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ABSTRACT

NEAL HEBER SALAS ZAMUDIO. Structural identification of a full-scale tied arch
bridge span using genetic algorithms. (Under the direction of DR. MATTHEW J.
WHELAN)

Fostered by advancements in computational capabilities and the development of

low-cost structural health monitoring systems, structural identification has emerged

as a promising experimental technique offering contributions to several applications

in performance-based civil engineering. Fundamentally, the methodology provides a

framework for determining the mechanical properties of in-service civil structures by

leveraging experimental measurements to update a physics-based model of the struc-

ture. Use of these calibrated high-fidelity finite elements models, and the parameters

identified in the analysis, has been proposed for numerous applications in condition as-

sessment, structural health monitoring, vibration-based damage detection, and other

areas supporting decision-making support in infrastructure management. In this the-

sis, structural identification of a full-scale tied arch bridge span is performed using

genetic algorithms to solve the optimization problem. The study leverages ambient

vibration monitoring test data acquired by a wireless sensor network consisting of

48 accelerometers distributed across the tie girders of the span. Stochastic subspace

state-space system identification is used to experimentally estimate a set of twenty

mode shapes of the bridge with their undamped natural frequencies and damping

ratios. An idealized finite element model of the span is developed to analytically

predict these dynamic properties, and this idealized model is correlated to the mea-

sured response to indicate discrepancies. A parametric sensitivity analysis is then
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performed to identify the most meaningful uncertain parameters within the finite el-

ement model for subsequent model updating. Optimization of the model correlation

through tuning uncertain parameters is achieved by minimizing an objective func-

tion using a parallel implementation of the genetic algorithm capable of exploring

large population sizes. In total, sixteen different scenarios of model updating using

the genetic algorithm are explored to identify the effects of varying the number of

modes included in the objective function as well as the number of uncertain parame-

ters included in the model updating routine. The results indicate that the identified

parameter assignments may be highly sensitive to these factors, especially the num-

ber of modes included in the objective function. The strongest model correlation

is achieved using all 20 modes in the objective function and the largest number of

uncertain parameters in the model. The improvement in model correlation relative to

the idealized finite element model is presented to contribute a real-world case study

to the field of structural identification.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

The challenge of sustaining the current transportation infrastructure in the United

States through replacing, rehabilitating, and maintaining bridges not only is costly

but also requires the development of effective strategies to allocate financial resources

to critical structures in the greatest need of repairs. Conventionally, quantitative

feedback on the assessment and performance of in-service bridges has been provided

by the visual inspection program. However, visual inspections are subjective and lack

the ability to characterize deterioration that is not visible and might affect the bridge’s

overall performance. Among the vibration-based methods that have been proposed to

complement visual inspections, structural identification has emerged as a promising

technique for monitoring the structural health of civil structures. By calibrating a

preliminary idealized finite element model, the in-service behavior of structures can be

simulated and used within structural health monitoring and vibration-based damage

detection routines to support decision-making. This thesis promotes and evaluates

the implementation of structural identification by presenting a case study for a steel

tied arch bridge using application of genetic algorithms with ambient vibration test

data.

Bridges that are compromised by either natural or event-driven deterioration to
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the extent that the load carrying capacity is reduced are referred to as structurally

deficient bridges. Although structurally deficient bridges are still considered safe for

operation, inspections need to be scheduled at least once a year until deficiencies have

been corrected and, in many cases, load postings are introduced that negatively im-

pact freight mobility. In the United States, over 600,000 bridges connect more than

4 million miles of public transportation (U.S. Department of Transportation, Fed-

eral Highway Administration and Federal Transit Administration, 2014). In 2013,

the U.S. Federal Highway Administration (FHWA) rated over 10% of these bridges

as structurally deficient, resulting in at least 60,000 structurally deficient bridges in

the United States (FHWA, 2013). Moreover, the FHWA reported an estimated to-

tal replacement cost for these structurally deficient bridges of almost $52 billion in

2012 (FHWA, 2013). Rehabilitation of these structures as an alternative to replace-

ment also presents a significant cost at an estimated $34 billion. The effect of this

significant need, coupled with the inadequate funding and resources to address it, is

reflected in the 2013 Report Card for America’s Infrastructure issued by the Ameri-

can Society of Civil Engineers (ASCE), which provided the overall bridge system in

the United States a C+ grade (ASCE, 2013). In addition to the current needs, an

increasing number of structurally deficient bridges are estimated to reach the end of

their expected service life within the next decade and will require additional resources

to maintain, rehabilitate, and replace them. Figure 1 presents the age distribution of

the current US bridges classified as structurally deficient, where the average age of a

structurally deficient bridge is found to be 63 years (FHWA, 2013).

An increased interest in reducing bridge maintenance costs by improving needs-
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Figure 1: Age distribution of structurally deficient bridges in the United States

based scheduling of actions, as well as safely extending the service life of bridges,

has encouraged the development of non-destructive methods for monitoring and as-

sessing the health of bridges using sensor technologies. A variety of systems and ap-

proaches have been explored to address this need, although particularly active areas

of research have been vibration-based methods for structural health monitoring and

damage detection (Fritzen, 2005; Doebling et al., 1998). Vibration-based methods at-

tribute changes in the dynamic behavior to structural damage although the dynamic

properties of a structure can also be significantly affected by changes in tempera-

ture and humidity. Numerous vibration-based methods have been proposed using

both data-driven and physics-based methods and can be classified by the capability

of structural damage identification and quantification. Four levels of vibration-based
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structural damage classification have been established (Rytter, 1993). Level 1 classi-

fication is simply identifying the presence of damage, while level 2 is associated with

not only detecting damage but also localizing it. In level 3, the severity of damage

is quantified in addition to detecting its locations. Lastly, in level 4, the remain-

ing service life of a damaged structure is assessed in addition to all the capabilities

of level 3. Vibration-based methods can also be further classified as data-driven or

physics-based methods. Data-driven methods are based on a statistical approach to

model the measured response and associating changes in the statistical properties of

prediction errors from these models with structural damage. Although data-driven

methods have been successful at localizing damage (Whelan and Janoyan, 2010), they

lack the ability to quantify the severity of damage in direct engineering measures, such

as stiffness, since they are constructed on statistical models. Consequently, physics-

based methods that provide a theoretical basis for quantifying damage severity have

emerged as a key area of structural health monitoring research. Physics-based meth-

ods rely on the utilization of mathematical models that are governed by the laws of

physics and generally involve the development of a finite element model in order to

perform structural identification of uncertain parameters within the model to evalu-

ate the presence, location, and severity of damage. The approach attempts to correct

parameters in an analytical model of the structure using experimental measurements

of the structural behavior. When applied for condition assessment, the assignments of

the corrected parameters are compared to baseline parameter assignments obtained

by prior application of structural identification to gain insight into the health and

performance of the structure. However, this technique remains relatively unproved in
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real-world implementation and there are many technical challenges to effectively and

reliably implementing it on large civil structures.

1.2 Overview of Research Effort

This thesis seeks to complement the growing database of full-scale case studies

applying structural identification to bridges and the limited database of studies us-

ing genetic algorithms for global optimization of uncertain parameters in the model.

Furthermore, by applying structural identification on numerous subsets of the ex-

perimental data and with different sets of uncertain parameters in the model, this

study will explore the effects of decisions made in forming the optimization problem

used to implement structural identification. Specifically, the effect of incrementing

the number of uncertain parameters calibrated in the model, coupled with the effects

of increasing the number of experimentally estimated natural frequencies and mode

shapes incorporated in the objective function are examined. Consequently, the study

provides insight into the richness of experimental modal parameter sets needed for

reliable parameter identification and the performance of genetic algorithms in cali-

brating large finite element models with relatively large sets of uncertain parameters.

The various stages encompassing the structural identification framework are con-

ceptually presented in Figure 2 and described in detail throughout this thesis as sum-

marized in the following synopsis. The Marquette-Joliet Bridge, a 140.8m span steel

tied arch bridge, for which ambient vibration monitoring test data was available from

an in-service field monitoring effort, serves as the case study structure for this thesis.

Using operational modal analysis, the experimental data was processed and fit to a
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stochastic state-space model using the stochastic subspace state-space system iden-

tification algorithm. Strategies for extracting modal parameter estimates, including

natural frequencies, damping ratios, and mode shapes, and approaches for averaging

and verifying the plausibility of estimates are presented using the case study data.

In parallel, an idealized finite element model was developed from the as-built bridge

drawings using assumed material properties, boundary conditions, and element con-

nectivity conditions. Modal analysis of the idealized finite element model was used to

produce analytical modal parameter estimates for the structure and model correla-

tion with the experimental modal parameter estimates was performed. Discrepancies

between the experimental and analytical modal parameter estimates suggested inac-

curacies in the model and particularly highlighted opportunities to correct torsional

behavior in the model that was not in strong agreement with the experimental mea-

surements.

Figure 2: Schematic of the general structural identification process
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Finite element model updating was performed using a genetic algorithm to opti-

mize an objective function developed using the residuals between paired estimates

of natural frequencies and residuals between paired mode shapes obtained from the

model and measurements. A sensitivity analysis was first conducted to identify the

set of parameters in the model that have the greatest impact on the natural frequen-

cies of the lowest frequency modes in the model. Then, using sets of either the 3, 6, 9,

or 12 uncertain parameters that the dynamic properties of the model are most sensi-

tive to, the global optimization was performed to calibrate the model under different

conditions. This calibration routine was repeated using sets of the first 5, 10, 15,

or 20 experimentally measured modes to examine the effect of limited measurement

data on the correlation between the calibrated model and experimental data as well

as on the values of the uncertain parameters assigned to the calibrated models. An

in-depth comparison between the experimental modal parameters and those of the

calibrated model was performed to quantify the improvement in agreement produced

by the optimization scheme to serve as a case study for structural identification on

a full-scale bridge. In terms of the broader use of this technique, these high-fidelity

finite element models can then be used to assess the performance of the structure,

and ultimately the goal is to use such calibrated models to support decision-making

related to maintenance actions.

1.3 Thesis Outline

A summary of each chapter of this thesis follows:

� Chapter 2 provides a literature review on the framework and challenges of struc-
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tural identification as well as several case study applications. Three different

optimization approaches used for calibrating finite element models with ex-

perimental vibration measurements are introduced and referenced for further

exploration. The principles of global optimization using genetic algorithms and

challenges associated with the implementation of this method on large models

are discussed.

� Chapter 3 details the case study structure and the instrumentation used for

ambient vibration testing. Operational modal analysis is explained and the

vibration theory associated with the state-space representation used for data

regression is described. Lastly, output-only system identification is performed

using stochastic subspace identification for the extraction of experimental modal

parameter estimates, including the natural frequencies, relative damping fac-

tors, and mode shapes.

� Chapter 4 introduces a preliminary, idealized finite element model of the case

study structure and the results obtained from performing linear modal analysis

of this idealized model. Comparison between idealized and experimental modal

parameter estimates is presented using conventional measures for model corre-

lation. The technique for parameterizing the analytical model for finite element

model updating using a scripted routine is described. Lastly, a sensitivity anal-

ysis is presented to identify the most meaningful uncertain parameters within

the FE model to be included in the model updating and establish their upper

and lower bounds.
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� Chapter 5 details the genetic algorithm used as well as the objective function

constructed to distill the model correlation into a single function suitable for

optimization. Results from the application of the genetic algorithm over 16 dif-

ferent case scenarios are summarized and compared. Furthermore, variability

in the identified uncertain parameter assignments obtained from each scenario

of structural identification is presented. Analysis of the modal parameters from

the calibrated finite element model exhibiting the best correlation with the

experimental data is provided to document the improvement in the model cor-

relation with the experimentally measured response relative to the idealized

finite element model for this real-world case study.

� Chapter 6 concludes with a summary of the contributions of the study as well

as recommendations for future research.



CHAPTER 2: LITERATURE REVIEW

Driven by the desire to complement visual inspection routines currently used for

condition assessment of large civil structures, structural identification has emerged

as an active area of research in performance-based civil engineering by providing a

framework to assess the in-service behavior of civil structures based on physical mea-

surements. Defined as a state-of-the-art technique due to its complexity and the

numerous approaches available, structural identification operates on the basis of cal-

ibrating and validating a preliminary idealized FE model to ensure consistency of

the model predictions with the actual measured response. Such calibrated models

can immediately serve within high-fidelity simulations and analyses used to support

decision-making (E. Aktan, N. Çatbaş, A. Türer, and Z. Zhang, 1998). Further-

more, the process of calibrating the model, which identifies parameter assignments

for structural elements within the model, may serve as a means for structural health

monitoring and damage detection of in-service structures. The use of structural iden-

tification for this application has been particularly active as a research topic because

it may address the increased demand for safely extending the service life of aging

structures that have exceeded the life-cycle for which they were originally designed.

Structural identification is an applied technique that seeks to determine structural

properties of civil structures by calibrating a representative idealized finite element

model of the structure using experimental measurements. In this sense, structural
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identification builds on FE model updating by emphasizing identification of structural

properties from the model rather than seeking to simply improve the correlation of the

model with experimental measurements. In the process of FE model updating used

within structural identification, correlations between predictions from the physics-

based model and the actual, measured in-service behavior of large civil structures,

such as buildings and bridges, are improved through optimization techniques that seek

to minimize the errors associated with modeling assumptions and uncertainties in ma-

terial properties or geometries assigned in the model (Ribeiro et al., 2012). Structural

identification has proven to be a powerful technique, although the challenges associ-

ated with its successful implementation have attracted numerous researchers. This

state-of-the-art technique has opened up multiple areas of research, and its appli-

cations include vibration-based damage detection, structural health monitoring, and

condition assessment of civil structures among others.

2.1 Overview of the Structural Identification Framework

The American Society of Civil Engineers (ASCE) Committee on Structural Identifi-

cation of Constructed Systems identifies the application of structural identification as

a six step process. Successful application involves defining the motivation to perform

structural identification, development of a preliminary idealized FE model, acquiring

experimental data on the system performance, data processing and interpretation of

these measurements, calibration of the finite element model, and finally, utilization

of the model for decision-support (ASCE SEI, 2011). As for the first step, there

are many reasons that motivate the use of structural identification, including con-
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struction quality control, identifying maintenance needs, and general assessment of

complex structures. While the development of a high-fidelity FE model calibrated

to experimental data can be used to verify modeling assumptions and predict static

and dynamic behavior of the structure, extension of the model can be used to simu-

late the response of the structure to new occupational conditions or with structural

modifications. Additionally, baseline dynamic properties of in-service structures can

be used to monitor long-term performance to assess the operational health over the

life-cycle.

Development of a preliminary idealized FE model is the second step within struc-

tural identification. If available, as-built drawings are usually used to accurately

estimate and model geometric dimensions, member section properties, and connec-

tion details. This preliminary model is physics-based and is built by using engineering

judgment to idealize the boundary conditions, connectivity (continuity) conditions,

and material properties for each element. Commercial FE software packages can be

used to develop the idealized FE model, and beam, plate, cable, and link elements

are the most frequently used elements. The idealized model then serves as a baseline

model and provides a way to validate the reasonableness of experimentally estimated

modal parameters by comparing them to the analytical modal parameters extracted

from the model using linear modal analysis. This baseline model is later formally

calibrated to best match the measured response of the experimental structure within

the process of identifying the uncertain structural parameters (Zhou et al., 2012).

The third step in structural identification encompasses instrumentation and vibra-

tion testing of the structure. Structural identification is most commonly based on
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vibration measurements that are processed using system identification, which is the

process of identifying and estimating the dynamic properties or modal parameters of

a structure using experimental measurements. These modal parameters include the

undamped natural frequencies, fn, relative damping factors, ξ, and mode shapes, φ.

There are two types of experimental measurements that are conventionally used to

develop estimates of the dynamic properties of a structure. The first is the input

force, or driving excitation, which is a measurement of the external dynamic forces

that cause a structure to vibrate. The second type of measurement is the output re-

sponse, which is a record of the dynamic response of the structure under the driving

excitation and is typically acquired with distributed arrays of either accelerometers

or velocity transducers. In experimental modal analysis (EMA), both the input and

the output are measured in order to estimate modal parameters by performing re-

gression on a mathematical model of the transfer function of the system (Ren et al.,

2004). EMA is generally the preferred method for testing structures due to the ad-

vantages associated with controlled and measurable input. However, when testing

large and complex civil structures, applying controlled input (by shaker, weights,

etc) and suppressing ambient excitation is often impossible and strategies using only

response measurements are applied within a technique known as operational modal

analysis (OMA). The most common form of OMA is ambient vibration testing due

to the low costs and convenience associated with in-service vibration monitoring, and

its application includes structural health monitoring of large in-service civil struc-

tures under natural environmental and service loads (Wenzel and Pichler, 2005). In

ambient vibration testing, the input force is not measured, although enough input
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force is still required to physically perturb the structure in order to induce vibrations

with adequate signal-to-noise ratio. Ambient excitation sources are provided by the

surrounding environment, including high speed winds, traffic, pedestrians, ground

motion, and waves (if applicable, as in the case of a pier) among other environmen-

tal loads, and while these excitation forces are difficult to accurately measure, they

can often be assumed to be stochastic, or random, and broadband (Ren et al., 2004).

Assumptions on the characteristics of these ambient excitations are then used to char-

acterize the dynamic response of the structure and estimate the modal parameters

using one or more output-only system identification techniques, such as frequency

domain decomposition (Bendat and Piersol, 1993) or stochastic subspace state-space

system identification (Peeters, 2000; Overschee and Moor, 1996).

Generally, distributed vibration measurements acquired at a limited number of

sampling locations are used to record the output excitation in ambient vibration

testing, and considerations about the duration of the tests, sensor placement, and

measurement bandwidth are among the most important considerations for ensuring

reliable and robust measurements (Whelan and Janoyan, 2009; Whelan et al., 2009).

Single and dual-axis accelerometers are the most common types of accelerometers

used during ambient vibration monitoring of bridges. Since traffic loading gener-

ally produces the most significant excitation during ambient vibration monitoring

of a bridge, accelerometers are always oriented to measure vertical accelerations to

capture transverse bending and torsional bending modes of the structure. In some

studies, additional accelerometers are oriented in the transverse direction to measure

lateral bending modes and to improve the identification of torsional modes. However,
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longitudinal accelerometers are rarely employed in ambient vibration monitoring of

bridges since accelerations in this direction are usually nominal.

Proper sensor placement on a structure plays an important role on the richness of

the data set. Conventionally, accelerometers are distributed across the surface of the

bridge deck due to ease of placement (Brownjohn et al., 2011; Wenzel and Pichler,

2005), although sensor placement is not restricted to the deck surface. In a study

where OMA was performed on a concrete deck on steel girder bridge to assess the

effects of sensor placement, ambient vibration monitoring was first performed using

accelerometers placed on the concrete deck surface and then with the same number of

accelerometers positioned on the steel girders (Whelan et al., 2011). It was concluded

that placing accelerometers on the bridge deck limited the modal parameter estima-

tion to only global bending modes, while placement of the accelerometers on the lower

web of the girders resulted in richer datasets that additionally captured numerous well

excited vibration modes associated with resonance of individual elements. It is also

important to consider the density of the sensor network being employed during am-

bient vibration testing in order to anticipate spatial aliasing effects. Spatial aliasing

refers to an effect produced by the experimental estimation of modes shapes at the

limited number of discrete locations where the accelerometers are placed. Spatial

aliasing results in the appearance of higher order bending mode shapes as similar

in appearance to estimates of lower order mode shapes, which can lead to improper

model correlation and challenges in correctly pairing experimental modes with ana-

lytical modes. Spatial aliasing can be anticipated by considering the highest order

mode shape desired for reconstruction. In general, at least n+1 sensors should be
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placed along the span of the bridge to reliably obtain an estimate of vertical bending

modes up to the n-th order, while the grid must expand to include n+1 sensors across

the width of the bridge to estimate torsional modes up to the n-th order (Whelan

et al., 2011). In addition to sensor selection and placement, sampling rates and dura-

tions must be properly established to capture a sufficient frequency bandwidth with

adequate frequency resolution and minimal spectral leakage. In ambient vibration

monitoring, three minute sampling durations have been found to provide sufficient

frequency resolution to perform operational modal analysis of highway bridges (Wen-

zel and Pichler, 2005). Sampling durations of over three minutes with an effective

sampling rate of 128Sps were achieved with lossless data transmission during ambi-

ent vibration testing of an integral abutment highway bridge using a wireless sensor

network (Whelan et al., 2009). This technological breakthrough established wireless

sensing as a preferred alternative to cable-based instrumentation for ambient vibra-

tion monitoring due to the low-cost, ease of installation, and operation advantages

offered by wireless sensors.

Following experimental testing of the structure, the fourth step identified by the

ASCE Committee on Structural Identification of Constructed Systems is data process-

ing and interpretation of measurements, which is the process of system identification

when the monitoring is vibration-based. Before any data is processed, measurements

need to be verified and checked for plausibility. Acceleration time histories and fre-

quency spectra produced from the time histories are used to verify the plausibility

of the measurements to detect and remove faulty sensors contributing inaccurate or

corrupted data. Average normalized power spectral density (ANPSD) plots (Felber,
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1993) can be used to assess the modal richness of the sampled data and identify likely

resonance frequencies that are evident as clear peaks in the spectrum. Clear peaks

with strong signal-to-noise ratios can then be used to verify the plausibility of the

modal parameters obtained from system identification.

