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ABSTRACT 
 
 

MEGAN ELAINE SIRBAUGH. Spatiotemporal prediction modeling of dengue fever in 
Colombia, South America based on temperature and precipitation. (Under the direction of 

DR. MATTHEW EASTIN) 
 
 

Dengue fever is a prominent mosquito-borne viral disease in the tropics that is estimated 

to infect as many as 400 million people per year. Dengue is endemic to Colombia, South 

America and it is crucial to be able to predict when outbreaks may occur so that 

preventative measures may be taken. The primary vector for the virus, the Aedes aegypti 

mosquito, requires warm temperatures and standing water to live, breed and incubate the 

virus. Therefore, weather variables such as temperature and precipitation correlate to 

dengue incidence and can be used to predict the timing and location of dengue outbreaks. 

While most of the previous research on this topic has focused on temporal prediction of 

dengue outbreaks in a small area, a spatiotemporal prediction model for the entire country 

of Colombia was developed for this study using correlations between weather variables 

and dengue fever incidence data. Temperature and precipitation data from weather 

stations across Colombia was interpolated via Inverse Distance Weighting, Kriging and 

Cokriging. Then a prediction model based on the auto-regressive moving average model 

was developed to compare dengue incidence to each weather variable and to itself at 

different time lags then to predict future dengue incidence. The accuracy of the prediction 

model depended on which variables were incorporated into the model, but the most 

accurate model was the model that only took historical dengue incidence into account. 

The model performed better in cities than over the country as a whole, which is notable 

because the majority of cases occur in highly populated areas. Model prediction errors 
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were high, and it is important to note that socio-economic factors, as well as 

environmental factors, need to be taken into account to create an accurate prediction 

model. 
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INTRODUCTION 
 
 

Dengue fever is a mosquito-borne viral disease prominent in the tropics. The 

Centers for Disease Control and Prevention (CDC) reports that dengue may infect as 

many as 400 million people each year. Dengue is endemic to over 100 countries, putting 

nearly half of the world’s population at risk. Dengue causes flu-like symptoms such as 

high fever, severe headaches and body aches, nausea, vomiting and rash. Severe dengue 

is a potentially deadly form of the disease which causes plasma leaking, fluid 

accumulation, severe bleeding or organ impairment, and infects as many as 500,000 

people each year (Durbin 2016). The four serotypes of the dengue virus, known as 

DENV-1, DENV-2, DENV-3 and DENV-4, are passed between humans by female 

mosquitoes of the Aedes genus (primarily Aedes aegypti).  

 The occurrence and spread of dengue is affected by environmental factors 

because the dengue vector, the female Ae. aegypti mosquito, can only survive and 

incubate the virus under certain environmental conditions. Ae. aegypti requires standing 

water to breed, thus ample precipitation is a necessary condition for dengue to spread. 

Warm temperatures enable the virus to incubate faster in the mosquito and increase 

oviposition rates of the mosquito (Rueda et al. 1990, Watts et al. 1987; Yang et al. 2009). 

These conditions are omnipresent throughout the tropical latitudes, whereas cooler 

temperatures and drier air in poleward locations hinder the ability of Ae. aegypti to spread 

the virus, hence why dengue is largely confined to the tropics. 

Until late 2015, there was no approved vaccine to prevent dengue (Durbin 2016; 

Pitisuttithum and Bouckenooghe 2016). Dengvaxia, the first licensed vaccine for 

preventing dengue, was developed by Sanofi Pasteur, the vaccines division of Sanofi, a 
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leading global healthcare company. The vaccine targets all four dengue strains, and was 

found to reduce incidence of confirmed dengue by 65.6% in trial participants during the 

first 25 months after injection. Three years after the first injection, the risk of 

hospitalization was reduced by 50%. There were no safety concerns identified for trial 

participants over 9 years old. Dengvaxia is currently approved for persons ages 9-45 in 

eleven countries: Mexico, Brazil, the Philippines, El Salvador, Paraguay, Guatemala, 

Peru, Costa Rica, Indonesia, Thailand and Singapore.  The vaccine is still not licensed in 

Colombia, so other preventative measures must be taken such as the use of mosquito nets, 

elimination of mosquito breeding grounds and pesticide spraying. In order to implement 

such preventative measures in time for them to be effective at preventing outbreaks, we 

must understand how environmental factors influence the occurrence and spread of 

dengue fever so that the timing of future outbreaks can be accurately predicted.  

All four serotypes of dengue are endemic to Colombia and dengue poses a health 

risk to much of the country, so it is important to research the correlations between 

weather and dengue incidence across Colombia. The problem this research addresses is to 

assess spatiotemporal correlations between temperature and precipitation with the 

documented cases of dengue fever at the department (equivalent to U.S. states) level in 

Colombia, South America for the years 2005-2012. Then these spatiotemporal 

correlations will be used to create a prediction model that will forecast outbreaks of 

dengue fever across Colombia for the years 2013-2015. Most previous studies created 

models to temporally predict dengue outbreaks for a single city, so this research will have 

the benefit of a spatial prediction component in the model. Such a prediction model could 

be incorporated into an Early Warning System (EWS) for Colombia, so that the time and 



3 
 

place of outbreaks of dengue could be accurately predicted, and steps could be taken well 

ahead of time to prevent outbreaks from occurring.  

 An additional motivation for this research is that with global climate change and 

the increasing temperature trends, there is a concern that dengue may be able to spread to 

new regions as the suitable environment for Ae. aegypti expands latitudinally and 

altitudinally. Some studies have shown that the range of Ae. aegypti could expand into 

the southern United States (Hopp and Foley, 2003; Jetten and Focks 1997). Developing 

an EWS for an endemic area, such as Colombia, will have the added benefit of allowing 

non-endemic regions to be better prepared for any spatial expansion of tropical vector-

borne diseases into new areas. 

History 

Dengue became a pandemic following World War II when epidemic transmission 

of dengue in Southeast Asia increased and the first epidemics of severe dengue (then 

known as dengue hemorrhagic fever, or DHF) were recorded in Manila, Philippines in 

1953 (Gubler 1998). Dengue and DHF proceeded to spread throughout Asia. Dengue was 

reintroduced to the Pacific Islands in the 1970s, from where it quickly spread to the 

tropical latitudes of the Americas. Mosquito eradication programs that had been in place 

in the American region were discontinued in the 1970s because of the dangers associated 

with pesticide use, allowing Ae. aegypti to reinvade many countries in Central and South 

America. By the 1980s dengue epidemics began to sweep through countries that had been 

free of the disease for decades, prompting a surge of studies on the factors that influenced 

dengue outbreaks and how outbreaks could be prevented. 
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The Dengue Vector: The Female Aedes aegypti Mosquito 

The principal dengue vector, Ae. aegypti is a domesticated tropical mosquito that 

feeds primarily on humans in daylight hours (Gubler 1998). It lays its eggs in sitting 

water in artificial containers such as tires, rainwater buckets, flower vases and containers 

used for water storage such as 55 gallon drums and septic tanks (Barrera 2011; Carbajo 

2012). This enables the Ae. aegypti to become highly populous in tropical urban settings 

and near human homes. The virus is transmitted when the female Ae. aegypti mosquito 

takes a blood meal from an infected human, then takes another blood meal from an 

uninfected human after the virus incubates within the mosquito. The extrinsic incubation 

period of the mosquito can vary based on temperature, as well as the mosquito’s 

willingness to bite. 

Correlations between Temperature and Mosquito Life Cycle 

Many laboratory studies have shown important correlations between temperature 

and mosquito life cycle, as well as temperature and the ability of the mosquitoes to spread 

the dengue virus. In a controlled laboratory environment, the optimal temperature range 

for Ae. aegypti to survive in the aquatic stage is 15-35 °C, and 15-30 °C for adults (Yang 

et al. 2009). The highest rates of survival to the adult stage occurs between 20 and 27 °C, 

with major drop-offs in survival at 15 °C and slight drop-offs above 30 °C (Rueda et al. 

1990). The temperature at which oviposition rates are the highest is at 26 °C (Yang et al. 

2009). More recently, it has been studied whether diurnal temperature range has an effect 

on the life cycle of Ae. aegypti and the transmission of the dengue virus (Lambrechts et 

al. 2011; Eastin et al. 2014). Average daily temperatures may not accurately predict the 

individual temperatures that occurred on a day. In 2011, Lambrechts et al. conducted a 
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laboratory study in which mosquitoes were held in conditions that changed temperature 

by varying degrees throughout the day. No temperature change was used as the control 

group, and all groups had the same average temperature. Larger diurnal temperature 

range reduced the probability of Aedes aegypti survival through the time it takes for the 

virus to spread through the mosquito to its salivary glands so that it can infect humans, 

known as the extrinsic incubation period, and led to a lower rate of infection within the 

mosquitoes. It may be more important to assess how daily temperature ranges, rather than 

average daily temperatures, affect dengue transmission. 

Vector efficiency after exposure to different temperatures has also been tested in 

the lab. Ae. aegypti is less mobile and struggles to take blood meals when temperatures 

are below 15 °C (Christophers 1960; Yang et al. 2009). Ae. aegypti is more likely to bite 

when temperatures are higher (Christophers 1960; Scott et al. 2000). In 1987 Watts et al. 

assessed the effect of temperature on the vector efficiency of the Ae. aegypti mosquito at 

spreading the DEN-2 virus. Ae. aegypti mosquitoes obtained from Bangkok, Thailand 

were allowed to feed on viremic adult rhesus monkeys and were subsequently grouped 

and kept at set temperatures that approximated the hot-dry, rainy and cool-dry seasons in 

Bangkok. For differing number of days after the blood meal, DEN-2 virus transmission 

was attempted at room temperature by allowing the potentially infected mosquitoes to 

feed on uninfected monkeys. Transmission was attempted at several different set amounts 

of days after feeding on the viremic (infected) monkeys. In turn, blood from the monkeys 

was tested for the presence of dengue virus. The extrinsic incubation period, was 7 days 

for mosquitoes kept at higher temperatures (32 or 35°C). Conversely, the extrinsic 

incubation period was longer (12 days) for mosquitoes kept at 30°C, and no transmission 
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occurred from mosquitoes kept at temperatures below 30 °C. At higher temperatures 

when the incubation period is shorter, transmission to humans can occur faster. This 

indicates that in the world outside of the laboratory, several days with temperatures in the 

32-35°C range could be a factor in the onset of a dengue outbreak. Laboratory tests have 

been important to understanding the conditions under which Ae. aegypti can survive, 

breed and incubate the dengue virus and their results have been supported by correlations 

between reported dengue cases and recorded temperature and precipitation.   

Correlations between Weather and Dengue Incidence 

The results of idealized laboratory studies have been confirmed in subsequent 

studies of Ae. aegypti and dengue incidence in the field. Significant associations between 

dengue incidence and weather variables, such as several temperature and rainfall 

parameters, have been consistently reported in the literature (Descloux et al. 2012; Eastin 

et al 2014; Hii et al. 2012; Wu et al. 2007).  

Many field studies have been conducted in Southeast Asia, where dengue is 

endemic to the majority of countries. Wu et al. applied an autoregressive integrated 

moving average (ARIMA) model to Kaohsiung, in southern Taiwan to model how 

dengue fever incidence correlated to temperature and humidity over time between the 

years 1998-2003. ARIMA is a common way to make short term forecasts by analyzing 

historical data, then using the correlations found to make predictions. Significant 

associations between maximum monthly temperature, minimum monthly temperature, 

relative humidity, monthly rainfall and dengue incidence were found. The strongest 

correlations were between temperature and dengue incidence and relative humidity and 

dengue incidence at a time lag of two months (Wu et al. 2007). A similar study by Hii et 
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al. (2012) predicted dengue cases based on weather variables in Singapore for the years 

2000-2011. A time series Poisson multivariate regression model was used to analyze the 

correlations between weekly dengue cases and daily mean temperature and rainfall data. 

These correlations were used to make a predictive model for 2011-2012 which proved to 

well-predict dengue outbreaks that were actually observed during that time period. The 

model accurately predicted 5 out of 5 outbreak weeks in 2011 using a 16 week time lag, 

which, in practice, would be ample lead time for health agencies and citizens to prepare 

and try to prevent outbreaks. Descloux et al.’s 2012 study on dengue in Noumea, New 

Caledonia, a French territorial island off the east coast of Australia, reported that the peak 

of epidemics occurred 1-2 months after the warmest temperature and simultaneously with 

the maximum precipitation and relative humidity.  

More recent studies have taken diurnal temperature range into account. In 2014, 

Eastin et al. utilized two unprecedented weather variables in weather-dengue research, 

mean daily temperature range and number of days with measurable rainfall. One goal of 

the study was to determine whether these parameters were more relevant to vector 

mosquito survival than daily maximum and minimum temperatures and total rainfall, 

respectively. Temporal dengue incidence prediction was completed using an ARIMA 

model. Mean daily temperature range was found to be the most accurate predictor of 

dengue incidence from 2001-2011 (Eastin et al. 2014). Studies conducted using observed 

dengue and weather data in multiple tropical locations found that the most significant 

correlations have been found between temperature variables and dengue incidence, and 

agree with the laboratory studies that warmer temperatures lead to higher dengue 
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incidence. Correlations between precipitation and dengue incidence have also been 

found. This study will extend the results of previous work to a spatiotemporal context. 

Dengue Incidence and Climate Change 

 As global climate change progresses and the increasing temperature trend 

continues, there is a concern that dengue may be able to spread to new regions as the 

suitable environment for Ae. aegypti expands latitudinally and altitudinally. Several 

studies have attempted to quantify the effects of climate warming on the range of Ae. 

aegypti (Hopp et al. 2003, Jetten & Focks 1997). By taking into account the ideal 

temperature range for the mosquito to live, it has been found that a global temperature 

increase of 2°C would increase dengue rates in some parts of southern North America, 

southern Europe, South America, Sub-Saharan Africa, India, Southeast Asia and 

Australia by two to ten times (Jetten & Focks 1997). This increase in temperature would 

also introduce new locations where dengue transmission would be possible in the 

previously listed regions (Jetten & Focks 1997). A temperature change of 4°C increases 

dengue transmission rates and new areas of potential transmission even more (Jetten & 

Focks 1997). With increased temperature, the potential area for dengue transmission 

would expand in latitude and altitude and the length of the transmission season would be 

longer.  

