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ABSTRACT

LI LIU. Optimal Strategies in ”Locks, Bombs and Testing” (LBT) Problem for the
Case of Independent Protection. (Under the direction of DR. ISAAC SONIN)

This thesis constructs a Defense/Attack resource allocation model. Defender uses

”locks” to protect their boxes from Attacker, and Attacker uses ”bombs” to destroy

as many boxes as possible. The first models of such type were given by E. Borel

(1921). Later such models were extensively analyzed at the initial stage of Game

Theory development under the general title (Colonel) Blotto game. Previous LBT

model focuses on violence patterns produced by attackers with different levels of ca-

pacity to see whether rebel capacity influences how rebels fight (the attack timing).

We sought to extend this problem into a situation with an extra setting where rebels

can test vulnerability of boxes before placing bombs. In previous problem the goal

was to find violence patterns produced by rebels. Here, we are interested in the opti-

mal strategy of placing bombs. Further, our problem discusses the optimal strategy

for defenders to allocate locks even when attackers have already applied their best

strategy for placing bombs.

After posing the basic problem we then examine several specific cases with dependent

and independent, identical and non-identical, locks distribution in valued boxes by

using Bayes’ Posterior distribution and Monte Carlo simulations.

Key words: Defense/Attack model, Blotto game, Search, Testing, game theory.

Classification
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CHAPTER 1: INTRODUCTION

1.1 Motivation and Goal

The LBT model is motivated by the paper ”Rebel Capacity, Intelligence Gathering,

and the Timing of Combat Operations”, K. Sonin, J. Wilson, A. Wright.(SWW)(1).

Classic counterinsurgency claims rebel forces execute attacks in an unpredictable man-

ner to limit the government’s ability to anticipate and defend against them. SWW

focuses on the question whether rebel capacity influences how rebels fight (the at-

tack timing). With the help of data on opium production and farmgate prices from

Afghanistan, SWW find high capacity rebels produce patterns of violence that are

less random and exhibit temporal clustering.

The LBT model inherits this background setting and adds a new feature where

rebels being able to test the vulnerability of the government and take action after

receiving signals from test. Let’s place above background into the following situation.

Suppose two parties are in confrontation.

Defenders: Defenders use locks to protect n sites (battle fields, boxes, cities, cells,

targets, time slots...). Due to limited sources, they can only protect some of these

sites with locks. The probability that a lock can stop explosion of bombs is 1.

Attackers: Attackers have m bombs, and the probability of explosion for a single

bomb is p (p ≤ 1). They test n sites and receive a signal from each site that help
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determine the existence of locks. The signal can be positive or negative. If the sig-

nal is positive, it indicates that a lock probably exists; otherwise it does not exist.

Attackers need to decide where to place m bombs, particularly, how many of them

should be in the same site.

Remark 1: Attackers can and will test every site trying to find sites without locks.

But testing of each site is not perfect: A test can give plus for a site without a lock

and minus for a site with a lock. Thus we introduce probability of true positive (sen-

sitivity a) and true negative (specificity b)

Remark 2: The defenders can decide how to distribute the locks. For the case of

k locks allocated to n sites, there is a dependency model A(n, k). The case of locks

placed into n sites independently with a certain probability is model B(n, λ). This

paper is mainly focusing on the B(n, λ) model .

Attackers have the following main goal:

Functional F1: to maximize the expected number of destroyed sites.

Functional F2: to maximize the expected value of damage.

We discuss two models in this paper.

The first is the Symmetric LBT (S-LBT) model, where allocation of locks and testing

has a strictly symmetrical structure.

The second is the General LBT (G-LBT) model. Where some of the various state-

ments about this model remain true when testing is symmetrical but the prior distri-

bution of locks for Defenders can be different from a uniform distribution and there

are different kinds of sites with possibly different values of benefits and costs for
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Defender and/or Attacker. This is a natural assumption when the importance, the

value of different sites for Defender/Attacker can vary. This immediately transforms

the symmetric model into a full-fledged game with equilibrium points defined by ran-

domized strategies, etc. The simplest example of such a game in A(n, k) is a problem

where the values of three sites are (2, 1, 1) and then, having one lock, Defender will

distribute it at random with probabilities (1−2α, α, α). In response, Attacker, having

for example, one bomb, will use probabilities (1 − 2β, β, β) to plant a bomb. The

unique Nash equilibrium point in this and the more general model can be found in

an explicit form.

Remark 3 Game LBT Model is difficult and not solved completely. There is a com-

pletely solved case - Symmetric LBT (S-LBT), which consists of two parts: A(n, k)

([SonSon](12)) and B(n, λ) in this paper. For General LBT (G-LBT), when model

parameters are increasing, the model becomes rather difficult, here we just discuss it

under some special settings.

1.2 Symbols and outline

We consider random variables Ti, Si, Ci, i = 1, 2, ..., n taking two values 0 and 1;

Ti =


1 when the ith site contains a lock

0 when the ith site contains no lock

Si =


1(or +) when the ith site is tested as positive, indicating lock is in present

0(or −) when the ith site is tested as negative, indicating lock is not in present
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Ci =


1 when the ith site is destroyed

0 when the ith site is not destroyed

n: Number of sites

m: Number of bombs

x: Number of sites with a minus signal

t: Number of sites containing a lock with minus signal

p: Probability of explosion

a = P (S = 1|T = 1): Sensitivity

b = P (S = 0|T = 0): Specificity

Sometimes, the complement of an event D is denoted as D′.

Dissertation Outline

In this dissertation, Chapter 2-3 consider optimal strategy of Attackers under dif-

ferent settings of LBT model.

In Chapter 4, in the general setting, the Nash Equilibrium point is discussed.



CHAPTER 2: INDEPENDENT IDENTICAL LOCKS ALLOCATION UNDER
SYMMERTIC LBT MODEL

2.1 Parameter notation and model building

1 B(n, λ) model

Under Symmetric LBT (S-LBT) model setting, where allocation of locks and test-

ing has a strictly symmetrical structure, we will discuss posterior distribution of locks

given signal, and optimal strategy of attackers.

Define a signal vector s = (s1, s2, ...sn), with si either − or +. And a r.v. N is the

number of sites with minus signals among all n sites.

The symmetry in S-LBT model implies two useful formulas:

P (s1, s2, ..., sn) = P (N = x)/

(
n

x

)
(1)

P (Ti = 0|s1, s2, ..., sn) = P (Ti = 0|si, N = x) (2)

TheB(n, λ) model assumes that the chance that a randomly selected site containing

a lock is the same (λ). Thus locks are identically and independently distributed in the

sites. Notice that when the number of locks (k) is fixed, we would have the A(n, k)

model. We will compare results under these two models.
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2 Probability Space

We have a probability space {(γ, s)}, where γ is a vector of distribution of locks.

In the B(n, λ) model, the number of locks K is a random variable. Suppose K = k

and there are n sites in total, then the locks’ position vector is γ = (i1, i2, ...ik)

with 1 ≤ i1 < i2 < ... < ik ≤ n, where ik stands the kth lock’s position among

n sites. s = (s1, s2, ..., sn) is a vector of signals. The probability of each outcome

p(γ, s) = b0(γ)P (s|γ), where b0(γ) is the prior distribution of locks, and P (s|γ) =

P (S1 = s1, ...Sn = sn|γ)
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2.2 Lock’s distribution given signal in model B(n, λ)

2.2.1 Conditional probability of signal given lock’s position

Let us introduce r.v.s N1, the number of minuses in locked sites. N2, the number

of minuses in unlocked sites. N = N1 + N2 is the total number of minuses after

testing. The number of Locks K is a random variable. Suppose we have K = k locks

in total, so the probability of having k locks is p(k) =
(
n
k

)
λk(1 − λ)(n−k). Then r.v.

N1 (number of false minuses) is a binomial distribution with k trials, and probability

of success 1− a, N1 ∼ Bin(k, 1− a).

r.v. N2 (number of true minuses) is a binomial distribution with (n − k) trials, and

probability of success b. N2 ∼ Bin(n− k, b).

N1 and N2 are independent. Thus distribution of N is P (N = x) = gB(x) =∑
k p(k)gn,k(x), where gn,k(x) is calculated for a fixed k.

When K = k, r.v. N has distribution gn,k(x) ≡ g(x), obtained by the convolution

formula. And then gB(x) ≡ P (N = x) can be calculated by the second formula below

g(x) ≡ gn,k(x) =
∑
j

p1(j)p2(x− j)

=
∑
t

p1(x− t)p2(t)

=

min(k,x)∑
i=0

(
k

i

)
(1− a)iak−i

(
n− k
x− i

)
bx−i(1− b)n−k−x+i. (3)

Thus gB(x) =
∑

k p(k)gn,k(x).

