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ABSTRACT

SHEIKH JAKIR HOSSAIN. Application of system identification based methods on
power system oscillation characterization and mitigation. (Under the direction of

DR. SUKUMAR KAMALASADAN)

This dissertation presents measurement-based system identification methods that

help to improve the reliability and operational stability of modern power systems.

One of the important factors in maintaining stability is to know the damping and

frequency of the oscillatory modes for all system operating conditions. Widespread

use of synchrophasors has paved the way for several measurement-based approaches

for estimating oscillation modes, damping, and frequency. These methods provide

more accurate results than model-based approaches. This dissertation studies the

effectiveness of state-of-the-art mode-estimation and proposes a framework based on

subspace identification that provides a more accurate modal estimation in real-time.

The proposed framework can also classify the oscillation types overserved in the mea-

surements. Oscillatory modes are not observable at all measurement locations. To-

wards this, in this work, an optimal signal selection method is proposed based on

subspace affinity. This helps to reduce the computational time of the modal esti-

mation algorithms, which is critical for any real-time monitoring tool. This work

also proposes approaches for mitigating oscillations. First, a method for locating the

source of oscillations using the energy of oscillations is presented. Second, a frame-

work for updating power system models based on measurements is proposed that

helps system operations and planning. Finally, an integrated control framework for a

wide-area damping controller (WADC) is proposed which mitigates different types of

oscillations observed in the system. Effectiveness of the overall framework is tested

with IEEE test systems and with real-life models with relevant data-sets.The studies

show that the proposed approaches can improve the system’s situational awareness.
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CHAPTER 1: INTRODUCTION

Electromechanical oscillations are an inherent attribute of an interconnected power

system (9). For reliable operation of the power system, it is essential that these oscil-

lations are well damped. Undamped oscillations can lead the system towards insta-

bility and eventually can cause cascading outages (11). In order for the power system

operators to take preventive measures, it is essential to have real-time information

about the oscillation frequency and the associated damping. There are two methods

for estimating oscillation modes 1) model-based method, and 2) measurement-based

method. Model-based methods perform eigenvalue analysis of a linearized model of

power grid at different operating conditions and compute the oscillatory modes (9).

However, these approaches are suitable only for offline studies and rely heavily on

an accurate model of the power system, which is very difficult to obtain. Lack of

accurate models along with the widespread implementation of Phasor Measurement

Units (PMUs), provides an opportunity to design measurement based methods that

can estimate system oscillatory modes from measured data.Significant advances have

been made and oscillation monitoring tools have been developed and integrated with

system operation.

1.1 Literature Review and Research Challenges

Power system oscillations have been a very active research area over the last few

decades. Because it’s implication on reliable operation of power grid is huge. Also,

wide spread development of synchrophasor applications have paved the way for a lot of

new data driven methods for characterizing and mitigating power system oscillations.

Significant development have been made in this field in recent years but there are still
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a lot of issues that needs to be addressed. Researchers are actively working on these

topics. Some of the research problems and associated challenges are discussed in the

subsections below.

1.1.1 Power System Oscillations Overview

Over the past decade, significant research progress has been made on measure-

ment based methods for estimating electromechanical modes (12). These methods

are mainly divided into three categories based on the type of input power system sig-

nals. These categories are a) ringdown signals (the response of power system during

event, e.g., line trip, generator trip) b) ambient signals (the response of power system

during random load changes), and c) probing signals (non-intrusive signals that ex-

cite the power system through probing inputs). Several methods have been proposed

for estimating oscillatory modes from ringdown signals such as prony method, eigen-

system realization (12), and matrix pencil method to name the few. Methods for

analyzing oscillations due to ambient signals are called mode-meter methods such as

Yule-Walker algorithm, subspace identification methods, and frequency domain de-

composition (12). Some of these methods are performed on an offline data-set which

cannot be implemented in real-time due to computational complexity.

For implementation purposes, recursive algorithms are proposed that can make the

computation faster for online/real-time applications and changing operating condi-

tions of the system. Some of these methods use variants of a recursive least square

algorithm for ARMAX, ARX model structures (13) and some others use subspace

identification methods (14), (15). Subspace identification methods are robust and use

model order determination as an intermediate step in the identification process which

helps to track multiple modes simultaneously. Authors of (14) have proposed recur-

sive adaptive subspace identification which works well for identifying electromechan-

ical oscillations from ambient signals. This method uses covariance-based stochastic

subspace identification (SSI-COV). Some method uses non-recursive (block process-
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ing) data-driven stochastic subspace identification (SSI-Data) to identify oscillation

properties from the ringdown signal (15) in order to mitigate error in data such as in

error co-variance variance (SSI-COV)(16).

Besides, detecting the type of oscillation is exceptionally critical. Analysis of syn-

chrophasor data has revealed that oscillations in a system can be due to internal

factors such as cyclic loads, malfunction of equipment’s (17). These oscillations are

known as forced oscillations. When natural oscillations have low damping and forced

oscillation frequencies are closer to natural oscillations frequencies it becomes increas-

ingly difficult to identify and distinguish the oscillatory modes and types. Recently,

(3) showed that the covariance based recursive SSI algorithm can estimate oscillation

modes in the presence of both natural and forced oscillation. However, this method

does not explicitly separates natural oscillations from forced oscillations. Ref. (18)

have shown how the input information can be used to separate the system charac-

teristics from input characteristics. Researcher are working actively on developing

methods for detecting forced oscillations and estimating electromechanical oscillation

in the presence of forced oscillations.

1.1.2 Optimal Signal Selection for Mode Estimation

Recent widespread deployment of phasor measurement units (PMUs) have paved

the way for a lot of new synchrophasor applications. One important synchrophasor

application is the wide area measurement system (WAMS). WAMS enables the de-

velopment of situational awareness tools which provides operators information about

real-time power system stability and archives data which is used for post event anal-

ysis. One key indicator of power system stability is the oscillation modes and the

associated damping. For reliable operation of the power system it is pivotal for all

the modes to be well damped. Recent report from North American Electric Reliabil-

ity Corporation (NERC) lists several oscillatory events observed in Eastern,Western

and ERCOT interconnections (19). Traditionally, such oscillatory behaviours related
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to small signal stability is studied using modal analysis of linearized power system

models . But, post event analysis of August 10, 1996 blackout reveals significant

mismatch between the oscillation characteristics predicted from modal analysis and

the actual oscillations observed in the system (20). Several events like this has shown

the need of measurement based mode estimation methods and has drawn significant

attention from researchers in past couple of decades.

Several methods have been proposed by the researchers for mode estimation using

PMU measurements. These methods have been categorized into three categories de-

pending on the type of measured power system responses a) ringdown b) mode meter

and c) probing (21). Ringdown response means the response of a the system following

a large disturbance (e.g faults, line/generation trip etc) and mode estimation methods

for ringdowns signals are prony, matrix pencil, eigensystem realization. Mode meter

methods are yule-walker parameter estimation, least mean square method, stochastic

subspace identification etc. These methods are used to extract modal information

from ambient data which represents the continuous random load variations occur-

ring the system (22).Probing response means the response of the system when a low

intrinsic signal is injected to excite and estimate system modes (23).

Moreover, careful investigation of the PMU data has revealed not all the oscillations

are related to system electromechanical modes which in sense means not an inher-

ent characteristics of the system, rather are because of periodic external disturbance.

Such oscillations are termed as forced oscillations and has been observed in power

system across Europe (24), North America (25) etc. Irrespective of the oscillation

type it is important to detect the oscillation frequency and damping for both ring-

down and ambient conditions. One key characteristic of oscillations is that oscillatory

behaviour is not observable in all available PMU signals and hence does not provide

enough information to estimate the modes. For most of the available mode estimation

methods only a handful of PMU signals which are selected based on prior knowledge
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of the system are used. Another limitation is most of the time such methods are

tuned to monitor the damping of previously known inter-area modes. Furthermore,

concurrent use of large number of PMU signals affect the computational time of exist-

ing algorithms. Another important requirement which has been mentioned in NERC

reliability guideline (25), is to determine to what extent an oscillation is affecting in

the system. This helps to coordinate between multiple regional coordinators which

in turn helps in taking proper corrective steps. All these consideration leads to the

concept of finding optimal group of signals which are suitable for mode estimation as

well as gives information about the spread of the oscillations.

Authors in (26) has used a two level estimation architecture to use large number

of PMU signals and uses weighting factors to determine signal quality. Authors

have shown that if an ISO running a mode estimation tool is not monitoring the right

PMU signal then it might miss the oscillatory behaviour. A modal power contribution

(MPC) index is proposed in (27) to rank signal according their suitability for mode

estimation. But these methods are based on heuristic approach and does not provide

any mathematical proof. Authors in (4) proposes an analytic expression for estimating

the variance of damping ratio which uses only identified system parameters. But, the

proposed method ranks signals for one oscillatory mode at a time and can not account

for multiple modes simultaneously. In this dissertation proposal, a spectral clustering

based grouping method is used which first characterizes each PMU signals in terms of

identified subspaces. Then it calculates the affinity between the subspaces identified

at each location to form a fully connected similarity graph. Spectral clustering is

applied on the similarity graph to select the optimal group of signals. The proposed

grouping has selects optimal signals for ambient and ringdown condition which ensures

less variance of the damping ratio. Additionally, such grouping reduces number of

signals to be shared among different utilities or regional operators in the wake of

system wide oscillations.
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1.1.3 Oscillation Source Location Methods

Damped oscillations are a normal phenomenon for any disturbed system showing

that the system is approaching back to its equilibrium. However, sustained oscilla-

tions could happen in reality where the possible causes include improper operating

conditions, periodic disturbances or malfunctioning controllers. Such unexpected sus-

tained oscillations may reduce the power transfer limit and even result in detrimental

consequences on the system equipment. To solve this problem, researches on the

analysis, detection, classification, location and control design have always been active

during the past several decades while only a few of them have been integrated into

system control centers to help system operators (28). Since sustained oscillations rep-

resent a risk for instability or insecurity of power systems, they should be mitigated

as soon as possible. The location of the oscillation source is usually a prerequisite of

the mitigation actions and the elimination of the source would always be the most

straightforward and effective remedy.

In the current literature, two types of mechanisms for sustained oscillations, i.e.

poorly damped natural oscillations and forced oscillations, have been extensively in-

vestigated and explained for observed oscillation events, while some other mecha-

nisms have also been discovered in analyses which are based either on Hopf bifurca-

tion caused by slowly varying parameters or on practically impermissible nonlinear

behavior of the system, e.g. outof- step condition. The discoveries and investiga-

tions of these mechanisms not only provide a better understanding of the oscillation

phenomenon in power systems, but also are of fundamental importance for laying

foundations for different location methods. Usually, the oscillation source is implic-

itly defined as a physical device which causes oscillations following a certain mecha-

nism. In practice, causes of sustained oscillations could be the excitation system (29),

diesel engine, synchrotron as a cyclic load (30), control valve , turbopressure pulsa-

tion , governor control , asynchronous parallelizing of synchronous generators and
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improper parameters for the steam turbine controller, et al.Different methods have

been developed for oscilaltion source location. Traveling wave based methods utilize

the principle of the electromechanical wave propagation (31) to locate the oscillation

source. In the damping torque based methods, the generator with a negative damping

torque coefficient is identified as the oscillation source (32).Mode shape represents the

relative magnitude and phasing of the oscillation throughout the system. It is defined

based on the right eigenvectors of the state matrix of the linearized system model.

However, the accurate system model is often difficult to obtain and the model based

mode shape analysis has only been applied to test systems for a better understand-

ing. To utilize the mode shape information in real systems, many measurement based

methods for estimating the mode shape have been proposed. An overview on existing

estimation techniques using either ring-down signals or ambient signals can be found

in [34] and its references (33).Transient energy function (TEF) is an application of

Lyapunov function in power system stability analysis (34), which is usually defined

as the sum of the kinetic and potential energies of all generators in the synchronous

coordinate framework.

1.1.4 Model-Measurement Based Method for Model Validation

Oscillations are inherent characteristics of dynamic systems. They are broadly

classified into electromagnetic and electromechanical oscillations. Electromagnetic

oscillations have high frequency and are generally well damped because of internal

damping of the power system. However, electromechanical oscillations have a lower

frequency and requires additional controllers to damp. Based on the oscillation fre-

quency electromechanical oscillations are divide into local oscillations (0.7 Hz to 2

Hz) and inter-area oscillations (01 Hz to 0.8 Hz) (9). Growing and sustained oscil-

lations pose a serious threat to the reliable operation of the power system and limit

the power transfer capacity of interconnected power systems (35). Traditionally, os-

cillations have been studied as a part of stability studies for different contingencies.
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Modes determined through modal analysis give the oscillations frequencies and as-

sociated damping of each oscillations(9). Modal analysis gives the modes using a

linearized model of power system but the actual system is nonlinear in nature. So,

the actual response of a power system model can be significantly different from the

linearized response. Authors in (36) present an analysis of the major power outage

event occurred in western North America on August 10, 1996 and they conclude that

there was a significant difference between the simulated model response and the ac-

tual system response. Although the simulated response showed significant damping

for the oscillatory modes in actual system, there were negative damping which caused

widespread outage. So, a model of the power system cannot always reliably estimate

the actual oscillation frequency and damping present in the system.

Recently, real-time measurement devices such as phasor measurement unit (PMU)

have been installed throughout the power system and coverage area is increasing very

fast (37). PMU acquires data with a higher sample rate (120 or 240 samples per

second ), and this data is able to capture the fast changes happening in the power

system. In the last decades, several researchers have worked on these measurement

data and several methods have been proposed that can estimate the modes and mode

shapes using these data (12). Increased availability of PMU data allowed to capture

oscillations in the frequency range of 0.1 HZ to 2 Hz which are not part of system

natural response rather they are created by periodic external sources (38). These os-

cillations are termed as forced oscillations. The sources of forced oscillations include

but not limited to cyclic load, stable limit cycles, wind plant controllers, malfunction

of generator governor controller etc (39). The characteristics of forced oscillations are

different than natural electromechanical oscillations. To take proper control action

the type of oscillation needs to be identified. The authors of (5) have shown ana-

lytically the characteristics of forced oscillations and natural oscillations but these

characteristics are difficult to extract if the oscillation sinusoids cannot be extracted
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from the noise. In (40) authors present a method that can simultaneously detect

natural and forced oscillations, but the proposed method needs to be studied exten-

sively for scenarios mentioned in the test case library (41). In (42) authors propose a

method which analyses oscillation envelope shape to detect forced oscillation.

In spite of the advancements made in the measurement based methods on forced

oscillation detection, these methods lack an analytic approach based on the math-

ematical model of the power system. Several researchers have proposed different

methods which take the linearized model of the system and forms an analytic expres-

sion for characterizing the system response to forced oscillations (43). However, these

analytic methods work well for linearized models but for the actual power system, the

performance of these methods decreases because of the nonlinearity and unmodeled

dynamics. Nonlinearity can have a significant effect on the estimated modes from

measurement data (44). It is clear that system model update critical to capture dy-

namic changes in the system. With the help of measurements that happens after an

event, these updates are possible and can be characterized as unmodeled dynamics.

How to capture the difference between model and measurement response is a growing

research area.

1.1.5 Oscillation Mitigation Overview

Generally, WADC are designed using linear feedback control techniques based on

the small signal model obtained by linearizing the dynamic model of the system

around an operating point. Control techniques reported in literature utilizing DER is

based upon either mimicking the droop based control (45), PSS (46; 47), compensator

based (48), or by injecting the power into the system out of phase with the inter-area

oscillation(49). Other studies based on optimization algorithm and energy function

approach has been demonstrated in (47; 50). However, one of the issues related

with these previous studies is that their success is dependent on having an accurate

knowledge of system and linearization of the non-linear dynamic system such as power
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grid. Also, the controllers are static and designed for a particular operating condition,

considering a particular mode of oscillation which may not work well for different

operating condition especially with higher penetration of variable renewable resources.

Artificial intelligence (AI) based techniques have been demonstrated to capture the

nonlinearities and uncertainties in the power grid and can learn and map the system

dynamics from set of system inputs and outputs (51). However, the issues related

to such AI based techniques is that they require sets of offline data for training and

performance validation and has larger computational burden.

Several measurement based methods have also been developed to estimate the

modes of the system from wide area measurements (WAMs) data. These methods

identify the model of the system from measurement data in two forms 1) subspace

state space form (52) and 2) transfer function form (53). In (53), it has been demon-

strated that both the subspace state space and MIMO transfer function model can

capture the dominant modes of the system accurately from both ring-down data (data

generated from event like line tripping, generation loss etc.) and ambient data (data

obtained from random small load changes). These identified models can be used to

design adaptive and coordinated damping controller (DC). Compared to subspace

state space model MIMO transfer function model has improved computational effi-

ciency and lower order aggregation capability. In (8), the parameters of conventional

WADC form as well as time delay compensator are updated online based on low order

single-input single-output (SISO) model determined based on the residue analysis of

the MIMO model. In (8), it was assumed that the critical inter-area mode can be well

represented by the mode with largest residue in the identified transfer function model

of the system. This approach ignores the other nearby modes whose residue can be

in close approximation with the electromechanical modes that may have significant

impact on system low frequency oscillations. Such modes are generally associated

with the poor design of controllers (54).
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1.2 Dissertation Objectives, Motivation and Contribution

1.2.1 Objectives

The research work has the following objectives:

• Study the state of the art methods for power system mode estimation and

oscillation characterization.

• To develop a method for estimating the oscillation modes accurately in the

presence of forced oscillations.

• To develop a method for selecting optimal number of signals for oscillation mode

estimation.

• To study the existing oscillation source location method and then develop a

method for oscillation source location from measurements.

• To develop a measurement based model generation method that can capture

the effect of unmodeled dynamics.

• To develop wide area damping controller that is adaptive in nature and can

effectively damp oscillations. Also the controller should be able to control mul-

tiple resources to damp oscillations.

1.2.2 Contribution

Following are the research contributions which facilitates new methods for oscilla-

tion characterization and mitigation:

• A method for applying combined deterministic-stochastic subspace identifica-

tion framework for accurately estimating the electromechanical modes of the

system from measurements. The main advantages of the proposed architecture

are a) it provides closed loop online identification of power system oscillation
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modes which addresses the issues related to the online implementation of sub-

space identification b) provides accurate estimation of electromechanical modes

in the presence of forced oscillation c) it can distinguish between natural and

forced oscillations and d)it can dynamically tracks the multiple changing oscil-

latory modes as operating condition changes.

• A novel method for finding out the optimal number of signals for mode estima-

tion is developed which uses spectral clustering to group the signals. The main

advantages of the proposed method are a) it is a general method for ranking the

synchrophasor signals for mode estimation methods using both ringdown and

ambient data b)The developed method considers both the spatial and temporal

characteristics of synchrophasor signals and takes that into account to classify

the signals into strong and weak groups and c)The proposed methods can select

optimal signals in the presence of multiple oscillation modes.

• A new method for locating the source of oscillation is proposed. This method

can estimate the mode shape of generator which does not have any phasor

measurement unit (PMU) located at it’s terminal. This also uses the subspace

affinity based grouping developed in previous chapter to preselect the potential

location of source buses. Then it uses the phase angle relationship between the

bus speed and branch power to find the direction of oscillation energy flows.

Tracing the directions of oscillation energy flow the source of oscillation is lo-

cated

• A method for using both model and measurement are proposed. In this method

mathematical models are obtained to represent the undmoeled dynamics which

is the mismatch between the model and measurement response. Then the iden-

tified mode is used to perform what if scenarios to improve system reliability.

The proposed method uses subpace identification developed in previous chapter.
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• A novel damping controller framework is proposed which augments the existing

control architecture of distributed energy resources (DER) to perform oscilla-

tion damping. The main advantages of the propose methods are a)it is based

on the online identification of the system dynamics which results in adjusting

the controller output as the system operating condition changes b)It is indepen-

dent of the network topology and only requires wide area measurement system

(WAMs) for identification and control c) it can be augmented with the exist-

ing local control in the DER and d)it adapts to various operating conditions

and can consider the complete order of identified system model as opposed to

considering the mode with highest residue

1.2.3 Intellectual Merit and Broader Impact

The intellectual merit of the work is

• This dissertation provides a method for detecting forced oscillation from mea-

surement data and proposes an integrated framework for estimating the elec-

tromechanical mode characteristics in the presence of forced oscillations. This

will help to enhance the capability of state-of-art situational awareness tool used

by power system operators.

• This work provides a method for selecting optimal number of signals for mode

estimation based on subspace affinity. It uses spectral clustering to group the

signals into weak and strong group for the mode estimation algorithms. De-

creasing the number of signals for mode estimation method helps to decrease

the computation burden on the mode estimation algorithm. It also enables

transmission operators (TO) to coordinate across multiple balancing authori-

ties (BA).Moreover, it helps to pre-screen number of potential oscillation source

location.

• This work also presents a new method of locating the source of oscillations
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which can detect the source of oscillations reliably even if there are no PMU

measurement available at the source location. This method can help the system

operators on locating the source of oscillation and can help them taking fast

corrective actions.

• One of the limitation of power system planning is that it depend on the model

of the system. Power system models does not always give an accurate represen-

tation of the system. In this work a model measurement based hybrid method is

proposed that can construct mathematical model of the system based on mea-

surements and can help identifying the accuracy of power system models. This

can also help operator running different scenarios.

• In this work a wide area damping controller(WADC) is developed. It uses a

multiple input multiple output (MIMO) system identification to identify the

system. The proposed method is adaptive in nature and can mitigate oscilla-

tions with varying system conditions. This is helpful for ensuring system relia-

bility speciality with the uncertainty and variability introduced by the increased

renewable penetration.

Broader impact of the work is

• This dissertation proposes a recursive combined deterministic stochastic sub-

space identification framework which can be applied to other fields of study

where system identification based technique is required

• The proposed method increases the capability of the existing situational aware-

ness tools used in the system operating centers. This will improve the overall

reliability of the power system.

• The proposed method helps to tackle the increased variability and uncertainty

associated with increased renewable integration by enhancing the oscillation
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monitoring and mitigation schemes.

• The proposed oscillation mitigation can allow controllable renewable resources

like energy storage to participate in improving the bulk power system stability.

1.3 Dissertation Organization

System Identification Methods for Power System Oscillation 
Characterization and Mitigation 

Oscillation Characterization Oscillation Mitigation

Chapter 2
 Proposes Subspace Identification Based 

Methods for Oscillation Characterization
 Classifies Oscillations and estimate modes 

accurately

Chapter 3
 Proposes a method for selecting optimal 

signals for mode estimation
 Enables estimation algorithms to be faster 

Chapter 4
 Proposes a method for locating the 

oscillation source 

Chapter 5
 Proposes a method for studying unmolded 

dynamics  in Power System
 Helps to update power system models 

based on measurement
 Propose method can help the operator in 

short term planning

Chapter 6
 Proposes a wide area damping controller 

for damping oscillation
 Uses the system identification architecture 

developed earlier
 Effectively mitigates oscillation with 

changing system conditions 

Figure 1.1: Overview of the thesis proposal.

Chapter 1 provides an introduction to the oscillation monitoring tool and current

state of the art related to system operator situational awareness tool in the Energy

Management System (EMS) operation. The objectives, motivation, and contribution

of the dissertation is presented in Chapter 1. Chapter 2 introduces a novel approach

for oscillation characterizations. Chapter 3 discusses a method for optimal signal se-

lection for oscillation monitoring. Chapter 4 proposes a new method for locating the

source of power system oscillations. Chapter 5 shows how the techniques developed

in previous chapters can be used to update the power system models and how it helps

to capture the effect of unmodeled dynamics. A combined framework is presented
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that incorporates the methods proposed in the thesis and uses it to develop mitiga-

tion techniques. A subspace identification based oscillation mitigation framework is

presented in chapter 6, which helps to damp the power system oscillations faster and

improves system stability. Conclusions and future works are discussed in chapter 7.



CHAPTER 2: AN INTEGRATED FRAMEWORK FOR OSCILLATION

CHARACTERIZATION

Measurement-based methods for power system oscillatory modes estimation pro-

vide situational awareness and power system operational strategies to ensure overall

grid stability. This chapter presents a combined deterministic-stochastic framework

for online identification of oscillatory modes using synchrophasors data. The proposed

method recursively solves the deterministic-stochastic model structure and addresses

the issues related to the online implementation of such an oscillation monitoring tool.

Further, It proposes a method for forced oscillation detection and uses that as in-

put information to obtain accurate mode estimation of all relevant electromechanical

modes. Simulation results from two area test system and IEEE 68 bus test system

show the potential advantage of the proposed method.

2.1 Introduction

Electromechanical oscillations are an inherent attribute of an interconnected power

system (9). For reliable operation of the power system, it is essential that these oscil-

lations are well damped. Undamped oscillations can lead the system towards insta-

bility and eventually can cause cascading outages (11). In order for the power system

operators to take preventive measures, it is essential to have real-time information

about the oscillation frequency and the associated damping. There are two methods

for estimating oscillation modes 1) model-based method, and 2) measurement-based

method. Model-based methods perform eigenvalue analysis of a linearized model of

power grid at different operating conditions and compute the oscillatory modes (9).

However, these approaches are suitable only for offline studies and rely heavily on
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an accurate model of the power system, which is very difficult to obtain. Lack of

accurate models along with the widespread implementation of Phasor Measurement

Units (PMUs), provides an opportunity to design measurement based methods that

can estimate system oscillatory modes from measured data.