Among the many algorithms that have been developed for OMA, the two most

widely used are the frequency-domain decomposition (FDD) method, also known as

the peak picking (PP) method, and stochastic subspace identification (SSI), which

is applied in time-domain. These two methods have gained extensive popularity in

vibration-based structural health monitoring research due to their performance capa-

bilities as well as the availability of software toolboxes that have facilitated the ease

of their implementation for output-only system identification (Overschee and Moor,

1996). Although both the FDD and the SSI methods can be used for output-only

system identification to extract modal parameter estimates of structures during am-

bient vibration testing, an important limitation of the FDD method is that it results

in estimation of resonance frequencies and operational deflection shapes rather than

true estimates of the undamped natural frequencies and mode shapes. However, since

the FDD method is computationally swift and easy to apply, it can be used to comple-

ment the SSI method by validating estimates of natural frequencies and mode shapes

yielded by SSI, provided that the damping ratios of the estimated modes are low

and that the modes are not closely-spaced (Overschee and Moor, 1996). Peak pick-

ing techniques involve conversion of acceleration time histories to frequency domain

plots (spectra) by using the Discrete Fourier Transform, followed by the selection of

resonance frequencies associated with peaks in the average normalized power spectral
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density. The frequency spectra are then used to determine the amplitude and relative

phase angles with respect to a user-defined reference sensor to develop normalized op-

erational deflection shapes. An operational deflection shape is defined as the actual

deflection that the structure undergoes when excited at a resonance frequency by a

pure sinusoidal force. These operational deflection shapes are not true estimates of

mode shapes, but if the resonance frequencies are well spaced in the frequency spec-

trum, the operating deflection shapes closely approximate the mode shapes. However,

when resonance frequencies are close to each other, the effect of modal superposition

will be apparent in the operating deflection shapes, which renders the operational

deflection shape an inaccurate estimate of the mode shape (Peeters, 2000).

Due to the previously described limitations of the FDD method, stochastic sub-

space identification is generally regarded as a more robust method for output-only

system identification. SSI leads to estimates of the undamped natural frequencies, rel-

ative damping factors, and linear normal mode shapes of the structure. The method

operates on the basis of fitting the measured data into a stochastic state-space model

formed by casting the general equation of motion for linear time invariant structures

with non-proportional or general damping into a recursive first-order differential equa-

tion. Eigenvalue decomposition of the state matrix of this model can then be used to

extract estimates of the modal parameters, much in the way that this would be done

for an analytical model. Additional details on the state-space representation and

strategies for obtaining reliable modal parameter estimates using stabilization crite-

ria and averages across different model orders will be covered in detail in Chapter 3.

In several ambient vibration monitoring studies where operational modal analysis of
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highway bridges were conducted, the SSI method has been shown to yield both more

accurate and larger sets of modal parameter estimates than the FDD method (Whelan

et al., 2009; Ren et al., 2004).

Following modal parameter estimation, the fifth step of structural identification

involves the calibration of a preliminary idealized FE model through finite element

model updating. The process of calibrating the FE model consists of selecting and

modifying uncertain parameters within the model in order to achieve improved cor-

relation between predictions produced by the model and the experimentally mea-

sured properties of the structure. This process of improving the model correlation to

achieve the optimal parameter assignments is computationally challenging and much

of the active research in the area of structural identification revolves around the use

of optimization techniques to solve this problem. The most widely used uncertain

parameters selected in model updating are the boundary condition restraints, con-

nection rigidities, and material and section properties such as Young’s modulus (E),

axial stiffness (EA), and bending rigidity (EI) (E. Aktan, N. Çatbaş, A. Türer, and

Z. Zhang, 1998; Ribeiro et al., 2012). An objective function is used in optimization

schemes to aggregate the model correlation across all considered modes to describe the

correlations as a single function that can be minimized. Different forms of objective

functions have been formulated and used in the literature, although most incorporate

some measure of the eigenvalue and eigenvector residuals between the experimen-

tal and analytical modal parameter estimates. One of the principal challenges of FE

model updating is the computational time required to extract modal parameters from

the parameterized analytical models. Since the objective function may be nonsmooth
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and have local minima in addition to the globally optimal solution, the exploration

of a large parameter search space with a large FE model can be time consuming.

Furthermore, assuring the identification of the correct set of uncertain parameter as-

signments is difficult. One of the specific challenges explored within this thesis is the

effect of the number of uncertain parameters and the number of modal parameters

included in the objective function on the strength of the model correlation after FE

model updating. Furthermore, the effect of these selections on the identified assign-

ments for uncertain parameters in the calibrated model is also examined to investigate

how data richness and choices made when implementing FE model updating affect

the parameter identification. Since parameter identification is the primary objective

of structural identification and since the results inform decision-making, the study

of parameter variation and uncertainty is particularly important for advancing the

practice of structural identification.

The final step identified by the ASCE Committee on Structural Identification of

Constructed Systems is the assessment and decision-making that can be informed

using the calibrated high fidelity FE model obtained and the values of the uncertain

parameters identified. The following section includes summaries of several case study

applications to illustrate the opportunities and challenges presented by the framework.

2.2 Approaches to Model Updating in Structural Identification

Within FE model updating, an idealized FE model is modified by assigning po-

tential values within bounds to uncertain parameters like material and/or section

properties within the FE model and assessing the correlation in the modal param-
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eters between the measured and newly updated model by an objective function at

each iteration. However, the calibrated model can lose its physical meaning due to

idealization and discretization errors associated with the model that can not be cor-

rected by the process of parameter identification. Idealization errors are introduced

by inaccurate element selection, mass distribution, and mesh connectivity, while dis-

cretization errors are introduced by poor meshing, order reduction, and element con-

vergence (Mottershead et al., 2011). Proper selection of uncertain parameters that

can be corrected, followed by subsequent calibration of these parameters, results in a

high fidelity calibrated FE model that can be used not only to predict the structural

response due to new types of load cases and load combinations, but also use the val-

ues associated with the identified parameters to characterize material properties or

performance of structural features described by the parameters.

An extensive list of case studies introducing numerous approaches utilized for struc-

tural identification of buildings and bridges can be found in ASCE SEI (2011). Among

these approaches, heuristic or manual updating, sensitivity-based methods of opti-

mization, and the use of genetic algorithms for global optimization will be discussed

in the following sections. Each optimization approach presents unique challenges

associated with achieving the optimal correlation between the model and experimen-

tal measurements as well as reliably identifying reasonable and accurate parameter

assignments.
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2.2.1 Heuristic Updating

Heuristic updating, also referred to as manual updating, is one of the most basic

and oldest FE model updating approaches used for structural identification. This

technique relies heavily on results from parametric analysis performed on uncertain

parameters within the FE model to identify the most meaningful set of parameters

and to approximate changes in the parameter assignments that will result in im-

proved correlation between the analytical and measured modal parameter estimates.

Calibration of the preliminary FE model is done by manually modifying parame-

ter assignments one parameter at a time, performing modal analysis of the adjusted

model to determine the change in model correlation, and iterating this process until

satisfactory correlation is achieved. While heuristic updating is the simplest optimiza-

tion scheme for model updating, the application can be very impractical and time

consuming when updating several uncertain parameters in the model. Furthermore,

manual approaches are prone to user errors since they require a significant amount

of user interaction with the model. Most importantly, the iterations are very likely

to converge on a local mimimum of the objective function rather than the global

minimum due to the limited search space that can be covered by manual updating of

the uncertain parameters. The correlation achieved in the updated model is largely

dependent on the initial assumptions assigned to each uncertain parameters in the

model. With advances in computational power, this approach has largely become

outdated and, although it serves as a good introductory tool for model updating, it

is not recommended for structural identification applications.
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A heuristic model updating study was performed on an in-service steel-stringer

highway bridge using vertical multireference impact testing data to calibrate a pre-

liminary idealized three-dimensional finite element model of the structure. (E. Aktan,

N. Çatbaş, A. Türer, and Z. Zhang, 1998). Uncertain parameters considered in the

updating scheme included the rotational stiffnesses of the springs at the abutment,

vertical stiffness of the springs at the bearing pads, and the flexural stiffness of link

elements used to model the composite action between the concrete slab and steel

girders among others. Multireference vertical impact testing was used to excite the

bridge and accelerometers were used to measure the dynamic response for experimen-

tal modal analysis. Sixteen experimental modes were estimated from the test data

and used for subsequent model correlation. Consequently, the manually calibrated

model exhibited excellent correlations with the experimental data resulting in a min-

imum frequency error of less than 6% while the minimum modal assurance criteria

(MAC) value was over 90%. Moreover, deformation of the bridge under a uniform

load surface was simulated to verify plausibility and completeness of the calibrated

FE model.

2.2.2 Sensitivity-Based Model Updating

The sensitivity-based model updating approach (Mottershead et al., 2011), also

referred as the gradient-based method or sensitivity method, is an iterative FE model

updating technique that has been extensively used for structural identification of large

civil structures. This method is based on linearization, using a first order Taylor series

expansion, of the commonly nonlinear relationship between the output response resid-
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uals obtained by correlating the modal parameter estimates over a range of uncertain

parameter fluctuations. Sensitivity-based updating approaches use gradient-based

methods, such as the Newton-Raphson method, which establish a sensitivity ma-

trix containing the eigenvalue and eigenvector derivatives with respect to changes in

assignments of the uncertain parameters. This sensitivity matrix is used with the pre-

diction errors in the model to iteratively inform the changes in parameter assignments

as the optimization converges along a path. The greatest challenge associated with

sensitivity-based methods is that the objective function is nonlinear and potentially

nonsmooth over the search space. Consequently, sensitivity-based methods are highly

prone to converging on a local minimum close to the initial guess assigned to the un-

certain parameters (Adeli and Cheng, 1993; Bakir et al., 2007). Like the heuristic or

manual updating approach, the quality of the correlation in the calibrated model and

the identified parameter assignments often depends heavily on the accuracy of the

engineering judgment used to assign the initial guesses for the parameter assignments.

However, multiple parameters can be simultaneously and automatically calibrated, as

opposed to the heuristic approach where the calibration of a large number of uncer-

tain parameters becomes impractical. If the objective function is nonsmooth in the

region where the sensitivity matrix is developed, the iterations in the optimization

routine may become unstable. Another challenge associated with the use of the sen-

sitivity method when calibrating numerous uncertain parameters is that it requires

conditioning of the sensitivity matrix in order to ensure that the convergence of the

objective function is not driven by a single uncertain parameter (Ahmadian et al.,

1998). Another drawback of the sensitivity-based updating method is that more than
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one local minimum may exist in the objective function, and the implementation of the

method provides no information on how many might exist or if the global minimum

was actually found.

Despite the limitations and challenges of sensitivity-based methods for model up-

dating, it remains in widespread use for structural identification of bridges. In one

study, structural identification of a concrete-filled steel tubular arch bridge was per-

formed using sensitivity-based updating to calibrate a FE model of the span (Jaishi

and Ren, 2005). Vibrations were induced during ambient vibration testing using

a truck and the modal parameter estimates were obtained using the output-only

system identification techniques of frequency domain decomposition and stochastic

subspace state space system identification. The successful application of sensitivity-

based model updating was attributed to the formulation of an objective function

that aggregated contributions from the natural frequency residuals, a MAC relation

function, and modal flexibility residuals. In another case study, structural identifi-

cation was performed on a deteriorated reinforced concrete T-beam bridge using the

sensitivity-based method to determine load rating factors to assess if the bridge could

support loads from coal trucks (Zhou et al., 2012). An important extension of the

sensitivity-based modeling updating technique is Modeling to Generate Alternatives

(MGA). Zárate and Caicedo developed MGA as a way of exploring multiple local

minima within the objective function and applied it to a cable-stayed bridge (Zárate

and Caicedo, 2008). This approach, based on gradient information, searches for an

initial solution by minimizing an objective function and then searches for other or-

thogonal solutions by minimizing a second objective function. This proposed method
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provides multiple, alternative solutions to the model updating problem from which

practitioner judgment is used to select the most plausible set of uncertain parameter

assignments to use in the final calibrated model.

2.2.3 Genetic Algorithm

The genetic algorithm is a global optimization technique that is used to minimize

a mathematical function. Genetic algorithm techniques rely on the Darwinian pro-

cesses of evolution by natural selection by applying principles of survival of the fittest

to individuals within a population to breed new generations of individuals that lever-

age the properties of the best parameter sets to encourage the convergence of the

objective function on the optimal solution (Mitchell, 1996). An initial population is

generated by randomly establishing assignments within lower and upper bounds for

each uncertain parameter that is included in the optimization routine. Each combi-

nation of assignments for the uncertain parameters are referred to as an “individual”

of the population and represent a potential solution of the system. The correctness

of the solution is evaluated by the objective function to produce a scalar score for the

model correlation. This score is called the fitness value of the individual and, at the

end of each generation, the individuals are ranked in order according to their fitness

values. Moreover, a percentage of the individuals with the best fitness scores, referred

to as the “elite” set of individuals, are carried over into the subsequent population

generated in a process known as survival. This ensures that the current best solution

is retained and that each generation results in a best individual that is at least as good

as the prior generation. In addition to the process of survival of the elites, new pop-
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ulations at each generation are created using cross-over reproduction and mutation.

Reproduction by cross-over is used to exchange characteristics (genetic information)

between non-elite and elite parent individuals to produce intermediate points between

these individuals in order to refine the search around the region of the current elites.

Mutation is a way of introducing random parameter assignments into the population

in order to diversify exploration of the search space. This encourages the optimization

routine to keep searching for the global minimum, rather than quickly converging on

a local minimum (Sivanandam and Deepa, 2007). The iterative process of evaluating

and reproducing generations is performed until the objective function converges or

until other stopping criteria are reached.

The genetic algorithm has been shown to be an effective optimization tool across

a large number of industries (Jones et al., 1995; Dyer et al., 2012). Consequent to

this success, many software packages for optimization support the implementation

of genetic algorithms, including the widely utilized MATLAB computing environ-

ment (MathWorks, Inc., 2015). However, the use of genetic algorithms to solve the

FE model updating problem within structural identification has been limited to a se-

lect number of studies and, furthermore, only a limited number of full-scale bridge case

studies exist. A particularly relevant full-scale study of finite element model updating

using genetic algorithms was performed on a bowstring-arch railway bridge (Ribeiro

et al., 2012). This study used 24 experimentally measured modes in the objective

function to calibrate 15 uncertain parameters in a finite element model of the struc-

ture. Moreover, four different initial populations within the genetic algorithm routine

were randomly generated to explore the stability of the calibrated parameters with
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respect to their bounds and identify the variability in the correlations between the

experimentally measured model parameters and those predicted by the calibrated

models. In all four cases, it was found that both the natural frequencies and the

modes shapes experienced very little variability with errors associated with the fre-

quencies of less than 5% and consistent MAC values greater than 85% respectively,

with the exception of only one mode that exhibited a range of MAC values between

82% and 86%. Additionally, variability in parameter assignments for each parame-

ter was explored by calculating the ratio of parameter assignments relative to their

lower and upper bounds. In all four implementations of the genetic algorithm, ratios

between assignments for each parameter were within less than 22%, while ratios less

than or equal to 10% were exhibited for six of these parameters. An interesting as-

pect of this study was that the numerical model was validated by an ultrasonic testing

program that independently determined the modulus of elasticity of the concrete as

well as a dynamic test performed with railway traffic.

In addition to the use for structural identification of healthy structures, genetic

algorithms have also been implemented for detecting and localizing damage in struc-

tures. In one of the earliest studies, damage was simulated in a FE model of a steel

cantilever beam discretized into fifteen elements and a genetic algorithm was used to

localize damage through model updating (Friswell et al., 1998). Damage was modeled

as a reduction of the elastic modulus of individual elements while the elastic modulus

of each element were treated as uncertain parameters in the model updating. Four

damage scenarios were tested. First, the stiffness of an element located close to the

free end condition was reduced. In the second scenario, the stiffness of an element
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located near the fixed end condition was reduced, while in the third scenario simulta-

neous reductions in stiffness were introduced to both elements. Lastly, a systematic

error was introduced to the model by introducing an additional mass at a given node

such that the synthetic measurements were no longer exactly consistent with the un-

derlying model used in the damage detection routine. For all scenarios, properties

of the genetic algorithm remained the same including use of a population size of 10

individuals, a reproduction rate of 60%, and a mutation rate of 0.5%. The objec-

tive function that was minimized incorporated both natural frequencies and mode

shapes residuals, but higher weighting was applied to the residuals between experi-

mental and analytical natural frequencies due to the expectation of better measure-

ment certainty and greater sensitivity to damage for the natural frequencies relative

to the mode shapes. The implementation of the genetic algorithm for each scenario

in this study concluded in successful damage detection and localization. Although

it’s common practice to set the mutation rate constant during the optimization of

the objective function, one study exploring the use of genetic algorithms for damage

detection proposed adaptively setting the mutation rate based on a diversity mea-

surement (Zimmerman et al., 1999). In this study, a low mutation probability was

suggested in early generations since the initially randomly distributed individuals are

relatively diverse and mutation operations are likely to eliminate the benefits that

are gained by crossover. However, as the elite solutions converge in later generations,

higher degrees of mutation would be needed in order to ensure that the algorithm

continues to sufficiently search over the entire solution space to avoid converging on

a local minimum.
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Experimental application of genetic algorithms for damage detection was presented

in a study where damage was introduced to a one-span steel portal frame in the

form of saw cuts (Hao and Xia, 2002). Scenarios of increasing damage, representing

section width reduction of 10, 20, 30, and 40%, were introduced at four different

locations. This study also evaluated the use of three different objective functions for

determining the presence and location of damage. The first objective function incor-

porated only natural frequency residuals, the second objective function incorporated

only mode shape residuals, and the third objective function incorporated weighted

residuals from both. It was concluded that neither the first nor the second objective

function formulations were able to reliably detect damage at the four locations and

resulted in false positive indications of damage at undamaged locations. However, the

objective function incorporating both weighted residuals from the natural frequencies

and mode shapes successfully located the damage introduced at the four expected

locations without misidentifying additional damage throughout the rest of the struc-

ture. Moreover, the assignment of the weighting factors applied to the residuals was

found to have a significant effect on the damage detection routine. This effect was

tested by exploring four mode shape residual weighting factor assignments, 10, 1.0,

0.1, and 0.001, while the residual natural frequency factor was fixed to one for all

cases. It was determined that correct identification of damage at the four damaged

locations was achieved only when the relative residual mode shape factor was assigned

as 0.1. Principles from these foundational analytical and laboratory studies has since

been applied successfully on full-scale building components subjected to damage in

experiments (Kernicky et al., 2014).
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2.3 Challenges Implementing Genetic Algorithm on Large Models

Challenges associated with the implementation of genetic algorithms on large FE

models include the selection of several properties of the genetic algorithm that di-

rectly affect its performance in effectively exploring the search space and the speed of

convergence of the objective function. Properties of the genetic algorithm include the

population size, the elite survival rate, the number of generations, the reproduction

rate, and the mutation rate, among several other properties associated with variations

of the genetic algorithm that are beyond the scope of work of this thesis. However,

reference to several variations of genetic algorithms along with their properties can be

found in (Pandey et al., 2014; Chambers, 1995). The population size should reflect a

fairly wide coverage of the search space which is dependent on the width of the bounds

for each uncertain parameter and how many uncertain parameters are calibrated in

the optimization scheme. While a population size that is too small may result in

premature convergence of the objective function at a local minimum, a population

size that is too large will slow down the speed of convergence. Similarly, use of a

high percentage of the population for the survival of the elites can result in ineffective

exploration of the search space as the elite dominance will reduce the diversity of the

population and lead to premature convergence on a local minimum of the objective

function. However, use of too low of a percentage of the population for elite survival

will result in increased convergence time and require additional generations to arrive

at the optimal solution. Likewise, while the rate of mutation used must be large

enough to add diversity to encourage exploration of new regions of the search space
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in order to avoid convergence on a local minimum, using a mutation rate too high

will counteract the benefits acquired by cross-over reproduction (Zimmerman et al.,

1999). Lastly, the number of generations evaluated, if used as the stopping criteria,

also affects the performance of the genetic algorithm. It is important that enough

generations are included in the optimization of the objective function and that con-

vergence of the objective function has been reached before the genetic algorithm is

ended. While all of these properties affect the performance of the genetic algorithm,

they are problem dependent and require tuning at the early stages of the optimization

routine (McCall, 2005).

Computationally, a challenge associated with the implementation of the genetic

algorithm for model updating of large FE models is that it requires significant com-

putational time to evaluate large population sizes over numerous generations for

an effective coverage of the search space. However, genetic algorithms are highly-

parallelizable since the individuals in each population can be evaluated by indepen-

dent computational cores (Cantú-Paz, 2001). This allows the computational workload

to be distributed among several computing cores in order to reduce the computational

time of convergence of the objective function. Details on the parallel implementation

of the genetic algorithm used in this thesis to perform model updating can be found

in Whelan et al. (2016).

This thesis focuses primarily on an additional set of challenges within model up-

dating that focus specifically on the richness of the data used and decisions made

when selecting uncertain parameters in the model. Since an objective function is

used within the genetic algorithm routine to aggregate all of the correlations between
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the experimental measurements and the analytical model, properties of the objec-

tive function, such as the number of paired modes that are included in the objective

function affect the performance of the genetic algorithm. Likewise, the number of un-

certain parameters used increases the flexibility of the model to adjust to the measured

data, but also increases the size of the search space which renders the optimization

more challenging. Currently, published guidance on the number of modes suitable

for an objective function developed with experimental data from a full-scale struc-

ture and the selection of uncertain parameters has not been developed. This thesis

seeks to provide insight into developing an empirical formulation of such guidance as

well as explores challenges associated with the variability of the calibrated uncertain

parameters resulting from varying the number of modes and the number of uncertain

parameters used in the objective function.



CHAPTER 3: VIBRATION TESTING AND SYSTEM IDENTIFICATION

Operational modal analysis performed on an in-service steel tied arch bridge is pre-

sented in this chapter. Details on the case study structure monitored under ambient

vibration excitation and the instrumentation used for this field testing are described.