Hopp et al. conducted a similar study in which a numerical model was used to 

simulate how Aedes aegypti may have responded to climate changes that were observed 

between 1958 and 1995 and to see how these potential mosquito environments compare 

to the locations of dengue cases. Precipitation, relative humidity, temperature, and solar 

radiation changes from 1958 to 1995 were analyzed on a global scale and the model 
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analyzed areas that were potential vector habitats at each time step. Throughout smaller 

countries in Southeast Asia, and the Americas, there were statistically significant 

correlations between mosquito density, as predicted by the model, and observed dengue 

cases, thus, this model, when applied to climate predictions could be used as a predictor 

of vector habitat expansion. The correlation was not significant for larger countries such 

as the United States, China, Brazil and Australia because outbreaks are typically 

contained in only small portions of these countries.  

Climate change has caused growing concern of dengue spreading to new areas. 

This threat increases the need for research into predictive models so that outbreaks can be 

prevented in areas that will become at-risk for becoming endemic dengue regions. 

Predictive models that have a spatial component will be especially important in analyzing 

where dengue outbreaks are likely to occur as climate change continues.  

Temporal and Spatiotemporal Analysis 

Most dengue modeling studies have focused on temporal variations in dengue 

incidence rather than spatial or spatiotemporal variations. The correlations found in the 

aforementioned field studies helped the researchers to develop prediction models that can 

be integrated into early warning systems (EWS) for tropical areas. Most current research 

on the topic is geared towards creating temporal prediction models of dengue outbreaks 

for endemic cities (Descloux et al. 2012, Eastin et al. 2014, Hii et al. 2012, Wu et al. 

2007). In these studies, first, analytical models were developed to detect correlations 

between weather variables and dengue cases. Then these correlations were applied to 

predictive models, which analyzed weather data and predicted when dengue outbreaks 

would occur. All of these previous studies were all successful in predicting dengue 
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outbreaks. Descloux et al.’s predictive model has been integrated into an EWS for 

Noumea, New Caledonia.  

 A new avenue of research in this area is taking into account the spatial variation 

of dengue outbreaks in addition to temporal variation. One such study was conducted by 

Delmelle et al. for Cali, Colombia and published in 2013. Temporal variation in dengue 

incidence during the first eight months of 2010 was evaluated using a cumulative 

distribution function (CDF), which represents the probability that an event will happen on 

or before a certain date and a probability distribution function (PDF) which represents the 

probability that an event occurs at a particular time. A high prevalence in February 2010 

was found and attributed to lack of rain, high temperature, which reduced incubation time 

of the virus. K-functions were used to complete the spatial and spatiotemporal analysis 

and it was found that clusters of dengue cases occurred in areas where there was a 

concentration of vulnerable populations and areas with favorable mosquito breeding 

conditions (Delmelle et al. 2013). This study did not use weather variables as predictors 

of dengue outbreaks, but rather used weather as an explanation for why dengue outbreaks 

may have occurred when they did. 

Because spatial prediction of dengue outbreaks has not been studied extensively, 

especially in relation to weather variables, the research proposed in this paper aims to fill 

that gap. This will be achieved by analyzing weather variables (specifically, monthly 

mean and extreme temperatures and total precipitation) across the entire country of 

Colombia and calculating correlations between such weather variables and dengue 

incidence data. With these correlations, a spatiotemporal prediction model will be created 

that will predict dengue outbreaks across Colombia and over time.  Such a model could 
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be integrated into an EWS for Colombia to predict when dengue outbreaks may be likely 

well ahead of time so that preventative measures can be taken to prevent epidemics. 
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METHODS 
 
 

Study Area 

Colombia, South America is a large (with an area of 439,737 square miles) and 

physically diverse (with varying elevations and climate zone) tropical country that 

straddles the Equator. Along the Pacific coast, to the north is the Caribbean coastal region 

and to the south is the Pacific coastal region, both of which are characterized by low 

elevations. Just inland from the Pacific coast is the Andean region, dominated by the 

Andes Mountains, where elevations reach over 5000 meters.  To the east of the Andes 

lays the Amazon rainforest to the south and the Orinoquia savanna to the north at low 

elevations. Figure 1 shows a map of land cover in Colombia, where the rainforest region 

is easily seen in dark green and savanna region in orange. The Andean region and 

northwest coastal region are dominated by croplands. Land cover data was obtained from 

the GlobCover 2009, obtained and compiled by the European Space Agency. 

Due to its proximity to the equator, Colombia’s temperatures do not vary 

extremely latitudinally or seasonally. However, temperatures do vary altitudinally, with 

cooler temperatures in the high mountains of the Andes (Ishida and Kawashima 1993). 

Generally, warm-dry seasons occur from about December-February and June-September 

and cool-wet seasons occur from about March-May and October-November (Eastin et al. 

2014). 

Colombia is subdivided into 32 departments (equivalent to U.S. states) and a 

Capital District, Bogota. Colombia’s estimated population as of October 2016 was 

48,900,000 people. The population has been steadily increasing over the last 60 years. 

However, Colombia’s population is unevenly distributed throughout the country. Figure 2 



13 
 

shows a map of Colombia’s population distribution. The majority of the population is 

concentrated in the western half of the country, with very few people living in the 

Amazon rainforest or Orinoquia savanna regions, which make up the eastern half of the 

country. The majority of the population is concentrated in the Andean region. Population 

density likely has an influence on the number of dengue cases that occur in an area. This 

is in part because Ae. aegypti is a highly urbanized mosquito, and because there are more 

opportunities for blood meals and to spread the virus. 
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Figure 1. A land cover map of Colombia shows that the eastern portion of the country is 
dominated by the Amazon Rainforest and Orinoquia Savanna. The majority of the 
population, however, resides in the built-up and cropland areas of the Andes Mountains 
and the northwest coast. 
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Population Data 

 Population data was obtained from the Socioeconomic Data and Applications 

Center (SEDAC), a data center in NASA’s Earth Observing System Data and 

Information System. The dataset used was the Gridded Population of the World (GPW), 

version 4. A GeoTiff of the estimated 2005 population of Colombia at 30” resolution was 

downloaded and is shown in Figure 3. The population data will be used as a proxy for 

where dengue cases occur, under the assumption that more cases occur where there are 

more people. This is to account for the resolution difference between the interpolated 

weather data being on a grid and the dengue cases being aggregated into departments.  

 

Figure 2. Map of population count in Colombia. The majority of the population is 
concentrated in the Andean Region and the western coast, whereas very few people live 
in the eastern portion of the country in the savanna and rainforest regions. 
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Meteorological Data 

The weather data used for this study came from the  Monthly Summaries of 

Global Historical Climatology Network (GHCN)- Daily, which is a dataset maintained by 

the National Oceanic and Atmospheric Administration (NOAA)’s National Centers for 

Environmental Information (NCEI) (formerly National Climatic Data Center, NCDC). 

The GHCN is a database of climate summaries from land surface observation stations 

around the world (GHCN 2015). Monthly summaries are derived from the GHCN-Daily 

dataset. The monthly summary provides simple averages or monthly accumulations of 

daily observations. The variables downloaded for this study were monthly means of 

maximum temperature, minimum temperature and mean temperature, and total monthly 

precipitation. The monthly climate summary can be obtained from the NCDC’s Climate 

Data Online (CDO) system. The monthly climate summary was chosen as the dataset for 

this study because it was the shortest time span for which data was available for 

Colombian weather stations from CDO. The data can be downloaded as a comma-

separated value (CSV) file and manipulated in Microsoft Excel. 

Four types of weather data were downloaded from the GHCN, monthly averages 

of maximum temperature, minimum temperature and mean temperature, and total 

monthly precipitation. Data from 29 weather stations in Colombia and surrounding 

countries was collected for each month of each year of the study period, 2000-2015. The 

location of weather stations is Colombia is not evenly distributed. See Figure 3 for a map 

of the locations of weather stations used, as well as elevation. Generally, more weather 

stations exist where there are more people. There are very few weather stations in the 

heavily forested areas of the country. (Refer to Figure 1 for land cover and Figure 2 for 
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population distribution). Because of the uneven distribution of available weather data, the 

interpolation of weather data throughout the country will be highly influenced by the 

location of weather stations. See Table 1 below for the list of weather stations used and 

their location. 

In the downloaded file, the values of precipitation were in tenths of a millimeter 

and temperature values are in tenths of a degree Celsius. Precipitation was converted to 

millimeters and temperature was converted to degrees Celsius. Elevation, latitude and 

longitude information for each station was also included in the downloaded file. Most 

stations had missing data for some variables in some months. The missing data were 

excluded from further analysis.  
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Figure 3. Locations of the 29 weather stations used to gather temperature and 
precipitation data overlain on a digital elevation model of Colombia. Twenty-five stations 
were located in Colombia, three in Venezuela and one in Peru. The majority of weather 
stations are located near population centers in the Andean and coastal regions. The lack 
of weather stations in the eastern portion of the country is due to lack of population. 
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Table 1. List of weather stations used in the interpolation, with their location and 
elevation. For country, CO is Colombia, VE is Venezuela and PE is Peru. 

 

  

Station Name Latitude Longitude Elevation Country

APTO A BONILLA AUT 3.54 -76.38 961 CO

APTO ALFONSO LOPEZ 10.4 -73.25 138 CO

APTO ALM PADILLA 11.5 -72.92 4 CO

APTO ANTONIO NARIN 1.2 -77.29 1816 CO

APTO BENITO SALAS 2.95 -75.29 439 CO

APTO CAMILO DAZA 7.93 -72.51 250 CO

APTO EL CARANO 5.69 -76.65 53 CO

APTO EL DORADO 4.7 -74.14 2547 CO

APTO EL EDEN 4.45 -75.77 1229 CO

APTO J M CORDOVA 6.17 -75.43 2073 CO

APTO LOS GARZONES 8.82 -75.82 20 CO

APTO MATECANA 4.81 -75.74 1342 CO

APTO OLAYA HERRERA 6.22 -75.59 1490 CO

APTO PALONEGRO 7.12 -73.18 1189 CO

APTO PERALES 4.42 -75.13 928 CO

APTO RAFAEL NUNEZ 10.4 -75.51 2 CO

APTO SAN LUIS 0.86 -77.67 2961 CO

APTO SIMON BOLIVAR 11.1 -74.23 4 CO

APTO VANGUARDIA 4.16 -73.62 423 CO

APTO VASQUEZ COBO -4.19 -69.94 84 CO

APTO YARIGUIES 7.02 -73.81 126 CO

ANTONIO ROLDAN BETANCOURT 7.812 -76.716 14 CO

ERNESTO CORTISSOZ 10.89 -74.781 29.9 CO

PUERTO CARRENO A.GU 6.1 -67.49 50 CO

SANTIAGO PEREZ 7.069 -70.737 128 CO

CASIQUE ARAMARE 5.62 -67.606 74.7 VE

GUASDUALITO 7.211 -70.756 129.8 VE

IQUITOS -3.783 -73.3 126 PE

LA CHINITA INTERNATIONAL 10.558 -71.728 71.6 VE
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Epidemiological Data 

Dengue incidence data was obtained from Colombia’s Sistema de Vigilancia en 

Salud Publica (SIVIGILA; English—Public Health Surveillance System) for the study 

period 2000-2015. SIVIGILA is the system in place in Colombia to which all lab-

confirmed dengue cases are reported. Information for each dengue case includes patient 

information such as sex, age race and neighborhood, dates of diagnosis, first symptoms 

and hospitalization, final condition and reporting institution (Delmelle et al. 2013; Eastin 

et al. 2014). SIVIGILA is a reliable source of dengue information that has been in place 

since the 1960s. However, some bias may be presented in the date of diagnosis because 

of the days that people are actually able to go to the hospital are limited. This can be 

accounted for by taking monthly totals of the number of dengue cases (Eastin et al. 

2014). Additionally, dengue is typically under-reported because many people who don’t 

exhibit severe symptoms don’t seek professional medical treatment (Suaya et al. 2007). 

Dengue incidence data was aggregated into the number of cases per department per 

month of the study period. See Figure 4 for a map of dengue incidence totals per 

department in January 2005. 

Epidemiological data needed to be assessed at a finer scale than the department 

level in order to obtain a more precise location where dengue outbreaks may occur. 

Population-weighted dengue density maps were created and employed to address this 

issue. The dengue incidence data was overlain on the population data (resolution = 6600 

m). First the departmental dengue data was converted to a raster of cell size 6600 m 

where each cell was given the value of the total dengue count for the department in which 

that cell belonged. Then the population of each cell was divided by the total population of 
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its department then multiplied by the amount of dengue for that department. This resulted 

in a 6600 m resolution grid of dengue incidence. Figure 5 shows an example of a 

population weighted dengue raster from January 2005. Correlations between dengue and 

weather variables were calculated from this raster.  

 

Figure 4. Total number of dengue cases per department in January 2005. Dengue is more 
concentrated where the population is higher. The eastern portion of the country, in the 
savanna and rainforest, has few dengue cases. 
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Figure 5. Population-weighted dengue count for January 2005. The number of cases of 
dengue per 6600 m grid cell is reported. 
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Interpolation of Weather Data 

Spatial interpolation is the procedure by which values of a variable are estimated 

for an entire area from values observed at sample locations. Because weather stations are 

not located at every point in Colombia, the observations recorded by the present weather 

stations must be interpolated throughout the entire country to get an idea of what the 

temperature and precipitation patterns are like, which can then be compared to dengue 

incidence. Three common methods of interpolation are inverse distance weighting, 

kriging and cokriging.  

