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ABSTRACT 

SETAREH TORABZADEH. Stochastic and fuzzy flexible aggregate production 

planning to manage plan stability. (Under the direction of Dr. E. C. OZELKAN) 
 

 

Aggregate production planning generally deals with configuration of an aggregate 

plan in advance of 6 to 18 periods (e.g. months) to give the organizations an idea about the 

amount of invested money, utilized capacity, required inventory and any other procurement 

activities need to be done before the actual times arrives. Inherent uncertainties faced by 

the planners (caused by unreliable estimates of demand, cost or production processes) 

could make the production planning a challenging task. That is, the production planners 

not only have to deal with the available parameters’ uncertainties (Demand, cost, etc.), but 

also, new information which become available with the pass of time, sometimes requires 

several re-planning activities for the future periods. Stochastic and Fuzzy planning are 

among the popular techniques to deal with the uncertainties in optimization models. While 

the stochastic/fuzzy programming techniques provide a more realistic representation of 

future estimations, the production plans need to be also revised from one planning period 

to another as time rolls and new information become available (a.k.a. rolling horizon 

planning). However, frequent re-planning activities and changes in the production plans 

could result in a state of plan instability causing plan related “nervousness” in 

manufacturing firms, which could undermine manager’s confidence in the system, 

depriving it of the support needed for successful operations. It could also result in 

disruptions in the production and delivery systems, which could result in inaccurate 

personnel scheduling, machine loading, and unnecessary supplier orders (Pujawan and 

control 2004).  
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Frozen horizon along with other solution approaches attempt to provide insights on 

how to mitigate nervousness, however, most of the existing approaches do not consider the 

flexibility aspect in production plans. Flexible Requirements Profile (FRP) and bi-

objective optimization are alternative stabilizing approaches which are the focus of this 

research. In FRP, flexible bounds are enforced on production plans to maintain the desired 

degree of flexibility. Instead of 0% flexibility in the case of a frozen period or 100% 

flexibility in the case of plan to order, FRP model considers different flexibility levels. For 

the bi-objective optimization approach, the production planning problem can also be 

formulated with two objectives, where one trades-off between the traditional cost objective 

and the plan stability objective. 

The aim of this research is to address several flexible production planning related 

open research questions. While deterministic FRP-APP and Bi-Objective APP models 

have been developed (Demirel 2014) and compared to a traditional deterministic APP 

model,  

1) the deterministic FRP-APP and Bi-objective APP models have not been 

compared with APP techniques such as Stochastic APP and Fuzzy APP models that are 

meant to handle uncertainties, and 

2) there has not been an attempt to develop Stochastic and Fuzzy FRP-APP and 

Stochastic and Fuzzy Bi-Objective APP models to deal with planning system uncertainties 

and   

3) also, while FRP-APP was tested with two industry-based case studies and Bi-

Objective APP was tested on one industry-based case study, more validation is needed 
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under different industrial scenarios to conclude about the performance of the FRP-based 

models.  

Therefore, our main research objectives here are:  

1) to compare FRP-APP with Stochastic and Fuzzy APP in terms of both plan cost 

and stability,  

2) to develop and compare new “hybrid” Stochastic and Fuzzy FRP-APP models 

to combine the strengths of stochastic and fuzzy models, which represent input 

uncertainties more realistically, and FRP models that have better control over plan 

variability, 

3) to develop and compare new Stochastic and Fuzzy Bi-objective APP models as 

alternate techniques to trade off the traditional cost objective with the stability objective 

formally following a multi-objective decision making framework, and  

4) to conduct extensive testing of the proposed FRP-based and Bi-objective models 

under various industry scenarios. 

Since there are multiple ways to approach stochastic and fuzzy production planning 

models, for both Stochastic and Fuzzy FRP-APP as well as the Bi-objective Stochastic and 

Fuzzy APP models that are developed here, we used four of the well-known techniques 

(two on the stochastic and two on the fuzzy programming) to  analyze the effect of specific 

stochastic and fuzzy approaches on the model performance. More specifically, for the 

stochastic models, we utilized the Chance-Constraint (CC) and Robust-Stochastic (RS) 

approaches and for the fuzzy models, we utilized Fuzzy Max-Min (MM) and Fuzzy 

Ranking (R) approaches. Hence, we will propose in this dissertation eight new APP 

models, namely: Stochastic CC-FRP-APP, Stochastic RS-FRP-APP, Stochastic CC-BO-
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APP, Stochastic RS-BO-APP, Fuzzy MM-FRP-APP, Fuzzy R-FRP-APP, Fuzzy MM-BO-

APP, and Fuzzy R-BO-APP. For each of these models, the effect of industry cost structure, 

demand structure, flexible limits, and the modeling approaches are analyzed using a 

comprehensive design of experiments analysis to identify influential factors on plan cost 

and stability. 

The results indicate that, for most of the industries tested, the Fuzzy FRP-APP 

models improve on stability while yielding close cost performance as compared to the 

Fuzzy APP models. Fuzzy FRP-APP and (non-fuzzy) FRP-APP models show similar 

performances especially when the Fuzzy R-FRP-APP formulation is used. It is found that 

lower levels of flexibility limits control stability better as expected, but in general 

depending on the industry setting and the demand scenario, the cost and stability of the 

FRP-based models need to be carefully analyzed to choose an ideal flex-limit for practical 

applications.  

The results for the stochastic case show that when Stochastic APP is compared 

with the FRP-APP, a scenario-based modeling could adversely affect its stability 

performance. While maintaining the same cost preference as compared to the FRP-APP, 

the CC-APP, shows more control on the stability of the plans compared to the FRP-APP. 

The incorporation of the stochastic uncertainty into the FRP-APP formulation, however, 

can retrieve its better stability performance with improved cost performance as compared 

to its Stochastic APP counterpart. As a result, Stochastic FRP-APP can be considered as a 

reliable planning approach to take care of input uncertainty and stability issues at the same 

time. The stability improvements are more visible using Stochastic RS-FRP-APP with 

more strict flex-limits. Similar to the fuzzy models, for the stochastic case, a careful 
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selection of flex-limits can further highlight the comparative stability improvement of the 

Stochastic FRP-APP models as compared to the Stochastic APP planning formulations. 

The Bi-objective Stochastic/Fuzzy APP model results indicate that defining the 

stability as a second objective in the Fuzzy/Stochastic APP formulation could result in 

more stable plans. In addition, the general observation from different Industry Cases 

indicates the cost and stability tradeoff performance of the Fuzzy Bi-objective APP are 

more promising as compared to the Fuzzy FRP-APP, while under stochastic formulations, 

the Stochastic Bi-objective APP and the Stochastic FRP-APP show more competitive cost 

and stability performances. This emphasizes the importance of a more careful selection of 

the specific stochastic/fuzzy technique (i.e. CC vs. RS / MM vs. R) and the weights for the 

cost and stability objectives in the Bi-objective APP formulation.  

The overall results indicate that the proposed Stochastic and Fuzzy FRP-APP and 

the Stochastic and Fuzzy Bi-objective APP techniques show good potential in terms of 

stability and cost performance. They also provide more control to a planner to manage plan 

stability concerns, while representing input data uncertainties more realistically at the same 

time. For a given industry, these planning techniques require sensitivity analysis with 

respect to the flexibility limits and objective weight selection, depending on the technique 

deployed.  
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 INTRODUCTION 

1.1 Introduction 

A supply chain consists of different players, including suppliers, manufacturers, 

distribution centers, and the retailers (customers). Since each of these players follow their own 

objectives, depending on the focal player, the optimization of the supply chain planning problems 

may have to deal with various (often conflicting) objectives. As an example, while manufacturers 

would like to have a steady production rate and manage what they produce in an efficient way, the 

retailers would want to focus on the market demand changes to be responsive to the market as 

much as possible. Hence due to uncertainties in end customers demand, the retailers may not be 

eager to purchase large quantities, as they would prefer to place purchase orders as needed 

following the market changes. As the demand is the main uncertainty factor in today’s business 

worlds (which could be affected by multiple factors such as the uncertainty of the cost, seasonality 

of the sales, forecasting errors, new market knowledge, making-up damaged shipments), 

developing aggregate production plans could become a challenging task and the manufacturers 

could be seriously affected due to frequent production plan updates which could lead to a state of 

confusion, unresponsiveness, or higher inventory levels and costs.  This phenomenon is called 

“nervousness”, or lack of planning stability, and increases the frequency of re-planning activities, 

which induces further uncertainty into the production plan (Kimms 1998). Manufacturers directly 

responding to the customers are only as flexible as their supply system allows, and as a result, 

planning stability becomes more important due to the impact of the plan changes on the supply 

chain (Meixell 2005). As a result, having an efficient approach for handling the nervousness would 

not only help the manufacturers to deal with the demand uncertainties better, but also it would help 
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them (manufacturers) to maintain a more stable collaboration with their suppliers, which could 

consequently help minimizing the adverse effects of uncertainties throughout the supply chain.  

One approach to deal with “Nervousness” or “Plan Stability issue” is freezing the master 

production schedule (MPS) in which no production changes are allowed for a number of periods. 

Such an approach can result in inventory pileups or even allow shortages and reflect negatively on 

the manufacturer’s responsiveness and future customer service image (Zhao and Lee 1993). In 

addition, freezing schedules is undesirable to many manufacturers as it holds back meaningful 

information about demand patterns that should be made known to the supply network (Meixell 

2005). This strategy could be improved by establishing some limits to the amount of changes to 

the MPS.  

In this research, we investigate another nervousness mitigation technique, named “Flexible 

Requirements Profile (FRP)” by enforcing flexible bounds to the production plans to make sure 

the production levels would be between dynamically calculated lower and upper bounds during 

each planning period. In other words, as time rolls to the next planning period, the bounds are 

dynamically updated due to more visibility to the demand and based on the previous plan. The 

utilization of this technique in form of an optimization model was first proposed in Demirel (2014) 

for an aggregate production planning problem. The results show the FRP-based models may result 

in much more stable production plans with comparable cost values. Demirel (2014) also developed 

the Bi-objective APP formulation to further analyze the effect of FRP-based Bi-objective 

formulation on the improvement of the stability. Their overall results show that the proposed Bi-

objective APP model is an effective alternate to analyze the trade-off between cost and stability 

objectives simultaneously and reduce the nervousness in an organization. 
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While the deterministic FRP-APP and Bi-Objective APP enable planners to protect their 

developed plans from instability due to new information and uncertainties during re-planning, one 

alternative approach would be using uncertainty modeling approaches to develop APP plans. This 

would enable a planner to consider for example different demand uncertainty scenarios more 

realistically ahead of time. Furthermore, it would be interesting for a planner to develop techniques 

that can model uncertainty more precisely and handle stability concerns at the same time. 

Consequently, a more realistic representation of the system uncertainties in the planning model 

may also affect stability and cost of the production plans.   

Two of the well-known uncertainty programming techniques include the Stochastic and 

Fuzzy programming. Stochastic programming enables planners to incorporate randomness of 

some input parameters into the planning problem where availability of historical data can help 

determine the random parameters’ distribution functions. The stochastic programming 

formulations could typically be presented in the form of distribution-based problems, such as 

Chance-Constraint (CC) programming (Borodin, Dolgui et al. 2016, Moshtagh and Taleizadeh 

2017) or the Scenario-based formulations, such as: Stage-based (Santoso, Ahmed et al. 2005, 

Kazemi Zanjani, Nourelfath et al. 2010) or the Robust-Stochastic (RS) (Pan and Nagi 2010, 

Mirzapour Al-e-Hashem, Baboli et al. 2013) models. As we will further discuss in the literature 

review and respective modeling chapters, we will utilize the Stochastic CC and RS techniques to 

incorporate randomness into the APP models.  

Fuzzy programming considers ambiguity of the input data and uses linear functions (to 

obtain linear programs) to define membership function for the fuzzy objective function and/or the 

fuzzy constraints and later use related methods to linearize and solve the related mathematical 

programming problem. Some of the popular fuzzy programming techniques include: Fuzzy Max-
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Min (MM) (Baykasoğlu and Göçken 2006, Liang 2008), Ranking (R) (Jiménez, Arenas et al. 2007, 

Baykasoglu and Gocken 2010), Possibilistic Linear Programming (PLP) (Wang and Liang 2005), 

or a combination of these techniques (Torabi and Hassini 2008, Torabi, Ebadian et al. 2010). 

Again, we will utilize the Fuzzy MM and R techniques to incorporate randomness into the APP 

models as will be discussed in detail subsequent chapters. 

Due to the different approaches in the “stability optimized” flexible APP modeling (FRP 

and Bi-Objective) planning and the uncertainty modeling (Stochastic and Fuzzy), it is worth 

developing “hybrid” new techniques such as Stochastic/Fuzzy FRP-APP and Stochastic/Fuzzy Bi-

Objective APP models. Accordingly, in this research, we would like to further investigate the 

following main research questions: 

1. How does (deterministic) FRP-based planning models compare to Stochastic-APP and 

Fuzzy-APP in terms of stability and cost? 

2. Can the incorporation of FRP into uncertainty modeling techniques (such as stochastic 

and fuzzy programming) help the production planning performance in terms of cost 

and stability? 

3. How does the cost and stability performance of the Stochastic/Fuzzy APP formulation 

changes if in addition to the cost minimization, stability is also officially considered as 

a second objective in its formulation? 

4. How do the FRP-based and Bi-objective APP models performance change for different 

industries? 

1.2 Summary of Expected Research Contributions 

The research contributions can be summarized as follows: 
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Contribution 1: Comparison of the FRP-APP model with the Stochastic APP and Fuzzy 

APP models in terms of plan cost and stability. 

Justification: Although the FRP-APP model has been already developed by Demirel 

(2014) to deal with the effect of the demand variation on plan stability in a rolling horizon 

framework, its performance has not been compared to the APP models that are meant to deal with 

demand uncertainty.  

Contribution 2: Developing new Stochastic FRP-APP models and comparing its 

performance with other models in terms of cost and stability. 

Justification: While Stochastic APP models exist, there is no Stochastic APP or other 

stochastic planning models that incorporate FRP. The new Stochastic FRP-APP models will not 

only provide a more realistic representation of demand uncertainty, it will also provide the planner 

with a mechanism to consider plan stability and plan cost at the same time. 

Contribution 3: Developing new Fuzzy FRP-APP models and comparing its performance 

with other models in terms of cost and stability. 

Justification: The justification is similar to the justification of Contribution 2 above. 

Again, while Fuzzy APP models exist, there is no Fuzzy APP or other fuzzy planning models that 

incorporate FRP. The new Fuzzy FRP-APP models will not only provide a more realistic 

representation of demand uncertainty, but it will also provide the planner with a mechanism to 

consider plan stability and plan cost at the same time. 

Contribution 4: Developing a Fuzzy Bi-Objective APP model. 

Justification: An alternate to FRP is consideration of stability as a second objective in the 

APP model in addition to the traditional cost objective. This would result in a bi-objective 

optimization problem where the planner would trade-off cost and stability. While Bi-objective 
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APP model was developed by Demirel (2014), a Fuzzy Bi-Objective APP model does not exist in 

the literature. 

Contribution 5: Developing a Stochastic Bi-Objective APP model. 

Justification: The justification is similar to the one for Contribution 4. A Stochastic Bi-

Objective APP model does not exist in the literature. 

Contribution 6: Validation of FRP-based and Bi-objective APP models’ performance 

across various industry scenarios. 

Justification: While FRP APP and Bi-Objective APP models were tested on one to two 

Industry-based datasets in Demirel (2014), more validation is needed. In this study, we aim to 

extend the testing to five industry scenarios and perform extensive numerical experiments for 

additional twelve hypothetical scenarios.  

As in this research we will be dealing with multiple APP models, we would like to present a 

summarized overview of them in Table 1.1 below for better visibility and also use the related 

abbreviations in the rest of this dissertation. As seen in this table, APP Models 1-7 do exist in the 

literature, but the eight models listed as Models 8-15 are new and are the contributions of the 

research presented in this dissertation. 
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Table 1.1: Aggregate production planning models summary, abbreviations, and contribution 

Model 

Number 

Uncertainty Modeling Stability Control 

Model Name 

New 

Models 

proposed in 

this 

dissertation? 

None 

Stochastic 

Programming 

Fuzzy 

Programming 

None FRP 
Bi-

Objective Chance 

Constraint 

(CC) 

Robust 

Stochastic 

(RS) 

Max-

Min 

(MM) 

Ranking 

(R) 

Model 1 x         x     APP   

Model 2   x       x     CC-APP   

Model 3     x     x     RS-APP   

Model 4       x   x     MM-APP   

Model 5         x x     R-APP   

Model 6 x           x   FRP-APP   

Model 7 x             x BO-APP   

Model 8   x         x   CC-FRP-APP x 

Model 9   x           x CC-BO-APP x 

Model 10     x       x   RS-FRP-APP x 

Model 11     x         x RS-BO-APP x 

Model 12       x     x   MM-FRP-APP x 

Model 13       x       x MM-BO-APP x 

Model 14         x   x   R-FRP-APP x 

Model 15         x     x R-BO-APP x 

 

1.3 Dissertation Outline 

The remainder of this research is organized as follows: Chapter 2 provides a comprehensive 

review of the relevant literature, including: a review of APP problems, rolling horizon procedures, 

and stability in production planning, followed by bi-objective, fuzzy and stochastic optimization 

programming research and applications in APP problems. In Chapter 3, FRP-APP in described. 
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Chapter 4 includes the development and analysis of new Fuzzy FRP-APP models, namely Fuzzy 

Max-Min (MM-FRP-APP), and Fuzzy Ranking (R-FRP-APP) APP models. Chapter 5 presents 

two new Stochastic FRP-APP models, namely Stochastic Chance-Constraint (CC-FRP-APP) and 

Robust Stochastic (RS-FRP-APP) APP models, and corresponding analysis and results. Chapter 6 

introduces the new Bi-objective Stochastic and Fuzzy APP models, and the corresponding result. 

Finally, in Chapter 7, the main conclusions along with the future research directions and 

suggestions are presented.  
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 LITERATURE REVIEW 

2.1 Introduction 

In this chapter, we review the related literature in the aggregate production planning area 

from different perspectives. We first start with the mathematical programming of aggregate 

production planning and then continue with the rolling horizon approach which is the main strategy 

in this research. Next, we review some of the mitigation strategies for dealing with the issue of 

nervousness in the production plans. After reviewing the literature related to the main idea behind 

flexible aggregate production planning, we also review the related literature on multi-objective 

production planning followed by the literature on the fuzzy and stochastic aggregate production 

planning for which we will propose FRP and bi-objective versions in this research.  

2.2 Mathematical Programming in Aggregate Production Planning Problems 

There exists a vast literature on the aggregate production planning, in which, meeting customer 

demand while minimizing the overall cost over a finite horizon by adjusting production, inventory 

and workforce levels is the main concern. Mathematical programming formulations have been 

proposed for a wide range of production-related problems since 1950s, addressing problems of 

long-term aggregate production planning, medium-term allocation of capacity to different 

products, lot sizing, and detailed short-term production scheduling (Missbauer and Uzsoy 2011). 

Furthermore, the production planning under uncertainty, mainly due to the demand, selling prices, 

capacity and cost uncertainties, is quite popular and numerous examples for different uncertainty 

types could be found in the literature (Thompson and Davis 1990, Ning, Liu et al. 2013). The 

review of the classical models for production planning under uncertainty could be found in Mula, 

Poler et al. (2006). In fact, the need for uncertainty consideration into the aggregate production 
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planning problems results from the fact that these problems aim to allocate resources to the future 

periods according to the current information about future circumstances. The first step for 

incorporating uncertainty into the planning problems is to determine an appropriate approach to 

deal with the uncertain parameters (Mirzapour Al-E-Hashem, Malekly et al. 2011). We will 

investigate more recent literature in the following sections of our literature review. 

2.3 Rolling Horizon Models 

One of the notable subjects in the area of planning literature is rolling horizon models, 

where the planning is done iteratively and each plan consists of periods for which there exist real 

information about the model parameters (current period) while there exist estimation for the future 

values (future periods).  Baker (1977) is one of the first studies to investigate the effectiveness of 

rolling horizon models in the context of production planning and their results suggest that rolling 

schedules are quite efficient but the demand pattern and the length of the planning horizon play an 

important role in the efficiency of the production plans. Another investigation can be found in 

McClain and Thomas (1977). The results indicate the length of planning horizon has significant 

impact on cost performance and the fact that the longer planning horizons could be considered less 

acceptable from managerial perspective. The application of rolling horizon modeling for a 

production lot-sizing planning problem with stochastic demand can be found in Bookbinder and 

H'ng (1986). Their optimization model forces a chance-constraint on the probability of stock out 

in any period. The analysis of results imply that the seasonality parameters of the demand could 

have significant effect on the quality of the results from cost to stock out values (decreasing trend 

has the best while increasing trend results in the least favorable results).  

Application of rolling horizon-based modelling in production planning is also extended to 

the multi-level planning in an assembly environment (Simpson 1999), scheduling integration (Li 
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and Ierapetritou 2010), sourcing (Yıldırım, Tan et al. 2005), and routing problems (Bostel, Dejax 

et al. 2008). A review, implications and future research reviews of the rolling horizon planning in 

supply chains could be found in Sahin, Narayanan et al. (2013). In addition, a complete review of 

different horizon-based optimization and operation improvement along with their characteristics 

including: horizon type, model type, source of horizon, and method are presented in Chand, Hsu 

et al. (2002). Rolling horizon planning and plan updates as a result of future uncertainties updates 

could generate a considerable amount of short-run and medium-term adjustment efforts as well as 

loss in planning confidence, which urges the need for incorporating strategies to mitigate 

nervousness (Inderfurth 1994). 