Stochastic subspace state-space algorithms for output-only system identification and

the theory behind operational modal analysis are reviewed and then applied to the

experimental data set. Techniques for estimating the modal parameters of the struc-

ture, namely the natural frequencies, relative damping factors, and mode shapes are

presented, including strategies to arrive at a final parameter set to use for structural

identification. Within this process, an average normalized power spectral density

(ANPSD) plot is produced from the experimental data to characterize the dynamic

response of the Marquette-Joliet Bridge and verify the plausibility of the modal pa-

rameter estimates.

3.1 Details of Structure

The Marquette-Joliet Bridge, shown in Figure 3, is an in-service bridge located over

the Mississippi River on U.S. Highway 18 that accommodates one lane of highway

traffic in each direction and connects the States of Iowa and Wisconsin. This steel

tied arch bridge was built in 1974 and was later recognized in 1976 with “the most

beautiful bridge” award in the long span category by The American Institute of Steel
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Construction (AISC).

Figure 3: Steel tied arch bridge serving as case study structure

The main span of the bridge is a simply supported span that is 140.8m in length.

The primary superstructure components of the span are built-up steel arch ribs and

built-up tie girders that are supported by rocker bearings at the western pier and

fixed shoe bearings at the eastern pier. The tie girders are hollow rectangular sec-

tions, formed by welded plate steel, that are connected to one another by a system of

floor beams and diagonal braces (Figure 4). The floor beams are built-up I-shaped

sections that support five W24x55 steel stringers (not shown in the figure) that span

longitudinally between adjacent floor beams and support a 20.3cm thick reinforced

concrete deck slab. The bottom diagonal braces are WT7x39 sections that are con-

nected at the ends and the midspan of the floor beams. Loads from the tie girder

are shed to each arch rib by nine pairs of steel strand cable hangers that are evenly

spaced along the span of the bridge. The arch ribs are also hollow rectangular sections

formed by welded plate steel. Lateral bracing provided between the arch ribs consists

of built-up rectangular sections used for both the top laterals and the top diagonal
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braces. Lateral bracing members are provided at the same longitudinal spacing as

the bridge hangers. Diagonal bracing of the arch ribs is provided at the two central

panels of the arch rib framing plan as well as at the second panel from each end.

Figure 4: Details of case study structure: a) Plan view of arch framing plan; b)
Elevation view of span: c) Plan view of tie girder framing plan.

Plate sections forming both the arch ribs and the tie girders are stiffened for out-

of-plane deformations by transverse diaphragm plates. All stiffeners are interior di-

aphragm plates that match the inside dimensions of the girders for bearing at the top
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and bottom flanges, while diaphragm plates in the tie girder were fabricated with an

opening at the center that is large enough to allow inspection within the girders. Each

arch rib is stiffened by 1.91cm thick transverse diaphragm plates along the interior of

the rib girders at 28 different locations. Diaphragm stiffeners are placed on each side

of the hanger assembly inside the arch rib, at the midspan between adjacent hanger

assemblies, and halfway between the knuckle and the closest hanger. Diaphragm

stiffeners of the same size are also provided throughout the span of each tie girder at

21 locations in a similar layout to that used in the arch ribs. A single 3.81cm thick

bearing plate stiffener is also provided in the tie girders over the bearing supports.

3.2 Instrumentation for Ambient Vibration Monitoring

A customized wireless sensor network was developed by researchers at the Univer-

sity of North Carolina at Charlotte specifically to facilitate wireless real-time ambient

vibration monitoring of moderately long span bridges, such as the tied arch instru-

mented in this study (Whelan, 2011). Six wireless data acquisition modules, which

each permit simultaneous acquisition from 8 accelerometers, were used in the test

program, thereby resulting in a total of 48 accelerometers distributed across the tie

girders of the structure to record the dynamic response under ambient excitation.

These modules were designed to achieve wireless real-time sampling measurements

with low-noise, high resolution, and an ability to maintain continuous and lossless

time synchronized sampling across the sensor network for at least 3 minutes (Whelan

and Janoyan, 2009). In order to meet the sampling demands for operational modal

analysis, the Texas Instruments ADS1178 was selected as the analog-to-digital con-
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verter (ADC) within the modules. This device employs multiple 16-bit ADCs and

allows for synchronous sampling from up to 8 channels at rates of up to 10kHz in the

low-speed operating mode used, which consumes only 6mW/channel (Texas Instru-

ments Incorporated, 2008). Its on-chip finite impulse response (FIR) digital low pass

filter provides for anti-alias rejection, has a linear phase response, and is designed

with a passband ripple of +/- 0.005dB and a stop band attenuation of 100dB. The

computational core of each wireless sensor is a system-on-chip TI CC2530 wireless

microcontroller and transceiver. Its radio frequency (RF) transceiver provides wire-

less communication within the 2.4GHz frequency range at data transfer rates of up to

256kbps. The microcontroller implements a radio transmission protocol developed in

Whelan and Janoyan (2009) to achieve real-time data acquisition with no data loss.

Additional features of the TI CC2530 tranceiver and microcontroller can be found

in (Texas Instruments Incorporated, 2011).

The experimental test program interfaced Measurement Specialties, Inc. model

4000A accelerometers to the wireless sensor nodes to acquire the ambient vibration

measurements. These accelerometers are relatively small in size and weigh only 7

grams each, which permitted application of a small amount of wax adhesive to tem-

porarily adhere them to the tie girders during the testing. The wax adhesive also

contributed to a fast and efficient placement process without compromising the mea-

surement sensitivity of the sensor or leaving permanent alterations on the girders. The

specifications of the model 4000A accelerometers include a sensitivity of 1000mV/g,

full-scale dynamic range of +/- 2g, frequency bandwidth of 0-200Hz and a spectral

noise floor of 35µg/
√
Hz (Measurement Specialties, Inc., 2010).
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Real-time ambient vibration monitoring of the case study structure was performed

by installing an array of 48 accelerometers along the two tie girders of the bridge

at 24 uniformly spaced locations. To facilitate biaxial measurements, sensors were

installed in pairs with one measuring vertical accelerations and the other measuring

lateral accelerations. Longitudinal accelerations are typically small in magnitude and

are generally not used to develop modal parameter estimates for highway bridges,

so no sensors were positioned to measure longitudinal motion in the test program.

The placement, orientation, and channel numbering of the accelerometers used within

the specific ambient vibration monitoring program (to construct the modal param-

eter estimates developed in this research) are presented in Figure 5. In the channel

numbering scheme, odd-numbered sensors correspond to those measuring vertical ac-

celerations, which were oriented such that positive accelerations are in the direction

opposite to gravitational acceleration, as indicated in Figure 6. Even-numbered sen-

sors measured the lateral dynamic response of the tie girders and were all oriented in

the same direction for consistency.

Monitoring of the structure was performed under ambient excitation provided by

regular traffic serviced by the bridge and environmental loads. During this monitoring

program, time windows of approximately three minutes were sampled at an effective

sampling rate of 173.6Hz. The post-processing of measurement data described in this

thesis used a subset of four of these windowed time histories that were each lossless

and provided a generally strong amplitude of response.

As expected, vertical accelerations were larger in magnitude than the lateral ones

due to direction of dynamic loading provided by the traffic excitation. However, sig-
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Figure 5: Distribution and orientation of accelerometers installed along the tie girders

Figure 6: Wireless sensor network powered by an external battery (left). Proximity
of accelerometer to the top inner edge of the tie girders (middle). Accelerometers
oriented to measure vertical and lateral accelerations (right).

nificant lateral accelerations were induced through torsional modes that were excited

by the traffic loads. In addition to the time history analysis, an average normalized

power spectral density (ANPSD) plot was developed to assess the modal richness of

the measurements and, later, was used to verify the plausibility of modal parameter

estimates (Figure 7). Clear peaks within the ANPSD indicate likely resonances asso-
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ciated with well excited and well measured modes. An ANPSD plot can be produced

by first computing a power spectrum estimate for each individual sensor, normalizing

the individual power spectrum to a peak amplitude of one, and then averaging all of

the normalized power spectrum estimates. By establishing the y-axis of the ANPSD

as a logarithmic scale, resonance peaks are often more pronounced and easily iden-

tified. The ANPSD plot was produced within the MATLAB environment by first

computing Welch’s power spectral density estimates through the ‘pwelch’ function

and using the Hamming window to reduce spectral leakage. Then, estimates were

normalized and finally averaged over the 48 sensor channels and four recorded data

sets.

Figure 7: Full 0-86.8Hz bandwidth average normalized power spectral density

The ANPSD plot revealed a large set of resonance frequencies below 10Hz that

suggested that at least 20 modes were well excited within this low frequency portion

of the measurement bandwidth (Figure 8). Consequently, the measurement data
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was filtered and downsampled during the system identification routine to emphasize

analysis of this windowed frequency bandwidth. This downsampling approach aids

in the system identification both in terms of estimation quality and computational

requirements. However, it is important to establish the downsampling rate using the

ANPSD to ensure a large enough set of modal parameter estimates to enable the

subsequent structural identification research.

Figure 8: Average normalized power spectral density within 0-10Hz bandwidth

3.3 Operational Modal Analysis

Among the many algorithms that have been developed for structural identifica-

tion, the SPICE V2.0 toolbox for MATLAB developed by Katholieke Universiteit

Leuven (Overschee and Moor, 1996) provides two algorithms for operational modal

analysis: frequency-domain decomposition and stochastic subspace state-space sys-

tem identification (N4SID). However, frequency-domain decomposition does not per-

form well with closely spaced modes, provides fewer modal parameter estimates than
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N4SID, and produces operational deflection shapes rather than proper mode shape

estimates (Whelan et al., 2009). Consequently, SPICE V2.0 was only used to fit the

experimental data to a stochastic state-space model and then to subsequently extract

the experimental estimates of the modal parameters from this model.

As previously discussed during presentation of the ANPSD, a significant number

of well excited modes were identified in each data set within the 0-10 Hz bandwidth

to provide a sufficient number of experimental modal parameter estimates to facili-

tate structural identification. In order to improve the quality and speed of obtaining

the experimental modal parameters, the four data sets were first pre-processed by

deleting faulty sensor channels, detrending the data, and decimating data to a lower

effective sampling rate. Due to the unreliable operation of accelerometers #3 and #22

during the ambient vibration monitoring test program, sensor channels #3 and #22

were deleted from each data set. However, interpolation between adjacent sensors to

the ones that were not functioning permitted for presentation of generally smooth

mode shape estimates. Detrending the sensor measurements ensures that any linear

trend in the form of noise introduced by the data acquisition system and not from

the actual acceleration measurements is eliminated prior to the system identification.

Each data set was decimated by a factor of eight, thereby reducing the original sam-

pling frequency from 173.6 Hz to an effective sampling rate of 21.7 Hz. This step

provides the downsampling of the measured data and eliminates unnecessary spectral

content above the bandwidth of interest that is associated with extra computational

operations and memory requirements within the stochastic subspace algorithm. The

effective sampling rate developed by the decimation routine permits for estimation of
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modal parameters within the 0-10Hz frequency bandwidth.

3.3.1 State Space Representation

SPICE V2.0 was used to fit the measurement data to a stochastic state-space model

constructed from the general equation of motion for linear time invariant structures

with non-proportional, or general damping (Overschee and Moor, 1996). The continu-

ous time form of the general equation of motion is a second-order ordinary differential

equation (ODE) of the form

Mẍ(t) + Cẋ(t) +Kx(t) = u(t) (1)

where M , C, and K are the mass, damping, and stiffness matrices of a multiple

degree of freedom system and ẍ(t), ẋ(t), and x(t) are the acceleration, velocity, and

displacement vectors at time t. The excitation force vector is u(t) and it can be

expressed as an input function defined by location, orientation, and magnitude of the

exciting forces. The idea of the state-space model is to cast a second-order ODE into

a first-order ODE to solve for the modal properties of the system (Peeters, 2000). A

new set of variables, called state variables, are defined by equating z1 and z2 to the

displacement and velocity vectors respectively, as shown below in Equation 2 for a

single degree of freedom (SDOF) system.

z(t) =


z1(t)

z2(t)

 =


x(t)

ẋ(t)

 (2)

In addition, a new set of equations are formed by taking the derivatives of the state
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variables and performing substitutions.

ż(t) =


ż1(t)

ż2(t)

 =


ẋ(t)

ẍ(t)

 (3)

ż(t) =


ẋ(t)

− C
M
ẋ(t)− K

M
x(t) + u(t)

M

 =


z2(t)

− C
M
z2(t)− K

M
z1(t) + u(t)

M

 (4)

Following this transformation, a first-order ODE referred to as the state equation

is formed as

ż(t) =

 0 I

−K
M
− C
M



z1(t)

z2(t)

+


0

I
M

u(t) (5)

where I is the identity matrix. Alternatively, the state equation can be expressed in

matrix form as

ż(t) = Āz(t) + B̄u(t) (6)

where Ā is the state matrix and represents the dynamic properties of the system, as

it contains the mass, damping, and stiffness matrices, and B̄ is the input matrix that

is associated with the excitation of the system.

For a multiple (n) degree of freedom system, Ā and B̄ become

Ā =

 0nxn Inxn

−M−1K −M−1C

 ; B̄ =


0nxn

M−1

 (7)

Note that the eigenvalue decomposition of the state matrix contains the complex

eigenvalues of the system that can be used to solve for the natural frequencies and rel-

ative damping factors of the structure. Likewise the eigenvectors of the structure are

produced by eigenvalue decomposition of the state matrix. However, the eigenvalue
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decomposition of the state matrix does not produce the eigenvectors of the system

in the physical degrees of freedom, but rather in the coordinates of the state vari-

ables. In order to convert the eigenvectors to physical coordinates, a transformation

equation of the form

φ = C̄ψ (8)

is used. In this equation, φ is the eigenvector of the system in the physical coordinates

(observed mode shapes), C̄ is the output matrix that transforms the state variables

to the desired degrees of freedom in the model, and ψ is the eigenvector of the system

in the coordinates of the state variables (Peeters, 2000).

By converting to discrete-time, in order to accommodate the non-continuous sam-

pling of measurement data, the state and observation equations can be approximated

by

zk+1 = Azk +Buk (9)

yk = Czk +Duk (10)

The developed model is purely deterministic as no random terms have been included

to account for noise and error in the state-space model. A combined deterministic-

stochastic state-space model can be obtained by introducing stochastic process noise

and measurement noise (Peeters, 2000). In data-based applications, these sources of

noise originate from measurement noise, unmeasured excitations, and computational

noise. By accounting for these types of uncertainties and random errors, Equations

9 and 10 become

zk+1 = Azk +Buk + wk (11)
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yk = Czk +Duk + vk (12)

where wk and vk are the corresponding process and measurement noise. However, in

most civil engineering applications of system identification, ambient excitation tech-

niques are used since the application and measurement of controlled excitation can

become costly, difficult, and time consuming. Within ambient vibration monitoring,

input forces that develop from sources such as wind, ground motion, vehicular traffic,

etc are assumed to be modeled with the same characteristics as the random noise.

By considering the input forces to be part of the noise, the combined deterministic-

stochastic state space model then becomes the stochastic state-space model

zk+1 = Azk + wk (13)

yk = Czk + vk (14)

where only the output (acceleration measurements) and noise are considered in the

state-space model. The stochastic subspace state-space system identification routines

use measurements data to construct estimates of the state matrix, A, and output

matrix, C, associated with the underlying physical structure. As previously described,

these two matrices can be used to estimate the natural frequencies, relative damping

factors, and mode shapes of the structure through eigenvalue decomposition and

transformation.

3.3.2 Application to Experimental Data

The SPICE V2.0 MATLAB toolbox was used to fit the measurement data to the

stochastic subspace state-space model using the algorithm proposed by Van Overschee
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and De Moor (Overschee and Moor, 1996). This system identification algorithm was

implemented over each of the four data sets. However, the application of output-

only system identification for the estimation of reliable modal parameter estimates

is challenging and requires several strategies to ensure consistency and confidence

in the final estimates. This is particularly important when the modal parameter

estimates are to be used for structural identification. The following subsection details

the process and strategies used to obtain reliable modal parameter estimates.

In application of the system identification routine, every channel was selected to

serve as a reference channel, and the expected experience parameter, which defines

the number of block rows in the Hankel matrix, was set as high as possible given

the length of the measurement data. These decisions encourage the extraction of a

large set of modal parameter estimates. One challenge encountered when performing

system identification to estimate the state matrix and output matrix is that the size

of these matrices, known as the model order, is unknown. By specifying too small

of a size, the algorithm will produce less modal parameter estimates than present in

the data and may not adequately separate closely spaced modes. Specifying a model

order too high will cause the algorithm to overfit the noise and potentially corrupt

the modal parameter estimates. To address this challenge, the system identification

is performed over a range of model orders to determine the estimates by the way of

stabilization criteria. A stabilization plot was generated for each data set in order to

select sets of modal parameter estimates from stable poles.

Stabilization criteria of a 1% variation in frequency, 5% variation in relative damp-

ing, and 1% variation in mode shape were specified to identify stable poles. Stable
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poles indicate model fitting where all stabilization criteria is satisfied and are repre-

sented by a “+” symbol in Figure 9. Poles represented by the “f” symbol indicate

stable natural frequency estimates, while poles represented by the “d” symbol indi-

cate both stable natural frequency estimates and stable damping estimates, and poles

represented by the “v” symbol” indicate stable natural frequency estimates and mode

shape estimates. In order to average uncertainties in the individual modal parameter

estimates, five stable poles were selected for each potential mode shape by selecting

estimates from groups of stable poles aligned vertically. The undamped natural fre-

quency along with the relative damping factor and the mode shape were extracted

for each stable pole that was selected.

Figure 9: A typical stabilization plot

Since the underlying state-space model is based on non-proportional or general

damping, the mode shapes are complex with a real part and an imaginary part.
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The real part is the relative amplitude of the mode shape at the measured degree of

freedom, and the imaginary part is the relative phase. Since the mode shapes are

ultimately used for model updating of a finite element model that yields real-valued

mode shape estimates, these complex modes needed to be transformed to real-valued

normal modes to permit correlations with the finite element model. The complex

mode shape estimates, φc, were converted to normalized undamped (real-valued)

mode shape estimates, φr, using Niedbal’s transformation (Niedbal, 1984), given by

φr = Re(φc) + Im(φc)[Re(φc)
TRe(φc)]

−1Re(φc)
T Im(φc) (15)

where Re(φc) is the real component of the complex mode shape and Im(φc) is the

imaginary component of the complex mode shape.

A strategy for reducing uncertainties in the modal parameter estimates by aver-

aging multiple estimates across the multiple data sets was employed to improve the

reliability of the experimental modal parameters. As previously mentioned, five sta-

ble poles were selected for all potential natural frequencies identified by the system

identification routine where there were more than four stable poles aligned vertically.

These groups of natural frequency estimates along with their corresponding relative

damping factor and real-valued mode shape estimates, were collected in separate tabs

of a spreadsheet file established to database the individual experimental modal pa-

rameter estimates. Consistent natural frequency estimates obtained from applying

the system identification routine to the four different data sets were added along with

their relative damping factor and mode shape estimates to the same sheet within

the spreadsheet database. By collecting repeated as well as unique sets of modal
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parameter estimates across the four data sets, each sheet of the spreadsheet database

consisted of anywhere from five estimates of the same potential mode shape, if it

was expressed in only one data set, to as many as 20 estimates, if it was consistently

expressed in all four time histories. This approach has the advantage of capturing

modal parameters that were excited in only one of the data sets, which may occur if

the mode is not well excited by typical traffic loads.

Prior to averaging the individual modal parameter estimates, the consistency of the

estimates within each tab was assessed using the Modal Assurance Criterion (MAC).

Additionally, each real-valued mode shape estimate was first normalized to a reference

mode using the Modal Scale Factor (MSF). This scalar value was calculated for each

individual mode shape estimate relative to the reference mode shape and was applied

to all the mode shape estimates within each sheet in order to ensure that the relative

amplitudes of the mode shape estimates were consistent to avoid potential biasing of

individual estimates during averaging. The MSF also ensures consistent direction, or

phase of the mode shapes. The modal scale factor is computed as

MSFcdr =
{φdr}H {φcr}
{φdr}H {φdr}

(16)

where φdr is the reference real-valued eigenvector to which the real-valued eigenvector

subject to normalization φcr is compared to. Once all mode shapes were normalized,

the MAC value for each normalized eigenvector was calculated using

MACcdr =

∣∣{φdr}H {φcr}∣∣2
{φdr}H {φdr} {φcr}H {φcr}

(17)

where again φdr and φcr are different real-valued eigenvectors (Allemang, 2003). The
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MAC serves to assess the consistency between mode shapes and assigns a scalar value

that ranges between 0 and 1 (or 0% and 100%). MAC values that approach 1 (or

100%) indicate high levels of mutual consistency between estimates while MAC values

that approach 0 (or 0%) indicate no correlation between the mode shape estimates.

In this case study, MAC values between 0.70 to 1.00 were considered to be associated

with consistent estimates of the same mode shape and were grouped together for

averaging. Any estimates yielding a MAC value less than 0.70 were either eliminated

from further consideration or explored as a potential unique mode shape estimate

if additional estimates were found to be consistent with the mode shape. Natural

frequencies, damping factors, and modes shapes associated with the groups of modal

parameter estimates yielding MAC values greater than or equal to 0.70 were aver-

aged together to minimize the effects of noise and uncertainty when yielding a single

estimate for each mode.

In total, 47 candidate natural frequencies, ranging from 0.6186Hz to 9.3099Hz,

were initially extracted through the stabilization plots and then averaged, as shown

in Table 1. Due to the parameter estimation and consistency check strategies used,

the number of estimates n that were included in the average for each final modal

parameter estimate varied. While the calculation of some final modal parameter

estimates included 20 estimates in the averaging, only 3 estimates were averaged in

other cases. Additionally, the standard deviation σ was calculated to indicate the

variance in the undamped natural frequencies that were averaged. Both the number

of estimates included in the averaging and the standard deviation of the natural

frequency averages serve as a measure of the overall confidence in the individual
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modal parameter estimates.