Over the past decade, significant research progress has been made on measurement

based methods for estimating electromechanical modes (12). These methods are

mainly divided into three categories based on the type of input power system signals.

These categories are methods that uses a) ringdown signals (the response of power

system during event, e.g., line trip, generator trip) b) ambient signals (the response

of power system during random load changes), and c) probing signals (non-intrusive

signals that excite the power system through probing inputs). Several methods have

been proposed for estimating oscillatory modes from ringdown signals such as prony

method, eigensystem realization (12), and matrix pencil method. Methods for an-

alyzing oscillations due to ambient signals are called mode-meter methods such as

Yule-Walker algorithm, subspace identification methods, and frequency domain de-

composition (12). Some of these methods are performed on an offline data-set which

cannot be implemented in real-time due to computational complexity.

For implementation purposes, recursive algorithms are proposed that can make the

computation faster for online/real-time applications and changing operating condi-

tions of the system. Some of these methods use variants of a recursive least square

algorithm for ARMAX, ARX model structures (13) and some others use subspace

identification methods (14), (15). Subspace identification methods are robust and use

model order determination as an intermediate step in the identification process which

helps to track multiple modes simultaneously. Authors of (14) have proposed recur-

sive adaptive subspace identification which works well for identifying electromechan-

ical oscillations from ambient signals. This method uses covariance-based stochastic

subspace identification (SSI-COV). Some method uses non-recursive (block process-
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ing) data-driven stochastic subspace identification (SSI-Data) to identify oscillation

properties from the ringdown signal (15) in order to mitigate error in data such as in

error co-variance variance (SSI-COV)(16).

Besides, detecting the type of oscillation is exceptionally critical. Analysis of syn-

chrophasor data has revealed that oscillations in a system can be due to external

factors such as cyclic loads, malfunction of equipment’s (17). These oscillations are

known as forced oscillations. When natural oscillations have low damping and forced

oscillation frequencies are closer to natural oscillations frequencies it becomes increas-

ingly difficult to identify and distinguish the oscillatory modes and types. Recently,

(3) showed that the covariance based recursive adaptive SSI (RASSI) algorithm can

estimate oscillation modes in the presence of both natural and forced oscillation.

However, this method does not explicitly separates natural oscillations from forced

oscillations. Ref. (18) have shown how the input information can be used to sepa-

rate the system characteristics from input characteristics. Such mode estimation and

classifications are very important for reliable operation of power grid (55) as well as

mitigation of oscillations (56),(57).Authors in (58) have proposed a transfer function

based (ARMA+S) approach for estimating electromechanical modes in the presence

of forced oscillations. However, the method requires detection and time localisation

of forced oscillations.

In this Chapter, a data-driven Recursive Combined-Deterministic Stochastic Sub-

space Identification (RCDSSI) algorithm is designed and tested which takes the in-

put characteristics into account and extracts only the systems natural modes. In

this approach, the conventional recursive stochastic subspace identification (RSSI)

is enhanced to include the input information and both RSSI and the RCDSSI algo-

rithm are part of one combined framework. As RSSI algorithm gives both system and

input/forced modal information and RCDSSI gives only system modal characteris-

tics, oscillations are classified. The proposed method solves the combined state space
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structure recursively and avoids numerically exhaustive steps like QR decomposition

and Singular Value Decomposition (SVD).

The main contributions are the architecture can:

• Provide closed loop online identification of power system oscillation modes based

on a combined deterministic stochastic structure which can isolate system nat-

ural characteristics in the presence of external disturbances.

• Provide accurate estimation of electromechanical modes for both ambient and

ringdown signals.

• Provide accurate estimation of electromechanical modes in the presence of forced

oscillations.

• Detect the presence of forced oscillations

• Characterization of the oscillations based on oscillation types

• Dynamically tracks the multiple changing oscillatory modes as condition changes.

The rest of the chapter is organized as follows. Section 5.2 provides a brief discus-

sion on the methodology proposed for RCDSSI and oscillation classification. Section

2.3 gives an illustrating example of the proposed architecture. Simulation results for

different scenarios are discussed in section 6.5 and conclusions are in section 5.7.
2.2 Proposed Methodology

In this section, first the power system model is described. Then the combined

deterministic stochastic subspace identification is presented and the recursive method

of implementing it is then introduced.

2.2.1 Power System Model

The power system response in the presence of external periodic disturbance and

ambient noise is represented by a discrete linear model (59) as,
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˙xk+1 = Axk +Buk +
P∑
j=1

BNjWjk (2.1)

yk = Cxk +Duk +
P∑
j=1

Vjk

where, xεRn is the system state matrix, yεRl is the vector of PMUmeasurements,uεRm

is the vector of input, AεRn×n is the state matrix,BεRn×m is the input matrix,CεRl×n

is the input matrix t is the integer time sample, Wjk is the process noise with zero

mean Gaussian noise sources which typically represents the random load changes and

Vjk is the measurement noise representing disturbances or sensor error.

E[

 Wp

Vp

 (W T
q V T

q )] =

 Q S

ST R

 δ (2.2)

where, QεRn×n, RεRl×l and SεRn×l are the co variance matrix of the noise vectors,

E denotes the expected value operator and δ the kronecker delta.

The time domain solution of (2.1) gives the system response y(t) as,

y(t) =
N∑
i=1

CψiφiX(0)eλit︸ ︷︷ ︸
Transient

+
M∑
j=1

[(
N∑
i=1

CψiφiBNje
λit) ~QNj(t)]︸ ︷︷ ︸

Noise

(2.3)

where ψ, φ, λ are the left eigenevector , right eigenvector and eigenvalues of the A

matrix respectively. ~ is the convolution operator.

If there is a nth lightly damped natural oscillation mode and no forced oscillation

present then (2.3) can be rearranged in frequency domain as,
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yN(ω) =
CψnφnX(0)

jω − λn︸ ︷︷ ︸
NO1

+
M∑
j=1

[
N∑

i=1,i 6=n

CψnφnBNj

jω − λi
]Qj(ω)︸ ︷︷ ︸

NO2

(2.4)

+
M∑
j=1

(2CψiφiBNjQj(ω))δ(ω − ωn)︸ ︷︷ ︸
NO3

where, the term NO1 represents the transient response, NO2 represents random

noise colored by system dynamics and NO3 represents the sinusoidal noise term which

contains the lightly damped mode frequency ωn.
2.2.2 Combined Deterministic Stochastic Subspace Identification

In this section, a Recursive Combined Deterministic Stochastic Subspace Identifica-

tion (RCDSSI) framework is presented. The goal is to obtain the model of the system

from measurement data. PMU measurements are typically located at selected buses

in the power system network and measures the voltage magnitude, voltage angle, cur-

rent magnitude, current angle and frequencies at the bus. When a disturbance occurs

oscillation is seen at different PMU locations. The type and magnitude of oscillations

depends on the severity and location of disturbance. Depending upon the location of

PMU measurements, it can be classified in output and input (e.g load buses) (60)).

This input and output is used to form the output block Hankel matrix Hy and input

block Hankel matrix Hu.
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Hy =

[
Yp
Yf

]
=



y1 · · · yj

y2 · · · yj+1

... · · · ...

yi · · · yj+i−1




yi+1 · · · yi+j

yi+2 · · · yi + i+ j + 1

... · · · ...

y2i · · · y2i+j−1



εR2i×j (2.5)

Hu =

[
Up
Uf

]
=



u1 · · · uj

u2 · · · uj+1

... · · · ...

ui · · · uj+i−1




ui+1 · · · ui+j

ui+2 · · · ui + i+ j + 1

... · · · ...

u2i · · · u2i+j−1



εR2i×j (2.6)

where i is the number of block rows which is an user-defined index and must be larger

than the order 2n of the system to capture all the system modes, and j = l − 2i+ 1

and l is data window length. The input and output block Hankel matrices are divided

into past and future input-output matrices Yp, Yf , Up and Uf . The response of the

system contains both stochastic and deterministic part. The state sequence xk and

output response yk is divided into stochastic and deterministic part.
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xk = xdk + xsk (2.7)

yk = ydk + ysk (2.8)

The system in (2.1) is represented in matrix form after performing recursive sub-

stitution as,

Yp = ΛiX
d
p +Hd

i Up + Y s
p (2.9)

Yf = ΛiX
d
f +Hd

i Uf + Y s
f

Xd
f = AiX

d
p + ∆d

iUp

where, xdf is the past deterministic states, xdp is the future deterministic states, Y s
p

is the past stochastic output and Y s
f is the future stochastic output.

Hd
i =



D 0 · · · 0

CB D · · · 0

...
... · · · ...

CAi−2B CAi−3B · · · D


εRli×mi (2.10)

∆d
i =

[
Ai−1
d B Ai−1

d B · · · AdBdBd

]
εR2n×mi (2.11)

where ∆d
i is the reverse extended controllability matrix, Hd

i is the low block trian-

gular Toeplitz matrix (61) and Y s
p ,Y s

f represents the stochastic part of the measured

signals. The key idea of subspace identification (SI) is the use of state as a finite di-
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mensional space between past and future. it uses the projection theorem to eliminate

the influence of noise and extracts the extended observability matrix from the block

equations (2.9). Authors in (61) provides a general framework for treating most of

the SI algorithms. However, does not provide any methods for recursive subspace

identification algorithms which is essential for online oscillation monitoring applica-

tion. The key idea is to compute the oblique projection of future output Yf on past

input output along the direction of future inputs. One of the algorithm that helps

to compute the oblique projection is "Multivariable Output-Error State Space" al-

gorithm (MOESP). It uses LQ decomposition of the Hankel matrix to compute the

column space of the projection matrix O (61).

H1:j

R2(m+l)i×j
=


Uf

Wp

Yf

 =


L11 0 0

L21 L22 0

L31 L32 L33



QT

11

QT
21

QT
31

 (2.12)

(Yf/(Uf )Wp) = ΛiXi/U
|
f = L32Q

T
21 (2.13)

where Wp is the combined subspace of both past input and output block Hankel

matrices Up and Yp. Eqn. (5.18) calculates the oblique projection of the future outputs

on the past input/output along the future inputs. Column space of L32 is equal to the

column space of extended observability matrix Λi. So only extracting L32 from the LQ

decomposition of the whole subspace is enough to get the system characteristics. This

algorithm takes both input and output measurements into account and we refer to

this algorithm as RCDSSI algorithm. If only output measurements are used then this

algorithm reduces to Recursive Stochastic Subspace identification (RSSI). Different

variations of this algorithm have been proposed in the literature (14),(62). In that

case orthogonal projection is used instead of oblique projection and the projection

matrix O is computed through LQ decomposition as
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H1:j

R2(m+l)i×j
=

 Yp

Yf

 =

 L11 0

L21 L22

 (2.14)

Yf/Yp = L21Q
T
11;L21Q

T
11 = ΛiXi (2.15)

where Lij represents the lower triangular matrix of LQ decomposition and Qij rep-

resents the orthogonal matrix. Eqn. (5.14) shows that the extended observability

matrix (Λi) can be calculated from the column space of L21.For online mode estima-

tion and detecting time varying system, it is crucial for the method to be fast and

recursive in nature. Recursive Subspace identification based algorithms fall under the

broad spectrum of block processing algorithm where at each iteration a fixed window

(l discrete points) of data points are taken and only a small p number of data points

are updated in each iteration. It uses mathematical tools like LQ decomposition and

Singular value Decomposition (SVD) which makes it reliable and numerically stable.

However, to reduce the computational burden a method is proposed to update the

LQ decomposition as shown in eqns. (5.17) and (5.14) recursively with new p data

points at every iteration.

For both RSSI and RCDSSI method the Hankel matrix is used as shown in eqns.

(5.14) and (5.17) respectively.If H1:j is a rectangular matrix and j > 2(m + l)i,

then the columns beyond 2(m + l)i of lower triangular matrix of LQ decomposition

of H1:j will consist of entirely of zeros. So, H1:j is made a square matrix of size

2(m + l)i × 2(m + l)i and the rest of the columns are truncated. Without losing

generality, the Hankel matrix for a known size j = 2(m + l)i can be given as shown

in (2.16), where L1εRj×j is a square lower triangular matrix and Q1εRj×j is a square

and orthogonal matrix. When new data points are added then old p data points are

deleted and the new LQ decomposition is calculated as shown in (2.17). Then L2is
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calculated recursively from L1 by applying two successive numerical methods known

as Givens rotation. First Givens rotation decouples the past s data points from the

Hankel matrix according to (2.18). Then a new set of s data points are appended

to the HεRj×j and rearranged as shown in (2.19). Then a second Givens rotation is

applied to transform L̄2 to a lower triangular matrix (see (2.20)).

H1:j = L1Q1 (2.16)

H1+s:j+s = L2Q2 (2.17)

H1:j = L1Q1 = (L1G
T
1 )(G1Q1)

= [H1:s L̄1]

 Is 0

0 Q̄1


= [H1:sL̄1Q̄1] = [H1:s Hs+1:j] (2.18)

H1+s:j+s = [Hs+1:j Hj+1:j+s] (2.19)

= [L̄1Q̄1 Hj+1:j+s]

= [Hj+1:j+s L̄1]

 0 Is

Q̄1 0

 = L̄2Q̄2

H1+s:j+s = (L̄2G2)(GT
2 Q̄2) = L2Q2 (2.20)

where G1 and G2 are the givens rotation matrix.

The projected matrix O is expressed as,

O
Ri×j

=


L21, if only output measurements are used

L32, if both input and output measurements are used
(2.21)
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2.2.3 Extraction of Modal Information

After the projected matrix is obtained from the PMU measurements system modal

characteristics needs to be extracted. One key characteristics of PMU measurements

is the low rank property (63). This means that the rank of projected matrices are

low compared to matrix size. Mathematically this can be achieved using SVD. This

process reduce the model order and capture only the dominant n modes from the

projected matrix O as follows.

W1OW2 = [U1 U2]

 S1 0

0 S2


 V T

1

V T
2

 (2.22)

When there is measurement noise present in the data, the selection of n dominant

modes is not trivial by observing only the singular values of W . Also, for online

implementation of such techniques, the process of selecting n dominant modes needs

to be automated. Let αr be the rth singular values of O . Two criteria are used

to select n largest singular values from a total of r singular values based on two

parameters γ and β. A user can set the values based on the prior knowledge of the

system. γ represents the relative difference between two consecutive singular values,

and β represents the ratio of n largest singular values to total r number of singular

values. Reduced projected matrix based on this is as follows.

Or = U1S1V
T

1 (2.23)

|αi − αi+1

αi
| ≥ γ (2.24)∑n

i=1 αi∑r
j=1 αj

≥ β where, β = M a large number (2.25)
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The extended observability matrix is expressed as in eqn (2.39) and relates to system

matrices A and C.

Λi =



C

CA

· · ·

CAi−1


= U1

√
S1 (2.26)

Although eqns. (2.39) and (2.40) help to select the model order dynamically fol-

lowing SVD, it is computationally burdensome to compute SVD for every iteration of

a recursive algorithm (64).And SVD is only need to be performed if there is a change

in system operating condition or a new mode gets excited or an periodic external

disturbance is introduced. In this chapter, recursive way of calculating the extended

observability matrix Λi is presented which uses the similarities between recursive

subspace identification and adaptive signal processing techniques like the propagator

method (65). But, in the recursive calculation of Λi the size of Λi is determined by

the model order. And, the model order is determined through SVD and eqns. (2.39),

(2.40) only if there is a change in the system. The change in the system is captured

by monitoring the change in the mode estimates. It has been observed heuristically

that whenever there is a change in the system operating condition the deviation in

the mode estimation is significantly higher than if there is no change but random

load variations. The deviation is compared with predefined threshold ∆λThreshold to

detect the change in system order and then SVD is performed to update the model

order.

∆λ = |λk − λk−1| (2.27)
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Once the model order is selected the recursive algorithm is used to compute the

extended observability matrix Λi. The propagator can be determined recursively by

solving a least square problem mentioned in (2.30). Detail equations are as follows.

col(Λi) = col

 In

P T

 (2.28)

Zf (t) =

 Zf1(t)

Zf2(t)

 (2.29)

V (P ) = E||zf2ζ
T − P T zf1ζ

T ||2F (2.30)

gt = (Rzf2ζt zf2t) (2.31)

At =

 −ζTt ζt λ

λ 0

 (2.32)

wt = Rzf1ζt (2.33)

ψt = (wt zf1,t) (2.34)

Kt = (At + ψTt Mt−1ψt)
−1ψTt Mt−1 (2.35)

P T
t = P T

t−1 + (gt − P T
t−1ψt)kt (2.36)

Mt =
1

λ2
(Mt−1 −Mt−1ψtKt) (2.37)

Λt = P T
t (2.38)

where P is a linear operator called propagator which expresses the linearly de-

pendant vectors of extended observability matrix Λi as a linear combination of n

independent vectors, Zf (t) is the observation vector, Kt is the gain vector, Rzf1 is the

expected value of observation vector and λ is the forgetting factor.

The discrete time system matrix A can be calculated using the extended observ-

ability matrix as shown in (2.40). Then mode frequency and damping properties can
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be obtained by performing eigenvalue analysis of the discrete A matrix as follows.

Λi =



C

CA

· · ·

CAi−1


= U1

√
S1 (2.39)

A = Λi
∗Λ̄i (2.40)

Further this can be converted into continuous domain equivalent.

Eig(As) = σ + jω =
1

T s
logEig(A) (2.41)

The proposed RCDSSI framework is able to estimate behaviour of the power sys-

tem in the presence of input excitation and noise. This helps to estimate system

electromechanical modes accurately even in the presence of forced oscillations at the

same time can also classify oscillations between forced and natural electromechanical

modes. Fig. 2.1 shows the overall flowchart of the proposed architecture.

2.2.4 Detection of Forced Oscillations

In case a forced oscillation is present in the system the input uk is expressed as a

periodic disturbance,

fk =
∞∑

p=−∞

Ape
jpωk (2.42)

The time domain solution of (2.1) gives the system response y(t) as,
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Figure 2.1: Flow Chart for the proposed integrated framework for online oscillation
monitoring and classification.

y(t) =
N∑
i=1

CψiφiX(0)eλit︸ ︷︷ ︸
Transient

+
∞∑
p=1

[(
N∑
i=1

CψiφiBe
λit) ~ Ape

jpωt]︸ ︷︷ ︸
Forced

(2.43)

+
M∑
j=1

[(
N∑
i=1

CψiφiBNje
λit) ~QNj(t)]︸ ︷︷ ︸

Noise
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If all the modes of the system are well damped and a forced oscillation is present

then after rearranging (2.43) is represented in frequency domain as,

yF (ω) =
∞∑
p=1

[
N∑
i=1

CψnφnX(0)

jω − (λn − pω0)
]︸ ︷︷ ︸

FO1

+
M∑
j=1

[
N∑
i=1

CψnφnBNj

jω − λi
]Qj(ω)︸ ︷︷ ︸

FO2

(2.44)

Close observation of forced yN(ω) and natural yF (ω) response of the system in

equation (2.4) and (2.44) show that a sinusoidal noise term NO3 is present if a lightly

damped Natural oscillatory mode exists. This is used later in section 2.2.4 to develop

a method for forced oscillation detection.

2.2.4.1 System matrices extraction using RSSSI Algorithm

In cases where only the output measurements are available the extended observ-

ability matrix Λi extracted in section 2.2.2. Then the C matrix of the system is is

calculated after solving the following equation using a least square method,

Λ†i−1.Ri+1

Hy

= (
A

C
).Λ†I .Ri (2.45)

Λi−1 = Λi (2.46)

where, Ri = Yf/(WpUf ) is the orthogonal projection of future output on the sub-

space formed by past and future input and past output and Ri+1 = Y −f /(W
+
p U

−
f ).

2.2.4.2 Time Varying Kalman Filtering for State Estimation

The system model A and C, identified in previous section is used in this section to

estimate the state sequence x̂k with the help of non steady state kalman filter.
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x̂k
− = A ˆxk−1 +Buk (2.47)

P−k = APk−1A
T +Q (2.48)

Kk =
P−k C

T

CP−k C
T +R

(2.49)

x̂k = x̂k
− +Kk(yk − Cx−k ) (2.50)

Pk = (I −KkC)P−k (2.51)

2.2.4.3 Signal Segmentation

After calculating the Model of the underlying system A and C and the state se-

quence x̂k, these are used to estimate the response Y est
k of the underlying dynamic

system. The difference between the actual response Yk and the estimated response

Y est
k is termed as Noise response Y Noise

k .

Y ext
k = C ∗ (A ∗ ˆxk−1) (2.52)

Y Noise
k = Yk − Y ext

k (2.53)

2.2.4.4 Proposed Oscillation Classification Method

As mentioned in section 2.2.1 one of the key characteristics of undamped natural

oscillation is that the frequency of oscillation is present in the noise part of the

response as well as the oscillating part of the signal too. The Power Spectral Density

(PSD) is used to create an index that indicates the presence of natural or forced

oscillations. The power spectral density of estimated signal( part NO1 and part

FO1) and the noise signal ( part NO2+NO3 and part FO2) are given by,
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Pest = lim
k−>∞

(
1

nk

nk∑
0

|Ykext)|2) (2.54)

PNoise = lim
k−>∞

(
1

nk

nk∑
0

|YkNoise)|2) (2.55)

PestN =
Pest

max(Pest)
(2.56)

PNoiseN =
PNoise

max(PNoise)
(2.57)

ID(f) = PestN(f) ? PNoiseN(f) (2.58)

ID(f) =


1, if the oscillation is natural

< 1, if the oscillation is forced
(2.59)

Algorithm 1 Recursive Stochastic Subspace Identification (RSSI)-Algorithm
1) Define identification parameters sampling frequency, window length, observed
frequency limit and refresh rate.
while 1=1 do
a) Gather PMUmeasurements, and perform low pass filtering and down sampling

b) Form the block Hankel output matrix (5.12)
c) Perform orthogonal projection of future output Yf on past output Yp (5.14)
and perform LQ factorization recursively using eqns. (2.16)-(2.20)
d) Calculate the projected matrix O (5.19)
e) Calculate the extended observability matrix Λi recursively using (2.28)-(2.38)

f) Calculate system state matrix A (2.40)
g) Calculate oscillation frequency and damping from (2.41)

end while

2.2.5 Implementation Methodology

Fig. 2.1 shows the overall flow chart of the proposed framework and Fig. 2.2

shows the implementation scheme of the proposed architecture in the power grid.

For each power system area the PMU measurements are first aggregated through lo-
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Algorithm 2 Recursive Combined Deterministic Stochastic Subspace Identification
(RCDSSI)-Algorithm
1) Define identification parameters sampling frequency, window length, observed
frequency limit and refresh rate.
while 1=1 do
a) Gather PMUmeasurements, and perform low pass filtering and down sampling

b) Form the block Hankel output matrix (5.12) and input matrix (5.14)
c) Perform oblique projection of future output Yf on past output Yp along the
direction of past input Up (5.18) and perform LQ factorization recursively using
eqns. (2.16)-(2.20)
d) Calculate the projected matrix O (5.19)
e) Calculate the extended observability matrix Λi recursively using (2.28)-(2.38)

f) Calculate system state matrix A (2.40)
g) Calculate oscillation frequency and damping from (2.41)

end while

cal PDC. The lcal PDC data is then transferred to the control center PDC through

communication channels. Depending on the communication medium and distance a

propaghation delay of todayâs wide-area communication networks can be in the range

of 6 ms to 1 s. Fiber optics latency for Bonneville Power Administration (BPA) sys-

tem is considered to be less than 26 ms (66). Control center PDC gathers all the

local PDC measurements and time aligns them. Then the PMU measurements are

send to the Wide Area Monitoring System (WAMS) in the form of data packet over

the ethernet network. The proposed algorithms are part of the WAMS. PMU data

obtained from the power grid is first processed for missing data, outliers, detrending

and down-sampling. The proposed framework is implemented and both the RCDSSI

and RSSI algorithms are run according to the flow chart shown in Fig. 2.1. Param-

eters that control the performance of the algorithms such as window length, refresh

rate, sampling frequency and forgetting factor are given as inputs. The algorithm

work on blocks of data and window length represents the data length. Refresh rate

is the part of window length that is updated when new data is available. Sampling

frequency determines which frequencies are observable and can be extracted by the
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Figure 2.2: Wide area monitoring scheme.

algorithms and, forgetting factor controls the ability of the algorithms to track fast

changes in system operating condition. Initial model orders are selected based on

prior knowledge of the system and then model orders are calculated the dynamically

as part of the algorithm mentioned in previous sections.This helps to track multiple

modes if there is a change in operating condition.

2.3 An Illustrative Example

A single machine infinite bus system (SMIB) is shown in Fig. 3.1 to illustrate the

functionalities of the integrated framework proposed in Fig. 2.1. For simplicity the

machine is modelled as a classical second order model and the small signal analysis of

the system shows oscillatory modes with 1.015 HZ frequency and 11.2%. A random

Gaussian noise is added to the load to simulate an ambient condition. Fig. 2.4 shows

the synthetic simulated frequency response as measured at Bus 2. 5 minute in the

simulation a three phase fault is applied on Bus 2 for 10 cycles, on minute 10 a forced

oscillation is introduced with 2 Hz frequency and on minute 15 a forced oscillation
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is simulated with 1.03 Hz frequency to create a resonance scenario where the forced

oscillation frequency is close to the system’s natural oscillation frequency. The next

subsections discuss the performance of proposed method for this different scenarios.