2.4 Mitigating Nervousness (Instability)  

Various approaches have been introduced to minimize the instability (nervousness) under 

rolling horizon plans. Some possible stability improvement methods specially for the build-to-

order systems include: having higher levels of component commonality in the products design 

structure, excess capacity consideration and also keeping setup costs low which could help dealing 

with frequent changes in the estimated demand with less negative effect on the effective operation 

of production systems (Meixell 2005). Production systems which could produce products in small 

batches as a result of lower setup costs, and also those having fewer machines and operators could 

more easily deal with changes and the nervousness does not seem to be a major issue for them as 

compared to production systems with quite large batches (Pujawan and control 2004). Some other 

well-known approaches include: 

Safety stocks: this method considers safety stocks to decrease the amount of instability in 

the production level as a result of demand violations (Sridharan and LaForge 1989). One major 

issue with this approach is that the total inventory costs are more likely to rise due to the costs of 
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carrying the buffers (Blackburn, Kropp et al. 1986). Determination of the adequate amount of 

safety stock could also be a challenge. 

Forecast beyond the planning horizon: this approach uses a forecast of demand beyond 

the planning horizon to protect against an order being placed near the end of the planning horizon. 

As shown in Carlson, Beckman et al. (1982), the effect of this approach is mixed, with better 

results in multi-stage production planning settings as there are greater benefits for avoiding 

changes (Blackburn, Kropp et al. 1986).  

Change cost procedure: initially presented by Carlson, Jucker et al. (1979) and later 

discussed by Blackburn, Kropp et al. (1986), this approach involves modification of the specified 

setup cost for a period considering sum of the change cost and the old setup costs. As a result, in 

addition to the regular planning cost, the cost of nervousness which is the change of setup costs is 

also added and the planning problem aims to balance all costs to determine the least cost production 

schedule. This approach seems to be practical to be interpreted in form of a multi-objective 

optimization problem, with varying nervousness cost definitions, such as plan change values, setup 

change values and even nervousness related workforce change costs. 

Freezing the schedule over a time window: this approach is also utilized in multiple 

studies. As one of the critical factors in utilizing this method, the frozen interval which is the 

number of scheduled periods for which the schedules are implemented according to the original 

plan could have a strong effect on the planning costs, where higher frozen interval may increase 

stock-outs for finished products as a result of lower responsiveness to demand changes (Zhao and 

Lee 1993). The effectiveness of this approach is also very dependent on the right selection of 

forecasting methods and related errors in the forecasting process. In addition, controlling the re-

planning periodicity (which represents the fraction of the periods at which the re-planning is done 
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to the total frozen horizon periods) to happen after the frozen horizon finish period is proposed as 

a method for controlling the nervousness. Sridharan, Berry et al. (1987) reasoned that freezing the 

Master Production Schedule (MPS) can improve the nervousness through limiting the number of 

schedule changes, but it could also result in increase in production and inventory costs. The results 

demonstrate that costs are found to be dramatically increasing when the frozen horizon is being 

applied over more than 50% of the planning horizon. A similar conclusion was derived where 

frozen schedules were not found cost effective in industries with more optioned products like the 

automotive industry (Meixell 2005). In the analysis done by Blackburn, Kropp et al. (1986) for a 

multi-stage lot-sizing MRP system, it is shown despite the potentials of this approach in 

eliminating the nervous behavior, it also could have potential in reducing benefits specially due to 

higher chance for higher total setup and holding costs since it does not use the best ordering policy 

in different stages of the production process.  

Flexible fences: The idea of using planning flexible fences is conceptually discussed in a 

few studies. For example, in Graves (2011) it is discussed that the planners could use time fences 

to establish varying limits on the amount of changes permitted to their frozen schedule plan and 

later, these time fences and frozen schedules act as a constraint on the re-planning. Earlier similar 

conceptual practice is presented in Costanza (1996). While these studies provide basic 

computational examples, none of these references conducted a research approach to investigate 

when flexible fences can be useful. In addition, they did not present any optimization-based 

procedure for applying this concept on production planning problems. Demirel (2014) 

implemented the flexible fences concept in aggregate production planning optimization models 

calling it “Flexible Requirement Profile (FRP)”. The results showed that more stable production 
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plans with comparable cost values can be achieved for cases of single and multi-objective 

deterministic models. 

In addition, as an early optimization-based research to improve stability of a rolling horizon 

planning problem, a dynamic production planning with rolling schedules is presented by Kimms 

(1998) where over two consecutive planning iterations, if the calculated instability measure 

(changes in production levels) for overlapping periods is more than what is feasible to the planner, 

a set of constraints are added to the problem which limit the amount of instability value to a specific 

tolerance value. More recently, utilization of the stability measure (differences between production 

levels over consecutive planning cycles) as an objective component, in the MRP and master 

production schedule development optimization (while having control over both instability measure 

and its drastic reduction adverse impact on planning cost using multi-objective optimization 

framework) is discussed in the literature (Herrera and Thomas 2009, Herrera, Belmokhtar-Berraf 

et al. 2016).  

2.5 Multi-Objective Aggregate Production Planning 

An extension to the typical cost minimization single objective APP optimization models, 

is the consideration of multiple (often) conflicting objectives, which result in a multi-objective 

APP. There are various approaches to deal with multiple objectives: 

Goal programming is one of the popular multi-objective programming techniques, where 

each objective is given a goal or a target value to be achieved. Profit and workforce levels are 

considered as two goals in the goal programming-based production planning problem addressed 

in Chen and Tsai (2001). In addition, production cost, carrying and backorder costs, and change in 

labor levels are defined as goals in Wang and Liang (2004). Production and distribution costs, 

number of rejected items, and total delivery time are the goals in the production and distribution 
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planning problem in Liang (2007). Other examples of different goals combinations include: cost 

of logistics and value of purchasing (Torabi and Hassini 2008); production cost, carrying and 

backordering cost, and change in labor level (Sadeghi, Hajiagha et al. 2013); and production level, 

storage cost, transportation cost, and distribution cost (da Silva and Marins 2014).  

The compromise programming is another technique which aims at finding a compromise 

solution between the final solution and the utopia point for each objective while the optimum 

compromise objective function could also be presented in form of a weighted metric (Chang, Eh 

et al. 1999, Wu and Chang 2004). In this approach, the weights are varied to identify Pareto optimal 

solutions. The compromise programming formulation in Entezaminia, Heydari et al. (2016), aims 

at minimizing the total losses of the supply chain as well maximizing total score of product in 

terms of environmental criteria. Another example can be found in Mirzapour Al-E-Hashem, 

Malekly et al. (2011) with the objectives of: minimizing the total cost of the supply chain (in form 

of a robust-stochastic formulation), and maximizing customer satisfaction level. 

Finally, the epsilon(𝜀)-constraint method keeps only one measure in the objective function 

and all remaining measures (objectives) are represented as inequality constraints to be satisfied 

(Mavrotas 2009). Again, in this technique, Pareto optimal solutions are identified by varying the 

epsilon levels. As an example, the multi-objective robust aggregate production planning problem 

in Al-e, Aryanezhad et al. (2012) uses this technique to simultaneously minimize the weighted sum 

of the expected and a multiple of the variability of total cost of supply chain, maximizing the customer 

service level, and also maximizing the weighted average of the workers productivity levels. As another 

example, Felfel, Ayadi et al. (2016) used the epsilon-constraint method for dealing with the cost 

and the lost demand level objectives in a multi-site supply chain stochastic planning problem under 

uncertain demand. 
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2.6 Fuzzy Programming Models in Production and Supply Chain Planning Problems 

In this section, we review the fuzzy programming literature, which was first introduced by 

Zadeh (1965), and its extensions and applications in the production and supply chain planning 

problems by classifying our literature under the most popular fuzzy techniques as follows: 

2.6.1 Fuzzy Max-Min and weighted-sum Programming Approach 

Fuzzy sets and fuzzy logic first introduced by Zadeh (1965), attracted many researchers as 

it brought a novel yet flexible approach for uncertainty definition. Bellman and Zadeh (1970) 

extended the fuzzy logic to a mathematical programming context in which the fuzzy uncertainty 

could exist in the Objective function (OF) coefficients and the constraints of an optimization 

model. In other words, under consideration of the combined effect of the fuzzy OF (referred to as 

goals) and the fuzzy constraints, the feasible region could be represented by the intersection of the 

all membership functions, while the optimum solution would be represented as the maximum 

membership value in the feasible region (which here is referred as the Max-Min method).  

An example of a fuzzy goal programming-based aggregate production planning problem 

can be found in Wang and Fang (2001). They used the Max-Min method to simultaneously 

optimize the fuzzy profit and to reduce overhead costs while minimizing the change in workforce 

levels, having fuzzy inventory and production capacity constraints. The fuzzy goal programming 

aggregate production planning formulation in Wang and Liang (2004), (Wang and Liang 2005) 

uses Max-Min optimization technique as well for optimizing the fuzzy goals of: total production 

cost, carrying and backorder costs, and rate of change in labor levels without any fuzzy constraints.  

In these studies, the membership functions of the fuzzy goals are formed using initial solutions of 

each objective using conventional linear programming model. The same approach to form fuzzy 

goal membership function is used in Liang (2007), Liang (2008) where a fuzzy production 
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transportation planning is modelled. They apply goal programming to a multi-echelon supply chain 

to optimize the fuzzy goals like: total transportation costs, total number of rejected items, and total 

delivery time. For a single objective aggregate production planning problem with trapezoidal fuzzy 

demand and resource levels, Dai, Fan et al. (2003) assumed the fuzzy constraints and a fuzzy goal, 

and then used the varying values of the fuzzy numbers and based on Decision Maker’s (DM) idea, 

the membership function for the objective (the goal) is formulated to be used in the Max-Min 

optimization problem. The fuzzy goal programming aggregate production planning problem in 

Baykasoğlu and Göçken (2006) is modelled as a Max-Min optimization problem where all the 

goals (profit maximization, workforce change minimization, inventory investment minimization 

and also backorder cost minimization) are represented in the form of fuzzy constraints with 

triangular membership functions. The fuzzy Material Requirement Planning (MRP) model in 

Mula, Poler et al. (2007) with fuzzy resource processing time and resource capacity, as well as 

fuzzy demand and costs, has both fuzzy total cost objective function and fuzzy constraints with 

predefined triangular membership functions. Again, the Max-Min technique is applied as a 

defuzzification method. As another example of the Max-Min method, one can list Tavakkoli-

Moghaddam, Rabbani et al. (2007) who again modelled the APP model in a make-to-stock 

environment to minimize fuzzy cost subject to fuzzy demand and resource usage rate using 

triangular membership functions. da Silva and Marins (2014) considered a fuzzy goal 

programming aggregate production planning where a total of 9 fuzzy goals with triangular 

membership functions (upper and lower bounds are determined by DM) were optimized subject to 

crisp constraints. 

In addition to the Max-Min method, Bellman and Zadeh (1970) presented the idea of Max 

weighted-sum of membership functions maximization, where the DM has priority (weights) to 
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some of the objectives or goals over the rest. An example can be found in Sadeghi, Hajiagha et al. 

(2013) who used three goals (total production cost, carrying and backorder cost and rate of change 

in labor levels) where the membership functions are defined by DM, and the model aims to 

maximize sum of all membership functions while the aspiration level of the first two goals is 

desired to be higher than the third membership goal value.  

In some other cases, some prioritization constraints are added to the fuzzy model which 

not only reflect the relation between different membership function values, but also define the 

minimum aspiration level of each membership function. Application of this technique in the 

context of APP using goal programming could be found in Belmokaddem, Mekidiche et al. (2009) 

where three goals of production cost, carrying cost, and labor level change are considered as fuzzy 

goals. In this study, the objective function was set as maximizing the summation of the 

membership functions with both singular minimum aspiration levels and pairwise prioritization 

constraints for the goals. The same approach is also used in Jamalnia and Soukhakian (2009) with 

one additional goal of customer satisfaction level. Another example can be found in Chen and Tsai 

(2001) who presented two models. While both models maximize the sum of all membership 

functions, for the first model, each membership function has a minimum aspiration level 

constraint, while for the second model, the constraints impose the importance of some goals over 

some others.  

As it can be inferred in the Min-max and the weighted-sum methods, in these fuzzy 

programming techniques, it is aimed to maximize the aspiration level of either the minimum 

membership function or the most important ones. These objectives could also be represented in a 

reverse way in the form of a minimization objective function, that is, the objective function could 

be represented as a minimization of sum of deviations from the nominal aspiration level values. 
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The example of such modeling approach could be found in  Leung, Wu et al. (2003) where a multi-

site aggregate planning problem is formulated as a goal programming problem with fuzzy goals 

(profit, hiring and layoff level, and availability and utilization of import quota) . In addition, 

another form would be representing the minimization objective in terms of a weighted-sum 

minimization, where the weights are determined by DMs as in Mekidiche, Belmokaddem et al. 

(2013) for a fuzzy APP goal programming model with three goals of production cost, carrying cost 

and changes in labor level.    

2.6.2 Fuzzy Weighted Average Programming Approach 

This fuzzy programming technique could be considered as the most straightforward 

technique for defuzzifying the triangular membership functions for uncertain optimization model 

parameters. The main idea behind this technique is to use the three estimates for each fuzzy number 

components (pessimistic, most likely and optimistic) and then use related weights for each estimate 

to transform the fuzzy number into a crisp equivalent using a weighted sum formula. 

In the production and supply chain planning literature, this method is generally used for 

transforming fuzzy constraints into a crisp one (especially for the right hand side triangular fuzzy 

numbers) and then join the crisp constraints to the rest of the model defuzzified using other 

previously introduced techniques, such as: Max-Min and/or weighted-sum programming 

approaches (Liang 2008, Torabi 1 and Hassini 2009, Azadegan, Porobic et al. 2011) and also the 

PLP technique which would be introduced in next section. 

2.6.3 Fuzzy Possibilistic Linear Programming (PLP) Approach 

Naming other fuzzy techniques, another popular fuzzy programming technique for the 

fuzzy objective functions where the triangular membership function is defined with three 
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prominent points of (𝑇𝐶𝑝, 0), (𝑇𝐶𝑚, 1) and (𝑇𝐶𝑜 , 0), is called Possibilistic Linear Programming 

(PLP). In this approach, which was first introduced by Lai and Hwang (1992), for a minimization 

problem the solution would be obtained by pushing these critical points toward left and because 

the vertical coordinates of these critical points are fixed to either 0 or 1, the only item that could 

be changed is the horizontal coordinates and each objective function would turn into three 

objectives (goals) to be simultaneously optimized. The utilization of this PLP fuzzy technique and 

its joint application with Max-Min and/or weighted-sum techniques and weighted average method 

in production planning for addressing problems with both fuzzy objectives and fuzzy constraints 

is quite popular in production and supply chain planning.  The assemble-to-order production 

planning in Hsu and Wang (2001) with fuzzy costs is one of the examples in which the PLP 

technique turns the single objective cost minimization model into a multi-objective model while 

the model is later optimized using Max-Min technique. The fuzzy aggregate production planning 

problem in Wang and Liang (2005) with fuzzy cost, resource capacity, resource availability and 

demand, which has fuzziness in both the objective and the constraints utilizes PLP technique for 

defuzzification of objective while the constraints are turned into crisp ones using weighted average 

method. The crisp multi-objective problem is then solved using Max-Min technique. The same 

defuzzification approach is used in the fuzzy manufacturing distribution supply chain planning 

problem in Liang and Cheng (2009) and also the aggregate production planning problem of 

Paksoy, Pehlivan et al. (2010) both with fuzzy goal(s) and capacities. Another example of utilizing 

the same techniques for a manufacturing distribution supply chain planning under fuzzy demand 

and cost could be found in Liang (2011). The fuzzy supply chain planning problem in Liang, Cheng 

et al. (2011) also follows the same approach but as an extension to this technique, the solutions of 

the Max-Min technique are updated using the Max weighted-sum method. The supply chain fuzzy 
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planning problem in Torabi and Hassini (2008) with fuzzy demand, capacity utilization rates, 

production capacity, costs, defective rate, and service levels is a comprehensive example with two 

fuzzy objectives of cost minimization and value of purchase maximization and multiple fuzzy 

constraints. This research uses both weighted average and PLP methods to turn the fuzzy model 

into a crisp one and then uses the Max weighted-sum method to solve the final crisp model.  

2.6.4 Fuzzy Ranking Programming Approach 

Fuzzy ranking method is another method in the fuzzy programming literature which allows 

the decision makers to work with the concept of feasibility degree and to adjust the solution and 

make a balance between the feasibility degree of fuzzy constraints and the satisfaction degree of 

the fuzzy goal(s).  One of the useful reference articles explaining the basics of fuzzy sets, fuzzy 

numbers ranking, and the application of fuzzy rankings in the optimization models with both fuzzy 

objective(s) and fuzzy constraints is the research done by Jiménez, Arenas et al. (2007). This 

ranking method is then used in Baykasoglu and Gocken (2010) for a fuzzy multi-objective 

aggregate production planning problem with fuzzy costs, profit, production capacity and utilization 

rates, where different versions of the fuzzy ranking method is tested and then the crisp models are 

solved utilizing a Tabu Search algorithm. In addition, the fuzzy aggregate production planning 

problem in Tang, Fung et al. (2003) is turned into a crisp model through transforming the fuzzy 

inventory and capacity constraints into crisp ones using DM satisfaction degree and fuzzy ranking 

methods. Another example of fuzzy ranking methods utilization can be found in Azadegan, 

Porobic et al. (2011) where the joint application of weighted average method and fuzzy rankings 

is applied to a fuzzy manufacturing problem with fuzzy production capacity and production time. 



22 

 

2.6.5 Other Fuzzy Programming Approaches 

The methods we have reviewed so far are the most popular and highly utilized techniques 

in the literature of fuzzy production and supply chain planning. However, there exist some other 

fuzzy techniques although less popular in the literature. 

Credibility theory which is represented using performance criteria could be defined both 

for the constraints (Ex. credibility service level to impose minimum stock out, chance of balancing 

the labor level in two successive periods, chance that the hours of labor used by all products not to 

exceed the maximum available labor level, chance that the hours of machine usage by all products 

not to exceed the maximum machine capacity, chance that all the warehouse spaces used not to 

exceed the maximum warehouse space available) and the objective function (Ex. maximizing the 

credibility that the total fuzzy cost be less than a preselected threshold) could be considered as 

another fuzzy technique in the literature of aggregate production planning (Ning, Tang et al. 2006, 

Lan, Liu et al. 2009). As the credibility constraints and the objective function are defined for fuzzy 

parameters, the solution method is different from other similar constraints and depends on 

approximation schemes while using heuristic methods (Lan, Liu et al. 2010). In addition, the 

credibility constraints could be turned into crisp equivalents using different credibility levels and 

possibility distribution of fuzzy parameters, while the credibility-based objective could be defined 

using a piecewise credibility function. 

Other techniques include: definition of piecewise possibilistic membership functions and 

substitution of fuzzy parameters with different values in the model constraints (Phruksaphanrat, 

Ohsato et al. 2011), development of fuzzy Genetic Algorithm (GA) where the fitness of solutions 

is defined using the degree of constraints satisfaction (Aliev, Fazlollahi et al. 2007), transformation 

of a fuzzy model into a crisp one using DM satisfaction degree parameters (Tang, Wang et al. 
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2000), and also transformation of each fuzzy parameter into a membership function formula using 

related parameters in form of a single value (Tang, Wang et al. 2000). 

As a summary of the reviewed fuzzy production and supply chain planning literature, 

different fuzziness considerations, number of objectives and also the fuzzy programming 

techniques utilized, Table 2.1 includes the related information of the reviewed articles. 

Table 2.1: Literature on application of fuzzy programming in production planning 

Paper Fuzzy parameters Fuzzy technique 
Fuzzy 

Obj? 

Fuzzy 

constraints? 

Number of 

Objs 

Bellman and Zadeh (1970) General 
1. Max-Min 
2.Weighted 

Sum.Memberships 
  x  x    

Tang, Wang et al. (2000) 
Demand 

Production capacity 

Transforming the 
fuzzy  model into 

aquadratic model using 

DM satisfaction 
degrees 

  x  x  1 

Wang and Fang (2001) Goals Max-Min   x   3 

Chen and Tsai (2001) Goals Sum.Memberships  x    5 

Hsu and Wang (2001) Costs 
1. Possibilistic Linear 
Programming (PLP) 

2. Max-Min 
 x    1 

Dai, Fan et al. (2003) 
Demand 

Resource level 
Max-Min  x   x  1 

Tang, Fung et al. (2003) 
Demand 

Production capacity 

Transforming the 

fuzzy  inventory and 
capacity constraints 

into crisp ones using 

DM satisfaction 
degrees and fuzzy 

ranking methods 

 x   x  1 

Leung, Wu et al. (2003) Goals 
Min deviation of goals 
from nominal values 

 x    3 

Wang and Liang (2004) Goals Max-Min  x    x 3 

Wang and Liang (2005) 

Demand 

Product price 

Subcontract cost 

Workforce level 

Production capacity 

Max-Min   x   x 2 
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Paper Fuzzy parameters Fuzzy technique 
Fuzzy 

Obj? 

Fuzzy 

constraints? 

Number of 

Objs 

Wang and Liang (2005) 

Cost 

Resource capacity 
Resource availability 

Demand 

1. Weighted average 
method 

2. Possibilistic Linear 

Programming (PLP) 
3. Max-Min 

  x  x  1 

Baykasoğlu and Göçken (2006) 

Profit goal 
backorder goal 

workforce change goal 

Inventory investment 
goal 

Max-Min    x 4 

Vasant (2006) Resource level 

Substitution of fuzzy 

parameters with an 

equation with scaled 
parameters 

   x 1 

Ning, Tang et al. (2006) 

Demand 

Costs 
Resource level 

Credibility theory x   x 1 

Tavakkoli-Moghaddam, Rabbani et al. 