Table 1: Averaging properties of the initial set of modal parameter estimates from
system identification routine

#
fn n

σ MAC∗
#

fn n
σ MAC∗

(Hz) (Hz) (%) (Hz) (Hz) (%)
1 0.6186 20 0.00255 99.99 25 4.9486 20 0.00731 98.50
2 1.2123 20 0.00604 99.25 26 5.0176 10 0.00379 99.30
3 1.2376 5 0.00084 99.25 27 5.2682 15 0.00567 98.31
4 1.3277 15 0.00638 99.14 28 5.3002 5 0.00467 99.08
5 1.3570 4 0.00274 99.61 29 5.5855 5 0.00034 99.92
6 1.5118 4 0.00632 98.63 30 5.7451 20 0.01667 99.85
7 1.5706 15 0.00247 95.03 31 6.0753 20 0.01028 94.37
8 1.6439 5 0.00749 95.97 32 6.2844 10 0.01195 96.26
9 1.7266 20 0.01410 99.73 33 6.3858 9 0.00230 98.32
10 1.8328 5 0.09563 90.65 34 6.7442 5 0.00623 97.93
11 2.1167 15 0.00785 99.61 35 7.1759 20 0.00650 98.26
12 2.2971 5 0.00433 99.94 36 7.2462 5 0.00611 87.29
13 2.3538 10 0.00447 99.67 37 7.2812 10 0.00528 93.04
14 2.4141 5 0.00153 99.97 38 7.7184 5 0.00614 96.85
15 2.8512 15 0.00317 99.84 39 8.1143 15 0.01149 99.02
16 3.4844 16 0.01679 99.65 40 8.4402 10 0.00920 89.53
17 3.5699 13 0.00710 87.04 41 8.8253 5 0.00716 96.24
18 3.6238 5 0.00148 99.97 42 8.8834 3 0.01060 93.00
19 3.8744 11 0.00830 88.34 43 8.9790 5 0.00623 98.14
20 4.1737 5 0.00773 91.81 44 9.0592 14 0.00557 96.16
21 4.2527 10 0.01252 94.30 45 9.2163 5 0.00728 99.80
22 4.7045 10 0.00846 99.77 46 9.2671 16 0.01162 99.25
23 4.7378 5 0.00082 100.00 47 9.3099 5 0.01675 99.17
24 4.7846 5 0.00314 99.96 - - - - -

Since the ultimate use of the developed modal parameter estimates was to direct

structural identification of a model of the structure using finite element model up-

dating, it was necessary that the final set of modal parameter estimates included

only those estimates that expressed the highest confidence. Including an incorrect

mode in the model updating could jeopardize the convergence of the optimal solu-

tion and physical meaning of the updated model. In the selection of the final set of

modal parameter estimates, the objective was to select the set of 20 modes that pro-

vided the highest level of confidence. This was achieved by superimposing averaged

natural frequency estimates obtained from the system identification routine on the

0-10Hz bandwidth ANPSD plot and comparing the modal parameter estimates with

resonance frequencies, as shown in Figure 10.
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Figure 10: Average normalized power spectral density with the natural frequencies
of the final set of modal parameter estimates identified

Modal parameter estimates without a corresponding clear resonance frequency in

the ANPSD were excluded from the final set as they were considered to be unreliable

estimates. On the contrary, modal parameter estimates that were associated with

strong amplitude peaks in the ANPSD were considered to have the highest confidence

level and were included in the final set of 20 modes. In addition, several instances of

modal parameter estimates that had closely spaced natural frequencies and similar

mode shapes were found. These estimates were averaged to yield a single modal

parameter estimate when justified. Use of an initial finite element model of the

structure, described in Chapter 4, was used to assist in assessing the likelihood of

closely spaced modes with similar shapes. This was the case for two groups of closely

spaced mode estimates. The first group consisted of the original modal parameter

estimates #22, #23, and #24, while the second group consisted of the original modal

parameter estimates #27 and #28. The similarities in estimated natural frequencies
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and mode shapes, as well as the result of the averaging, are shown in Figure 11. The

averaging characteristics of the final set of 20 modes ultimately used in the subsequent

structural identification research are provided in Table 2.

Figure 11: Averaged closely spaced modal parameters

Table 2: Averaging properties of the final set of modal parameter estimates used in
study

fn n
σ MAC∗

(Hz) (Hz) (%)
0.6186 20 0.00255 99.99
1.2123 20 0.00604 99.25
1.3277 15 0.00638 99.14
1.5706 15 0.00247 95.03
1.7266 20 0.01410 99.73
2.1167 15 0.00785 99.61
2.3538 10 0.00447 99.67
2.8512 15 0.00317 99.84
3.4844 16 0.01679 99.65
3.6238 5 0.00148 99.97
3.8744 11 0.00830 88.34
4.7423 10 0.0041 99.91
5.2842 15 0.0052 98.70
5.7451 20 0.01667 99.85
6.0753 20 0.01028 94.37
7.1759 20 0.00650 98.26
7.2812 13 0.00528 93.04
8.1143 15 0.01149 99.02
8.4402 10 0.00920 89.53
9.0592 14 0.00557 96.16
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Renderings of the experimental mode shape estimates were developed using the

MATLAB environment. The final set of 20 mode shapes along with their undamped

natural frequencies and relative damping factors are presented in Figure 12. However,

since sensor placement was limited to only the tie girders, the arches of the bridge

were necessarily omitted from the renderings of the modes shapes. Consequently,

modes that might look like repeated mode shapes (such as the modes at 1.328Hz and

1.571Hz) are likely distinguished by different responses in the arch ribs, which is not

permitted to be identified by the sensor placement used. As previously noted, this

was confirmed through use of an initial finite element model, described in Chapter

4. As expected by the nature of excitation provided by traffic, the developed mode

shapes are either transverse bending modes or torsional modes, and there are no

lateral bending modes in the extracted modal parameter estimates. The first mode

shape is the expected fundamental mode shape of the structure and it occurs at a

frequency of 0.619Hz. Second-order through eighth-order transverse bending mode

shapes can also be identified, as well as numerous torsional bending modes. Relative

damping factor estimates are provided along with each mode shape and indicate that

the structure is lightly damped as the estimated relative damping ranges from 0.095%

to 2.722% across the modal parameter estimates.
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Figure 12: Final subset of 20 experimental modal parameter estimates obtained
through operational modal analysis



CHAPTER 4: FINITE ELEMENT MODEL AND PARAMETERIZATION

In this chapter, a preliminary, idealized finite element (FE) model of the case study

structure is described and the dynamic properties of the model are compared to the

modal parameter estimates obtained from the operational modal analysis. The strat-

egy for parameterization of the FE model to facilitate research on best practices for

structural identification is presented with the techniques used for decomposition and

reconstruction of the mass and stiffness matrices for the parameterized model. A

sensitivity analysis of the analytical model is conducted across 19 candidate uncer-

tain parameters to identify the most meaningful properties of the model affecting the

modal properties and, consequently, the overall correlation with the field measure-

ments. Ultimately, a subset of the 12 most significant uncertain parameters for the

structural identification of the model is selected for the research effort.

4.1 Idealized FE Model

While structural identification provides a technique for improving model corre-

lation through updating of uncertain parameters in the model, an idealized finite

element model is typically first constructed and assessed to verify the plausibility of

the modeling assumptions and serve as a benchmark for comparing the impact of the

structural identification on the model correlation. In this study, an idealized three-

dimensional linear elastic FE model of the tied arch bridge was developed within
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the SAP2000 v15 commercial finite element analysis software (Figure 13). This FE

model was developed using a total of 5,510 shell elements, 1,410 frame elements, and

18 cable elements. Four-node quadrilateral shell elements were used to model the

arch ribs, the stiffeners, and the deck slab. Four-node quadrilateral shell elements

were also predominantly used to model the tie girders, although some three-node tri-

angular shell elements were used to mesh features around the knuckles of the arch.

Moreover, three-node triangular shell elements were used along the bearing lines of

the tie girders at the piers to discretize the area around the boundary conditions and

knuckle of the arch. All shell elements in the model were thick-plate shell elements,

which include transverse shear deformations (Mindlin/Reissner formulation). Frame

elements were used to model the floor beams, stringers, the bottom diagonal braces

within the bridge superstructure as well as the top laterals and diagonal braces of

the arch. Lastly, cable elements, were used to model the stranded bridge cables serv-

ing as hangers in the tied arch. However, since the modal properties of the model

are computed by linear elastic analysis, these cable elements are treated the same as

pin connected frame elements in forming the stiffness and mass matrices. In total,

the idealized three-dimensional FE model was composed of 6,938 elements and 4,603

nodes, which contributed 26,610 equilibrium equations and 850,125 non-zero terms

to the stiffness matrix.

Boundary conditions, material properties, and connectivity between elements within

the model were initially established using engineering judgment. Rocker bearings at

the western pier were idealized by placing a line of roller restraints at the bottom nodes

of the tie girder where the bearing was located. This restraint restricted vertical and
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Figure 13: FE model of the tied arch bridge serving as the case study structure

lateral motion, but allowed for longitudinal translation as well as rotation about any

axis. In the same manner, fixed shoe bearings at the eastern piers were idealized

by introducing pin restraints along each bearing line, restricting local translation in

all directions and permitting free rotation. The reinforced concrete of the slab was

assumed to be normal weight and, consequently, the modulus of elasticity and unit

weight for the shell elements representing the slab and parapets were assigned as

25GPa (3626ksi) and 2400kg/m3 (150pcf), respectively. Lastly, connectivity between

the floor beams and tie girders, arch laterals and ribs, and arch diagonal braces and

ribs were idealized as fully restrained moment connections.

4.2 Correlation Between Idealized Model and Experimental Modal Parameter

Estimates

Modal analysis of the idealized FE model was performed within the MATLAB

environment through eigenvalue decomposition to extract the undamped natural fre-

quencies and modes shapes of the model. The mass and stiffness matrices were first

assembled in SAP2000 and then exported to MATLAB along with the geometry of the
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idealized FE model. This approach permits for a more efficiently way of computing

the eigenvalue decomposition of the model and, more importantly, allows for mode

matching of the analytical modes with the experimentally measured modes, direct and

automated assessment of the correlation between analytical and experimental modal

parameters, and plotting of the idealized mode shapes, all within the MATLAB com-

puting environment. While many approaches have been proposed to pair analytical

and experimental modes, the modal assurance criteria (MAC) (Allemang, 2003) was

determined to be adequate for this case study. In the matching process used in this

study, the selection of potential analytical modes correlating with each experimental

mode was first limited to only those analytical modes with a natural frequency, fa,

within +/- 25% of the measured natural frequency, fe. This requirement that the

natural frequencies of the paired modes are similar addresses potential issues in mode

pairing arising from spatial aliasing on the limited instrumentation layout. Within

this windowed search region, each experimental mode was paired with an analytical

mode exhibiting strong MAC correlation with the experimental mode. However, to

avoid selection of repeated analytical modes, the experimental modes were required

to be paired with a unique analytical mode. Generally, experimental modes were

paired with analytical modes that exhibited the highest MAC correlation. However,

in cases where the analytical mode exhibiting the highest MAC correlation was al-

ready selected for another mode, the analytical mode exhibiting the second highest

MAC correlation was selected.

All 20 experimental modal parameter estimates were paired to a unique analytical

mode from the idealized finite element model and the results are presented in Figures
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14 and 15. Model correlation between the experimental and analytical models was

characterized using the percent error between natural frequencies (∆), given by

∆ =
(
fa−fe
fe

)
× 100 (18)

where fa and fe are the corresponding predicted and measured undamped natural

frequencies of the same paired mode. Besides the percent error between natural fre-

quencies, model correlation was further characterized using the MAC value computed

across all experimental and analytical mode shapes (Table 3). Discrepancies between

the measured natural frequencies and those produced by the idealized model ranged

from -5.54% to 18.6%, with an average absolute percent error of 7.52% (Table 3). In

general, the mode shapes from the idealized model were well correlated to the ex-

perimental estimates as MAC values ranged from 34.69% to 99.95% and the average

MAC was 80.26%. Upon closer inspection of the model correlation, it was observed

that the idealized model exhibits consistently stronger agreement with the measured

vertical bending modes than the torsional modes. Specifically, the average MAC

correlation across the vertical bending modes is 93.12%, while the average MAC cor-

relation across the torsional modes is 69.74%. Likewise, the average absolute percent

frequency error between vertical bending modes is 4.81% while for the torsional modes

the average absolute percent frequency error is 9.74%. However, much stronger model

correlation, especially for the torsional modes, is sought in this research through the

implementation of structural identification using Genetic Algorithms (GA). Overall,

generally strong agreement between the model and the experimental estimate is in-

dicated by an average MAC correlation across the modes shapes above 80% and an
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average absolute percent error in natural frequencies below 8%.

Figure 14: Modal parameters of the idealized finite element model corresponding to
the first ten experimentally measured modes
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Figure 15: Modal parameters of the idealized finite element model corresponding to
experimentally measured modes eleven through twenty

Table 3: Comparison between experimental modal parameter estimates and modal
parameters of the idealized finite element model

Mode fe fa ∆ MAC
Behavior

# (Hz) (Hz) (%) (%)
1 0.619 0.656 6.07 99.95 Vertical
2 1.212 1.313 8.27 99.27 Vertical
3 1.328 1.338 0.77 82.16 Torsion
4 1.571 1.863 18.6 61.23 Torsion
5 1.727 1.790 3.67 99.28 Vertical
6 2.117 2.238 5.74 63.57 Torsion
7 2.354 2.425 3.04 97.75 Vertical
8 2.851 3.027 6.15 92.42 Torsion
9 3.484 3.558 2.12 97.88 Vertical
10 3.624 3.766 3.93 94.00 Torsion
11 3.874 4.363 12.6 64.40 Torsion
12 4.742 4.711 -0.65 79.35 Vertical
13 5.284 4.992 -5.54 82.52 Torsion
14 5.745 6.304 9.74 97.09 Vertical
15 6.075 6.915 13.8 77.74 Torsion
16 7.176 8.332 16.1 49.14 Torsion
17 7.281 7.542 3.58 83.54 Vertical
18 8.114 8.613 6.15 83.94 Vertical
19 8.440 9.417 11.6 34.69 Torsion
20 9.059 10.17 12.3 65.31 Torsion
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4.3 Model Updating Technique and Parameterization of the FE Model

Structural identification of uncertain parameters within the FE model was per-

formed within the MATLAB environment for 16 different scenarios. For each sce-

nario, the number of modes included in the optimization and the number of uncer-

tain parameters considered for structural identification were varied to investigate the

influence of these factors on the structural identification. Scenarios included either

5, 10, 15, or 20 modes in the computation of the objective function and, for each of

these scenarios, model updating was performed by calibrating sets of 3, 6, 9, and 12

uncertain parameters. For consistency purposes, the sets of 3, 6 , 9, or 12 uncertain

parameters exhibiting the greatest influence on the modal parameters of the model

were selected for the calibration of the model. This approach allows the investigator

to examine the significance of the measured modal richness included in the structural

identification and the number of uncertain parameters adapted on the consistency

of estimated parameter assignments. In order to perform the structural optimiza-

tion using a global optimization technique, an integer-constrained genetic algorithm

was used to minimize the objective function formed with the eigenvalue residuals

and modal assurance criterion. Due to the highly-parallelizable characteristics of ge-

netic algorithms, a 125-core computing cluster was used instead of a single desktop

computer to address the challenging computational workload associated with global

optimization. Parallel computing allows for the use of larger population sizes, which

more effectively explore the uncertain parameter search space to identify the optimal

solution. In this study, a population size of 5,000 individuals per generation was used
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over a fixed duration of 25 generations. Consequently, a total of 130,000 eigenanalyses

were conducted on the finite element model for each scenario to facilitate the struc-

tural identification by genetic algorithm. Additional details on the implementation

of the genetic algorithm for the structural identification performed in this study is

presented in Chapter 5.

In order to facilitate the model updating process, specifically the generation of

baseline models and parameterized mass and stiffness matrices, a MATLAB script

was developed to interface with the finite element model using the Open Application

Programming Interface (OAPI) provided by SAP2000 v15. The OAPI establishes a

communication interface between the two softwares that allows MATLAB to execute

commands in SAP2000 and share model information between the two softwares, mak-

ing it a very powerful and useful tool for parametric analysis and model updating.

Over this automated digital interface, MATLAB was used to access the FE model

developed in SAP2000, adjust parameter assignments within the model, and import

the corresponding mass and stiffness matrices of the model (Appendix A). The mass

and stiffness matrices assembled in SAP2000 are written to files that can be imported

into MATLAB and reassembled in sparse matrix format to generate parameterized

mass and stiffness matrices (Figure 16). The script written to implement the pa-

rameterization of the model and assemble the matrix contributions is provided in

Appendix A.

The benefits of this automated implementation are two-fold: first, scripted routines

are faster and less error prone than manually manipulating the model to generate

parameterized matrices and, second, the generalized eigenvalue solver in MATLAB
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Figure 16: Schematic of Routines for the Parameterization of the FE Model and
Reconstruction of the Mass and Stiffness Matrices

can be used to produce the eigenvalue analysis of the parameterized model more

efficiently than SAP2000, leading to a faster optimization routine. Parameterization

of the FE model was achieved by decomposition of both the mass and the stiffness

matrices into the mass and stiffness matrices of a baseline model and the linear

superposition of contributions from mass and stiffness changes for each uncertain

parameter that is considered in the updating routine. Since linear superposition is

leveraged, these uncertain parameters are necessarily restricted to only those that

provide proportional, or linear, contributions to the mass and stiffness matrices with

any change in the parameter assignments (Janter and Sas, 1990). This limitation

precludes updating of parameters such as thickness of shell elements or geometries of

frame elements, but does permit for use of many properties in the model as uncertain
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parameters, such as the elastic modulus of elements, mass densities, spring stiffnesses,

and fixity of connections. By linear superposition, reconstruction of the mass and

stiffness matrices can be accomplished by the use of the following equations:

M = Mo + ∆θ1
∂M
∂θ1

+ ∆θ2
∂M
∂θ2

+ ...+ ∆θn
∂M
∂θn

(19)

K = Ko + ∆θ1
∂K
∂θ1

+ ∆θ2
∂K
∂θ2

+ ...+ ∆θn
∂K
∂θn

(20)

where Mo and Ko are the mass and stiffness matrices of the baseline model, ∆θj is the

difference between the j-th parameter assignment value and its lower bound, and ∂K
∂θj

and ∂M
∂θj

are the partial derivatives of the mass and stiffness with respect to the j-th

parameter determined numerically. The mass and stiffness matrices of the baseline

model are established by assigning each uncertain parameter in the model to its lower

bound value. The partial derivatives of the mass and stiffness matrices are computed

by linear perturbation of the model using the upper and lower bounds of individual

parameter assignments.

4.4 Sensitivity Analysis

To facilitate decision making within the parameterization process, a sensitivity

analysis was performed to identify the most meaningful uncertain parameters within

the FE model to be included in the structural identification. Performing a sensitiv-

ity analysis is a fundamental step in identifying and ranking the most appropriate

uncertain parameter choices for the calibration of the model, since the selection of

the parameters that are updated directly affects the overall correlation between the

modal parameters of the calibrated FE model and the measured modal parameter
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estimates. Including a parameter within the model updating that the modal proper-

ties of the finite element model are insensitive to will result in negligible improvement

in the model correlation after updating. Furthermore, the physical meaning of the

updated parameter will lack confidence due to the insensitivity of the model to the

updated parameter. Within the sensitivity analysis, a sensitivity index is calculated

for each uncertain parameter based on a measure of the change in modal parame-

ters exhibited by the model over the range of physically feasible assignments that

the parameter could take. In this thesis, the sensitivity index, Si, of each uncertain

parameter, θi, was determined by evaluating change in the first twenty natural fre-

quencies produced with the uncertain parameter set to its upper bound assignment,

(θ̄i), and correspondingly at its lower bound assignment, (θi). The sensitivity index

is reduced to a scalar index by summing the absolute value of the changes in natural

frequencies, as given by

Si =
20∑
j=1

|f θ̄ij − f
θi
j | (21)

The sensitivity analysis was also used to establish upper and lower bounds on

selected uncertain parameters in the model for which engineering judgment or knowl-

edge of typical ranges of material properties could not be used to establish these

limits. Common examples of where this is necessary are the cases of boundary con-

dition spring assignments and rotational fixity of elements. In both instances, the

feasible range of parameter assignments spans from the free condition, or zero stiff-

ness, to the fully fixed condition, or infinite stiffness, which is handled by partitioning

of the structural matrices. However, these parameters have practical limits when
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the parameter assignment sufficiently replicates either idealized condition. In other

words, a boundary spring does not need to be assigned infinite stiffness to sufficiently

replicate the modal parameters associated with the fully fixed condition and, likewise,

often does not need to be assigned zero stiffness to adequately replicate the modal

parameters associated with the free condition. Establishing these practical limits is

critical for structural identification using genetic algorithms since these practical lim-

its reduce the size of the search space for the uncertain parameters and ensure that

the parameter assignments produce some significant change in the modal parame-

ters of the model over the region that optimization is conducted. Figure 17 provides

results from the sensitivity analysis conducted on the boundary spring in the lon-

gitudinal direction (global X) parameter, where it is revealed that the full bounds

associated with the effective extremes of the longitudinal boundary spring can be

established as 0.2 MN/m to 2,000 MN/m. However, a smaller range was selected for

the optimization scheme of this uncertain parameter as the longitudinal boundary

spring was expected to behave closer to a free condition. Therefore, practical bounds

on the longitudinal boundary spring assignment used later for the calibration of the

preliminary FE model were established as 0.2 MN/m to 200 MN/m.