V2 V3 

XL = j0.5 pu

Gen 1

V1

Transformer

External 
Periodic 

Disturbances

Infinite 
Bus

XT = j0.15 pu
Xd = j0.30 pu

H = 3.5  MW.s/MVA

S = 0.9+0.3j  pu 0.995∠0𝑜  

Figure 2.3: Single Machine Infinite Bus system.

Figure 2.4: Frequency deviation signal used as a synthetic PMU measurement

2.3.1 Case 1: Estimation of Oscillatory Modes

This section shows the performance of proposed oscillation monitoring framework

for both ringdown and ambient conditions. This case focuses on the time period
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between 150s to 200s where a ringdown event occurs because of a three phase fault.

The engine is initialised with a model order 2, window length 60 seconds and refresh

rate 1 second. Fig. 2.5 shows the time varying model order and the selection criteria

for the model order and the corresponding threshold. Close observation shows that

for case 1 the deviation in Norm of estimated eigenvalues does not goes beyond the

predefined threshold ηThreshold and as a result the model order does not change. The

synthetic PMU data is used and the method discussed in subsection 2.2.2 to obtain

the projection matrix. Then the model order is selected and the modal information

is extracted using the method described in subsection 2.2.3. After that method dis-

cussed in subsection 2.2.2 is used to implement the modal information extraction in a

recursive manner to avoid computing QR decomposition and SVD at every time step.

Figs. 2.6 and 2.7 shows the oscillation monitoring window for natural and forced

oscillation respectively. From Fig. 2.6 it is clear that it is a natural oscillation with

1.01 Hz frequency and 11.2% damping which matches with the small signal stability

analysis values. The standard deviation of the frequency and damping ratio estimates

are 0.005% and 0.01% respectively.

2.3.2 Case 2: Mode Estimation and Detection in the Presence of Forced

Oscillations

This case shows how the proposed method detects forced oscillation and can deter-

mine both natural and forced oscillation modes accurately. This case focuses on the

period between 600 seconds to 650 seconds in fig. 2.4. As this is a block processing

algorithm one block of data is shown in Fig. 2.8 to show how forced oscillation is

detected by the proposed framework. The methods described in subsections 2.2.4.1,

2.2.4.2 and 2.2.4.3 are used to split the measurement signal into two parts oscillatory

part Y est and noisy part Y Noise. Figs. 2.8a and 2.8c shows the estimated oscillatory

part and the noisy part. Figs. 2.8b and 2.8d shows the amplitude spectrum of the

extracted signals. The equations (2.54) are used to calculate the identification index
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Figure 2.5: Time varying model order selection a) threshold for model order calcula-
tion and b) model order

ID(2) and it is 0.15. As the value of ID(2) is less than 1 it indicates that the oscilla-

tory mode with 2 Hz frequency is a forced oscillation. Fig. 2.9 shows that as soon as

forced oscillation is introduced it is detected in less than 2 seconds.

2.3.3 Case 3: Mode Estimation and Distinguishing Between Natural and Forced

Oscillations During Resonance

This case shows the ability of the proposed method to estimate the natural modes

frequency and damping accurately during resonance conditions. When forced oscilla-

tion frequency is close or superimposes on the natural oscillation frequency it creates

a resonance condition (3). Although there have been a lot of methods proposed in

the literature, most of these methods provide biased estimation of natural modes in

the presence of forced oscillations (67). The proposed framework detects the presence

of forced oscillation and uses the frequency of forced oscillation to create an input
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Figure 2.6: Natural oscillation monitor a) frequency and b) damping ratio

signal. Then the proposed RCDSSI framework is used to incorporate the input in-

formation and it helps to estimate the natural modes accurately. This case focuses

on the signal between 900 seconds to 950 seconds in fig. 2.4. Fig. 2.7 shows that the

proposed framework detects the forced oscillation around 900 seconds and also rightly

estimates the associated damping. Fig. 2.6 shows that between 900 and 950 second

the method gives a proper estimate of natural oscillation frequency and damping.

This shows that the proposed method can simultaneously detect forced oscillations

and can also estimate the natural oscillation accurately.

2.4 Simulation Results and Discussion

Fig. 2.11 shows the experimental setup used for the simulation cases. Power system

models are run in Real Time Digital Simulators (RTDS). Then PMU measurements

are broadcasted using software PMU in RTDS. One workstation is used as Phasor

Data Concentrator (PDC) and the proposed algorithm is implemented along with the
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Figure 2.7: Forced oscillation monitor a) frequency and b) damping ratio

Figure 2.8: Time varying model order selection a) threshold for model order calcula-
tion and b) model order
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Figure 2.9: Forced oscillation detection flag

Figure 2.10: One window length input and output data used for the RCDSSI algo-
rithm in Fig. 2.1

PDC. The output from the algorithm is send back to RTDS through GTNET using

ethernet connection.

Two systems are used to study the performance of the proposed algorithm using

RTDS. The first one is a two area power grid (9). This is a widely used system
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Figure 2.11: Experimental setup for the simulation results.

to study inter-area oscillation. The second system is IEEE 68 bus test system which

represents the NETS-NYPS system model. This system is used to show the scalability

of the proposed algorithm to perform well on large systems.

2.4.1 Two Area Test System

The two area power grid is shown in Fig. 6.3. The details are in (9).
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Figure 2.12: Two-area four-machine study system.

2.4.1.1 Case 1: Dynamic mode tracking

This case shows the dynamic capability of the proposed method to track low-

frequency oscillations for varying operating conditions. Under the normal operating

condition, a power system is always in motion because of random load variations

occurring continuously in the system. These responses are typically termed as an

ambient responses. The spectral analysis of ambient response shows that it can be

approximated well by white noise (68). White noise with a magnitude of 1% of each

rated load (active and reactive power) is added to the corresponding load to simulate

ambient response, and there is no other disturbance in the system. In this case two

operating conditions as shown in Table. 2.1 are studied to monitor only the inter-area

oscillation frequencies. First operating condition represents a case where the inter-

area mode is well damped. Small signal stability analysis (SSAT) shows that an inter-

area oscillation has 0.6192 Hz frequency and 10.08% damping. Around 10 minutes

into the simulation the power system stabilizers (PSS) malfunctions are simulated

and the damping of the inter-area mode decreases. SSAT results show that inter-area

mode of 0.6150 Hz has poor damping ratio of 0.74%. Table. 2.1 also shows that RSSI

and RCDSSI gives similar estimate for both operating condition and the results are
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similar to the RASSI method in literature (14).However, for first operating condition

the mode is well damped, so the RCDSSI algorithm is not triggered for this operating

condition. Fig. 2.13 shows that the proposed RCDSSI algorithm is initialized around

180 seconds and it estimates the inter-area mode for the first operating condition

accurately. Around 600 seconds when the system operating condition changes, the

algorithm could track the changing operating condition quickly. The spike between

900s and 1000s is because of the numerical calculation at the fault inception, but

it converges very fast. The average computational time for RCDSSI algorithm on a

Windows computer with 16 GB RAM and I-7 processor(4 GHz) is 0.2 second. Next

case shows the advantage of taking the input characteristics into account in RCDSSI.

Table 2.1: Estimated modes for two area test system Case 1.

Operating Condition Methods Frequency (Hz) Damping (%)

Operating Condition 1 SSAT 0.62 10.08
RCDSSI – –
RSSI 0.621 10.02

RASSI (14) 0.621 10.03
Operating Condition 2 SSAT 0.6150 0.74

RCDSSI 0.6149 0.75
RSSI 0.6152 0.74

RASSI (14) 0.6153 0.73

2.4.1.2 Case 2: : Mode estimation with forced oscillations

One of the major advantages of the proposed method is that it can estimate the

electromechanical modes of the system accurately even in the presence of forced oscil-

lation. This case shows the performance of the proposed algorithm for such a scenario

and compares the results with existing methods (2). Two algorithms which are exten-

sively used both in research and commercial applications for oscillation monitoring

are modified for comparisons (Yule-Walker ARMA method and recursive stochastic

subspace identification (RSSI)) (2). In this case, a forced oscillation of 0.62 Hz which



47

D
a

m
p

in
g

 R
a

ti
o

 (
%

)

Figure 2.13: Case 1 a) Frequency deviation of the machine buses b) Frequency esti-
mate and c) Damping ratio estimates..

coincides with the inter-area mode of the system is simulated by injecting a periodic

disturbance at the load connected at Bus 7. Injecting periodic disturbances through

load simulates the behavior of a cyclic load. For simplicity, only a single frequency

sinusoidal signal is considered here as the main goal is to show the performance of

mode estimation algorithms for such cases. Fig. 2.14a shows frequency deviation

signal at bus 7, and it shows that at 10 minutes a forced oscillation is injected which

stays for 5 minutes. Modified Yule-Walker method uses a predefined model order of

(na = 8 and nm = 6), and the estimated model order for both RSSI and RCDSSI

are two, based on the criterion mentioned in (2.24) and (2.25). Fig. 2.14b shows

that all three methods give an accurate estimate of the mode frequency. Fig. 2.14c
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Figure 2.14: a) Time domain system frequency deviation signal b)comparison of mode
frequency estimates and c) comparison of mode damping ratio estimates.

shows that the damping ratio estimate gets biased to the damping ratio of forced

oscillation and shows approximately 0% damping when forced oscillation is present

between 10 and 15 minutes. However, the proposed method (RCDSSI) can estimate

the damping ratio of inter-area mode properly even in the presence of forced oscilla-

tions. This accurate estimation is important to help the power system operators take

proper decision.
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2.4.1.3 Case 3: Oscillation classification

This case shows how the proposed method can classify power system oscillations

based on combined deterministic-stochastic subspace identification (RCDSSI) frame-

work based on Fig. 2.1. In this case, the inter-area mode of the system has an

oscillation frequency of 0.619Hz and a damping ratio of 0.74%. Moreover, a periodic

signal of 0.625Hz frequency is added to the load connected at area 2 at Bus 9 to

simulate the behavior of cyclic load as in case 2. Fig. 2.15 shows the power output

of the load at bus 9 and the spectral characteristics of the load. It illustrates that

the load is injecting a periodic disturbance of 0.62 Hz. It is noticed from Figs. 2.17a

and 2.17b that the RCDSSI algorithm separates the effect of input and noise from the

output and only extracts information related to inter-area mode of 0.62Hz and 0.74%

damping. As mentioned before, the RSSI algorithm only separates the effect of noise

from the output, so it picks up both input characteristics (in this case the periodic

disturbance of the load) and inter-area mode characteristics. Figs. 2.17c and 2.17d

shows that the RSSI algorithm identifies two modes one with 0.62HZ and 0.74%

damping and another with 0.625HZ and 0% damping. Since both the oscillations

are sustained oscillations, it is difficult for only the stochastic subspace identification

algorithm to distinguish the type. However, comparing the estimate of RCDSSI and

RSSI it can be concluded that since 0.62Hz mode is estimated in both method, so

it is the inter-area mode of the system, and the 0.625Hz mode is a forced oscillation

which is not an inherent characteristic of the system.

2.4.2 IEEE 68 Bus Test System

This case study presents how the proposed method works for a large scale power

system where different modes are excited at different time. The tie lines in the 68

bus system are marked red in Fig. 3.13. The details of the power grid is in (10) so

not discussed here.
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Figure 2.15: a)Load power output at bus 9 and b) frequency spectrum of the load
power output for marked time length.

1 2 3 4
1 2 3 4

Figure 2.16: a) Oscillation shape for the 0.625Hz inter-area mode and b) Oscillation
shape for the 0.62Hz inter-area mode

2.4.2.1 Case 1

This case study presents how the proposed method works for a large scale power

system where different modes are excited at different time. The tie lines in the 68

bus system are marked red in Fig. 3.13. The details of the power grid is in (10) so
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Figure 2.17: a) Time domain frequency signals b)frequency with RCDSSI c) damping
ratio with RCDSSI d)frequency with RSSI and e) damping ratio RSSI.

Figure 2.18: IEEE 68 Bus study system.

not discussed here. The simulation starts with operating condition one where a fault

is applied near generator 14 to excite the 0.52Hz mode. A periodic disturbance is

introduced at 10 min with a frequency of 0.526Hz which coincides with the system
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Figure 2.19: Yule Walker Method (2) a) Time domain ambient frequency deviation
signal b) Frequency estimate and c) Damping ratio estimates.

inter-area frequency of 0.52Hz mode. Modified Yule-Walker method (2) with a pre-

defined model order of (na = 20 and nm = 20) is applied to estimate the inter-area

-oscillatory mode frequency and damping. Fig. 2.19 shows that the Yule- Walker

method fail to estimate the damping of target inter-area oscillatory mode accurately.

Authors in (3) has claimed that the proposed Recursive Adaptive Subspace Iden-

tification (RASSI) method can estimate the electromechanical modes accurately in

the presence of forced oscillations. Although this works well for an offline environ-
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Figure 2.20: RASSI Method (3) a) Frequency estimate and b) Damping ratio esti-
mates.

Figure 2.21: RASSI Method (3) when the order is known ahead of time a) Frequency
estimate and b) Damping ratio estimates.



54

Figure 2.22: Proposed RCDSSI Method damping ratio estimate of target inter-area
mode.

ment but in an online environment where the model order is selected automatically

through SVD, this method can not always guarantee estimating the oscillatory modes

accurately in the presence of forced oscillations, especially if the forced oscillation fre-

quency is close to the inter-area oscillation frequency. Another popular method is

transfer function based Yule-Walker method (2), which also gets biased in the pres-

ence of forced oscillation.This phenomenon is highlighted in Figs. 2.19 and 2.20. Fig.

2.20 shows that the subspace identification based method gets biased in the presence

of forced oscillation and shows 0% damping. Similar issue exists for the Yule-Walker

method as shown in Fig. 2.19. Fig. 2.21 shows that if the order of the system is

known beforehand then only the RASSI method is able to estimate both natural and

forced oscillatory modes accurately. But, in real-time operation that it is not feasible

to know the number of modes seen in the measurement ahead of time. Fig. 2.22 shows

that the proposed method gives an accurate estimate of inter-area mode damping for

both low and high amplitude forced oscillations.

2.4.3 Experimental Results on Real PMU Measurements

In this section the proposed framework is tested for real time measurement data

from ISO New-England system. Oscillations data for ISO New-England is available

publicly (1). Several test cases from the library are tested. Fig. 2.23 shows the

results for the case 1 from the library. In this case a system wide oscillation of 0.27
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Figure 2.23: Results from ISO-NE real event data a) estimated oscillation frequency
and b)estimated damping ratio and c) PMU measured system frequency signal

HZ frequency is seen in the system and the generator outside the NEW-England

system is identified as the source of oscillation. Initialisation window length is 60s

and refresh rate is 0.2s. Fig. 2.23c shows the frequency of the system at substation

5 and Fig. 2.23a shows the estimated frequency of around 0.27 Hz and Fig. 2.23b

shows the estimated damping ratio indicating poor damping. Table 2.2 summarizes

the results for other cases in the library and the proposed method provide an accurate

estimate.
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Table 2.2: Experimental Results on Actual PMU data (1)

Case Modes Methods Frequency (Hz) Damping (%)
Case 1 1 Actual 0.27 0.0

RCDSSI 0.265 0.5
Case 2 1 Actual 0.25 0.0

RCDSSI 0.252 0.3
Case 3 1 Actual 1.13 Growing

RCDSSI 0.1.124 -0.13

2.4.4 Comparison with Existing State of the Art Methods

In this section the proposed method is compared with existing state of the art

method from literature. As mentioned earlier authors in (14) has implemented recur-

sive subspace identification based method for mode estimation. The proposed method

is compared with the existing method for different scenarios run in the 68 bus test

system and results are summarized in Table 2.3. Results show that the proposed

RCDSSI framework gives similar mode estimations like the RASSI algorithm from

literature. However, the RASSI algorithm can not change the model order dynami-

cally and every time there is a change in model order the identification engine needs

to be reinitialized. Because of this limitation RASSI fails to estimate the forced oscil-

lation modes. On the contrary, the proposed framework is able to detect the type of

oscillation as well as the oscillatory mode for all cases. Table 2.4 shows the average

execution time of 300 seconds of window length used in the algorithm for both the

methods. Both the method has similar execution time on a Intel core i7 processor

with 3.7 GHz clock speed and 16 GB memory. Although the proposed method can

dynamically track the changes in the model order and do not need to reinitialise the

engine every-time the model order changes. Hence, the proposed method enhances the

effectiveness of existing method by incorporating the ability of detecting oscillation

type and estimating modes dynamically.
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Table 2.3: Comparison of proposed method with existing methods.

Cases Method Mode Oscillation Frequency(Hz) Damping Ratio(%)
Type Mean Std Dev Mean Std Dev

Case SSAT Natural - 0.52 0 3.621 0
1 RCDSSI Mode NO 0.519 0.004 3.59 0.15

RASSI(14) 1 - 0.517 0.006 3.63 0.27
Case SSAT Natural 0.52 0 3.621 0
2 RCDSSI Mode NO 0.517 0.003 3.55 0.18

RASSI(14) 1 - 0.518 0.005 3.58 0.26
SSAT Natural 0.591 0 9.625 -

RCDSSI Mode NO 0.593 0.0035 9.88 0.82
RASSI(14) 2 - 0.597 0.004 9.72 0.78

Case SSAT Natural - 0.52 0 3.621 0
3 RCDSSI Mode NO 0.515 0.005 3.60 0.17

RASSI(14) 1 - 0.514 0.005 3.52 0.24
SSAT Natural - 0.591 0 9.625 0

RCDSSI Mode NO 0.592 0.002 9.71 0.76
RASSI(14) 2 - 0.590 0.002 9.69 0.79

SSAT Forced FO 0.8 0 0 0
RCDSSI Mode FO 0.8 0.0025 0.001 0.0005

RASSI(14) 1 - - - - -
Case SSAT Natural 0.52 0 3.621 0
4 RCDSSI Mode NO 0.518 0.0025 3.59 0.16

RASSI(14) 1 - 0.517 0.004 3.57 0.24
SSAT Forced FO 0.526 0 0 0

RCDSSI Mode FO 0.525 0.001 0.002 0.0.001
RASSI(14) 2 - - - - -

Table 2.4: Computational Time for Different Cases.

Case RCDSSI RASSI(14)
Case 1 0.08 s 0.083 s
Case 2 0.085 s 0.086 s
Case 3 0.083 s 0.084 s
Case 4 0.079 s 0.080 s
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2.5 Summary

The proposed combined deterministic and stochastic framework extends the the conven-

tional SSI algorithm structure used widely in power system mode estimation, to take the

effect of input on system response into account. It also applies subspace identification to de-

tect the presence of forced oscillations. One portion of the results are published in the form

of paper (69). Based on the results presented in the chapter it is noticed that the proposed

framework can reliably estimate the modes of the system in an online environment. More-

over, The framework can also provide information about the type of oscillation, forced or

natural. The proposed method enhances the capability of state-of-the-art and provide more

accurate information about oscillation characteristics. One of thing that is noticed during

the implementation that the computational time of the algorithm increases with the number

of PMU measurements. A large number of signals significantly increases the computational

time of the algorithm and hence can affect it’s real-time implementation. To decrease the

computational time a method is proposed in next chapter that reduces the number of signals

used in the algorithm from the available PMU measurements.



CHAPTER 3: SUBSPACE IDENTIFICATION BASED OPTIMAL SIGNAL

SELECTION FOR WIDE AREA MONITORING SYSTEM

In this chapter an approach for identifying and selecting optimum number of signals for

monitoring power system oscillations is proposed. First, a formal method for ranking the

signal based on their suitability for mode estimation is illustrated. The method considers

both spatial and temporal characteristics of the synchrophasor signals and classifies the

signals into strong and weak signals groups. Secondly, a method is shown for identifying

optimum number of signals evolved from spectral clustering technique. This method takes

into consideration of the affinity between two signals thus representing the characteristics

of oscillation propagation. The main advantages of the proposed architecture is that a)

such classifications can distinguish natural and forced oscillations typically observed in the

Phasor Measurement Unit (PMU) measurements, b) such classification can identify the most

suitable signals for oscillation mitigation, and c) the approach can find the closest signal to

the oscillation source. The efficacy of the proposed method is validated using IEEE 68 bus

and miniWECC 179 bus test systems and compared with the existing methods using IEEE

39 Bus test system.

3.1 Introduction

Recent widespread deployment of phasor measurement units (PMUs) have paved the way

for a lot of new synchrophasor applications. One important synchrophasor application is

the wide area measurement system (WAMS). WAMS enables the development of situational

awareness tools which provides operators information about real-time power system stability

and archives data which is used for post event analysis. One key indicator of power system

stability is the oscillation modes and the associated damping. For reliable operation of the

power system it is pivotal for all the modes to be well damped. Recent report from North

American Electric Reliability Corporation (NERC) lists several oscillatory events observed
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in Eastern,Western and ERCOT interconnections (19). Traditionally, such oscillatory be-

haviours related to small signal stability is studied using modal analysis of linearized power

system models . But, post event analysis of August 10, 1996 blackout reveals significant

mismatch between the oscillation characteristics predicted from modal analysis and the ac-

tual oscillations observed in the system (20). Several events like this has shown the need

of measurement based mode estimation methods and has drawn significant attention from

researchers in past couple of decades.

Several methods have been proposed by the researchers for mode estimation using PMU

measurements. These methods have been categorized into three categories depending on

the type of measured power system responses a) ringdown b) mode meter and c) probing

(21). Ringdown response means the response of a the system following a large disturbance

(e.g faults, line/generation trip etc) and mode estimation methods for ringdowns signals

are prony, matrix pencil, eigensystem realization. Mode meter methods are yule-walker

parameter estimation, least mean square method, stochastic subspace identification etc.

These methods are used to extract modal information from ambient data which represents

the continuous random load variations occurring the system (22).Probing response means

the response of the system when a low intrinsic signal is injected to excite and estimate

system modes (23).

Moreover, careful investigation of the PMU data has revealed not all the oscillations are

related to system electromechanical modes which in sense means not an inherent character-

istics of the system, rather are because of periodic external disturbance. Such oscillations

are termed as forced oscillations and has been observed in power system across Europe

(24), North America (25) etc. Irrespective of the oscillation type it is important to detect

the oscillation frequency and damping for both ringdown and ambient conditions. One key

characteristic of oscillations is that oscillatory behaviour is not observable in all available

PMU signals and hence does not provide enough information to estimate the modes. For

most of the available mode estimation methods only a handful of PMU signals which are

selected based on prior knowledge of the system are used. Another limitation is most of the

time such methods are tuned to monitor the damping of previously known inter-area modes.
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Furthermore, concurrent use of large number of PMU signals affect the computational time

of existing algorithms. Another important requirement which has been mentioned in NERC

reliability guideline (25), is to determine to what extent an oscillation is affecting in the sys-

tem. This helps to coordinate between multiple regional coordinators which in turn helps

in taking proper corrective steps. All these consideration leads to the concept of finding

optimal group of signals which are suitable for mode estimation as well as gives information

about the spread of the oscillations.

Authors in (26) has used a two level estimation architecture to use large number of PMU

signals and uses weighting factors to determine signal quality. Authors have shown that

if an ISO running a mode estimation tool is not monitoring the right PMU signal then it

might miss the oscillatory behaviour. A modal power contribution (MPC) index is proposed

in (27) to rank signal according their suitability for mode estimation. But these methods

are based on heuristic approach and does not provide any mathematical proof. Authors

in (4) proposes an analytic expression for estimating the variance of damping ratio which

uses only identified system parameters. But, the proposed method ranks signals for one

oscillatory mode at a time and can not account for multiple modes simultaneously. In this

paper a spectral clustering based grouping method is used which first characterizes each

PMU signals in terms of identified subspaces. Then it calculates the affinity between the

subspaces identified at each location to form a fully connected similarity graph. Spectral

clustering is applied on the similarity graph to select the optimal group of signals. The

proposed grouping selects optimal signals for ambient and ringdown condition which ensures

less variance of the damping ratio. Additionally, such grouping reduces number of signals

to be shared among different utilities or regional operators in the wake of system wide

oscillations. The proposed method is applied on synthetic signals from IEEE 68 bus system

for ambient conditions and then compared with other signal selection methods (4),(27) on

IEEE 39 Bus test system. It is then applied on reduced WECC 179 bus system to show the

advantage of proposed grouping in coordination between different utilities.

The main contributions of the proposed approach presented in this chapter are,

• A general method for ranking the synchrophasor signals for mode estimation methods
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using both ringdown and ambient data.

• The developed method considers both the spatial and temporal characteristics of

synchrophasor signals and takes that into account to classify the signals into strong

and weak groups.

• The proposed methods can select optimal signals in the presence of multiple oscillation

modes.

3.2 Problem Formulation and Proposed Methodology

In this section, mainly first power system propagation characteristics are described. Then

subspace affinity is defined and a method for grouping signal based on spectral clustering is

introduced. Also a method for reconstructing signal mode shape based on network sensitiv-

ities have been proposed.