Inverse distance weighting (IDW) is a simple interpolation technique which 

estimates the value of a variable at a point between two sampled locations by averaging 

the observed values from surrounding points. Observed values are weighted so that 

observations that are closer to the estimation point are weighted inversely by distance so 

that observation closer to the estimation point are weighted more than observations 

further away. To estimate the temperature at an unsampled location, the observed 

temperatures from surrounding weather stations were averaged, with the temperatures 

from the closer weather stations weighing more in the average and temperatures from 

further stations weighing less. One disadvantage of IDW is that since it only takes 

averages of surrounding points, an estimated point cannot be lower or higher than any of 

the surrounding points, as could be the case. Another disadvantage is that if the sampling 

points are sparse or unevenly distributed throughout the study area, the results of the 

estimation may not sufficiently represent reality (Watson & Philip 1985). Therefore, the 

best results from IDW are achieved when the sampled locations are dense and evenly 

distributed in the study area, which as shown by Figures 6-9, is not the case for this study. 
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The main advantages of IDW are that it is easy to program and is not computationally 

expensive. 

Kriging is often touted as the most accurate method of spatial interpolation (Li & 

Heap, 2011). Kriging and cokriging are two common methods of spatial interpolation. 

Kriging interpolates a variable across space, and co-kriging does the same, while also 

using a highly correlated auxiliary variable to improve the accuracy of the interpolation. 

Though more computationally expensive (compared to IDW), kriging interpolation can 

be completed in programs such as R and ArcGIS. 

Ordinary kriging is an interpolation technique which predicts the value of a 

variable for a location by assigning weights to surrounding measured locations then 

averaging the surrounding observations and taking their weights into account (Webster, 

Oliver & Gerard 1989). For every point in an area, a semivariogram is applied, which 

assigns weights to each surrounding observation (sampled location) by summarizing 

spatial dependence of the observations at different distances from the unsampled point of 

interest (Zimmerman 1999). The semivariogram is a function that indicates spatial 

correlation in observations measured at sample locations, which is commonly represented 

as a graph that shows the variance in the observed values with distance between all pairs 

of sampled locations (Clark 1979). Therefore, in ordinary kriging, not only is the distance 

between the observed point and the unsampled point considered, but the distance between 

the observed points, the prediction locations and the overall spatial arrangement among 

the observed points are considered (Webster, Oliver & Gerard 1989). This allows for 

individual observations within clusters to be weighted less than independent 

observations. 
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Ordinary kriging assumes that the mean value of a variable is constant across the 

study area and that the semivariogram is known. Kriging is considered the optimal 

interpolator because its estimates are unbiased, have minimum variances and it is an 

exact interpolator, meaning the kriged value at a sampled point is the measured value 

there, so variance is zero (Webster, Oliver & Gerard 1989).  

 Equation (1) shows the equation for ordinary kriging: 

����� =  ∑ λ
 z��
�

=1 , 

 

where z is the observed value of a property at n sites, xi and λi are the weights associated 

with the sample points, which are summed to one to ensure that the estimates are 

unbiased (Webster, Oliver & Gerard 1989). Equation (2) shows the estimation variance 

for the kriging prediction ẑ(B): 

����� = �������� − ������� = � � λ�
�

��� ����
, �� − � � λ
λ!"#�
, �!$ − "���, ���
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where γ(xi,xj) represents the semivariance between the ith and jth sampling points, 

"̅(xi,B) is the average semivariance between the block B and the ith sampling point, and 

"̅(B,B) is the average semivariance within the block (Webster, Oliver & Gerard 1989). 

The estimation variance is minimized when  
� λ�

�
�=� �#�
, �!$ +  ( =  �)#�!, �$ 

 

where Ψ is a Lagrange multiplier, which achieves minimization of variance (Webster, 

Oliver & Gerard 1989). 

 Cokriging is a kriging approach which uses a second variable to provide 

interpolation estimates, which is especially useful when the auxiliary data is highly 

(2) 

(3) 

(1) 
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correlated to the primary data source (Goovaerts 2000). Temperature is highly correlated 

with elevation, so elevation from a digital elevation model is used as auxiliary data in this 

for this study. Cokriging can be especially useful because comprehensive and areal 

elevation data is more easily obtainable than comprehensive temperature data. Cokriging 

works well in areas with large elevation variations, so using elevation as auxiliary data in 

cokriging is common (Yang et al. 2004). 

In this study, once the raw weather data was obtained from CDO and organized 

into a usable format, the files were imported into ArcMap. Within the python 

environment in ArcMap, shapefiles were created for each weather variable for each 

month in the study period, from 2005-2015. The shapefiles were sets of points 

representing each weather station, containing the value of a given weather variable at that 

station for a given month. These shapefiles were used to complete IDW, ordinary kriging 

and cokriging of each weather variable for each month.  

IDW was completed in R for each of the weather variables, TMAX, TMIN, TMEAN  

and PTOT, for each month of the eleven-year study period. The IDW function from the R 

library ‘gstat’ was used to complete the interpolation. The interpolation resulted in maps 

of each variable for each month which spanned all of Colombia.  

Ordinary kriging was completed similarly in R. The autokrige function, part of the 

automap package available in R, was used to automatically generate a variogram and 

complete the kriging interpolation for each weather variable for every month of the study 

period. The automatic fitting of the variogram estimates the sill, range and model for the 

variogram based on the data. Then the data is automatically kriged based on the 

generated variogram.  
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 Cokriging was completed for each month in ArcMap’s Geostatistical Wizard with 

the weather variables as the primary datasets and the digital elevation model of Colombia 

as the secondary dataset. Simple cokriging with a prediction output surface was selected 

for the interpolation. Otherwise, the Geostatistical Wizard settings were kept as the 

default, because it automatically determines the best semivariogram and cross-variogram.  

The accuracy of the IDW, ordinary kriging and cokriging models was assessed 

using leave-one-out cross validation, in which one sample point is removed from the 

kriging interpolation and the interpolated value is compared to the observed value at the 

sample point. This is done repeatedly so that each sample point is removed one at a time 

and compared to the kriged value at that point. Three measures of error, mean error (ME), 

root mean squared error (RMSE) and root mean squared standardized (RMSSE) error 

were calculated to assess the accuracy of the kriging models for each TMAX, TMIN, TAVG 

and PTOT. Cokriging interpolation was found to have the lowest root-mean-square error, 

so the cokriged weather maps were used in further analysis. 

Dengue Prediction Modeling 

Autoregressive moving average (ARMA) models have proven to be a successful 

approach to forecasting time series based on correlations between weather variables and 

dengue cases (Eastin et al. 2014; Wu et at. 2007). The ARMA model analyzes time series 

data then predicts a value in a forecast time series as a linear combination of its own past 

values and past errors (SAS Institute Inc. 2014). There are three stages to ARMA 

modeling, which were outlined by Box and Jenkins (1976). First, in the identification 

stage, autocorrelations and cross-correlations between predictor variables are computed. 

Second, in the estimations and diagnostic testing stage, the optimized ARMA models are 
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developed along with the required estimation coefficients and diagnostic statistics to 

assess the adequacy of each model. Third, in the prediction stage future values are 

predicted and confidence intervals are calculated for each forecast. A Space-Time 

Autoregressive Integrated Moving Average (STARIMA) model has also been developed, 

which is valuable for forecasting purposes when a system exhibits spatial autocorrelation 

(Pfeifer and Deutsch 1980). The STARIMA model is an extension of the univariate 

ARIMA model into the spatial domain (Pfeifer and Deutsch 1980). 

The procedure used in this research was based on and adapted from the ARMA 

and STARIMA models. The variables used in the prediction models and their 

abbreviations are summarized in Table 2. 

Correlations between dengue and each weather variable were calculated for time 

lags of one to six months at each pixel (26,360 pixels). For example, at a 1 month time 

lag, DPOP in July was compared to TMAX in June, DPOP in August to TMAX in July, and so 

on throughout the model training period of 2005-2012. At a 6 month time lag, DPOP in 

July was compared to TMAX in January, DPOP in August to TMAX in February, and so on 

throughout the model training period. Then DPOP was autocorrelated at time lags of one to 

six months. At each pixel, the ideal time lag for each weather variable was identified as 

the lag with the highest absolute value of the correlation coefficient (R). The ideal time 

lag between the autocorrelated dengue data was also identified (and was always at a time 

lag of one month). 

Once the ideal time lag for each predictor was identified at each pixel, stepwise 

regression was employed to select which predictors would create a successful prediction 

model at each pixel without overfitting. Stepwise regression selects the best predictors 
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from a pool of potential predictors based on a set of criteria (Wilks 1995). The criteria 

used to select predictors for this model were that the predictor increased the proportion of 

variance explained (R2) by the model by more than 1% and the p-value of that predictor 

was less than 0.1. R2 was chosen to evaluate model performance because it shows the 

proportion of the variance in dengue incidence that is explained by the model. A cutoff of 

a 1% increase in R2 was chosen because if the proportion of variance explained by the 

model did not increase by at least 1% when adding a new predictor, there is no need to 

include that variable in the model.  A cutoff of p < 0.1 ensured the significance of each 

variable included in the model to the 10% level. R2, p-value, and regression coefficient 

(β) were calculated via ordinary least squares regression for each variable at each pixel. 

An intercept of the regression model and its associated p-value was also calculated at 

each pixel. The intercept was only included in the model if it was deemed significant in 

the same fashion as the predictors. 

DPOP at a one month time lag was always included as the first predictor because in 

the autoregressive dengue correlations, R was the highest at a one month time lag for 

every pixel. The p-value of DPOP at a one month time lag was always much less than 0.1, 

and therefore considered significant. Then the weather variables were selected based on 

their improvement of the correlation coefficient of the model, and the significance of that 

variable (Wilks 1995). If adding, for example, TMAX at its ideal time lag, to the model 

improved R2 by more than 1% and the p-value of TMAX was less than 0.1, then TMAX at its 

ideal time lag was added to the model. Then it was tested whether adding another weather 

variable, for example, PTOT, would again meet these criteria. This would continue until 

adding an additional variable did not improve R2 by more than 1% or if the p-value of the 
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variable was higher than 0.1. If adding one weather variable did not meet these criteria, it 

was excluded from the model and another weather variable was tested. When adding one 

of any of the weather variables did not improve R2 by more than 1% or the p-value was 

less than 0.1, the only predictor for that pixel would be dengue at a one month time lag. It 

is important to note that the time lag associated with each meteorological predictor varied 

from pixel to pixel. Table 3 shows the 16 potential predictor combinations that were 

assessed.  

 Once the ideal predictors were selected at each pixel, the optimal prediction 

model was developed. An individual optimal prediction model was applied to each pixel. 

The general form of the prediction model was a regression containing all N potential 

predictors, 

*� = +, + +-�- +  +.�. + ⋯ +  +0�0, 

where +, is the intercept,  +0 is the regression coefficient of the variable and �0 is the 

value of the variable. Typically, not all predictors were used in each pixel’s model. For 

example, if model 7 was deemed to be the optimal predictor for a pixel, the model for 

that pixel was:  

*� = +, + +12324565 +  +789:;<=> + +5?3?@767.  

 An optimal prediction equation was applied to each pixel for each month of the 

prediction period, 2013-2015. The results of the prediction model were compared to the 

observed dengue incidence at each pixel for each month of 2013-2015 and model error 

was assessed. It is also important to note that the intercept was not always significant to 

the p < 0.1 level, and therefore not every pixel’s model included the +, term. Once the 

(4) 

(5) 
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model predictions were complete at each pixel for each of the 36 months of the prediction 

period, model error was assessed.  
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Table 2. Summary of predictors used in the dengue prediction models and their 
abbreviations.  
 

Predictors 

Dengue DPOP 

Maximum Temperature TMAX 

Mean Temperature TMEAN 

Minimum Temperature TMIN 

Total Precipitation PTOT 

 

Table 3. Summary of potential predictor combinations. The combination that was deemed 
most effective at each pixel individually, via correlation coefficient and predictor p-value 
analysis, was used as the basis of the prediction model at each pixel. 
 

 
 

  

Model # Variables

0 DPOP

1 DPOP + TMAX

2 DPOP + TMEAN

3 DPOP + TMIN

4 DPOP + PTOT

5 DPOP + TMAX + TMEAN

6 DPOP + TMAX + TMIN

7 DPOP + TMAX + PTOT

8 DPOP + TMEAN + TMIN

9 DPOP + TMEAN + PTOT

10 DPOP + TMIN + PTOT

11 DPOP + TMAX + TMEAN + TMIN

12 DPOP + TMAX + TMEAN + PTOT

13 DPOP + TMAX + TMIN + PTOT

14 DPOP + TMEAN + TMIN + PTOT

15 DPOP + TMAX + TMEAN + TMIN + PTOT
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RESULTS 
 
 

Interpolation Results 

The results of the inverse distance weighting, kriging and cokriging interpolations 

were compared. The results of the IDW interpolation are highly influenced by the 

weather station locations. Because IDW only takes into account the distance an estimated 

location is from a sample location, the areas immediately surrounding the weather 

stations are strongly influenced by the value of the weather variable at that station. In 

areas that are far from any weather stations, there may be large errors in prediction. The 

results of the Ordinary Kriging interpolation are similar, but less extreme. Again, the 

location of the weather stations strongly influences the accuracy of the interpolation. Due 

to the low number and clustered nature of weather stations with available data in 

Colombia, IDW and kriging did not provide realistic representations of temperature and 

precipitation trends across the country. Cokriging helped to eliminate the issue of sparse 

weather data availability by utilizing elevation as a secondary variable, because it is 

highly correlated to temperature and precipitation. Additionally, the interpolation will be 

most accurate near the weather stations themselves, and the weather stations tend to be in 

areas of high population. These are the areas of main concern for this prediction model. 

Very few people live in areas where there are not weather stations nearby and those areas 

see very few annual dengue cases, for example, in the Amazon region. The results of the 

different interpolation methods for TMAX, TMEAN, TMIN, and PTOT can be compared in 

Figures 6, 7, 8 and 9, respectively. For Figures 6-9, the IDW and kriging interpolation 

maps were created by importing the results from doing the interpolation in R, then 
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constructing maps in ArcMap. The cokriging interpolation and map construction was 

completed entirely in ArcMap. 