(2007) 

Demand 

Usage rate 
Max-Min  x  x 1 

Liang (2007) Goals Max-Min  x   3 

Aliev, Fazlollahi et al. (2007) 

Costs 

Profits 
Demand 

Transportation level 

Production capacity 

Fuzzy GA   x    x 1 

Jiménez, Arenas et al. (2007) General Fuzzy ranking  x    x 1 

Mula, Poler et al. (2007) 
Demand 

Goal 
Max-Min    x  1 

Liang (2008) 

Goals 
Demand 

Resource capacity 

1. Weighted average 
method 

2. Max-Min 
 x    x 2 

Liang (2008) Goals Max-Min  x    3 

Torabi and Hassini (2008) 

Demand 

Capacity utilization 

rate 
Production capacity 

Costs 

Service level 
Defective rates 

1. Weighted average 

method 
2. PLP 

3. Max-Min 

4. Sum.memberships 

  x   x 2 
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Paper Fuzzy parameters Fuzzy technique 
Fuzzy 

Obj? 

Fuzzy 

constraints? 

Number of 

Objs 

Jamalnia and Soukhakian (2009) Goals Sum.Memberships   x   3 

Belmokaddem, Mekidiche et al. (2009) Goals Sum.Memberships   x   3 

Liang and Cheng (2009) 
Goals 

Resource capacity 

1. Weighted average 

method 

2. Possibilistic Linear 
Programming (PLP) 

3. Max-Min 

 x    x 2 

Lan, Liu et al. (2009) 

Production cost 
Inventory cost 

Demand 

Credibility theory  x    x 1 

Torabi 1 and Hassini (2009) 

Demand 

Production capacity 

-Minimum acceptable 
capacity utilization 

rate 

1. Fuzzy constraints: 

weighted average 
method 

2. Fuzzy OF: 

Weighted 
Sum.Memberships 

 x   x  4 

Lan, Liu et al. (2010) 

Production cost 
Inventory cost 

Demand 

Credibility theory  x    x 1 

Paksoy, Pehlivan et al. (2010) 
Costs 

Capacities 

1. Weighted average 
method 

2. Possibilistic Linear 

Programming (PLP) 
3. Max-Min 

 x   x  1 

Torabi, Ebadian et al. (2010) 

Demand 

Costs 

Production capacity 

Production time 

1. Fuzzy OF: 

Possibilistic Linear 

Programming (PLP) 
2.Fuzzy OF: weighted 

sum.memberships 

3. Fuzzy constraints: 

weighted average 

method, fuzzy ranking, 

and transformation of 
fuzzy constraints using 

minimal acceptance 

level of satisfaction 

  x  x  1 

Baykasoglu and Gocken (2010) 

Costs 

Profits 
Production capacity 

-Minimum acceptable 

capacity utilization 
rate 

Fuzzy ranking   x   x 4 

Mula, Peidro et al. (2010) Demand 
weighted average 

method 
   x  1 

Phruksaphanrat, Ohsato et al. (2011) Demand 

Substitution of fuzzy 

demand in the 

constraints using 
different possibilistic 

formulations 

   x  1 
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Paper Fuzzy parameters Fuzzy technique 
Fuzzy 

Obj? 

Fuzzy 

constraints? 

Number of 

Objs 

Liang, Cheng et al. (2011) 
Cost 

Resource capacity 

1. Weighted average 

method 

2. Possibilistic Linear 
Programming (PLP) 

3. Max-Min 

4. Weighted 
Sum.Memberships 

  x   x 1 

Liang (2011) 
Costs 

Demand 

1. Weighted average 

method 

2. Possibilistic Linear 
Programming (PLP) 

3. Max-Min 

  x  x  1 

Azadegan, Porobic et al. (2011) 
Production capacity 

Production time 

1.Weighted average 
method 

2. Ranking method 

    x 1 

Yaghin, Torabi et al. (2012) 

Costs 
Inventory space 

Resource level 

Subcontracting volume 
available 

1.Fuzzy Constraints : 

Weighted method 

using DM degree of 
optimism 

2. Fuzzy OF: 

Sum.Memberships 

 x    x 3 

Sadeghi, Hajiagha et al. (2013) All model parameters Sum.Memberships   x   3 

Mortezaei, Zulkifli et al. (2013) 

Resource level 

Costs 

Technical coefficients 

1. weighted average 

method 

2. Max-Min 
 x   x  2 

Mekidiche, Belmokaddem et al. (2013) Goals 

Weighted 

Sum.violation fraction 
levels 

  x   4 

da Silva and Marins (2014) Goals Max-Min  x    9 

Gholamian, Mahdavi et al. (2015) 

Costs 
Sales price 

Demand 

Failure rate 

1. Fuzzy Constraints: 

Fuzzy ranking 

2.  Fuzzy OF: 
Possibilistic Linear 

Programming (PLP) 

4.  Fuzzy OF: 
Weighted 

Sum.Memberships 

  x  x  4 

 

We will later utilize two of the popular fuzzy techniques, which are: Max-Min (As the base 

technique for other methods such as PLP and Weighted-Sum  methods) and also the Fuzzy ranking 

method which gives the flexibility to the DM to analyze different ranking degrees and their related 

solution and also as a technique which has not been widely used in the aggregate production and 

supply chain planning literature while we believe it has good practical potentials from decision 
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making perspective specially in case of having inequality fuzzy constraints. In addition, to the best 

of our knowledge, no Fuzzy FRP-APP model has been developed before in the literature of 

aggregate production planning and as a result, the developed models will be novel ones as they 

take into account both fuzziness and stability considerations in the production planning 

optimization process. 

2.7 Stochastic Programming Models in Production and Supply Chain Planning Problems 

This section includes the most popular stochastic programming techniques utilized in the 

literature of aggregate production and supply chain planning to later utilize in this research. In 

stochastic programming, two main different methodologies could be utilized for uncertainty 

representation: scenario-based approaches and distribution-based approaches. In the former 

approach, a set of discrete scenarios represent how the future uncertainties are forecasted. Each 

scenario is associated with a probability value, which is the DM’s expectation for the occurrence 

of that specific scenario. The main advantage of this method is the fact that there are no limitations 

on the number of uncertain parameters, while the main challenge would be anticipating all possible 

consequences. The latter (like chance-constraint programming) on the other hand, is utilized when 

only a continuous range of potential future outcomes can be anticipated. The advantage of this 

method is that by assigning a probability distribution function to the continuous range of possible 

consequences, the need for forecasting exact scenarios and their probabilities is eliminated. On the 

other side, the complexity of applying distribution function limits the number of considered 

uncertain parameters (Mirzapour Al-E-Hashem, Malekly et al. 2011).  

2.7.1 Chance-Constraint Programming 

The general idea behind chance-constraint programming is meeting one or some specific 

constraints with at least a probability value because of having uncertainties mainly in their right-
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hand side. In the field of production and supply chain planning for majority of stochastic cases, 

the demand is the main source of uncertainty and as a result, the inventory constraint is represented 

in form of a chance constraint. First application of chance-constraint programming in aggregate 

production planning can be found in Filho (1999) where the demand and cost parameters are 

uncertain model parameters. The inventory balance constraint is represented by a chance constraint 

while the uncertainty in the objective function is represented through the expected value of the 

inventory cost. The model is applied on a two-product case study where the different customer 

service level coefficients are considered for sensitivity analysis. The results show a higher 

responsiveness to customer service level results in higher production cost values. The stochastic 

multi-period and stochastic supply chain production planning and sourcing problem addressed in 

Yıldırım, Tan et al. (2005) deals with the randomness in demand and related probabilistic service 

level constraints. In addition, the cost function is represented in form of an expected inventory 

holding and production cost function in the planning horizon. As the demand in the inventory 

constraint makes it an uncertain chance constraint, a customer satisfaction approach is utilized in 

which the inventory chance constraint is turned into a chance constraint which aims to achieve to 

a positive net inventory (no shortage).  

In addition to the inventory chance-constraints resulting from uncertain demand, the 

uncertainty in machine breakdowns could also be the source for a chance-constraint production 

planning as in Nourelfath (2011). The mentioned research assumes the production rate and the 

customer service level could be random variables resulting from machine breakdowns, and by 

introducing different service level measures, presents different constraints for the relation between 

the chance-constraints related to each service level measure. Another example can be found in 

Borodin, Dolgui et al. (2016) where a component replenishment planning problem for a single-



29 

 

level assembly system with random lead times is modeled in form of a chance-constraint 

programming problem where the chance-constraint is on the shortage delay for all components. 

The green supply chain network design problem in Shaw, Irfan et al. (2016) is modeled in form of 

a chance-constraint problem under uncertainties of supplier, plant and warehouses capacities and 

the customer demand. All chance-constraints are turned into deterministic equivalents using the 

cumulative distribution function and standard deviation of each probabilistic parameter under 

different chance constraint aspiration levels. 

2.7.2 Scenario-based Programming 

While the chance-constraint programming method is mainly considered as a distribution-

based stochastic programming technique where distributional parameters and functions like: mean, 

standard deviation, and cumulative distributions are used to transform the stochastic model into a 

crisp equivalent, there are other stochastic techniques which are based on a scenario-based 

representation of the uncertain parameters into the optimization formulation. One major group of 

scenario-based formulations are called: stage-based programming formulations, while there exist 

other scenario-based formulations like: joint robust-stochastic formulation. 

2.7.2.1 Stage-based Programming Approaches  

The stage-based stochastic formulations are among the popular techniques in the stochastic 

programming literature which basically divide the decision-making process about the current and 

future decision variables with respect to the time when more visibility about the uncertainties 

become available. In the two-stage programming formulation, a set of variables are called: first-

stage variables (or the set-up variables that are typically 0-1), can be determined “here and now” 

before uncertainties are determined or even estimated, while the second stage variables or recourse 

variables (operational scenario-based variables) are the decision variables which will be 
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determined after estimations about future uncertainties becomes available. Examples of first stage 

variables in the supply chain planning and design optimization problems include: production 

decision of a specific product, ordering from suppliers decision, establishment of a production 

plant, procuring machines; second stage variables could be: volume of produced products, stock 

volume of products, volume of transported products. There are different studies used the two-stage 

scenario-based formulation to deal with stochastic uncertainties in the supply chain planning 

problems: (Alonso-Ayuso, Escudero et al. 2003, Santoso, Ahmed et al. 2005, Mirzapour Al-e-

Hashem, Baboli et al. 2013, Shapiro, Dentcheva et al. 2014, Osmani and Zhang 2017). In addition 

to the two-stage scenario-based formulations,  multi-stage programming assumes random 

processes for model uncertainties and it would not be reasonable to plan for the entire planning 

horizon, instead, one has to make decisions at successive stages depending on the information 

available at the current stage. As a result, in a multi-stage decision problem, it is crucial to specify 

which decision variables depend on which part of the past information (Shapiro, Dentcheva et al. 

2014). This characteristic makes the multi-stage decision making a dynamic decision-making 

process. Examples of multi-stage and also the dynamic programming formulations in the stochastic 

supply chain and production planning problems can be found in studies like: Escudero, Kamesam 

et al. (1993), Escudero and Kamesam (1995), Kazemi Zanjani, Nourelfath et al. (2010), Wu, 

Huang et al. (2015), Fleming, Sethi et al. (1987), Li, Liu et al. (2009). 

2.7.2.2 Robust-Stochastic Programming Approaches 

It is worth noting that the stage-based stochastic programming approaches mainly focus on 

optimizing the expected performance of the model over a range of possible scenarios of the random 

parameters. As a result, the model would optimally perform for the mean sense, and possibly 

poorly at realization of scenarios like worst case (Mirzapour Al-E-Hashem, Malekly et al. 2011). 
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One alternative approach would be the scenario-based robust-stochastic formulation which aims 

to find a solution which is “close” to the optimum and “almost” feasible in response to the changing 

input data. In other words, this robust-stochastic optimization model is a special type of stochastic 

nonlinear model which could handle both the problem cost and its variability over various 

scenarios. Mulvey, Vanderbei et al. (1995) initially proposed the concept of stochastic and later, 

Leung* and Wu (2004) presented the robust optimization model for the stochastic aggregate 

production planning problem. In another study Leung, Lai et al. (2007), developed a robust-

stochastic model for a multi-site aggregate production planning problem under uncertainty. The 

application of robust-stochastic programming is continued in other studies as well, where the 

robust optimization is mainly dealing with the expected total cost and the cost variability due to 

the demand uncertainty and also the expected penalty for any model related infeasibility related to 

some scenarios (Pan and Nagi 2010, Zanjani, Ait-Kadi et al. 2010, Mirzapour Al-E-Hashem, 

Malekly et al. 2011). 

As a summary of the reviewed stochastic production and supply chain planning literature, 

different stochastic parameters, number of objectives and the stochastic programming techniques 

utilized, Table 2.2 includes the related information of the reviewed articles. 

Table 2.2: Literature on application of stochastic programming in production planning 

Paper 
Stochastic 

parameters 

 Stochastic 

technique 

Stochastic 

Obj? 

Stochastic 

constraints? 

Number of 

Objs 

Rakes, Franz et al. (1984) 

Constraints right and 

left hand side 
coefficients 

Chance-

constraint 
   x  1 

Fleming, Sethi et al. (1987) Demand 
Dynamic 

Programming 
   x  1 

Escudero, Kamesam et al. 

(1993) 

Demand 

Cost 

Multi-stage 

programming 
 x   x  1 

Escudero and Kamesam (1995) 
Demand 

Capacity constraints  

Dual sourcing 

Multi-stage 

programming 
  x  x  1 
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Paper 
Stochastic 

parameters 

 Stochastic 

technique 

Stochastic 

Obj? 

Stochastic 

constraints? 

Number of 

Objs 

Mulvey, Vanderbei et al. 
(1995) 

General 
Robust-

Stochastic 
 x  x 1 

Filho (1999) 
Demand 

Inventory Cost 
Chance-

constraint  
  x  x  1 

Alonso-Ayuso, Escudero et al. 

(2003) 

Deman 

Price 

Two-stage 

programming 
 x    x 1 

Leung* and Wu (2004) 

Demand 

Inventory cost 

Labor costs 

Robust-
Stochastic 

 x  x 1 

Yıldırım, Tan et al. (2005) Demand 
Chance-

constraint  
  x   x 1 

Santoso, Ahmed et al. (2005) 
Demand 

Cost 

Two-stage 

programming 
 x    x 1 

Leung, Lai et al. (2007) 

Demand 

Initial inventories 

Inventory costs 

Overtime cost 

Production cost 

Robust-

Stochastic 
 x  x 1 

Fleten and Kristoffersen (2008) 
Prices 

Reservoir inflows 

Multi-stage 

programming 
  x   x 1 

Li, Liu et al. (2009) 
Demand 

Return amount 

Dynamic 

Programming 
  x   x 1 

Pan and Nagi (2010) Demand 
Robust-

Stochastic 
 x  x 1 

Zanjani, Ait-Kadi et al. (2010) Production capacity 
Robust-

Stochastic 
 x  x 1 

Kazemi Zanjani, Nourelfath et 

al. (2010) 

Demand 
Quality of raw 

material 

Multi-stage 

programming 
  x  x  1 

Mirzapour Al-E-Hashem, 

Malekly et al. (2011) 

Demand 

Sale price 

Labor costs 
Inventory cost 

Shortage cost 

Raw material cost 
Transportation cost 

Production cost 

Robust-

Stochastic 
 x  x 2 

Nourelfath (2011) Machine breakdown 
Chance-

constraint 
  x  x  1 
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Paper 
Stochastic 

parameters 

 Stochastic 

technique 

Stochastic 

Obj? 

Stochastic 

constraints? 

Number of 

Objs 

Bilsel and Ravindran (2011) 
Demand 

Suppliers’ capacities 

Costs 

Chance-

constraint  
  x   x 3 

Awudu and Zhang (2013) 
Demand 

Price 
Two-stage 

programming 
  x   x 1 

Mirzapour Al-e-Hashem, 

Baboli et al. (2013) 
Demand 

Two-stage 

programming 
  x  x  1 

Bakhrankova, Midthun et al. 

(2014) 

Raw material 
quantities 

finished goods 

market prices 

Expected OF  x   x  1 

Wu, Huang et al. (2015) 
Cost 

Waste generation rate 

Multi-stage 
programming 

Chance-

constraint  

  x  x  1 

Borodin, Dolgui et al. (2016) 
component 

procurement lead 

times 

Chance-

constraint  
   x  1 

Shaw, Irfan et al. (2016) 

Demand 

Suppliers’ capacities 

Plants’ capacities 
Warehouses’ 

capacities 

Chance-

constraint  
   x  1 

Moshtagh and Taleizadeh 

(2017) 

Return rate of 

products 

Quality of returned 
material 

Buyback cost 

Remanufacturing 
cost 

Salvage value 

Chance-

constraint 
  x   x 1 

Osmani and Zhang (2017) 
Bioethanol demand 
Bioenergy sale price 

Switchgrass yield 

Two-stage 

programming 
 x   x  3 

 

We will later use two stochastic programming techniques to develop the stochastic version 

of the FRP-APP model to see how the incorporation of the stochastic uncertainty would affect its 

performance. These two techniques are: Chance-Constraint and Robust-Stochastic programming. 

To the best of our knowledge, no chance-constraint or scenario-based FRP-APP model has been 

developed before in the literature of aggregate production planning and as a result, the developed 



34 

 

models will be novel as they take into account both stochastic uncertainty and stability 

considerations into the production planning process. Furthermore, as the uncertainty consideration 

and the mathematical approach in these two techniques are different, we believe these two 

formulations can make our analysis and conclusions more varied. 

2.8 Conclusions 

In this chapter, the related literature to our research is reviewed from different aspects. The 

reviewed literature provides valuable insights about the available techniques and current practices 

in the APP area. Here are the main conclusions based on the literature review: 

- While the FRP method has been (relatively) recently introduced to address APP 

instability issues, the literature on this technique's performance and its potential 

benefits is relatively scarce. Furthermore, comparison of this planning approach to the 

Stochastic/Fuzzy APP models (which are meant to handle planning uncertainties) do 

not exist. Hence to address these research gaps, 1. We will compare the FRP-APP 

model to the Stochastic/Fuzzy models and 2. We will conduct more testing of these 

models under various Industrial scenarios. 

- To the best of our knowledge, existing Stochastic/Fuzzy Single/Multi-Objective rolling 

horizon APP models do not incorporate any stability improvement methods. While in 

the Stochastic/Fuzzy APP literature, the emphasis has been primarily on handling the 

randomness/fuzziness in the planning problem, the rolling horizon planning literature 

has emphasis on the need for stability improvement of the rolling plans. The connection 

between the Stochastic/Fuzzy APP and rolling horizon planning in terms of stability 

management seems to be missing. Hence, to close this missing link, we would like to 

introduce new Stochastic/Fuzzy FRP/Bi-Objective APP models to take advantage of 
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the strengths of both Stochastic/Fuzzy mathematical programming and FRP/Bi-

Objective planning to create more stable and cost-efficient plans. For this purpose, we 

will propose eight new Stochastic/Fuzzy Bi-Objective/FRP APP models in this 

research to address these research gaps. More specifically we will propose four new 

Stochastic APP models and four new Fuzzy APP models as follows: 1. Stochastic CC-

FRP-APP, 2. Stochastic RS-FRP-APP, 3. Stochastic CC-BO-APP, 4. Stochastic RS-

BO-APP, 5. Fuzzy MM-FRP-APP, 6. Fuzzy R-FRP-APP, 7. Fuzzy MM-BO-APP, and 

8. Fuzzy R-BO-APP. 
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 AGGREGATE PLANNING WITH AND WITHOUT FLEXIBILITY 

REQUIREMENTS PROFILE 

In this chapter we first present the deterministic APP formulation (Missbauer and Uzsoy 

2011, Demirel 2014), which is a basis for development of all production planning models 

developed in this research. Then we will introduce the FRP counterpart of the deterministic APP 

model referred here as the FRP-APP.  

3.1 APP Mixed Integer Linear Formulation 

The APP optimization model aims to minimize the total planning cost over a planning 

horizon. The cost components are: production cost, workforce regular time cost, workforce 

overtime cost, workforce hiring cost, workforce layoff cost, inventory holding cost and backorder 

cost. The major constraints are production capacity, workforce level change constraint, and the 

typical inventory constraint. In this research, we assume a single product planning problem while 

the presented methods could also be extended to the multi-product case without loss of generality.  

The basic model is similar to the APP model utilized by Demirel, Özelkan et al. (2018). 

Let’s start with the introduction of model parameters and decision variable: 

Indices: 

𝑖: index for planning horizon, 𝑖 = 0,… ,𝑁 

Parameters: 

𝑁: Total number of periods in the planning horizon 

𝑐𝑤: labor cost of a worker per hour 

𝑐𝑜: overtime labor cost of a worker per hour 

𝑐𝐻: hiring cost of a worker 
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𝑐𝐿: layoff cost of a worker 

𝑐𝑝: unit production cost 

ℎ: unit inventory holding cost 

𝑏: unit backorder cost 

𝑡ℎ: total number of working hours per period 

𝑚𝑅: maximum number of units produced per worker per hour 

𝑚𝑂: fraction of total regular worker hours in each period available for overtime 

𝑑𝑡,𝑖: 𝑖-step ahead demand estimated in planning iteration 𝑡 

𝐼: Initial inventory 

𝑊: Initial workforce  

Variables: 

𝑃𝑖: 𝑖-step ahead planned production level planned 

𝑂𝑖: 𝑖-step ahead planned overtime production worker hours  

𝐼𝑖: 𝑖-step ahead planned inventory level  

𝐵𝑖: 𝑖-step ahead planned backorder level  

𝑊𝑖: 𝑖-step ahead planned workforce level  

𝐻𝑖: 𝑖-step ahead planned hiring level  

𝐿𝑖: 𝑖-step ahead planned layoff level  

Note: For all 𝑖 related parameters and variables, 𝑖=0 represents the current and actual 

values, while 𝑖 >0 are corresponding to the future periods. 