3.2.1 Preliminaries

A power grid with network equation of a n machine system can be written as

IG = YREG (3.1)

where YRεRn×n is the reduced admittance matrix after eliminating all the nodes apart

from generator nodes. EG is the generator internal source voltage vector and IG is the

generator current injection vector. From (3.1), the ith row and jth column element of YR

can be written as

yij = Gij + jBij =
1

Rij + jXij
(3.2)
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Let the electric power output(Pe) of ith machine is

Pei = Real(EiIi
∗) = Real(Ei

n∑
j=1

yijE
∗
j ) (3.3)

= E2
i Gii +

n∑
j=1,j 6=i

EiEj[Bijsin(δi − δj) +Gijcos(δi − δj)] (3.4)

= E2
i Gii +

n∑
j=1,j 6=i

[Cijsin(δi − δj) +Dijcos(δi − δj)] (3.5)

Cij = EiEjBij, Dij = EiEjGij (3.6)

Per-unitizing Pei at an initial operating point (δ = δi − δj = δ0),

Tei = Pei (3.7)

where

∆Tei =
∂Tei
∂δ

∆δ =
n∑

j=1,j 6=i
[Cijcosδ0 −Dijsinδ0]∆δ (3.8)

Generalizing, for ith machine in a n machine system

d

dt
(∆ωi) =

(Pmi − Pei −Di∆ωi)

2Hi
(3.9)

d

dt
(δi) = ω0∆ωi (3.10)

For a n-machine classical (only considers the swing equation) model, the state-space repre-
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sentation of the electromechanical model is ∆ω̇

∆δ̇

 =

 MKD MKS

ω0.In 0


 ∆ω

∆δ

 (3.11)

∆ω̇ =

[
∆ω1 · · · ∆ωn

]
∆δ̇ =

[
∆δ1 · · · ∆δn

]
M = diag(

1

2Hi
)

KD = diag(KDi)

KS = diag(KSij)

KSij =
n∑

j=1,j 6=i
[Cijcosδij0 −Dijsinδij0] (3.12)

where i, j = 1, ..., n

The time response of the machine speed and rotor angle deviation of free state components

can then be represented as

∆ωi(t) =
n∑
i=1

n∑
j=1

Cijψije
λit (3.13)

where

Cij =
n∑
i=1

n∑
j=1

ψijXj(0) (3.14)

3.2.2 Oscillation Propagation Characteristics

Once excited, oscillation propagation in the power grid (the magnitude and phase angle

at different location) depends on several factors such as damping of the machine(s), network

topology, operating conditions, stress level of the power system, disturbance severity etc. It

can be stated that the an oscillation mode has different magnitude and phase at different
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locations it varies with time.

A oscillation mode has different magnitude and phase at different location in power system

and it varies with time. Let eigenvalue λi = σi+jωi, where σi represents the damping and

ωi represent the oscillation frequency. Then the time domain response measured at different

location given by (3.13) can be expanded as

∆ωi(t) =

n∑
i=1

n∑
j=1

|φMij |∠φAij |CMij |∠CAijeσitejωit (3.15)

where

|φMij |∠φAij =
−KSij

KDi +
√

(K2
Di − 8HiKSijω0)

and

|ψMij |∠φAij = φ−1
ij = f(KSij ,KDi) (3.16)

With algebraic modifications

∆ωi(t) =
n∑
i=1

n∑
j=1

eσit[(acos(ωt)− bsin(ωt))︸ ︷︷ ︸
x

(3.17)

+j (asin(ωt) +Bcos(ωt))︸ ︷︷ ︸
y

] (3.18)

This can be summarized as

∆ωi(t) =

n∑
i=1

n∑
j=1

eσit|
√
x2 + y2|∠tan−1 y

x
(3.19)

From (3.18) it can be concluded that the magnitude and phase angle of the changes in

the speed at different locations depends on y and x and specifically the value of a and b.

Further, from (3.2.2) and (3.16, it is observed that the magnitude and angle increases if Ksij

increases and decreases if KDi increases. Also, it can be observed that for a fixed initial

condition the value of ksij increases if the susceptance (Bij) of the network increases or
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conductance (Gij) of the network decreases. This two parameters are inversely proportional

to the network impedance as shown in (5.35). Finally, this proofs that oscillation phase and

magnitude varies at different locations in the power system.

For a simple two machine system the second order model of each machine can be repre-

sented as (3.20),

A =

 ∆ω̇

∆δ̇

 =

 KDi
2Hi

MKSi
2Hi

ω0 0


 ∆ω

∆δ

 (3.20)

Singular value decomposition is performed on the matrix AA′ to obtain the left orthonor-

mal basis U1 of the matrix as shown in (3.21)

W = AA′ =

 K2
Di+K

2
Si

4H2
−KDiω0

2Hi

−KDiw0
2Hi

ω2
0

 (3.21)

Eigenvalues of this matrix is calculated as,

λ1,2 =
K2

Di + 4ω2
0H

2
i +K2

si
8H2

i

±
j
√(
−K2

Di − 4ω2
0H

2
i −K2

si
)

2 − 16ω2
0H

2
iK

2
si

8H2
i

(3.22)

The subspaces identified at different locations has different

3.2.3 Subspace Identification Method

Let us denote the PMU measurements obtained from a p bus power system at time t

as Y(t)εRp. The high dimensional PMU data recorded in power systems has a low rank

property. This property has been used significantly to recover missing data (70), classifying

events (63).The time series data of window length l at each PMU location can be expressed
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Gen 1 Gen 2

V1 V2

R jX

Figure 3.1: Two machine system.

Figure 3.2: Effect of damping and network parameter on the machine speed deviation.

as,

Yx(t) =

[
yx(t− l) . . . yx(t− 1) yx(t)

]T
l×l

x = 1, 2, ..., p (3.23)

These PMU time series data is used to identify the system dominant modes. From the

measurement data first block Hankel matrices are formed as below,
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Hx
2i×j

=

[
Ypx
Yfx

]
=



yx(1) · · · yx(j)

yx(2) · · · yx(j + 1)

... · · ·
...

yx(i) · · · yx(j + i− 1)




yx(i+ 1) · · · yx(i+ j)

yx(i+ 2) · · · yx(i+ j + 1)

... · · ·
...

yx(2i) · · · yx(2i+ j − 1)



(3.24)

Based on Lemma 3.2.3, proper choice of number of rows(i) and the length of data(l)

ensures that the identified subspace can capture the dominant modes present in the system.

if m is the maximum desired order of the identified system and l is the length of data

vector, then number of block rows i ≥ m and number of column is j = l − 2i+ 1 assuming

that whole data length is used in the identification process.

Let m be the maximum number of order which needs to be identified(this can be known

from prior knowledge of the system). Maximum possible rank of the identified system is

Rank(Hx) = min(i, j). Now the data length l is

l =


finite, if Yxis from ringdown signal

inf, Yxis from ambient signal
(3.25)

If the whole data length is used then j >> i. The order of identified system n =

Rank(Hx) = i. So if the maximum identified system is m, then m = n = i. The number of

block rows i needs to be at least m. If whole data length needs to be used then number of

columns j = l − 2i+ 1.

Subspaces are identified with the use of orthogonal projection. Projection is an important

step to identify subspaces from ambient data where the signal to noise ratio is low. The
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time series PMU data is divided into two data sequence matrix Yfx and Ypx. The orthogonal

projection of Yfx on Ypx is given by,

Yfx = RAQ
T , Ypx = RBQ

T (3.26)

Ox = Yfx/Ypx = φ[Yfx,Ypx].φ[Ypx,Ypx].Ypx (3.27)

= [RAQ
TQRTB].[RBQ

TQRTB].RBQ
T

= RAR
T
B.[RBR

T
B]
†
.RBQ

T

The projected matrix (Ox) belongs to Ri×j . But the dominant number of modes in

the PMU data is less than the matrix dimension. To find the number of dominant modes

singular value decomposition (SVD) is performed on the matrices.

W1OxW2 = USV T = [UP1 UP2]

 SP1 0

0 SP2


 V T

P1

V T
P2

 (3.28)

= UP1SP1V
T
P1

Where, W1 and W2 is a weighting matrix which determines the state space basis for the

identified subspace and T is a similarity transformation.The extended observability matrix

at each PMU location is given by,

Γx = W−1
1 UP1S

1
2
P1T (3.29)

To show that the physical interpretation of identified extended observability matrix, we

use linear system analysis. Lets assume that the power system is linearized at an initial

operating point .Overall power system response can be represented as a discrete time linear

time invariant system
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xk+1 = Axk + Buk + wk (3.30)

yk = Cxk + Duk + vk

where ukεRm and where ykεRl are the observations at the time k of respectively p inputs

and q outputs, wkandvk represents the process noise and measurement noise respectively.

Let the order of matrix A be n. The expression for kth output is expressed as,

y(k) = CAkx(k) + CAk−1Bu(0) + ...+ CBu(k − 1) +Du(k)+

CAk−1w(0) + ...+ Cw(k − 1) + v(k) (3.31)

With the assumption that the pair A,C is observable the extended observability matrix

for a nth order system is given by,



y(0)

y(1)

· · ·

y(n− 1)


np×1

=



C

CA

· · ·

CAi−1


np×n

×X(0) (3.32)

Sr =

[
C CA . . . CAn−1

]T
np×n

(3.33)

From (3.37) it is clear that the extended observability matrix Sr is a function of system

matrices A and C and it can be derived from data sequences.So, if the proper output signals

are chosen then Sr contains information about the system modes.

Subspaces identified at different locations using the PMU data can capture the difference

in phase and magnitude of oscillating signals as seen in the time domain response of PMU

date.
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λx =
K2

Di + 4ω2
0H

2
i +K2

si
8H2

i

±

j
√(
−K2

Di − 4ω2
0H

2
i −K2

si
)

2 − 16ω2
0H

2
iK

2
si

8H2
i

(3.34)

Γx = U1S
1
2
1 where, U1εRi×n and S1εRn×n (3.35)

Extended observability matrix is given by when W1 = Iij and T = Iij

3.2.4 Methods for Calculating the Affinity Between the Subspaces

There are several factors that needs consideration in dealing with PMU data. Subspace

based methods deals with noise through the use of projections.

Then the system matrices Az and Cz can be extracted from Γx using least square solutions

(61).Then the modes of discrete Az matrix is converted to continuous domain using (5.18).

Thus the frequency and damping of dominant modes at each location can be calculated.

λi = σi + jωi =
1

T s
logEig(Az) (3.36)

The extracted subspaces is also used to calculate the oscillation shapes observed in the

measured data. These oscillation shapes gives the relative magnitude and phase between

different PMU signals which is also captured in the extended observability matrix Γx. The

oscillation shapes are different from the typical mode shapes of linear systems. This oscilla-

tion shape depends on initial conditions, system mode shapes as well as the system inputs.

Once the A matrix is identified the oscillation shape is calculated by calculating the right

Eigenvector φi using eqn. (3.37), where λi represents the identified dominant modes .

Aφi = λiφi (3.37)
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3.2.5 Method of Signal Clustering Based on Subspace Affinity

The intuition behind identifying the subspace is that the subspace captures the modal

characteristics of system for a specific operating condition, disturbance magnitude and dis-

turbance location. The affinity between the subspaces as seen at different location gives

an indication of similarity between the signals at that locations. Let Sx be the subspace

extracted from the extended observability matrix Γx, calculated at the previous section 3.2.3

for each PMU signal. The affinity between two subspaces Si and Sj is calculated as,

Aij =

√
cos2θ1 + cos2θ2 + ......+ cos2θn

n
(3.38)

where, i, j = 1, 2, 3....n

θn = acos(U1(:, k)′.U2(:, k)), k = 1, 2, 3....n (3.39)

Where, U1 and U2 represents the orthonormal bases of Si and Sj respectively.vn is the

normalised length of the eigenvector. Ideally, Aij = 1 if both the PMU signals i and

j identifies same subspaces and Aij = 0 if the PMU signals i and j identifies different

independent subspaces.

A similarity matrix A is formed from the similarity graph shown in Figure. 4.4 and L is

the laplacian matrix.
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1

2

3

n

Figure 3.3: Similarity graph construction.

A =



A11 · · · A1n

A21 · · · A2n

... · · ·
...

An1 · · · Ann


(3.40)

D =


∑n

i=1W (1, i) · · · 0

... · · ·
...

0 · · ·
∑n

i=1W (n, i)

 (3.41)

L = D −A (3.42)

As mentioned in the seminal work on graph partitioning by the authors of (71), one key

criterion that ensures the optimal partitioning of graphs is the normalized cut between the

graphs. Minimizing normalized cut (Ncut) ensures the similarity within a group is high and

similarity between two different groups is low. If a graph G = (V,E) is partitioned into two

disjoint sets X and Y , then the Normalized cut is expressed as,
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Ncut(X,Y ) =
cut(X,Y )

assoc(X,V )
+

cut(X,Y )

assoc(Y, V )
(3.43)

where, (3.44)

cut(X,Y ) =
∑

aεX,bεY

A(a, b) (3.45)

assoc(X,V ) =
∑

aεX,cεV

A(a, c) (3.46)

assoc(Y, V ) =
∑

bεY,cεV

A(b, c) (3.47)

Ncut(X,Y ) =

∑
(xi=1,xj=−1)−Aijxixj∑

xi=1(
∑n

i=1

∑n
j=1A(i, j))

(3.48)

+

∑
(xi=−1,xj=1)−Aijxixj∑

xi=−1(
∑n

i=1

∑n
j=1A(i, j))

where, assoc(X,V ) represents the total connections from nodes in group X to all the nodes

in the graph and assoc(Y, V ).With the help of Rayleigh quotient (72) it is proven that

finding the optimal solution of the problem of minxNcut(x) is similar to finding the second

smallest eigenvector of the laplacian matrix L (71) , where x is indicator vector and its value

1 means a node belongs to group X and −1 means a node belongs to group Y . However,

there are some practical challenges in performing this clustering for practical data set. The

indicator value is not always discrete in the second smallest eigenvector(Vss) and can often

take continuous values. It creates a problem of how to divide the values in the two groups

to form to clusters. In this paper, an dynamic optimization is run to find the splitting point

value C that minimizes Ncut(x) value. The splitting values are chosen by taking m evenly

spaced values between the minimum and maximum values of Vss. The splitting value which

gives minimum Ncut(x) is chosen and groups are created.

3.2.5.1 Second Eigenvector Calculation

Let S = S1, S2, ...Sp is a set of subspaces identified from p different PMU signal locations

and λi where i = 1, 2, ....n is the corresponding eigenvalues.The identified subspaces and

eigenvalues at two different location i and j are expressed in terms of system parameters as,
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ui11 = − 4ω0KDiHi(√
(−K2

Di − 4ω2
0H

2
i −K2

si)
2 − 16ω2

0H
2
iK

2
si −K2

Di + 4ω2
0H

2
i −K2

si

) (3.53)

× 1√
16ω2

0K
2
DiH

2
i(√

(−K2
Di−4ω2

0H
2
i −K2

si)2−16ω2
0H

2
iK

2
si−K

2
Di+4ω2

0H
2
i −K2

si

)
2

+ 1
(3.54)

Si =

 KDi
2Hi

KSi
2Hi

ω0.In 0

 ;Sj =

 KDj

2Hj

KSj

2Hj

ω0.In 0

 (3.49)

λi = {λi1, λi2, ..., λin}; λj = {λj1, λ
j
2, ..., λ

j
n} (3.50)

if (Si, Sj)εS and Si, Sj spans the same subspace, then affinity Aij− > 1 which in turn

means that the subspaces are closely related.The relation between the dominant modes of

the identified subspaces is written as,

λi = λj + γ (3.51)

γ =


ε, if affinity is close to 1

M, if affinity is close to 0

The orthonormal basis for subspace Si is given by ,

Ui =

 ui11 ui12

ui21 ui22

 (3.52)
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ui12 = − 4ω0KDiHi(
−
√

(−K2
Di − 4ω2

0H
2
i −K2

si)
2 − 16ω2

0H
2
iK

2
si −K2

Di + 4ω2
0H

2
i −K2

si

) (3.55)

1√
16ω2

0K
2
DiH

2
i(

−
√

(−K2
Di−4ω2

0H
2
i −K2

si)2−16ω2
0H

2
iK

2
si−K

2
Di+4ω2

0H
2
i −K2

si

)
2

+ 1
(3.56)

ui21 =
1√

16H2
i ω

2
0K

2
Di(

+
√

(−K2
Di−4H2

i ω
2
0−K2

si)2−16H2
i ω

2
0K

2
si−K2

Di+4H2
i ω

2
0−K2

Si

)
2

+ 1

(3.57)

ui22 =
1√

16H2
i ω

2
0K

2
Di(

−
√

(−K2
Di−4H2

i ω
2
0−K2

si)2−16H2
i ω

2
0K

2
si−K2

Di+4H2
i ω

2
0−K2

Si

)
2

+ 1

(3.58)

Similarly, the orthonormal basis for subspace Sj is,

Uj =

 uj11 uj12

uj21 uj22

 (3.59)

The affinity Aij between subspace Si and Sj is calculated as,

Aij =

∑n
i=1{cos−1(UT1iU1j)}

n
(3.60)

Without losing generality, the affinity matrix A from eqn. (3.40) is calculated for sub-

spaces Si and Sj as,
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Aij =

 Aii Aij

Aji Ajj

 (3.61)

Dij =

 Aii +Aij 0

0 Ajj +Aji

 (3.62)

Lij =

 (Aii +Aij)−Aii −Aij

−Aji (Ajj +Aji)−Ajj

 (3.63)

Eigenvalues and eigenvectors of the laplacian matrix Lij is given by eqn. (3.64). Lij is a

symmetric positive semi-definite matrix which means all the eigenvalues are non-negative.

λ1 = 0;λ2 =
1

Aij +Aji
=

1

2Aij
;Aij = Aji (3.64)

The corresponding eigenvector is given by,

Aij =


0.707

2A2
ij−1√

− 4

A2
ij

+ 1

A4
ij

+8A2
ij

0.707 2√
− 4

A2
ij

+ 1

A4
ij

+8

 (3.65)

3.2.6 Generation of Unobserved Network Variables

Power system has a limited number of PMU installed throughout the system. So, all the

network variables associated with all the buses are not observable from the PMU measure-

ments. So, there can be instances when the bus where a particular oscillation frequency is

most prominent do not have a PMU located at it’s location. This creates a need for a method

that can help generating the network variables at different buses with PMU measurements

from other buses. Authors in (73) has proposed a method for tracking the dominant oscilla-

tion path based on network sensitivities. In this work, the concept is used and only voltage

sensitivities are used to find oscillation shape at unobserved PMU locations. Figure 4.1
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Using the fully connected graph create the 
Laplacian matrix L as shown  in eqn. (X-X)

Compute the eigenvectors (u1,u2, …. un) of the 
form  Wu Du

Order the values of second smallest 
eigenvector u2 at a ascending order 

Perform dynamic optimization to split groups 
based on minimum Ncut as described in 

section II.C

Use the new group of signals to calculate 
subspaces and the similarity graph

Is Ncut < Threshold ?

End

No

Yes

Figure 3.4: Flow chart for spectral clustering.

shows the n bus power system network with additional N bus for machine internal voltages.

Loads are modeled as constant impedance and are added to the admittance matrix.So, cur-

rent injections at all other nodes other than the generator nodes are zero. The node voltage

equations for the network can be expanded as,
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 0

IN

 =

 Ynn YnN

YT
nN YNN


 Vn

En

 (3.66)

Vn = −Y−1nnYnNEN (3.67)

Where, IN denotes generator current injections, EN refers to the generator internal volt-

ages and Vn represents bus voltages. Equation (3.67) represents the bus voltages as a

function of internal voltages and −Y−1nnYnN depends on the network parameters.The gen-

eralised expression for bus voltage Vi can be written as,

Vi =
N∑
j=1

αijEj;α = −Y−1nnYnN = η∠γ (3.68)

As shown in (3.68) the bus voltage depends on the magnitude and angle of machine

internal voltage. A change in machine internal voltages causes the bus voltages to change. A

generalised expression for network sensitivities have been derived in (73). Voltage magnitude

sensitivities for i− th bus with respect to the j− th machine internal voltage and angles are

given by,

∂Vi
∂δj

=


β
|Vi| , j = p

−β
|Vi| , j 6= p

(3.69)

β = −
N−1∑
x=1

N∑
y=x+1

αixαiyExEysin(δx + γix − δy + γiy) (3.70)

+

N−1∑
x=1,x 6=j

N∑
y=x+1,y 6=j

αixαiyExEysin(δx + γix − δy + γiy)

|Vi| =

√√√√(
N∑
j=1

ηijEj)2 (3.71)
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∂θi
∂δj

=
1

|Vi|2
[η2
ijE

2
j+ (3.72)

N∑
y=1,y 6=j

αixαiyExEycos(δj + γij − δy + γiy)]

Now the network sensitivities can be used to estimate the oscillation shape at different

buses if the mode shapes are known at the machine terminals. The mode shapes at each

machine terminal are obtained by calculating the right eigenvector of the identified A matrix

from section 3.2.3 for each PMU location . The mode shapes as observed in the bus voltage

magnitude and angle for the network buses are given by,

RV =


∂V1
∂δ1

· · · ∂V1
∂δj

...
. . .

...

∂Vn
∂δ1

· · · ∂Vn
∂δj


︸ ︷︷ ︸

SV


W1

...

WN

 (3.73)

Rθ =


∂θ1
∂δ1

· · · ∂θ1
∂δj

...
. . .

...

∂θn
∂δ1

· · · ∂θn
∂δj


︸ ︷︷ ︸

Sθ


W1

...

WN

 (3.74)

Where, RVεRn×1 and RθεRn×1 are the network bus voltage magnitude and angle os-

cillation shapes and SVεRn×N and SθεRn×N are voltage magnitude and angle sensitivity

matrices. Oscillation mode shapes at different locations can be extracted from the PMU

measurements using the identified subspaces. If PMU measurements are not available at

every location then equations (3.73) and (3.74) can be used along with the mode shapes

measured at available PMU locations to estimate the mode shapes at other unobserved net-

work buses.This concept is demonstrated through a simple small system as shown in Fig.

3.6. The system matrix is calculated as below,

The eigenvalue analysis shows it has an oscillatory modes of 2.235 Hz and 3.83% damping.
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Power System
Network
(n Bus)

G1

𝐸1∠𝛿1 

1n+1

𝑥𝑑1 

GN

𝐸𝑁∠𝛿𝑁 

nn+N

𝑥𝑑𝑁  

Figure 3.5: N machine n bus power system network.

V2 V3 

XL2 = j0.5 pu

Gen 1

V1

Xd = j0.30 pu

H = 3.5  MW.s/MVA

XL1 = j0.5 pu

Gen 1

Xd = j0.30 pu
H = 3.5  MW.s/MVA

Figure 3.6: Two machine Three Bus system.

Figure 3.7: Validation of Analytic formula and Numerical simulation for Bus 3 mode
shape.

The mode shape associated with machine angles are [0.6940∠−144.92 0.7190∠0]. The

network sensitivities and the mode shapes calculated using the method is compared with

numerical simulation in Table 3.5.

3.3 Simulation Results

In order to illustrate the application of the proposed methodology for both ringdown and

ambient system responses, reduced WECC 179 bus test system (1) and the IEEE 68 bus
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Table 3.1: Network Buses Sensitivity Calculation and Mode shapes validation.

Bus ∂Vn
∂δ1

∂Vn
∂δ2

Mode Shapes
Analytic Numerical
Formula Simulation

1 0.0415 0.0179 0.0197∠−122.87 0.0187∠−120.42
2 0.0240 0.0405 0.0180∠−31.72 0.0189∠−30.15
3 0.0315 0.0340 0.0142∠−62.44 0.0149∠−63.19

benchmark test system (10) are used. Time domain simulated measurements from these sys-

tems can be considered as synthetic PMU measurements,making the method suitable using

synchrophasors. Different scenarios are studied to show the performance of the proposed

method.

3.3.1 Signal Selection for Ringdown Condition

WECC system is consist of a reduced WECC 179-bus, 29-machine system (1). The one-

line diagram of the system is shown in Fig. 3.8. All generators are represented as a classical

second-order differential model reflecting the motion of the rotor; damping parameter D

for all generators are set to 4 in base case and all loads are modeled as constant MVA.

Only generators where periodic disturbances are applied are represented as detailed model.

Several test cases are provided covering different power system responses which includes

normal oscillatory events because of local and inter-area modes, forced oscillations events,

phenomenon of resonance, oscillations due to multiple oscillation sources etc. several cases

in the library have been tested using the proposed method.

3.3.1.1 Case 1: Poorly Damped Natural Oscillation

Case 1 shows the step by step application of the proposed method for one of the cases

in the test case library (1). In this case, the base model is modified to create a poorly

damped local oscillation mode of 1.41 Hz with 0.01% damping. The damping of generator

connected at bus 45 and bus 159 is modified from 4 to −2 and 4 to 1 respectively to create

this scenario. It is assumed that there are PMU installed at the terminal of all 29 generator

buses. Now the proposed method is applied to perform signal classification which helps the

applications like mode estimation, oscillation classification, event classification etc. Fig. 3.9
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Figure 3.8: WECC 179 Bus Test System (1).

shows the time domain response of the system after a three phase fault at bus 159 for 0.05

second. Using these signals two sets of subspaces are calculated (subspaces with projection

and without projection ) as mentioned in sub section 3.2.3. Then the affinity between the

subspaces are calculated and two weighted matrix Wwp and Wp are calculated as mentioned

in sub section 3.2.4. Then the similarity matrix W is calculated using the two weighted

matrices. Fig. 3.10 shows the matrix W for the first iteration of the proposed met

Al the diagonal elements are 1 indicating that the self affinity of the subspaces. Fig. 3.11

shows the second eigenvector values for each iteration and 3.12 shows the groups at each
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iteration. It is noticeable that after each iteration the number of signals in the groups gets

reduced. when the difference between values of second eigenvector is less than the threshold,

the iterations stop. In this case, it takes 5 iterations to converge. After that, signal at bus

45 has the lowest value and it is identified as an input signal or is assumed to be close to

the input.