Table 4 shows a comparison of the errors of the interpolation methods. These 

were average errors for each month of all eleven years of the study period. Three 

measures of error were employed: mean absolute error (MAE), root mean square error 

(RMSE) and root mean square standardized error (RMSSE). The equations for these 

three error metrics are as follows:  

ABC =  1
 �|�EF − �G|H
G�-  

IAJC =  K1
 ���EF − �G�.H
G�-  

IAJJC =  K1
 ���EF − �GL� �.H
G�-  

where �EF  is the estimated value of the interpolation and �G is the actual observed value of 

each weather station and σ is the standard deviation. MAE is the average absolute 

difference between the predicted and observed values, RMSE is the average of the 

squared differences, and RMSSE standardizes RMSE by taking standard deviation into 

account. For MAE and RMSE, a smaller value indicates lower error (Chai & Draxler 

2014). The closer the value of RMSSE to 1, the better. If it is greater than 1, as is the case 

for all three interpolation methods, this indicates an underestimation of variability in the 

prediction. 

(6) 

(7) 

(8) 
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RMSE assumes a normal error distribution (i.e. few large errors, with small errors 

more frequent), whereas MAE assumes a uniform error distribution, which would 

indicate the same number of large and small errors (Chai & Draxler 2014). A normal 

error distribution was more likely for this study and therefore RMSE was considered as 

the most important measure of error. Additionally, RMSE accounts for large errors, so a 

lower RMSE indicates fewer large errors. Cokriging had by far the lowest RMSE, so had 

much fewer large errors than IDW or ordinary kriging. Therefore, the cokriged weather 

data was used in the correlations with dengue incidence data to create a prediction model. 

In Figure 9, precipitation is very low in the Amazon region of Colombia, where one 

would assume precipitation values would be high. It is likely that in some months, 

precipitations errors may be large in the Amazon region, but these errors are overlooked 

because of the very low population and low dengue occurrence in this area. 
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Figure 6.  Results of IDW, ordinary kriging and cokriging interpolations of maximum 
temperature for January 2005. 
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Figure 7.  Results of IDW, ordinary kriging and cokriging interpolations of mean 
temperature for January 2005. 
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Figure 8.  Results of IDW, ordinary kriging and cokriging interpolations of minimum 
temperature for January 2005. 
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Figure 9.  Results of IDW, ordinary kriging and cokriging interpolations of precipitation 
for January 2005. 
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Table 4. Error comparison for the three interpolation methods. The three measures of 
error assessed were mean error (ME), root mean squared error (RMSE), and root mean 
squared standardized error (RMSSE). Because RMSE was by far the lowest for 
cokriging, the cokriged weather data was used for further analysis. 
 

 

Correlations between Weather and Dengue 

Each weather variable was compared to dengue incidence at different time lags at 

each pixel for each month for the years 2005-2012 to serve as model training data. 

During model training, correlations between each weather variable and dengue incidence 

were identified at time lags from one to six months. These correlations were used to 

create the dengue prediction model. An illustration of the correlations that were identified 

on a pixel by pixel basis can be found in Figures 10-13. The ideal time lag for each 

variable at each pixel was identified as the time lag with the highest R value. Maps of the 

ideal time lags for each weather variable are presented in Figure 14. When comparing 

these figures, some patterns become apparent. For maximum temperature, correlations at 

high elevations (in the Andes region) were much higher at a 6-month lag than at a 1 

month lag. Along the coast and in the valley, a 1 month lag between maximum 

temperature and dengue had a much higher R. Distinct patterns are not as apparent for 

mean temperature, but the majority of the country experienced positive correlations 

between mean temperature and dengue incidence at both 1- and 6- month lags. 

Correlations between minimum temperature and dengue at a 1 month lag were strongly 

positive at low elevations (along the coast and in the valley) and neutral at high 

elevations. At a 6- month lag, R was moderately to strongly negative at high elevations 

Error

Averages ME RMSE RMSSE ME RMSE RMSSE ME RMSE RMSSE

MaxT 0.61581 47.08864 NA 0.05548 45.16173 0.99747 -0.59642 3.61886 0.82667

MeanT 0.66744 15.74018 NA 0.05208 16.02554 1.11479 -1.01906 2.63523 5.61023

MinT 0.79762 22.36692 NA 0.06024 22.47877 1.02585 -1.68076 3.73030 3.80652

Precip 9.47522 25227.19754 NA 6.85695 28385.50790 1.55134 9.62189 169.19742 1.58470

IDW Ordinary Kriging Simple Cokriging
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and neutral at low elevations. Therefore, in figure 12 it is apparent that at these high 

elevations, 6- month lag was used for minimum temperature. Precipitation at both a 1 and 

6- month lag was negatively correlated to dengue incidence most of Colombia. Typically, 

stronger negative correlations were found at longer lag times. 

Based on these optimal lags, the ideal predictive model was identified at each 

pixel via stepwise regression (see Table 3 for the list of potential models). Figure 15 

shows the model that was used to predict dengue at each pixel. Model 0 is the model that 

incorporated only the autoregressive dengue correlation. Model 0 was used for those 

areas in which no dengue was previously present (in grey in Figure 15). Ten of the 

sixteen potential models were found to be the best predictive models for individual 

pixels. The models that were used are summarized in Table 5.  
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Figure 10. A comparison of correlation coefficient (R) values between dengue incidence 
and maximum temperature at a one-month and six-month time lag. Some pixels 
experienced stronger correlations with a shorter lag time, and some experience a stronger 
correlation with a longer lag time. Negative correlations were stronger at a longer time 
lag. 
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Figure 11. A comparison of correlation coefficient (R) values between dengue incidence 
and mean temperature at a one-month and six-month time lag. There are more pixels with 
strong positive correlations at a one month time lag. 
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Figure 12. A comparison of correlation coefficient (R) values between dengue incidence 
and minimum temperature at a one-month and six-month time lag. At a shorter time lag, 
strong positive correlations are found at low elevations and weak correlations exist at 
high elevations. At a longer time lag, strong negative correlations exist at high elevations. 
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Figure 13. A comparison of correlation coefficient (R) values between dengue incidence 
and precipitation at a one-month and six-month time lag. At both time lags, the country is 
dominated by negative correlations. 
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Figure 14. Maps of the optimal lag time for each predictor at each pixel. The optimal lag 
was the lag time with the highest R value. The grey areas represent areas where no 
dengue occurred. The optimal time lag for these areas for each predictor was one month. 
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Figure 15. Map of the ideal model at each pixel as determined by stepwise regression. 
The grey areas represent the areas where no dengue cases were reported during the model 
training years. For these areas, Model 0 was always used. 
  

Table 5. Prediction models that were used and the variables associated with each model. 

 

 

Model # Variables

0 DPOP

1 DPOP + TMAX

2 DPOP + TMEAN

3 DPOP + TMIN

4 DPOP + PTOT

7 DPOP + TMAX + PTOT

9 DPOP + TMEAN + PTOT

10 DPOP + TMIN + PTOT

11 DPOP + TMAX + TMEAN + TMIN

15 DPOP + TMAX + TMEAN + TMIN + PTOT
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Model Prediction Results 

  Once correlations between each weather variable and dengue incidence were 

identified from the model training data, dengue was predicted at each pixel for each 

month of 2013-2015. Figures 16 and 17, respectively show maps of predicted versus 

actual dengue amounts by pixel for May 2013 and September 2015 as an illustration of 

the model output. These two months were chosen because May 2013 had the lowest 

mean absolute percent error (MAPE) for the prediction period, and September 2015 had 

the highest. Pixel size was small for this analysis (6.6 km x 6.6 km), so the number of 

dengue cases per pixel was very low, typically less than 0.01 cases per pixel per month. 

Figure 18 shows the total number of predicted versus actual cases by month for the entire 

country, and Figure 19 shows the monthly percent error. 

  The model consistently over-predicted the total number of dengue cases for the 

entire country. As shown in figures 16 and 17 in reality, high dengue incidence only 

occurred in a few confined areas, specifically, the cities of Medellin, Pereira, Cali, 

Bucaramanga and Barranquilla. The model predicted more widespread dengue incidence. 

In examining Figure 18, the prediction model consistently overpredicts total monthly 

dengue incidence by about 100 cases. With 50-150 cases being typical monthly country-

wide totals, this lead to high percent errors each month. 

  Error by model was also assessed to understand which prediction equations, and 

therefore, which combinations of variables, were accurate predictors of dengue for 

Colombia. These results are summarized in Table 6. Model 0, the model that incorporated 

only the previous month’s dengue total, had the lowest percent error. Model 15, which 

incorporated all the potential predictors, had the second lowest error, but was only used 
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by 17 pixels. Model 7, which incorporated a combination of dengue, maximum 

temperature and precipitation, had the highest percent error. 
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Figure 16. The number of predicted vs. actual dengue cases per pixel in May 2013. This 
was the month with the lowest overall percent error of the prediction period. 
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Figure 17. The number of predicted vs. actual dengue cases per pixel in September 2015. 
This was the month with the highest overall percent error of the prediction period. 
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Figure 18. The total number of predicted vs. actual dengue cases by month for the entire 
country of Colombia. The model consistently overpredicted the number of cases. 
 
 

 
 

Figure 19. The percent error of the dengue prediction model for the entire country. 
Percent error increased drastically at the end of the prediction period. 
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Table 6. The errors associated with each model. Model 0, the model incorporating only 
the autoregressive dengue term, had the lowest average percent error. Model 7 had the 
highest percent error. 
 

 

  Because the pixel size was very small, pixels were aggregated for the ten most 

populous cities in Colombia to further examine the results and success of the model in 

these highly-populated areas. It is important to assess model performance in this way 

because most of the population lives in these areas and Ae. aegypti is an urban mosquito, 

so these are the areas with a high risk of dengue. The pixels that fell within the municipal 

boundaries of these ten cities were aggregated to get an idea of how many dengue cases 

occurred in each city each month. Table 7 shows the cities that were analyzed and their 

populations and Figure 20 shows their locations. Table 8 shows the prediction model(s) 

that were used for the pixels that made up each city. Table 9 and Figures 21-40 

summarize the model results and errors in each of the ten cities. The graphs in Figures 

21-40 show the number of predicted dengue cases vs. actual dengue cases in each city per 

month, and the percent error of the model for each city per month.  

  Like the entire country, at the city level, the prediction model tended to 

overpredict the number of dengue cases that occurred. The main exceptions were 

Cartagena, Barranquilla and Santa Marta, the three cities along the northwest coast. The 

Model MAE MAPE RMSE # of pixels

0 0.000431 8.232241 0.000597 14,028

1 0.013232 589.5222 0.013459 4126

2 0.006543 402.1369 0.006752 2765

3 0.004361 340.8134 0.004657 1763

4 0.005962 88.10499 0.007182 1029

7 0.008126 1752.991 0.008295 645

9 0.025529 642.566 0.025988 182

10 0.002697 358.1733 0.003656 960

11 0.014338 211.321 0.01497 845

15 0.000299 62.7444 0.000342 17
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model typically underpredicted dengue incidence in most months for these three cities. 

Predicted and actual cases were the most similar for Bucaramanga and that city typically 

experienced the lowest percent errors. Dengue incidence was highly overpredicted in 

Pereira, leading to the highest monthly percent errors of all the cities. The monthly 

percent error of the prediction model for each of the cities can be compared in Figures 41 

and 42. In Figure 42, the percent error graph for Pereira is removed so differences in 

monthly percent error for the other cities is seen more clearly. Percent errors tend to be 

lower at the beginning of the prediction period (2013) than at the end (2015). 

  A summary of the model output for the ten cities is shown in Table 10. The 

elevation and model associated with each city is provided. The average number of 

monthly predicted and observed dengue cases is provided. The correlation between 

predicted and observed cases was calculated, which indicates the accuracy of temporal 

variability. Monthly average of mean bias was calculated to indicate the accuracy of 

overall model magnitude and show whether the model provided an over- or under-

prediction for that city. The correlation between predicted and observed cases was 

generally strongly positive, except for Bogota and Pereira which had very weak positive 

correlations. Pereira had the highest overall error, so it makes sense that the correlation 

between observations and predictions were low. Mean bias was low and positive for most 

cities. However, Medellin and Pereira had high mean bias. Medellin’s average prediction 

was much higher than what was observed, as was Pereira’s. As expected, Cartagena and 

Barranquilla both had a negative mean bias, indicating under-prediction. (Santa Marta’s 

was very low and positive). Bucaramanga, the city with the least overall error, also had a 

slightly negative mean bias. 
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  It is important to know how well the model performs when dengue incidence is 

high because that is when an accurate prediction model would be crucial. This can be 

assessed at both the country-wide and city scales. At both scales, dengue incidence was 

higher at the beginning of the prediction period (2013) than the end (2015), however 

large fluctuations occurred from month to month. Correlations between the number of 

monthly dengue cases and the monthly error of the model were identified for the entire 

country and for each of the cities. These results are summarized in Table 11. The 

consistent trend at both scales is that the number of dengue cases is negatively correlated 

with both monthly absolute error and monthly percent error. This means the higher the 

dengue incidence, the lower the error of the model. 
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Table 7. Ten most populous cities in Colombia as of 2017, used to analyze model 
performance in areas of high population. 
 

City Population (2017) Longitude Latitude 

Bogota 7,674,366 -74.07194 4.710833 

Cali 2,392,877 -76.53194 3.451667 

Medellin 1,999,979 -75.58111 6.244167 

Barranquilla 1,380,425 -74.80694 11.00389 

Cartagena 952,024 -75.47917 10.39083 

Cucuta 721,398 -72.49667 7.888889 

Bucaramanga 571,820 -73.37417 7.119167 

Pereira 440,118 -75.69056 4.808611 

Santa Marta 431,781 -74.21083 11.24028 

Ibague 421,685 -75.24222 4.444444 

 

 

 
 

Figure 20. Geographic locations of the 10 most populous cities in Colombia, which were 
used to analyze model performance in highly populated areas. 
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Table 8. The prediction model(s) associated with each city.  
 