We use notation t = N1(γ, s), x = N(s).
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Proposition 1. For the B(n, λ) model:

(a). When r.v. K = k, and locks’ distribution vector is γ(k), for all signal vectors s

with N1(γ, s) = t, and N(s) = x, the probability of signal vector s is

P (s|γ(k)) = P (s|N1 = t, N = x,K = k) = p(t, x|k)

= (1− a)ta(k−t)b(x−t)(1− b)(n−k−(x−t)). (4)

(b). When r.v. K = k, locks’ joint distribution

s(t, x|k) = P (N1 = t, N1 +N2 = x|k) = P (N1 = t, N2 = x− t|k)

= p1(t)p2(x− t)

=

(
k

t

)
(1− a)tak−t

(
n− k
x− t

)
bx−t(1− b)n−k−x+t. (5)

(c). Unconditional locks’ joint distribution for B(n, λ) is

sB(t, x) =
∑
k

s(t, x|k)p(k)

=
∑
k

(
k

t

)
(1− a)tak−t

(
n− k
x− t

)
bx−t(1− b)n−k−x+tp(k). (6)

(d). Conditional locks’ distribution for B(n, λ) is

sB(t|x) =
sB(t, x)

gB(x)

=

∑
k p(k)s(t, x|k)∑
k p(k)gn,k(x)

=

∑
k

(
k
t

)
(1− a)tak−t

(
n−k
x−t

)
bx−t(1− b)n−k−x+tp(k)∑

k p(k)
∑min(k,x)

i=0

(
k
i

)
(1− a)iak−i

(
n−k
x−i

)
bx−i(1− b)n−k−x+i

. (7)
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Example 1, B(n, λ). For λ = .5, n = 7, a = 7/12, b = 9/12, find conditional

distribution sB(t|x)

Figure 1: sB(t|x) for λ = 0.5, row is x, column is t

Example 2, B(n, λ). For λ = .7, n = 7, a = 7/12, b = 9/12

Figure 2: sB(t|x) for λ = 0.7, row is x, column is t
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2.2.2 Posterior distribution for B(n, λ)

Let s be a signal vector, and suppose that the number of locks K = κ is fixed. If

the prior distribution b0(γ(κ)) is uniform, then b0(γ(κ)) = p(κ)/
(
n
κ

)
. What would be

the distribution of κ locks’ position γ = γ(κ)?

In order to solve this problem, we need to introduce ADL (aposterior distribution

of locks) first. For both the S- and G-LBT models we described above, our notation

implies the following basic equalities:

P (Si = 1|Ti = 1) = a, P (Si = 0|Ti = 0) = b,

P (Ci = 1|Ti = 1) = 0, P (Ci = 1|Ti = 0, ui) = p(ui), (8)

where ui is the number of bombs in site i, and p(u) is the probability of distribution

of an unlocked site with u bombs. The independence of explosions implies that

p(u) = 1− qu, where q = 1− p. Note that the function p(u) is increasing and concave

upward, and ∆p(u) ≡ p(u + 1) − p(u) is decreasing. This property of diminishing

utility of each extra bomb plays an important role in the structure of the optimal

strategy.

An interesting aspect of all models are the posterior probabilities P (Ti = 0|s), s =

(s1, ..., sn) and a more general aposterior distribution of locks (ADL) with

b(γ|s) = P (Ti = 1, i ∈ γ, Ti = 0, i /∈ γ|Si = si, i = 1, ..., n). (9)

The following theorem (theorem 1) describes ADL (posterior distribution of locks)

b(γ(κ)|s) for an arbitrary and uniform b0(γ(κ)). With uniform prior distribution all

signals with the same values N1 = t, N = x have the same probability and as a result
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b(γ(κ)|s) = b(γ(κ)|t, x). For all possible allocations of κ locks, the ADL b(γ(κ)|s) is

given by elements of an upper triangular
(
n
κ

)
×2n-dimensional array B(γ(κ)|s), where

γ(κ) takes all
(
n
κ

)
possible values.

In this background setting, the number of locks is a r.v. K with Binomial distri-

bution with n trials and probability of success λ. Thus, rv K has the distribution

p(k) = p(k|n, λ), k = 0, 1, ..., n. When K = k, rv N has conditional distribution

gn,k(x), and then gB(x) ≡ P (N = x) can be calculated by the second formula below

gA(x) ≡ gn,k(x) =
∑
j

p1(j)p2(x− j) ≡
∑
t

p1(x− t)p2(t), gB(x) =
n∑
k=0

p(k)gn,k(x).(10)

Summation over j in the convolution formula above is taken over values j such that

0 ≤ j ≤ k, 0 ≤ x − j ≤ n − k. Similarly this holds for summation over t, where

0 ≤ x− t ≤ k, 0 ≤ t ≤ n−k. Further, in all convolution formulas we may not specify

the exact range of summation since we are assuming that all probabilities involved in

sums are well defined.
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Theorem 1. ADL in case B(n, λ).

a) For a prior b0(γ(κ)), and any position γ and signal s, according to the definition

of the ADL (formula 9), the ADL b(γ|s) is given by Bayes’ formula

b(γ(κ)|s) =
b0(γ(κ))P (s|γ(κ))∑

k

∑
σ b0(σ(k))P (s|σ(k))

(11)

where P (s|γ(κ)) = P (s|N1 = t, N = x,K = k) ≡ p(t, x|k) is given by formula (4)

with t = t(γ, s), x = N(s)

b) For the uniform distribution b0(γ(k)) = p(k)/
(
n
k

)
, formula (2) holds for any signal

s and any position γ, with t(γ, s) = t,

b(γ(κ)|s) = b(γ(κ)|t, x) ≡ p(κ)sB(t, x|κ)

gB(x)
(
x
t

)(
n−x
κ−t

) , (12)

Proof. of Theorem 1. The first equality in point (a) represents Bayes’ formula. The

equality b(γ|s) = p(t, x) and formula (4) were proved in Introduction.

To prove (b), we use

sB(t, x) =
∑

k

(
k
t

)
(1− a)tak−t

(
n−k
x−t

)
bx−t(1− b)n−k−(x−t)p(k), the equality,(

n

k

)(
k

t

)(
n− k
x− t

)
=

(
n

x

)(
x

t

)(
n− x
k − t

)
, (13)

and the uniform prior b0(γ(κ)) = p(κ)/
(
n
κ

)
. Hence b(γ(κ)|s) takes the form b(γ(κ)|s) =

p(κ)P (s|γ(κ))/(nκ)∑
k

∑
σ p(k)P (s|σ(k))/(nk)

. To estimate the sum in the denominator, we prove the following

equalities:
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k

∑
σ

b0(σ)P (s|σ) =
∑
k

p(k)(
n
k

) ∑
t

∑
σ:t(σ,s)=t

p(t, x|k)

=
∑
k

p(k)(
n
k

) ∑
t

p(t, x|k)|σ : t(σ, s) = t|

=
∑
k

p(k)(
n
k

) ∑
t

p(t, x|k)

(
x

t

)(
n− x
k − t

)
By equality 13

=
∑
k

p(k)(
n
k

) ∑
t

s(t, x|k)
(
n
k

)(
n
x

)
=

∑
k

p(k)(
n
x

) ∑
t

s(t, x|k)

=
∑
k

p(k)(
n
x

) gn,k(x)

=
gB(x)(

n
x

) ,

where gB(x) =
∑

k p(k)gn,k(x).

Thus

b(γ(κ)|s) =
p(κ)P (s|γ(κ))/

(
n
κ

)∑
k

∑
σ p(k)P (s|σ(k))/

(
n
k

)
=

p(κ)

(nκ)
s(t,x|κ)

(κt)(
n−κ
x−t)

gB(x)

(nx)
By equality 13

=

p(κ)

(nx)
s(t,x|κ)

(xt)(
n−x
κ−t)

gB(x)

(nx)

=
p(κ)s(t, x|κ)

gB(x)
(
x
t

)(
n−x
κ−t

) .
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Example 3. B(n, λ), for a = 7/12, b = 9/12, n = 7, λ = 0.7, number of locks

κ = 2, p = 0.6. The columns are x (number of minuses), and rows are t (number of

minuses in locks)

Figure 3: b(γ(κ)|s)

Note, when N = x = 5, N1 = t = 1, b(γ(2)|x = 5, t = 1) = p(2)s(t=1,x=5|2)
gB(5)(5

1)(
2
1)

=

0.00266.