Figure 3.9: Time domain frequency signals of all the PMU locations.
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Figure 3.10: Case 1, Laplacian matrix for the first iteration.

3.3.1.2 Case 2: Resonance with Poorly Damped Natural Oscillation

In this case, the source bus signal 65 leads the other dominant signal 35 for the oscillation

frequency of 0.37 Hz. In that case, methods based on phase shift is not able to track the

input signals properly. The proposed method does not look into the phase shift between

signals explicitly rather it looks into the subspace identified from the signals. Table. 3.2
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Figure 3.11: Case 1, values of second eigenvector of W for each iteration.

36 30 40 35 4 6 70 103 138 159

Iteration 1 9 11 43 45 77 140 144 148 65 162

13 79 47 15 149 112 18 116 118

159 45 4 9 4 13 162 118 149 144

Iteration 2
138 148

162 13 9 4 45 159Iteration 3

159 45 4Iteration 4

45 159Iteration 5

Figure 3.12: Case 1, Groups of signals for each iteration.

shows that for case PD_2 the proposed method ranked the signals as 65 and 35. The signal

ranked 1 is considered to be close to the actual source. So, the proposed method can reliably

classify the signals.
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Table 3.2: Signal classification for the cases in test case library(1).

Case D Freq Damping Source Fault Description Signal
(Hz) Ratio Bus Bus Rank

PD_1 D45 =-2 1.41 0.01% 45 159 1 Source 45
D159 =1 1 local mode 159

PD_2 D35 =0.5 0.37 0.02% 65 79 1 Source 65
D65 =-1.5 1 inter-area 35

mode
PD_3 D6 =2 0.46 2.22% 11 30 1 Source 11

D11 =-6 0.70 1.15% 1 unstable local 30
1.63 -0.54% 2 and 1 inter 35

and area mode
PD_8 D45 =-2.5 1.27 -1.06% 45 159 2 Source 45

D159 =-1.5 1.41 -0.22% 36 2 unstable 36
D36 =-1 modes 159

Table 3.3: Signal classification for the forced oscillation cases in test case library(1).

Case Injected Freq of Source Description Signal
Case Signal Freq of (Hz) Location Rank
F_1 Sinusoidal 0.86 4 Resonance with 4,162,9

local 0.86Hz mode
F_2 Sinusoidal 0.86 79 Resonance with 79,65,35

local 0.86Hz mode
F_2 Sinusoidal 0.37 77 Resonance with 65,35,79,77

inter-area 0.37Hz mode

3.3.2 Signal Selection for Ambient Conditions

Under normal operating condition,power system is always in motion because of random

load variations occurring continuously in the system. These responses are typically termed

as ambient response. The spectral analysis of ambient response shows that it can be ap-

proximated well by white noise (68). The IEEE 68 bus system from (10) is modified to add

governors to the machines. The modified system is simulated in real time digital simulator

(RTDS). To simulate ambient response,a white noise with a magnitude of 1% of each rated

load (active and reactive power) is added to the corresponding load and there are no other

disturbance in the system.
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Fig. 3.14 shows the frequency as observed at different PMU locations. Then the proposed

signal grouping algorithm is applied to these groups of signals to find the optimal number of

signals for monitoring an inter-area oscillation mode of 0.52 Hz. Fig. 3.15 shows the results

of grouping after each iteration. After the first iteration, it identifies 14 PMU locations

where the effect of the mode under study is most prominent. Moreover, it also points out

that the generators in the New England power system is oscillating against New York power

system. Iteration 2, further simplifies the groups by selecting 7 PMU locations. And finally,

after the third iteration, the optimal number of PMU locations are selected as bus 13, bus 18

and bus 14. The grouping process ends as the Ncut value exceeds the predefined threshold

value. To validate that these are the optimal signals the criterion for predicting the variance

of damping ratio from the identified model as proposed in (4), is applied for each iteration.

Fig. 3.16 shows the average variance of the estimated damping ratio for each iteration.

It shows that the estimated variance is decreasing with each iteration indicating that the

grouping process is filtering out signals which gives a more accurate estimation.

Figure 3.13: IEEE 68 Bus study system with PMU location .
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Figure 3.14: Time domain frequency signals of all the PMU locations.

3.3.3 Comparison with State-of-the-Art

In this section the optimal signal selection method is compared with other methods from

the literature. Authors in (4) has compared the results of their proposed method with other

methods in literature. The same IEEE 39 bus test system is used to compare the results of

proposed method in this paper with other methods. IEEE 39 bus test system has an inter-

area oscillation frequency of 0.6618 Hz and a damping ratio of 6.94% where the dominant

state is related to the machine one speed. The frequency signals at each PMU locations are

taken as input for the proposed methods as well as the existing methods. Tables 3.5 and 3.4

summarizes the result. Table 3.5 shows the signal ranking after using the method mentioned

in (4).Table 3.4 shows the grouping obtained from the proposed method. It shows that the

optimal signals selected from the proposed method overlap with the signal ranking obtained

from the existing method. As a result of this, confirming the proposed method can give the

best signals for accurate estimation â the advantage over existing methods that the proposed

method does not require any signal pre-screening step and fast. It is also applicable in an

online environment unlike the proposed other methods.

3.4 Computational Time of the Proposed Method

In this section the computational time of the proposed method is accessed and the results

are compared with the most recent method of optimal signal selection in (4). Both the

algorithms are implemented in an off-the-shelf personal computer (Intel i5, 2.4 GHz CPU,16
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Iteration 1

Iteration 2

Iteration 3

Figure 3.15: IEEE 68 Bus study system grouping for different iterations .
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Figure 3.16: Average estimated damping ratio variance for each iterations .

Table 3.4: Signal groups based on proposed method.

Iteration Signals Variance
Iteration 1 31,33,34,32,39,37,30 0.136
Iteration 2 31,33,34,32,39 0.128
Iteration 3 31,33,34 0.121
Iteration 4 31,34 0.118

Table 3.5: Comparison of Different Signal Selection Algorithm for IEEE 39 Bus Test
System.

PEC (4) MPC(74) CF1(75)

31 0.115 33 0.123 32 0.136
34 0.121 34 0.131 34 0.148
33 0.129 31 0.145 31 0.157
32 0.137 37 0.152 33 0.169
39 0.142 30 0.165 30 0.181
30 0.149 32 0.169 39 0.189
37 0.162 39 0.175 35 0.197
36 0.184 35 0.189 37 0.205
35 0.199 36 0.196 36 0.215
29 0.230 29 0.220 29 0.235

GB of RAM). Figure 3.18 shows the computational time of the proposed algorithm for

different model orders and different number of signals. The convergence time of the proposed

signal selection time increases with both model order and number of signals. Fig. 3.19
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Figure 3.17: IEEE 39 Bus study system with PMU location.

Figure 3.18: Computational time of the proposed method.

compares the results of proposed method with existing method. And the results show

that the proposed method is able to group signals converges faster compare to the existing

method. This is mainly due to the recursive subspace algorithm used for identification

and the proposed method does not require any signal pre-slection based on Fast Fourier

Transform (FFT) unlike the existing method.
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Figure 3.19: Computational time comparison with existing method (4) a)Time vs
Model Order and b)Time vs Number of Signals.

3.5 Summary

In this chapter, a method for selecting optimal signals is presented. The proposed method

can find an optimal group of signals for both ringdown and ambient conditions. The results

based on IEEE 68 bus test system and WECC 179 bus system show that not only the

proposed method can select the optimal signals, the optimal group also contains the source

of forced oscillations. This can help in narrowing down the search area for the oscillation

source location. The proposed method is implementable online and is faster than other

states of the art methods available. The proposed method is used in the next chapter to

develop an approach for locating the oscillation source.



CHAPTER 4: MEASUREMENT BASED OSCILLATION SOURCE LOCATION

METHOD FOR MODERN POWER SYSTEM

In this chapter, a new method is presented, which identifies the location of the oscillation

source using subspace-based identification method developed in earlier chapters. The pro-

posed method derives a relationship between the phase angle of power and frequency signal

of a machine from the energy function of the device. Then the relative phase difference

between the machine power and frequency phase is utilized to locate the source of sustained

oscillations. The proposed method can use the existing measurements to estimate the mode

shapes of unobserved buses and can help to identify the location of forced oscillation more

precisely. The efficacy of the proposed method is evaluated on the two-area system.

4.1 Introduction

Power system oscillations poses a serious threat to the reliable operation of the modern

power grid.all the oscillatory modes need to be well damped for reliable operation of the

power grid (35). Monitoring and analysis of the data captured by phasor measurement

units (PMU) has revealed several instances of sustained oscillations in different power grids

throughout the world (76),(77). The frequency range of these oscillations ranged from 0.05

Hz to 2 Hz. Depending on the source of oscillations these oscillations are broadly classified

into two categories 1) natural oscillations and 2) forced oscillations. Natural oscillations

are inherent characteristics of the system and typically caused by large power transfer over

a weak and stressed tie-line, bad tuning of power system controllers etc. On the other

hand, forced oscillations are caused by periodic external disturbances. The cause of these

disturbances include but not limited to equipment failures, cyclic loads, control system

malfunctions etc (78). Any type of sustained oscillations can lead to unstable grid conditions

and can potentially cause cascading outages. It also can cause mechanical stress on the

generator turbines which in turn can reduce the lifespan of the equipment and increased
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maintenance cost. Depending on the type of sustained oscillations the mitigation method

can be different. Regardless of the type, most efficient and safe way to mitigate oscillation

is to locate the source of oscillation and disconnect the source from the power system.

However, locating the source of oscillations is not a trivial task. Over the past decade,

several research work has been conducted to develop methods that can reliably locate the

source of sustained oscillations. Authors in (79) have provided a comprehensive review of

all the oscillation source location method available in the literature. Authors have also

pointed out the pros and cons of each method. All these methods tries to analyse different

attributes of oscillations to locate the source of oscillation. Such attributes include oscillation

magnitude, phase angles, statistical signature, propagation speed and oscillation energy.

Unfortunately, most of the methods are not practical for implementing in a power system as

an oscillation monitoring tool. Authors in (77) has proposed a method based on calculating

the dissipating energy of oscillations. The method tracks the dissipating energy flow in

the network and generator with the positive dissipating energy is termed as the source

of oscillations . This method is practically implemented in ISO-NE and only uses PMU

measurements to calculate the dissipating energy. Although this method provide satisfactory

results in practical scenarios the assumptions made in deriving the method needs further

investigation. Authors in (80) has reported that lossy network and constant impedance load

model can inject dissipating energy to the network and can lead to erroneous oscillation

source location(81). The method also depends on the estimation of sustained oscillation

frequency and on retrieving the phase and magnitude of all signals accurately through very

sensitive signal filtering.

One of the limitation of dissipating energy flow method (DEF) (77) is that it can only

locate the source upto buses where PMU measurements are available. So, it can only

point to a area close to the oscillation source if PMU measurement is not available at

the generator or plant bus. Authors in (82) proposes a method for locating the source of

oscillation using frequency response function (FRF). Authors proposes the formulation of

FRF for detailed machine model and then use that to locate the source of forced oscillations.

Energy based method (83) is further enhanced to develop a two stage approach to detect the
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source of oscillation up to control devices (governor and exciters) of the generators.However,

the proposed method uses empirical mode decomposition (EMD) and total least square

estimation to extract the phasor information of variable and is difficult to implement in an

online environment because of computational complexity.

In this chapter, a new method is proposed for locating the source of oscillations. It

uses the methods developed in previous chapter to construct the mode shapes for generator

buses which does not have PMU installed. Then it leverage the method based on subspace

affinity presented in previous chapter, for pre-selecting a group of potential oscillation source

location signals. After that it uses the shape of power and frequency signals and the phase

relationship between them to locate the source of oscillation source.

The main contributions of the proposed approach are :

• It can detect the source of sustained oscillation even if there are no PMUmeasurements

available at the source generator bus

• It can be implemented as a practical tool for oscillation source location.

• It requires less amount of signals to determine the oscillation energy flow direction.

The rest of the chapter is organised as follow, section 4.2 describes the proposed method-

ology and section 4.3 presents the simulation results. Finally, section 4.4 concludes the

chapter

4.2 Proposed Methodology

The proposed methodology has mainly three major steps a) extraction of unobserved

generator buses mode shape , 2) signal pre-selection using subspace affinity and 3) locating

the source of oscillations using phase relationship between generator power and frequency.

4.2.1 Extraction of Unobserved Machine Mode Shapes

Power system has a limited number of PMU installed throughout the system. So, all the

network variables associated with all the buses are not observable from the PMU measure-

ments. So, there can be instances when the bus where a particular oscillation frequency is

most prominent do not have a PMU located at it’s location. This creates a need for a method
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that can help generating the network variables at different buses with PMU measurements

from other buses. Authors in (73) has proposed a method for tracking the dominant oscilla-

tion path based on network sensitivities. In this work, the concept is used and only voltage

sensitivities are used to find oscillation shape at unobserved PMU locations. Figure 4.1

shows the n bus power system network with additional N bus for machine internal voltages.

Loads are modeled as constant impedance and are added to the admittance matrix.So, cur-

rent injections at all other nodes other than the generator nodes are zero. The node voltage

equations for the network can be expanded as,

 0

IN

 =

 Ynn YnN

YT
nN YNN


 Vn

En

 (4.1)

Vn = −Y−1nnYnNEN (4.2)

Where, IN denotes generator current injections, EN refers to the generator internal volt-

ages and Vn represents bus voltages. Equation (3.67) represents the bus voltages as a

function of internal voltages and −Y−1nnYnN depends on the network parameters.The gen-

eralised expression for bus voltage Vi can be written as,

Vi =

N∑
j=1

αijEj;α = −Y−1nnYnN = η∠γ (4.3)

As shown in (4.3) the bus voltage depends on the magnitude and angle of machine internal

voltage. A change in machine internal voltages causes the bus voltages to change. A gen-

eralised expression for network sensitivities have been derived in (73). Voltage magnitude

sensitivities for i− th bus with respect to the j− th machine internal voltage and angles are

given by,
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∂Vi
∂δj

=


β
|Vi| , j = p

−β
|Vi| , j 6= p

(4.4)

β = −
N−1∑
x=1

N∑
y=x+1

αixαiyExEysin(δx + γix − δy + γiy) (4.5)

+
N−1∑

x=1,x 6=j

N∑
y=x+1,y 6=j

αixαiyExEysin(δx + γix − δy + γiy)

|Vi| =

√√√√(
N∑
j=1

ηijEj)2 (4.6)

∂θi
∂δj

=
1

|Vi|2
[η2
ijE

2
j+ (4.7)

N∑
y=1,y 6=j

αixαiyExEycos(δj + γij − δy + γiy)]

Now the network sensitivities can be used to estimate the oscillation shape at different

buses if the mode shapes are known at the machine terminals. The mode shapes at each

machine terminal are obtained by calculating the right eigenvector of the identified A matrix

from the subspace identification methods developed in previous chapters for each PMU

location . The mode shapes as observed in the bus voltage magnitude and angle for the

network buses are given by,
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RV =


∂V1
∂δ1

· · · ∂V1
∂δj

...
. . .

...

∂Vn
∂δ1

· · · ∂Vn
∂δj


︸ ︷︷ ︸

SV


W1

...

WN

 (4.8)

Rθ =


∂θ1
∂δ1

· · · ∂θ1
∂δj

...
. . .

...

∂θn
∂δ1

· · · ∂θn
∂δj


︸ ︷︷ ︸

Sθ


W1

...

WN

 (4.9)

(4.10)

Where, RVεRn×1 and RθεRn×1 are the network bus voltage magnitude and angle os-

cillation shapes and SVεRn×N and SθεRn×N are voltage magnitude and angle sensitivity

matrices. Oscillation mode shapes at different locations can be extracted from the PMU

measurements using the identified subspaces. If PMU measurements are not available at

every location then equations (4.8) and (4.9) can be used along with the mode shapes mea-

sured at available PMU locations to estimate the mode shapes at other unobserved network

buses.This concept is demonstrated through a simple small system as shown in Fig. 4.2.

Typically PMU measures the voltage and current at the bus where it is located. similar

to voltage sensitivities current sensitivities can also be developed and later used to create

the current injection at unobserved PMU bus, The line current sensitivity in the line from

bus m to n with respect to the jth machine angle are given by,
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∂Imn
∂δj

=


α
|Imn| , j = p

−α
|Vi| , j 6= p

(4.11)

α = −
N−1∑
x=1

N∑
y=x+1

ΩmnpΩmnqEpEqsin(δp + ψmnp − δq − ψmnq)

+
N−1∑

x=1,x 6=j

N∑
y=x+1,q 6=j

ΩmnpΩmnqEpEqsin(δp + ψmnp − δq − ψmnq)

|Imn| =

√√√√√(
N∑
j=1

ΩmnjEj)

2

(4.12)

The line current angle sensitivity with respect to jth machine can be calculated as,

∂χmn
∂δj

=
1

|Imn|2
[Ω2
mnjE

2
j+ (4.13)

N∑
y=1,y 6=j

ΩmnjΩmnyEjEycos(δj + ψmnj − δy + ψmny)]

where, Ω is calculated from the pi model of a line segment between bus m and n. The

current flow in the line can be written as ,

Imn = (ymn + ym0)Vm − ymnvn (4.14)

(4.15)

Now the line current flow can be expanded to express in terms of machine internal voltages

by substituting Vm = ηmjEj where j = 1, 2, 3, ...n ,
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Imn =
N∑
j=1

(ymn0 + ymn)ηnjEj − ymnηnjEj (4.16)

=
N∑
j=1

ΩmnjEj (4.17)

where, Ωmnj = Ωmnj∠ψmnj and Ωmnj = |(ymn0 + ymn)ηnj − ymnηnj | and ψmnj =

∠[(ymn0 + ymn)ηnj − ymnηnj ]. Details of the derivation can be found in Appendix A.

Once the voltage and current sensitivities are calculated the deviation in bus votlage

magnitude and angles can be calculated as below,

∆V =


∂V1
∂δ1

· · · ∂V1
∂δj

...
. . .

...

∂Vn
∂δ1

· · · ∂Vn
∂δj


︸ ︷︷ ︸

CV δ


∆δ1

...

∆δN

 (4.18)

∆θ =


∂θ1
∂δ1

· · · ∂θ1
∂δj

...
. . .

...

∂θn
∂δ1

· · · ∂θn
∂δj


︸ ︷︷ ︸

Cθδ


∆δ1

...

∆δN

 (4.19)

(4.20)

where, ∆V is the bus voltage magnitude and ∆θ is bus angle.

The current magnitude deviation ∆I and angle deviation ∆χ is calculated in a similar

manner. The details of the derivation can be found in (73),

∆Imn = CImnδ∆δ (4.21)

∆χ = Cδ∆δ (4.22)

(4.23)
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The power deviation can be calculated from the voltage and current deviation values as,

∆Pmn = <[∆Vm∠∆(θ∆Imn∠∆χ)∗] (4.24)

If the generator terminal voltage is known then the internal voltage of the machine ter-

minal can be calculated,

∆Eju = Vm + Imjxj (4.25)

where Eju refer to the unknown machine bus voltage and δju is it’s angle. Then the speed

of the unknown machine bus ωju can be extracted by differentiating the angle with respect

to time as ωju =
d(δju)
dt

The eigenvalue analysis shows it has an oscillatory modes of 2.235 Hz and 3.83% damping.

The mode shape associated with machine angles are [0.6940∠−144.92 0.7190∠0]. The

network sensitivities and the mode shapes calculated using the method is compared with

numerical simulation in Table 3.5.

Power System
Network
(n Bus)

G1

𝐸1∠𝛿1 

1n+1

𝑥𝑑1 

GN

𝐸𝑁∠𝛿𝑁 

nn+N

𝑥𝑑𝑁  

Figure 4.1: N machine n bus power system network.

4.2.2 Signal Pre Selection Using Subspace Affinity

The intuition behind identifying the subspace is that the subspace captures the modal

characteristics of system for a specific operating condition, disturbance magnitude and dis-
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V2 V3 

XL2 = j0.5 pu

Gen 1

V1

Xd = j0.30 pu

H = 3.5  MW.s/MVA

XL1 = j0.5 pu

Gen 1

Xd = j0.30 pu
H = 3.5  MW.s/MVA

Figure 4.2: Two machine Three Bus system.

Figure 4.3: Validation of Analytic formula and Numerical simulation for Bus 3 mode
shape.

turbance location. The affinity between the subspaces as seen at different location gives

an indication of similarity between the signals at that locations. Let Sx be the subspace

extracted from the extended observability matrix Γx, calculated at the previous chapters for

each PMU signal. The affinity between two subspaces Si and Sj is calculated as,

Aij =

√
v1cos2θ1 + v2cos2θ2 + ......+ vncos2θn

n
(4.26)

where, i, j = 1, 2, 3....n

θn = acos(U1(:, k)′.U2(:, k)), k = 1, 2, 3....n (4.27)

Where, U1 and U2 represents the orthonormal bases of Si and Sj respectively.vn is the

normalised length of the eigenvector. Ideally, Aij = 1 if both the PMU signals i and

j identifies same subspaces and Aij = 0 if the PMU signals i and j identifies different

independent subspaces.

A similarity matrix A is formed from the similarity graph shown in Figure. 4.4 and L is
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1

2

3

n

Figure 4.4: Similarity graph for a)without projection and b) with projection .

the laplacian matrix.

A =



A11 · · · A1n

A21 · · · A2n

... · · ·
...

An1 · · · Ann


(4.28)

D =


∑n

i=1W (1, i) · · · 0

... · · ·
...

0 · · ·
∑n

i=1W (n, i)

 (4.29)

L = D −A (4.30)

As mentioned in the seminal work on graph partitioning by the authors of (71), one key

criterion that ensures the optimal partitioning of graphs is the normalized cut between the

graphs. Minimizing normalized cut (Ncut) ensures the similarity within a group is high and

similarity between two different groups is low. If a graph G = (V,E) is partitioned into two

disjoint sets X and Y , then the Normalized cut is expressed as,
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Ncut(X,Y ) =
cut(X,Y )

assoc(X,V )
+

cut(X,Y )

assoc(Y, V )
(4.31)

where, (4.32)

cut(X,Y ) =
∑

aεX,bεY

A(a, b) (4.33)

assoc(X,V ) =
∑

aεX,cεV

A(a, c) (4.34)

assoc(Y, V ) =
∑

bεY,cεV

A(b, c) (4.35)

Ncut(X,Y ) =

∑
(xi=1,xj=−1)−Aijxixj∑

xi=1(
∑n

i=1

∑n
j=1A(i, j))

(4.36)

+

∑
(xi=−1,xj=1)−Aijxixj∑

xi=−1(
∑n

i=1

∑n
j=1A(i, j))

where, assoc(X,V ) represents the total connections from nodes in group X to all the nodes

in the graph and assoc(Y, V ).With the help of Rayleigh quotient (72) it is proven that

finding the optimal solution of the problem of minxNcut(x) is similar to finding the second

smallest eigenvector of the laplacian matrix L (71) , where x is indicator vector and its value

1 means a node belongs to group X and −1 means a node belongs to group Y . However,

there are some practical challenges in performing this clustering for practical data set. The

indicator value is not always discrete in the second smallest eigenvector(Vss) and can often

take continuous values. It creates a problem of how to divide the values in the two groups

to form to clusters. In this paper, an dynamic optimization is run to find the splitting point

value C that minimizes Ncut(x) value. The splitting values are chosen by taking m evenly

spaced values between the minimum and maximum values of Vss. The splitting value which

gives minimum Ncut(x) is chosen and groups are created.

4.2.3 Oscillation Source Location Using Phase Relationship

In this section the phase relationship between the power and frequency of generator

signals are derived from energy functions. The phase relationship between the power and

energy gives indication about the direction of oscillation energy flow.The detailed energy
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function for generator models are not derive here. There is no generalised expression of

energy function for multi-machine system. Only the energy function expression exists for

single machine infinite bus models. Detailed derivation of the energy function can be found

from (83). The second order equation of the generator are given by,

The classical second order model of the generator is given by,

1

2H

d∆ω

dt
= ∆Pm −∆Pe −D∆ω (4.37)

d∆δ

dt
= ∆ω (4.38)

where, ∆ is the steady state deviation, Pm is the mechanical torque, Pe is the electrical

torque, H is the inertia constant and D is the damping torque coefficient. The energy

function of classical generator model is given by,

∫
=(−I∗GidUi) = (

1

2
Tji∆ωi

2 − Pmiδi) +

∫
Di∆ωi

2dt (4.39)

where, IGi is the ith generator current injection , Tj is the per unit moment of inertia.