An initial set of 19 candidate uncertain parameters was identified for structural

identification of the finite element model and the sensitivity index expressed in Equa-

tion 21 was calculated for each parameter. These candidate uncertain parameters

were then ranked from highest to lowest sensitivity according to this index. Table 4

summarizes this analysis and identifies the subset of the top 12 most significant un-

certain parameters for calibration of the finite element model. Subsequent structural
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Figure 17: Sensitivity analysis performed on boundary global x-spring uncertain pa-
rameter

identification presented in the remainder of this thesis was limited to, at most, these

12 uncertain parameters, and the seven least sensitive parameters from the initial

candidate set were reestablished in the finite element model to their assignment used

in the idealized finite element model.

Uncertain parameters within the FE model that were considered in the sensitiv-

ity analysis included connection fixity assignments, boundary condition translational

spring assignments, elastic modulus of the reinforced concrete deck, flexural stiffness

property modifiers, and axial stiffness property modifiers. In the case of property

modifiers, the uncertain parameter assignment is treated as a unitless multiplicative

scale factor that is applied to the associated section properties of the elements in the

model with that section assignment. Property modifiers were applied to the flexural

stiffness of the webs and flanges of the arch ribs (θ2 and θ4, respectively), the webs
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Table 4: Selection of final set of 12 uncertain parameters with highest sensitivity (θ
- lower bound, θ - upper bound, S - sensitivity)

# Parameter, θ θidealized θ θ̄ S

1 Rotational Fixity of Arch Laterals 1 0.01 1 17.43
2 Flexural Stiffness of Arch Rib Webs 1 0.5 1.5 6.37
3 Boundary Global X-Spring - Longitudinal (MN/m) Pin/Roller 0.2 200 5.64
4 Flexural Stiffness of Arch Rib Flanges 1 0.5 1.5 3.64
5 Rotational Fixity of Arch Diagonals 1 0.01 1 2.64
6 Flexural Stiffness of Tie Girder Flanges 1 0.75 1.5 2.16
7 Flexural Stiffness of Parapet 1 0.5 1.5 2.14
8 Flexural Stiffness of Tie Girder Webs 1 0.5 1.5 1.58
9 Elastic Modulus of Deck Concrete (GPa) 25 14 34 1.54
10 Axial Stiffness of Stranded Bridge Cable 1 0.5 1.5 1.29
11 Boundary Global Z-Spring - Vertical (MN/m) Fixed 200 20,000 1.17
12 Flexural Stiffness of Longitudinal Stiffeners 1 0.5 1.5 1.16
13 Flexural Stiffness of Knuckle Web 1 0.5 1.5 1.12
14 Flexural Stiffness of Diaphragm Plates 1 0.5 1.5 0.84
15 Axial Stiffness of Arch Diagonals and Laterals 1 0.5 1.5 0.82
16 Axial Stiffness of Deck Diagonal Bracing 1 0.5 1.5 0.55
17 Rotational Fixity of Floor Beams 1 0.01 2 0.13
18 Boundary Global Y-Spring - Lateral (MN/m) Pin 200 200,000 0.05
19 Rotational Fixity of Deck Diagonal Bracing 1 0.01 1 0.01

and flanges of the tie girders (θ8 and θ6, respectively), parapets (θ7), longitudinal

stiffener plates (θ12), the knuckle web (θ13), and the diaphragm plates within the ribs

and the tie girders (θ14) in order to explore calibration of their effective stiffnesses to

the structure. Axial stiffnesses that were expressed as uncertain parameters in the

sensitivity analysis include the axial stiffness of the stranded bridge cables (θ10), the

arch diagonals and laterals (θ15), and the deck diagonal bracing (θ16). The rotational

fixity of the arch laterals and diagonal bracing (θ1 and θ5), which refers to the degree

of connection fixity between these structural elements and the arch, were also param-

eterized using a property modifier applied to the flexural stiffness of a single short

element of each section type serving as a link between the arch and the member.

It is important to note that property modifiers applied to the axial or flexural

stiffness of sections provide the optimization with the flexibility to adjust stiffness of

elements in the model to improve the model correlation and effectively account for

uncertainties in both material and geometric properties of the modeled elements. Con-
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sequently, it is important to avoid including sets of parameters that do not produce

independent effects on the properties of the model. For example, the elastic modulus

of the shell elements representing the reinforced concrete deck was considered as an

uncertain parameter (θ9) in the sensitivity analysis, since this material property is

both uncertain and known to vary across a significant range based on mix design,

and since the stiffness of the deck should influence the flexural and torsional modes

measured during the ambient vibration monitoring. However, the application of this

parameter assignment for the elastic modulus of the reinforced concrete was limited

to the deck and excluded the shell elements representing the parapet walls. This

was done to maintain independence between this elastic modulus parameter with the

uncertain parameter previously established to directly calibrate the flexural stiffness

of the parapets. Since the flexural stiffness, EI, contains the elastic modulus, allow-

ing the model to simultaneously optimize both parameters would lead to potential

uniqueness issues that can render the identified parameter assignments meaningless.

Lastly, modal parameters of a structural system are often most sensitive to the

boundary conditions of the structure (E. Aktan, N. Çatbaş, A. Türer, and Z. Zhang,

1998) (Zhou et al., 2012), so the idealized pin and roller boundary restraints used in

the idealized finite element model were replaced by linear elastic translational springs

in each of the three Cartesian axes. These springs in the longitudinal, vertical, and

lateral directions (θ3, θ11, and θ18 respectively) were introduced to account for the

non-ideal boundary conditions present in real-world structures. In this particular

case, some degree of unknown stiffness is expected in each direction due to axial,

shear, and flexural deformation of supporting elements, such as the bearings, piers,
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and supporting foundation. The lower and upper bounds for each spring were es-

tablished through the sensitivity analysis, as previously described. Since none of

the 19 uncertain parameters selected introduced a change in the mass matrix of the

model, the parameterization of the model was achieved using only Equation 20. This

choice was intentional and was taken to alleviate uniqueness issues in the inverse

eigenvalue problem associated with updating the mass and stiffness matrices simul-

taneously (Mottershead et al., 2011).



CHAPTER 5: STRUCTURAL IDENTIFICATION AND DISCUSSION OF
RESULTS

The implementation of and results from application of genetic algorithm (GA)

global optimization routines applied for structural parameter identification using the

previously documented finite element model are discussed in detail within this chap-

ter. Criteria used within the GA for global optimization along with the objective

function used to evaluate the quality of the correlation between the experimental

data and individual models within the populations are presented. The results of the

implementation of the GA for sixteen different scenarios are summarized and com-

pared to examine the influence of the number of modes included in the objective

function and the number of uncertain parameters included in the model updating

routine on the improvement in model correlation. Furthermore, the variability in

the parameters identified across the structural identification analyses are analyzed.

Lastly, modal analyses of the calibrated FE models are performed to quantify the

improvement in agreement of the natural frequencies and mode shapes of the model

with the experimental estimates relative to the preliminary idealized finite element

model.

5.1 Details of Genetic Algorithm Applied for Structural Identification

The main goal of the genetic algorithm, as applied in this study, is to search for

the global minimum discrepancy between modal parameter estimates extracted from
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experimental measurements and the analytical predictions of a parameterized model

offering many possible solutions to the eigenproblem. However, the genetic algorithm

is associated with several properties or options that can influence its performance and

affect its ability to explore a wide search space and subsequently reach global opti-

mization in an efficient amount of time, rather than prematurely converge on a local

minimum. The performance of genetic algorithms for global optimization depends on

several properties of the genetic algorithm, as previously discussed in the literature

review. For example, population size is widely recognized to have a significant effect

on the performance of genetic algorithms. An insufficiently small population may

prematurely converge on a local minimum before adequately exploring the search

space, while an overly large population results in a longer time before convergence is

achieved (Chambers, 1995). For the present study, a wide coverage of the search space

was required to facilitate a higher probability of the optimization runs converging on

the globally optimal solution. Consequently, a parallel implementation of the genetic

algorithm was employed using a 125 core computing cluster to permit the use of a

large population size, while maintaining a reasonable solution time. Complete details

on the parallel implementation of the genetic algorithm on the computing cluster can

be found in (Whelan et al., 2016).

For each of the 16 scenarios where the GA was applied, an initial population size

of 5,000 individuals was generated by randomly distributing assignments for each

uncertain parameter (θ) within their lower bounds (θ) and upper bounds (θ), indi-

cated for each parameter in Table 5. An integer-constrained genetic algorithm was

used to relax the computational burden associated with generation of real number
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assignments, and thus integer value parameter assignments were scaled to prescribe

the corresponding effective integer precision (δθ) of each uncertain parameter, as dis-

cussed later in this section. At each generation, an elite count of 50 individuals,

representing 1% of the population size, was allowed to survive and subsequent pop-

ulations were generated by a 60% cross-over reproduction rate. The remaining 39%

of the population was generated by mutation. The rate of cross-over is also widely

recognized to influence the performance of the genetic algorithm in converging on

the optimal parameter assignments (Chambers, 1995). The current study did not

seek to study the influence of cross-over rates on the performance of the genetic algo-

rithm but instead to focus on the influence of the structural properties of the model

and robustness of the measurement. The 60% cross-over reproduction rate was se-

lected for consistency with similar studies leveraging genetic algorithms for structural

identification of civil structures with experimentally obtained modal parameter esti-

mates (Kernicky, 2013; Moss, 2015). The genetic algorithm optimization routine was

stopped after completion of a fixed number of 25 generations to maintain reasonable

run times. Convergence of the objective function appeared to have been reached for

all cases, although this convergence of the objective function is further discussed in

the subsequent section.

In this study, an integer-constrained genetic algorithm was used to minimize the

solution search space. An integer genetic algorithm constrains uncertain parameter

assignments to integer values, rather than permitting them to take any real number

value. The motivation behind adopting an integer constraint on the parameters is

that there is a finite precision at which each parameter produces a quantifiable and



78

meaningful change in the modal properties of the model and therefore the computa-

tional burden associated with finding optimal real value parameter assignments can be

relaxed. However, the uncertain parameters in the model must first be scaled to pre-

scribe the effective precision desired for each parameter. In other words, a quantized

real value scale can be mapped to integer values to effectively achieve the desired

precision for each parameter during application of the genetic algorithm. Table 5

presents the effective integer precision δθ associated with each uncertain parameter

included in the model. The same fixed scaling approach was also enforced to the lower

and upper bounds of each parameter in order to generate lower and upper bounds on

the corresponding integer scale.

Table 5: Parameter bounds and effective integer precision used within the structural
identification analysis cases

# Parameter, θ θ θ̄ δθ

1 Rotational Fixity of Arch Laterals 0.01 1 0.01
2 Flexural Stiffness of Arch Rib Webs 0.5 1.5 0.01
3 Boundary Global X-Spring - Longitudinal (MN/m) 0.2 200 0.2
4 Flexural Stiffness of Arch Rib Flanges 0.5 1.5 0.01
5 Rotational Fixity of Arch Diagonals 0.01 1 0.01
6 Flexural Stiffness of Tie Girder Flanges 0.75 1.5 0.01
7 Flexural Stiffness of Parapet 0.5 1.5 0.01
8 Flexural Stiffness of Tie Girder Webs 0.5 1.5 0.01
9 Elastic Modulus of Deck Concrete (GPa) 14 34 0.01
10 Axial Stiffness of Stranded Bridge Cable 0.5 1.5 0.01
11 Boundary Global Z-Spring - Vertical (MN/m) 200 20,000 0.2
12 Flexural Stiffness of Longitudinal Stiffeners 0.5 1.5 0.01

While there are numerous forms of objective functions, the one used in this thesis

has been specifically suggested for FE model updating routines based on the im-

plementation of genetic algorithms (Caicedo and Yun, 2011; Ribeiro et al., 2012;

Kernicky et al., 2014; Moss, 2015). This particular objective function incorporates

the eigenvalue residuals as the absolute percent error between the predicted and the

measured undamped natural frequencies and the eigenvector residual through the
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MAC value computed across the mode shapes of the finite element model and those

experimentally estimated, after mode pairing. The form of this objective function,

computed over m total modes, is:

J(~θ) =
m∑
i=1

αi

(
|fai−fei |

fei

)
+

m∑
i=1

βi (1−MACi,i) (22)

where fai and fei are the corresponding predicted and measured undamped natural

frequencies associated with the i-th paired mode, αi and βi are weighting factors that

are assigned to the measures of the eigenvalue and eigenvector residuals, respectively.

In this study, fixed weighting factors across all modes, with α=1 and β=0.5, were

used in the computation of the objective function for each individual. It is typical

that less relative weighting is applied to the measure of the eigenvector residual since

experimental mode shape estimates are considered to be more difficult to obtain with

confidence than undamped natural frequency estimates (Friswell and Mottershead,

1995). It should be noted that the form of the objective function, like many of the

other properties of the genetic algorithm, has a significant influence on the results

of the structural identification since it serves as the single measure by which aggre-

gate model correlation is assessed and optimized. In this study, the effect of the

number of modal parameters included in the objective function is studied, but future

research could examine the effect of the relative weighting of eigenvalue and eigenvec-

tor residuals or form of the objective function on the performance of the structural

identification routine.
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5.2 Comparison of Structural Identification Results

Structural identification using genetic algorithms was performed for sixteen differ-

ent scenarios where either 5, 10, 15, or 20 modes were compared in the objective

function while the number of uncertain parameters (from the final set of 12 identified

by the sensitivity analysis) used in the updating routine included either 3, 6, 9, or 12

parameters. Objective scores and the influence of residuals developed from the aver-

age absolute percent error between the measured and the predicted undamped natural

frequencies, and the MAC values associated with discrepancies in the predictions of

modes included in the objective function, are further investigated. Additionally, the

variation in parameter assignments obtained from the global minimization of the ob-

jective function for updating of the FE model is explored both across the different

cases and within the elite individuals of the final generations.

Convergence plots showing the objective scores over the 25 generations obtained

during the genetic algorithm optimization routine for all sixteen structural identifica-

tion scenarios are presented in Figure 18. These convergence plots were produced as

a means to examine the extent that the objective function improved over the genetic

algorithm as well as whether or not convergence was generally achieved. These con-

vergence plots show that as the number of uncertain parameters is increased for each

set of modes included in the objective function, the initial objective score for the first

generation consistently improves by a moderate amount. Furthermore, the relative

improvement in the objective score over the 25 generations increases significantly as

uncertain parameters are added. This relative improvement over the 25 generations
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is generally less affected by including additional modes in the objective function. It

is also interesting to note that the optimizations performed using only 3 uncertain

parameters converged after less than 10 generations, while the remaining cases re-

quired at least 20 generations before exhibiting signs of convergence. Moreover, even

though the final objective scores improve with additional parameters included in the

optimization routine, the improvement generally occurs through infrequent, coarse

steps rather than incrementally smooth steps. Although this has not been proven,

larger steps are most likely associated with exploration of different local minima and

it is possible that the optimizations performed with 9 or 12 uncertain parameters

might not have fully converged on the global minimum. For the purposes of the fol-

lowing analysis, it is assumed that the genetic algorithm sufficiently converged after

25 generations for each case, as evidenced by the general exponential decay in the

improvement in objective scores over each optimization run. Future research might

consider exploration of the convergence function using genetic algorithms over a larger

number of generations and the effects that this may produce on modal correlation

and variability of the uncertain parameter estimates.

The influence of the number of uncertain parameters used and the number of modes

included in the objective function on the objective score obtained after 25 generations

of the genetic algorithm is presented in Figure 19. The reason for higher objective

scores with more modes included in the objective function is simply that the objective

function is a summation over the modes included in the model correlation. With the

exception of the one objective score for the case of 9 uncertain parameters with 20

modes in the objective function, the addition of uncertain parameters in the optimiza-
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Figure 18: Objective scores obtained during the genetic algorithm optimization rou-
tine over the first 25 generations

tion consistently improved the objective score obtained. This is expected since the

inclusion of additional parameters in the optimization provides greater flexibility to

adjust the FE model to match the measured response. However, it was not expected

that the improvement in the objective function would increase by larger increments

as additional uncertain parameters were added. Since sensitivity analysis was used

to first rank the uncertain parameters included, it was expected that the relative im-

provement obtained from increasing the number of uncertain parameters from 3 to 6

would be more significant than increasing from 9 to 12 uncertain parameters as the

model was found to be less sensitive to these final parameters. This difference sug-
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gests that the sensitivity index used may be too simplistic and alternative methods

should be sought for future research adopting the approaches used in this thesis. The

expected progression of relative improvements associated with the ranked sensitivities

is exhibited for the cases using only 5 modes in the objective function.

Figure 19: Objective scores achieved after 25 generations across all optimization cases

As a summary of the model correlations achieved for each optimization run, the

average absolute percent error in natural frequencies and the average MAC values

for each case is presented in Figure 20. For reference, the idealized FE model had

an average absolute percent error in natural frequency of 7.52% and average MAC

value of 80.26. Despite the number of uncertain parameters and modes included in the

objective function, significant improvements relative to the idealized model in both the

average absolute percent error in natural frequency and the MAC value correlations
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were generated by all sixteen scenarios of the genetic algorithm implementation. In all

but one scenario, an increase in the number of modes included in the objective function

resulted in an increase in the natural frequency prediction error and a decrease in the

mode shape correlations. Additionally, for most scenarios, increasing the number of

uncertain parameters while keeping the number of modes in the objective function

fixed resulted in an improvement in the natural frequency predictions. A similar

trend was observed for the MAC values but the relative improvement in mode shape

correlation was less significant than that of the natural frequency correlations. This is

likely a reflection of the higher weighting factor applied to natural frequencies within

the objective function in Equation 22.

As the main purpose of structural identification is to provide a technique for

performance-based assessment of structures by model updating of FE model proper-

ties, the parameter assignments obtained by the optimization runs are of particular

interest. Parameter assignments generated by the global optimization of the objec-

tive function for each of the sixteen scenarios are provided in Table 6. In addition to

providing the parameter assignment for the optimal solution, the standard deviation

calculated across the 50 elite individuals from the final generation of each optimiza-

tion is also provided in parenthesis as a measure of parameter uncertainty. This will

be discussed in more detail after discussing the variation in parameter assignments

across the different scenarios.

Consistency within parameter assignments relative to the lower and upper bounds

among all sixteen scenarios were identified for some parameters (θ2, θ5, θ8, θ10, and

θ11). As the number of uncertain parameters and the number of modes varied, the
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Figure 20: Average absolute percent error between the experimental and predicted
undamped natural frequencies and average MAC values between mode shapes for all
optimization cases

assignments of other parameters fluctuated between two consistent ranges of values

(θ1, θ3, θ9, and θ12). The remaining parameters were assigned values that fluctuated

between three ranges of assignments (θ4, θ6, and θ7). However, the uncertain param-

eter assignments are generally much more consistent with a fixed number of modes

included in the objective function than with changes in the number of uncertain pa-

rameters used. Consequently, while including additional uncertain parameters in the

model can result in significant improvements in model correlation, the analysis sug-
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Table 6: Uncertain parameter assignment predictions by genetic algorithm for each of
the sixteen scenarios with standard deviation in values across final elites (n - number
of calibrated parameters, m - number of modes included in the objective function)

n m
Parameter Assignments

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12

3 5
0.30 0.50 2.2 - - - - - - - - -

(0.00) (0.00) (0.0) - - - - - - - - -

6 5
0.29 0.54 33.4 0.50 0.08 1.20 - - - - - -

(0.02) (0.01) (1.3) (0.01) (0.03) (0.01) - - - - - -

9 5
0.30 0.53 36.0 0.51 0.10 0.77 1.37 1.50 33.9 - - -

(0.04) (0.01) (2.5) (0.01) (0.03) (0.03) (0.09) (0.02) (1.3) - - -

12 5
0.28 0.55 47.0 0.58 0.04 0.75 1.44 1.39 33.5 0.56 3510.0 1.49

(0.07) (0.04) (7.4) (0.04) (0.03) (0.04) (0.15) (0.08) (1.0) (0.04) (452.2) (0.2)

3 10
0.02 0.55 2.2 - - - - - - - - -

(0.00) (0.00) (0.1) - - - - - - - - -

6 10
0.02 0.50 12.2 0.80 0.10 0.97 - - - - - -

(0.00) (0.01) (3.8) (0.07) (0.02) (0.04) - - - - - -

9 10
0.02 0.50 2.6 0.76 0.05 0.96 0.85 1.43 31.4 - - -

(0.00) (0.02) (3.6) (0.09) (0.03) (0.07) (0.19) (0.06) (5.4) - - -

12 10
0.30 0.94 2.6 1.00 0.01 0.95 0.50 1.43 16.6 0.58 460.8 1.30

(0.02) (0.16) (0.3) (0.15) (0.01) (0.08) (0.07) (0.09) (3.2) (0.04) (161.2) (0.4)

3 15
0.30 0.59 2.2 - - - - - - - - -

(0.00) (0.00) (0.0) - - - - - - - - -

6 15
0.02 0.50 2.0 1.25 0.01 0.77 - - - - - -

(0.07) (0.00) (0.5) (0.06) (0.01) (0.01) - - - - - -

9 15
0.02 0.50 3.2 1.32 0.10 0.78 0.53 1.50 15.1 - - -

(0.08) (0.01) (1.1) (0.07) (0.04) (0.03) (0.09) (0.03) (0.4) - - -

12 15
0.26 0.55 2.8 1.36 0.10 0.77 0.60 1.48 14.3 0.70 1802.6 0.85

(0.01) (0.01) (0.1) (0.01) (0.01) (0.00) (0.02) (0.00) (0.0) (0.01) (571.8) (0.1)

3 20
0.30 0.66 2.2 - - - - - - - - -

(0.00) (0.00) (0.0) - - - - - - - - -

6 20
0.30 0.60 6.2 0.78 0.02 0.92 - - - - - -

(0.02) (0.01) (3.5) (0.07) (0.03) (0.05) - - - - - -

9 20
0.28 0.65 70.4 0.70 0.05 0.99 0.88 1.46 14.3 - - -

(0.02) (0.04) (23.8) (0.10) (0.03) (0.18) (0.23) (0.11) (0.6) - - -

12 20
0.24 0.67 55.4 0.81 0.06 1.17 0.66 1.38 14.9 0.73 1413.8 0.93

(0.08) (0.05) (36.4) (0.10) (0.03) (0.08) (0.14) (0.14) (5.1) (0.02) (727.0) (0.3)

gests that the parameter assignments are more significantly influenced by the richness

of the measurement data included in the objective function.