 

The corresponding MILP formulation is as follows: 

Minimize ∑ (𝑐𝑤. 𝑡ℎ.𝑊𝑖 + 𝑐
𝑜 .𝑁

𝑖=0 𝑂𝑖 + 𝑐
𝐻. 𝐻𝑖 + 𝑐

𝐿 . 𝐿𝑖 + 𝑐
𝑝. 𝑃𝑖 + ℎ. 𝐼𝑖 + 𝑏. 𝐵𝑖) (3.1) 
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Subject to 

Initial Inventory: 𝑃0 = 𝑑0 + 𝐼0 − 𝐵0 − 𝐼      (3.2) 

Inventory: 𝑃𝑖 = 𝑑𝑖 + 𝐼𝑖 − 𝐵𝑖 − 𝐼𝑖−1 + 𝐵𝑖−1    ∀𝑖 = 1,… , 𝑁 (3.3) 

End Inventory: 𝐼𝑁 ≥ 𝐼         (3.4) 

Initial Workforce: 𝑊0 = 𝐻0 − 𝐿0 +𝑊      (3.5) 

Workforce: 𝑊𝑖 = 𝑊𝑖−1 + 𝐻𝑖 − 𝐿𝑖     ∀𝑖 = 1,… , 𝑁 (3.6) 

Production Capacity: 𝑃𝑖 ≤ 𝑚
𝑅 . 𝑡ℎ.𝑊𝑖 +𝑚

𝑅 . 𝑂𝑖   ∀𝑖 = 0,… , 𝑁 (3.7) 

Overtime Capacity: 𝑂𝑖 ≤ 𝑡ℎ.𝑊𝑖. 𝑚
𝑂     ∀𝑖 = 0,… , 𝑁 (3.8) 

𝑊𝑖, 𝑂𝑖, 𝐻𝑖, 𝐿𝑖, 𝑃𝑖 , 𝐼𝑖 , 𝐵𝑖 ≥ 0      ∀𝑖 = 0,… , 𝑁 (3.9) 

𝑊𝑖, 𝐻𝑖 , 𝐿𝑖: integers       ∀𝑖 = 0,… , 𝑁 (3.10)  

 

As indicated earlier, the objective function aims to minimize the planning cost including 

workforce, production, inventory and shortage costs over the next 𝑁 periods. Constraints (3.2) & 

(3.3) are the inventory balance constraints stating that the total production in each period equals 

the realized demand for that period plus the net inventory at the end of that period minus the net 

in hand inventory at the beginning. In addition, Constraint (3.4) makes sure the end inventory is at 

least equal to the starting inventory. Constraints (3.5) & (3.6) are the workforce balance constraints 

which make sure the workforce level in each period equals the available workforce at the beginning 

of that period plus the net changes in the workforce level decided for the same period. Constraints 

(3.7) & (3.8) are the capacity constraints. Non-negativity of all variables is represented in 

Constraint (3.9), while Constraint (3.10) enforces the integer values for the workforce related 

variables. 
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3.2 Rolling Horizon Planning 

In rolling horizon planning, the planning is made iteratively in each period.  During each 

iteration, the initial conditions for inventories and backlogs as well as demand forecasts are 

updated based on the current actual values, and production plans are generated for future periods. 

Hence, rolling horizon planning dynamically reflects new information to provide updated plans. 

Below, we will first define the notation and then present the rolling horizon-based APP 

model. For this purpose, we slightly modify the parameters and variables previously defined in to 

reflect the rolling horizon iterations using index 𝑡 as follows: 

Indices: 

𝑖: index for planning horizon, 𝑖 = 0,… ,𝑁 

𝑡: index for rolling horizon, 𝑡 = 1,… , 𝑇 

Parameters: 

𝑁: Total number of periods in the planning horizon 

𝑐𝑤: labor cost of a worker per hour 

𝑐𝑜: overtime labor cost of a worker per hour 

𝑐𝐻: hiring cost of a worker 

𝑐𝐿: layoff cost of a worker 

𝑐𝑝: unit production cost 

ℎ: unit inventory holding cost 

𝑏: unit backorder cost 

𝑡ℎ: total number of working hours per period 

𝑚𝑅: maximum number of units produced per worker per hour 

𝑚𝑂: fraction of total regular worker hours in each period available for overtime 
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𝑑𝑡,𝑖: 𝑖-step ahead demand estimated in planning iteration 𝑡 

𝐼: Initial inventory at the start of planning iteration 1 

Variables: 

𝑃𝑡,𝑖: 𝑖-step ahead production level planned in planning iteration 𝑡 

𝑂𝑡,𝑖: 𝑖-step ahead overtime worker hours planned in planning iteration 𝑡 

𝐼𝑡,𝑖: 𝑖-step ahead inventory level planned in planning iteration 𝑡 

𝐵𝑡,𝑖: 𝑖-step ahead backorder level planned in planning iteration 𝑡 

𝑊𝑡,𝑖: 𝑖-step ahead workforce level planned in planning iteration 𝑡 

𝐻𝑡,𝑖: 𝑖-step ahead hiring level planned in planning iteration 𝑡 

𝐿𝑡,𝑖: 𝑖-step ahead layoff level planned in planning iteration 𝑡 

 

For each rolling horizon period 𝑡, the corresponding APP model MILP formulation is as 

follows: 

(APP) 

 

Minimize ∑ (𝑐𝑤. 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜.𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻 . 𝐻𝑡,𝑖 + 𝑐

𝐿 . 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. 𝐼𝑡,𝑖 + 𝑏. 𝐵𝑡,𝑖) (3.11) 

Subject to 

Initial Inventory: 𝑃𝑡,0 = 𝑑𝑡,0 + 𝐼𝑡,0 − 𝐵𝑡,0 − 𝐼𝑡−1,0 + 𝐵𝑡−1,0    (3.12) 

Inventory: 𝑃𝑡,𝑖 = 𝑑𝑡,𝑖 + 𝐼𝑡,𝑖 − 𝐵𝑡,𝑖 − 𝐼𝑡,𝑖−1 + 𝐵𝑡,𝑖−1   ∀𝑖 = 1,… , 𝑁 (3.13) 

End Inventory: 𝐼𝑡,𝑁 ≥ 𝐼        (3.14) 

Initial Workforce: 𝑊𝑡,0 = 𝑊𝑡−1,0 +𝐻𝑡,0 − 𝐿𝑡,0     (3.16) 

Workforce: 𝑊𝑡,𝑖 = 𝑊𝑡,𝑖−1 + 𝐻𝑡,𝑖 − 𝐿𝑡,𝑖    ∀𝑖 = 1,… , 𝑁 (3.17) 

Production Capacity: 𝑃𝑡,𝑖 ≤ 𝑚𝑅 . 𝑡ℎ.𝑊𝑡,𝑖 +𝑚
𝑅 . 𝑂𝑡,𝑖   ∀𝑖 = 0,… , 𝑁 (3.18) 

Overtime Capacity: 𝑂𝑡,𝑖 ≤ 𝑡ℎ.𝑊𝑡,𝑖. 𝑚
𝑂    ∀𝑖 = 0,… , 𝑁 (3.19) 
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𝑊𝑡,𝑖, 𝑂𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖, 𝑃𝑡,𝑖, 𝐼𝑡,𝑖, 𝐵𝑡,𝑖 ≥ 0     ∀𝑖 = 0,… , 𝑁 (3.19) 

𝑊𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖: integers       ∀𝑖 = 0,… , 𝑁 (3.20)  

 

The APP model above has the same structure as the model in (3-1)-(3-10) but it has a more 

dynamic nature: Constraint (3.12) is the initial inventory balance constraint for the current period, 

in which the production plan corresponds to the actual demand plus the net inventory of the current 

period minus the net actual inventory resulting from the previous planning horizon. Constraint (3-

13) follows the same logic for the determination of the production values for future periods except 

the fact that the demand values are forecasted for the future periods, and the input inventory is 

resulting from the optimal inventory levels from the previous planning periods. In addition, 

Constraints (3.16) and (3.17) are the workforce balance constraints, where the initial workforce 

for the current period in constraint (3.16) is coming from the actual workforce estimated in the 

previous planning iteration. In addition, the initial workforce in constraint (3.17) is resulting from 

the optimal workforce level in the previous planning period. 

The issue arising here is the previously mentioned “nervousness” i.e. how to make sure the 

developed plans are stable/reliable from one rolling horizon planning period to another. This issue 

will be addressed by introducing the FRP concept into the APP model as discussed next.  

3.3 FRP-APP: Flexibility Requirements Profile-based Aggregate Production Planning with 

Rolling Horizon  

 The FRP planning imposes flexible fences to the optimization model to maintain the 

production plans within certain levels (upper and lower bounds). The calculation of bounds is done 

with the utilization of the previously estimated production levels and flexibility bounds 

coefficients called “flex-limits”. Let ±𝐹𝑖, 𝑖 = 0,1, …𝑁 represent “flex-limits” over the planning 
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horizon N such that: 𝐹0 ≤ 𝐹1 ≤ 𝐹2 ≤ ⋯ ≤ 𝐹𝑁, which implies less flexibility to the plan changes 

for near future periods as they are getting closer to the current time. As it will be shown in 

Propositions 1 and 2 subsequently, the FRP limits will ensure that the deviation in the dynamic 

planning process stays within the specified ranges while the plan rolls, and the amount of flexibility 

that is permitted will be higher in distant periods due to the higher degrees of uncertainty. Figure 

3.1 illustrates the three incremental levels for the flex-limits values (1%, 3%, 5%). The 5% case 

results in higher flexibility with less smoothing effect on production levels, while the 1% flex-

limits result in less variability in production levels due to tighter bounds. 

 In order to define and incorporate these FRP related bounds, we will introduce the 

following notation: 

𝐿𝐵𝑡,𝑖: 𝑖-step ahead lower bound on planned production calculated for planning iteration 𝑡 

𝑈𝐵𝑡,𝑖: 𝑖-step ahead upper bound on planned production calculated for planning iteration 𝑡 

These bounds are updated at the end of each planning iteration (𝑡 − 1) using the optimal 

production levels for that period, as well as flexibility limits coefficients, and previous bounds as 

follows (Demirel 2014): 

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

Planning period

1% flex-limits 3% flex-limits 5% flex-limits

Figure 3.1: Flexibility of different flex-limits bounds on variation of 

production plans 
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𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑠: 𝐿𝐵𝑡,𝑖 = 𝑚𝑎𝑥(𝐿𝐵𝑡−1,𝑖+1, 𝑃𝑡−1,𝑖+1(1 − 𝐹𝑖))   ∀𝑖 = 0,… , 𝑁 − 1 (3.21) 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑𝑠: 𝑈𝐵𝑡,𝑖 = min (𝑈𝐵𝑡−1,𝑖+1, 𝑃𝑡−1,𝑖+1(1 + 𝐹𝑖))   ∀𝑖 = 0,… , 𝑁 − 1 (3.22) 

In the above formulations we set 𝐿𝐵𝑡,𝑁 = −∞ and 𝑈𝐵𝑡,𝑁 = +∞. Once these bounds are 

updated, they are included in the next rolling horizon iteration planning problem as constraints on 

the production levels as follows: 

 𝐿𝐵𝑡,𝑖 ≤ 𝑃𝑡,𝑖 ≤ 𝑈𝐵𝑡,𝑖       ∀𝑖 = 0,… , 𝑁 (3.23) 

Hence the FRP-APP Model can be defined as follows: 

 

(FRP-APP) = (APP) + Constraints (3.21)-(3.23) 

 

 

Considering formulas (3.21) and (3.22), we can show that for two consecutive iterations, 

the gap between the upper and lower bounds for a specific period gets tighter. Figure 3.2 illustrates 

how the bounds get tighter for a specific period as time rolls to the next planning iteration where 

each specific period gets closer to the current period. The arrows in Figure 3.2 show that a future 

period in rolling iteration t-1 becomes closer in rolling iteration t. For example, a plan for 4 periods 

ahead or for period 4 during rolling horizon planning iteration 1, becomes 3 periods ahead or 

moves to period 3 during the second rolling planning iteration since current time rolls to the next 

period.  This is formally stated and proven in Proposition 1 below. 
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Proposition 1. The flexible bounds for each specific period get tighter or stay the same as 

time rolls to the next planning horizon (Demirel, Özelkan et al. 2018). 

Proof. Taking into account formula (3.32) we have: 

 𝐿𝐵𝑡+1,𝑖 ≥ 𝐿𝐵𝑡,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.24) 

 Which is equal to 

 −𝐿𝐵𝑡+1,𝑖 ≤ −𝐿𝐵𝑡,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.25) 

 As in formula (3.33) we also have: 

𝑈𝐵𝑡+1,𝑖 ≤ 𝑈𝐵𝑡,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.26) 

Adding the two inequalities (3.35 & 3.36) results in: 

𝑈𝐵𝑡+1,𝑖 − 𝐿𝐵𝑡+1,𝑖 ≤ 𝑈𝐵𝑡,𝑖+1 − 𝐿𝐵𝑡,𝑖+1   ∀𝑖 = 0,… , 𝑁 − 1  (3.27)  

Which results in tighter or equal bounds for two consecutive planning horizons for each 

period □. 

Figure 3.2: Demonstration of flexibility bounds for specific periods during 

consecutive planning iterations 
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Proposition 2. The production lower bound is always less than or equal the upper bound. 

Proof. Let’s assume the initial upper & lower bounds (for the first iteration of the plan) are 

set equal to -∞ & ∞ (meaning the initial plan is developed using the regular APP optimization 

formulation). As a result, the calculated bounds at the end of iteration 1 to be fed to the second 

iteration are calculated as the following formula: 

 As (1 − 𝐹𝑖) < (1 + 𝐹𝑖), the lower bound is greater than the lower bound. 

𝐿𝐵2,𝑖 = 𝑃1,𝑖+1(1 − 𝐹𝑖)       ∀𝑖 = 0,… , 𝑁-1  (3.28) 

𝑈𝐵2,𝑖 = 𝑃1,𝑖+1(1 + 𝐹𝑖)      ∀𝑖 = 0,… , 𝑁-1  (3.29) 

 Now we have to move on to the next iteration and make sure iteration 3 calculated lower 

bounds are less than their related upper bounds.  

𝐿𝐵3,𝑖 = max (𝐿𝐵2,𝑖+1, 𝑃2,𝑖+1 ∗ (1 − 𝐹𝑖))    ∀𝑖 = 0,… , 𝑁 − 1  (3.30) 

𝑈𝐵3,𝑖 = min (𝑈𝐵2,𝑖+1, 𝑃2,𝑖+1 ∗ (1 + 𝐹𝑖))    ∀𝑖 = 0,… , 𝑁 − 1  (3.31) 

We have: 

𝐿𝐵2,𝑖+1 ≤ 𝑃2,𝑖+1 ≤ 𝑈𝐵2,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.32) 

As a result: 

𝑃2,𝑖+1 ∗ (1 − 𝐹𝑖) ≤ 𝑈𝐵2,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.33) 

𝑃2,𝑖+1 ∗ (1 + 𝐹𝑖) ≥ 𝐿𝐵2,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.34) 

In addition: 

𝑃2,𝑖+1 ∗ (1 − 𝐹𝑖) ≤ 𝑃2,𝑖+1 ∗ (1 + 𝐹𝑖)     ∀𝑖 = 0,… , 𝑁 − 1  (3.35) 

So we can make sure:  

max (𝐿𝐵2,𝑖+1, 𝑃2,𝑖+1 ∗ (1 − 𝐹𝑖)) ≤ 𝑈𝐵2,𝑖+1    ∀𝑖 = 0,… , 𝑁 − 1  (3.36) 

And 
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max (𝐿𝐵2,𝑖+1, 𝑃2,𝑖+1 ∗ (1 − 𝐹𝑖)) ≤ 𝑃2,𝑖+1 ∗ (1 + 𝐹𝑖)   ∀𝑖 = 0,… , 𝑁 − 1  (3.37) 

Which is equivalent to: 

max (𝐿𝐵2,𝑖+1, 𝑃2,𝑖+1 ∗ (1 − 𝐹𝑖)) ≤  min (𝑈𝐵2,𝑖+1, 𝑃2,𝑖+1 ∗ (1 + 𝐹𝑖))  ∀𝑖 = 0,… , 𝑁 − 1  (3.38) 

And 

𝐿𝐵3,𝑖 ≤ 𝑈𝐵3,𝑖         ∀𝑖 = 0,… , 𝑁 − 1  (3.39) 

This means our proposition is true for the third planning horizon (iteration). We now 

continue our proof by assuming the proof holds for other planning horizons up to 𝑡 = 𝑚, if we can 

generalize the conclusion to planning horizons 𝑡 = 𝑚 + 1 we can conclude the proposition holds 

for all planning horizon. For planning horizon 𝑡 = 𝑚 + 1 we have: 

𝐿𝐵m+1,𝑖 = max (𝐿𝐵m,𝑖+1, 𝑃m,𝑖+1 ∗ (1 − 𝐹𝑖))    ∀𝑖 = 0,… , 𝑁 − 1  (3.40) 

𝑈𝐵m+1,𝑖 = min (𝑈𝐵m,𝑖+1, 𝑃m,𝑖+1 ∗ (1 + 𝐹𝑖))    ∀𝑖 = 0,… , 𝑁 − 1  (3.41) 

Having in mind (3.38), we have: 

𝑃m,𝑖+1 ∗ (1 − 𝐹𝑖) ≤ 𝑈𝐵m,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.42) 

𝑃m,𝑖+1 ∗ (1 + 𝐹𝑖) ≥ 𝐿𝐵m,𝑖+1      ∀𝑖 = 0,… , 𝑁 − 1  (3.43) 

In addition: 

𝑃m,𝑖+1 ∗ (1 − 𝐹𝑖) ≤ 𝑃m,𝑖+1 ∗ (1 + 𝐹𝑖)    ∀𝑖 = 0,… , 𝑁 − 1  (3.44) 

max (𝐿𝐵m,𝑖+1, 𝑃m,𝑖+1 ∗ (1 − 𝐹𝑖)) ≤ 𝑈𝐵m,𝑖+1   ∀𝑖 = 0,… , 𝑁 − 1  (3.45) 

And 

max (𝐿𝐵m,𝑖+1, 𝑃m,𝑖+1 ∗ (1 − 𝐹𝑖)) ≤ 𝑃m,𝑖+1 ∗ (1 + 𝐹𝑖)  ∀𝑖 = 0,… , 𝑁 − 1  (3.46) 

Which results in: 

max (𝐿𝐵m,𝑖+1, 𝑃m,𝑖+1 ∗ (1 − 𝐹𝑖)) ≤  min (𝑈𝐵m,𝑖+1, 𝑃m,𝑖+1 ∗ (1 + 𝐹𝑖))  ∀𝑖 = 0,… , 𝑁 − 1  (3.47) 

And 
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𝐿𝐵𝑚+1,𝑖 ≤ 𝑈𝐵𝑚+1,𝑖       ∀𝑖 = 0,… , 𝑁 − 1  (3.48) 

The proof is complete and true for each planning horizon□. 

3.4 Overall Planning Procedure using FRP-APP 

Before concluding this chapter, we would like to summarize the main procedural steps for 

running the FRP-APP model on a rolling horizon basis. 

Step 1: Generate (forecast) demand for 𝑖 = 0,… , 𝑁 

Step 2: Initialize workforce levels, inventories and FRP bounds 

Step 3: Solve FRP-APP Model for planning iteration 𝑡 and develop the optimal plan for 

the planning horizon for 𝑖 = 0,… , 𝑁 

Step 4: Update flexibility bounds and if needed, demand forecasts, and then roll into the 

next planning iteration (𝑡 + 1) 

Step 5: Repeat steps 3 and 4 for each 𝑡, 𝑡 = 1, … , 𝑇 

 

Please note that, in essence the above procedure would be the same for APP Model under 

rolling horizon except for the FRP related steps (Steps 2 and 4).  

3.5 Conclusions 

In this chapter, we presented the main formulation for the APP and FRP-APP models along 

with the definition of the flexibility limits and bounds. In addition, both APP and FRP-APP models 

are modified to apply a rolling horizon planning framework. These formulations will be the basis 

for the stochastic and fuzzy models that will be developed in subsequent chapters. In addition, the 

overall rolling horizon procedure presented in this chapter will be later used to run our numerical 

analysis in Chapters 4, 5, and 6. 
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 FUZZY AGGREGATE PLANNING WITH FLEXIBLE 

REQUIREMENTS PROFILE 

4.1 Introduction  

In this chapter, after reviewing the basics of fuzzy logic and fuzzy programming, we will 

first present the Fuzzy APP model without the incorporation of FRP, namely the MM-APP and R- 

APP models. Then, we will develop the two new FRP counterparts, namely the MM-FRP-APP 

and R- FRP-APP. We use the Max-Min technique due to its popularity and widespread use in the 

related fuzzy programming literature, and also use the Fuzzy Ranking method, which provides an 

interactive decision-making tool to the planner.  The FRP-APP and the proposed new Fuzzy FRP-

APP models will then be compared to existing Fuzzy APP models based on cost and stability using 

five industry-based case studies under various demand scenarios and flex-limits. Additional 

industry scenarios will also be presented and analyzed using design of experiments techniques. 

4.2 Introduction to Fuzzy Programming 

Fuzzy logic provides an alternative approach to represent the uncertainties, especially when 

enough historical data about uncertainties are not available and when subjective and approximation 

reasoning are involved to describe the uncertainties and make decisions (Zadeh 1988).  

A fuzzy number has a type of imprecision associated with fuzzy sets, which has classes in 

which, the exists no sharp transition from membership to non-membership (Bellman and Zadeh 

1970). As a result, each fuzzy set would be defined using a membership function. As illustrated in 

Figure 4.1, there exist different ways for defining membership functions (linking each number to 

its membership value). Two of the commonly used functions are: triangular membership functions 

(Represented by A is Figure 4.1), and trapezoidal membership functions (Represented by C is 
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Figure 4.1). There can be other type of functions as well such as: z-shape (Represented by B is 

Figure 4.1), s-shape (Represented by D is Figure 1.1), sigmoid (Represented by E is Figure 4.1), 

and Gaussian (Represented by F is Figure 4.1) (Rajabi, Bohloli et al. 2010).  