The transient energy function can be expressed in Hamiltonian realisation form as below

,

Hmi =
1

2
Tji∆ωi

2 +

∫
∆Ped∆δi (4.40)

Let x = [∆δ∆ω], ∇H = [∆PeM∆ω]. The Hamiltonian realisation of (4.39) is ,

ẋ = T (x)∇H +G(x)u (4.41)

Ḣ = ∇HT ẋ (4.42)
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ẋ =

 0 1
M

−1
M

−D
M2

 [∆PeM∆ω]

 0 0

0 −1
M


 0

∆Pm

 (4.43)

Ḣ = EDM + EIM ;EDM = −D∆ω2;EiM = ∆Pm∆ω (4.44)

Here EDM is the machine dissipation energy damping and EI is the injection energy of

prime mover . After solving the equation (4.45) we get the oscillation energy output(84)

expression as EO = ∆Pm∆ω

The oscillation energy can be calculated as below ,

∆Pe = Apcos(ωf t+ φp) (4.45)

∆ω = Aωcos(ωf t+ φω) (4.46)∫
EOdt =

∫
∆Pe∆ωdt (4.47)

=

∫
1

2
ApAω[cos(φp − φomega)− cos(2ωf t+ φp + φomega)]dt (4.48)

=

∫
1

2
ApAωcos(φp − φω)dt (4.49)

where, Ap and Aω are the amplitudes and φp and φomega are the phases of ∆P and ∆ω

respectively. From the constant part of equation 4.45 it is seen that the oscillating energy will

be positive inf |φp−φω| ≤ 90 and it is negative if |φp−φω| ≥ 90. The positive value indicates

that the energy flows from bus i to bus j and the negative value indicates energy flows from

bus j to bus i. By tracking the flow of the oscillation energy the source of oscillation can be

detected.

4.3 Simulation Results

The two area system is studied to show the application of proposed method (9). The

model is simulated in real time digital simulator (RTDS) and software PMUs are used in

the simulation. In this test system, PMUs are not available at all generator buses. Different
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Figure 4.5: Flowchart of the proposed oscillation source location method.

cases are studied on this test system to test the peroformance of the proposed method.

4.3.1 Case 1:Single Frequency Oscillation Source

In this case a sinusoidal signal of 0.62 Hz is added as an external disturbance to the

governor set point of generator 1. This is added to simulate the behaviour of a forced

oscillations. In this case there are no PMU available at the terminal of the generators. So,

the first step is to reconstruct power and speed signal of unobserved generator 1.Then affinity
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Figure 4.6: Modified two area four machine system with PMU.

based grouping is done to pre-select only a handful buses as a potential source. And then

finally the phase difference between the power and speed signals are compared to find the

direction of oscillation energy flow. Then by tracking the flow of oscillation energy source is

located

4.3.1.1 Power and Speed Signal Reconstruction

In this section first the speed and power signal are reconstructed using the method de-

scribed previously in the chapter. Fig. 4.7 shows the comparison of the reconstructed signals

with the original signals.And the results show that the reconstructed signal follows the orig-

inal signal very closely. So, if PMU is not available at the generator terminal or close by

this method can be used to extract the modal information at the generator terminal.

4.3.1.2 Affinity based signal pre-selection

The affinity based grouping discussed in previous chapter have been used to find the

group of signals where the oscillatory mode of interest is more prominent. The similarity

graph is formed after calculating the affinity between each buses. After several iterations,

the clustering algorithm provides four buses as a potential location of oscillation source.

These buses are
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Figure 4.7: Power and speed signal reconstruction at generator 1.

4.3.1.3 Oscillation source location using the phasor relations

In this section the phase information of the power and speed signals are extracted using

eigenvectors obtained from subspace identification. Table 4.1 shows the angles for each bus

speed and branch power. Figure 4.8 shows the direction of energy flow in the network. By

investigating the direction it is concluded correctly that the generator 1 is the source of

oscillation.

Table 4.1: Case1: Oscillation Source Location .

Potential φω Branch φp |φp − φω| Energy
Location Direction

1 5.3 1-5 39.45 29.15 1->5
5 -30.2 5-6 -84.30 54.1 5->6
2 -154.8 2-6 -45.20 109.6 6->2
6 -111.3 6-7 -35.14 76.16 6->7
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Figure 4.8: Oscillation energy direction.

4.3.2 Case 2:Multiple Oscillation Source

In this case a sinusoidal signal of 0.6 Hz is added as an external disturbance to the governor

set point of generator 1 and another sinusoidal signal of 0.4 Hz is added to the governor set

point of generator 4. This is added to simulate the behaviour of a forced oscillations. In

this case there are no PMU available at the terminal of the generators. This is a case where

multiple sources are present with two different frequencies. The subspace affinity grouping

selects bus 1 ,5,2,6 as potential source locations for 0.6 Hz and bus 4,3,10,11 as potential

source locations for 0.4 Hz. Table 4.2 shows the angles for each bus speed and branch power

for 0.6 Hz and Table 4.3 shows for 0.4 Hz oscillation. Figure 4.9 shows the direction of

energy flow in the network. similar to case 1 by investigating the direction it is concluded

correctly that the generator 1 is the source of oscillation for 0.6 Hz oscillation frequency and

generator 4 is the oscillation source for 0.4 Hz oscillation frequency .

Table 4.2: Case2: Oscillation Source Location for 0.6 Hz .

Potential φω Branch φp |φp − φω| Energy
Location Direction

1 15.14 1-5 41.12 25.98 1->5
5 -38.48 5-6 -90.05 51.57 5->6
2 -168.2 2-6 -61.45 106.75 6->2
6 -101.4 6-7 -40.12 61.28 6->7



111

Table 4.3: Case2: Oscillation Source Location for 0.4 Hz .

Potential φω Branch φp |φp − φω| Energy
Location Direction

4 15.41 4-10 39.45 29.15 4->10
3 -75.10 3-11 19.70 94.8 11->3
10 -85.75 10-9 -38.41 47.34 10->9
11 -125.41 11-10 -35.14 90.27 10->11
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Figure 4.9: Oscillation energy direction.

4.4 Summary

In this chapter a method for locating the source of oscillation is proposed . The proposed

method can detect the source of oscillations even if there is no PMU measurements available

at the source generator buses. It gives accurate results for both single and multiple oscillation

sources. Instead of calculating the large expression of dissipating energy it calculates only

the phase difference between power and speed of each bus at the oscillation frequency.

The method is easier to implement in an online environment and is not sensitive to data

preprocessing. Location of oscillation source leads away the path to oscillation mitigation.

In the next chapter, a model measurement based method will be presented that helps to

capture the mismatch between model and measurement data.



CHAPTER 5: MEASUREMENT-MODEL BASED HYBRID APPROACH FOR MODEL

VALIDATION

In this chapter, a new perspective is presented which analyses and characterize power

system response based on developing the unmodeled dynamics of the system from event

based measurement data. The approach uses a Multiple Input Multiple Output (MIMO)

measurement based system identification that can be used to model the system dynamics

utilizing the real system measurements. The unmodeled response of the power system is

extracted using the model generated using measurements and the data from a linearized

model of the power system at the same operating condition. With this information, system

dynamics can be updated which can be further used for study and analysis of the grid

under varying operating conditions. The simulation results show that analyzing unmodeled

response helps to reliably detect the property of natural and forced oscillations. The results

of this chapter has been published in the form of papers (85),(86).

5.1 Introduction

Oscillations are inherent characteristics of dynamic systems. They are broadly classified

into electromagnetic and electromechanical oscillations. Electromagnetic oscillations have

high frequency and are generally well damped because of internal damping of the power

system. However, electromechanical oscillations have a lower frequency and requires addi-

tional controllers to damp. Based on the oscillation frequency electromechanical oscillations

are divide into local oscillations (0.7 Hz to 2 Hz) and inter-area oscillations (01 Hz to 0.8

Hz) (9). Growing and sustained oscillations pose a serious threat to the reliable operation

of the power system and limit the power transfer capacity of interconnected power systems

(35). Traditionally, oscillations have been studied as a part of stability studies for different

contingencies. Modes determined through modal analysis give the oscillations frequencies

and associated damping of each oscillations(9). Modal analysis gives the modes using a lin-
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earized model of power system but the actual system is nonlinear in nature. So, the actual

response of a power system model can be significantly different from the linearized response.

Authors in (9) present an analysis of the major power outage event occurred in western

North America on August 10, 1996 and they conclude that there was a significant difference

between the simulated model response and the actual system response. Although the simu-

lated response showed significant damping for the oscillatory modes in actual system, there

were negative damping which caused widespread outage. So, a model of the power system

cannot always reliably estimate the actual oscillation frequency and damping present in the

system.

Recently, real-time measurement devices such as phasor measurement unit (PMU) have

been installed throughout the power system and coverage area is increasing very fast (37).

PMU acquires data with a higher sample rate (120 or 240 samples per second offlate), and

this data is able to capture the fast changes happening in the power system. In the last

decades, several researchers have worked on these measurement data and several methods

have been proposed that can estimate the modes and mode shapes using these data (12).

Increased availability of PMU data allowed to capture oscillations in the frequency range

of 0.1 HZ to 2 Hz which are not part of system natural response rather they are created

by periodic external sources (38). These oscillations are termed as forced oscillations. The

sources of forced oscillations include but not limited to cyclic load, stable limit cycles, wind

plant controllers, malfunction of generator governor controller etc (39). The characteris-

tics of forced oscillations are different than natural electromechanical oscillations. To take

proper control action the type of oscillation needs to be identified. The authors of (5) have

shown analytically the characteristics of forced oscillations and natural oscillations but these

characteristics are difficult to extract if the oscillation sinusoids cannot be extracted from

the noise. In (40) authors present a method that can simultaneously detect natural and

forced oscillations, but the proposed method needs to be studied extensively for scenarios

mentioned in the test case library (41). In (42) authors propose a method which analyses

oscillation envelope shape to detect forced oscillation.

In spite of the advancements made in the measurement based methods on forced oscillation
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detection, these methods lack an analytic approach based on the mathematical model of the

power system. Several researchers have proposed different methods which take the linearized

model of the system and forms an analytic expression for characterizing the system response

to forced oscillations (43). However, these analytic methods work well for linearized models

but for the actual power system, the performance of these methods decreases because of

the nonlinearity and unmodeled dynamics. Nonlinearity can have a significant effect on the

estimated modes from measurement data (44). It is clear that system model update critical

to capture dynamic changes in the system. With the help of measurements that happens

after an event, these updates are possible and can be characterized as unmodel dynamics.

In this chapter, a new perspective is adopted to develop the unmodeled dynamics of the

system. In this approach first, a power system nonlinear model and a linearized model

at that same operating condition are developed simultaneously and same disturbances are

introduced in both the model. The response of both the models for different output signals is

compared every 1 minute. the difference between the actual nonlinear power system response

and the linearized model response accounts for the nonlinearity and unmodeled dynamics.

Stochastic combined deterministic stochastic subspace identification (RCDSSI)is applied to

these signals to estimate the modes and its damping.In recent years, a lot of research work

has been conducted to develop methods which can detect and distinguish between forced

and natural oscillations (87).(88). Some limitations of these methods include determining

the start time of oscillation, and online estimation of detection threshold. In this chapter, a

subspace identification based method is proposed which recursively identifies power system

model and uses an offline dictionary to transform the identified model in a predefined state-

space basis. Transforming the state space basis helps to compare the identified model with

power system small-signal model. This comparison helps to detect the effect of nonlinearity

and unmodeled dynamics (refer to power system components that are not modeled properly

in power system model). Simulation results from two test systems and IEEE 39 bus test

system show the efficacy of the proposed method. The main advantage of the proposed

architecture is that with the technique updated power system model can be developed. Also,

the estimated modes from the RCDSSI algorithm gives clear indication of the presence of
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oscillations in the system. The main contributions are that the architecture:

• Proposes a generalized recursive algorithm for subspace identification, which reduces

the computational burden by recursively performing Singular Value Decomposition

(SVD) and LQ factorization.

• Identifies the model where the states represent the physical states of the power sys-

tem. Identified model helps to understand the effect of nonlinearity and unmodeled

dynamics.

• Identifies model in a state-space that helps to predict the dynamic response of the

system, which is useful to predict the stability characteristics of the system.

The rest of the chapter is organized as follows. Section 5.2 provides a brief discussion on

the methodology proposed to analyze unmodeled dynamics of system response and how this

unmodeled response can be used to characterize system oscillations. Section 5.4 shows an

illustrative example. The simulation results for different scenarios are discussed in section

6.5, and one application is illustrated in Section IV. The paper is concluded and the ongoing

future work on this topic is discussed in section 5.7.

5.2 Proposed methodology

The proposed methodology is divided into three subsections. The first subsection discusses

on how to extract unmodeled response and the characteristics of unmodeled response. The

second section gives a brief description of the RCDSSI algorithm used for estimating system

modes from measurement data. And the third section discusses the flow chart of the overall

method.

5.2.1 Theory of Unmodeled Response

Fig. 5.1 shows the overall architecture of power system. Power system consists of many

dynamic components and is in a constant state of motion due to changes in system dynamics.

These dynamic changes can be due to load changes, control actions and known/unknown

network topology changes. Also, internal or external disturbances in the system can cause

changes in system dynamics. Mathematical models of power system have been used to
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Figure 5.1: Overall architecture of power system response (5).

study the behaviors of the power system and these models give an accurate representation

of the actual system if there are no unmodeled dynamics that exist in the system. However,

most often in the actual system, there are some unmodeled dynamics because of nonlinear

behaviors of loads, controllers etc. Unmodeled dynamics can be triggered due to events

that occur internal or external to the system and can cause the actual system response to

deviate a lot from the linearized response. Generally power system dynamic behaviors are

mathematically modeled as (9)

ẋ = f(x,u) (5.1)

ẏ = g(x,u)

where x is the state vector and it’s components xi is state variable, f is the nonlinear function

vector relating to the states and inputs to the rate of change of states, y is output vector and
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g is the nonlinear function relating state variables and inputs to the outputs. The solution

of (5.1) gives the state variables and output variables of the system.

To better understand and characterize the behaviour of power system, power system

models are linearized around a known operating point. The fully deterministic linearized

forms of equations can be represented as

ẋ = Ax + Bu (5.2)

ẏ = Cx + Du

where A is the state matrix of size n × n, B is the input matrix of size n × r, C is the

input matrix of size m × n and D is the feedforward matrix of size n × r. Performing

Laplace transform of (5.2), the frequency domain representation is obtained as shown in

(5.3). Rearranging (5.3) and after solving for output variables the expression for output is

represented as (5.4) and the details can be found in (9).

sx(s) = Ax(s) + Bu(s) (5.3)

˙y(s) = Cx(s) + Du(s)

y(s) = C[sI−A]−1[x(0) + Bu(s)] + Du(s) (5.4)

After assuming that output y is not directly dependant on input u and transforming state

variables, (5.4) can be rewritten as (5.5)

y(s) = [CΦ[sI− ∧]−1ΨB]u(s) = G(s)u(s) (5.5)

where Φ = [Φ1Φ2...Φn] is the right eigenvector and Ψ = [ΨT
1 ΨT

2 ...Ψ
T
n ] is the left

eigenvector. Eq. (5.5) is the general form of solution of output variables for linearized

systems. Now depending upon the input u(s), the output response y(s) can be varied.
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Inputs can be step changes or it can also be some periodic signals. Step changes in the

input triggers the natural response of the system and periodic disturbances creates forced

response. If the input is a step change then the the output variables of the system in time

domain can be represented as in (5.6) and is termed as linear response.

yLinear(t) =
n∑
i=1

CΦiΨiBeλit (5.6)

The input can also be a periodic signal and can be of the form u(t) = kejwt to represent

an external disturbance. Then the output response is termed as actual response and is given

by (5.7)

yActual(t) =

n∑
i=1

CΦiΨiB
k

jω − λi
(ejωt − eλit) (5.7)

The difference between actual and linear response is termed as unmodeled response and

for a linear system an analytic expression can be written in the form

yUnmodeled(t) = yActual(t)− yLinear(t) (5.8)

yUnmodeled(t) =
n∑
i=1

CΦiΨiB
k

λi − jω
(eλit − ejωt)−

n∑
i=1

CΦiΨiBeλit

Eq. (5.8) can be rearranged as

yUnmodeled(t) =

n∑
i=1

(CΦiΨiB
k

λi − jω
−CΦiΨiB)eλit (5.9)

−
n∑
i=1

(CΦiΨiB
k

λi − jω
)ejωt

Eq. (5.9) shows that the contribution of natural response is less in unmodeled response

compared to forced response in (5.7). In (5.9) a term is subtracted from the phase and
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magnitude contribution of natural frequencies which means these frequencies have less con-

tribution in the unmodeled response. Due to these characteristics, unmodeled response

can be used to study the characteristics of external periodic forced oscillations as forced

oscillations are more prominent in the unmodeled response.

There is no analytic expression for extracting unmodeled response from actual power

system measurement data. System linear response is subtracted from measurement data to

obtain the unmodeled response as given in (5.10)

yUnmodeled(t) = ymeasurement(t)− yLinear(t) (5.10)

Small Signal Study

Operating 
Condition

1

Offline Dictionary 
2 2 4 4 6 6

1 1 1 1 1 1 1 1

2 2 4 4 6 6

2 2 2 2 2 2 2 2

( , ), ( , ), ( , )..........( , )

( , ), ( , ), ( , )..........( , )

................................................................................

n n

M M M M M M M M

n n

M M M M M M M M

T D T D T D T D

T D T D T D T D

  

  

2 2 4 4 6 6

...

( , ), ( , ), ( , )..........( , )n n

Mi Mi Mi Mi Mi Mi Mi MiT D T D T D T D  

Operating 
Condition

2

Operating 
Condition

3

Operating 
Condition

i

n = Maximum Model 
Order

i = Number of operating 
Conditions  

2

1MT
1

n

MT 2

2MT 2

n

MT 2

3MT 3

n

MT 2

MiT n

MiT

Power System Model

Model 
Reduction

Model 
Reduction

Model 
Reduction

Model 
Reduction
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5.3 Methodology

Consider a power system response represented as a discrete time linear time invariant

system

xk+1 = Axk + Buk + wk (5.11)

yk = Cxk + Duk + vk

where ukεRm and ykεRl are the observations at the time constant k of respectively m inputs

and l outputs, wk and vk represents the process noise and measurement noise respectively, A

is state transition matrix, B is input matrix and C is output matrix. The output response

yk as observed in PMU measurements contains the effect of system dynamics as defined

by A, input signals uk, and also both process and measurement noises. The main goal

of the subspace based methods to extract information only pertaining to A matrix which

represents the system characteristics. The process is as follows.

5.3.1 Measurement Based Subspace Identification Models For Power Systems

From the PMU measurement data first input and output block Hankel matrices can be

formed as below

Hy =

[
Yp
Yf

]
=



y1 · · · yj

y2 · · · yj+1

... · · ·
...

yi · · · yj+i−1




yi+1 · · · yi+j

yi+2 · · · yi + i+ j + 1

... · · ·
...

y2i · · · y2i+j−1



εR2i×j (5.12)
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Hu =

[
Up
Uf

]
=



u1 · · · uj

u2 · · · uj+1

... · · ·
...

ui · · · uj+i−1




ui+1 · · · ui+j

ui+2 · · · ui + i+ j + 1

... · · ·
...

u2i · · · u2i+j−1



εR2i×j (5.13)

where i is the number of block rows which is an user-defined index and must be larger than

the order 2n of the system to capture all the system modes, and j = l − 2i + 1 and l is

data window length. The input and output block Hankel matrices are divided into past

and future input-output matrices Yp, Yf , Up and Uf . When only output measurements

are available with noise, then the system defined by (5.11) turns into a stochastic system

as input uk=0. The main goal of stochastic subspace identification (SSI) is to extract the

extended observability matrix Λi from the orthogonal projection of Yf on Yp. The orthogonal

projection can be computed using LQ decomposition,

H1:j
Ri×j

=

 Yp

Yf

 =

 L11 0

L21 L22

 (5.14)

Yf/Yp = L21Q
T
11;L21Q

T
11 = ΛiXi (5.15)

where Lij represents the lower triangular matrix of LQ decomposition and Qij represents

the orthogonal matrix. Eqn. (5.14) shows that the extended observability matrix (Λi) can

be calculated from the column space of L21.

The above can be represented as a combined deterministic-stochastic system identification

(CDSSI) using both input and output information to isolate only the system characteristics
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related to A matrix in (5.11). This can be written (89) as

Yp = ΛiXp +Hd
i Up + Y s

p (5.16)

Yf = ΛiXf +Hd
i Uf + Y s

f

Xf = AiXp + ∆iUp

where ∆i is the reverse extended controllability matrix, Hd
i is the low block triangular

Toeplitz matrix (61) and Y s
p ,Y s

f represents the stochastic part of the measured signals.

It is worth noting that only extracting Λi from the above set of equations is enough to ex-

tract the modal properties of the system. Λi can be extracted by applying LQ decomposition

on the subspace expanded by the row space of input/output block Hankel matrices.

H1:j
Ri×j

=


Uf

Wp

Yf

 =


L11 0 0

L21 L22 0

L31 L32 L33



QT11

QT21

QT31

 (5.17)

(Yf/(Uf )Wp) = ΛiXi/U
|
f = L32Q

T
21 (5.18)

where Wp is the combined subspace of both past input and output block Hankel matrices

Up and Yp. Eqn. (5.18) calculates the oblique projection of the future outputs on the past

input/output along with the future inputs. Column space of L32 is equal to the column space

of extended observability matrix Λi. So only extracting L32 from the LQ decomposition of

the whole subspace is enough to get the system characteristics.

The projected matrix O is expressed as,

O
Ri×j

=


L21, if only output measurements are used

L32, if both input and output are used
(5.19)
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Figure 5.3: Flow Chart for the proposed model validation framework.

5.3.2 Determining Weighting Factors for Identified Models

In subspace identification, the state-space matrices are only recovered up to within a sim-

ilarity transformation. This means although the response of the identified system matches

with the response of the actual system, the states of the identified system does not neces-

sarily match with the dynamical system, which is being identified. The state-space basis

can be predefined by introducing weighting factors W1 and W2, and that by a proper choice

of these weights, the basis can be altered in a user-controlled manner (61). Determining

the values of the weighting factors are similar to finding the frequency weight balances used

in balanced truncation for model reductions (90). The frequency weight balancing is used

for model reduction to ensure the frequency of interest is captured in the reduced model.

The key idea is to find the frequency weighted controllability Grammian Wu(z) and observ-

ability Grammian Wy(z). Then find the similarity transformation which makes the both
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Figure 5.4: Practical Implementation framework of the proposed method.

Grammians diagonal and equal to each other (5.20).

Wu(z) = ∆d
i [WuW

T
u ](∆d

i )
T

+ ∆s
i (∆

s
i )
T (5.20)

Wy(z) = ΛTi [W T
y Wy]Λi (5.21)

Wu(z) = Wy(z) =

N∑
i=1

σi (5.22)

where ∆d
i is the deterministic part of extended controllability matrix and ∆s

i is the stochastic

part of extended controllability matrix, σi is the frequency weighted Hankel Singular Values.

For an asymptotically stable system and when the data length of the system is infinite, the

weighting factors W1 and W2 can be expressed as in eqns. (5.23). Details of the derivation

can be found in (61).
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W1 = Wy (5.23)

W2 = UTp (RuuP )−1Wu(Luup )−1Up + πU∗
p

(5.24)

Wu =


Du · · · 0

...
... 0

CuA
i−2
u Bu · · · Du

 (5.25)

Wy =


Dy · · · 0

...
... 0

CyA
i−2
y By · · · Dy

 (5.26)

Wu(z) = Wy(z) = S1 (5.27)

where Luup is the Markov parameters of the spectral characteristics of input, Up is past

Block Hankel matrix formed from measurement data, S1 is the singular values of extended

observability matrix. The above equations implies that the frequency weighted observability

and controllability matrices used in model reduction is equal to singular values of identified

extended observability matrix (61).

5.3.3 Calculation of System Matrices

The system matrices A,B,C,D can be extracted with the help of weighted projection

matrix O. Singular value decomposition (SVD) is performed on the weighted projected

matrix to obtain U1 and S1. Both W1 and W2 are considered to be identity matrices.

W1OW2 = USV T (5.28)

U1 = U(1 : n);S1 = S(1 : n), n modelorder (5.29)

Γi = U1

√
S1,Γi−1 = Γ̄i (5.30)
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Solve the set of linear equations for calculating A and C,

Γ†i−1.Zi+1

Yi
= (

A

C
).Γ†iZi +KUf + P (5.31)

K = (

 B|Γ†i−1.H
d
i−1 −A.Γ

†
i .H

d
i

D|0− C.Γ†.H
d
i

i

) (5.32)

where Zi = Yf/[WpUf ] ,Zi+1 = [Y −f W
+
p U

−
f ] and P is the residual.And then B and D is

calculated by solving the least square problem described in (6.10). The details of how to

solve the least square problem can be found in (61).

Γ†i−1.Zi+1

Yi
= (

A

C
).Γ†iZi +KUf + P (5.33)

K = (

 B|Γ†i−1.H
d
i−1 −A.Γ

†
i .H

d
i

D|0− C.Γ†.H
d
i

i

) (5.34)

The matrices extracted are used to formulate the identified model of the system.