As noted, the standard deviation associated with each parameter assignment was

calculated across the 50 elites in the final generation and is also presented in Table 6

as a way to describe variability among the final elites. In addition to these standard

deviations, histograms of the parameters associated with the final elites were prepared

and are presented in Appendix B for all parameters. It is important to note that the

x-axis of the histograms were set to the full range of the specified parameter bounds

to present the variability in the identified parameters over the assigned search space.
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The reader is reminded that the initial population is randomly seeded and therefore

the histograms start out as uniform distributions before the optimization is run. One

of the more interesting cases is found in the rotational fixity of the arch laterals,

θ1, which is presented in Figure 21. The optimization runs exhibited two general

solutions for this parameter (θ1≈0.02 and θ1≈0.28). Some of the histograms, such as

the one developed from the elites from the case with 12 parameters and 20 modes,

have solutions containing both values in distinct distributions. This suggests the

presence of a local minimum within the search space of the objective functions. These

histograms also show that increased variability in the elites is present as the number

of uncertain parameters is increased. This is attributed to a slower convergence

rate of the objective function associated with the increased difficulty in finding the

global minimum when additional parameters are being calibrated. This variability

may also suggest that there is either inherently more uncertainty in the identified

parameters as more are added to the optimization routine or that the optimization

may not have fully converged for all cases and increased generations might have

resulted in further improvements in model correlation. Variability among the elites

for the flexural stiffness of the arch rib webs parameter, θ2, are presented in Figure 22

as further evidence of the increased diversity, or variability, in parameter assignments

for the elites as the number of uncertain parameters is increased. These histograms,

as well as the optimal values presented in Table 6 for the remaining cases, also show

that variability in the parameter assignments are generally more influenced by the

number of modes included in the objective function than the number of uncertain

parameters included in the optimization.
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Figure 21: Parameter θ1, rotational fixity of arch laterals, assignments associated
with the 50 elites in the final generations of each structural identification case

In order to develop meaningful parameter assignments using genetic algorithms,

it is important that the number of modes included in the optimization routines are

allowed to vary in order to explore variations in the prediction of parameter assign-

ment estimates. This allows the investigator to account for uncertainties and errors

that are inherent to both the FE model and the optimization of the objective func-

tion since the global optimization solution might not physically represent the best

solution (Zárate and Caicedo, 2008).
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Figure 22: Parameter θ2, flexural stiffness of arch rib webs, assignments associated
with the 50 elites in the final generations of each structural identification case

5.3 Modal Parameter Comparison for Model Exhibiting Best Model Correlation

As detailed in the previous section, the field calibrated finite element model ex-

hibiting the best correlation over the set of twenty experimental measured modes was

developed using the full set of twelve uncertain parameters and all twenty sets of

modal parameters within the computed objective function. This was expected since

a greater number of uncertain parameters allows for greater flexibility in the opti-

mization scheme to tune the model to the measured response and, likewise, including

all modes in the objective function promotes calibration across all experimentally

measured parameters. However, there was uncertainty as to whether or not the op-
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timization would successfully produce a better solution with such a large number of

uncertain parameters to be calibrated. In this study, the success of the optimization

scheme with such a large number of uncertain parameters is attributed to the large

population size used in the genetic algorithm and suggests that global minimums were

successfully identified by the genetic algorithm, although this can not be definitely

proven. The comparison between the analytical undamped natural frequencies and

mode shapes of the calibrated model and those measured experimentally are presented

to serve as an important case study for the growing field of structural identification

applied to civil structures. Additionally, the relative improvement in model correla-

tion from the idealized finite element model is quantified to demonstrate the benefit

of model updating on the experimental agreement.

Consistent with the assessment of the idealized finite element model, the correlation

between the measured and the calibrated modal parameter estimates was assessed by

calculating the percentage error (∆) between undamped natural frequency estimates

and the MAC values computed across paired mode shapes. Discrepancies among all

20 experimental and calibrated undamped natural frequency estimate pairs ranged

from -4.92% to 6.27%, with an average absolute percentage error of 2.13% (Table 7).

Moreover, discrepancies among all 20 MAC values ranged from 70.52% to 99.95%,

with an average MAC of 92.70%. This strong correlation between the properties of

the calibrated model and the experimental measurements across all twenty modes is

presented in Figures 23 and 24. The vertical modes exhibited an average MAC value

of 97.49%, while the torsional bending modes exhibited an average MAC value of

88.78%. Likewise, a 2.82% average absolute percentage error in undamped natural
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frequencies was calculated for the vertical bending modes, while for the torsional

modes the average absolute percentage error in undamped natural frequencies was

1.56%. Overall, the average MAC above 92% and average absolute percent error in

natural frequency below 2.2% indicates that the calibrated model exhibits exceptional

dynamic consistency with the experimentally measured modal parameters.

Table 7: Modal parameter comparison between calibrated finite element model and
operational modal analysis results

Mode fe fa ∆ MAC
Behavior

# (Hz) (Hz) (%) (%)
1 0.619 0.633 2.29 99.95 Vertical
2 1.212 1.239 2.16 99.33 Vertical
3 1.328 1.292 -2.69 95.76 Torsion
4 1.571 1.556 -0.93 85.25 Torsion
5 1.727 1.820 5.43 99.62 Vertical
6 2.117 2.053 -3.00 82.33 Torsion
7 2.354 2.332 -0.93 99.56 Vertical
8 2.851 2.711 -4.92 93.77 Torsion
9 3.484 3.408 -2.20 96.85 Vertical
10 3.624 3.570 -1.49 97.44 Torsion
11 3.874 3.831 -1.12 92.99 Torsion
12 4.742 4.938 4.13 98.26 Vertical
13 5.284 5.316 0.60 97.74 Torsion
14 5.745 6.105 6.27 98.69 Vertical
15 6.075 6.048 -0.45 81.51 Torsion
16 7.176 7.287 1.54 84.78 Torsion
17 7.281 7.296 0.21 89.36 Vertical
18 8.114 8.258 1.78 95.79 Vertical
19 8.440 8.472 0.38 70.52 Torsion
20 9.059 9.064 0.06 94.55 Torsion
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Figure 23: Modal parameter estimates associated with modes one through ten ex-
tracted from the experimental measurements (row#1), idealized model (row#2), and
calibrated model (row#3)

Graphical presentation of the percentage errors in undamped natural frequencies

exhibited by the idealized and calibrated finite element models relative to the ex-

perimentally measured natural frequencies is presented in Figure 25. This bar plot

demonstrates the significant changes in percent errors in undamped natural frequency

produced through the model calibration relative to the measured undamped natural

frequencies. In the idealized model, six modes were associated with an error in un-

damped natural frequency prediction greater than 10% and only eight modes were



93

Figure 24: Modal parameter estimates associated with modes eleven through twenty
extracted from the experimental measurements (row#1), idealized model (row#2),
and calibrated model (row#3)

associated with percent frequency errors below 5%. Conversely, following applica-

tion of the structural identification routine, eighteen of twenty modes in the model

exhibited percentage errors in undamped natural frequency below 5%. Overall, the

percentage error in natural frequency improved for sixteen of the twenty modes. The

four exceptions correspond to cases where the error in undamped natural frequency

in the initial model was less than 3.7%. This reflects the need for the model correla-

tion to sacrifice some of the few instances of strong correlation in the initial model in
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order to achieve a more balanced overall improvement in correlation across all of the

measured modal parameters.

Figure 25: Percent error in frequency estimates before and after calibration of the FE
model

Similarly, graphical representation of the correlation between analytical and ex-

perimental mode shapes, as quantified by the MAC measure of correlation, for the

idealized and calibrated model is presented in Figure 26. As evidenced in this figure,

only one mode (#9) reflected a decrease in MAC correlation, although the change

did not exceed 1.1%, while the rest of the calibrated modes exhibited a moderate to

significant increase in MAC correlations. Specifically, ten calibrated modes experi-

enced a significant increased in MAC correlation over 10%, with five of these modes

reaching over 20% improvement in MAC correlations, including two exceeding 35%
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improvement. Such overall strong improvement associated with higher calculated

MAC values between the experimental and calibrated modes is attributed to a large

parameter selection with diverse sensitivity and a wider population size in the genetic

algorithm.

Figure 26: Modal correlation before and after calibration of the FE model

The improvement in model correlation exhibited from calibration of all 12 uncer-

tain parameters is also presented in tabular form in order to assist in comparing and

quantifying the relative improvement of the calibrated model over the idealized model

across all 20 modes (Table 8). Overall, the average absolute percentage error in un-

damped natural frequencies from the idealized to the calibrated model was reduced

from 7.52% to 2.13%, and the average MAC value for the mode shape estimates

increased from 80.26% to 92.70%. The overall improvement in model correlation is
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mainly reflected in significant improvements in the correlation of modal parameters

for the torsional bending modes. For these modes, the average absolute percentage

error in natural frequencies was reduced from 9.74% to 1.56% and the average MAC

correlation across the mode shapes was increased from 69.74% to 88.78%. Although

improvement in the correlation of modal parameters for the vertical bending modes

is not as significant as the improvement for the torsional bending modes, vertical

bending modes still contributed towards overall improvement in model correlation.

Similarly, for the vertical bending modes, the average absolute percentage error in nat-

ural frequencies was reduced from 4.81% to 2.82% and the average MAC correlation

across the mode shapes was increased from 93.12% to 97.49%. The overall exception-

ally strong correlation between the experimental measurements and the calibrated

model can be summarized by an average absolute percentage error improvement in

natural frequency predictions of over 6.0% and an average MAC improvement of over

12%. Although the strongest model correlation was achieved when twelve parameters

were calibrated within the finite element model and twenty modes shapes were used

in the optimization routine, model correlation improvements between the measured

and the calibrated modal parameters relative to the idealized model for all other 15

cases of the structural identification implementation are provided in Appendix C.

An additional graphical tool popular for presenting model correlation and improve-

ment in model correlation is the “Modal Assurance Criterion with Frequency Scales”

FMAC plot, which can be used to simultaneously present both the natural frequency

errors and strength of the MAC correlation between experimental and analytical mod-

els (Fotsch and Ewins, 2000). Within FMAC plots, the degree of frequency correlation
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Table 8: Model correlation improvement when 12 parameters within the finite element
model were calibrated and 20 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.633 2.29 99.95 3.78 0.00
2 1.212 1.313 8.27 99.27 1.239 2.16 99.33 6.11 0.06
3 1.328 1.338 0.77 82.16 1.292 -2.69 95.76 -1.92 13.6
4 1.571 1.863 18.6 61.23 1.556 -0.93 85.25 17.7 24.0
5 1.727 1.790 3.67 99.28 1.820 5.43 99.62 -1.76 0.34
6 2.117 2.238 5.74 63.57 2.053 -3.00 82.33 2.74 18.8
7 2.354 2.425 3.04 97.75 2.332 -0.93 99.56 2.11 1.82
8 2.851 3.027 6.15 92.42 2.711 -4.92 93.77 1.24 1.35
9 3.484 3.558 2.12 97.88 3.408 -2.20 96.85 -0.08 -1.03
10 3.624 3.766 3.93 94.00 3.570 -1.49 97.44 2.44 3.44
11 3.874 4.363 12.6 64.40 3.831 -1.12 92.99 11.5 28.6
12 4.742 4.711 -0.65 79.35 4.938 4.13 98.26 -3.48 18.9
13 5.284 4.992 -5.54 82.52 5.316 0.60 97.74 4.94 15.2
14 5.745 6.304 9.74 97.09 6.105 6.27 98.69 3.46 1.59
15 6.075 6.915 13.8 77.74 6.048 -0.45 81.51 13.4 3.77
16 7.176 8.332 16.1 49.14 7.287 1.54 84.78 14.6 35.6
17 7.281 7.542 3.58 83.54 7.296 0.21 89.36 3.37 5.82
18 8.114 8.613 6.15 83.94 8.258 1.78 95.79 4.37 11.8
19 8.440 9.417 11.6 34.69 8.472 0.38 70.52 11.2 35.8
20 9.059 10.17 12.3 65.31 9.064 0.06 94.55 12.2 29.2

Average - - 7.52 80.26 - 2.13 92.70 5.39 12.44

is represented by the location of circles with respect to a 45 degree line that indicates

perfect prediction of the experimental natural frequency by the analytical model.

Points above this line indicate that the natural frequency in the model is higher than

experimentally measured and, conversely, points below the line are modes where the

model underpredicts the natural frequency. The diameter of the circles corresponds

to strength of the MAC correlation where the larger in diameter the circles are, the

greater the strength of the MAC correlation is. FMAC plots were generated for both

the idealized and the calibrated model in order to further explore overall improvement

by taking into account the degree of frequency correlation as well as the strength of

the MAC correlation among all 20 modes. In the plots, an additional feature has

been introduced, which is to present the vertical modes in blue and the torsional

modes in red. As shown in Figure 27, the FMAC for the idealized model clearly

exhibits an overly stiff response, particularly for the higher frequency modes, and
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the strength of the mode shape correlation is significantly weaker for the torsional

modes. Following the application of the genetic algorithm for model updating, the

discrepancies between measured and predicted natural frequencies were reduced and

are more balanced about the 45 degree line that represents perfect model correlation.

Likewise, both vertical and torsional modes exhibit strong MAC correlation with the

experimental estimates following the model updating.

Figure 27: Model correlation between idealized (left FMAC plot) and calibrated (right
FMAC plot) models with respect to the experimental measurements



CHAPTER 6: SUMMARY

6.1 Concluding Remarks

This thesis promotes the application of structural identification and seeks to expand

the limited database of structural identification studies employing genetic algorithms

for model updating by presenting a real-world case study using ambient vibration

monitoring data. A series of FE model updating problems were structured around

experimentally measured modal parameter estimates for a tied arch bridge span to

investigate the influence of the problem setup on the results of the structural iden-

tification. Specifically, the study examined the effects on the model correlation and

variability of parameter assignments resulting from varying both the number of modes

included in the objective function and the number of uncertain parameters included

in the model updating routine.

To characterize the dynamic properties of the structure, output-only system identi-

fication was applied to experimental measurements obtained from an in-service bridge

using stochastic subspace identification and strategies to improve the experimental

estimation of the modal parameters were presented in the application. A prelimi-

nary idealized finite element model of the structure was developed and linear modal

analysis was performed to quantify the initial correlation between the experimen-

tally measured and the analytically predicted natural frequencies and modes shapes.
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To facilitate selection of the most meaningful uncertain parameters in the model for

FE model updating, sensitivity analysis was conducted and the results were used to

order the sets of uncertain parameters used in a series of FE model updating prob-

lems. Techniques including parallelization of the genetic algorithm and use of integer

constraints were introduced within the optimization routine to facilitate accelerated

convergence of the objective function and reduce the time associated with the explo-

ration of large population sizes.

Across the 16 scenarios of FE model updating problems performed, the highest

model correlation was achieved by including all 20 modes in the objective function

and all 12 uncertain parameters in the model updating routine. For this scenario, the

average absolute percent error in natural frequency prediction across the 20 modes

was reduced from 7.52% to 2.13%. Additionally, the average MAC correlation com-

puted across the 20 modes was improved from 80.26% to 92.70%. Results from the

sixteen FE model updating scenarios were analyzed to examine the effects of vary-

ing both the number of modes included in the objective function and the number

of uncertain parameters included in the model updating routine on the model cor-

relation achieved through model updating as well as on the variability of parameter

assignments identified. The results suggest that the parameter assignments identified

through the structural identification framework are significantly influenced more by

the number of modes included in the objective function than the number of uncertain

parameters included. However, the inclusion of additional uncertain parameters can

result in significant improvements in the model correlation achieved. Analysis of the

elite individuals in the final generations of each application of the genetic algorithm
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revealed that increased variability, or uncertainty, in the identified parameter assign-

ments was generally present as the number of uncertain parameters included in the

model updating was increased.

6.2 Future Research

Throughout this thesis, several recommendations for future research were suggested

to improve, or provide improved insight into, the application of structural identifi-

cation using genetic algorithms to solve the FE model updating problem. These

recommendations are summarized below.

� The current study adopted an objective function that remained fixed throughout

the analysis, although the number of modes included in the objective function

was allowed to vary to investigate the effects resulting from 16 different scenarios

of model updating. Exploration of the effects resulting from varying the relative

weighting factors associated with the eigenvalue and eigenvector residuals in the

objective function may provide additional insight into their effects on model

correlation and variation in identified parameter assignments. Furthermore, a

variety of different forms of objective functions for model updating have been

proposed throughout the literature and these could be investigated to assess

their impact on the performance of the structural identification routine.

� This study used a simple technique to perform sensitivity analysis for the uncer-

tain parameters to rank the sensitivity ahead of the model updating. However,

the results suggest that the sensitivity analysis was too simplistic and may not

have considered important interactions between parameters and their effects on
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model correlation. It is recommended that future research explore the use of

more advanced sensitivity analysis routines to consider such potential interac-

tions to improve the ranking of uncertain parameters.

� The study used a fixed number of generations as a stopping criteria of the

genetic algorithm. Convergence plots for the objective function suggested that

convergence had generally been achieved, but cases involving a large number

of uncertain parameters exhibited more diversity in their elites. Future work

could explore the influence of using a larger number of generations or alternative

stopping criteria on the results of the analysis.

� This study generated conclusions based on results obtained from application to

a single experimental case study. The conclusions drawn should be verified by

applying the techniques described to numerical models with known solutions as

well as validated by application across a large set of experimental studies.
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APPENDIX A: MATLAB ROUTINE USING OAPI TO COMMUNICATE WITH
SAP2000

This section provides the MATLAB script used to interface with SAP2000 and

build the parameterized mass and stiffness matrices.

1 clear all
2 %Define lower and upper bounds
3 lb=[1;50;1;50;1;75;50;50;1400;50;1000;50];
4 ub=[100;150;1000;150;100;150;150;150;3400;150;100000;150];
5 scale=[0.01;0.01;200;0.01;0.01;0.01;0.01;0.01;10;0.01;200;0.01];
6

7 Pop(1,:)=lb;
8 for k=1:numel(lb)
9 Pop(k+1,:)=Pop(1,:);

10 Pop(k+1,k)=ub(k);
11 end
12

13 for k=1:12
14 Pop(:,k)=Pop(:,k)*scale(k);
15 end
16

17 %Establish Model
18 root=strcat(cd,'\');
19 root='C:\Users\Matthew\Desktop\SAPNeal\2 Final IDEALIZED SAP MODEL 2\'
20

21 %Establish Global Optimization Problem
22 for k=1:numel(lb)+1
23 params=Pop(k,:);
24 clear SapObject SapModel
25 feature('COM SafeArraySingleDim',1);
26 feature('COM PassSafeArrayByRef',1);
27 SapObject = actxserver('sap2000v15.SapObject');
28 SapObject.ApplicationStart(6,'True');
29 SapModel = SapObject.SapModel;
30 ret = SapModel.InitializeNewModel(6); %#ok<*NASGU>
31 ret = SapObject.SapModel.File.OpenFile(strcat(root...
32 ,['/ORIGINAL MODEL - DO NOT MODIFY'...
33 '/Matrix 012315 Updated Z X springs v15.sdb']));
34

35 %******************************************************************
36 %**** INITIALIZING SAP WINDOW AND ESTABLISHING NEW MODEL ****
37 %******************************************************************
38 fprintf('Set Model Units to kN, m, C\n')
39 ret=SapObject.SapModel.SetPresentUnits(6)
40 %Delete Results
41 fprintf('Delete Results\n')
42 ret=SapObject.SapModel.Analyze.DeleteResults('MODAL',1)
43 %Unlock Model
44 fprintf('Unlock Model\n')
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45 ret=SapObject.SapModel.SetModelIsLocked(false)
46 fprintf('Set Model Units to kN, m, C\n')
47 ret=SapObject.SapModel.SetPresentUnits(6)
48 fprintf('Set Gravity Load\n')
49 ret = SapObject.SapModel.AreaObj.SetLoadGravity('ALL'...
50 ,'DEAD',0,0,1,true,'Global',1)
51

52 %params(9)=Elastic Modulus of Deck Concrete
53 fprintf('Set Concrete Modulus\n')
54 ret = SapObject.SapModel.PropMaterial.SetMPIsotropic('4000Psi'...
55 ,params(9)*1000,0.2,0)
56

57 %params(NOT)=Concrete Unit Weight
58 fprintf('Set Concrete Mass Density\n')
59 ret = SapObject.SapModel.PropMaterial.SetWeightAndMass('4000Psi'...
60 ,2,2.4)
61

62 %params(-17)=Rotational Fixity of Floor Beams
63 fprintf('Set Floor Beam Releases to Fixed\n')
64 ret = SapObject.SapModel.FrameObj.SetReleases('FloorBeamUpdate'...
65 ,[false,false,false,false,false,false]'...
66 ,[false,false,false,false,false,false]'...
67 ,[0,0,0,0,0,0]',[0,0,0,0,0,0]',1)
68 fprintf('Set Floor Beam Modifier\n')
69 ret = SapObject.SapModel.FrameObj.SetModifiers('FloorBeamUpdate'...
70 ,[1,1,1,1,1,1,1,1]',1)
71