 

Due to the popularity and more widespread use (Paksoy, Pehlivan et al. 2010, Azadegan, 

Porobic et al. 2011, Mortezaei, Zulkifli et al. 2013), we introduce the triangular and trapezoidal 

membership functions formulations as below:  

 

 

Figure 4.1 Different fuzzy membership function shapes  
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Triangular membership function: 

Let 𝑥 ∈ 𝑋 denote a fuzzy number and 𝜇𝑋 the corresponding membership function, then  

𝜇𝑋 depends on three positive scalar parameters 𝑎, 𝑏, 𝑐 as follows: 

µ(𝑋) =

{
 
 

 
 
0                                                               𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
                                                  𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
                                                   𝑏 ≤ 𝑥 ≤ 𝑐

0                                                               𝑐 ≤ 𝑥}
 
 

 
 

     (4.1) 

 

Trapezoidal membership function: 

In this case 𝜇𝑋  depends on four positive scalar parameters 𝑎, 𝑏, 𝑐, 𝑑 as follows: 

µ(𝑋) =

{
 
 

 
 
0                                                               𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
                                                  𝑎 ≤ 𝑥 ≤ 𝑏

1                                                       𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
                                                   𝑐 ≤ 𝑥 ≤ 𝑑

0                                                               𝑑 ≤ 𝑥}
 
 

 
 

     (4.2) 

 

As a result of fuzzy values in an optimization model, the model is referred as a fuzzy model. 

We present a fuzzy mathematical formulation to clarify how membership functions for fuzzy 

objective function and fuzzy constraints in a mathematical optimization formulation can be defined 

(Tavakkoli-Moghaddam, Rabbani et al. 2007). 

𝑍 ≅ 𝑀𝑖𝑛𝑍(𝑥)          (4.3) 

Subject to 

(𝐴𝑥)𝑖 ≥̃ 𝑏𝑖         ∀ 𝑖 (4.4) 

(𝐴𝑥)𝑗 =̃ 𝑏𝑗         ∀ 𝑗 (4.5) 

𝑥 ≥ 0           (4.6) 
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In the above formulation, both the objective function coefficients (and as a result, the whole 

objective value) and the right hand side of the constraints are fuzzy numbers which would turn the 

objective function and the constraints to the fuzzy formulations with membership functions shown 

below: 

a) Fuzzy objective function membership function (Tavakkoli-Moghaddam, Rabbani et al. 

2007): 

µ𝑍(𝑋) = {

1                                                       𝑍(𝑥) ≤ 𝑍𝑙
𝑍𝑢−𝑍(𝑥)

𝑍𝑢−𝑍𝑙
                                  𝑍𝑙 < 𝑍(𝑥) ≤ 𝑍𝑢

0                                                       𝑍(𝑥) ≥ 𝑍𝑢

}     (4.7) 

 

In the above formulation, lZ  and uZ  are the upper and lower bounds for the objective 

function value. 

b) Fuzzy constraints membership function (Tavakkoli-Moghaddam, Rabbani et al. 2007): 

The first membership function in (4.8) is related to the fuzzy constraint (4.4) and the 

membership function in (4.9) is related to the fuzzy constraint (4.5). It should be noted that ∆𝑏𝑖and 

∆𝑏𝑖
′are the tolerance values for the constraints fuzzy right hand side values. If the tolerance values 

are equal, the related membership function is symmetric while non-equal values make the 

membership function asymmetric. 

µ𝑖(𝑋) = {

1                                                      (𝐴𝑋)𝑖 ≥ 𝑏𝑖

1 +
(𝐴𝑋)𝑖−𝑏𝑖

∆𝑏𝑗
               𝑏𝑖 − ∆𝑏𝑖< (𝐴𝑋)𝑖 ≤ 𝑏𝑖

0                                           (𝐴𝑋)𝑖 ≤ 𝑏𝑖 − ∆𝑏𝑖

}     (4.8) 
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µ𝑗(𝑋) =

{
  
 

  
 
0                                           (𝐴𝑋)𝑗 ≤ 𝑏𝑗 − ∆𝑏𝑗

′

1 −
𝑏𝑗−(𝐴𝑋)𝑗

∆𝑏𝑗
′               𝑏𝑖 − ∆𝑏𝑗

′< (𝐴𝑋)𝑗 ≤ 𝑏𝑗

1 −
(𝐴𝑋)𝑗−𝑏𝑗

∆𝑏𝑗
              𝑏𝑗 < (𝐴𝑋)𝑗 ≤ 𝑏𝑗 + ∆𝑏𝑗

0                                           (𝐴𝑋)𝑗 ≥ 𝑏𝑗 + ∆𝑏𝑗 }
  
 

  
 

     (4.9) 

 

Figure 4.2 illustrates the corresponding membership functions of the fuzzy objective 

function and constraints (Tavakkoli-Moghaddam, Rabbani et al. 2007). 

 

 

Figure 4.2: Membership functions of the fuzzy objective and fuzzy constraints  
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In the next sections, we present the Fuzzy Max-Min and the Fuzzy Ranking modeling 

approaches. For each modeling approach, we present the related Fuzzy APP and also the new 

related Fuzzy FRP-APP. 

4.3 Fuzzy Max-Min Programming 

The Max-min technique could be considered as a very flexible fuzzy technique for both 

single and multi-objective (generally referred to as goal programming) optimization models with 

or without fuzzy constraints. The reason is that this technique just takes into account the 

membership functions for all fuzzy parts of the model whether its related to the fuzzy objective or 

the fuzzy constraint(s). As a result, as long as we are able to come up with fuzzy membership 

functions for the fuzzy parts of the model, this technique will look for a solution with the emphasis 

to improve the lowest achievement degree of all fuzzy membership functions. 

Figure 4.3 represents how the decision (feasible) region for the optimum solution finding 

is determined by having maximization-based objective function (goal) and an inequality-based 

constraints’ membership functions. The decision region is the area below the bold curved lines in 

the figure (Bellman and Zadeh 1970).  

 

Figure 4.3: Feasible region definition 
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The below optimization model defined in (4.10)-(4.12) shows a typical fuzzy model where 

the main sources of fuzziness are related to the objective function (the goal) and the right hand 

side of the constraints. As a result, both the objective function and the constraints need to be 

defined by related membership functions. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =̃ 𝐶𝑥         (4.10) 

Subject to 

 

𝐴𝑥 =̃ �̃�          (4.11) 

𝑥 ≥ 0           (4.12) 
 

As we aim to minimize the objective function, the ideal value would be the minimum value; 

however, if the solution results in any objective value greater than the minimum value, the related 

membership function would not be equal to 1. In some cases, if the problem is formulated in the 

form of a goal programming model, the upper and lower values of this membership function would 

be determined subjectively by the decision maker (Chen and Tsai 2001). However, setting the 

fuzzy parameters equal to their upper and lower bounds and solving the related optimization model 

could also result in estimated upper and lower bound values for the objective. Some other 

techniques include, solving the exact minimization and maximization problems of the same model 

and form the related membership function (Kumar, Vrat et al. 2006), or just solve the exact 

minimization problem and consider tolerance values for the objective function to form the 

membership function. While there are various formulations for membership functions, the most 

common one is the triangular membership function, which is used here. The formulation of the 

triangular membership function for a minimization objective function is as follows: 

µ𝑧(𝑥) = {

1                                                          𝑖𝑓 𝑧(𝑥) ≤ 𝑧𝑚𝑖𝑛

[𝑧𝑚𝑎𝑥−𝑧(𝑥)] 

[𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛]
                         𝑖𝑓 𝑧𝑚𝑖𝑛 ≤ 𝑧(𝑥) ≤ 𝑧𝑚𝑎𝑥

0                                                         𝑖𝑓 𝑧(𝑥) ≥ 𝑧𝑚𝑎𝑥

}           (4.13) 
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The next step would be the formulation of the membership function for the fuzzy 

constraints. Let’s assume that the left-hand-side of constraint (4.2) for each 𝑖 is equal to 𝑔(𝑥)𝑖 and 

𝑏𝑖 is its related right-hand-side. The following formulation would be used to form the equality 

constraint membership function where 𝑢𝑖 and 𝑣𝑖 are the upper and lower violation levels for the 

fuzzy right hand side of each fuzzy constraint 𝑏𝑖 (Kumar, Vrat et al. 2006): 

µ𝑐𝑖(𝑥) =

{
 
 
 

 
 
 
0                                                                       𝑔(𝑥)𝑖 ≤ 𝑏𝑖− 𝑣𝑖
𝑔(𝑥)𝑖−(𝑏𝑖−𝑣𝑖) 

𝑣𝑖
                                            𝑏𝑖− 𝑣𝑖 < 𝑔(𝑥)𝑖 ≤ 𝑏𝑖

1                                                                                 𝑔(𝑥)𝑖 = 𝑏𝑖
(𝑏𝑖+𝑢𝑖)−𝑔(𝑥)𝑖 

𝑢𝑖
                                            𝑏𝑖 ≤ 𝑔(𝑥)𝑖 ≤ 𝑏𝑖+ 𝑢𝑖

0                                                                        𝑏𝑖+ 𝑢𝑖 ≥ 𝑔(𝑥)𝑖}
 
 
 

 
 
 

    (4.14) 

In the above formulation, 𝑖 is an index for the constraint while 𝑏𝑖 is the most likely value 

of the constraints right hand side and 𝑣𝑖 is the maximum violation level of the fuzzy right hand 

side which could be defined using the data related to the historical values of 𝑏𝑖.  

Considering all fuzzy constraints and the fuzzy objective function, the solution 

membership function (µ𝑆(𝑥)) could be defined as the intersection of all fuzzy membership 

functions. In the fuzzy logic, the intersection equals to the minimum of two fuzzy values (Zadeh 

1965). 

µ𝑆(𝑥) = µ𝑧(𝑥) ∩ µ𝑐(𝑥)= min [µ𝑧(𝑥); µ𝑐(𝑥)]      (4.15) 

 µ𝑐(𝑥) = ⋂ µ𝑐𝑖(𝑥)𝑖           (4.16) 
 

The objective becomes to maximize the solution membership function, in order to get the 

highest degree of membership value, and hence, considering λ, as the variable representing the 

solution membership function, its optimum value will not be greater than either the objective or 

the constraints membership functions; we have: 
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λ≤[𝑧𝑚𝑎𝑥 − 𝑧(𝑥)]/[𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛] → λ[𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛]≤ [𝑧𝑚𝑎𝑥 − 𝑧(𝑥)]   (4.17) 

λ≤[1 −
{𝑔(𝑥)𝑖−𝑏𝑖}

𝑣𝑖
]→ λ.𝑣𝑖+𝑔(𝑥)𝑖≤𝑏𝑖+𝑣𝑖        (4.18) 

λ≤[1 −
{−𝑔(𝑥)𝑖+𝑏𝑖}

𝑢𝑖
] → λ.𝑢𝑖 − 𝑔(𝑥)𝑖≤−𝑏𝑖+𝑢𝑖        (4.19) 

As a result, the following formulations can be equivalently used to generate the solution 

with the highest membership value: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 λ          (4.20) 

Subject to 

 

λ[𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛]≤ [𝑧𝑚𝑎𝑥 − 𝑧(𝑥)]       (4.21) 

λ.𝑣𝑖+𝑔(𝑥)𝑖≤𝑏𝑖+𝑣𝑖          (4.22) 

λ.𝑢𝑖−𝑔(𝑥)𝑖≤−𝑏𝑖+𝑢𝑖          (4.23) 

𝑥 ≥ 0           (4.24) 

4.4 Fuzzy Max-Min APP (MM-APP) 

Due to the need for making estimations for future periods’ demand in the APP formulation, 

except the current period demand that we assume to be known, the demand for all other periods 

(𝑖 ≥ 1) is assumed to be a fuzzy number. In addition, the total planning cost of the APP model in 

each rolling horizon planning iteration could have desired upper and lower goals (based on the 

variations in the planning costs expected resulting from the APP and the FRP-APP models) and 

could be defined by a membership function. As a result, the initial fuzzy formulation of the APP 

model would be as follows: 

Minimize  𝑍 =̃ ∑ (𝑐𝑤 . 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜.𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻 . 𝐻𝑡,𝑖 + 𝑐

𝐿 . 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. 𝐼𝑡,𝑖 + 𝑏. 𝐵𝑡,𝑖)(4.25) 

Subject to 

𝑃𝑡,0 = 𝑑𝑡,0 + 𝐼𝑡,0 − 𝐵𝑡,0 − 𝐼𝑡−1,0 + 𝐵𝑡−1,0           (4.26) 

𝑃𝑡,𝑖 − 𝐼𝑡,𝑖 + 𝐵𝑡,𝑖 + 𝐼𝑡,𝑖−1 − 𝐵𝑡,𝑖−1 =̃ �̃�𝑡,𝑖    ∀𝑖 = 1,… , 𝑁   (4.27) 
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𝐼𝑡,𝑁 ≥ 𝐼            (4.28) 

𝑊𝑡,0 = 𝑊𝑡−1,0 + 𝐻𝑡,0 − 𝐿𝑡,0          (4.29) 

𝑊𝑡,𝑖 = 𝑊𝑡,𝑖−1 + 𝐻𝑡,𝑖 − 𝐿𝑡,𝑖      ∀𝑖 = 1,… , 𝑁 (4.30) 

𝑃𝑡,𝑖 ≤ 𝑚𝑅 . 𝑡ℎ.𝑊𝑖 +𝑚
𝑅 . 𝑂𝑖      ∀𝑖 = 0,… , 𝑁 (4.31) 

𝑂𝑖 ≤ 𝑡ℎ.𝑊𝑡,𝑖. 𝑚
𝑂       ∀𝑖 = 0,… , 𝑁 (3.32) 

𝑊𝑡,𝑖, 𝑂𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖, 𝑃𝑡,𝑖, 𝐼𝑡,𝑖, 𝐵𝑡,𝑖 ≥ 0     ∀𝑖 = 0,… , 𝑁 (4.33) 

𝑊𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖: integers       ∀𝑖 = 0,… , 𝑁 (4.34) 

 

Using the Max-Min technique, the resulting MM-APP optimization model is as follows:  

(MM-APP) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 λ          (4.35) 

Subject to 

𝜆[𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛]≤ [𝑧𝑚𝑎𝑥 − 𝑧(𝑥)]       (4.36) 

𝑧(𝑥) = ∑ (𝑐𝑤. 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜.𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻. 𝐻𝑡,𝑖 + 𝑐

𝐿. 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. 𝐼𝑡,𝑖 + 𝑏. 𝐵𝑡,𝑖) (4.37) 

𝜆. 𝑣𝑡𝑖 − 𝑃𝑡𝑖 + (𝐼𝑡𝑖 − 𝐵𝑡𝑖 − 𝐼𝑡𝑖−1 + 𝐵𝑡𝑖−1) ≤ −𝑑𝑡𝑖 + 𝑣𝑡𝑖   ∀𝑖 = 1,… , 𝑁 (4.38) 

𝜆. 𝑢𝑡𝑖 + 𝑃𝑡𝑖 − (𝐼𝑡𝑖 − 𝐵𝑡𝑖 − 𝐼𝑡𝑖−1 + 𝐵𝑡𝑖−1) ≤ 𝑑𝑡𝑖 + 𝑢𝑡𝑖   ∀𝑖 = 1,… , 𝑁 (4.39) 

Constraints (4.26), (4.28)-(4.34)  

0≤ λ≤1          (4.40) 

In this formulation, each inventory constraint which contains the fuzzy demand, as well as 

the fuzzy goal objective will be used in determining the optimum λ value.  
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4.5 Fuzzy Max-Min FRP-APP (MM-FRP-APP) 

Adding flexible bounds Constraint sets (3.21)-(3.23), we will have the MM-FRP-APP as 

follows: 

(MM-FRP-APP) = (MM-APP) + Constraints (3.21)-(3.23) 

In this formulation, the FRP-APP takes into account both the fuzzy demand and upper and 

lower goal values for the planning costs when developing plans. It also makes sure the FRP bounds 

are controlling the plan stability for any plan update in the rolling horizon plan development 

process. 

4.6 Fuzzy Ranking Programming 

The fuzzy ranking method is generally based on the fuzzy operations of ≤̃ and ≥̃ where at 

least one side includes fuzzy values. It could also be generalized to fuzzy objective functions where 

the objective value in the solution finding process needs to be compared and ranked considering 

all other feasible solutions objectives values. There exist multiple fuzzy ranking methods, and in 

the selection of the fuzzy ranking methods, the shape of the fuzzy numbers, and the ease of 

computation of the ranking method can be the major factors to be considered (Baykasoglu and 

Gocken 2010). However, in general, the basic idea behind all methods is to substitute each fuzzy 

number with a function of its most likely and the bound (violations) values using some coefficients. 

We here present 3 main fuzzy ranking methods presented in the literature (Tang, Fung et al. 2003, 

Jiménez, Arenas et al. 2007, Baykasoglu and Gocken 2010).  

4.6.1 The signed distance method 

For the triangular fuzzy numbers of �̃�= (𝑎, 𝑎, �̅�) and α-cut (0≤ α≤1), the related signed 

distance could be defined as follows: 
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𝑑(�̃�, 0) =
1

2
∫ [𝑎 + (𝑎 − 𝑎)α + �̅� − (�̅� − 𝑎)α]𝑑α =
1

0

1

4
(2𝑎 + 𝑎 + �̅�)  (4.41) 

While the signed distance of a trapezoidal fuzzy number �̃�= (𝑎𝑙, 𝑎, �̅�, 𝑎𝑢) and α-cut (0≤ 

α≤1) is as below: 

𝑑(�̃�, 0) =
1

2
∫ [𝑎𝑙 + (𝑎 − 𝑎𝑙)α + 𝑎𝑢 − (𝑎𝑢 − �̅�)α]𝑑α =
1

0

1

4
(𝑎 + 𝑎𝑙 + 𝑎𝑢 + �̅�) (4.42) 

If �̃� and �̃� are both triangular or trapezoidal fuzzy numbers, the ranking of these two 

numbers is defined as: �̃� ≤ �̃� ⇿ 𝑑(�̃�, 0) ≤ 𝑑(�̃�, 0). 

4.6.2 Ranking of fuzzy numbers with integral value 

This technique was introduced by Liou and Wang (1992) to rank fuzzy numbers with 

integral values. This method is relatively simple from computational perspective, especially in 

case of triangular and trapezoidal fuzzy numbers while it could be used for ranking more than two 

fuzzy numbers simultaneously (Liou and Chen 2006). As each triangular fuzzy number (ex. �̃�= 

(𝑎, 𝑎, �̅�)) could be defined by two membership functions parts, the left and right hand side of the 

membership function could be defined as follows (Baykasoglu and Gocken 2010): 

µ�̃�
𝐿 (𝑥) = {

𝑥−𝑎

𝑎−𝑎
        𝑎 ≤ 𝑥 ≤  𝑎, 𝑎 ≠ 𝑎 

1                                𝑎 = 𝑎     
}      (4.43) 

µ�̃�
𝑅(𝑥) = {

𝑥−�̅�

𝑎−�̅�
         𝑎 ≤ 𝑥 ≤  �̅�, 𝑎 ≠ �̅� 

1                                �̅� = 𝑎     
}      (4.44) 

Then 𝑢�̃�
𝐿: [𝑎, 𝑎] → [0,1] and 𝑢�̃�

𝑅: [𝑎, �̅�] → [0,1]. Since µ�̃�
𝐿 (𝑥) and µ�̃�

𝑅(𝑥) are continuous and 

strictly increasing, the inverse function of µ�̃�
𝐿 (𝑥) and µ�̃�

𝑅(𝑥) exist, denoted by 𝑔�̃�
𝐿  and 𝑔�̃�

𝑅, and 

𝑔�̃�
𝐿 : [0,1] → [𝑎, 𝑎] and 𝑔�̃�

𝑅: [0,1] → [𝑎, �̅�], respectively. Both 𝑔�̃�
𝐿  and 𝑔�̃�

𝑅 are as follows: 
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𝑔�̃�
𝐿(𝑢) = {

𝑎 + (𝑎 − 𝑎)𝑢, 𝑎 ≠ 𝑎, 𝑢 ∈  [0,1] 
 𝑎                                                 𝑎 = 𝑎     

}      (4.45) 

𝑔�̃�
𝑅(𝑢) = {�̅� +

(𝑎 − �̅�)𝑢, 𝑎 ≠ �̅�, 𝑢 ∈  [0,1] 
 �̅�                                                𝑎 = �̅�     

}      (4.46) 

As a result, the integral value for the triangular number �̃� could be calculated as follows: 

𝐼(�̃�) = (1 − 𝛼)∫ 𝑔�̃�
𝐿(𝑢)𝑑𝑢 +

1

0
𝛼 ∫ 𝑔�̃�

𝑅(𝑢)𝑑𝑢 =
1−𝛼

2

1

0
𝑎 +

1

2
𝑎 +

𝛼

2
�̅�   (4.47) 

Where 0≤ 𝛼 ≤1. 

The index of optimism 𝛼 is the representation of the degree of optimism, where higher 

value of 𝛼 indicates higher degrees of optimism. A fuzzy number with larger integral value, is a 

larger fuzzy number.  

