom

out.

5.3.2 Qualitative results on random images with no groundtruth annotations

This is the first and foremost basic result evaluated on the random unseen test

images i.e., with no groundtruth annotations to check if the model is robust enough

to localize any drop inlet images. The image below shows the variety of drop inlet

images with a variety of concrete and drop inlet grids colors and textures. The

confidence score i.e., the probability of the localization and the presence of the asset

image is shown as the metric in the Figure 5.3
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Figure 5.1: Qualitative results of object localization IOU for drop inlet

5.3.3 Qualitative Results of Multi-object Detection

The multi-object detection results based on the classification score i.e., the prob-

ability of the correctly classified object in the model with respect to other classes

in the image is given. The results are based on the custom test images which are

customised and self created to involve the drop inlet along with other classes in the

dataset. The qualitative results show the baseline model when the training is con-

ducted on the images as shown in the Table 5.3.The figure on the left in the Figure

5.4 shows the evaluation based on the training conducted under γ = 1.5 of the Focal

Loss as mentioned in the Training section above. The other important observation is

when we tackle the dropped accuracy of the model with the help of Focal Loss which

deals with applying more weight on the rare and hardly classified examples. The
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Figure 5.2: Qualitative results of object localization IOU for drop inlet with concrete
background on zoom image

image on the right in the 5.4 shows well that how the rare drop inlet class i.e., the

class having fewer images are classified as more weightage to the hard and rare class.

Thus, we see an improved detection over implementing focal loss with γ = 2 value

in the Focal loss function. The Figure 5.5 also shows result based on the test image

which is customized to include all the categories of the dataset including highway

drop inlet and few more categories.

5.4 Inference on mobile edge embedded platform

The benchmarking of the model on the edge devices is the most important step

to validate the efficiency of the lightweight model under resource constraints. Thus,

after the model is readily available with the accurate hyperparameters tuning and

validated as a part of evaluation on a massively powerful GPU server, it is possible to
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Figure 5.3: Qualitative results showing the basic localization on random unseen im-
ages with variety of drop inlet

deploy the model to realize it in real-time on edge platforms. Thus, the results below

show the benchmarking [3] performance so that it can be validated for the future

onboard drone mountable processing implementation.

5.4.1 Inference Benchmarking

The precise and accurate evaluated Pytorch model is converted to an onnx model

as mentioned in the chapter above, and then it is converted to a hardware-specific

engine file that helps in inference acceleration. The optimization and Deep Learning

Hardware accelerator used in this study are namely, the NVIDIA TensorRT library

and NVIDIA Jetson AGX device. The reason why it could be benchmarked on low

power devices is the availability of the model quantized into FP16 weights. The model

is trained with FP32 weights on the Lambda Quad server with 4 NVIDIA TitanV
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Figure 5.4: Multi-object detection in a scene
.

Table 5.6: Inference Benchmarking on TensorRT kernel

Model Batch size Input size FLOPS #Params Runtime FPS
Native FP32 1 512 2.5B 3M 228.83ms 4.37
FP32 TRT 1 512 2.5B 3M 59.6ms 16.78
FP16 TRT 1 512 2.5B 3M 19.78ms 50.55

devices. The conversion and the benchmarking was implemented in the TensorRT

Python API. Table 5.6 below shows the difference in the FPS performance compared

to the native Pytorch implementation. Table 5.6 below shows the average inference

time required by the model to preprocess the input image and execute the engine to

generate the output tensors of the model. However, as shown in the Figure 4.2, the

post-processing step is necessary for the visualization of the evaluation, the results

below in the Table 5.6 does not account for the runtime latency for the post-processing

since that would be explored in the near future.

5.4.2 Challenges in the current pipeline

The current challenges in the pipeline are, as shown in the qualitative results, the

probability i.e., the class confidence score of the customized data class drop inlet is

less than the confidence of the other classes in the dataset and fails to predict some

drop inlets in the multi-object scene. One more challenge is sometimes the model still

fails to predict/detect some objects from a distance since the training was conducted
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Figure 5.5: A custom test image including drop inlet and relevant objects where the
model detects the object with their classification score probability

.

on the COCO dataset images and the drop inlet images which are captured from a

close camera perspective. The other challenge lies in the validation of the frames on

the NVIDIA Jetson AGX Xavier device. There is a significant accuracy drop observed

while running evaluation with TensorRT execution kernel on the Jetson edge device

when compared to the evaluation results on the Lambda Quad server.



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

In this paper, a scalable and efficient way of integrating the EfficientDet-D0 ar-

chitecture for the highway asset detection is presented. The study shows that how

a subset of COCO data can be merged along with the custom annotated dataset

under the resource constraints. This merging technique can be useful in the highway

assessment when there is an interaction of common classes and the highway asset

item. It also proves that the network architecture is robust to unseen test images.

It localizes and detects with minimum negligible false detections. The research also

proposes a proof of concept that how an efficient model can be quantized to FP16

weights model and further can be deployed in the real-time environment since the

model had showed significant benchmarking performance on the low-power NVIDIA

Jetson AGX Xavier.

6.2 Future Work

The thesis has the potential to be continued in the future. In this research study, the

focus was on creating lightweight highway asset detection. The current architecture

can be expanded to integrate multi-class multi-level asset items and evaluate further

on. The study was a preliminary proof of concept for the Leidos and VDOT on

how the highway assets can be assessed based on AI and Deep Learning algorithms.

However, nothing is preventing modifying the model to identify and detect the defects

of the highway assets with predicting the degree of defects in the asset item [21].

Moreover, the research does not only limit to detection and its evaluation, but it has

a great vision ahead with deploying the perfect model on the drone for real-time edge
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video analytics. The current inference benchmarking in the Python API can rather be

realized into a low-level C++ language API for the best hardware optimization and

increased accuracy. The further benchmarking runs can involve the post-processing

of predicted the bounding boxes as the part of the custom plugin in the TensorRT

library so that the Inference can be calculated for an end to end pipeline i.e., input

the image, preprocessing, deserializing the model, and then post-processing based on

the advantage of TensorRT optimization for the real-world applications.
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