5.3.4 Balanced Truncation Based Reduced Order Model of Power System

Similarity transformation is first represented by Lyapunov equations as

AP + PAT + BBT = 0 (5.35)

ATQ + QA + CTC = 0

From this balancing equations can be constructed as
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x̃ = Tx (5.36)

eAtB = TeAtT−1TB = TeAtB (5.37)

P̃ = TPT′ (5.38)

CeAt = CT−1TeAtT−1 = CeAtT−1 (5.39)

Q̃ = T−1
′
QT−1 (5.40)

where P̃ is the transformed controllability matrix and Q̃ is the transformed observability

matrix. Computing the balancing transformation TB and ensuring that the states of the

system are preserved, this problem will be equivalent to minimizing the following linear

optimization problem.

min
TεGL(N)

f(T) = min
TεGL(N)

trace(TPT ′ + T−1′QT−1) (5.41)

subject to, f(TB) = 2

N∑
i=1

σi

AP + PAT + BBT = 0

ATQ + QA + CTC = 0

Ã = TBAT−1B , B̃ = TBB, C̃ = CT−1B

Ã =

 Ã11 Ã12

Ã21 Ã22

, B̃ =

 B̃1

B̃2

, B̃ =

[
C̃1 C̃2

]

Ar = Ã11εRr×r, Br = B̃1εRr×p

Cr = C̃1 = Iq×rεRq×r, Dr = 0εRq×p
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5.3.5 Offline construction of Model Dictionary

At a given time, the power system model is expressed as a combination of differential and

algebraic equations.

ẋ = f(x, u) (5.42)

ẏ = g(x, u)

where x is the state vector, u is the input vector and y is the output vector to the system.

The differential equations represent different power system components and the algebraic

equations represent the network topology. For stability analysis these nonlinear equations

are linearized at an operating condition and the small signal model of the system is formed

as

∆ẋ = A∆x+B∆u (5.43)

∆y = C∆x+D∆u

where ∆x is the state vector, ∆y is the output vector, ∆u is the input vector. A is the

state matrix, B is the input matrix, C is the output matrix, and D is the feed-forward

matrix. The frequency and damping ratio of the oscillatory model are calculated from the

eigenvalues (9). The A matrix can then be converted to Canonical Jordan form using

D = T−1
M ATM (5.44)

where TM is the right eigenvector of A. The size of TM varies depending on the size of A.

This transformation matrix TM is stored in the dictionary. Overall flowchart to construct the

model dictionary is represented in Fig. 5.2. Small signal stability analysis is performed on

the power system model of the power grid for different operating conditions. Also, reduced
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order models are derived for each operating conditions. The similarity transformation matrix

is calculated for each scenarios and are stored in an offline dictionary.

5.3.6 Approach for Studying the Unmodeled Response

In this section, how different responses are calculated and how these responses can be used

to update the power system model continuously to perform what if scenarios to predict the

response of actual nonlinear system is discussed. Moreover, how analysis of these responses

can help to identify different oscillations are also discussed. Fig. 5.3 illustrates the steps of

calculating different responses. First, the operating condition of the system is determined.

Then the actual response of the power system is captured from measurement data and the

linear response of the system is obtained from the linearized model. The difference between

these two response is calculated to capture the unmodeled response. Then all three responses

are passed to three RCDSSI algorithm block which applies the algorithm mentioned in

section 5.3.3 on three separate response, identifies the mathematical models and estimates

the modes for three responses. The combination of linear model and unmodeled response

model gives the actual behavior of the power system obtained from measurement data.

Then the combination of these two mathematical model can be used to study the actual

behavior of the system for different what if scenarios. Ideally, only linear model of the

system can not predict the response of power system. So, having an additional model for

the unmodeled dynamics which captures nonlinearities, external disturbances, components

which are not modelled in detail etc, helps to accurately predict the power system response.

Moreover, these models helps to characterize power system oscillations as well. Combination

of unmodeled response and knowledge about system modes at that operating condition helps

to identify forced oscillation even if it has the same frequency as natural oscillation frequency.

Forced oscillation frequencies are prominent in unmodeled response and the characteristics

are easily identified from unmodeled response. After the forced oscillation frequencies are

determined it is compared with the natural oscillation frequencies and decision are taken on

the type of oscillation.
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5.4 An Illustrative Example

In this section, a three machine 9 bus system (Fig. 5.5) is used to show a numerical

example of the proposed method. For simplicity only classical models are considered here.

The equation of motion of synchronous machine i is

2Hi

ω

d2δi
dt2

= Pmi − Pei (5.45)

where Hi is the inertia constant of ith machine, δi is the machine angle of ith machine, Pmi

is the constant mechanical power and Pei is the electrical power of the ith machine.

5.4.0.1 Dictionary Construction

The linearized model equations of the three machine system are given by

2Hi

ω

d2δ∆i

dt2
+

n∑
i,j=1,j 6=i

Ps(i,j)δ∆(i,j) = 0 (5.46)

After rearranging the equations (5.46) and then subtracting 3rd machine equation from the

first two equations we get

d2δ∆13

dt2
+ (

ω

2H1
Ps12 +

ω

2H1
Ps13 +

ω

2H3
Ps31)︸ ︷︷ ︸

a11

δ∆13 (5.47)

+ (
ω

2H3
Ps32 −

ω

2H1
Ps12)︸ ︷︷ ︸

a12

δ∆23 = 0

d2δ∆23

dt2
+ (

ω

2H3
Ps31 −

ω

2H2
Ps21)︸ ︷︷ ︸

a21

δ∆13 (5.48)

+ (
ω

2H2
Ps21 +

ω

2H2
Ps23 +

ω

2H3
Ps32)︸ ︷︷ ︸

a22

δ∆23 = 0
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The state space representation of the system is expressed as



δ̇13

δ̇23

ω̇13

ω̇23


=



0 0 1 0

0 0 0 1

−a11 −a12 0 0

−a21 −a22 1 0


︸ ︷︷ ︸

A



δ13

δ23

ω13

ω23


(5.49)

After plugging in the values of all the machine and network parameters (6) the calculated

A matrix is

A =



0 0 1 0

0 0 0 1

−104.096 −59.524 0 0

−33.841 −153.460 0 0


(5.50)

The right eigenvector of the A matrix gives similarity transformation TM4 which converts

A to a Canonical Jordan form D. The similarity matrix TM4 is stored in the dictionary.

D =



−13.4164j 0 1 0

0 13.4164j 0 1

0 0 −8.8067j 0

0 0 0 8.8067j


(5.51)

TM4 =



−0.0459j 0 1 0

−0.0585j 13.4164j 0 1

0.6154 0 −0.9075 −0.9075b

0.7847 0.7847 0.4046 0.4046


(5.52)
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5.4.0.2 Model identification

The response of the system is captured through nonlinear simulation (Fig. 5.14) following

a load change at bus 8 of the 3 machine 9 bus system. The identified 4th order system matrix

is given by,

AIdentified =



0.0035 −4.8922 7.2137 −1.5919

4.8879 0.0017 −1.5599 −11.4508

−7.2159 1.5639 0.0010 −6.7216

1.5804 11.4517 6.7350 −0.0046


(5.53)

The identified model is expressed in Jordan canonical form as,

TIdentified =



13.4145j 0 1 0

0 −13.4115j 0 1

0 0 8.7963j 0

0 0 0 8.7963j


(5.54)

5.4.0.3 Identified Model Transformation

The TIdentified model is then converted to system small signal model with the help of

similarity transformation matrix TM4 stored in the dictionary. The transformed matrix

ATransformed is comparable with the system small signal model state matrix A as the norm

of |ATransformed −A| is 0.0103.



133

ATransformed = TM4 ∗ TIdentified ∗ TM4−1 (5.55)

=



0.0000 0.0000 0.9991 0.0000

0.0000 0.0000 0.0003 0.9996

−104.0219 −59.5621 0.0000 0.0001

−33.8627 −153.4175 0.0000 0.0001


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Figure 5.5: Three machine nine bus study system (6).
5.5 Simulation Results and Discussion

Fig. 6.3 shows the test system used for studying the proposed approach of analyzing

unmodeled dynamics and how it can be used to characterize power system oscillations. The

test system used is a classical two area four machine system which has been used widely in

literature for studying oscillations. For the studies performed in this paper, all the generators

are modeled in detail along with exciters, governors and power system stabilizers (PSS). The

Power System Toolbox package (91) is used to perform linear simulations and Real-Time

Digital Simulator (RTDS) is used for nonlinear simulations.
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21 31

21 31

Figure 5.6: Machine a) angle deviation and b) speed deviation from nonlinear simu-
lation after applying 20% load change in bus 8.

G4

G3G1

G2

400 MW

710 MW

690 MW

690 MW

690 MW

976 MW
1767 MW

Area 1 Area 2

1 11

122
4

14

10 110
20

120
3 13

101

Disturbance

Figure 5.7: Two-area four-machine study system.

5.5.1 Case 1:Analysis of unmodeled response on a linear system

The goal of this study is to simulate a forced oscillation at a different frequency than

natural oscillations and study how extracting the unmodeled dynamics helps to characterize

forced oscillations. For, this case a linearized model of two areas system is used. System
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Figure 5.8: Linear system response comparison; a) Machine 1 speed b) Machine 1
speed unmodeled response c) Machine 1 field excitation voltage and d)Machine 1
field excitation voltage unmodeled response.

response to a step change is termed as linear response and to a periodic external distur-

bance is termed as actual response as it simulates system response with forced oscillation.

Forced oscillation is simulated as a square wave of 1Hz frequency and 0.05pu magnitude,

and is applied to exciter voltage reference of generator 1 to represent a limit cycle on the
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exciter voltage limit. Modal analysis of the linear system gives the electromechanical modes

that are mainly excited by applying disturbance to machine 1 exciter. These modes have

frequencies of 1.36 Hz, 0.6125 Hz, 2.48 Hz, 1.31 Hz and damping ratio of 35.33%, 13.5%,

30.7% and 36.5% respectively. Machine speeds are recorded as output and machine field

excitation voltages are taken as input to the RCDSSI algorithm for estimating the oscilla-

tion frequency and corresponding damping ratios. Fig. 5.8 shows the comparison of linear

response of the systems with the actual response and it also shows the difference between

these two response which is termed as unmodeled response. Fig. 5.8a illustrates that linear

response dampens very quickly as all the excited modes have good damping ratios but actual

response shows sustained oscillation throughout the simulation as it is excited by an external

source. Fig. 5.8b, 5.8c and 5.8d gives the unmodeled response of speed, linear and actual

response of voltage excitation and unmodeled response of voltage excitation respectively.

Forced oscillation response is also visible in the extracted unmodeled response. Similarly,

unmodeled dynamics are extracted for all machine speeds and excitation voltages. Then

excited oscillation frequencies and damping ratios are estimated using RCDSSI for three

types of response signals linear, actual and unmodeled. Normalized value of residue for the

excited modes is also calculated to find out the relative contribution of each mode in the

output signals. Table 5.1 summarizes the results for different, responses. As expected linear

response properly estimates the excited modes. Actual response captures the natural modes

as well as the forced oscillation frequencies. As the simulated forced oscillation is a square

wave of 1 Hz frequency it consists of odd harmonics sinusoids. Presence of odd harmonics

in the system response is an indication of the presence of forced oscillation (5). The forced

oscillation frequency of 1 Hz and it’s odd harmonics at 3 Hz and 5 Hz are identified. The

unmodeled response also captures the forced oscillation and natural oscillation frequencies.

It is noticeable from Table 5.1 that in unmodeled response the normalized residue of natu-

ral oscillation frequencies are very low compared to the forced oscillation frequencies which

mean unmodeled response is dominated by the forced oscillations. Hence, analyzing the

unmodeled response along with the natural response can help to get more insight into the

oscillation type. Also, the identification of forced oscillation from unmodeled response helps
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Figure 5.9: Power spectral density (PSD) comparison for different responses of linear
system machine 1 speed.

to update the linear model of the system and give an external periodic signal of 1 Hz square

wave to the linear model. In that case the linear model response matches exactly with

the actual response. Thus, the model of the system can be constantly updated to match

with the actual system response. The results of the RCDSSI algorithm is verified using

a nonparametric method called Welch’s Periodogram with a sampling frequency of 20 Hz,

windows size of 1024 samples and an overlap of 128 samples. Fig. 5.9 illustrates power

spectral density (PSD) for different responses. For actual and unmodeled response there are

multiple peaks at the odd harmonics of 1 Hz and it matches with the results of RCDSSI

algorithm.

5.5.2 Case 2: Analysis of unmodeled response on a non linear system with resonance

This case studies the effect of unmodeled response on an nonlinear system. In this case,

the test system is solved by numerical integration to mimic the behaviour of a nonlinear

power system. A forced oscillation is applied with a frequency of 0.62 Hz which is close to the

inter-area oscillation frequency to simulate a resonance scenario. As the system is nonlinear,

the effect of nonlinearity is also observed in this case. Fig. 5.10 shows that applying a forced

oscillation at the reference voltage of voltage regulator of machine 1 with a magnitude of

0.05pu, causes the exciter voltage to hit its limit of 5pu. Because of this nonlinearity effect

the estimated modes from the nonlinear system varies to some extent from the linear system

modes. Fig. 5.11 shows the different captured response for the machine speeds. Fig. 5.11a
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Table 5.1: Estimation of modes for different responses of linear system.

Responses Frequency (Hz) Damping ratio (%) Normalized residue
Linear 0.6125 13.4300 0.6900

1.3100 29.7000 1.0000
1.3600 34.2700 0.3361
2.4800 35.4500 0.6630

Actual 0.6125 13.5100 0.2900
1.3100 36.4600 0.0080
1.3600 35.2800 0.1900
2.4800 36.2500 0.0080
1.0000 0.0000 1.0000
3.0000 0.0000 0.6900
5.0000 0.0000 1.0000

Unmodeled 0.6125 13.5100 0.0190
1.3100 36.4600 0.0080
1.3600 35.2800 0.0800
2.4800 36.2500 0.0080
1.0000 0.0000 1.0000
3.0000 0.0000 0.5700
5.0000 0.0000 1.0000

illustrates the unmodeled dynamics as seen in the machine speeds, Fig. 5.11b presents

the total actual response of the machine speeds which contains the effect of nonlinearities

and forced oscillations. Finally, Fig. 5.11c shows the linear response of the system at the

given operating point. RCDSSI algorithm is applied on the captured input-output signal as

mentioned in Fig. 5.3. The results of the RCDSSI algorithm is summarized in Table 5.2.

For the natural response, the estimated modes deviates a little from the modes estimate

by the linear model for that operating condition and this happens because of nonlinearity

effect. Actual response of the system shows zero damping for the inter-area oscillation

frequency of 0.6134 Hz and for its odd harmonics. Other natural modes are also present in

this response. Unmodeled response shows the similar results as the forced response case.

However, it is noticed that in the unmodeled response the contribution of forced oscillation

modes are significantly higher than natural oscillation modes. This conclusion is deduced by
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Figure 5.10: Machine 1 excitation voltage.

comparing the normalized residue values between the forced and natural response in Table

5.2. So, analyzing the unmodeled response for characterizing forced oscillations provides

more reliable information. The linear response shows a well damped oscillation frequency

of 0.6134 Hz. Unmodeled response shows sustained oscillation at 0.6199 Hz and represent

the characteristics of forced oscillations (peaks at odd harmonics Fig. 5.12). Combining

these information from linear and unmodeled response, decisions can be taken on classifying

system oscillations into natural or forced. Additionally, the identified transfer function

models of linear and unmodeled response can be used to dynamically track the changes in

the actual system, which is shown in next case study.

5.5.2.1 Case 3: Validation of Identified Model

In this section, a simulation case is performed to show that the identified model based on

measured data can accurately capture the dynamic response of the actual system. For this

purpose, first, the nonlinear power system model is simulated, and a series of disturbances

is applied in the form of load changes which is visible in fig. 5.14. The power system model

has detailed generator models, exciters, power system stabilizers, and turbine governors.

The machine bus frequencies are input, and the angle of tie-line bus 101 is output to the

identification algorithm.

For larger power systems, the original model order can be significantly higher, and the

identified model order depends on the number of modes which are excited following a dis-

turbance. For a more extensive system, a reduced-order model is created from the system
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Figure 5.11: Different response of nonlinear system, a) unmodeled, b) actual and c)
linear

model using the method described in section 5.3.4. A comparison is made between the

identified model and the reduced-order model to compare the accuracy of the identified

model. Due to page limitation, the detailed matrices are not presented here, but the norm

of |AReducedModel − AIdTransformedModel| = 0.015 shows the difference between the identi-

fied model and the reduced model. The norm is very negligible and which proves that the

identified model does captures the system behavior if the modes are appropriately excited.

5.6 Applications of Proposed Architecture

One of the main advantage of developing a model of the system including unmodeled

dynamics is that we can use this updated model for studying ’what if’ scenarios in the
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Table 5.2: Estimation of modes for different responses of nonlinear system.

Responses Frequency (Hz) Damping ratio (%) Normalized residue
Linear 0.6197 13.1900 0.5300

1.2500 25.4600 1.0000
1.3914 36.7000 0.3600
2.4700 23.4600 0.6957

Actual 0.6134 0.0000 0.0944
1.3338 30.6400 0.0200
1.3720 21.9200 0.0040
2.4803 36.2500 0.0154
1.8600 0.0000 1.0000
3.1000 0.0000 0.1589
4.3400 0.0000 1.0000

Unmodeled 0.6199 0.0000 1.0000
1.3100 24.0200 0.0010
1.3500 24.2900 0.0030
2.4803 17.2600 0.0015
1.8600 0.0000 1.0000
3.1000 0.0000 0.1571
4.3400 0.0000 0.1571

Figure 5.12: Power spectral density (PSD) comparison for different responses of non-
linear system machine 1 speed.

power grid. We are going to illustrate one possible application of developing a system

architecture with unmodeled dynamics.
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Figure 5.13: Power spectral density (PSD) comparison for different responses of non-
linear system.

5.6.1 Case 1: Study of Identified Unmodeled Response for Studying Different Scenarios

Previous sections shows that the combination of identified system models based on un-

modeled response and linearized system model response can capture the actual behaviour

of a nonlinear system. Now, these two identified models are used to study the behaviours

of actual nonlinear system for different scenarios of interest. Ideally, it is very difficult to

predict the true behaviour of a complex nonlinear power system and models can only match

the actual system response to limited capacity. The proposed method enables to account for

the mismatch between the model response and power system measurement data (which rep-

resent the actual system response) and can help to study how system unmodeled dynamics

effect the overall behaviour of the system. This case uses the identified models for natural
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Figure 5.14: a) Input signals and b) output signals used for identification.

and unmodeled responses from section 5.3 . The identified models are perturbed with a

periodic disturbance in the the voltage regulator reference of machine 1 with a frequency of

0.6125Hz and magnitude of 0.1pu. The goal of the study is to predict the actual response

of the power system using the identified linear and unmodeled response. First the identified

models are given the disturbance and the linear and unmodeled response are shown in Fig.

5.13a and 5.13b respectively. Then the same disturbance is given to the nonlinear model of

the power system which mimics the behaviour of an actual power system. The comparison

of the actual power system response and the combined response of linear plus unmodeled re-

sponse is shown in Fig. 5.13c. The predicted response from the identified models are almost

same with the actual system response with an mean absolute percentage error (MAPE) of

0.1%. So, the proposed method can help to capture the unmodeled dynamics of the model

and the can create identified mathematical models which helps to predict the nonlinear

system behaviour.
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5.6.2 Case 2: Use of Proposed Method for Predicting System Stability

The ability of the proposed architecture to capture the effect of unmodeled dynamics

is presented in this case. This characteristics of the proposed architecture can also help

updating the power system model. Malfunctions in generator control system can lead to

lightly damped oscillations (92). To simulate such a scenario in time domain, the PSS gain is

reduced from 100 to 50. This reduces the damping ratio of inter-area oscillation mode from

13.5% to 4.67%. The data from the simulation is used as synthetic PMU data. It can be

noted that the system model used in the control center cannot incorporate such changes and

predict the damping of the the oscillatory mode. Fig. 5.15a shows the change in governor

reference set point which acts like disturbances and excites the inter-are oscillation mode.

Fig. 5.15b shows the frequency of generator at bus1 and Fig. 5.15c shows the tie line

power between bus 7 and 8 for three cases. Initially validation data is used to identify the

model. Close observation shows that the identified model forecasts the system behaviors

more closely than the system model. Thus, it can be concluded that such measurement

based identified model can help in identifying the shortcomings of power system models

which are usually validated not very frequently. The proposed architecture can capture the

presence of unmodeled and nonlinear dynamics in system response.

5.6.3 Case 3: Application of Proposed Method for a Larger System

IEEE 39-Bus system is a reduced equivalent of the New England test system (NETS).

Fig. A.4 shows the one line diagram of the test system (7).This system has 10 generators

and 39 buses. Generator 1 located at bus is an aggregated generator and hence has high

inertia and output power. Exciter model used for voltage regulation is of ’IEEE type 1’

and governor model is of type ’TGOV’.The generator data and governor data is modified

slightly for EMT simulation studies compared to (7). Forced oscillations are introduced

using periodic disturbances at the governor mechanical torque output of the generators.

Fig. A.4 shows the disturbance locations for different cases.

Similar to the response shown for the two area system, this section simulates a case

for showing the combined response of a medium scale system. Random load changes are
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Figure 5.15: a) Input disturbance at the governor reference point , b) frequency at
generator bus 1 c) tie-line power between line 7 and 8.

simulated by adding Gaussian white noise with a magnitude of 5% of the connected loads. A

load increas is applied at bus 39 to simulate transient response. And an external disturbance

of 0.4 Hz is applied to the generator 8 governor response to simulate forced response. Fig.

5.17a illustrates the combined response of the system for a 4 minute window.Fig. The result

shows that the identified model can be used to predict the response of the system and it

gives an accurate estimation of actual system response.Fig. 5.17b shows the time frequency

analysis of the response The ambient response shows that a electromechanical frequency of

1.28 HZ is excited and this conforms with the small signal stability analysis of the system.

Small signal stability analysis shows that generator 10 speed is the dominant state for the

oscillation mode with 1.28 Hz frequency. The frequency of 1.28 Hz is more visible in the

time between 70 second to 100 second when the transient response of the system is excited.

Response of the system between time 140 second to 200 second shows the forced oscillation

frequency of 0.4 Hz.
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Figure 5.16: IEEE 39 bus test system (7).

5.7 Summary

This chapter illustrates an approach for identifying the unmodeled response of power

system for characterizing system oscillations. The proposed method use a nonlinear power

system model and the linearized model of the same power system to extract the unmodeled

response of the system. This characteristics is then used to estimate the modes of oscillation

from the unmodeled response. The method can not only find the reduced order model of

the power grid based on system oscillation mode, but can also identify the order of the

system and the physical states that is being excited. This helps one to understand and

evaluate system nonlinearity and unmodeled dynamics. The methodology is evaluated with

a numerical example and a test power grid model.It is observed that the approach can be

used to differentiate between natural and forced oscillation if they have the same frequency.

Also, the approach can be used to study scenarios of interest in the power grid. Future

studies will be to test the architecture on real life data sets.The methodology proposed in
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TD Identified

Figure 5.17: a) Time Domain(TD) and predicted machine speed for a load increase
in bus 39 and b)Time frequency analysis of the response.

this chapter helps operator to take better corrective actions. But, with changing system

conditions it is difficult for system operators to take corrective actions fast enough. For

this an adaptive wide area damping controller is proposed in next chapter that can mitigate

oscillations by controlling multiple damping resources.



CHAPTER 6: IDENTIFICATION BASED OSCILLATION MITIGATION APPROACH

In this chapter, a multi-channel system identification (SI) based adaptive wide-area damp-

ing controller (WADC) is proposed for a distributed energy resources (DER) integrated

power grid. The proposed design identifies the multiple-input multiple-output (MIMO)

reduced order transfer function model of the system using recursive least square (RLS) al-

gorithm and utilizes adaptive control framework to adjust the power output of DER based

upon the identified model to improve the transient stability of the system. The concept

is to utilize the proposed controller to augment converter based local control of DER to

damp the system oscillations faster. The benefit of the proposed control methodology has

been validated by conducting simulation studies on a modified two area system to damp

the inter-area oscillations. The results demonstrate that through coordinated control of dif-

ferent DERs, oscillations can be damped faster compared to using only local power system

stabilizers (PSS) and conventional wide area damping controllers (WADC). The results of

this chapter is summarized in the form of papers (93) and (94).

6.1 Introduction

Distributed energy resources are increasing their footprint in the power grid as there is

a move towards clean energy demand. However, with the increase in DER and gradual

replacement of conventional generation sources from the grid, the stability behavior of the

grid is a concern. As most of the DER are asynchronous machines decoupled from the

system with power electronic converters, the direct interaction between the synchronizing

forces and the total system inertia is absent in these generation sources. With the increased

penetration of DER the operating condition and the inertia of the system are increasingly

time varying. This causes the frequency and damping ratio of electromechanical modes to

change more frequently (95; 96). If these modes are not damped properly in time, it can

create growing oscillations and can pose threat to reliable operation of the power system.
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Conventionally, PSS (both local and wide-area) provide supplementary damping control.

Generally, the DER do not take an active part in damping the power system oscillations.

However, studies have shown that increased penetration of DER in power grid with reduced

number of synchronous generators can have a damping effect that limit the power system

oscillations. The studies also report that this behavior is dependent on the location of the

DER and the way they impact the tie-line power flows (97; 98). So DER has the potential

to suppress the oscillations by controlling the power output, if the power outputs from each

units can be coordinated for this purpose. The coordination among all the DER can be

performed through a WADC architecture.