72 %params(1)=Rotational Fixity of Arch Laterals
73 %params(5)=Rotational Fixity of Arch Diagonals
74 fprintf('Set Top Lateral Releases to Fixed\n')
75 ret = SapObject.SapModel.FrameObj.SetReleases('TopLateralUpdate'...
76 ,[false,false,false,false,false,false]'...
77 ,[false,false,false,false,false,false]'...
78 ,[0,0,0,0,0,0]',[0,0,0,0,0,0]',1)
79 fprintf('Set Top Diagonal Releases to Fixed\n')
80 ret = SapObject.SapModel.FrameObj.SetReleases('TopDiagonalUpdate'...
81 ,[false,false,false,false,false,false]'...
82 ,[false,false,false,false,false,false]'...
83 ,[0,0,0,0,0,0]',[0,0,0,0,0,0]',1)
84 fprintf('Set Top Lateral Modifiers\n')
85 ret = SapObject.SapModel.FrameObj.SetModifiers('TopLateralUpdate'...
86 ,[1,1,1,1,1,params(1),1,1]',1)
87 fprintf('Set Top Diagonal Modifiers\n')
88 ret = SapObject.SapModel.FrameObj.SetModifiers('TopDiagonalUpdate'...
89 ,[1,1,1,1,params(5),1,1,1]',1)
90

91 %params(-19)=Rotational Fixity of Deck Diagonal Bracing
92 fprintf('Set Bottom Diagonal Connection to Fixed\n')
93 ret = SapObject.SapModel.FrameObj.SetReleases...
94 ('BottomDiagonalUpdate'...
95 ,[false,false,false,false,false,false]'...
96 ,[false,false,false,false,false,false]'...
97 ,[0,0,0,0,0,0]',[0,0,0,0,0,0]',1);
98 fprintf('Set Bottom Diagonal Modifiers\n')
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99 ret = SapObject.SapModel.FrameObj.SetModifiers...
100 ('BottomDiagonalUpdate'...
101 ,[1,1,1,1,1,1,1,1]',1)
102 % ret = SapObject.SapModel.FrameObj.SetInsertionPoint...
103 % ('BottomDiagonalUpdate',10,false,true,[0,0,-params(11)]'...
104 % ,[0,0,-params(11)]','GLOBAL',1)
105

106 %params(6)=Flexural Stiffness of Tie Girder Flanges
107 fprintf('Set Tie Top thickness to 1.5 in\n')
108 ret = SapObject.SapModel.PropArea.SetShell 1('Tie Top'...
109 ,2,true,'A992Fy50',0,0.0381,0.0381)
110 fprintf('Set Tie Top Property Modifiers\n')
111 ret = SapObject.SapModel.PropArea.SetModifiers('Tie Top'...
112 ,[params(6)*ones(1,8),1,1]')
113

114 %params(8)=Flexural Stiffness of Tie Girder Webs
115 fprintf('Set Tie Sides Property Modifiers\n')
116 ret = SapObject.SapModel.PropArea.SetModifiers('Tie Side'...
117 ,[params(8)*ones(1,8),1,1]')
118 %params(4)=Flexural Stiffness of Arch Rib Flanges
119 fprintf('Set RG Top Property Modifiers\n')
120 ret = SapObject.SapModel.PropArea.SetModifiers('RG Top'...
121 ,[params(4)*ones(1,8),1,1]')
122 %params(2)=Flexural Stiffness of Arch Rib Webs
123 fprintf('Set RG Sides Property Modifiers\n')
124 ret = SapObject.SapModel.PropArea.SetModifiers('RG Side'...
125 ,[params(2)*ones(1,8),1,1]')
126

127 %params(-14)=Flexural Stiffness of Diaphragm Plates
128 fprintf('Set Diaphragm Plate Property Modifiers\n')
129 ret = SapObject.SapModel.PropArea.SetModifiers('Diaphram Plate'...
130 ,[1*ones(1,8),1,1]')
131

132 %params(-13)=Flexural Stiffness of Knuckle Web
133 fprintf('Set Knuckle Sides Property Modifiers\n')
134 ret = SapObject.SapModel.PropArea.SetModifiers('KnuckleSides'...
135 ,[1*ones(1,8),1,1]')
136

137 %params(10)=Axial Stiffness of Stranded Bridge Cable
138 fprintf('Set Knuckle Sides Property Modifiers\n')
139 ret = SapObject.SapModel.PropCable.SetModifiers('Cable'...
140 ,[params(10),1,1]')
141

142 %params(12)=Flexural Stiffness of Longitudinal Stiffeners
143 fprintf('Set Longitudinal Stiffeners Property Modifiers\n')
144 ret = SapObject.SapModel.PropArea.SetModifiers('Long Stiffiners'...
145 ,[params(12)*ones(1,8),1,1]')
146

147 %params(7)=Flexural Stiffness of Parapet
148 fprintf('Set Parapet Property Modifiers\n')
149 ret = SapObject.SapModel.PropArea.SetModifiers('Parapet'...
150 ,[params(7)*ones(1,8),1,1]')
151

152 %params(-16)=Axial Stiffness of Deck Diagonal Bracing
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153 fprintf('Set Bottom Diagonal Property Modifiers\n')
154 ret = SapObject.SapModel.PropFrame.SetModifiers('WT7X41'...
155 ,[1,1,1,1,1,1,1,1]')
156

157 %params(-15)=Axial Stiffness of Arch Diagonals and Laterals
158 fprintf('Set Top Bracing Axial Stiffness Property Modifiers\n')
159 ret = SapObject.SapModel.PropFrame.SetModifiers('RG Cross Bracing'...
160 ,[1,1,1,1,1,1,1,1]')
161

162 %params(NOT)=Knuckle Sides thickness
163 fprintf('Set Knuckle Side Thickness to 1.5in\n')
164 ret = SapObject.SapModel.PropArea.SetShell 1('KnuckleSides'...
165 ,2,true,'A992Fy50',0,0.0381,0.0381)
166

167 %params(3)=Boundary Global X- Spring - Longitudinal
168 %params(-18)=Boundary Global Y-Spring - Lateral
169 %params(11)=Boundary Global Z-Spring - Vertical
170 fprintf('Set BC Springs\n')
171 ret = SapObject.SapModel.PointObj.SetSpring('RollerSpring'...
172 ,[params(3),0,params(11),0,0,0]',1,false,true)
173 ret = SapObject.SapModel.PointObj.SetSpring('PinSpring'...
174 ,[params(3),0,params(11),0,0,0]',1,false,true)
175 ret = SapObject.SapModel.PointObj.SetRestraint('RollerSpring'...
176 ,[false,true,false,false,false,false]',1)
177 ret = SapObject.SapModel.PointObj.SetRestraint('PinSpring'...
178 ,[false,true,false,false,false,false]',1)
179

180 %**********************************************************
181 %**** RUN THE INITIAL MODEL ANALYSIS ****
182 %**********************************************************
183 %Need to Save Model Before Analysis
184 ret = SapObject.SapModel.File.Save(strcat(root...
185 ,'MK',num2str(k-1),'.sdb'));
186 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('Linear',1);
187 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('MODAL',0);
188 ret = SapObject.SapModel.Analyze.RunAnalysis();
189 ret = SapObject.SapModel.Results.Setup.SetCaseSelectedForOutput...
190 ('MODAL',0); %Set case and combo output selections
191 ret = SapObject.SapModel.Results.Setup.SetCaseSelectedForOutput...
192 ('Linear',1);
193 SapObject.ApplicationExit(true);
194 end
195

196 %% Mass and Stiffness Matrix Assembly
197 for k=1:numel(lb)+1
198 %Import Stiffness Matrix file
199 TK=importdata(strcat(root,'MK',num2str(k-1),'.TXK'));
200 TK=TK.data;
201 %Import Mass Matrix file
202 TM=importdata(strcat(root,'MK',num2str(k-1),'.TXM'));
203 TM=TM.data;
204 n=max(TK(:,1)); %Determine full matrix size
205 %Populate other half of symmetric matrix
206 TK=[[TK(:,1);TK(:,2)],[TK(:,2);TK(:,1)],[TK(:,3);TK(:,3)]];
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207 TK=unique(TK,'rows'); %Remove duplicate reference to diagonal entries
208 K{k}=sparse(TK(:,1),TK(:,2),TK(:,3),n,n);
209 clear TK;
210 TM=[[TM(:,1);TM(:,2)],[TM(:,2);TM(:,1)],[TM(:,3);TM(:,3)]];
211 TM=unique(TM,'rows');
212 M{k}=sparse(TM(:,1),TM(:,2),TM(:,3),n,n);
213 clear TM n;
214 end
215

216 for k=2:numel(lb)+1
217 delK{k-1}=K{k}-K{1};
218 delM{k-1}=M{k}-M{1};
219 end
220

221 %Equation Number Matrix
222 TE=importdata(strcat(root,'MK0.TXE')); %Import Mass Matrix filetk
223 TE=TE.data;
224

225 for k=10001:10024
226 I=find(TE(:,1)==k);
227 TES(k-10000,:)=TE(I,[1,4,3]); %Extract z,y-Coordinate Equation
228 end
229

230 K=K{1};
231 M=M{1};
232

233 %SAVE DATA
234 save(strcat(['\\Parallel17\Cluster\Cluster\'
235 'Cluster WisconsinBridge\'...
236 'MK WiscBridge BEST 12params 01302015.mat'])...
237 ,'K','M','delK','delM','TES');
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APPENDIX B: PARAMETER HISTOGRAMS

Figure 28: Parameter θ1, rotational fixity of arch laterals, assignments associated
with the 50 elites in the final generations of each structural identification case
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Figure 29: Parameter θ2, flexural stiffness of arch rib webs, assignments associated
with the 50 elites in the final generations of each structural identification case
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Figure 30: Parameter θ3, boundary global x-spring - longitudinal, assignments as-
sociated with the 50 elites in the final generations of each structural identification
case
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Figure 31: Parameter θ4, flexural stiffness of arch rib flanges, assignments associated
with the 50 elites in the final generations of each structural identification case

Figure 32: Parameter θ5, rotational fixity of arch diagonals, assignments associated
with the 50 elites in the final generations of each structural identification case
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Figure 33: Parameter θ6, flexural stiffness of tie girder flanges, assignments associated
with the 50 elites in the final generations of each structural identification case

Figure 34: Parameter θ7, flexural stiffness of parapet, assignments associated with
the 50 elites in the final generations of each structural identification case
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Figure 35: Parameter θ8, flexural stiffness of tie girder webs, assignments associated
with the 50 elites in the final generations of each structural identification case

Figure 36: Parameter θ9, elastic modulus of deck concrete, assignments associated
with the 50 elites in the final generations of each structural identification case
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Figure 37: Parameter θ10, axial stiffness of stranded bridge cable, assignments as-
sociated with the 50 elites in the final generations of each structural identification
case

Figure 38: Parameter θ11, boundary global z-spring - vertical, assignments associated
with the 50 elites in the final generations of each structural identification case

Figure 39: Parameter θ12, flexural stiffness of longitudinal stiffeners, assignments
associated with the 50 elites in the final generations of each structural identification
case



119

APPENDIX C: SUMMARY OF MODEL CORRELATION IMPROVEMENT
BETWEEN INITIAL IDEALIZED AND CALIBRATED FINITE ELEMENT

MODELS

Table 9: Model correlation improvement when 3 parameters within the finite element
model were calibrated and 5 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.617 -0.30 99.95 5.77 0.00
2 1.212 1.313 8.27 99.27 1.264 4.29 99.45 3.98 0.18
3 1.328 1.338 0.77 82.16 1.274 -4.05 95.79 -3.28 13.6
4 1.571 1.863 18.6 61.23 1.634 4.06 79.24 14.5 18.0
5 1.727 1.790 3.67 99.28 1.747 1.18 99.63 2.49 0.34
6 2.117 2.238 5.74 63.57 2.058 -2.76 87.58 2.98 24.0
7 2.354 2.425 3.04 97.75 2.400 1.97 99.70 1.07 1.96
8 2.851 3.027 6.15 92.42 2.736 -4.06 88.96 2.10 -3.47
9 3.484 3.558 2.12 97.88 3.689 5.88 97.44 -3.76 -0.45
10 3.624 3.766 3.93 94.00 3.526 -2.69 97.90 1.24 3.90
11 3.874 4.363 12.6 64.40 3.716 -4.09 93.80 8.51 29.4
12 4.742 4.711 -0.65 79.35 4.893 3.17 99.00 -2.52 19.7
13 5.284 4.992 -5.54 82.52 5.273 -0.22 97.75 5.32 15.2
14 5.745 6.304 9.74 97.09 6.144 6.94 99.08 2.79 1.98
15 6.075 6.915 13.8 77.74 6.413 5.56 68.20 8.26 -9.54
16 7.176 8.332 16.1 49.14 8.188 14.10 61.56 2.01 12.4
17 7.281 7.542 3.58 83.54 7.389 1.48 87.03 2.10 3.49
18 8.114 8.613 6.15 83.94 8.444 4.06 94.83 2.09 10.9
19 8.440 9.417 11.6 34.69 9.231 9.37 51.08 2.20 16.4
20 9.059 10.17 12.3 65.31 9.771 7.86 80.89 4.42 15.6

Average - - 7.52 80.26 - 4.40 88.94 3.12 8.68

Table 10: Model correlation improvement when 3 parameters within the finite element
model were calibrated and 10 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.618 -0.09 99.95 5.98 0.00
2 1.212 1.313 8.27 99.27 1.269 4.67 99.45 3.60 0.18
3 1.328 1.338 0.77 82.16 1.275 -3.97 95.80 -3.20 13.6
4 1.571 1.863 18.6 61.23 1.659 5.63 77.33 13.0 16.1
5 1.727 1.790 3.67 99.28 1.757 1.75 99.64 1.92 0.35
6 2.117 2.238 5.74 63.57 2.065 -2.46 87.63 3.28 24.1
7 2.354 2.425 3.04 97.75 2.394 1.69 99.68 1.35 1.93
8 2.851 3.027 6.15 92.42 2.755 -3.36 88.72 2.79 -3.70
9 3.484 3.558 2.12 97.88 3.581 2.76 98.50 -0.64 0.62
10 3.624 3.766 3.93 94.00 3.546 -2.16 97.68 1.78 3.68
11 3.874 4.363 12.6 64.40 3.781 -2.42 95.03 10.2 30.6
12 4.742 4.711 -0.65 79.35 4.922 3.79 99.11 -3.14 19.8
13 5.284 4.992 -5.54 82.52 5.254 -0.56 97.82 4.97 15.3
14 5.745 6.304 9.74 97.09 6.221 8.28 99.27 1.45 2.17
15 6.075 6.915 13.8 77.74 6.473 6.54 68.51 7.28 -9.23
16 7.176 8.332 16.1 49.14 8.250 14.97 61.68 1.14 12.5
17 7.281 7.542 3.58 83.54 7.361 1.10 88.83 2.48 5.29
18 8.114 8.613 6.15 83.94 8.448 4.11 87.12 2.03 3.18
19 8.440 9.417 11.6 34.69 9.288 10.04 45.30 1.52 10.6
20 9.059 10.17 12.3 65.31 9.874 8.99 81.23 3.29 15.9

Average - - 7.52 80.26 - 4.47 88.41 3.05 8.15
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Table 11: Model correlation improvement when 3 parameters within the finite element
model were calibrated and 15 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.619 0.09 99.95 5.98 0.00
2 1.212 1.313 8.27 99.27 1.274 5.09 99.45 3.18 0.18
3 1.328 1.338 0.77 82.16 1.285 -3.25 95.80 -2.48 13.6
4 1.571 1.863 18.6 61.23 1.680 6.98 77.58 11.6 16.3
5 1.727 1.790 3.67 99.28 1.768 2.40 99.63 1.27 0.35
6 2.117 2.238 5.74 63.57 2.073 -2.08 87.70 3.66 24.1
7 2.354 2.425 3.04 97.75 2.413 2.52 99.70 0.52 1.96
8 2.851 3.027 6.15 92.42 2.775 -2.67 88.67 3.48 -3.76
9 3.484 3.558 2.12 97.88 3.410 -2.14 96.07 -0.02 -1.82
10 3.624 3.766 3.93 94.00 3.564 -1.65 97.48 2.29 3.48
11 3.874 4.363 12.6 64.40 3.837 -0.97 94.40 11.6 30.0
12 4.742 4.711 -0.65 79.35 4.911 3.56 99.01 -2.91 19.7
13 5.284 4.992 -5.54 82.52 5.305 0.40 97.75 5.14 15.2
14 5.745 6.304 9.74 97.09 6.165 7.31 99.13 2.42 2.04
15 6.075 6.915 13.8 77.74 6.513 7.20 70.11 6.62 -7.64
16 7.176 8.332 16.1 49.14 8.215 14.48 61.78 1.63 12.6
17 7.281 7.542 3.58 83.54 7.394 1.55 88.51 2.03 4.98
18 8.114 8.613 6.15 83.94 8.435 3.95 97.47 2.19 13.5
19 8.440 9.417 11.6 34.69 9.270 9.84 47.56 1.73 12.9
20 9.059 10.17 12.3 65.31 9.849 8.72 82.02 3.56 16.7

Average - - 7.52 80.26 - 4.34 88.99 3.18 8.73

Table 12: Model correlation improvement when 3 parameters within the finite element
model were calibrated and 20 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.621 0.39 99.95 5.67 0.00
2 1.212 1.313 8.27 99.27 1.281 5.67 99.43 2.60 0.16
3 1.328 1.338 0.77 82.16 1.292 -2.66 95.80 -1.89 13.6
4 1.571 1.863 18.6 61.23 1.713 9.07 76.53 9.52 15.3
5 1.727 1.790 3.67 99.28 1.784 3.31 99.62 0.36 0.34
6 2.117 2.238 5.74 63.57 2.083 -1.58 87.78 4.16 24.2
7 2.354 2.425 3.04 97.75 2.423 2.94 99.70 0.10 1.95
8 2.851 3.027 6.15 92.42 2.805 -1.64 88.44 4.51 -3.98
9 3.484 3.558 2.12 97.88 3.442 -1.21 96.90 0.91 -0.98
10 3.624 3.766 3.93 94.00 3.585 -1.07 97.16 2.86 3.16
11 3.874 4.363 12.6 64.40 3.932 1.50 91.26 11.1 26.9
12 4.742 4.711 -0.65 79.35 4.925 3.84 99.02 -3.19 19.7
13 5.284 4.992 -5.54 82.52 5.330 0.86 97.74 4.68 15.2
14 5.745 6.304 9.74 97.09 6.180 7.57 99.17 2.17 2.07
15 6.075 6.915 13.8 77.74 6.585 8.39 71.33 5.43 -6.41
16 7.176 8.332 16.1 49.14 7.355 2.49 76.19 13.6 27.0
17 7.281 7.542 3.58 83.54 7.404 1.69 88.39 1.89 4.85
18 8.114 8.613 6.15 83.94 8.447 4.09 96.51 2.05 12.6
19 8.440 9.417 11.6 34.69 9.297 10.15 44.73 1.42 10.0
20 9.059 10.17 12.3 65.31 9.900 9.28 82.43 3.00 17.1

Average - - 7.52 80.26 - 3.97 89.41 3.55 9.14



121

Table 13: Model correlation improvement when 6 parameters within the finite element
model were calibrated and 5 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.620 0.22 99.95 5.85 0.00
2 1.212 1.313 8.27 99.27 1.210 -0.22 99.24 8.05 -0.03
3 1.328 1.338 0.77 82.16 1.273 -4.09 95.69 -3.32 13.5
4 1.571 1.863 18.6 61.23 1.571 -0.01 83.12 18.6 21.9
5 1.727 1.790 3.67 99.28 1.727 0.01 99.47 3.66 0.18
6 2.117 2.238 5.74 63.57 2.012 -4.93 78.98 0.80 15.4
7 2.354 2.425 3.04 97.75 2.236 -5.00 99.16 -1.96 1.41
8 2.851 3.027 6.15 92.42 2.584 -9.38 91.81 -3.22 -0.61
9 3.484 3.558 2.12 97.88 3.323 -4.64 96.61 -2.52 -1.28
10 3.624 3.766 3.93 94.00 3.401 -6.15 96.34 -2.21 2.35
11 3.874 4.363 12.6 64.40 3.559 -8.14 88.77 4.46 24.4
12 4.742 4.711 -0.65 79.35 4.874 2.77 98.38 -2.11 19.0
13 5.284 4.992 -5.54 82.52 5.093 -3.62 97.72 1.92 15.2
14 5.745 6.304 9.74 97.09 6.131 6.71 98.59 3.03 1.50
15 6.075 6.915 13.8 77.74 6.108 0.54 62.03 13.3 -15.7
16 7.176 8.332 16.1 49.14 8.079 12.59 60.04 3.53 10.9
17 7.281 7.542 3.58 83.54 7.495 2.93 88.41 0.65 4.87
18 8.114 8.613 6.15 83.94 8.591 5.88 82.27 0.27 -1.67
19 8.440 9.417 11.6 34.69 8.994 6.56 59.81 5.01 25.1
20 9.059 10.17 12.3 65.31 9.482 4.67 84.62 7.61 19.3