Given a fixed x, κ (x = 5,κ = 2), suppose these 5 minus sites are arranged in the

first 5 places. Since B(γ(2)|x = 5) is the probability of locks’ position among n sites.

i 1 2 3 4 5 6 7

s, x = 5 − − − − − + +

γ, t = 0 ⊗ ⊗

B(γ(2)|x = 5) = P (L1 = i1, L2 = i2|x = 5), i1 < i2

= b(γ(2)|x = 5, t = i)

=



b(γ(2)|x = 5, t = 0) i1 = 6, i2 = 7

b(γ(2)|x = 5, t = 1) i2 is selected from site 6, 7

b(γ(2)|x = 5, t = 2) None of i1, i2 are selected from site 6, 7
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We get table and histogram for B(γ(2)|x = 5) (probability that a lock is in position

i1, i2)

Figure 4: B table and histogram
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While in case A(n, k), when all settings are the same as Example 3, (a = 7/12,

b = 9/12, n = 7, k = 2, p = 0.6) and N = x = 5, N1 = t = 1, we have

Figure 5: b(γ|s)

Note, when N = x = 5, N1 = t = 1, b(γ|x = 5, t = 1) = P (L1 = i1, L2 = i2|x =

5, t = 1) = s(t=1|x=5)

(5
1)(

2
1)

= 0.06031017.

Fix x (x = 5), and suppose these 5 minus sites are arranged in the first 5 places.

Since B(γ|x = 5) is the probability of locks’ position among n sites.

i 1 2 3 4 5 6 7

s, x = 5 − − − − − + +

γ, t = 0 ⊗ ⊗

B(γ|x = 5) = P (L1 = i1, L2 = i2|x = 5), i1 < i2

= b(γ(2)|x = 5, t = i)

=



b(γ|x = 5, t = 0) i1 = 6, i2 = 7

b(γ|x = 5, t = 1) i2 is selected from site 6, 7

b(γ|x = 5, t = 2) None of i1, i2 are selected from site 6, 7
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We get the following table and histogram for B(γ|x = 5) (probability that lock

is in position i1, i2). After comparing the histogram for model A(n, k) and B(n, λ),

we find that the A(n, k) model has a more obvious difference for those two locks’

positions between pairs (1, 2), (1, 3), (1, 4), (1, 5) and (6, 7).

Figure 6: when k = 2, likelihood of lock’s position in 7 sites

Figure 7: when k = 2, histogram of lock’s position
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2.3 Optimal strategy for attackers

Now we know the posterior distribution of locks given information in the signal.

The next thing to consider is Goal F1: How to maximize the expected number of

destroyed sites?

2.3.1 Ratio for signal in B(n, λ)

Since the signal test is not perfect (sensitivity and specificity are less than 1), we

introduce the ratio r(λ) here, to obtain more efficiently the information of signals by

comparing the probability of no lock in this position given a negative signal with a

positive signal.

Proposition 2. a) The ratio r ≡ rB(λ) is given by formula

rB(λ) =
P (T = 0|S = 0)

P (T = 0|S = 1)
≡ p−(λ)

p+(λ)
=

b

(1− b)
λa+ (1− λ)(1− b)
λ(1− a) + (1− λ)b

, (14)

b) The probabilities used in (14) are given by formulas

p−(λ) =
(1− λ)b

λ(1− a) + (1− λ)b
, p+(λ) =

(1− λ)(1− b)
λa+ (1− λ)(1− b)

, (15)

c) If a + b > 1, then function rB(λ) is increasing from 1 to a
1−a

b
1−b = c1c2 = c > 1,

when λ increases from 0 to 1, otherwise, it is decreasing from 1 to c < 1.

Here c1 = a
1−a and c2 = b

1−b represent the quality of sensitivity and specificity, and

c = c1c2 represents the combined quality of testing.

Remark 1. Note that parameters a and b in function rB(λ) are not symmetrical,

i.e., though r(.5|a, b)r(.5|b, a) = c and rB(λ|a, b) ≈ rB(λ|b, a) ≈ c for λ close to 1,

generally rB(λ|a, b) 6= rB(λ|b, a) for all λ < 1. This asymmetry property is in contrast
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to the symmetry of a and b for rA(x) in the model A(n, k), see of Proposition 2(b).

The visual plot of {a, b : rA(λ|a, b) = constant} is given in (Figure 9).

Example 1. B(n, λ), for λ = .5 with a = 7
12
, b = 9

12
. By formula (1) we obtain

r = 15
7
≈ 2.143, and with a = 9

12
, b = 7

12
, we obtain r = 49

25
= 1.96, and hence

r(.5|a, b)r(.5|b, a) = 21
5

= 4.2 = c.

For λ = .7 with a = 7
12
, b = 9

12
, we obtain r = 87

31
≈ 2.806, and with a = 9

12
, b = 7

12
,

we obtain r = 13
5

= 2.6, and r(.7|a, b)r(.7|b, a) ≈ 7.297.

Example 2. B(n, λ), let a = 7
12
, b = 9

12
, probability of explosion p = 0.6 by

formula (1), we obtain graph of ratio r w.r.t. λ as follows:

Figure 8: ratio for a=7/12,b=9/12, p=0.6

Example 3. B(n, λ), find a and b for a fixed value r, such as {(a, b) : r(a, b) = c}

Figure 9: r = c



20

For A(n, k), we have the following conclusion that the symmetry of Defense strategy

implies that k locks are allocated at random between n sites. Let us show that the

probability that a particular site has a lock is λ = k/n. The number of combinations

of k locks having one lock on a fixed position and the other k− 1 locks having any of

remaining n − 1 positions is
(
n−1
k−1

)
. Then λ =

(
n−1
k−1

)
/
(
n
k

)
. The first of the two trivial

equalities for binomial coefficients below with m = n yields λ = k/n. The second

equality in (16) will be used later.

(
m− 1

k − 1

)
/

(
m

k

)
=

k

m
;

(
m

k − 1

)
/

(
m

k

)
=

k

m+ 1− k
. (16)

For the case A(n, k) we obtain two different representations for rn,k(x) using total

probability formula for different partitions.

Theorem 2. a) The crucial ratio rn,k(x|a, b) ≡ rn,k(x), 0 < x < n, is given by the

formula

rn,k(x) ≡ P (T = 0|S = 0, x)

P (T = 0|S = 1, x)
≡ p−(x)

p+(x)
=

b

(1− b)
(n− x)

x

gn−1,k(x− 1)

gn−1,k(x)
, (17)

b) The probabilities used in (17) p−(x) ≡ P (T = 0|S = 0, x) and p+(x) ≡ P (T =

0|S = 1, x)) for 0 < x < n are given by formulas

p−(x) =
n− k
x
∗ b ∗ gn−1,k(x− 1)

gn,k(x)
, p+(x) =

n− k
n− x

∗ (1− b) ∗ gn−1,k(x)

gn,k(x)
. (18)

c) The functions rn,k(x) ≡ rn,k(x|a, b) as functions of parameters a, b for all n, k, 0 <

x < n depend only on parameter c = a
1−a

b
1−b , (see Remark 1), and hence satisfy the

equality rn,k(x|a, b) = rn,k(x|b, a) = rn,k(x|θ, θ), where θ =
√
c

1+
√
c
.

d) The functions rn,n−1(x) = c for all x and the functions rn,k(x) for k < n− 1 are
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monotonically increasing in x for 0 < x < n, and r(x) > 1 when a + b > 1, and < 1

when a+ b ≤ 1.

e) The functions rn,k(x) are monotonically decreasing for all fixed k, 0 < x < n

when n is increasing.