Generally, WADC are designed using linear feedback control techniques based on the small

signal model obtained by linearizing the dynamic model of the system around an operating

point. Control techniques reported in literature utilizing DER is based upon either mimick-

ing the droop based control (45), PSS (46; 47), compensator based (48), or by injecting the

power into the system out of phase with the inter-area oscillation(49),(99). Other studies

based on optimization algorithm and energy function approach has been demonstrated in

(47; 50). However, one of the issues related with these previous studies is that their success

is dependent on having an accurate knowledge of system and linearization of the non-linear

dynamic system such as power grid. Also, the controllers are static and designed for a par-

ticular operating condition, considering a particular mode of oscillation which may not work

well for different operating condition especially with higher penetration of variable renewable

resources. Artificial intelligence (AI) based techniques have been demonstrated to capture

the nonlinearities and uncertainties in the power grid and can learn and map the system

dynamics from set of system inputs and outputs (51). However, the issues related to such

AI based techniques is that they require sets of offline data for training and performance

validation and has larger computational burden.

Several measurement based methods have also been developed to estimate the modes

of the system from wide area measurements (WAMs) data. These methods identify the

model of the system from measurement data in two forms 1) subspace state space form

(52) and 2) transfer function form (53). In (53), it has been demonstrated that both the



150

subspace state space and MIMO transfer function model can capture the dominant modes

of the system accurately from both ring-down data (data generated from event like line

tripping, generation loss etc.) and ambient data (data obtained from random small load

changes). These identified models can be used to design adaptive and coordinated damping

controller (DC). Compared to subspace state space model MIMO transfer function model

has improved computational efficiency and lower order aggregation capability. In (8), the

parameters of conventional WADC form as well as time delay compensator are updated

online based on low order single-input single-output (SISO) model determined based on the

residue analysis of the MIMO model. In (8), it was assumed that the critical inter-area

mode can be well represented by the mode with largest residue in the identified transfer

function model of the system. This approach ignores the other nearby modes whose residue

can be in close approximation with the electromechanical modes that may have significant

impact on system low frequency oscillations. Such modes are generally associated with the

poor design of controllers (54).

In this chapter, a multi-channel RLS identification based adaptive WADC has been pro-

posed for DER integrated bulk power grid. RLS identification is used for SI, as opposed to

the block processing algorithm (53). As RLS does not require fixed memory allocation, this

approach is suitable for online applications. In this method, the MIMO transfer function

model of the system is identified using autoregressive exogenous (ARX) model structure

based on ring-down data obtained using measurements. Then a oscillation DC based on

minimum variance control (MVC) architecture is designed using the transfer function model

and is used to augment with the local controller (LC) of the DER. The advantage of the

MVC control is that it looks certain steps ahead in the future and regulates the system

output as close as possible considering the identification error and noise for control. The

effectiveness of proposed method is demonstrated by case studies on a two area four machine

system.

The major advantages of the proposed approach are:

• It is based on the online identification of the system dynamics which results in ad-

justing the controller output as the system operating condition changes.
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Figure 6.1: Proposed structure of DC based on SI.

• It is independent of the network topology and only requires WAMs for identification

and control.

• It can be augmented with the existing LC in the DER.

• It adapts to various operating conditions and can consider the complete order of

identified system model as opposed to considering the mode with highest residue.

6.2 System Modeling

The classical second order model of a synchronous machine is often used to study the

transient stability of a power system during the period of time in which the system dynamics

depend largely on the stored kinetic energy in the rotating masses (100). The equations of
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motion for a classical representation of power system are given by,

ω̇i =
1

Mi

Pmi −Diωi − Ei
n∑
j=1

Ej(Bijsinδij +Gijcosδij)


δ̇ = ωi − ωs i = 1, · · · , n

(6.1)

where n is the number of synchronous machines, ωs is the synchronous angular frequency,

δij = δi − δj , Mi =
2Hi

ωs
, and Hi is the inertia constant in seconds and Di is the damping

coefficient of the machine i. Bij and Gij are the elements of the reduced admittance matrix

Y at the internal nodes of the machine. The loads are modeled as constant impedances

which are then absorbed into the admittance matrix.

The DER connected on the various buses modeled as a constant negative PQ load or a

PV bus depending on the mode of control employed in the DER system. Considering DER

as constant negative PQ load, (6.1) can be rewritten as,

ω̇i =
1

Mi

(
Pmi −Diωi −

n∑
i=1

Pldi −
m∑
i=1

Plsi +

o∑
i=1

PDERi

)

δ̇ = ωi − ωs i = 1, · · · , n

(6.2)

where m is the number of lines, and o is the number of DER in the network. Pldi represents

the load connected at the ith bus, Plsi represents the line losses in the ith line and PDERi

represents the active power injected by DER on ith bus.

The power injected by the DER on the ith bus is given by,

PDERi =
PDER

∗
i

1 + sTDERi

(6.3)

where PDER∗
i power reference for ith DER system and TDERi is the DER system response

time constant for ith DER.

From (6.2) and (6.3), it can be observed that the power output of DER can have an impact

on system frequency dynamics even though DER themselves are operating in asynchronous

mode.
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6.3 Multichannel Identification Applied to Power System

Based on the subspace identification framework proposed in Chapter 1 the projected

matrix is calculated from the Hankel matrices

The projected matrix O is expressed as,

O
Ri×j

=


L21, if only output measurements are used

L32, if both input and output are used
(6.4)

The system matrices A,B,C,D can be extracted with the help of weighted projection

matrix O. Singular value decomposition (SVD) is performed on the weighted projected

matrix to obtain U1 and S1. Both W1 and W2 are considered to be identity matrices.

W1OW2 = USV T (6.5)

U1 = U(1 : n);S1 = S(1 : n), n modelorder (6.6)

Γi = U1

√
S1,Γi−1 = Γ̄i (6.7)

Solve the set of linear equations for calculating A and C,

Γ†i−1.Zi+1

Yi
= (

A

C
).Γ†iZi +KUf + P (6.8)

K = (

 B|Γ†i−1.H
d
i−1 −A.Γ

†
i .H

d
i

D|0− C.Γ†.H
d
i

i

) (6.9)

where Zi = Yf/[WpUf ] ,Zi+1 = [Y −f W
+
p U

−
f ] and P is the residual.And then B and D is

calculated by solving the least square problem described in (6.10). The details of how to

solve the least square problem can be found in (61).
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Γ†i−1.Zi+1

Yi
= (

A

C
).Γ†iZi +KUf + P (6.10)

K = (

 B|Γ†i−1.H
d
i−1 −A.Γ

†
i .H

d
i

D|0− C.Γ†.H
d
i

i

) (6.11)

The matrices extracted are used to formulate the identified model of the system.

The transfer function for the multi-input-multi-output(MIMO) system is derived from

the state space matrices,

G(s) = CSI −A−1B +D (6.12)

If the inputs and outputs of the system are determined, the system model can be repre-

sented as:

G(s) =



G11(s) · · · G1r(s)

G21(s) · · · G2r(s)

... · · ·
...

Gp1(s) · · · Gpr(s)





u1(s)

u2(s)

...

ur(s)


=



y1(s)

y2(s)

...

yp(s)


(6.13)

where ui(s) and yj(s) are the ith and jth elements of the input vector and the output vector,

respectively. Gij is the element of the G matrix at position (i, j). p and r are the number

of system outputs and number of system inputs, respectively.
6.4 Augmentation of DER Local Controller with Proposed WADC Technique

A general representation of the proposed SI based adaptive controller applied to DER

is shown in Fig. 6.1. The controller action of DER with the proposed augmentation with

WADC comprises of two parts as,

u(t) = ud(t) + uloc(t) (6.14)
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Figure 6.2: Augmentation of DER LC using proposed WADC signal.

where ud is the damping component of the control input provided by the DC designed using

identified system parameters in 6.3 and uloc is the component of control signal required to

track the local reference input. For the SI, inter-area speed deviation ∆ωij is considered

as the system output and the ∆PDER is considered as the system input. The identified

linearized model of the system is then utilized for the design of DC. The goal is to enhance

the overall system stability while minimizing the inter-area speed deviation.

It is worth noting that in this work the focus is to utilize this architecture and augment

DER LCs such that DER can take part in damping the system oscillations. For DER,

the objective of LC is to track the reference set-point provided either by maximum power

point tracking (MPPT) controller or by the DER operator. The goal of the WADC is

to damp the system oscillations by appropriately modifying the active and reactive power

output of DER system. The augmentation of the LC of DER to incorporate the damping

functionality is shown in Fig. 6.2. Overall, the active power set-point given to the DER

system comprises of three terms: (∆P loc,∆Qloc) for load sharing or MPPT control as local

reference, (∆P ss,∆Qss) as a set-point provided by secondary/tertiary level controller from
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DER control center and (∆P d,∆Qd) as a remote set-point signal provided by DC. Once

the sum of these three different set-points is available, the tracking of these set-point is

achieved through the conventional vector control techniques implemented in DER systems

(101). The outer loop controls (CP ,CQ) the active and reactive power set-points and provides

an equivalent current reference to the inner loop control (Cid,Ciq) which track the current

flowing out of the DER system.

By controlling the active and reactive power output of the DER system, the speed os-

cillation brought about by local and wide area disturbances could be mitigated. Thus, the

goal of the multichannel identification based WADC is to monitor and identify the local and

inter-area oscillations and send proper damping signals to DER systems in order to dampen

the system oscillation.
6.4.1 SI Based DC Design

The DC designed for this work is based on MVC architecture used in polynomial methods

(102) which solves the optimal control problem of minimizing the output variance of the ARX

system identified in Section 6.3 k steps ahead of time. Polynomial method is chosen in this

work as opposed to state space form (103) due to easier and simpler implementation and

application for practical purposes. The controller designed in this work is based on nth order

identification of the system. For n = 2, the controller takes in the following form (102):

u1(k) =
a1y1(k) + a2y1(k − 1)− b112u1(k − 1)

b111

(6.15)

for a step ahead prediction error minimization.
6.5 Simulation Results and Discussion

Fig. 6.3 shows the test system that has been utilized to assess the performance of the

proposed SI based DC with respect to conventional PSS that has been implemented in

the synchronous machine. The test system is a modified version of classic two area four

machine system (100). The test system has been implemented in MATLAB-Simulink. The

model consists of two areas connected through a tie-line. Area 1 has two synchronous

generators each generating 690 MW power and area 2 also has two synchronous generator
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Figure 6.3: Modified classical two-area four-machine system with integrated DER.

each generating 710 MW and 690 MW respectively. In this chapter, the full-order model

of the synchronous generators is used with LCs of governor, exciter, and PSS. On top of

synchronous machine, each area consists of aggregated DER models. In area 1, a 100 MW

PV farm coupled with a 50 MW storage unit is connected to bus 6 along with a 150 MW load

and in area 2, a 210 MW wind farm is connected to bus 5 along with a 140 MW load. Two

case studies are performed to test the performance of the proposed SI based DC. Fig. 6.4

shows the performance of the proposed multi-channel identification technique for properly

capturing the system dynamics. At 10 seconds, when the fault is applied, there is a large

error but the parameters are updated recursively and they converge quickly to stable values.
6.5.1 Fault in Middle of Transmission Line

In this case, a bolted three phase fault for 6 cycles is applied to middle of the tie-line

connecting Area-1 and Area-2. It is assumed that the fault is auto-cleared after 6 cycles and

the circuit breakers on the either end of the line are not opened. This disturbance excites

the interarea oscillation in the system.

The purpose of this study is first to show that if not explicilty asked to take part in

mitigating the system oscillation, the DER systems basically continue to send the same

amount of power to the grid irrespective of the system oscillation. This primarily happens
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Figure 6.4: Estimation error of the recursive least square multi-channel identification
routine.

Figure 6.5: Inter-area speed deviation comparison with PSS and proposed technique
with multiple combination of DER.

Figure 6.6: Tie-line power flow transfer comparison with PSS and proposed technique
with multiple combination of DER.

because of the asynchronous nature of operation of DER systems i.e. their power output

naturally does not depend on system speed. Once that is demonstrated, next the capability

of WADC augmented DER systems to dampen the system oscillation is shown and the

performance is compared with the damping performance of PSS employed in synchronous
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Figure 6.7: DER power output deviation from its local setpoint for WADC contribu-
tion a)DER1 b)DER2.

machine.

Fig. 6.5 shows the inter-area speed deviation for four different cases: a) PSS of syn-

chronous machines are enabled and damping control in DERs are disabled b) PSS of syn-

chronous machines are enabled along with DC in DER of area 1 c) PSS of synchronous

machines are enabled along with DC in DER of area 2 d) PSS of synchronous machines are

enabled along with DC in DER of both area 1 and area 2. It can be observed that with

the proposed DC enabled, the dynamic response of system following the fault improves in

terms of less overshoot and better damping. It can also be observed that better damping

is obtained when DER in both area are utilized and also DER in sending end can provide

more damping effect than the DER in area 2.

Fig. 6.6 shows the tie-line power flow for the different cases studied. It can be observed

that with the proposed WADC controller implemented on DER the tie-line power oscillations

is minimized as well. Fig. 6.7 shows the variation of DER power output in area 1 and area

2 from its local set-point in order to contribute for damping the inter-area mode. It can be

observed that the DER only contributes to damping the system oscillation when the WADC

signal is enforced. Without the WADC signal it can be observed that the DER strictly forces
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Figure 6.8: Inter-area speed oscillation damping comparison for different WADC
schemes.

its power output to the reference level. Also, note that the DER power output variation on

both area is limited to ±45 MW to be utilized for WADC application which is low compared

to the net system generation of 2800 MW.
6.5.2 Comparison with the Existing WADC architecture for DER

This test case presents the comparison of the proposed WADC with the existing WADC

architecture for DER systems proposed in literature. The cases compared are a) No PSS and

damping control implemented in DER systems b) With supplementary damping wind PSS

designed as conventional WADC as in (48) c)Energy Function based direct intelligent WADC

as in (51) and d) Proposed multichannel identification based WADC controller. A fault is

applied at the middle of line as in section 6.5.1 at 10 secs for a 300 ms period and various

WADC schemes are comapred. The result shown in Fig. 6.8 shows that the proposed

WADC technique outperforms the other existing WADC schemes, the major advantage

comes in from the fact that the proposed technique is not dependent on knowing the system

parameters as the parameters are estimated online on the proposed control technique. Thus

it can be seen that the proposed control technique can be a better alternative to the existing

WADC scheme employed for DER systems.
6.5.3 Comparison with the Existing SI based Adaptive WADC architecture

This test case presents the comparison of the proposed adaptive WADC with the existing

adaptive WADC architecture. The adaptive WADC proposed in (8) was implemented for

DER in area 1 and the performance comparison between technique in (8) and proposed
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Figure 6.9: Inter-area speed oscillation damping comparison between proposed adap-
tive WADC and WADC proposed in (8).

Figure 6.10: Inter-area speed oscillation damping comparison without PSS but only
with proposed DC.

technique was performed. Fig. 6.9 shows the performance of the proposed DC and DC in

(8) for fault conditions mentioned in Section 6.5.1. It can be observed that the proposed

technique has a better response as compared to the technique presented in (8).
6.5.4 Proposed DER DC on System without PSS and Effect of Time Delay

Fig. 6.10 shows the performance of the proposed WADC without the presence of PSS

in synchronous machine. As can be seen from Fig. 6.10 without the PSS and no damping

control in DER, the interarea speed deviation continues to grow overtime, however with the

proposed DER based WADC implementation on both area and area 1 the inter area speed

deviation settles down to zero. With the WADC implemented on area 2 DER it can be

observed that the oscillation are contained. The delay of the signals in the communication

network for WADC implementation can have an detrimental impact on the performance
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Figure 6.11: Inter-area speed oscillation comparison with and without delay compen-
sation for proposed DER DC.

of the WADC (50). However utilizing the time stamp data from the WADC signal can

help determine the delay that have occured between dispatch and arrival of control signal.

Once the delay is determined a local time delay compensator can be designed to ensure

that the WADC based DER DC still performs well. Fig. 6.11 shows the inter-area speed

oscillation damping performance of the proposed controller at different time delays and with

and without delay compensation. It can be observed that at larger time delays the proposed

DC can damp the first swing however because of larger time delay a sustained oscillation

is introduced in the system. It can also be observed that with proper compensation the

inter-area oscillations can be damped even with presence of significant time delay.

6.6 Summary

In this chapter, an adaptive WADC for DER integrated power grid is proposed in order

to damp the system speed oscillations. Multichannel RLS estimation technique has been

utilized to identify the relation between the power system speed deviation as a system

output and the power output of DER as a system input. The proposed approach augments

the existing LC of DER to achieve the goal of damping the system speed oscillations. The

results based on dynamic simulation of two area system in MATLAB Simulink shows better

damping functionality of the proposed technique. Some of the issues regarding the practical

implementation of the proposed method are model order selection, signal selection, and

identifying the system from ambient data which is the data. These issues will be studied in

the extension of this work.



CHAPTER 7: CONCLUSIONS

In this dissertation, an integrated framework based on subspace identification is proposed

that can detect the presence of forced oscillation in PMU measurements and can estimate

the electromechanical modes accurately in the presence of forced oscillations.Comparison

of proposed approach is performed with state of the art mode estimation approaches and

the proposed framework accurately estimates the oscillatory modes. Further, to decrease

the computational time of mode estimation algorithm for large power systems a spectral

clustering based method is proposed. The proposed method shows uses subspace affinity

to form a similarity graph and then uses spectral clustering to divide the signals into weak

and small groups for critical mode of interest. This helps to reduce the number of signals

needed for estimating the critical oscillatory mode accurately. The proposed grouping also

helps to indicate the location of oscillation source. An oscillation source location method is

proposed that can locate the source of oscillation properly for single and multiple oscillation

source locations. Locating the source of oscillation is the most crucial step in mitigating

oscillation.

Moreover, a model-measurement based hybrid model is proposed which can help studying

the effect of unmodeled dynamics. The proposed approach can help the system operators in

short time planning giving them an indication about the difference between model and mea-

surement response. This enhances the situational awareness of the operators. The system

identification based approach developed is used further to design a minimum variance con-

troller for mitigating the oscillations using renewable energy resources (RER). The proposed

controller is a multi-input-multi-output (MIMO) controller and can effectively coordinate

between multiple damping resources to mitigate power system oscillations.

The work proposed in this dissertation leads to an number of research plans for developing

analytical tools that can provide in depth power system dynamics analysis and for developing
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robust control approaches that can adapt with the changing system condition to damp

oscillations faster. Some of the future works are

• All the methods developed in this dissertation are being compiled to create a MATLAB

based tool that can help increasing research and understanding in this field of work

• In this dissertation, network and communication constraints have not been consid-

ered. As part of future work the effect of latency, communication protocol etc on the

proposed approaches will be studied

• The proposed system identification techniques can be used to study other data driven

power system problems like voltage stability, microgrid inverter coordination, MIMO

DFIG control,

• The proposed adaptive control architecture can be enhanced to include the forced

oscillation detection in control action, The control action will widely vary depending

on the type of oscillation
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APPENDIX A: TEST SYSTEMS DESCRIPTION

A.1 Two Area System

Two area test system is a well known model studied for inter area oscillation (9).The

model consists of two areas connected through a tie-line. Area 1 has two synchronous

generators each generating 700 MW power and area 2 also has two synchronous generator

each generating 719 MW and 700 MW respectively. Area 1 has a local load of 967 MW

and area 2 has a local load of 1767 MW. Both the areas are connected through a weak

transmission line and area 1 exports 400 MW to area 2. The ’IEEE Type EXAC4A’ is used

for voltage regulation, governor type ’TGOV1’ is used for governor model and type ’STAB1’

is used for power system stabilizer model. Details are given in Figs. A.2 and A.3.
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Figure A.1: Two area test System (9).

Figure A.2: Governor data for the two area system.



180

Figure A.3: Power system stabilizer (PSS) data for the two area system.

A.2 IEEE 39 Bus Test System

IEEE 39-Bus system is a reduced equivalent of the New England test system (NETS).

Fig. A.4 shows the one line diagram of the test system (7).This system has 10 generators

and 39 buses. Generator 1 located at bus 39 is an aggregated generator and hence has high

inertia and output power. Exciter model used for voltage regulation is of ’IEEE type 1’ and

governor model is of type ’TGOV1’.The governor data is added for EMT simulation studies

compared to (7). Details are given in Figs. A.5.

Figure A.4: IEEE 39 bus test system (7).
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Figure A.5: Governor data for the 39 bus system.

A.3 IEEE 68 Bus Test System

The 68-bus system is a reduced order equivalent of the inter-connected New England test

system (NETS) and New York power system (NYPS), with five geographical regions out of

which NETS and NYPS are represented by a group of generators whereas, the power import

from each of the three other neighboring areas are approximated by equivalent generator

models. Fig. A.6 shows the one line diagram of the test system (10).This system has 16

generators and 68 buses. Generator 14,15 and 16 are aggregated generators and hence has

high inertia and output power. Exciter model used for voltage regulation is of ’DC4B’ and

’ST1A’. Governor model is of type ’TGOV1’.The governor data is added for EMT simulation

studies compared to (10). Details are given in Figs. A.7.

A.4 miniWECC System

miniWECC system is consist of a reduced WECC 179-bus, 29-machine system (1). The

one-line diagram of the system is shown in Fig. A.8. All generators are represented as the

GENCLS model from Siemens PTI PSS/E, i.e. a classical second-order differential model

reflecting the motion of the rotor; damping parameter D for all generators are set to 4;

all loads are modeled as constant MVA. Generators where the disturbances are applied are

represented as GENROU model from Siemens PTI PSS/E.

Note: (i) generator inertia data were recreated reflecting the dynamics of interests in the

Western Interconnection system and does not match exactly the actual system parameters;

(ii) damping parameter D for each generator was artificially created such that the natural

modes not of interests are reasonably damped.
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Figure A.6: IEEE 68 bus test system (10).

Figure A.7: Governor data for the 68 bus system.
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Figure A.8: miniWECC test system (1).
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APPENDIX B: SIGNAL PROCESSING METHODOLOGY

In this section, the typical process of dealing with PMU measurements are presented.

And some preliminary background for method like prony, periodogram are shown. It also

shows how mode shape can be extracted from measurement.
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Figure B.1: Flow chart of the study method .

B.1 PMU Data Concentration

First step is to gather the PMU measurements for different output channels. In this study,

results are obtained from simulation, so data integrity problems related to PMU data which

includes outliers and missing data are not considered. Fig. B.2 shows the active power

output of 29 generator buses in the miniWECC system for a studied case.

Figure B.2: Data acquisition from different output channels.
B.2 Data Preprocessing

Acquired data is generally preprocessed before detection algorithms are applied to it.

Data preprocessing includes passing the data through a low pass filter and down sampled

as only the electromechanical modes are of interest. Then the data is detrended to remove

any DC offset which might bias the oscillation detection algorithms. Fig. B.3 shows the

detreneded and downsampled data for this example.
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Figure B.3: Processed data from different output channels.

B.3 Signal selection

After processing the data signals are selected based upon oscillation magnitudes for de-

tecting oscillation and it’s characteristics. Fig. B.4 shows the signals which has the highest

oscillation magnitude. Highest magnitude of oscillation is seen at generator 10 which is

located at bus 159 and this signal is used for further analysis.

G_1 G_2 G_3 G_10 G_14

Figure B.4: Selected signals from different output channels.

B.4 Oscillation detection

The selected signal from previous step is analyzed to estimate the frequency of oscillation.

Both parametric and non parametric methods have been used for the estimation. The

data window length used for estimation is 20 second. Prony analysis have been used for

parametric method and welch’s periodogram is used for non parametric method. Table B.1

shows that both the parametric and nonparametric methods are able to identify the same
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oscillation frequency. Fig. B.5 illustrates the selected signal and the estimation from welch’s

periodogram. Prony analysis approximates a signal as a summation of damped sinusoids

and the general expression is given in (B.1). For the example case order of the system n = 6

and table B.2 shows the phase, amplitude and damping estimates of different frequencies

for prony analysis.

yr(t) =
n∑

m=1

Ame
σmtcos(ωmt+ φm) (B.1)

Table B.1: Estimation of oscillation frequency and damping ratio.

Method (Hz) Frequency Damping ratio
Prony analysis 1.41 0

Welch’s Periodogram 1.41 NA

G_10

Figure B.5: Selected signal and oscillation frequency identification.

B.5 Oscillation shape estimation

Once thee oscillation frequency is identified then it is important to know which generator

are contributing to that particular oscillation and at which generator output power that
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Table B.2: Prony analysis signal components.

Frequency(fm) (Hz) Amplitude(Am) Phase (φm) (rad) damping (σm)
1.4026 245.2940 -2.3410 0
1.4026 245.2940 2.3410 0
2.5357 9.4039 0.2040 0
2.5357 9.4039 -0.2040 0
3.4037 5.3608 3.0988 0
3.4037 5.3608 -3.0988 0

Figure B.6: Portion of the regenerated signals using Prony
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Figure B.7: Oscillation shape estimation.
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oscillation is more prominent. A combination of these two factors is seen in the oscillation

shape. Oscillation shape involves extracting the magnitude and phase of the oscillation

frequency of interest from all the available output channels. Fig. B.7 shows the normalized

oscillations shape for the 1.41 Hz oscillation mode. It shows that the highest magnitude is

seen in generator at bus 159 although the source of the oscillation is at generator at bus

45 for this case. So, the bus near the oscillation source will have highest magnitude is not

necessarily true always.
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