4.6.3 Ranking of fuzzy numbers through the comparison of their expected intervals 

This method is based on the definition of the expected interval and the expected value of a 

fuzzy number as proposed in Heilpern (1992) and later used for fuzzy modeling optimization by 

Jiménez, Arenas et al. (2007). Let �̃� = (𝑎𝑙, 𝑎, �̅�, 𝑎𝑢)  denote a trapezoidal fuzzy number defined 

as follows:  

µ�̃�(𝑥) =

{
 
 

 
 
0                            ∀𝑥 ∈ (−∞, 𝑎𝑙]

𝑓𝐴(𝑥)                          ∀𝑥 ∈ [𝑎𝑙, 𝑎]

1                                  ∀𝑥 ∈ [𝑎, �̅�]  

𝑔𝐴(𝑥)                       ∀𝑥 ∈ [�̅�, 𝑎𝑢]  
  0                                 ∀𝑥 ∈ (𝑎𝑢, ∞)}

 
 

 
 

     (4.48) 

Please note that a triangular fuzzy number is a specific case of trapezoidal fuzzy number 

where 𝑎=�̅�. In order to warrant the existence and inegrability of the inverse functions 𝑓𝐴
−1(𝑥) and 
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𝑔𝐴
−1(𝑥), it is assumed that 𝑓𝐴(𝑥) is continuous and increasing while 𝑔𝐴(𝑥) is continuous and 

decreasing. The expected interval of this fuzzy number could be defined as follows: 

𝐸𝐼(�̃�) = [𝐸1
�̃�, 𝐸2

�̃�] = [∫ 𝑓𝐴
−1(𝛼)𝑑𝛼,

1

0
∫ 𝑔𝐴

−1(𝛼)𝑑𝛼
1

0
]     (4.49) 

Where 𝛼 = 𝑓𝐴(𝑥) = 𝑔𝐴(𝑥). For a trapezoidal (or triangular) fuzzy number, the expected 

interval could be re-written as follows: 

𝐸𝐼(�̃�) = [
1

2
(𝑎𝑙 + 𝑎),

1

2
(�̅� + 𝑎𝑢)]       (4.50) 

In addition, for the difference of two fuzzy numbers �̃�, �̃�, the expected interval is: 

𝐸𝐼(�̃� − �̃�) = [𝐸1
�̃� − 𝐸2

�̃�, 𝐸2
�̃� − 𝐸1

�̃�] = 𝐸𝐼(�̃�) − 𝐸𝐼(�̃�)    (4.51) 

The degree in which �̃� is greater than �̃� could be defined as the following (Jiménez, Arenas 

et al. 2007, Baykasoglu and Gocken 2010): 

µM(�̃�, �̃�) =

{
 
 

 
 0                          𝑖𝑓 𝐸2

�̃� − 𝐸1
�̃� < 0

𝐸2
�̃�−𝐸1

�̃�

𝐸2
�̃�−𝐸1

�̃�−(𝐸1
�̃�−𝐸2

�̃�)
   𝑖𝑓 0 ∈ [𝐸1

�̃� − 𝐸2
�̃� ,𝐸2

�̃� − 𝐸1
�̃�]

1                          𝑖𝑓 𝐸1
�̃� − 𝐸2

�̃� > 0 }
 
 

 
 

    (4.52) 

If µM(�̃�, �̃�) = 0.5 we can say �̃� and �̃� are equal. When µM(�̃�, �̃�) ≥ 𝛼 we will say that �̃� 

is bigger than or equal to �̃� at least with a degree 𝛼, which could be represented by �̃� ≥𝛼 �̃�. 

In addition, the expected value of the fuzzy number �̃� could be defined according to the 

below formula (Jiménez, Arenas et al. 2007): 

𝐸𝑉(�̃�) =
𝐸1
�̃�+𝐸2

�̃�

2
         (4.53) 
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For fuzzy numbers �̃�, �̃� and for non-negative values of λ, and γ, the following relationships 

hold (Jiménez, Arenas et al. 2007): 

𝐸𝐼(λ�̃� + γ�̃�) = λEI(�̃�) + γEI(�̃�)       (4.54) 

𝐸𝑉(λ�̃� + γ�̃�) = λEV(�̃�) + γEV(�̃�)       (4.55) 

As there exist an equality fuzzy constraint in our formulations, the following equality 

should be true for this constraint: 

𝐸2
𝑎𝑖𝑥−𝐸1

𝑏𝑖

𝐸2
𝑎𝑖𝑥−𝐸1

𝑏𝑖−(𝐸1
𝑎𝑖𝑥−𝐸2

𝑏𝑖)
= 0.5, 𝑖 = 1,… ,𝑚      (4.56) 

Based on (4.56) we have: 

 [0.5𝐸2
𝑎𝑖 + 0.5𝐸1

𝑎𝑖] x = 0.5𝐸2
𝑏𝑖 + 0.5𝐸1

𝑏𝑖 , 𝑖 = 1,… ,𝑚     (4.57) 

Since in our formulations the left-hand-side of the fuzzy inventory constraint is not a fuzzy 

number, the transformed version of this constraint is: 

𝑃𝑡,𝑖 − 𝐼𝑡,𝑖 + 𝐵𝑡,𝑖 + 𝐼𝑡,𝑖−1 − 𝐵𝑡,𝑖−1 = 0.5𝐸2
𝑑𝑡,𝑖 + 0.5𝐸1

𝑑𝑡,𝑖  ∀𝑖 = 1,… , 𝑁 (4.58) 

In order to optimize the objective function with fuzzy coefficients, let's consider the 

objective function in objective (4.10) without considering any uncertainty in constraints. 

According to Jiménez, Arenas et al. (2007), a vector 𝑥0 is an acceptable optimal solution of this 

model, if we can verify that: 

µ𝑚(�̃�
𝑡𝑥, �̃�𝑡𝑥0) ≥

1

2
  ∀𝑥        (4.59) 

Thus we have: 
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�̃�𝑡𝑥 ≥1

2

�̃�𝑡𝑥0  ∀𝑥         (4.60) 

Therefore, 𝑥0 is a better choice at least to a degree of 
1

2
 as opposed to other feasible vectors. 

The above expression could be then re-written as follows: 

𝐸2
𝑐𝑡𝑥−𝐸1

𝑐𝑡𝑥0

𝐸2
𝑐𝑡𝑥−𝐸1

𝑐𝑡𝑥+𝐸2
𝑐𝑡𝑥0−𝐸1

𝑐𝑡𝑥0
≥

1

2
        (4.641) 

Or alternatively 

𝐸2
𝑐𝑡𝑥+𝐸1

𝑐𝑡𝑥

2
≥

𝐸2
𝑐𝑡𝑥0+𝐸1

𝑐𝑡𝑥0

2
        (4.62) 

A vector 𝑥0(𝛼) ∈ 𝑅𝑛 is a 𝛼-acceptable optimal solution of Model (4.10)-(4.12) if it is an 

optimal solution to the following problem: 

Minimize 𝐸𝑉(�̃�)𝑥          (4.63) 

Subject to 

 [0.5𝐸2
𝑎𝑖 + 0.5𝐸1

𝑎𝑖] x = 0.5𝐸2
𝑏𝑖 + 0.5𝐸1

𝑏𝑖 , 𝑖 = 1,… ,𝑚, x ≥ 0     (4.64)  

4.7 Fuzzy Ranking APP (R-APP) 

In this research, we are not considering fuzzy values for the cost coefficients of the APP 

and FRP-APP models, as a result, the R-APP model is as follows: 

(R-APP) 

Minimize 𝑍 = ∑ (𝑐𝑤. 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜.𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻. 𝐻𝑡,𝑖 + 𝑐

𝐿. 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. 𝐼𝑡,𝑖 + 𝑏. 𝐵𝑡,𝑖)(4.65) 

Subject to 

Constraints (4.26), (4.28) -(4.34), (4.58) 
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4.8 Fuzzy Ranking FRP-APP (R-FRP-APP) 

Adding the FRP related constraint to the R-APP formulation, the R-FRP-APP formulation 

is as follows: 

(R-FRP-APP) = (R-APP) + Constraints (3.21)-(3.23) 

The R-RFP-APP is also using the ranking method to deal with the fuzzy inventory 

constraint resulting from fuzzy demand estimations of the future periods. In addition, it controls 

the stability of the plans through enforcing restrictions on production level changes over various 

plan updates in a rolling horizon planning approach.  

4.9 Computational Study 

In this section, a comprehensive analysis on the performance of the FRP-APP, Fuzzy FRP-

APP, and Fuzzy APP models will be presented. We initially start with the data structure and the 

two performance measures for comparing different models, and then present the main results, 

sensitivity analysis, and also the experimental analysis of models to identify influential factors on 

models’ performance. It should be noted that the data structure and the performance measures will 

be used in all analysis related to Chapters 4-6. 

4.9.1 Data Structure 

We use five sets of data corresponding to Textile (Leung, Wu et al. 2003, Demirel 2014), 

Automotive parts (Sillekens, Koberstein et al. 2011, Demirel 2014), Machinery & Transmission 

parts (Wang and Liang 2005), Wood & Paper production (Mirzapour Al-E-Hashem, Malekly et 

al. 2011), and Air Conditioning Units components (Techawiboonwong and Yenradee 2002) as 

shown in Table 4.1. It should be noted that the values marked by double underscores are missing 

values in each case and calculated using the mean values of the same parameters in other cases. 



65 

 

These data sets follow a different structure in terms of production, inventory and labor related costs 

and times, hence they provide a good opportunity for a sensitivity analysis of the proposed 

planning models’ performance. 

Table 4.1: Cost and capacity, 5 Case studies 

Parameter Textile 
Automotive 

Parts 

Machinery & 

Transmission 

Components 

Wood & 

Paper 

Air 

Conditioning 

Units 

Production cost ($/unit) 6.41 1.8 20 9.03 9 

Inventory cost per unit per week ($/unit) 1.92   0.18  0.3 5 6 

Backorder cost per unit per week ($/unit) 3.85 3.6 40 2 12.36 

Labor cost ($/person-hour) 0.80 11.16 10 18 0.6 

Overtime labor cost ($/person-hour) 1.28 12.28 30 27 1.2 

Hiring cost ($/person) 12.82 3571 10 40 36 

Layoff cost ($/person) 15.38 14286 3 70 29.46 

Number of units produced (unit/person-hour)   0.57 16.67 20 9.48 0.7 

 

The initial inventory is assumed to be 100 units and the initial workforce is set based on 

the realized demand in the first period of each planning iteration. Each employee regularly works 

8 hours per day, 5 days per week. 

We use the demand generation formulation introduced by Demirel (2014) where the 

demand is assumed to follow a seasonal behavior according to the following formulation: 

𝐷𝑡 = (𝑎 + 𝑏𝑡)𝑆𝑡 + 𝑒𝑡          (4.66) 

Where 𝐷𝑡 is the demand value at time period 𝑡, 𝑎 is the baseline parameter, 𝑏 is the trend 

component, 𝑆𝑡 is the seasonal factor at time period 𝑡, and 𝑒𝑡 is the random error component with a 

normal distribution 𝑁(0, 𝜎2). The variation in the values of demand generation components could 

result in various demand scenarios. Table 4.2 represents the magnitude of four demand generation 

components (Demirel 2014). As each of 4 main components in (4.68) has 2 levels, 16 demand 

scenarios would be generated.  
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Table 4.2: Demand generation components values 

Component Low High 

Baseline 1000 units 3000 units 

Trend 20 100 

Seasonality 1+̅0.1 1+̅0.3 

Magnitude of error Std=50 Std=100 

 

We will be using the same demand scenarios for all Case studies as the 16 demand 

scenarios have variation combinations for demand values and it has the potential to give an 

overview of the effect of different cost structures on the FRP-APP and APP models performance. 

Table 4.3 presents these scenarios and levels of parameters used for generation of each scenario. 

Table 4.3: Demand scenarios 

Scenario Baseline Trend Seasonality Magnitude of error 

1 Low Low Low Low 

2 Low Low Low High 

3 Low Low High Low 

4 Low Low High High 

5 Low High Low Low 

6 Low High Low High 

7 Low High High Low 

8 Low High High High 

9 High Low Low Low 

10 High Low Low High 

11 High Low High Low 

12 High Low High High 

13 High High Low Low 

14 High High Low High 

15 High High High Low 

16 High High High High 

 

For the crisp models and taking into account the generated demand as the historical data, 

the demand values of the future periods are forecasted using the Multiplicative Holt-Winter (Triple 

Exponential Smoothing) forecasting method. This method of forecasting takes into consideration 

all components of the demand generation formulation where each component has a specific 
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parametric-based formulation. Baseline, Trend, and Seasonality, and the forecasted demand 

formulation are as follows: 

Base: 𝐿𝑡=𝛼 (
𝐷𝑡

𝑆𝑡−𝑠
) + (1 − 𝛼)(𝐿𝑡−1 − 𝑇𝑡−1)      (4.67) 

Trend: 𝑇𝑡=𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1      (4.68) 

Seasonality: 𝑆𝑡=𝛶 (
𝐷𝑡

𝐿𝑡
) + (1 − 𝛶)𝑆𝑡−𝑠      (4.69) 

Forecast: 𝐹𝑡+𝑚=(𝐿𝑡 +𝑚𝑇𝑡)𝑆𝑡+𝑚−𝑠       (4.70) 

In the above formulation, 𝑠 is the seasonality length, and 𝑚 denotes the number of future 

periods for which the forecasting is done. In addition, 𝛼, 𝛽, 𝛶 𝜖[0,1] are the smoothing parameters. 

Each demand scenario is forecasted using the above formulation, and is used in crisp models as 

the forecasted demands. For each demand scenario, we aim to do the planning for the current 

period and 𝑁 = 5 periods ahead in each planning iteration ( 𝑖 = 0,1, … ,5) and repeat the planning 

for 𝑇 = 50 rolling horizon iterations ( 𝑡 = 1, … ,50). As a result, the forecasted demand for each 

period and its actual demand generated using the demand generation formulation is initially used 

to calculate the Mean Square Error (MSE) of the forecasts. After we complete all the forecasts, we 

do the MSE minimization to come up with the optimum 𝛼, 𝛽, and 𝛶, and also the more reliable 

forecast values to be later used in our test problems. 

The fuzzy upper and lower bounds in the membership functions related to the demand 

values are calculated using the forecasted demand values with pre-specified violation levels. Here, 

the violation levels are set as: upper violation 15%, lower violation 12%. In addition, for the Max-

Min method, the upper and lower bounds for the fuzzy objective function are taken here as the 
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highest and lowest values of the APP and FRP-APP model objective function values, respectively. 

The membership functions are all formulated in forms of triangular functions which without loss 

of generality could be reformulated using trapezoidal functions, depending on the data availability 

for building related fuzzy membership components. In general, triangular and trapezoidal 

membership functions are preferred in fuzzy programming since they require less data for the 

construction of the related membership function and provide robust results. It should also be noted 

that, all fuzzy transformation methods explained earlier could be generalized to other fuzzy 

memberships as well. However, nonlinear membership functions would result in nonlinear 

constraints hence nonlinear optimization problems, which can be a justification to utilize triangular 

or trapezoidal membership functions instead. 

Finally, the flex-limits for each period (𝐹𝑖) are based on the following sets for sensitivity 

analysis purposes. We believe due to the high range of differences these two flex-limit sets have, 

it gives variability to the FRP-APP models to better analyze how the cost and stability of this 

planning approach changes with respect to high and low flex-limit tolerances. 

Table 4.4: Flex-limits coefficients 

Case i=0 i=1 i=2 i=3 i=4 i=5 

1% Flex Limits 1% 2% 3% 4% 5% 6% 

5% Flex Limits 5% 10% 15% 20% 25% 30% 

4.9.2  Performance Measures 

The first performance measure is the total current cost for 𝑖 = 0 (actual cost) over all 

planning iterations. Please note that this cost performance measure is related to but different from 

the cost objective function defined in the optimization models as it just considers the summation 

of actual costs over all planning iterations as shown in the formula below: 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡 = ∑ 𝐶𝑤𝑇
𝑡=1 . 𝑡ℎ.𝑊𝑡,0 + 𝐶

𝑜. 𝑂𝑡,0 + 𝐶
𝐻 . 𝐻𝑡,0 + 𝐶

𝐿 . 𝐿𝑡,0 + 𝐶
𝑝. 𝑃𝑡,0 + ℎ. 𝐼𝑡,0 + 𝑏. 𝐵𝑡,0 (4.71) 
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Another measure is the stability of the production plans. The stability could be defined in 

different forms like: cost, changes in number of setups, order quantity change, changes in 

production quantities, or a mixture of these criteria simultaneously (Kadipasaoglu and Sridharan 

1997, Pujawan and control 2004). Some other studies such as Herrera and Thomas (2009) 

proposed use the maximum changes in the production levels in two planning iterations in the 

rolling horizon as a measure of instability. We use the stability definition presented by Demirel 

(2014) which measures the total amount of changes in the estimated production level values over 

consecutive plan updates and then average it over all rolling horizon iterations (starting from 

iteration 2) and planning horizon periods 𝑁.  

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
(∑ ∑ |𝑃𝑡−1,𝑖−𝑃𝑡,𝑖−1|

𝑚𝑁
𝑖=1

𝑇
𝑡=2 )

1/𝑚

(𝑇−1).𝑁
      (4.72) 

Where 𝑚 is the compensation parameter (1≤ 𝑚 ≤ ∞), 𝑚 = 1 implies full compensation 

which means the sum of absolute deviations from the production plans. In our research, we 

consider 𝑚 = 1.  In formulation (4.75), as each planning iteration is done, the absolute value of 

changes in production levels for identical periods are calculated, added and then averaged over all 

periods and iterations. Please also note that the lower values of this stability measure mean more 

stable production plans.  

4.9.3 Computational Results & Analysis  

All our numerical experiments were conducted using the Gurobi Python Interphase a.k.a. 

Gurobipy (Pedroso 2011) optimization solver on a personal computer with Intel Corei7 6300U 

CPU (2:4 GHz) with 8.00 GB of RAM. 
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Figures 4.4-4.23 represent the related results of comparing deterministic and Fuzzy FRP-

APP with Fuzzy APP models for different Industry Cases and various demand scenarios using the 

two fuzzy techniques. The results of all FRP-APP models are presented using the previously 

introduced 2 flex-limits sets for sensitivity purposes (For further details about the sensitivity of the 

FRP-APP and sample Fuzzy FRP-APP cost and stability performance with respect to varying flex-

limit sets, please refer to Figures 1-20 in Appendix). In addition, the average cost gap and the 

average instability ratio of FRP-APP, Fuzzy FRP-APP, and Fuzzy APP models are presented in 

Tables 4.5, 4.6. These gaps are calculated as formulas below (these formulations will be used in 

Chapters 5, and 6 as well): 

Cost gap%=
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑠𝑡−𝐵𝑒𝑠𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡

𝐵𝑒𝑠𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡
∗ 100     (4.73) 

Instability ratio=
𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝐵𝑒𝑠𝑡 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
       (4.74) 

Looking at the different industry cost and stability results over various demand scenarios 

indicate that in general, the FRP-APP models show to be very promising planning models to 

produce the most stable production plans and competitive cost values, with reliable results even if 

formulated as a fuzzy model. In addition, the general observation in most of the Industry Cases 

indicate the change of fuzzy technique could have impact on the stability of the Fuzzy APP model 

(Ranking technique shows more control over the stability of the plans). When fuzziness is also 

considered in the FRP-APP formulation, the impact of fuzzy technique change on the stability 

performance of the FRP-APP becomes more smooth moving from Flex-limits 5% to 1%. Another 

interesting observation is that incorporation of Fuzziness in the FRP-APP formulation specially 

when formulated with the 1% flex-limit set does not noticeably impact the relative cost and more 

specifically the stabilizing performance of the Fuzzy FRP-APP as compared to the FRP-APP 
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model. There are some further notes related to each industry that we would like to further discuss 

them: 

Textile Industry (Figures 4.4-4.7) indicate that FRP-APP models with both 1% and 5% 

flex-limit sets result in very close cost values as compared to the Fuzzy-APP model. Looking at 

the stability results, the 1% FRP-APP with and without fuzziness seem to result in the most stable 

production plans. Table 4.6 shows that Fuzzy FRP-APP with 1% flex-limit is able to noticeably 

improve the stability measure up to 5 times better no matter which fuzzy technique is utilized. We 

need to note that while the stability improves significantly, depending on which fuzzy technique 

is used, there is a trade-off with the cost, which increases slightly by 9% (for R-FRP-APP)-13% 

(for MM-FRP-APP). 

The Automotive parts (4.8-4.11) results indicate the 1% FRP-APP models result in very 

close cost values compared to other models while being able to produce the most stable plans. On 

the other hand, Figures (4.9) and (4.11) show that stability results deteriorate for the Automotive 

Parts Industry Case as we move from 1% to 5% flex limits results. Taking into account both the 

cost and stability, the Automotive Parts Industry Case advocates the utilization of the 1% Fuzzy 

FRP-APP models as it not only takes into account input parameters’ uncertainties, but it makes 

sure the stability is well addressed while the costs are maintained at relatively low levels. However, 

the 5% Fuzzy FRP-APP models could lose their favorability as compared to the Fuzzy APP models 

in terms of stability performance and cannot always guarantee more stable production plans.  

For the Wood and Paper Industry (Figures 4.16-4.19), unlike the 1% case, the 5% fuzzy 

FRP-APP is not constantly and noticeably more stable as compared to the non-FRP models. For 
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this case, the MM-FRP-APP model, especially for the 1% flex-limit set tends to result in more 

favorable cost and stability results. 

The Machinery and Transmission Parts industry Case results (Figures 4.12-4.15) indicate 

that the 5% flex-limit set in either MM-FRP-APP or the R-FRP-APP methods are more promising 

for the cost and relative stability performance as compared to the 1% flex-limit set. The cost of  

1% Fuzzy FRP-APP has the potential of getting high specially in MM-FRP-APP (up to about 30% 

higher cost) but a less drastic change (with only 6% higher cost) is observed in the R-FRP-APP. 

Finally, for the Air conditioning unit industry Case (Figures 4.20-4.23), none of the FRP-

based models stand out in terms of cost and stability. The 1% FRP-APP models seem to improve 

the stability by 300% but also result in more than 20% cost, which requires a decision-maker to 

trade-off between stability versus cost. Furthermore, the 5% FRP-APP model does not seem to be 

attractive since it has no advantage in either cost or stability as compared to the APP model. 