City Models 

Bogota 1, 0; urban center:  11, 9  

Cali 0,1 

Medellin 11,2 

Barranquilla 4 

Cartagena 1, 0 

Cucuta 1, 7, 4, 11 

Bucaramanga 0 

Pereira 1, 11, 4 

Santa Marta 1,3,11 

Ibague 0, 2 
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Figure 21. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Bogota. 
 

 
 

Figure 22. Graph of the percent error of the prediction model for each month of the 
model prediction period for Bogota. 
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Figure 23. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Cali. 

 

 
 

Figure 24. Graph of the percent error of the prediction model for each month of the 
model prediction period for Cali. 
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Figure 25. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Medellin. 

 

 
 

Figure 26. Graph of the percent error of the prediction model for each month of the 
model prediction period for Medellin. 
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Figure 27. Graph the number of predicted and actual dengue cases each month of the 
model prediction period for Barranquilla. 
 

 
 
Figure 28. Graph of the percent error of the prediction model for each month of the 
model prediction period for Barranquilla. 
 



63 
 

 
 

Figure 29. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Cartagena. 
 

 
 

Figure 30. Graph of the percent error of the prediction model for each month of the 
model prediction period for Cartagena. 
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Figure 31. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Cucuta. 
 

 
 

Figure 32. Graph of the percent error of the prediction model for each month of the 
model prediction period for Cucuta. 
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Figure 33. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Bucaramanga. 
 

 
 
Figure 34. Graph of the percent error of the prediction model for each month of the 
model prediction period for Bucaramanga. 
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Figure 35. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Pereira. 
 

 
 

Figure 36. Graph of the percent error of the prediction model for each month of the 
model prediction period for Pereira. 
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Figure 37. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Santa Marta. 
 

 
 
Figure 38. Graph of the percent error of the prediction model for each month of the 
model prediction period for Santa Marta. 
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Figure 39. Graph of the number of predicted and actual dengue cases each month of the 
model prediction period for Ibague. 
 

 
 

Figure 40. Graph of the percent error of the prediction model for each month of the 
model prediction period for Ibague. 
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Figure 41. The monthly percent error of the prediction model for each city. Pereira 
experienced extreme errors. 
 

 
 

Figure 42. Monthly percent error for each city with Pereira removed so patterns can be 
examined more closely. 
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Table 11. The number of actual monthly dengue cases was correlated with the absolute 
error and percent error for all of Colombia and for the ten most populous cities. R2 values 
were almost always negative, indicating that the model is more accurate when dengue 
incidence is high. 
 

 
 
  

R
2
: # of cases vs. absolute error R

2
: # of cases vs. % error

Colombia Total -0.617265204 -0.703333219

Bogota -0.508141675 -0.780271768

Cali -0.480253385 -0.806627812

Medellin -0.40851574 -0.863113719

Baranquilla 0.932228944 0.306743657

Cartagena 0.771098386 -0.489710072

Cucuta -0.806393894 -0.874345001

Bucaramanga 0.41936884 -0.215166255

Pereira -0.351267626 -0.855530636

Santa Marta -0.361616737 -0.678881508

Ibague -0.529117778 -0.827481531

Correlations between Number of Actual Cases and Error
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DISCUSSION 
 

 Correlations between each of the weather variables and dengue incidence were 

found and mapped for each month at time lags of one to six months at each pixel. 

Correlation patterns often mimicked terrain, which makes sense because the weather data 

used in the correlation was derived from cokriging with elevation as a secondary variable. 

Correlations between maximum  and  mean temperature and dengue incidence at all lag 

times were positive for most pixels, supporting previous research aligning warmer 

temperatures with increased risk of dengue transmission (Eastin et al. 2014, Watts et al. 

1987). At longer time lags, correlations between minimum temperature and dengue 

incidence were negative at high elevations, in contrast to previous research. At shorter 

time lags, correlations between minimum temperature and dengue incidence are mostly 

positive but weak at high elevations. Minimum temperatures may have less of an 

influence on dengue at high elevations because low temperatures usually occur at night, 

and Ae. aegypti is a day-biting mosquito (Christophers 1960). Correlations between 

precipitation and dengue incidence were negative for most of the country at all lag times. 

Ae. aegypti needs enough standing water to breed, but this does not require excessive 

rainfall. Precipitation can cool temperatures, which may also lead to a decrease in dengue 

cases. 

 The cokriging interpolation of weather variables does not consider some 

important factors. Temperature and precipitation are dependent on more than just 

elevation. Especially in the mountainous regions, precipitation is highly affected by wind 

and wind direction. In Colombia, the prevailing direction is easterly for most the year, so 

there is likely more rainfall on the windward eastern slopes of the mountains then on the 
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leeward western sides of the mountains. The predominant wind direction also changes for 

some brief periods throughout the year. Wind may be an important factor that is not 

considered in the cokriging interpolation.  

 The optimal time lag for each weather variable at each pixel was identified as the 

time lag with the highest R2 value at that pixel. The results in Figure 14 show make some 

patterns apparent. For maximum and minimum temperature and for precipitation, longer 

lag times dominate at higher elevations, while shorter lag times were more ideal in the 

valleys and along the coast. Mean temperature had the strongest correlations at shorter 

lags for much of the country. Temperature fluctuations can be large in the mountainous 

regions of Colombia, which can result in slower oviposition and virus transmission times, 

which could be a reason for the longer time lags being optimal at higher elevations. 

Along the coasts where temperatures are mild and more consistent, oviposition and 

transmission rates may be faster, resulting in shorter lag times between warm 

temperatures and high dengue incidence. 

Using stepwise regression based on the R2 values of the optimal time lags, the 

weather predictors that were important were incorporated into a prediction model at each 

pixel. The majority of pixels (including the ones that were deemed “no data” pixels 

because no dengue had occurred there), used Model 0 as the optimal model. Model 0 

incorporated only the previous month’s dengue value. This implies that the correlations 

between weather and dengue were often not strong enough to be deemed influential on 

the number of dengue cases that occurred at each pixel. Only 10 of the 16 potential 

models were used in the overall prediction model. Certain combinations of predictors did 

not adequately increase the correlation between the predictors and dengue incidence.  
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Three overarching ideas explain the results of this prediction model. One is that 

the accuracy of each of the ten individual prediction models, and where each model was 

deemed the optimal model, is crucial to understanding the errors in prediction. Two is 

that the number of dengue cases is influential on the accuracy of the model. Three is that 

while weather variables such as temperature and precipitation have consistently been 

strongly correlated to dengue incidence in the literature, there are many other factors at 

play besides weather. The availability of mosquito breeding grounds, mosquito 

eradication programs or lack thereof, population growth and urbanization and human 

travel are all factors that affect when, where and how many dengue cases will occur 

(Carbajo et al. 2012).  

When considering the results on the scale of the entire country, the overall model 

consistently over-predicted the number of monthly dengue cases. Whereas actual dengue 

was concentrated in a few small areas (major cities), high amounts of dengue were 

predicted across widespread regions. Each month, the model predicted about 100 more 

dengue cases across the country than actually occurred. This over-prediction is likely due 

to the incorporation of weather variables to the model. When a weather variable was 

deemed to significantly improve the correlation between the predictors and dengue 

incidence, it was added to the model. When these correlations were positive, it means that 

the outcome of the model was higher than if only incorporating the previous month’s 

dengue. When the correlations of the added variables were negative, this would subtract 

from the number of cases predicted by the model. Using Model 4 as an example:  

 *� = +, + +12324565 + +5?3?@767. 
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Here, +5?3?, the regression coefficient, is negative because the correlation between 

dengue and precipitation was negative for a pixel. This would decrease the value of *�, the 

total number of predicted dengue cases. This led to Model 4 having a lower error than 

many of the other models, because it caused less over-prediction. Model 7 had the highest 

percent error. The equation for Model 7: 

 *� = +, + +12324565 +  +789:;<=> + +5?3?@767 

and Figures 10, 13 and 15 explain why Model 7 resulted in large errors and over-

prediction. From Figure 15, the areas where Model 7 was found to be the optimum model 

can be identified. When compared to Figure 10, these are areas with strong positive 

correlations between maximum temperature and dengue incidence, resulting in a large, 

positive regression coefficient. When compared to Figure 13, these are areas with weak 

negative correlation, resulting in a small, negative regression coefficient. The end result 

is an over-prediction of dengue incidence. 

 Monthly percent error of the overall model for Colombia ranged from 83.77% in 

May 2013 to 768% in September 2015. The average percent error for the entire country 

was 232%. Percent error was higher consistently higher at the end of the prediction 

period than at the beginning. Comparing Figures 18 and 19 shows that percent error starts 

to increase around October 2014, which coincides exactly with when the number of 

actual dengue cases begins to consistently decrease or stay low. Correlations between the 

number of cases and error were strongly negative as shown in Table 11. R2 between the 

actual number of cases and absolute error for Colombia as a whole was -0.617 and R2 

between the actual number of cases and percent error for Colombia was -0.703. This 
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implies that the model is more accurate when dengue incidence is high, which is 

promising because it is important to predict when large outbreaks may occur. 

 Because the pixels were very small and because it is important to get an idea of 

model performance in areas of high population, the output of the model was aggregated 

and analyzed for the ten most populous cities in Colombia. Of these ten cities, 

Bucaramanga consistently had the lowest percent error between predicted and actual 

dengue cases, and Pereira had the highest. Each pixel that was aggregated to make up 

Bucaramanga used Model 0 as its prediction model (which overall resulted in the lowest 

percent error country-wide), thus giving Bucaramanga the lowest overall percent error. 

The pixels that made up Pereira mostly used Model 1, which had the third highest error 

of all of the models. Cucuta, which generally boasted the second largest monthly percent 

errors, was made up of pixels predicted by models 1 and 7, two of the worst models. The 

influence that the autoregressive dengue term had on each of the models and in each of 

the cities is apparent in all of the graphs of predicted vs. actual dengue incidence. The 

peaks (dips) of the prediction graph always follow the month that the peaks (dips) occur 

on the actual dengue incidence graph.  

 Seven out of ten cities had a MAPE lower than the national average of 232%. 

MAPE for each city is displayed on Table 9. The three cities that were above the national 

average percent error were Medellin, Cucuta and Pereira. This generally implies that the 

model works better in areas of high population. 

 All of the cities generally over-predicted dengue incidence except for 

Barranquilla, Cartagena and Santa Marta. (Santa Marta had some under-prediction and 

some over-prediction).These three cities lie on the northwest coast of Colombia. These 
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three cities did not use the same models for their predictions, so it is interesting that they 

all under-predicted dengue incidence. These three cities also experienced some of the 

lowest monthly percent errors of the ten cities analyzed. In contrast to the country as a 

whole and to most of the other cities, absolute error in both Baranquilla and Cartagena 

were strongly positively correlated to dengue cases. That means that in those cities, the 

model is more accurate when the number of dengue cases is low. In the rest of the cities, 

(besides Bucaramanga, where error was weakly negatively correlated to dengue), percent 

error was strongly negatively correlated to actual dengue incidence. This agrees with the 

country-wide trend that the overall prediction model is generally more accurate when 

dengue incidence is high. This also illustrates the importance of examining the results at 

different spatial scales. Though the country may experience one trend, some areas (in this 

case, some highly populated areas), do not follow these general trends. 
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CONCLUSION 
 
 

 Though the prediction model resulted in high errors for some cities and in some 

months, some important conclusions can be drawn from this study. A dengue prediction 

model was created for an entire country, whereas previous research has focused on small 

areas. Determining the optimal lag between each weather variable and dengue incidence 

at the pixel level over such a wide area is a novel contribution of this study. Such a model 

can be constructed with publicly available data from weather stations, which is then 

interpolated, and highly aggregated epidemiological data using population-weighted 

dengue incidence. A potential benefit of this research is that a similar model could be 

applicable to other countries with very aggregated epidemiological data. The model could 

be improved if more weather stations were available to enhance the interpolation. The 

prediction could also be improved if the number of dengue cases were available at a scale 

smaller than the departmental level to gain a better understanding of the spatial 

distribution of reported dengue cases. Interpolation of weather data and disaggregation of 

dengue incidence data caused uncertainty in the model outcome. Neither the cokriging 

interpolation nor the population-weighted dengue incidence are perfect representations of 

reality, which is likely an important reason for large errors in the model.  

Another benefit of this model is that it is mostly automated. However, the 

cokriging process in this study was not automated. Using the geostatistical wizard in 

ArcMap must be done individually for each weather variable for each month. If more 

variables or a longer time period was used, this would have been a very tedious process. 

It is possible to complete cokriging in R, however this proved to be difficult for this 

study. It would be an improvement to the model if cokriging was completed in R to make 
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the model fully automated, and provide consistency in the interpolation processes. 

Another drawback is that this study only examined linear models. It would be beneficial 

to test whether non-linear models increased prediction accuracy. 

 Overall, the dengue prediction model over-predicted the dengue that actually 

occurred in Colombia from 2013-2015. The most accurate of the equations used in the 

prediction model was Model 0, which was based solely on the number of dengue cases 

that occurred at a pixel the previous month. The autoregressive dengue correlations at 

every pixel were always strongly positive, and much higher than correlations between 

dengue incidence and any of the weather variables. Adding weather predictors to the 

regression equations resulted in over-prediction of dengue. However, general or country-

wide over-prediction may not hold true for certain areas, which is why it is important to 

assess model performance at multiple spatial scales. 

 Focusing analysis on where the majority of the population lives is important 

because that is where the majority of dengue cases occur, regardless of weather variables. 

Dengue is rare in areas of low population, especially in the rainforest and savanna regions 

of Colombia, so over-predictions in areas of low population could be accounted for in a 

model because no dengue cases have been reported in those areas. The model developed 

in this study generally had lower errors in areas of high population than the average error 

of the entire country. 