Proof. of Theorem 2(c). Proof that r(x) depends on a, b through c, First, we

can represent gn,k(x) as

gn,k(x) =
∑
i

(
k

i

)
ak−i

(
n− k
x− i

)
bx−i(1− b)n−k−x+i

= akbx(1− b)n−k−x
∑
i

(
k

i

)(
n− k
x− i

)
1

ci
, (19)

where d1(x) = max(0, x − n + k) ≤ i ≤ min(k, x) = d2(x). Then we can represent

rn,k(x) as

rn,k(x) =
n− x
x

∑
d1(x−1)≤i≤d2(x−1)

(
k
i

)(
n−k−1
x−i−1

)
c−i∑

d1(x)≤i≤d2(x)
(
k
i

)(
n−k−1
x−i

)
c−i

. (20)

Therefore r(x) depends only on c. We also have
(
n−k−1
x−i−1

)
=
(
n−k−1
x−i

)n−(x−i)
x

. Using

these equalities and formula (20), we can show that rn,k(x) grows in c as a function

of c.
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To compare with Example 1 on page 19, we can look at the A(n = 10, k = 5)

model, with the same values a = 7/12, b = 9/12, and the number of minus sites

x = 0, 1, 2, ...10. r(x) is given by formula 17

Figure 10: r(x) for A(10, 5)

Figure 11: The graph of r(x) for A(10, 5)



23

2.3.2 Threshold for the number of bombs

Again, for S–LBT models the problem description above and our notation imply

the following basic equalities:

P (Si = 1|Ti = 1) = a, P (Si = 0|Ti = 0) = b,

P (Ci = 1|Ti = 1) = 0, P (Ci = 1|Ti = 0, ui) = p(ui), (21)

The independence of explosions implies that p(u) = 1− qu, q = 1− p. Note that the

function p(u) is increasing and concave upward, and ∆p(u) ≡ p(u + 1) − p(u) is de-

creasing. This property of diminishing utility of each extra bomb plays an important

role in the structure of the optimal strategy.

We consider strategy π = (u1, ..., un|s) as an allocation of m bombs between sites,

given the signal s = (s1, ..., sn),
∑n

j=1 uj = m, and we introduced U−(π|s) = {uj, j ∈

B−(s)} and U+(π|s) = {uj ∈ B+(s)} as two possible sets of the values of uj in minus

B−(s) and plus B+(s) sites. By symmetry of the prior distribution of locks and

testing, all strategies with the same pair of sets (U−(π|s), U+(π|s)) can be obtained

using permutations of these sets among corresponding sites, and they all have the

same value, denoted as wπ(x,m) for a problem N(s) = x. We denoted also v(x,m) =

supπ v
π(x,m), the value function over all strategies, given m and x, and v(m), the

overall value function.

Let J be a subset of sites and C(J) the event that all sites in J are destroyed and let

Cj be the event that site j is destroyed. Then, given strategy π, we have wπ(m|x) =∑n
i=1 P (Ci|ui, si, x). The conditional independece of testing and explosions, formula
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(21), and total probability formula imply the following formula for the conditional

probability of the destruction of a particular site with u bombs, and for any event F

generated by testing (signals), P (C|u, F ) = P (C|u, T = 0)P (T = 0|F ) = p(u)P (T =

0|F ), u ≥ 1. Using this formula and the definitions of r(λ), p−(λ) and p+(λ), we

have:

P (C|u, S = 1, λ) = P (T = 0|S = 1, λ)P (C|u, T = 0) = p+(λ)p(u), p(u) = 1− qu,

P (C|u, S = 0, λ) = P (T = 0|S = 0, λ)P (C|u, T = 0) = p−(λ)p(u) = r(λ)p+(λ)p(u).

(22)

The next Proposition justifies our claim that the optimal strategy in all problems are

(separately) UAP in minus and plus sites.

Lemma 1 (This lemma will be proved in theorem 5). If 0 < λ < 1, then the

optimal strategy is to distribute all bombs between minus and plus sites d(λ)-UAP,

where d(λ) is defined by the formula

d(λ) = min(i ≥ 1 : r(λ)qi < 1). (23)

Theorem 3. Let π(λ) = (ul, l = 1, 2, ..., n) be an optimal strategy. Then |us − ut| ≤ 1

when the signals in sites s, t have the same sign.

Theorem 4. Let π(λ) = (ul, l = 1, 2, ..., n) be a strategy, 0 < λ < 1, u− = i be the

number of bombs in some minus site, u+ = j be the number of bombs in some plus

site, and d = d(λ) is defined by formula (23). Then, if i − j > d or, if j ≥ 1 and

i − j < d − 1, then strategy π is not optimal, or, equivalently, if π is optimal, and

j = 0, then 1 ≤ i ≤ d, and if j ≥ 1, then i− j = d or d− 1.
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Proof. of Theorem 3. Suppose that theorem 3 is not true and let us say us = i,

ut = j, i < j − 1 and Ss = St = 1. The concavity of the function p(·) implies that

p(i+ 1) + p(j − 1) > p(i) + p(j). Then, using the formulas in (22), we have

P (C = 1|i+ 1, S = 1, λ) + P (C = 1|j − 1, S = 1, λ)

= p+(λ)[p(i+ 1) + p(j − 1)]

> p+(λ)[p(i) + p(j)]

= P (C = 1|i, S = 1, λ) + P (C = 1|j, S = 1, λ).

Thus our initial strategy is not optimal. The proof for Ss = St = 0 is similar with

p+(λ) replaced by p−(λ) = r(λ)p+(λ).

Proof. of Theorem 4. Let d(λ) = d. As always, we assume that a+ b > 1 and then

r(λ) > 1 for 0 < λ < 1, and hence u− ≥ u+. Let us denote the incremental utilities for

minus and plus sites as ∆C−(i|λ) = P (C = 1|i+ 1, S = 0, λ)− P (C = 1|i, S = 0, λ),

∆C+(j|λ) = P (C = 1|j + 1, S = 1, λ) − P (C = 1|j, S = 1, λ). Using formulas in

(22), it is easy to check that ∆C+(j|λ) = pp+(λ)qj and ∆C−(i|λ) = pr(λ)p+(λ)qi,

and then their difference for 0 ≤ j ≤ i is

∆(i− 1, j) = ∆C−(i− 1|λ)−∆C+(j|λ) = pqjp+(λ)[r(λ)qi−j−1 − 1]. (24)

By definition of d(λ), we have r(λ)qd(λ)−1 ≥ 1 and r(λ)qd(λ) < 1. Then if i − j > d,

then formula (24) implies that ∆(i − 1, j) < 0, i.e., a transfer of one bomb from a

minus site from this pair to a plus site will increase the value of a strategy. Similarly,

if j ≥ 1 and i− j < d− 1 for such pairs, then using the formula for ∆(i, j− 1) similar
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to formula (24), we can show that the inverse transfer will increase the value.

Note also that if r(λ)qd(λ)−1 = 1, then d(λ)-UAP strategy remains optimal but is

no longer unique since then in formula (24) gives zero for i − j = d(λ). Note also,

that if p = 1, i.e. q = 0, then d(λ) = 1 for all 0 < λ < 1, and if p is decreasing to

zero, then d(λ) tends to infinity.
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Example 1. B(n, λ), with a = 7/12, b = 9/12, n = 8, number of bombs m = 50,

and p = 0.6

From the Figure 12, we can find that when λ = 0.5, r(0.5) = 2.143 and d = 1.

Figure 12: d(λ) with 50 bombs and probability of explosion is 0.6

Thus when λ = 0.5, if there is a total of 50 bombs, the attacker will place them into

8 sites according the following strategy to maximize damage.

i 1 2 3 4 5 6 7 8

s, x = 5 − − − − − + + +

bombs 7 7 6 6 6 6 6 6
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A(n, k), with a = 7/12, b = 9/12, n = 8, k = 4 number of bombs m = 50, and

p = 0.6

From the Figure 13, we can find that when x = 5, r(5) = 2.5066767 and d = 2.

Figure 13: threshold for A(8, 4)

Thus when x = 5, if there is a total of 50 bombs, the attacker will place them into

8 sites according the following strategy to maximize damage.

i 1 2 3 4 5 6 7 8

s, x = 5 − − − − − + + +

bombs 7 7 7 7 7 5 5 5
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2.3.3 Value function

Theorem 5. Let, given signal s, the total number of minuses N = x, 0 ≤ x ≤ n. Then

a) if x = 0 or n, then the optimal strategy is to distribute all bombs between sites

UAP and the value function v(m|0) = v(m|n) for m = n∗i+e, i = 0, 1, ..., 0 ≤ e < n,

is given by formula

v(m|0) = v(m|n) =
n∑
k=0

n− k
n

[ep(i+ 1) + (n− e)p(i)]P (k). (25)

Where P (k) =
(
n
k

)
λk(1− λ)(n−k)

b) If 0 < x < n, then the optimal strategy is to distribute all bombs between minus

and plus sites d(λ)-UAP, where d(λ) is defined by formula

d(λ) = min(i ≥ 1 : r(λ)qi < 1), (26)

q = 1− p and r(λ) = rA(λ) is defined by formula (14).