Overall, Tables 4.5 and 4.6 indicate the Max-Min technique is slightly better in terms of 

stability and the Ranking technique is slightly better in terms of cost. The justification of using the 

Max-Min fuzzy technique however, would be the possibility of using the decision maker’s 

judgements and/or historical data to form the goal membership function for the objective without 

paying attention to each cost component, which could make it easier for the decision makers and 

planners to come up with the fuzzy functions components. The Max-Min fuzzy results show it 

does not necessarily result in significantly higher cost values for the most stable case (MM-FRP-

APP 1%) except for the Machinery and Transmission Parts industry Case. On the other side, the 

R-FRP-APP shows the potential for handling fuzziness and stability in the planning, resulting in 

close performance to the crisp FRP-APP. 
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Figure 4.4: Total current cost comparison, FRP-

APP, MM-FRP-APP, MM-APP, Textile 

Industry 

 

Figure 4.5: Stability comparison, FRP-APP, MM-

FRP-APP, MM-APP, Textile Industry 

  

 

Figure 4.6: Total current cost comparison, FRP-

APP, R-FRP-APP, R-APP, Textile Industry 

 

Figure 4.7: Stability comparison, FRP-APP, R-

FRP-APP, R-APP, Textile Industry 
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Figure 4.8: Total current cost comparison, FRP-

APP, MM-FRP-APP, MM-APP, Automotive 

Parts Industry 

 

Figure 4.9: Stability comparison, FRP-APP, MM-

FRP-APP, MM-APP, Automotive Parts Industry 

  

 

Figure 4.10: Total current cost comparison, 

FRP-APP, R-FRP-APP, R-APP, Automotive 

Parts Industry 

 

Figure 4.11: Stability comparison, FRP-APP, R-

FRP-APP, R-APP, Automotive Parts Industry 
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Figure 4.12: Total current cost comparison, FRP-

APP, MM-FRP-APP, MM-APP, Machinery and 

Transmission Industry 

 

Figure 4.13: Stability comparison, FRP-APP, MM-

FRP-APP, MM-APP, Machinery and Transmission 

Industry 

  

 

Figure 4.14: Total current cost comparison, FRP-

APP, R-FRP-APP, R-APP, Machinery and 

Transmission Industry 

 

Figure 4.15: Stability comparison, FRP-APP, R-

FRP-APP, R-APP, Machinery and Transmission 

Industry 
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Figure 4.16: Total current cost comparison, FRP-

APP, MM-FRP-APP, MM-APP, Wood and 

Paper Industry 

 

Figure 4.17 Stability comparison, FRP-APP, MM-

FRP-APP, MM-APP, Wood and Paper Industry 

  

 

Figure 4.18: Total current cost comparison, FRP-

APP, R-FRP-APP, R-APP, Wood and Paper 

Industry 

 

Figure 4.19: Stability comparison, FRP-APP, R-

FRP-APP, R-APP, Wood and Paper Industry 
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Figure 4.20: Total current cost comparison, 

FRP-APP, MM-FRP-APP, MM-APP, Air 

Conditioning Units Industry 

 

Figure 4.21: Stability comparison, FRP-APP, MM-

FRP-APP, MM-APP, Air Conditioning Units 

Industry 

  

 

Figure 4.22: Total current cost comparison, 

FRP-APP, R-FRP-APP, R-APP, Air 

Conditioning Units Industry 

 

Figure 4.23: Stability comparison, FRP-APP, R-

FRP-APP, R-APP, Air Conditioning Units Industry 

 

Table 4.5: Average cost gap percentage of different models in different industries 

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

MM-FRP-APP 1% 13.6 0.9 29.5 8.8 30.2 

MM-FRP-APP 5% 4.8 0.4 6.2 4.2 11.7 

MM-APP 0.0 0.0 0.0 0.0 0.3 

R-FRP-APP 1% 9.4 0.1 6.7 13.5 21.6 
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R-FRP-APP 1% 4.1 0.0 2.1 6.2 9.3 

R-APP 0.3 0.0 0.1 0.0 0.0 

FRP-APP.1% 8.8 0.1 7.6 12.3 20.8 

FRP-APP.5% 3.7 0.0 2.1 5.8 8.9 

*0.0 means the lowest average cost, and a cost gap percentage closer to 0.0 shows a better cost performance. 

Table 4.6: Comparison of average instability ratio for different models in different industries  

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

MM-FRP-APP 1% 1.0 1.0 1.0 1.0 1.0 

MM-FRP-APP 5% 4.1 3.0 3.0 2.6 2.6 

MM-APP 5.8 3.4 7.5 3.2 2.9 

R-FRP-APP 1% 1.1 1.0 1.0 1.0 1.0 

R-FRP-APP 1% 3.7 2.3 2.6 2.6 2.3 

R-APP 5.5 2.6 5.3 3.1 2.6 

FRP-APP.1% 1.2 1.1 1.0 1.0 1.1 

FRP-APP.5% 3.7 2.3 2.5 2.6 2.3 

*1.0 means the best stability control, and a ratio closer to 1.0 shows a better stability performance. 

The results presented thus far, show that the APP model, and to some extend the newly 

proposed Fuzzy FRP-APP models show sensitivity to the demand scenarios, the fuzzy modeling 

techniques, and also Industry case change. In order to see how each model is statistically affected 

by each of these factors, and which factors are playing a stronger role, we follow on experimental 

design approach. Table 4.7 includes the main experimental factors and their related levels. Each 

demand generation formulation related parameter has 2 levels, while the effect of flex-limits is 

analyzed considering 4 levels, more specifically, 1%, 3%, 5% and No Flex limits. Please note that 

the no Flex Limits case corresponds to the APP model without flex limit consideration. The effect 

of different industries is also tested by considering a 5 level factor, where levels 1,2,3,4,5 are 

related to the Textile, Automotive Parts, Machinery and Transmission Parts, Wood and Paper, and 

Air Conditioning Units Industry Cases respectively. The data is analyzed using the General Linear 
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Model (GLM) with 2*2*2*2*4*2*5=640 scenarios. Figures 4.44 and 4.45 present the main effects 

of the independent variables for each response variable. The cost seems to show higher sensitivity 

to changes in demand structure (base, trend and seasonality) and industry, and less sensitivity to 

the demand error, flex-limits and fuzzy technique. The industry seems to be sharply affecting the 

cost in the Automotive Parts Industry, which has the highest values for hiring and layoff and also 

a relatively high workforce cost compared to the other Industry Cases. On the other hand, for 

stability, all factors seem to be significant, but flex-limits seem to have the highest effect as 

expected. 

Tables 4.8 and 4.9 include the ANOVA (Analysis of Variance) results for plan cost and 

stability, respectively. Looking at the results, the cost and stability performance measures are 

affected by the demand structure and industry parameters, while stability is highly affected by 

fuzzy technique and flex-limits as well. Cost ANOVA results for the second and third level 

interactions indicate that in general, except for the flex-limits and the fuzzy technique, all other 

factor interactions seem to be significant for cost. On the other hand, stability ANOVA results for 

the second and third level interactions indicate that in general, the flex-limits, the fuzzy technique 

and the demand structure seem to be significant for stability. 

Table 4.7: Experimental design components and designs to be tested 

Factors 
Number of 

Levels 
Levels 

Demand-base 2 Low(1000),High(3000) 

Demand-trend 2 Low(20),High(100) 

Demand-seasonality 2 Low(+/-0.1),High((+/-0.3) 

Demand-magnitude of error 2 Low(std=50),High(std=200) 

Flex-limits 4 1%,3%,5%,No-flex-limits 

Fuzz-technique 2 Max-Min,Ranking 

Industry 5 1,2,3,4,5 

 



80 

 

 

Figure 4.24: Main effects plot for cost, Fuzzy models 

 

 

Figure 4.25: Main effects plot for stability, Fuzzy models 
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Table 4.8: Selected ANOVA results for plan cost, Fuzzy FRP-APP, Fuzzy APP 

Source DF Adj SS Adj MS F-Value P-Value 

  Demand-base 1 2.80E+15 2.80E+15 28477.43 0 

  Demand-trend 1 1.35E+14 1.35E+14 1372.99 0 

  Demand-seasonality 1 4.88E+13 4.88E+13 496.04 0 

  Demand-error 1 2.01E+12 2.01E+12 20.41 0 

  Flex-limits 3 4.09E+12 1.36E+12 13.86 0 

  Fuzzy Technique 1 6.55E+11 6.55E+11 6.66 0.01 

  Industry 4 2.36E+16 5.90E+15 59928.66 0 

  Demand-base*Demand-trend 1 2.75E+12 2.75E+12 28 0 

  Demand-base*Demand-seasonality 1 2.09E+13 2.09E+13 212.45 0 

  Demand-base*Demand-error 1 2.26E+12 2.26E+12 22.93 0 

  Demand-base*Fuzzy Technique 1 4.05E+11 4.05E+11 4.12 0.043 

  Demand-base*Industry 4 5.39E+15 1.35E+15 13695.21 0 

  Demand-trend*Demand-seasonality 1 9.33E+12 9.33E+12 94.81 0 

  Demand-trend*Demand-error 1 9.19E+11 9.19E+11 9.34 0.002 

  Demand-trend*Industry 4 1.57E+14 3.91E+13 397.87 0 

  Demand-seasonality*Industry 4 1.76E+14 4.39E+13 446.08 0 

  Demand-error*Industry 4 7.81E+12 1.95E+12 19.85 0 

  Fuzzy Technique*Industry 4 1.13E+12 2.83E+11 2.88 0.023 

  Demand-base*Demand-trend*Demand-error 1 1.46E+12 1.46E+12 14.81 0 

  Demand-base*Demand-trend*Industry 4 6.73E+12 1.68E+12 17.11 0 

  Demand-base*Demand-seasonality*Demand-

error 
1 1.23E+12 1.23E+12 12.5 0 

  Demand-base*Demand-seasonality*Industry 4 7.77E+13 1.94E+13 197.56 0 

  Demand-base*Demand-error*Industry 4 5.63E+12 1.41E+12 14.3 0 

  Demand-trend*Demand-seasonality*Demand-

error 
1 7.02E+12 7.02E+12 71.35 0 

  Demand-trend*Demand-seasonality*Industry 4 3.45E+13 8.63E+12 87.77 0 

  Demand-trend*Demand-error*Industry 4 5.24E+12 1.31E+12 13.33 0 

Error 430 4.23E+13 98369839137  

Total 639 3.25E+16  

 

Table 4.9: Selected ANOVA results for plan stability, Fuzzy FRP-APP, Fuzzy APP 

Source DF Adj SS Adj MS F-Value P-Value 

  Demand-base 1 99376 99376 328.13 0 

  Demand-trend 1 139152 139152 459.46 0 

  Demand-seasonality 1 24988 24988 82.51 0 

  Demand-error 1 12558 12558 41.47 0 

  Flex-limits 3 696392 232131 766.47 0 

  Fuzzy Technique 1 13423 13423 44.32 0 

  Industry 4 134439 33610 110.98 0 
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  Demand-base*Demand-trend 1 5623 5623 18.57 0 

  Demand-base*Flex-limits 3 8758 2919 9.64 0 

  Demand-base*Fuzzy Technique 1 4682 4682 15.46 0 

  Demand-base*Industry 4 34803 8701 28.73 0 

  Demand-trend*Demand-error 1 3023 3023 9.98 0.002 

  Demand-trend*Flex-limits 3 46995 15665 51.72 0 

  Demand-trend*Industry 4 5056 1264 4.17 0.003 

  Demand-seasonality*Demand-error 1 4879 4879 16.11 0 

  Demand-seasonality*Flex-limits 3 28561 9520 31.44 0 

  Demand-seasonality*Industry 4 19092 4773 15.76 0 

  Demand-error*Flex-limits 3 4588 1529 5.05 0.002 

  Demand-error*Fuzzy Technique 1 2209 2209 7.29 0.007 

  Demand-error*Industry 4 3120 780 2.58 0.037 

  Flex-limits*Fuzzy Technique 3 9211 3070 10.14 0 

  Flex-limits*Industry 12 205175 17098 56.46 0 

  Fuzzy Technique*Industry 4 8448 2112 6.97 0 

  Demand-base*Demand-trend*Demand-seasonality 1 1693 1693 5.59 0.018 

  Demand-base*Demand-trend*Demand-error 1 1491 1491 4.92 0.027 

  Demand-base*Demand-trend*Flex-limits 3 3014 1005 3.32 0.02 

  Demand-base*Demand-seasonality*Demand-error 1 4457 4457 14.72 0 

  Demand-base*Demand-seasonality*Industry 4 14749 3687 12.18 0 

  Demand-base*Demand-error*Flex-limits 3 2397 799 2.64 0.049 

  Demand-base*Demand-error*Industry 4 3057 764 2.52 0.04 

  Demand-base*Flex-limits*Fuzzy Technique 3 3379 1126 3.72 0.012 

  Demand-base*Flex-limits*Industry 12 22608 1884 6.22 0 

  Demand-trend*Demand-seasonality*Demand-error 1 3455 3455 11.41 0.001 

  Demand-trend*Demand-error*Flex-limits 3 3690 1230 4.06 0.007 

  Demand-trend*Demand-error*Industry 4 3507 877 2.9 0.022 

  Demand-trend*Flex-limits*Industry 12 9958 830 2.74 0.001 

  Demand-seasonality*Demand-error*Flex-limits 3 4525 1508 4.98 0.002 

  Demand-seasonality*Flex-limits*Industry 12 31057 2588 8.55 0 

  Demand-error*Flex-limits*Industry 12 7999 667 2.2 0.011 

  Flex-limits*Fuzzy Technique*Industry 12 15527 1294 4.27 0 

Error 430 130228 303  

Total 639 1800458  

 

While the five Industry Cases presented earlier provide a fairly good idea about the 

applicability of the proposed Fuzzy FRP-APP models, more analysis is needed to conclude for 
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other industries. Also, the statistical analysis presented earlier did indicate that industry can be a 

significant factor on the cost and stability performance, but it did not provide the means to conclude 

on which industry related cost and capacity factors are more influential on the results. For these 

reasons, we will present an additional sensitivity analysis through experimental design to further 

investigate the behavior and performance of the Fuzzy models under other possible industrial 

variations. This sensitivity analysis will also enable us to take a closer look at each industry related 

parameter to identify the statistically significant ones in terms of both planning cost and stability.  

The experimental design model chosen for this sensitivity analysis is Plackett-Burmann 

design. This design is selected as opposed to other designs (such as full or partial factorial analysis) 

since it can handle many factors with fewer number of runs. The selected Plackett-Burman design 

for the five industry related factors is shown in Table 4.10. As one can see there are 12 different 

scenarios, which correspond to 12 different possible industries. We would like to note that even 

with these reduced 12 industry scenarios the total number of computations are quite high since for 

each scenario, we run 32 scenarios as explained earlier, which reflect the demand plus fuzzy 

technique variations. Hence for this additional analysis 384 additional optimization simulations 

were conducted. In order to generate the low and high values for the 12 different scenarios, we 

utilized the minimum and maximum possible factor values for the 5 Industry Cases analyzed 

earlier. We would like to remark that the selected industry factors for this analysis shown in Table 

4.10, slightly differs from the main industry factors that were listed as in Table 4.1. Two 

modifications were carried out in Table 4.9 to take care of the dependencies between some of these 

factors. More specifically, since the magnitude of the hiring and layoff costs in a specific industry 

are related, we set both of these factors at their high or low values at the same time. As a result, 

we consider hiring and layoff almost like as a “single factor” from an experimental scenario 
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generation perspective. Another set of variables with dependencies are the regular and overtime 

workforce cost. For different industry types, the overtime over regular workforce cost ratio is 

changing from 1.1 to 3, which makes the overtime cost always higher than the regular workforce 

cost. Using the regular and overtime costs as two factors, could result in designs with very strange 

ratios that might not be realistic (<1). In order to make it more realistic, we take the regular 

workforce cost and the ratio of the regular and overtime costs as another factor. This way, we 

control the amount of overtime cost, taking into account the regular workforce cost. With these 

modifications, the design consists of 7 factors. 

Table 4.10: Plackett-Burman design 

Design 𝑪𝑾 𝑪𝑶/𝑪𝑾 𝑪𝑯 (𝑪𝑳) 𝑪𝑷 b h 𝒎𝑹 

1 Low High High Low High Low Low 

2 High High Low High High Low High 

3 High High High Low High High Low 

4 High High Low High Low Low Low 

5 High Low High High Low High Low 

6 Low High High High Low High High 

7 Low Low High High High Low High 

8 Low Low Low Low Low Low Low 

9 High Low High Low Low Low High 

10 High Low Low Low High High High 

11 Low Low Low High High High Low 

12 Low High Low Low Low High High 

 

Figure 4.26 includes the average cost performance of the Fuzzy FRP-APP and Fuzzy APP 

models using either fuzzy technique over 12 Industry Cases, and Figure 4.27 includes the relative 

stability results. While the overall results show relatively close cost values for all models, there 

are 3 Industry scenarios (3,5,9) in which the overall cost of all models are higher that other Cases. 

From Table 4.10, we see that these Cases correspond to the industry scenarios with highest 

workforce and hiring/layoff costs.  
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Figure 4.26: Total current cost comparison of 

Fuzzy FRP-APP and Fuzzy APP model, 12 

experimental industries, Averaged over 16 

demand scenarios 

 

Figure 4.27: Stability comparison of Fuzzy FRP-

APP and Fuzzy APP model, 12 experimental 

industries, Averaged over 16 demand scenarios 

 

The ANOVA results shown in Table 4.11 concur that the cost analysis of the models using 

each of the fuzzy techniques are unanimously affected by the workforce cost and the workforce 

hiring and layoff costs. This could explain the sharp change in the cost values in Figure 4.26 for 

designs 3,5,9 and also the sharp line slope in Figure 4.24. Other influential factors on the stability 

of the models, especially the Fuzzy APP and Fuzzy FRP-APP 5%, include the inventory cost and 

the production capacity, which refers to the fact that the inventory considerations could affect the 

production amount changes over re-planning and hence the stability of the production plans. 
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Table 4.11: Plackett-Burman design results for influential factors effect on cost and stability, Fuzzy 

models, averaged demand results 

    𝑪𝒘 𝑪𝒐/𝑪𝒘 𝑪𝑯/𝑪𝑳 𝑪𝑷 b h 𝒎𝑹 

M
ax

-M
in

 

APP Cost √   √       √ 

APP Stability           √   

FRP-APP Cost 1% √   √       √ 

FRP-APP Stability 1%               

FRP-APP Cost 5% √   √       √ 

FRP-APP Stability 5%           √ √ 

R
an

k
in

g
 

APP Cost √   √       √ 

APP Stability      √  

FRP-APP Cost 1% √   √       √ 

FRP-APP Stability 1%               

FRP-APP Cost 5% √   √    √   

FRP-APP Stability 5%           √ √ 

 

4.10 Conclusions 

In this chapter, we analyzed the performance of the FRP-APP and the APP models with 

fuzziness in future demand estimations. We used two fuzzy programming techniques called: Fuzzy 

Max-Min (MM) and Fuzzy Ranking (R) to transform the APP into a fuzzy model and also to 

developed two new Fuzzy FRP-APP formulations (Fuzzy MM-FRP-APP and Fuzzy R-FRP-APP) 

to further analyze the performance of the FRP-APP taking into account both input uncertainty and 

stability concerns at the same time. The analysis of results are done for five Industry-based Cases 

and twelve hypothetical Industry scenarios (using Design of Experiments techniques) with 

different cost and capacity characteristics using 16 demand scenarios and 5 levels for flex-limits 

in the FRP-APP model. 

In order to compare the FRP-APP and APP planning models, the FRP-APP is initially 

assumed to have a deterministic structure which uses the forecasted demand estimations for the 

planning purposes while the updated estimations are used in different re-planning iterations and 

the stability is controlled through flex-limits considerations in the model. The APP model on the 
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other hand, uses the fuzziness programming techniques as a mechanism for capturing uncertainties 

in the planning procedure. Another set of analysis is done using newly developed Fuzzy FRP-APP 

and also the Fuzzy APP models. This way, the FRP-APP not only takes into consideration the 

uncertainty of the input parameters in the planning phase, but it also uses the flex-bounds as a 

stability control mechanism over various plan updates. The Fuzzy APP on the other hand, puts its 

effort just on handling initial input parameter uncertainties without any concern about plan stability 

over future plan updates. 

The results indicate the FRP-APP and the Fuzzy FRP-APP show almost the same pattern 

in their cost and stability as compared to the Fuzzy APP models, especially if formulated using the 

Fuzzy Ranking method. As a result, the Fuzzy FRP-APP formulations results in a robust model as 

it provides a flexible planning framework capable of taking into account the input data 

uncertainties when developing production plans, but also having control over plan stability when 

re-planning is necessary.  

The 1% flex limits promise a reliably better stability with occasional higher cost as 

compared to other flex limits scenarios and specially the APP model. While other flex-limits cases 

may result in lower cost values, there is a trade-off with the stability performance. Therefore, the 

planner may need to decide on the best flex-limit based on the desired trade-off for their company.  

According to our experimental analysis on the fuzzy technique, demand scenario 

components, and also cost and capacity structures, the influential factors on the Fuzzy FRP-APP 

and Fuzzy APP models performances are identified which could be useful to explain why and how 

each model performance is changing if influential parameters are changed when tested on other 

Cases with different structures. In general, demand base, trend and seasonality are the most 

influential factors on cost and stability of different models. In addition, the stability is also affected 
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by the consideration and change of flex-limits magnitude and also the selection of fuzzy technique. 

The effect of fuzzy technique is more visible in the Fuzzy APP and in the Fuzzy FRP-APP models 

this effect gets less visible moving from 5% to 1% flex-limits sets.  

Taking into consideration the costs and production capacity of different test Cases, the 

models cost performance are mainly affected by workforce related costs and the capacity of the 

production systems while the stability shows more vulnerability to the inventory and also the 

production capacity. 
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 STOCHASTIC AGGREGATE PLANNING WITH FLEXIBLE 

REQUIREMENTS PROFILE 

5.1 Introduction 

In this chapter, we continue our analysis on the FRP-APP and APP models’ performance 

where uncertainties in the optimization models are incorporated using stochastic programming. In 

other words, the main idea in this chapter is the same as Chapter 4, but all demand uncertainties 

are modeled as stochastic in the APP and later, on the FRP-APP formulations. We use the robust-

stochastic (RS) and the chance-constraint (CC) formulations for developing the stochastic models. 

The computational and experimental analysis of the models will be in accordance with Chapter 4. 