 While it has been well-established that strong correlations exist between weather 

factors, such as temperature and precipitation, and dengue incidence, there are multiple 

other factors at work. Population growth, pesticide spraying and the availability of 

mosquito breeding grounds are just a few examples of other variables that may influence 
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dengue incidence that were not analyzed in this study.  To create a more accurate dengue 

prediction model over a large area, socio-economic factors need to be taken into account 

in addition to environmental factors. 
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APPENDIX: CODES 
 
 

Population-Weighted Dengue Incidence Code (Python) 
 

# pop weighted dengue raster 
 
import arcpy 
from arcpy import env 
from arcpy.sa import * 
import os 
 
arcpy.env.workspace = "C:\\1megan\\1research\\DengueData\\UTM" 
# batch project in arcmap 
 
dpoly = arcpy.ListFiles("*.shp") 
 
 
mo = ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEPT", "OCT", 
"NOV", "DEC"] 
 
count1 = 0 
for i in dpoly: 
 count1 += 1 
 count2 = 0 
 for j in mo: 
  f = str(i) + "_" + str(j) + ".lyr" 
  arcpy.PolygonToRaster_conversion(i, j, f) 
  count2 += 1 
 
drast = arcpy.ListFiles("*.tif") 
cellpop = Raster("pop05clip") 
deptpop = Raster("popdept05fl") #float raster (rather than int) 
 
myList = [] 
for i in drast: 
 myList.append(Raster(i)) 
 
for i in myList: 
 outR = Raster(cellpop) / Raster (deptpop) * 
Raster(str(i)) 
 orn = "PD_" + str(i) + ".tif" 
 outR.save(orn) 
  
 
# get rid of NoData cells 
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arcpy.env.workspace = "C:\\1megan\\1research\\PopDengue" 
outws = "C:\\1megan\\1research\\PopDengue\\NoNull" 
inRas = arcpy.ListFiles("*.tif") 
myList = [] 
for i in inRas: 
 myList.append(Raster(i)) 
 
for j in myList: 
 string = str(j) 
 string = string[:-4] 
 f = "nona_" + string 
 filled = 
arcpy.sa.Con(arcpy.sa.IsNull(j),arcpy.sa.FocalStatistics(j, 
arcpy.sa.NbrRectangle(5,5),"MEAN"),j) 
 filled.save(os.path.join(outws,f)) 
  
   
# Clip to outline 
 
arcpy.env.workspace = "C:\\1megan\\1research\\PopDengue\\NoNull" 
outws = "C:\\1megan\\1research\\PopDengue\\Final" 
inRas = arcpy.ListFiles("*.tif") 
myList = [] 
for i in inRas: 
 myList.append(Raster(i)) 
 
for j in myList: 
 string = str(j) 
 string2 = string[15:19]+string[23:-4] 
 f = "PD_" + string2 
 arcpy.Clip_management(j, "", os.path.join(outws,f), 
"splitPoly", "", "ClippingGeometry", "MAINTAIN_EXTENT") 
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Inverse Distance Weighting Interpolation Code (R) 
 

# install and load packages 
install.packages("gstat",repos="http://cran.r-
project.org",destdir="C:/1megan/1research/Kriging") 
install.packages("automap",repos="http://cran.r-
project.org",destdir="C:/1megan/1research/Kriging") 
install.packages("sp",repos="http://cran.r-
project.org",destdir="C:/1megan/1research/Kriging") 
install.packages("maptools",repos="http://cran.r-
project.org",destdir="C:/1megan/1research/Kriging") 
install.packages("raster",repos="http://cran.r-
project.org",destdir="C:/1megan/1research/Kriging") 
install.packages("rgdal",repos="http://cran.r-
project.org",destdir="C:/1megan/1research/Kriging") 
 
library(gstat) 
library(sp) 
library(automap) 
library(maptools) 
library(raster) 
library(rgdal) 
 
# read in data 
COraster<- raster("C:/1megan/1research/Kriging/CO_raster_UTM") 
grid<- SpatialPixels(SpatialPoints(coordinates(COraster))) 
# set projections 
projection(grid)<- "+proj=utm +zone=18 +south +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 
+units=m +no_defs"  
 
# MAXIMUM TEMPERAUTRE 
 
# read in MaxTemp data 
setwd("C:/1megan/1research/KrigeUTM/MaxT") 
list.maxT<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.maxT)) 
{ 
 list.data[[i]]<-readShapePoints(list.maxT[i]) 
} 
  
# assign names to each file 
n.d<-names(list.data)<-list.maxT 
 
# IDW 
setwd("C:/1megan/1research/IDWPlots/UTM/MaxT") 
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x=1 
for (i in list.data) 
{  
 # idw interpolation 
 projection(i) <- "+proj=utm +zone=18 +south 
+ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 MaxT_idw<-idw(MAX_T~1, i, grid) 
  
 # Leave-one-out cross validation 
 MaxT_cv<-krige.cv(MAX_T~1, i) 
 resid<-MaxT_cv$residual 
 z_score<-MaxT_cv$zscore 
 obs<-MaxT_cv$observed 
 
 # accuracy assessment 
 ME<-mean(resid)    # Mean Error, ideal is 
0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square 
normalized error, ideally close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and 
predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and 
residual, ideally 0 
 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/IDW_MaxT.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE) 
 
 
 # save to output raster 
 r<-raster(MaxT_idw) 
 r.m<-mask(r, COraster) 
 f<-paste0('idw_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1    
} 
 
# MEAN TEMPERATURE 
 
# read in MeanTemp data 
setwd("C:/1megan/1research/KrigeUTM/MeanT") 
list.meanT<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.meanT)) 
{ 
 list.data[[i]]<-readShapePoints(list.meanT[i]) 
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} 
  
# assign names to each file 
n.d<-names(list.data)<-list.meanT 
 
# IDW 
setwd("C:/1megan/1research/IDWPlots/UTM/MeanT") 
x=1 
for (i in list.data) 
{  
 # idw interp 
 projection(i) <- "+proj=utm +zone=18 +south 
+ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 MeanT_idw<- idw(MEAN_T~1, i, grid) 
  
 #LOOCV 
 # Leave-one-out cross validation 
 MeanT_cv<-krige.cv(MEAN_T~1, i) 
 resid<-MeanT_cv$residual 
 z_score<-MeanT_cv$zscore 
 obs<-MeanT_cv$observed 
 
 # accuracy assessment 
 ME<-mean(resid)    # Mean Error, ideal is 
0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square 
normalized error, ideally close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and 
predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and 
residual, ideally 0 
 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/IDW_MeanT.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE) 
 
 # write output to raster 
 r<-raster(MeanT_idw) 
 r.m<-mask(r, COraster) 
 f<-paste0('idw_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1    
} 
 
# MINIMUM TEMPERATURE 
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# read in MinTemp data 
setwd("C:/1megan/1research/KrigeUTM/MinT") 
list.minT<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.minT)) 
{ 
 list.data[[i]]<-readShapePoints(list.minT[i]) 
} 
  
# assign names to each file 
n.d<-names(list.data)<-list.minT 
 
# IDW 
setwd("C:/1megan/1research/IDWPlots/UTM/MinT") 
x=1 
for (i in list.data) 
{  
 # idw interp 
 projection(i) <- "+proj=utm +zone=18 +south 
+ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 MinT_idw<- idw(MAX_T~1, i, grid) 
  
 #LOOCV 
 # Leave-one-out cross validation 
 MinT_cv<-krige.cv(MAX_T~1, i) 
 resid<-MinT_cv$residual 
 z_score<-MinT_cv$zscore 
 obs<-MinT_cv$observed 
 
 # accuracy assessment 
 ME<-mean(resid)    # Mean Error, ideal is 
0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square 
normalized error, ideally close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and 
predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and 
residual, ideally 0 
 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/IDW_MinT.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE) 
 
  
 # write output to raster 
 r<-raster(MinT_idw) 
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 r.m<-mask(r, COraster) 
 f<-paste0('idw_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1    
} 
 
# PRECIPITATION 
# read in Precip data 
setwd("C:/1megan/1research/KrigeUTM/Precip") 
list.Precip<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.Precip)) 
{ 
 list.data[[i]]<-readShapePoints(list.Precip[i]) 
} 
  
# assign names to each file 
n.d<-names(list.data)<-list.Precip 
 
# IDW 
setwd("C:/1megan/1research/IDWPlots/UTM/Precip") 
x=1 
for (i in list.data) 
{  
 # idw interp 
 projection(i) <- "+proj=utm +zone=18 +south 
+ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 Precip_idw<- idw(PRECIP~1, i, grid) 
 
 # #LOOCV 
 # Leave-one-out cross validation 
 Precip_cv<-krige.cv(PRECIP~1, i) 
 resid<-Precip_cv$residual 
 z_score<-Precip_cv$zscore 
 obs<-Precip_cv$observed 
 
 # accuracy assessment 
 ME<-mean(resid)    # Mean Error, ideal is 
0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square 
normalized error, ideally close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and 
predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and 
residual, ideally 0 
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 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/IDW_Precip.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE)  
 
 # write output to raster 
 r<-raster(Precip_idw) 
 r.m<-mask(r, COraster) 
 f<-paste0('idw_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1    
} 
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Kriging Interpolation of Weather Variables (R) 
 

# open packages 
library(gstat) 
library(sp) 
library(automap) 
library(maptools) 
library(raster) 
library(rgdal) 
 
# read in data 
COraster<- raster("C:/1megan/1research/Kriging/CO_raster_UTM") 
grid<- SpatialPixels(SpatialPoints(coordinates(COraster))) 
 
# set projections 
projection(grid)-> "+proj=utm +zone=18 +south +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 
+units=m +no_defs" 
 
# MAXIMUM TEMPERATURE 
# read in MaxTemp data 
setwd("C:/1megan/1research/KrigeUTM/MaxT") 
list.maxT<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.maxT)) 
{ 
 list.data[[i]]<-readShapePoints(list.maxT[i]) 
} 
 
# assign names to each file 
n.d<-names(list.data)<-list.maxT 
 
# Krige 
setwd("C:/1megan/1research/KrigPlots/MaxT") 
x=1 
for (i in list.data) 
{  
 # kriging interp 
 projection(i) <- "+proj=utm +zone=18 +south +ellps=WGS84 
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 MaxT_kr<- autoKrige(MAX_T~1, i, grid, model=c("Sph", "Exp", "Gau", "Ste")) 
  
 # LOOCV 
 MaxT_cv<- krige.cv(MAX_T~1, i, model=MaxT_kr$var_model) 
 resid<-MaxT_cv$residual 
 z_score<-MaxT_cv$zscore 
 obs<-MaxT_cv$observed 
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 # accuracy assessment 
 ME<-mean(resid)    # Mean Error, ideal is 0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square normalized error, ideally 
close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and residual, ideally 0 
 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/kr_MaxT.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE) 
 
 
 # write output to raster 
 kr.pred<-MaxT_kr$krige_output 
 r<-raster(kr.pred["var1.pred"]) 
 r.m<-mask(r, COraster) 
 f<-paste0('kr_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1 
} 
 
# MEAN TEMPERAURE 
# read in MeanTemp data 
setwd("C:/1megan/1research/KrigeUTM/MeanT") 
list.meanT<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.meanT)) 
{ 
 list.data[[i]]<-readShapePoints(list.meanT[i]) 
} 
 
# assign names to each file 
n.d<-names(list.data)<-list.meanT 
 
#Krige 
setwd("C:/1megan/1research/KrigPlots/MeanT") 
x=1 
for (i in list.data) 
{  
 # kriging interp 
 projection(i)<- "+proj=utm +zone=18 +south +ellps=WGS84 
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 MeanT_kr<- autoKrige(MEAN_T~1, i, grid, model=c("Sph", "Exp", "Gau", 
"Ste")) 
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 # LOOCV 
 MeanT_cv<- krige.cv(MEAN_T~1, i, model=MeanT_kr$var_model) 
 resid<-MeanT_cv$residual 
 z_score<-MeanT_cv$zscore 
 obs<-MeanT_cv$observed 
 
 # Accuracy Assessment 
 ME<-mean(resid)    # Mean Error, ideal is 0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square normalized error, ideally 
close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and residual, ideally 0 
 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/kr_MeanT.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE) 
 
 
 # write output to raster 
 kr.pred<-MeanT_kr$krige_output 
 r<-raster(kr.pred["var1.pred"]) 
 r.m<-mask(r, COraster) 
 f<-paste0('kr_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1 
} 
 
# MINIMUM TEMPERATURE 
# read in MinTemp data 
setwd("C:/1megan/1research/KrigeUTM/MinT") 
list.minT<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.minT)) 
{ 
 list.data[[i]]<-readShapePoints(list.minT[i]) 
} 
 
# assign names to each file 
n.d<-names(list.data)<-list.minT 
 
#Krige 
setwd("C:/1megan/1research/KrigPlots/MinT") 
x=1 
for (i in list.data) 
{  
 # kriging interp 
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 projection(i)<- "+proj=utm +zone=18 +south +ellps=WGS84 
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 MinT_kr<- autoKrige(MAX_T~1, i, grid, model=c("Sph", "Exp", "Gau", "Ste")) 
  
 #LOOCV  
 MinT_cv<- krige.cv(MAX_T~1, i, model=MinT_kr$var_model) 
 resid<-MinT_cv$residual 
 z_score<-MinT_cv$zscore 
 obs<-MinT_cv$observed 
 
 # # Accuracy Assessment 
 ME<-mean(resid)    # Mean Error, ideal is 0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square normalized error, ideally 
close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and residual, ideally 0 
 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/kr_MinT.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE) 
 
 # write output to raster 
 kr.pred<-MinT_kr$krige_output 
 r<-raster(kr.pred["var1.pred"]) 
 r.m<-mask(r, COraster) 
 f<-paste0('kr_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1 
} 
 