The value function v(x,m) for m = m−+m+ = i∗x+e+ j ∗ (n−x)+e′, where the

tuple (i, e, j, e′) is (uniquely) defined by the value x and d(λ)-UAP strategy, is given

by the formula

v(x,m) = p+(λ)[r(λ)(ep(i+ 1) + (x− e)p(i)) + (e′p(j + 1) + (n− x− e′)p(j))]. (27)

c) The value function v(m),m = 1, 2, ... is given by the formula

v(m) =
n∑
x=0

P (N = x)v(x,m)

=
n∑
x=0

v(x,m)gA(x). (28)
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Proof. of Theorem 5. (a) If x = 0 or n then all sites have the same sign and

Proposition 4 implies that it is optimal to distribute all bombs between all sites UAP.

When m = n ∗ i + e, where 0 ≤ e < n, then UAP means that e sites have i + 1

bombs each, and n − e sites have i bombs each. When K = k, the probability that

a particular site has no lock is n−k
n

. Then, using the last equality in formula (21), we

obtain that the expected damage in all n sites is∑n
k=0

n−k
n

[eP (C|i + 1, T = 0) + (n − e)P (C|i, T = 0)]P (k) =
∑n

k=0
n−k
n

[ep(i + 1) +

(n− e)p(i)]P (k), i.e., v(m|0) = v(m|n) is given by formula (25).

(b) Let 0 < x < n, and u = (u1, ..., un) be the allocation of bombs, defined by an

optimal strategy π and signal s with N(s) = x, and m−,m+ be the total number of

bombs in minus and plus sites. We assume that a + b > 1 and hence r(λ) > 1 for

0 < λ < 1. By theorem 3, if π is optimal, then the allocation of bombs in minus and

plus sites is UAP, and hence m−,m+ satisfy the equalities m− = l− ∗ x + e−, m+ =

l+ ∗ (n− x) + e+. Using shorthand notation l− = i, e− = e, l+ = j, e+ = e′, we have

m− = i ∗ x+ e, m+ = j ∗ (n− x) + e′, 0 ≤ e < x, 0 ≤ e′ < n− x. If j = e′ = 0, then

theorem 4 implies that the maximum number of bombs in a minus site, i ≤ d(λ),

and this allocation is in agreement with d(λ)-UAP strategy with m = m− ≤ x ∗ d(λ)

bombs. Note, that if e > 0, then there are two minus sites with different number

of bombs, i + 1, and i. Similarly, if e′ > 0, then there are two plus sites with

different number of bombs, j + 1, and j. By theorem 4, the difference between the

number of bombs in any pair of (minus, plus) sites can have only two values, d(λ)

or d(λ) − 1. Then only one of e, e′ can be positive. If e′ > 0, then e = 0 and by

theorem 4, i − j = d(λ). Similarly, if e > 0, j > 0, then e′ = 0 and by theorem 4
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i−j = d(λ)−1. In both cases this allocation is in agreement with d(λ)-UAP strategy

with m− = x ∗ i + e, m+ = (n − x) ∗ j + e′ bombs. The optimality of d(λ)-strategy

is proven. We mentioned earlier that if r(λ)qd(λ)−1 = 1, then there are other optimal

strategies. Of course, they have the same value function v(x,m).

Consider the first time to transfer the extra one bomb from minus sites to plus

sites, thus we have j = 0, from Equation 24 , we have

∆(i, 0) = ∆C−(i|λ)−∆C+(0|λ) = pp+(λ)[r(λ)qi − 1]. (29)

Thus we have the first threshold d(λ) = mini{i : r(λ)qi < 1}

Now we can analyze v(x,m) using an optimal d(λ)-UAP strategy. Let m = m− +

m+ = i ∗ x + e + j ∗ (n − x) + e′, where the tuple i, e, j, e′ is (uniquely) defined by

value x and d(λ)-UAP strategy. We also proved in theorem 4 that e ∗ e′ = 0. Then,

the each of e minus sites have i+ 1 bombs each, and x− e minus sites have i bombs

each, and in plus sites e′ sites have j + 1 bombs each, and n − x − e′ sites have j

bombs each. Then the expected damage in all n sites is

eP (C|i + 1, S = 0, x) + (x − e)P (C|i, S = 0, x) + e′P (C|j + 1, S = 1, x) + (n − x −

e′)P (C|j, S = 1, x) = p+(x)[r(λ)(ep(i+1)+(x−e)p(i))+e′p(j+1)+(n−x−e′)p(j}),

i.e., v(x,m) is given by formula (27). We proved point b) of Theorem 1.

Point c) is straightforward.
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Example 2: B(n, λ), a = 7/12, b = 9/12, n = 8, λ = 0.5, number of bombs

m = 50, and p = 0.6

This results in the following table where the first row is the value of x (number of locks

in minus sites), the value function is
∑8

x=0 vgx = 3.27, where vgx = v(x,m)gA(x).

Figure 14: B(8, 0.5) with 50 bombs and probability of explosion p = 0.6

Figure 15: B(8, 0.5) value function w.r.t number of bombs when probability of explo-
sion p = 0.6
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For A(n, k) with n = 8, k = 4, we get the following table where the first row is the

value of x (number of locks in minus sites), and the value function is
∑
vg = 3.99

Figure 16: A(8, 4) with 50 bombs and prob of explosion p = 0.6

Figure 17: A(8, 4) value function w.r.t number of bombs when prob of explosion
p = 0.6



CHAPTER 3: INDEPENDENT LOCKS ALLOCATION UNDER GENERAL LBT
MODEL

3.1 Notations And Conditions

Under the setting of the general G-LBT model, when there are different kinds of

sites, locks and bombs, with possibly different values of benefits and costs for De-

fender and/or Attacker, and testing is not uniform with respect to different sites,

e.g., when defender can test only a subset of all sites, or parameters of testing a and

b depend on the site number, we can construct a posterior distribution of locks and

obtain an optimal strategy for attackers.

G-LBT model GB(n,Λ,m).

Defender: There are a total of n sites and each site has a value ci, such that

c = (c1, c2, c3, ...cn). Defenders allocate locks independently with non-identical prob-

ability for different sites, i.e. Λ = (λ1, λ2, ...λn) , where λi indicates probability of

containing a lock in the ith site, with the restriction
∑

i λi = k and 0 ≤ λi ≤ 1 for

i = 1, 2, ...n. So there are a total of κ = 2n allocations of locks. Let’s redefine locks’

allocation vector to be γ = (γ1, γ2, ...γκ).

Attacker: There are m bombs, among which u bombs are placed into sites with

u = (u1, u2, ...un), and
∑
ui = m, and each site is tested to obtain a signal vector

s = (s1, s2, ...sn), with si either be − or +.



35

Assume the sites themselves have different values (c = c1, c2, c3, ...cn) with c1 ≥

c2 ≥ c3 > ... ≥ cn. Attacker’s goal is to maximize the expected value of damage(loss).

Remark: Here we have two cases.

Case 1: Attackers know each λi, i = 1, 2, ...n.

Case 2: Attackers only know k.

Due to the complexity of this model, here we just discuss a little about Case 1 and

leave Case 2 for future work.

3.2 Parameter r in model GB(n,Λ,m)

Instead of computing r(λ), we calculate for ri(s),

ri(s) = ciP (Ti = 0|s)p, (1)

where P (Ti = 0|s) is given by a Posterior Distribution, such that P (Ti = 1|s) =∑
γi:i∈γ b(γi|s), thus P (Ti = 0|s) = 1− P (Ti = 1|s).

For attackers, when the number of bombs m = 1, for any observed signal, they can

compare the parameter r among different sites, and choose the site with highest r to

maximize expected value of the total damage.

Here we define the function for the real damage as d(x) =
∑

s p(s|x)d(s|x)), where

d(s|x) is the real damage for the optimal placement of a unique bomb given by

the maximum potential damage di(s|x) for each signal, where di(s|x) = cipP (Ti =

0|s) for i = 1, 2, ...n. p(s|x) is the total probability of the signal given by p0(s) =∑
i p(s|γi)b0(γi), x is the parameter in Λ. When n = 2, k = 1 Λ = (x, 1− x).
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Example 1. GB(2,Λ, 1), where the number of sites is n = 2, the probability of

having a lock in each site is Λ = (λ, 1− λ), and with site values c = (2, 1), a = 7/12,

b = 9/12. The probability of an explosion is p = 1 and the number of bombs is

m = 1. (This example will be compared to the dependent case model GA(n, k,m)

where k = 1).

Here is the summary of the prior probability for lock’s location (Table 1) and the

distribution of the signal vector (S) (Table 2).

Table 1: A summary of Locks’ location and prior probability for GB(n,Λ,m).