Average - - 7.52 80.26 - 4.45 88.05 3.07 7.79

Table 14: Model correlation improvement when 6 parameters within the finite element
model were calibrated and 10 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.619 0.02 99.95 6.05 0.00
2 1.212 1.313 8.27 99.27 1.225 1.06 99.44 7.21 0.17
3 1.328 1.338 0.77 82.16 1.257 -5.32 95.76 -4.55 13.6
4 1.571 1.863 18.6 61.23 1.598 1.74 79.22 16.8 18.0
5 1.727 1.790 3.67 99.28 1.724 -0.17 99.71 3.50 0.43
6 2.117 2.238 5.74 63.57 2.015 -4.79 85.47 0.95 21.9
7 2.354 2.425 3.04 97.75 2.357 0.12 99.27 2.92 1.52
8 2.851 3.027 6.15 92.42 2.656 -6.86 89.77 -0.71 -2.65
9 3.484 3.558 2.12 97.88 3.529 1.27 99.08 0.85 1.20
10 3.624 3.766 3.93 94.00 3.435 -5.22 97.93 -1.29 3.93
11 3.874 4.363 12.6 64.40 3.616 -6.68 93.63 5.92 29.2
12 4.742 4.711 -0.65 79.35 4.826 1.76 98.98 -1.11 19.6
13 5.284 4.992 -5.54 82.52 5.101 -3.46 97.84 2.07 15.3
14 5.745 6.304 9.74 97.09 6.129 6.69 99.21 3.05 2.12
15 6.075 6.915 13.8 77.74 6.278 3.33 65.49 10.5 -12.3
16 7.176 8.332 16.1 49.14 8.181 14.01 61.01 2.10 11.9
17 7.281 7.542 3.58 83.54 7.291 0.14 85.24 3.44 1.70
18 8.114 8.613 6.15 83.94 8.399 3.51 85.45 2.64 1.51
19 8.440 9.417 11.6 34.69 9.151 8.42 61.25 3.15 26.6
20 9.059 10.17 12.3 65.31 9.680 6.85 81.45 5.43 16.1

Average - - 7.52 80.26 - 4.07 88.76 3.45 8.49
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Table 15: Model correlation improvement when 6 parameters within the finite element
model were calibrated and 15 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.608 -1.76 99.95 4.31 0.00
2 1.212 1.313 8.27 99.27 1.268 4.59 99.38 3.68 0.12
3 1.328 1.338 0.77 82.16 1.268 -4.53 95.76 -3.76 13.6
4 1.571 1.863 18.6 61.23 1.664 5.94 75.87 12.6 14.6
5 1.727 1.790 3.67 99.28 1.768 2.40 99.57 1.27 0.29
6 2.117 2.238 5.74 63.57 2.063 -2.55 87.33 3.18 23.8
7 2.354 2.425 3.04 97.75 2.368 0.62 99.68 2.42 1.93
8 2.851 3.027 6.15 92.42 2.799 -1.85 87.89 4.31 -4.54
9 3.484 3.558 2.12 97.88 3.544 1.71 98.88 0.41 0.99
10 3.624 3.766 3.93 94.00 3.530 -2.58 97.49 1.35 3.49
11 3.874 4.363 12.6 64.40 3.802 -1.86 94.12 10.7 29.7
12 4.742 4.711 -0.65 79.35 4.800 1.22 99.12 -0.57 19.8
13 5.284 4.992 -5.54 82.52 5.221 -1.20 97.83 4.34 15.3
14 5.745 6.304 9.74 97.09 6.042 5.18 99.32 4.56 2.22
15 6.075 6.915 13.8 77.74 6.480 6.66 69.05 7.16 -8.69
16 7.176 8.332 16.1 49.14 7.256 1.11 27.87 15.0 -21.3
17 7.281 7.542 3.58 83.54 7.144 -1.89 87.94 1.69 4.40
18 8.114 8.613 6.15 83.94 8.216 1.25 98.09 4.89 14.1
19 8.440 9.417 11.6 34.69 9.229 9.35 39.41 2.22 4.72
20 9.059 10.17 12.3 65.31 9.955 9.89 72.49 2.39 7.2

Average - - 7.52 80.26 - 3.41 86.35 4.11 6.09

Table 16: Model correlation improvement when 6 parameters within the finite element
model were calibrated and 20 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.614 -0.80 99.95 5.27 0.00
2 1.212 1.313 8.27 99.27 1.226 1.13 99.41 7.14 0.14
3 1.328 1.338 0.77 82.16 1.263 -4.90 95.79 -4.13 13.6
4 1.571 1.863 18.6 61.23 1.647 4.84 77.83 13.7 16.6
5 1.727 1.790 3.67 99.28 1.724 -0.17 99.61 3.50 0.33
6 2.117 2.238 5.74 63.57 2.016 -4.78 86.65 0.96 23.1
7 2.354 2.425 3.04 97.75 2.328 -1.08 99.62 1.96 1.87
8 2.851 3.027 6.15 92.42 2.688 -5.74 88.86 0.41 -3.56
9 3.484 3.558 2.12 97.88 3.357 -3.66 98.44 -1.54 0.56
10 3.624 3.766 3.93 94.00 3.446 -4.91 97.43 -0.98 3.43
11 3.874 4.363 12.6 64.40 3.743 -3.39 93.64 9.22 29.2
12 4.742 4.711 -0.65 79.35 4.776 0.70 98.90 -0.05 19.5
13 5.284 4.992 -5.54 82.52 5.114 -3.22 97.79 2.32 15.3
14 5.745 6.304 9.74 97.09 6.036 5.06 99.06 4.67 1.97
15 6.075 6.915 13.8 77.74 6.431 5.86 70.95 7.96 -6.79
16 7.176 8.332 16.1 49.14 7.064 -1.56 73.20 14.6 24.1
17 7.281 7.542 3.58 83.54 7.275 -0.09 88.22 3.49 4.68
18 8.114 8.613 6.15 83.94 8.343 2.81 97.24 3.33 13.3
19 8.440 9.417 11.6 34.69 8.837 4.70 67.35 6.87 32.7
20 9.059 10.17 12.3 65.31 9.734 7.45 86.31 4.83 21.0

Average - - 7.52 80.26 - 3.34 90.81 4.18 10.55
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Table 17: Model correlation improvement when 9 parameters within the finite element
model were calibrated and 5 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.619 0.09 99.95 5.98 0.00
2 1.212 1.313 8.27 99.27 1.213 0.02 99.32 8.25 0.05
3 1.328 1.338 0.77 82.16 1.299 -2.15 95.69 -1.38 13.5
4 1.571 1.863 18.6 61.23 1.565 -0.34 86.66 18.2 25.4
5 1.727 1.790 3.67 99.28 1.729 0.15 99.56 3.52 0.27
6 2.117 2.238 5.74 63.57 2.061 -2.62 71.61 3.11 8.04
7 2.354 2.425 3.04 97.75 2.222 -5.59 99.28 -2.55 1.53
8 2.851 3.027 6.15 92.42 2.596 -8.95 90.61 -2.80 -1.81
9 3.484 3.558 2.12 97.88 3.314 -4.90 97.38 -2.78 -0.51
10 3.624 3.766 3.93 94.00 3.395 -6.31 95.72 -2.38 1.72
11 3.874 4.363 12.6 64.40 3.556 -8.21 87.90 4.39 23.5
12 4.742 4.711 -0.65 79.35 4.850 2.26 98.27 -1.61 18.9
13 5.284 4.992 -5.54 82.52 5.078 -3.91 97.84 1.63 15.3
14 5.745 6.304 9.74 97.09 6.127 6.64 98.56 3.09 1.46
15 6.075 6.915 13.8 77.74 6.190 1.89 44.19 11.9 -33.6
16 7.176 8.332 16.1 49.14 8.092 12.77 60.88 3.34 11.7
17 7.281 7.542 3.58 83.54 7.540 3.55 88.40 0.03 4.87
18 8.114 8.613 6.15 83.94 8.722 7.49 90.31 -1.34 6.37
19 8.440 9.417 11.6 34.69 8.991 6.53 55.23 5.04 20.5
20 9.059 10.17 12.3 65.31 9.690 6.96 89.35 5.32 24.0

Average - - 7.52 80.26 - 4.57 87.33 2.95 7.07

Table 18: Model correlation improvement when 9 parameters within the finite element
model were calibrated and 10 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.619 -0.01 99.95 6.06 0.00
2 1.212 1.313 8.27 99.27 1.242 2.42 99.41 5.85 0.14
3 1.328 1.338 0.77 82.16 1.286 -3.15 95.66 -2.38 13.5
4 1.571 1.863 18.6 61.23 1.596 1.60 82.11 17.0 20.9
5 1.727 1.790 3.67 99.28 1.715 -0.66 99.61 3.02 0.32
6 2.117 2.238 5.74 63.57 2.053 -3.01 85.28 2.73 21.7
7 2.354 2.425 3.04 97.75 2.354 0.00 99.68 3.04 1.93
8 2.851 3.027 6.15 92.42 2.672 -6.29 88.57 -0.13 -3.85
9 3.484 3.558 2.12 97.88 3.545 1.74 98.24 0.38 0.36
10 3.624 3.766 3.93 94.00 3.462 -4.47 96.77 -0.54 2.77
11 3.874 4.363 12.6 64.40 3.630 -6.31 89.19 6.29 24.8
12 4.742 4.711 -0.65 79.35 4.916 3.65 99.03 -3.00 19.7
13 5.284 4.992 -5.54 82.52 5.176 -2.05 97.67 3.49 15.1
14 5.745 6.304 9.74 97.09 6.274 9.21 99.15 0.52 2.05
15 6.075 6.915 13.8 77.74 5.833 -3.98 61.43 9.84 -16.3
16 7.176 8.332 16.1 49.14 7.197 0.29 27.94 15.8 -21.2
17 7.281 7.542 3.58 83.54 7.488 2.84 88.53 0.74 4.99
18 8.114 8.613 6.15 83.94 8.622 6.25 92.74 -0.10 8.80
19 8.440 9.417 11.6 34.69 9.283 9.99 76.86 1.58 42.2
20 9.059 10.17 12.3 65.31 9.678 6.84 84.04 5.45 18.7

Average - - 7.52 80.26 - 3.74 88.09 3.78 7.83
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Table 19: Model correlation improvement when 9 parameters within the finite element
model were calibrated and 15 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.620 0.30 99.95 5.77 0.00
2 1.212 1.313 8.27 99.27 1.252 3.25 99.29 5.02 0.02
3 1.328 1.338 0.77 82.16 1.287 -3.06 95.44 -2.29 13.3
4 1.571 1.863 18.6 61.23 1.674 6.60 70.92 12.0 9.69
5 1.727 1.790 3.67 99.28 1.792 3.77 99.54 -0.10 0.26
6 2.117 2.238 5.74 63.57 2.061 -2.61 89.09 3.13 25.5
7 2.354 2.425 3.04 97.75 2.353 -0.05 99.67 2.99 1.92
8 2.851 3.027 6.15 92.42 2.834 -0.62 89.30 5.54 -3.12
9 3.484 3.558 2.12 97.88 3.538 1.53 99.28 0.59 1.39
10 3.624 3.766 3.93 94.00 3.543 -2.23 96.78 1.70 2.78
11 3.874 4.363 12.6 64.40 3.830 -1.14 92.31 11.5 27.9
12 4.742 4.711 -0.65 79.35 4.752 0.19 99.12 0.46 19.8
13 5.284 4.992 -5.54 82.52 5.236 -0.91 97.52 4.63 15.0
14 5.745 6.304 9.74 97.09 5.961 3.76 99.31 5.97 2.22
15 6.075 6.915 13.8 77.74 6.510 7.16 75.73 6.66 -2.01
16 7.176 8.332 16.1 49.14 7.273 1.35 27.89 14.8 -21.3
17 7.281 7.542 3.58 83.54 6.999 -3.88 87.87 -0.30 4.33
18 8.114 8.613 6.15 83.94 7.996 -1.46 97.26 4.69 13.3
19 8.440 9.417 11.6 34.69 9.332 10.57 56.44 1.00 21.8
20 9.059 10.17 12.3 65.31 9.987 10.25 70.42 2.03 5.11

Average - - 7.52 80.26 - 3.23 87.16 4.29 6.89

Table 20: Model correlation improvement when 9 parameters within the finite element
model were calibrated and 20 modes were compared in the model updating routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.620 0.22 99.95 5.85 0.00
2 1.212 1.313 8.27 99.27 1.225 1.07 99.41 7.20 0.14
3 1.328 1.338 0.77 82.16 1.320 -0.61 95.54 0.16 13.4
4 1.571 1.863 18.6 61.23 1.661 5.75 76.79 12.8 15.6
5 1.727 1.790 3.67 99.28 1.861 7.81 99.61 -4.14 0.32
6 2.117 2.238 5.74 63.57 2.057 -2.84 80.48 2.90 16.9
7 2.354 2.425 3.04 97.75 2.286 -2.88 99.65 0.16 1.90
8 2.851 3.027 6.15 92.42 2.740 -3.91 93.89 2.25 1.47
9 3.484 3.558 2.12 97.88 3.391 -2.68 98.53 -0.56 0.64
10 3.624 3.766 3.93 94.00 3.517 -2.94 97.20 0.99 3.20
11 3.874 4.363 12.6 64.40 3.783 -2.37 92.96 10.2 28.6
12 4.742 4.711 -0.65 79.35 4.918 3.70 97.60 -3.05 18.2
13 5.284 4.992 -5.54 82.52 5.219 -1.24 97.78 4.30 15.3
14 5.745 6.304 9.74 97.09 6.086 5.94 99.01 3.80 1.91
15 6.075 6.915 13.8 77.74 6.324 4.10 78.77 9.72 1.03
16 7.176 8.332 16.1 49.14 7.165 -0.16 28.52 16.0 -20.6
17 7.281 7.542 3.58 83.54 7.303 0.30 88.17 3.28 4.63
18 8.114 8.613 6.15 83.94 8.272 1.94 94.01 4.20 10.1
19 8.440 9.417 11.6 34.69 9.300 10.2 76.54 1.38 41.9
20 9.059 10.17 12.3 65.31 9.713 7.22 88.55 5.07 23.2

Average - - 7.52 80.26 - 3.39 89.15 4.13 8.89
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Table 21: Model correlation improvement when 12 parameters within the finite el-
ement model were calibrated and 5 modes were compared in the model updating
routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.623 0.72 99.95 5.35 0.00
2 1.212 1.313 8.27 99.27 1.213 0.06 98.88 8.21 -0.39
3 1.328 1.338 0.77 82.16 1.300 -2.11 95.80 -1.35 13.6
4 1.571 1.863 18.6 61.23 1.574 0.19 86.98 18.4 25.8
5 1.727 1.790 3.67 99.28 1.725 -0.12 99.37 3.55 0.08
6 2.117 2.238 5.74 63.57 2.072 -2.13 68.91 3.60 5.35
7 2.354 2.425 3.04 97.75 2.255 -4.21 99.43 -1.17 1.68
8 2.851 3.027 6.15 92.42 2.593 -9.06 92.05 -2.91 -0.37
9 3.484 3.558 2.12 97.88 3.337 -4.23 97.41 -2.11 -0.47
10 3.624 3.766 3.93 94.00 3.465 -4.39 98.08 -0.45 4.08
11 3.874 4.363 12.6 64.40 3.695 -4.63 94.91 7.97 30.5
12 4.742 4.711 -0.65 79.35 4.851 2.29 97.44 -1.64 18.1
13 5.284 4.992 -5.54 82.52 5.119 -3.12 98.03 2.41 15.5
14 5.745 6.304 9.74 97.09 6.091 6.02 97.64 3.71 0.55
15 6.075 6.915 13.8 77.74 6.606 8.74 66.16 5.08 -11.6
16 7.176 8.332 16.1 49.14 6.459 -9.99 66.10 6.12 17.0
17 7.281 7.542 3.58 83.54 7.498 2.98 83.71 0.60 0.17
18 8.114 8.613 6.15 83.94 8.784 8.25 89.33 -2.10 5.39
19 8.440 9.417 11.6 34.69 7.662 -9.22 72.02 2.34 37.3
20 9.059 10.17 12.3 65.31 8.485 -6.33 92.73 5.95 27.4

Average - - 7.52 80.26 - 4.44 89.75 3.08 9.49

Table 22: Model correlation improvement when 12 parameters within the finite el-
ement model were calibrated and 10 modes were compared in the model updating
routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.620 0.28 99.95 5.79 0.00
2 1.212 1.313 8.27 99.27 1.249 2.98 99.39 5.29 0.12
3 1.328 1.338 0.77 82.16 1.253 -5.59 95.57 -4.82 13.4
4 1.571 1.863 18.6 61.23 1.579 0.56 86.11 18.0 24.9
5 1.727 1.790 3.67 99.28 1.735 0.51 99.65 3.16 0.36
6 2.117 2.238 5.74 63.57 2.060 -2.70 88.87 3.04 25.3
7 2.354 2.425 3.04 97.75 2.379 1.07 99.71 1.98 1.96
8 2.851 3.027 6.15 92.42 2.750 -3.56 90.10 2.59 -2.32
9 3.484 3.558 2.12 97.88 3.469 -0.45 99.38 1.67 1.50
10 3.624 3.766 3.93 94.00 3.575 -1.35 96.57 2.58 2.57
11 3.874 4.363 12.6 64.40 3.588 -7.40 79.08 5.20 14.7
12 4.742 4.711 -0.65 79.35 4.747 0.11 99.17 0.55 19.8
13 5.284 4.992 -5.54 82.52 5.335 0.96 97.11 4.57 14.6
14 5.745 6.304 9.74 97.09 5.911 2.90 96.32 6.84 -0.77
15 6.075 6.915 13.8 77.74 5.990 -1.41 80.72 12.4 2.97
16 7.176 8.332 16.1 49.14 6.681 -6.90 57.41 9.21 8.27
17 7.281 7.542 3.58 83.54 7.082 -2.74 86.83 0.84 3.29
18 8.114 8.613 6.15 83.94 8.050 -0.79 97.25 5.36 13.3
19 8.440 9.417 11.6 34.69 8.015 -5.04 32.42 6.53 -2.27
20 9.059 10.17 12.3 65.31 8.800 -2.86 65.52 9.42 0.20

Average - - 7.52 80.26 - 2.51 87.36 5.01 7.09
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Table 23: Model correlation improvement when 12 parameters within the finite el-
ement model were calibrated and 15 modes were compared in the model updating
routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.622 0.60 99.95 5.46 0.00
2 1.212 1.313 8.27 99.27 1.248 2.93 99.41 5.34 0.14
3 1.328 1.338 0.77 82.16 1.273 -4.10 95.53 -3.33 13.4
4 1.571 1.863 18.6 61.23 1.573 0.13 81.28 18.5 20.0
5 1.727 1.790 3.67 99.28 1.740 0.79 99.64 2.88 0.36
6 2.117 2.238 5.74 63.57 2.050 -3.14 89.71 2.59 26.1
7 2.354 2.425 3.04 97.75 2.370 0.67 99.69 2.37 1.94
8 2.851 3.027 6.15 92.42 2.752 -3.48 90.44 2.67 -1.98
9 3.484 3.558 2.12 97.88 3.361 -3.53 97.83 -1.41 -0.06
10 3.624 3.766 3.93 94.00 3.564 -1.66 96.73 2.27 2.73
11 3.874 4.363 12.6 64.40 3.858 -0.42 89.97 12.2 25.6
12 4.742 4.711 -0.65 79.35 4.687 -1.17 99.15 -0.52 19.8
13 5.284 4.992 -5.54 82.52 5.282 -0.04 97.46 5.50 14.9
14 5.745 6.304 9.74 97.09 5.853 1.88 99.02 7.86 1.93
15 6.075 6.915 13.8 77.74 6.080 0.08 79.42 13.7 1.68
16 7.176 8.332 16.1 49.14 7.223 0.66 72.84 15.5 23.7
17 7.281 7.542 3.58 83.54 6.974 -4.22 87.43 -0.64 3.89
18 8.114 8.613 6.15 83.94 7.922 -2.37 97.72 3.77 13.8
19 8.440 9.417 11.6 34.69 8.528 1.04 74.01 10.5 39.3
20 9.059 10.17 12.3 65.31 9.207 1.64 81.03 10.6 15.7

Average - - 7.52 80.26 - 1.73 91.41 5.79 11.15

Table 24: Model correlation improvement when 12 parameters within the finite el-
ement model were calibrated and 20 modes were compared in the model updating
routine

Mode
fexp

Idealized Model Calibrated Model Improvement

(Hz)
fFE ∆ MAC fFE ∆ MAC ∆ MAC
(Hz) (%) (%) (Hz) (%) (%) (%) (%)

1 0.619 0.656 6.07 99.95 0.633 2.29 99.95 3.78 0.00
2 1.212 1.313 8.27 99.27 1.239 2.16 99.33 6.11 0.06
3 1.328 1.338 0.77 82.16 1.292 -2.69 95.76 -1.92 13.6
4 1.571 1.863 18.6 61.23 1.556 -0.93 85.25 17.7 24.0
5 1.727 1.790 3.67 99.28 1.820 5.43 99.62 -1.76 0.34
6 2.117 2.238 5.74 63.57 2.053 -3.00 82.33 2.74 18.8
7 2.354 2.425 3.04 97.75 2.332 -0.93 99.56 2.11 1.82
8 2.851 3.027 6.15 92.42 2.711 -4.92 93.77 1.24 1.35
9 3.484 3.558 2.12 97.88 3.408 -2.20 96.85 -0.08 -1.03
10 3.624 3.766 3.93 94.00 3.570 -1.49 97.44 2.44 3.44
11 3.874 4.363 12.6 64.40 3.831 -1.12 92.99 11.5 28.6
12 4.742 4.711 -0.65 79.35 4.938 4.13 98.26 -3.48 18.9
13 5.284 4.992 -5.54 82.52 5.316 0.60 97.74 4.94 15.2
14 5.745 6.304 9.74 97.09 6.105 6.27 98.69 3.46 1.59
15 6.075 6.915 13.8 77.74 6.048 -0.45 81.51 13.4 3.77
16 7.176 8.332 16.1 49.14 7.287 1.54 84.78 14.6 35.6
17 7.281 7.542 3.58 83.54 7.296 0.21 89.36 3.37 5.82
18 8.114 8.613 6.15 83.94 8.258 1.78 95.79 4.37 11.8
19 8.440 9.417 11.6 34.69 8.472 0.38 70.52 11.2 35.8
20 9.059 10.17 12.3 65.31 9.064 0.06 94.55 12.2 29.2

Average - - 7.52 80.26 - 2.13 92.70 5.39 12.44