# PRECIPITATION 
# read in Precip data 
setwd("C:/1megan/1research/KrigeUTM/Precip") 
list.Precip<-list.files(pattern=".shp$") 
list.data<-list() 
for (i in 1:length(list.Precip)) 
{ 
 list.data[[i]]<-readShapePoints(list.Precip[i]) 
} 
 
# assign names to each file 
n.d<-names(list.data)<-list.Precip 
 
#Krige 
setwd("C:/1megan/1research/KrigPlots/Precip") 
x=1 
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for (i in list.data) 
{  
 # kriging interp 
 projection(i)<- "+proj=utm +zone=18 +south +ellps=WGS84 
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs" 
 Precip_kr<- autoKrige(PRECIP~1, i, grid, model=c("Sph", "Exp", "Gau", "Ste")) 
  
 #LOOCV  
 Precip_cv<- krige.cv(PRECIP~1, i, model=Precip_kr$var_model) 
 resid<-Precip_cv$residual 
 z_score<-Precip_cv$zscore 
 obs<-Precip_cv$observed 
 
 # # Accuracy Assessment 
 ME<-mean(resid)    # Mean Error, ideal is 0 
 MPSE<-mean(resid^2)  # MPSE, ideally small 
 MSNE<-mean(z_score^2)  # Mean square normalized error, ideally 
close to 1 
 COP<-cor(obs, obs-resid)  # cor observed and predicted, ideally 1 
 CPR<-cor(obs-resid, resid)  # cor predicted and residual, ideally 0 
 write.table(data.frame(ME, MPSE, MSNE, COP, 
CPR),file="C:/1megan/1research/AccuracyAssess/kr_Precip.csv", append=TRUE, 
sep=",", row.names=FALSE, col.names=FALSE) 
 
 # write output to raster 
 kr.pred<-Precip_kr$krige_output 
 r<-raster(kr.pred["var1.pred"]) 
 r.m<-mask(r, COraster) 
 f<-paste0('kr_', n.d, '.tif') 
 writeRaster(r.m, filename=f[x], overwrite=TRUE) 
 x=x+1 
}  
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Correlation Coefficients between Weather Variables and Dengue Incidence (Python) 
 

This code was run for each of the weather variables and for the autroregressive 

dengue correlations at time lags of one to six months.  Here the code for the computation 

of the correlation between dengue incidence and precipitation at a 6-month lag is 

presented as an example. It also includes how the optimal time lag was chosen for each 

predictor (where the file “AllWx.csv” is a combination of the correlations for each 

variable at each time lag). 

import os 
import glob 
import pandas 
import numpy as np 
 
path_d = "C:/1megan/1research/XYZTables/Dengue3" 
path_maxt = "C:/1megan/1research/XYZTables/MaxT3" 
path_meant = "C:/1megan/1research/XYZTables/MeanT3" 
path_mint = "C:/1megan/1research/XYZTables/MinT3" 
path_p = "C:/1megan/1research/XYZTables/Precip3" 
 
dengue = [] 
maxT = [] 
meanT = [] 
minT = [] 
precip = [] 
X=[] 
Y=[] 
 
# Read in data  
# Dengue 
os.chdir(path_d) 
i = 0 
for f in glob.glob("*.csv"): 
    newMonth = [] 
    file = pandas.read_csv(f,delimiter=',', encoding="utf-8") 
    # X and Y values (locations)     
    if i == 0: 
        for value in file.iloc[:,2]: 
            X.append(value) 
        for value in file.iloc[:,3]: 
            Y.append(value) 
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    for value in file.iloc[:,4]: 
        newMonth.append(value) 
    dengue.append(newMonth) 
    i = i + 1 
 
dengue=np.asarray(dengue) 
X = np.asarray(X) 
Y = np.asarray(Y) 
     
# maxT 
os.chdir(path_maxt) 
i = 0 
for f in glob.glob("*.csv"): 
    newMonth1 = [] 
    file1 = pandas.read_csv(f,delimiter=',', encoding="utf-8") 
    for value in file1.iloc[:,4]: 
        newMonth1.append(value) 
    maxT.append(newMonth1) 
    i = i + 1 
maxT=np.asarray(maxT)  
    
# meanT 
os.chdir(path_meant) 
i = 0 
for f in glob.glob("*.csv"): 
    newMonth2 = [] 
    file2 = pandas.read_csv(f,delimiter=',', encoding="utf-8") 
    for value in file2.iloc[:,4]: 
        newMonth2.append(value) 
    meanT.append(newMonth2)    
    i = i + 1 
meanT=np.asarray(meanT)     
  
# minT 
os.chdir(path_mint) 
i = 0 
for f in glob.glob("*.csv"): 
    newMonth3 = [] 
    file3 = pandas.read_csv(f,delimiter=',', encoding="utf-8") 
    for value in file3.iloc[:,4]: 
        newMonth3.append(value) 
    minT.append(newMonth3)   
    i = i + 1 
minT=np.asarray(minT)    
   
# precip 
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os.chdir(path_p) 
i = 0 
for f in glob.glob("*.csv"): 
    newMonth4 = [] 
    file4 = pandas.read_csv(f,delimiter=',', encoding="utf-8") 
    for value in file4.iloc[:,4]: 
        newMonth4.append(value) 
    precip.append(newMonth4)       
    i = i + 1 
precip=np.asarray(precip) 
 
   
# Compute Correlation Coefficients 
# Precipitation at a 6 month lag 
 
dlist=[] 
tlist=[] 
     
for pixel in range(26360): 
    newpixelD = [] 
    newpixelT = [] 
    for i, j in zip(dengue[6:95,pixel], precip[0:89,pixel]): 
        newpixelD.append(i) 
        newpixelT.append(j) 
    dlist.append(newpixelD) 
    tlist.append(newpixelT) 
 
dlist=np.asarray(dlist) 
tlist=np.asarray(tlist) 
cclist=[] 
for i in range(26360):      
    cc = np.corrcoef(dlist[i,:],tlist[i,:])      
    cclist.append(cc) 
 
Precip_6=open("C:/1megan/1research/Correlations/Tables/Precip_6.csv", "w") 
 
for i in cclist: 
    cor=i[0,1] 
    print(cor, file=Precip_1)    
    
Precip_6.close() 
 
# Pick optimal time lags 
 
f = "C:/1megan/1research/Correlations/Tables/AllWx.csv" 
file = pandas.read_csv(f,delimiter=',', encoding="utf-8") 
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allwx = np.asarray(file) 
 
try1 = open("C:/1megan/1research/Correlations/Tables/optLagDengue.csv", "w") 
 
new_Pixel=[] 
new_index = [] 
for i in allwx: 
    maxT = i[2:8] 
    meanT = i[8:14] 
    minT = i[14:20] 
    Precip = i[20:26] 
    Dengue = i[26:32] 
     
    max_maxT = max(maxT) 
    max_meanT = max(meanT) 
    max_minT = max(minT) 
    max_Precip = max(Precip) 
    max_Dengue = max(Dengue) 
     
    min_maxT = min(maxT) 
    min_meanT = min(meanT) 
    min_minT = min(minT) 
    min_Precip = min(Precip) 
    min_Dengue = min(Dengue) 
     
    a_maxT = abs(min_maxT) 
    a_meanT = abs(min_meanT) 
    a_minT = abs(min_minT) 
    a_Precip = abs(min_Precip) 
    a_Dengue = abs(Dengue) 
     
    new_Pixel.append(max_Dengue) 
 
    ii = np.where(Dengue == max_Dengue) 
    string = str(ii) 
    num = string[8] 
    new_index.append(num) 
 
for x,y in zip(new_Pixel, new_index): 
    print(x, ",", y, file = try1) 
 
try1.close()  
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Code for Choosing the Optimal Predictors for Each Pixel (Python) 
 

import pandas 
#from scipy import stats 
import statsmodels.formula.api as sm 
#import os 
#import glob 
import numpy as np 
 
# read in data and create arrays 
lag_data = "C:/1megan/1research/Correlations/Tables/LAG.csv" 
lagData = pandas.read_csv(lag_data, delimiter=',', encoding="utf-8" ) 
lag = np.asarray(lagData) 
maxT_optLag = lag[:,0] 
meanT_optLag = lag[:,1] 
minT_optLag = lag[:,2] 
precip_optLag = lag[:,3] 
 
dengue_data = "C:/1megan/1research/XYZTables/dengueArray.csv" 
dengueData = pandas.read_csv(dengue_data, delimiter=',', encoding="utf-8" ) 
dengue = np.asarray(dengueData) 
 
maxT_data = "C:/1megan/1research/XYZTables/maxTArray.csv" 
maxTData = pandas.read_csv(maxT_data, delimiter=',', encoding="utf-8" ) 
maxT = np.asarray(maxTData) 
 
meanT_data = "C:/1megan/1research/XYZTables/meanTArray.csv" 
meanTData = pandas.read_csv(meanT_data, delimiter=',', encoding="utf-8" ) 
meanT = np.asarray(meanTData) 
 
minT_data = "C:/1megan/1research/XYZTables/minTArray.csv" 
minTData = pandas.read_csv(minT_data, delimiter=',', encoding="utf-8" ) 
minT = np.asarray(minTData) 
 
Precip_data = "C:/1megan/1research/XYZTables/PrecipArray.csv" 
PrecipData = pandas.read_csv(Precip_data, delimiter=',', encoding="utf-8" ) 
precip = np.asarray(PrecipData) 
 
new_file = open("C:/1megan/1research/FinalModels/PythonOutput/nah.csv", "w") 
 
print("Model,", "Rsquared,","AIC,", "MSE,", "Bint,", "Bdengue,", "BmaxT,",  
      "BmeanT,", "BminT,", "Bprecip,", "Pint,", "Pdengue,", "PmaxT,", "PmeanT," 
      , "PminT,", "Pprecip", file = new_file) 
 
for pixel in range(5): 
    num_max = maxT_optLag[pixel] 
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    num_mean = meanT_optLag[pixel] 
    num_min = minT_optLag[pixel] 
    num_precip = precip_optLag[pixel] 
    denguestr = dengue[pixel, 6:95] 
 
    if num_max == 1: 
        maxTstr = maxT[pixel, 5:94] 
    if num_max == 2: 
        maxTstr = maxT[pixel, 4:93] 
    if num_max == 3: 
        maxTstr = maxT[pixel, 3:92] 
    if num_max == 4: 
        maxTstr = maxT[pixel, 2:91] 
    if num_max == 5:     
        maxTstr = maxT[pixel, 1:90] 
    if num_max == 6: 
        maxTstr = maxT[pixel, 0:89]     
 
    if num_mean == 1: 
        meanTstr = meanT[pixel, 5:94] 
    if num_mean == 2: 
        meanTstr = meanT[pixel, 4:93] 
    if num_mean == 3: 
        meanTstr = meanT[pixel, 3:92] 
    if num_mean == 4: 
        meanTstr = meanT[pixel, 2:91] 
    if num_mean == 5:     
        meanTstr = meanT[pixel, 1:90] 
    if num_mean == 6: 
        meanTstr = meanT[pixel, 0:89] 
         
    if num_min == 1: 
        minTstr = minT[pixel, 5:94] 
    if num_min == 2: 
        minTstr = minT[pixel, 4:93] 
    if num_min == 3: 
        minTstr = minT[pixel, 3:92] 
    if num_min == 4: 
        minTstr = minT[pixel, 2:91] 
    if num_min == 5:     
        minTstr = minT[pixel, 1:90] 
    if num_min == 6: 
        minTstr = minT[pixel, 0:89]      
     
    if num_precip == 1: 
        precipstr = precip[pixel, 5:94] 
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    if num_precip == 2: 
        precipstr = precip[pixel, 4:93] 
    if num_precip == 3: 
        precipstr = precip[pixel, 3:92] 
    if num_precip == 4: 
        precipstr = precip[pixel, 2:91] 
    if num_precip == 5:     
        precipstr = precip[pixel, 1:90] 
    if num_precip == 6: 
        precipstr = precip[pixel, 0:89] 
     
    #dengue optimal lag always one month     
    dengue_lag = dengue[pixel, 5:94] 
     
    df = pandas.DataFrame({"Dengue": denguestr, "dengueLag": dengue_lag,  
                           "maxTdf": maxTstr, "meanTdf": meanTstr, "minTdf" 
                           : minTstr, "precipdf": precipstr})     
    aa = "Dengue ~" 
    aaa = "dengueLag" 
    ab, ac, ad, ae, af = "dengueLag+","maxTdf","meanTdf","minTdf","precipdf" 
     
    D0 = sm.ols(formula = aa+aaa, data = df).fit()  
    D1 = sm.ols(formula = aa+ab+ac, data = df).fit() 
    D2 = sm.ols(formula = aa+ab+ad, data = df).fit()     
    D3 = sm.ols(formula = aa+ab+ae, data = df).fit() 
    D4 = sm.ols(formula = aa+ab+af, data = df).fit() 
    D5 = sm.ols(formula = aa+ab+ac+"+"+ad, data = df).fit() 
    D6 = sm.ols(formula = aa+ab+ac+"+"+ae, data = df).fit() 
    D7 = sm.ols(formula = aa+ab+ac+"+"+af, data = df).fit() 
    D8 = sm.ols(formula = aa+ab+ad+"+"+ae, data = df).fit() 
    D9 = sm.ols(formula = aa+ab+ad+"+"+af, data = df).fit() 
    D10 = sm.ols(formula = aa+ab+ae+"+"+af, data = df).fit() 
    D11 = sm.ols(formula = aa+ab+ac+"+"+ad+"+"+ae, data = df).fit() 
    D12 = sm.ols(formula = aa+ab+ac+"+"+ad+"+"+af, data = df).fit() 
    D13 = sm.ols(formula = aa+ab+ac+"+"+ae+"+"+af, data = df).fit() 
    D14 = sm.ols(formula = aa+ab+ad+"+"+ae+"+"+af, data = df).fit() 
    D15 = sm.ols(formula = aa+ab+ac+"+"+ad+"+"+ae+"+"+af, data = df).fit() 
     
         
    model_list = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13,  
                  D14, D15] 
    r_list = [D0.rsquared, D1.rsquared, D2.rsquared, D3.rsquared, D4.rsquared, 
              D5.rsquared, D6.rsquared, D7.rsquared, D8.rsquared, D9.rsquared, 
              D10.rsquared, D11.rsquared, D12.rsquared, D13.rsquared, 
              D14.rsquared, D15.rsquared]   
     