Lock’ Location (γ) Probability of γ (b0(γ))
γ1 = (0, 0) (1− λ)λ
γ2 = (0, 1) (1− λ)2

γ3 = (1, 0) λ2

γ4 = (1, 1) λ(1− λ)

Table 2: A summary of signal vector and distribution for GB(n,Λ,m).

Signal (S) p(S|γ1) p(S|γ2) p(S|γ3) p(S|γ4)
s1 = (−,−) b2 b(1− a) (1− a)b (1− a)2

s2 = (−,+) b(1− b) ab (1− a)(1− b) (1− a)a
s3 = (+,−) b(1− b) (1− a)(1− b) ab a(1− a)
s4 = (+,+) (1− b)2 a(1− b) a(1− b) a2

Signal (S) p0(S) =
∑

i p(S|γi)b0(γi)
s1 = (−,−) −(4λ− 9)(4λ+ 5)/144
s2 = (−,+) (4λ− 7)(4λ− 9)/144
s3 = (+,−) (4λ+ 3)(4λ+ 5)/144
s4 = (+,+) −(4λ+ 3)(4λ− 7)/144
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Example 1a. The GB(2,Λ, 1) model. Specially, let’s take a look at the posterior

distribution and destruction with λ = 0.7. The posterior distribution for locks is

shown in Table 3. Parameter ri(S) and real damage d(s|x), i = 1, 2 are in Table 4.

When λ = 0.7, destruction d = d1 + d2 = 0.788.

If attacker sees signal vector s1 or s2, she should choose site 1 to place a bomb.

Table 3: A summary of signal and Posterior Distribution when λ = 0.7.

Lock (γ) Signal (S) b(γi|S) = p(S|γi)b0(γi)/p0(S)
γ1 = (0, 0) s1 = (−,−) −81λ(1− λ)/((4λ− 9)(4λ+ 5)) = 0.352

s2 = (−,+) 27λ(1− λ)/((4λ− 7)(4λ− 9)) = 0.218
s3 = (+,−) 27λ(1− λ)/((4λ+ 3)(4λ+ 5)) = 0.125
s4 = (+,+) −9λ(1− λ)/((4λ+ 3)(4λ− 7)) = 0.078

γ2 = (0, 1) s1 = (−,−) −45(1− λ)2/((4λ− 9)(4λ+ 5)) = 0.084
s2 = (−,+) 63(1− λ)2/((4λ− 7)(4λ− 9)) = 0.218
s3 = (+,−) 15(1− λ)2/((4λ+ 3)(4λ+ 5)) = 0.03
s4 = (+,+) −21(1− λ)2/((4λ+ 3)(4λ− 7)) = 0.078

γ3 = (1, 0) s1 = (−,−) −45λ2/((4λ− 9)(4λ+ 5)) = 0.456
s2 = (−,+) 15λ2/((4λ− 7)(4λ− 9)) = 0.282
s3 = (+,−) 63λ2/((4λ+ 3)(4λ+ 5)) = 0.682
s4 = (+,+) −21λ2/((4λ+ 3)(4λ− 7)) = 0.422

γ4 = (1, 1) s1 = (−,−) −25λ(1− λ)/((4λ− 9)(4λ+ 5)) = 0.109
s2 = (−,+) 35λ(1− λ)/((4λ− 7)(4λ− 9)) = 0.282
s3 = (+,−) 35λ(1− λ)/((4λ+ 3)(4λ+ 5)) = 0.162
s4 = (+,+) −49λ(1− λ)/((4λ+ 3)(4λ− 7)) = 0.422

Table 4: A summary of destruction.
Notice: Site 1 has larger r for signal s1 and s2 and site 2 has larger r for signal s3 and
s4.

site Signal (S) ri(S) = ciP (Ti = 0|S)p d(s|λ = 0.7)
1 s1 = (−,−) 2(b(γ1|s1) + b(γ2|s1)) = 0.871 2b0(γ1)(p(s1|γ1) + p(s2|γ1))

s2 = (−,+) 0.871 +2b0(γ2)(p(s1|γ2) + p(s2|γ2)))
s3 = (+,−) 0.31 = 0.45
s4 = (+,+) 0.31

2 s1 = (−,−) (b(γ1|s1) + b(γ3|s1)) = 0.808 b0(γ1)(p(s3|γ1) + p(s4|γ1))
s2 = (−,+) 0.5 +b0(γ3)(p(s3|γ3) + p(s4|γ3)))
s3 = (+,−) 0.808 = 0.338
s4 = (+,+) 0.5
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Example 1b. We contrast this to the dependent case GA(n = 2, k = 1,m = 1),

with valued site c = (2, 1), a = 7/12, b = 9/12 and the probability of allocating the

lock in site 1 is λ, the probability of allocating the lock in site 2 is 1− λ.

Let’s take a look at the cooresponding posterior distribution and parameter r for

λ = 0.7. We have destruction d = d1 + d2 = 0.8896.

When attacker sees signal vector s2, she should place the bomb in site 1, otherwise

site 2. See table 8

Table 5: A summary of Locks’ location and prior probability for GA(n, k,m).

Lock’ Location (γ) Probability of γ (b0(γ))
γ1 = (1, 0) λ
γ2 = (0, 1) 1− λ

Table 6: A summary of signal vector and distribution for GA(n, k,m).

Signal (S) p(S|γ1) p(S|γ2) p0(S) =
∑

i p(S|γi)b0(γi)
s1 = (−,−) b(1− a) b(1− a) 45/144
s2 = (−,+) (1− a)(1− b) ab (63− 48λ)/144
s3 = (+,−) ab (1− a)(1− b) (15 + 48λ)/144
s4 = (+,+) a(1− b) a(1− b) 21/144
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Table 7: A summary of signal and Posterior Distribution when λ = 0.7.

Lock (γ) Signal (S) b(γi|S) = p(S|γi)b0(γi)/p0(S)
γ1 = (1, 0) s1 = (−,−) λ = 0.7

s2 = (−,+) 15λ/(63− 48λ) = 0.357
s3 = (+,−) 63λ/(63λ+ 15(1− λ)) = 0.907
s4 = (+,+) λ = 0.7

γ2 = (0, 1) s1 = (−,−) 1− λ = 0.3
s2 = (−,+) 63(1− λ)/(63− 48λ) = 0.643
s3 = (+,−) (15 + 48λ) = 0.093
s4 = (+,+) 1− λ = 0.3

Table 8: A summary of destruction.
Notice: Site 1 has larger r for signal s2 and site 2 has larger r for signal s1,s3 and s4.

site Signal (S) ri(S) = ciP (Ti = 0|S)p d(s|λ = 0.7)
1 s1 = (−,−) 2b(γ2|s1) = 0.6

s2 = (−,+) 1.286 2b0(γ2)p(s2|γ2)
s3 = (+,−) 0.185 = 0.2625
s4 = (+,+) 0.6

2 s1 = (−,−) b(γ1|s1) = 0.7
s2 = (−,+) 0.357 b0(γ1)(p(s1|γ1) + p(s3|γ1) + p(s4|γ1))
s3 = (+,−) 0.907 = 0.627
s4 = (+,+) 0.7
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Example 2. GB(n,Λ,m), assuming n = 3, c = (7, 5, 3), Λ = (0.2, 0.1, 0.7),

a = 7/12, b = 9/12, probability of explosion p = 0.8 and let parameter k here be 1.

When S = {−,−,+}, m = 1, from Table 9, Attacker should place a bomb to site 1.

Table 9: A summary of destruction.
Notice: When S = s5 = {−,−,+}, site 1 has larger r (which is r = 9.926) than site
2 (which is r = 7.605) and site 3 (which is r = 0.752).

site Signal (S) ri(S) = ciP (Ti = 0|S)p d(s|Λ) = ciP (Ti = 0|s)p
1 s1 = (−,−,−) 4.917 d1 = 3.677

s2 = (+,−,−) 1.752
s3 = (−,+,−) 4.917
s4 = (+,+,−) 1.752
s5 = (−,−,+) 9.926
s6 = (+,−,+) 3.537
s7 = (−,+,+) 9.926
s8 = (+,+,+) 3.537

2 s1 = (−,−,−) 3.767 d2 = 0.855
s2 = (+,−,−) 1.866
s3 = (−,+,−) 3.176
s4 = (+,+,−) 1.574
s5 = (−,−,+) 7.605
s6 = (+,−,+) 3.767
s7 = (−,+,+) 6.412
s8 = (+,+,+) 3.176

3 s1 = (−,−,−) 1.045 d3 = 0
s2 = (+,−,−) 0.518
s3 = (−,+,−) 1.045
s4 = (+,+,−) 0.518
s5 = (−,−,+) 0.752
s6 = (+,−,+) 0.372
s7 = (−,+,+) 0.752
s8 = (+,+,+) 0.372



CHAPTER 4: NASH EQUILIBRIUM POINTS

In game theory, the Nash equilibrium, named after the mathematician John Forbes

Nash Jr., is a proposed solution of a non-cooperative game involving two or more

players in which each player is assumed to know the equilibrium strategies of the

other players, and no player has anything to gain by changing only their own strategy.

It is a concept within game theory where the optimal outcome of a game is where

there is no incentive to deviate from their initial strategy. More specifically, the Nash

equilibrium is a concept of game theory where the optimal outcome of a game is one

where no player has an incentive to deviate from his chosen strategy after considering

an opponent’s choice. Overall, an individual can receive no incremental benefit from

changing actions, assuming other players remain constant in their strategies. A game

may have multiple Nash Equilibria or none at all.

In our case, even when Attackers have already selected the optimal strategy of

bombs placement for any signal received, Defenders can still minimize their potential

loss by choosing an optimal strategy of locks allocation

This is the case of Nash Equilibrium
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4.1 Notations And Conditions

Under the setting of General G-LBT model when there are different kinds of sites,

locks and bombs, with possibly different values of benefits and costs for Defender

and/or Attacker, and testing is not uniform with respect to different sites, e.g., when

Defender can test only a subset of all sites, or parameters of testing a and b depend

on the site number, we can construct posterior distribution of locks and obtain an

optimal strategy for attackers.

G-LBT model GB(n,Λ,m):

Defender: There is a total of n sites and each site has a value ci, with c =

(c1, c2, c3, ...cn). Defenders allocate locks independently with non-identical probability

in different sites, i.e. Λ = (λ1, λ2, ...λn) , where λi indicates the probability of con-

taining a lock in ith site, with restriction
∑

i λi = k and 0 ≤ λi ≤ 1 for i = 1, 2, ...n.

So there is a total of κ = 2n allocations of locks. Let’s redefine locks’ allocation vector

to be γ = (γ1, γ2, ...γκ).

Attacker: There are m bombs, among which u bombs are placed into sites with

u = (u1, u2, ...un), and
∑
ui = m, and each site is tested to obtain a signal vector

s = (s1, s2, ...sn), with si either be − or +.

Assume the sites themselves have different values (c = (c1, c2, c3, ...cn)), i.e. c1 ≥ c2 ≥

c3 ≥ ... ≥ cn. Attacker’s goal is to maximize expected value of damage (loss).
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4.2 Nash Equilibrium Point for the GB(n,Λ,m) model

Parameter k can be fixed or random. Fixed k is used when we have the dependent

model GA(n, k,m), and the strategy of how to allocate locks is defined by a probability

vector X = (x1, x2, ..., xk). In our paper, the parameter k; k < n, is random, then

the strategy of the Defender is a probability distribution b(γ) on a set of all possible

positions of locks. To be noticed, in general LBT model, calculation would much easier

to analyze with lock’s allocation vector for all sites rather than a single site. Since

there are n sites in total, and each position can either have a lock or not, so there is a

total of κ = 2n allocations of locks, thus locks’ allocation vector is γ = (γ1, γ2, ...γκ).

In our Bayesian setting we assume that this prior distribution b(γ) is known to the

attacker, though, of course, the real positions of the locks are not. After the locks are

allocated, Attacker receives signal s and, having m bombs, distributes them among n

sites deterministically or using some randomization trying to maximize the expected

sum of values of all destroyed sites. Without loss of generality, we can assume that

this distribution is deterministic and the optimal strategy of the attacker is π(m|b(γ)),

with respect to a strategy of the defender, b(γ), is a collection of her optimal responses

u(s|m, b(γ)) = u(s) = (u1(s), u2(s), ...un(s)) to each signal s, where ui(s) is the num-

ber of bombs placed into site i; i = 1, 2, ...n. Using the prior distribution b(γ), the

probabilities of signals p(s), given this distribution, the posterior distribution of the

positions of locks b(γ|s) and the total expected damage (loss), L(b(γ), π(m|b(γ)) can

be calculated. The goal of Defender is to select a prior distribution of locks b∗(γ)

to minimize this loss. Then the pair (b∗(γ), π∗), where π∗ is an optimal response of
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Attacker to strategy b∗(γ) forms a classical Nash equilibrium (NE) point. The corre-

sponding value of the game is v∗ = L(b∗(γ), π∗). As we will see, though the b∗(γ)’s

are not unique, they all have common properties that result in a unique (up to some

randomization) Attacker’s strategy π∗, and thus a specific value of v∗.

We denote by GB = GB(n,Λ,m|a, b, c) this general Bayesian game, where n is the

number of sites, n dimensional vectors a and b represent the quality of testing, (the

sensitivities and the specificities), and vector c = (c1, ..., cn) describes the values of

each site.

With only one available bomb, m = 1, Attacker will place it into the next valuable

site, and if m > 1 she should solve the problem of discrete optimization by placing

the next available bomb into the site with the maximal marginal utility.

The other extreme situation is when testing is not informative, i.e., when ai = bi =

1/2; i = 1, 2, ..., n, and then the posterior distribution b(γ|s) coincides with the prior

distribution b(γ) for all signals s. Given the prior distribution b(γ), let us introduce

the probability αi = P (Ti = 0).

For model GB(n = 2,Λ,m = 1), assume p = 1 and valued sites has value c = (c, 1),

Λ = (λ, 1 − λ). At first glance, it seems that if c is much larger than 1, defender

should place a unique lock into the most valuable site and then her loss is 1. But

simple calculations show that the optimal distribution of locks is Λ = ( c
c+1

, 1
c+1

) and

v = c
c+1

< 1. Attacker can place her unique bomb into any site or place it at random.

Similarly, for the game GB(n = 3,Λ,m = 1) with vector of values c = (4, 3, 2), and

Λ = (λ1, λ2, 1 − λ1 − λ2). We obtain that the optimal distribution of a unique lock

is given by Λ = (7/13, 5/13, 1/13) and α = (6/13, 8/13, 12/13), ci ∗ αi = v∗ = 24/13
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for i = 1, 2, 3. But if the vector of values is c = (4, 3, 1), then Λ = (4/7, 3/7, 0) and

α = (3/7, 4/7, 1), ci ∗ αi = v∗ = 12/7 for i = 1, 2, 3.

Theorem 6. (Non-Informative Case). For m = 1; c = (c1, c2, c3, ...cn) with

c1 ≥ c2 ≥ c3 ≥ ... ≥ cn,

a) The class of optimal strategies Λ has the following structure; there exists k∗1, k∗2,

0 ≤ k∗1 ≤ k ≤ k∗2 ≤ n and constant v∗ = v(c) such that: ciαi = v∗ for k∗1 ≤ i ≤ k∗2,

and v∗ > ci; αi = 0 for 0 ≤ i < k∗1; αi = 1 for k∗2 < i ≤ n. This relationship is

represented as follows:



αi = 0 if i < k∗1

ciαi = v∗ if k∗1 ≤ i ≤ k∗2

αi = 1 if i > k∗2

b) The optimal strategy for attacker is to place a bomb at random among the sites

with numbers k∗1, ...k∗2.

c) The value of the game is v∗ = (n − k)/C1k∗1 , where k∗1 = max{j : j ≤ k, cj >

(n− k)/C1j} and C1j =
∑n

i=j 1/ci.

d) The value of the game is v∗ = (k∗2 − k)/C2k∗2 , where k∗2 = max{j : j ≥ k, cj >

(j − k)/C2j} and C2j =
∑j

i=1 1/ci.
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Proof. of Theorem 6(c). When k∗1 ≤ i ≤ k∗2, we have ciαi = v∗ for i = k∗1, ...k∗2.

When i < k∗1, we have αi = 0.

Hence, in general, we have

E(
n∑

i=k∗1

1(Ti=1)) =
n∑

i=k∗1

(1− αi) = k − k∗1 + 1

n− k∗1 + 1−
n∑

i=k∗1

v∗
ci

= k − k∗1 + 1

Let C∗1 =
n∑

i=k∗1

1

ci

Thus v∗ =
n− k
C∗1

Hence, when i = k∗1, ...k∗2, αi = v∗
ci
< 1

Thus, we have n−k
C∗1ci

< 1, or, ci >
n−k
C∗1

.

So k∗1 = max{j : j ≤ k, cj > (n− k)/C1j}.

Proof. of Theorem 6(d). When k∗1 ≤ i ≤ k∗2, we have ciαi = v∗ for i = 1, 2, ...k∗2.