104 
 

    m1 = max(r_list[1:5]) 
    ind1 = r_list.index(m1) 
    m2 = max(r_list[5:12]) 
    ind2 = r_list.index(m2) 
    m3 = max(r_list[12:16]) 
    ind3 = r_list.index(m3) 
     
    r_diff = m1-r_list[0] 
    r_perc = (r_diff / r_list[0]) * 100 
    model1 = model_list[ind1] 
    if r_perc > 1 and model1.pvalues[2] < 0.1: 
        model = model1 
        r_diff2 = m2-m1 
        r_perc2 = (r_diff2 / m1) * 100         
        model2 = model_list[ind2] 
         
        if r_perc2 > 1 and model2.pvalues[2] < 0.1 and model2.pvalues[3] < 0.1: 
            model = model2 
            r_diff3 = m3-m2 
            r_perc3 = (r_diff3 / m2) * 100 
            model3 = model_list[ind3] 
             
            if (r_perc3 > 1 and model3.pvalues[2] < 0.1 and model3.pvalues[3]  
            < 0.1 and model3.pvalues[4] < 0.1): 
                model = model3 
                r_diff4 = D15.rsquared - m3 
                r_perc4 = (r_diff4 / m3) * 100 
                 
                if (r_perc4 > 1 and D15.pvalues[2] < 0.1 and D15.pvalues[3] <  
                0.1 and D15.pvalues[4] < 0.1 and D15.pvalues[5] < 0.1): 
                    model = D15 
                    #print("model4,", model.pvalues[2], ",", model.pvalues[3],  
                     #     ",", model.pvalues[4], ",", model.pvalues[5], file =  
                      #    new_file) 
                else:  
                    model = model3 
                    #print("model3,", model.pvalues[2], ",", model.pvalues[3],  
                     #     ",", model.pvalues[4], file = new_file)        
            else: 
                model = model2 
                #print("model2,", model.pvalues[2], ",", model.pvalues[3], 
                 #     file = new_file) 
        else:  
            model = model1 
            #print("model1,", model.pvalues[2], file = new_file) 
    else: 
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        model = model_list[0] 
        #print("model0", file = new_file) 
     
    ind = model_list.index(model) 
 
    if ind == 0: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params[1], ",", "-9999.9999,", 
              "-9999.9999,", "-9999.9999,", "-9999.9999,", model.pvalues[0],  
              ",", model.pvalues[1], ",-9999.9999,", "-9999.9999,",  
              "-9999.9999,", "-9999.9999", file = new_file) 
    if ind == 1: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params[1], ",", model.params[2], 
              ",-9999.9999,", "-9999.9999,", "-9999.9999,", model.pvalues[0],  
              ",", model.pvalues[1], ",", model.pvalues[2], ",-9999.9999,",  
              "-9999.9999,", "-9999.9999", file = new_file) 
    if ind == 2: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params[1], ",", "-9999.9999,",model.params[2], 
              ",-9999.9999,", "-9999.9999,", model.pvalues[0], ",", model.pvalues[1],  
               ",-9999.9999,", model.pvalues[2], ",-9999.9999,", "-9999.9999",  
              file = new_file) 
    if ind == 3: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params[1], ",", "-9999.9999,", "-9999.9999,",  
              model.params[2], ",-9999.9999,", model.pvalues[0], ",", model.pvalues[1],  
              ",", "-9999.9999,", "-9999.9999,", model.pvalues[2], ",-9999.9999",  
              file = new_file) 
    if ind == 4: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params[1], ",", "-9999.9999,", "-9999.9999,",  
              "-9999.9999,", model.params[2], ",", model.pvalues[0], ",", model.pvalues[1],  
              ",", "-9999.9999,", "-9999.9999,", "-9999.9999,", model.pvalues[2], 
              file = new_file) 
    if ind == 5: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",", model.params[2], ",", 
model.params[3], 
              ",-9999.9999,", "-9999.9999,", model.pvalues[0], ",", model.pvalues[1],  
              ",", model.pvalues[2], ",", model.pvalues[3], ",-9999.9999,", "-9999.9999", 
              file = new_file) 
    if ind == 6: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",", model.params[2], ",-
9999.9999,", 
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              model.params[3], ",-9999.9999,", model.pvalues[0], ",", model.pvalues[1],  
              ",", model.pvalues[2], ",-9999.9999,", model.pvalues[3], ",-9999.9999", 
              file = new_file)  
    if ind == 7: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",", model.params[2], ",-
9999.9999,",  
              "-9999.9999,", model.params[3], ",", model.pvalues[0], ",", model.pvalues[1],  
              ",", model.pvalues[2], ",-9999.9999,", "-9999.9999,", model.pvalues[3],  
              file = new_file) 
    if ind == 8: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",-9999.9999,", model.params[2],   
              ",", model.params[3], ",-9999.9999,", model.pvalues[0], ",", model.pvalues[1],  
              ",-9999.9999,", model.pvalues[2], ",", model.pvalues[3],",-9999.9999",   
              file = new_file) 
    if ind == 9: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",-9999.9999,", model.params[2],   
              ",-9999.9999,", model.params[3], ",", model.pvalues[0], ",", model.pvalues[1],  
              ",-9999.9999,", model.pvalues[2], ",-9999.9999,", model.pvalues[3],   
              file = new_file) 
    if ind == 10: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",-9999.9999,", "-9999.9999,", 
              model.params[2], ",", model.params[3], ",", model.pvalues[0], ",", 
model.pvalues[1],  
              ",-9999.9999,", "-9999.9999,", model.pvalues[2], ",", model.pvalues[3],   
              file = new_file) 
    if ind == 11: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",", model.params[2], ",", 
model.params[3], 
              ",",model.params[4], ",-9999.9999,", model.pvalues[0], ",", model.pvalues[1],  
              ",", model.pvalues[2], ",", model.pvalues[3], ",", model.pvalues[4],  
              ",-9999.9999", file = new_file) 
    if ind == 12: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",", model.params[2], ",", 
model.params[3], 
              ",-9999.9999,", model.params[4], ",", model.pvalues[0], ",", model.pvalues[1],  
              ",", model.pvalues[2], ",", model.pvalues[3], ",-9999.9999,", model.pvalues[4], 
              file = new_file) 
    if ind == 13: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
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              ",", model.params[0], ",", model.params [1], ",", model.params[2], ",-
9999.9999,", 
              model.params[3], ",", model.params[4], ",", model.pvalues[0], ",", 
model.pvalues[1],  
              ",", model.pvalues[2], ",-9999.9999,", model.pvalues[3], ",", model.pvalues[4], 
              file = new_file)  
    if ind == 14: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",-9999.9999,", model.params[2],   
              ",", model.params[3], ",", model.params[4], ",", model.pvalues[0], ",", 
model.pvalues[1],  
              ",-9999.9999,", model.pvalues[2], ",", model.pvalues[3],",", model.pvalues[4],   
              file = new_file) 
    if ind == 15: 
        print(ind, ",", model.rsquared, ",", model.aic, ",", model.mse_model,  
              ",", model.params[0], ",", model.params [1], ",", model.params[2], ",", 
model.params[3], 
              ",", model.params[4], ",", model.params[5], ",", model.pvalues[0], ",", 
model.pvalues[1],  
              ",", model.pvalues[2], ",", model.pvalues[3], ",", model.pvalues[4],  
              ",", model.pvalues[5], file = new_file) 
 
               
new_file.close()   
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Prediction Model Code (Python) 
 

import pandas 
import numpy as np 
 
# read in data and create arrays 
lag_data = "C:/1megan/1research/Correlations/Tables/LAG.csv" 
lagData = pandas.read_csv(lag_data, delimiter=',', encoding="utf-8" ) 
lag = np.asarray(lagData) 
maxT_optLag = lag[:,0] 
meanT_optLag = lag[:,1] 
minT_optLag = lag[:,2] 
precip_optLag = lag[:,3] 
 
dengue_data = "C:/1megan/1research/XYZTables/dengueArray.csv" 
dengueData = pandas.read_csv(dengue_data, delimiter=',', encoding="utf-8" ) 
dengue = np.asarray(dengueData) 
 
maxT_data = "C:/1megan/1research/XYZTables/maxTArray.csv" 
maxTData = pandas.read_csv(maxT_data, delimiter=',', encoding="utf-8" ) 
maxT = np.asarray(maxTData) 
 
meanT_data = "C:/1megan/1research/XYZTables/meanTArray.csv" 
meanTData = pandas.read_csv(meanT_data, delimiter=',', encoding="utf-8" ) 
meanT = np.asarray(meanTData) 
 
minT_data = "C:/1megan/1research/XYZTables/minTArray.csv" 
minTData = pandas.read_csv(minT_data, delimiter=',', encoding="utf-8" ) 
minT = np.asarray(minTData) 
 
Precip_data = "C:/1megan/1research/XYZTables/PrecipArray.csv" 
PrecipData = pandas.read_csv(Precip_data, delimiter=',', encoding="utf-8") 
precip = np.asarray(PrecipData) 
 
wholeThing = "C:/1megan/1research/Correlations/Final/cats.csv" 
wT = pandas.read_csv(wholeThing, delimiter=',', encoding="utf-8") 
param = np.asarray(wT) 
 
file2 = open("C:/1megan/1research/FinalModels/PythonOutput/ModelOutput.csv", "wb") 
 
d_pred_list = range(96,132) 
 
d_arrays = np.zeros(36)  
 
# for each pixel for each month during the prediction period, set which column 
# of the array represents each paramater 
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for pixel in range(26359): 
     
    d_pred_mos = dengue[pixel,96:132] 
    d_lag_mos = dengue[pixel,95:131] 
    maxT_pred = maxT[pixel,:] 
    meanT_pred = meanT[pixel,:] 
    minT_pred = minT[pixel,:] 
    precip_pred = precip[pixel,:] 
 
    model_num = param[pixel,0] 
    Bint = param[pixel,4] 
    Bdengue = param[pixel,5] 
    BmaxT = param[pixel,6] 
    BmeanT = param[pixel,7] 
    BminT = param[pixel,8] 
    Bprecip = param[pixel,9] 
    Pint = param[pixel,10] 
    Pint = float(Pint) 
     
    num_max = maxT_optLag[pixel] 
    num_mean = meanT_optLag[pixel] 
    num_min = minT_optLag[pixel] 
    num_precip = precip_optLag[pixel]         
 
# Set each model with the predictors associated with that model 
 
    if model_num == 0: 
        d_list = [] 
        for mo, lagmo in zip(d_pred_mos.T, d_lag_mos.T): 
            if Pint < 0.01:           
                d_pred = Bint + (Bdengue * lagmo) 
            else: 
                d_pred = Bdengue * lagmo 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
         
    if model_num == 1: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            maxTlag = a - num_max 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag]) 
            d_list.append(d_pred) 
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        d_array = np.array(d_list) 
         
    if model_num == 2: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            meanTlag = a - num_mean 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BmeanT * meanT_pred[meanTlag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BmeanT * meanT_pred[meanTlag]) 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
         
    if model_num == 3: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            minTlag = a - num_min 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BminT * minT_pred[minTlag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BminT * minT_pred[minTlag]) 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
     
    if model_num == 4: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            preciplag = a - num_precip 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BminT * precip_pred[preciplag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (Bprecip * precip_pred[preciplag]) 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
         
    if model_num == 7: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            maxTlag = a - num_max             
            preciplag = a - num_precip 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag]) 
                + (BminT * precip_pred[preciplag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag])  
                + (Bprecip * precip_pred[preciplag]) 
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            d_list.append(d_pred) 
        d_array = np.array(d_list) 
         
    if model_num == 9: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            meanTlag = a - num_mean             
            preciplag = a - num_precip 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BmeanT * meanT_pred[meanTlag]) 
                + (BminT * precip_pred[preciplag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BmeanT * meanT_pred[meanTlag])  
                + (Bprecip * precip_pred[preciplag]) 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
         
    if model_num == 10: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            minTlag = a - num_min             
            preciplag = a - num_precip 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BminT * minT_pred[minTlag]) 
                + (BminT * precip_pred[preciplag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BminT * minT_pred[minTlag])  
                + (Bprecip * precip_pred[preciplag]) 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
         
    if model_num == 11: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            maxTlag = a - num_max 
            meanTlag = a - num_mean 
            minTlag = a - num_min             
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag]) 
                + (BmeanT * meanT_pred[meanTlag]) + (BminT * minT_pred[minTlag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag]) 
                + (BmeanT * meanT_pred[meanTlag]) + (BminT * minT_pred[minTlag]) 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
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    if model_num == 15: 
        d_list = [] 
        for a, mo, lagmo in zip(d_pred_list, d_pred_mos.T, d_lag_mos.T): 
            maxTlag = a - num_max 
            meanTlag = a - num_mean 
            minTlag = a - num_min  
            preciplag = a - num_precip 
            if Pint < 0.01: 
                d_pred = Bint + (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag]) 
                + (BmeanT * meanT_pred[meanTlag]) + (BminT * minT_pred[minTlag]) 
                + (Bprecip * precip_pred[preciplag]) 
            else: 
                d_pred = (Bdengue * lagmo) + (BmaxT * maxT_pred[maxTlag]) 
                + (BmeanT * meanT_pred[meanTlag]) + (BminT * minT_pred[minTlag]) 
                + (Bprecip * precip_pred[preciplag]) 
            d_list.append(d_pred) 
        d_array = np.array(d_list) 
        
    d_arrays = np.vstack((d_arrays, d_array)) 
 
# output results to a file that has the predicted dengue count at each pixel 
# for every month of the prediction period 
 
np.savetxt(file2, d_arrays, delimiter = ',')   
 
file2.close() 