When k∗2 < i ≤ n, we have αi = 1.

Hence, in general, we have

E(

k∗2∑
i=1

1(Ti=0)) =

k∗2∑
i=1

αi = k∗2 − k

k∗2∑
i=1

v∗
vi

= k∗2 − k

Let C∗2 =

k∗2∑
i=1

1

ci

Thus v∗ =
k∗2 − k
C∗2
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Hence, when i = 1, 2, ...k∗2, αi = v∗
ci
< 1

Thus, we have k∗2−k
C∗2ci

< 1, or, ci >
k∗2−k
C∗

.

So k∗2 = max{j : j ≥ k, cj > (j − k)/C2j}.

In other words, if k∗ < n, then the sites with numbers greater than k∗ should not

be protected at all and the distribution of k locks in the first k∗ sites should make

all sites equally desirable for attack. In layman terms, if the strength of a chain is

defined by the strength of the weakest link, and the resources to make links strong

are limited, then make all links of equal strength. This is a special case of a more

general ”Chain-Link Optimization Principle”.

Note also that for any vector of values c, the number k < k∗, the optimal strategy

b∗(γ) is always randomized and value v∗ > ck∗+1. As a result, the attacker will allo-

cate her m bombs among the first k∗ sites if m ≤ k∗.

Of course, the main interest in the Bayesian LBT game problem is the case of im-

perfect but informative testing. For simplicity we will assume that this means that

ai > 1/2, bi > 1/2, i = 1, 2, ...n, though in the general case this property should be

described using vectors a and b. To obtain the description of NE points, we have to

solve three problems.

The first problem, is, given a strategy of defender, b(γ), describe the optimal strat-

egy (response) of attacker, π(m|b(γ)), i.e., describe the optimal allocation of bombs

u(s|m) given signal s and m available bombs. The full answer to this problem is given

by a recursive procedure S described. The expected value of damage (loss) for the

pair of strategies (b(γ), π(m|b(γ))) can also be obtained.
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The second (more difficult) problem is to find the optimal strategy or strategies,

b∗(γ), of the defender, minimizing this loss. So far, the proof of corresponding The-

orem 2 is not 100% complete but its heuristic meaning is similar to the meaning of

Theorem 1: These strategies have to make the potential expected losses in the sites,

that are worth protecting, equal when attacker applies her optimal response to b∗(γ).

The difficulty here lies in the fact that in the informative case the optimal response

depends on signal s. Given a strategy of the defender, b(γ), let us denote by Li(m)

the expected loss at site i when the attacker applies her optimal strategy given signal

s, p(s) the probability of signal s and Li(m) =
∑

s p(s)Li(s|m) the corresponding

expected loss.

Theorem 7. (Informative Case) Given m = 1, 2, ..., the class of optimal strategies

b∗(γ|m) can be obtained using the Principle of Indifference, that takes the following

specific form: the values of Li(m) = v∗ must be equal for all i = 1, 2, ..., k∗(m), where

k∗(m), k < k∗(m) ≤ n, is the number of sites worth protecting, and v∗ id the value of

the game.

The difficulty in applying Theorem 7 lies in the fact that in informative case the

optimal response depends on signal s and calculation of Li(m) is nontrivial. In the

next section we provide an example of an application of Theorem 3 to find the optimal

strategy.
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The third problem to be solved is to obtain the full description of all NE points,

i.e. to describe all b∗(γ) delivering the equality of Li(m) in Theorem 2.

Remark 1. The description of b∗(γ) is based on the following interesting property of

a general game: to obtain the optimal response of attacker given any b(γ) and signal

s, i.e. to use procedure R, the attacker needs to know only the marginal probabilities

αi(s) for all s, but the defender, trying to obtain b∗(γ), needs to know v(m), and to

calculate the total expected loss, she needs to have p(s) based on the whole distribu-

tion b(γ). There is the simple example that shows that two distinct b(γ) can have the

same probabilities αi(s). Thus, one of a side problems is to obtain the description of

all b(γ) having the same probabilities αi(s).

Remark 2. The statements and interpretation of Theorems 1 and 2 can be expressed

also using the concepts of information and entropy. Loosely speaking, the optimal de-

fender’s strategy is to create the situation for attacker with maximal possible entropy.
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Example 1. Informative Case: for GB(2,Λ, 1), where Λ = (λ, 1 − λ) with

valued site c = (2, 1), a = 7/12, b = 9/12. (This example will be compared to

the dependent case model GA(n, k,m) where k = 1). From (Figure 18), we find at

λ = 0.72, destruction will be minimized with d = 0.7728.

Figure 18: Destruction and threshold for GB(n,Λ,m)
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For the dependent model GA(n, k,m) with n = 2, k = 1, m = 1 and with valued

site c = (2, 1), a = 7/12, b = 9/12 and the probability of allocating the lock in site

1 is λ, the probability of allocating the lock in site 2 is 1 − λ. From Figure (19)

destruction is minimized at λ = 0.67 with value d = 0.89.

Figure 19: Destruction and threshold for GA(n, k,m)



52

Example 2. Non-informative Case: GB(2,Λ, 1), where Λ = (λ, 1 − λ) with

valued site c = (2, 1), a = 1/2, b = 1/2. (This example will be compared to the de-

pendent case GA(n, k,m) where k = 1). See figure (20), the destruction is minimized

at λ = 2/3 = 0.67.

Figure 20: Destruction and Threshold for non-inform-general case in model
GB(2,Λ, 1)
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For the dependent case GA(2, 1, 1), we have the same conclusion as above with the

destruction minimized at λ = 2/3 = 0.67.

Figure 21: Destruction and Threshold for non-inform-general case in modelGA(2, 1, 1)
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Example 3. Non-informative Case: GB(3,Λ, 1), where Λ = (λ1, λ2, 1−λ1−λ2)

with valued site c = (4, 3, 1), a = 1/2, b = 1/2. Here parameter k = 1.

From theorem, we get k∗1 = 1 and k∗2 = 2. α = (3/7, 4/7, 1).

See figure (22) and (23), and destruction is minimized at Λ = (4/7, 3/7, 0) = (0.57, 0.43, 0)

with value v∗ = 12/7 = 1.72.

Figure 22: r and destruction for signals in each site
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Figure 23: graph for destruction on different lambdas
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Non-informative Case: for GA(n = 3, k = 1,m = 1), with valued site c =

(4, 3, 1), a = 1/2, b = 1/2. Here parameter k = 1.

From theorem, we get k∗ = 2 and α = (3/7, 4/7, 1).

It is easy to obtain that the optimal distribution of a unique lock is given by b(γ) =

(4
7
, 3
7
, 0) with value v∗ = 12/7.

Thus, under optimal strategy of defender site 3 is not protected at all.

Locks’ allocation vector(γ) b(γ)

(1, 0, 0) 4/7

(0, 1, 0) 3/7

(0, 0, 1) 0
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Example 4. Non-informative Case: GB(n = 3,Λ,m = 1), where Λ =

(λ1, λ2, 2 − λ1 − λ2) with valued site c = (4, 3, 1), a = 1/2, b = 1/2. Here pa-

rameter k = 2.

From theorem, we get k∗1 = 2 and k∗2 = 3. α = (0, 1/4, 3/4).

Thus the destruction is minimized at Λ = (1, 3/4, 1/4) with value v∗ = 3/4.

Non-informative Case: for GA(n = 3, k = 2,m = 1), with valued site c =

(4, 3, 1), a = 1/2, b = 1/2. Here parameter k = 2.

From theorem, we get k∗ = 3 and α = (3/19, 4/19, 12/19)

It is easy to obtain that the optimal distribution of two locks is given by b(γ) =

(3/19, 4/19, 12/19) with value v∗ = 12/19.

Locks’ allocation vector(γ) b(γ)

(0, 1, 1) 3/19

(1, 0, 1) 4/19

(1, 1, 0) 12/19



CHAPTER 5: CONCLUSION AND FUTURE WORK

In Chapter 3, we developed General LBT model (G-LBT) under special condition

of valued site and nonidentical probability of locks allocation when number of bombs

is 1. In the future, we can also extend this model to a more general condition where

number of bombs could be a nonnegative continuous variable.Similarly, we can convert

integer locks to a continuous protection resource.

Moreover, G-LBT model could tolerate different kinds of bombs and locks, i.e.

different kinds of bombs and locks have different kinds of power. Testing is not

uniform with respect to different sites, in this case, Defender can test only a subset

of all sites, or parameters of testing a and b depend on the site number.
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