5.2 Introduction to Stochastic Programming 

Stochastic programming optimization models deal with the cases where some or all input 

data of the model are uncertain parameters taking the advantage of the fact that probability 

distributions related to the uncertain data are assumed to be known or can be estimated (Kazemi 

Zanjani, Nourelfath et al. 2010). The goal is to find some policy that is feasible for (almost) all 

possible data instances and optimizes the objective function of the model. Due to the diversity in 

the way each stochastic parameter is defined and as a result of overwhelming number of scenarios 

for each uncertainty, solving stochastic optimization problems could result in very huge sizes to 

deal with. Consequently, the optimization problem could become infeasible to solve due to its 

complexity even with powerful solvers and computers. However, there are methods to make the 

problem smaller and easier to solve. 

Chance-constraint programming is one of the popular stochastic programming techniques 

where one or more uncertain constraints are represented in a way to meet a pre-specified 
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fulfillment degree (Wu, Huang et al. 2015). Based on the decision maker’s desire, the chance of 

meeting the uncertain constraints could make those constraints more or less restricting factors in 

the optimization model. Chance-constraint programming gives flexibility to the decision maker 

for making the model harder or softer in terms of the restriction imposed to the model for holding 

the uncertain constraints.  

Scenario-based stochastic techniques are another set of stochastic programming where a 

set of discrete scenarios represent how the future uncertainties are forecasted. Each scenario is 

associated with a probability value, which could be the decision maker’s expectation for the 

occurrence of that specific scenario. One major group of scenario-based formulations are called: 

stage-based programming formulations, while there exist other scenario-based formulations like: 

joint robust-stochastic formulation. 

Next, we will present the chance-constraint programming and the robust-stochastic 

formulations to later transform the APP and the FRP-APP into their stochastic counterparts for the 

analysis purposes. 

5.3 Stochastic Chance-Constraint (CC) Programming 

In a chance-constraint approach some of the constraints could be formulated such that they 

are fulfilled at selected minimum probability levels (α≤1). A chance constraint with α=1 is 

equivalent to a deterministic constraint. As discussed earlier, chance-constraints in aggregate 

production and supply chain planning are generally incorporated to represent demand or capacity 

uncertainties (Bilsel and Ravindran 2011). In addition, the uncertainty could be the case for the 

cost parameters in the objective function as well. Depending on where the uncertainty exists in the 

model, the related formulation for transforming the stochastic model into the deterministic 
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equivalent could also change. Here we represent the general formulations techniques under various 

categories of uncertainties as discussed in Nazemi and Tahmasbi (2013). 

Let’s assume the following general chance-constraint optimization formulation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) = ∑ 𝑐𝑗
𝑛
𝑗=1 𝑥𝑗         (5.1) 

Subject to 

𝑃[∑ 𝑎𝑖𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 ] ≥ 𝑝𝑖       ∀𝑖=1,…,m (5.2) 

 𝑥𝑗 ≥ 0         ∀𝑗=1,…,n (5.3) 

Where 𝑐𝑗, 𝑎𝑖𝑗 and 𝑏𝑖 could be random variables with normal distributions and 𝑝𝑖 are 

specified probabilities. 

Category1: 𝑎𝑖𝑗 uncertainty only 

We assume the stochastic 𝑎𝑖𝑗  has the mean  �̅�𝑖𝑗 and 𝑉𝑎𝑟(𝑎𝑖𝑗) = 𝜎𝑎𝑖𝑗
2. In addition, by 

knowing the multi-variate distribution of 𝑎𝑖𝑗, 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛 along with the 

covariance 𝐶𝑜𝑣(𝑎𝑖𝑗, 𝑎𝑘𝑙) between the random variables 𝑎𝑖𝑗 , we can define 𝑑𝑖 as: 

𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1        ∀𝑖=1,…,m (5.4) 

If 𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛 are normally distributed, and 𝑥1, 𝑥2, … , 𝑥𝑛 are constants (not yet known), 

𝑑𝑖 will also be normally distributed with a mean value of 

�̅�𝑖 = ∑ �̅�𝑖𝑗𝑥𝑗
𝑛
𝑗=1        ∀𝑖=1,…,m (5.5) 

And a variance of 
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𝑉𝑎𝑟(𝑑𝑖) = 𝜎𝑑𝑖
2 = 𝑥𝑇𝑉𝑖𝑥      ∀𝑖=1,…,m (5.6) 

 Where 𝑉𝑖 is the 𝑖th covariance matrix defined as 

𝑉𝑖 =

[
 
 
 
 
 
 
𝑉𝑎𝑟(𝑎𝑖1)   𝐶𝑜𝑣(𝑎𝑖1,𝑎𝑖2)  …    𝐶𝑜𝑣(𝑎𝑖1,𝑎𝑖𝑛)

𝐶𝑎𝑟(𝑎𝑖2,𝑎𝑖1)   𝑉𝑎𝑟(𝑎𝑖2)  …    𝐶𝑜𝑣(𝑎𝑖2,𝑎𝑖𝑛)
.                              .       .                      .
.                              .         .                    .
.                              .           .                  .

𝐶𝑎𝑣(𝑎𝑖𝑛,𝑎𝑖1)   𝐶𝑜𝑣(𝑎𝑖𝑛,𝑎𝑖2)  …    𝑉𝑎𝑟(𝑎𝑖𝑛)]
 
 
 
 
 
 

     

As a result, the chance-constraint can be expressed as: 

𝑃[𝑑𝑖 ≤ 𝑏𝑖] ≥ 𝑝𝑖       ∀𝑖=1,…,m (5.7)  

i.e. 

𝑃[
𝑑𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑑𝑖)
≤

𝑏𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑑𝑖)
 ] ≥ 𝑝𝑖                     ∀𝑖=1,…,m (5.8) 

Where 
𝑑𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑑𝑖)
 is a standard normal variable with a mean of zero and a variance of one. As 

a result, the probability of realizing 𝑑𝑖 smaller than or equal to 𝑏𝑖 can be written as 

𝑃[𝑑𝑖 ≤ 𝑏𝑖] = 𝜑(
𝑏𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑑𝑖)
)      ∀𝑖=1,…,m (5.9) 

Where 𝜑(𝑥) is the cumulative distribution function of the standard normal distribution 

evaluated at 𝑥. If 𝑒𝑖 denotes the value of the standard normal variable at which 𝜑(𝑒𝑖) = 𝑝𝑖 ≥

0.5   (𝑒𝑖 ≥ 0), then we have: 

(
𝑏𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑑𝑖)
) ≥ 𝑒𝑖 ≥ 0       ∀𝑖=1,…,m (5.10) 

Or  



93 

 

�̅�𝑖 + 𝑒𝑖√𝑉𝑎𝑟(𝑑𝑖) − 𝑏𝑖 ≤ 0      ∀𝑖=1,…,m (5.11) 

 Which is equivalent to 

∑ �̅�𝑖𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑒𝑖√𝑥𝑇𝑉𝑖𝑥 − 𝑏𝑖 ≤ 0     ∀𝑖=1,…,m (5.12) 

If the random variables 𝑎𝑖𝑗 are independent, the covariance terms will be zero and the 

related matrix would reduce to the following: 

𝑉𝑖 =

[
 
 
 
 
 
𝑉𝑎𝑟(𝑎𝑖1)   0  …    0

0   𝑉𝑎𝑟(𝑎𝑖2)  …    0
.             .           .        .
.             .           .        .
.             .           .        .
0   0  …    𝑉𝑎𝑟(𝑎𝑖𝑛)]

 
 
 
 
 

        (5.13) 

As a result, we will have: 

∑ �̅�𝑖𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑒𝑖√∑ [𝑉𝑎𝑟(𝑎𝑖𝑗)𝑥𝑗2]

𝑛
𝑗=1 − 𝑏𝑖 ≤ 0   ∀𝑖=1,…,m (5.14) 

Category2: 𝑏𝑖 uncertainty only 

We assume the stochastic 𝑏𝑖  has the mean  �̅�𝑖 and 𝑉𝑎𝑟(𝑏𝑖) = 𝜎𝑏𝑖
2. The chance-constraint 

in the model could be transformed in the following way: 

𝑃[∑ 𝑎𝑖𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 ] = 𝑃 [

∑ 𝑎𝑖𝑗𝑥𝑗−
𝑛
𝑗=1 �̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
≤

𝑏𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
] = 𝑃 [

𝑏𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
≥

∑ 𝑎𝑖𝑗𝑥𝑗−
𝑛
𝑗=1 �̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
] ≥ 𝑝𝑖∀𝑖=1,…,m (5.15) 

Under normality assumption, 
𝑏𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
is a standard normal variable with zero mean and unit 

variance. We can further continue the above formulation as: 

𝑃 [
𝑏𝑖−�̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
≤

∑ 𝑎𝑖𝑗𝑥𝑗−
𝑛
𝑗=1 �̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
] ≤ 1 − 𝑝𝑖     ∀𝑖=1,…,m (5.16) 
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If 𝐸𝑖 represents the value of the standard normal variance at which 𝜑(𝐸𝑖) = 1 − 𝑝𝑖 <

0.5   (𝐸𝑖 < 0),    

As a result 

∑ 𝑎𝑖𝑗𝑥𝑗−
𝑛
𝑗=1 �̅�𝑖

√𝑉𝑎𝑟(𝑏𝑖)
≤ 𝐸𝑖       ∀𝑖=1,…,m (5.17) 

Or 

∑ 𝑎𝑖𝑗𝑥𝑗 −
𝑛
𝑗=1 �̅�𝑖 − 𝐸𝑖√𝑉𝑎𝑟(𝑏𝑖) ≤ 0     ∀𝑖=1,…,m (5.18) 

Category3: 𝑐𝑗 uncertainty only 

Assuming all 𝑐𝑗s to be normally distributed random variables, the objective function 𝐹(𝑥) 

will also be a normal random variable. As a result, the mean and variance of 𝐹 are given by: 

�̅� = ∑ 𝑐�̅�
𝑛
𝑗=1 𝑥𝑗           (5.19)  

And 

𝑉𝑎𝑟(𝐹) = 𝑥𝑇𝑉𝑥         (5.20) 

 Where 𝑐�̅� is the mean value of 𝑐𝑗 and the matrix 𝑉 is the covariance matrix of 𝑐𝑗 defined as: 

𝑉 =

[
 
 
 
 
 
 
𝑉𝑎𝑟(𝑐1)   𝐶𝑜𝑣(𝑐1,𝑐2)  …    𝐶𝑜𝑣(𝑐1,𝑐𝑛)

𝐶𝑎𝑟(𝑐2,𝑐1)   𝑉𝑎𝑟(𝑐2)  …    𝐶𝑜𝑣(𝑐2,𝑐𝑛)
.                              .       .                      .
.                              .         .                    .
.                              .           .                  .

𝐶𝑎𝑣(𝑐𝑛,𝑐1)   𝐶𝑜𝑣(𝑐𝑛,𝑐2)  …    𝑉𝑎𝑟(𝑐𝑛)]
 
 
 
 
 
 

     (5.21) 

Where 𝑉𝑎𝑟(𝑐𝑗) and 𝐶𝑜𝑣(𝑐𝑖,𝑐𝑗) denoting the variance of 𝑐𝑗 and covariance between 𝑐𝑖 and 

𝑐𝑗 respectively.  
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A new deterministic objective function for minimization can be formulated as: 

𝐹(𝑥) = 𝑘1�̅�+𝑘2√𝑉𝑎𝑟(𝐹)        (5.22) 

Where 𝑘1 and 𝑘2 are nonnegative constants which indicate the relative importance of �̅� 

and standard deviation of 𝐹 for minimization (𝑘1 + 𝑘1 = 1). If the random variables 𝑐𝑗 are 

independent, the objective function changes to: 

𝐹(𝑥) = 𝑘1∑ 𝑐�̅�
𝑛
𝑗=1 𝑥𝑗+𝑘2√∑ 𝑉𝑎𝑟(𝑐𝑗)𝑥𝑗

2𝑛
𝑗=1       (5.23) 

Category4: 𝑎𝑖𝑗, 𝑏𝑖 , 𝑐𝑗 uncertainty 

 For this uncertainty situation, the objective function would be treated the same as 

Category3. In addition, as there are uncertainties both in the right and left hand side of the chance-

constraints, the whole constraint could be transformed to the following form by introducing new 

variables ℎ𝑖: 

ℎ𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖
𝑛
𝑗=1 = ∑ 𝑞𝑖𝑘𝑦𝑘

𝑛
𝑘=1      ∀𝑖=1,…,m (5.24) 

And the chance constraint would be: 

𝑃[ℎ𝑖 ≤ 0] ≥ 𝑝𝑖       ∀𝑖=1,…,m (5.25) 

Since ℎ𝑖 is a function of other uncertain parameters (Assumed to have the same type of 

distribution functions), the mean and standard deviation of this variable is also a function of known 

parameters’ distribution functions. By defining the mean and variance of the variable ℎ𝑖 the same 

approach as Category3 could be applied. More details about this uncertainty category is presented 

in Nazemi and Tahmasbi (2013). 
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5.4 Stochastic Chance-Constraint APP (CC-APP) 

The main uncertainties in our formulation is related to demand, presented in the form of an 

equality. Since the probability of a stochastic value being equal to a specific value is zero, we need 

to transform this constraint into an inequality formulation so that the main idea presented in 

Category2 could be utilized. We use the transformation technique introduced by Yıldırım, Tan et 

al. (2005) and Aouam and Uzsoy (2012) for dealing with stochastic inventory constraints in a 

production planning problem. The main idea behind this technique is focusing on satisfying the 

demand in each period (improving the customer satisfaction degree). Let's consider the following 

inventory balance constraint for a multi-period aggregate production planning problem (Aouam 

and Uzsoy 2012): 

𝐼𝑡 = 𝐼𝑡−1 + 𝑃𝑡 − 𝐷𝑡       ∀𝑡=1,…,T (5.26) 

Assuming a random demand, the finished inventory at the end of period 𝑡, 𝐼𝑡 is also a 

random variable. Taking the expectation and with repetitive substitution in Constraint (5.26), we 

will have: 

𝐸[𝐼𝑡] = 𝐸[𝐼𝑡−1] + 𝑃𝑡 − 𝐸[𝐷𝑡] = 𝐼0 + ∑ 𝑃𝑖
𝑡
𝑗=1 − ∑ 𝐸[𝐷𝑗

𝑡
𝑗=1 ]= 𝐼0 + ∑ 𝑃𝑗

𝑡
𝑗=1 −∑ 𝜇𝑗

𝑡
𝑗=1 ∀𝑡=1,…,T  (5.27) 

Using Equation (5.27), the unit inventory holding cost could be multiplied by the right 

hand side of this equation to estimate the expected inventory cost in each period. Also, considering 

the service level as a chance-constraint, we have the following formulation: 

𝑃(𝐼𝑡 ≥ 0) ≥ 𝛼 → 𝑃(𝐼0 + ∑ 𝑃𝑗
𝑡
𝑗=1 − ∑ 𝐷𝑗 ≥ 0𝑡

𝑗=1 ) ≥ 𝛼  ∀𝑡=1,…,T (5.28) 

In order to transform Constraint (5.28) into a linear form, we use the cumulative demand 

distribution function as follows: 
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𝑃(∑ 𝐷𝑗 ≤ 𝐼0 + ∑ 𝑃𝑗
𝑡
𝑗=1

𝑡
𝑗=1 ) ≥ 𝛼 → 𝐹∑ 𝐷𝑗

𝑡
𝑗=1

(𝐼0 + ∑ 𝑃𝑗
𝑡
𝑗=1 ) ≥ 𝛼  ∀𝑡=1,…,T (5.29) 

As a result, the final chance-constraint is equivalent to: 

𝐼0 + ∑ 𝑃𝑗
𝑡
𝑗=1 ≥ 𝐹

∑ 𝐷𝑗
𝑡
𝑗=1

−1 (𝛼)      ∀𝑡=1,…,T (5.30)  

In order to replace the above formulation with a corresponding chance-constraint for each 

period, the distribution of the aggregated demand up to that specific period (∑ 𝐷𝑖
𝑡
𝑖=1 ) needs to be 

identified to be able to compute the inverse 𝛼-level cumulative distribution using the aggregate 

demand. Assuming a Normal distribution for different periods’ demand distributions and 

independence between demand of consecutive periods, the aggregated demand will also have a 

normal distribution ∑ 𝐷𝑖
𝑡
𝑖=1 ~𝑁(∑ 𝜇𝑗

𝑡
𝑗=1 , ∑ 𝛿𝑗

2𝑡
𝑗=1 ).  

Utilizing the above transformation, the CC-APP model is as follows:  

(CC-APP) 

Minimize ∑ (𝑐𝑤 . 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜 .𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻 . 𝐻𝑡,𝑖 + 𝑐

𝐿 . 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. (𝐼𝑡,0+ ∑ 𝑃𝑡,𝑗

𝑖
𝑗=0 − ∑ 𝜇𝑡,𝑗

𝑖
𝑗=0 ))  (5.31) 

Subject to 

𝑃𝑡,0 = 𝑑𝑡,0 + 𝐼𝑡,0 − 𝐼𝑡−1,0        (5.32) 

𝐼𝑡,0 + ∑ 𝑃𝑡,𝑖
𝑖
𝑗=1 ≥ 𝐹

∑ 𝐷𝑡,𝑖
𝑖
𝑗=1

−1 (𝛼)     ∀𝑖=1,…,N (5.33) 

𝐼𝑡,0 + ∑ 𝑃𝑡,𝑗
𝑁
𝑗=1 ≥ 𝐹

∑ 𝐷𝑡,𝑗
𝑁
𝑗=1

−1 (𝛼) + 𝐼       (5.34) 

𝑊𝑡,0 = 𝑊𝑡−1,0 + 𝐻𝑡,0 − 𝐿𝑡,0        (5.35) 

𝑊𝑡,𝑖 = 𝑊𝑡,𝑖−1 + 𝐻𝑡,𝑖 − 𝐿𝑡,𝑖      ∀𝑖 = 1,… , 𝑁 (5.36) 

𝑃𝑡,𝑖 ≤ 𝑚𝑅 . 𝑡ℎ.𝑊𝑖 +𝑚
𝑅 . 𝑂𝑖      ∀𝑖 = 0,… , 𝑁 (5.37) 

𝑂𝑖 ≤ 𝑡ℎ.𝑊𝑡,𝑖. 𝑚
𝑂       ∀𝑖 = 0,… , 𝑁 (5.38) 
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𝑊𝑡,𝑖, 𝑂𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖, 𝑃𝑡,𝑖, 𝐼𝑡,𝑖 ≥ 0      ∀𝑖 = 0,… , 𝑁 (5.39) 

𝑊𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖: integers       ∀𝑖 = 0,… , 𝑁 (5.40) 

5.5 Stochastic Chance-Constraint FRP-APP (CC-FRP-APP) 

Adding flexible bounds Constraint sets (3.21)-(3.23), we will have the CC-FRP-APP as 

follows: 

(CC-FRP-APP) = (CC-APP) + Constraints (3.21)-(3.23) 

The CC-FRP-APP addresses 3 issues at the same time: 1. Incorporation of stochastic 

demand in its formulation, 2. Improving customer service levels through enforcing chance-

constraints on probabilities of meeting customer demand in each period, and 3. Stability 

improvement of the planning approach over various rolling horizon planning iterations. 

5.6 Robust-Stochastic (RS) Programming 

The robust-stochastic formulation is a scenario-based formulation, which addresses both 

solution and model robustness as two components of the objective function. The solution 

robustness makes sure the model remains close to optimality for any uncertain scenario realization, 

while the model robustness part makes sure the model remains “almost feasible” for any scenario 

realization as further explained below. 

Two sets of variables can be defined: design variables and control variables. The design 

variables are fixed while the control variables are responsible for any realization of uncertain 

parameters. Let’s assume a finite set of scenarios to model the uncertain parameters and 

coefficients  while with each scenario 𝑠, there is an associated probability 𝑃𝑠(∑ 𝑃𝑠𝑠 = 1) and a 

subset (𝛿𝑠, 𝐵𝑠, 𝐶𝑠, 𝑒𝑠)., where 𝐵𝑠 and 𝐶𝑠 are scenario-based coefficients, 𝑒𝑠 is the right-hand-side 
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scenario-based parameter, and 𝛿𝑠 is a scenario-based variable accounting for feasibility adjustment 

of the constraint over various scenarios (if the model is feasible under all scenarios, 𝛿𝑠 is equal to 

0 for all 𝑠). Also, a control variable 𝑦 may be subject to adjustment when one scenario is realized 

and can be denoted by 𝑦𝑠. The general scenario-based formulation is provided below: 

𝑀𝑖𝑛 𝜎(𝑥, 𝑦1, 𝑦2, … , 𝑦𝑠) + 𝜔𝜌(𝛿1, 𝛿2, … , 𝛿𝑠)      (5.41) 

Subject to 

𝐴𝑥 = 𝑏          (5.42)  

𝐵𝑠𝑥 + 𝐶𝑠𝑦𝑠 + 𝛿𝑠 = 𝑒𝑠        ∀ 𝑠𝜖𝑆 (5.43)  

x≥0, 𝛿𝑠, 𝑦𝑠 ≥ 0        ∀ 𝑠𝜖𝑆 (5.44) 

The first term takes care of a solution’s robustness, which mainly consists of the summation 

of expected objective value and weighted variance as formulated below: 

𝜎(𝑥, 𝑦1 , 𝑦2, … , 𝑦𝑠) = ∑ 𝑃𝑠(𝐶
𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠)𝑠𝜖𝑆 + ʎ∑ 𝑃𝑠(𝐶

𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠 − ∑ 𝑃𝑠′(𝐶
𝑇𝑥 + 𝑑𝑇𝑠′𝑦𝑠′)𝑠′𝜖𝑆 )2𝑠𝜖𝑆 (5.45) 

ʎ is the importance weight for objective variability over various stochastic scenarios and a 

higher ʎ makes the solution less sensitive to the changes in data under various scenarios (Mulvey, 

Vanderbei et al. 1995). Please note that the quadratic formulation in (5.45) makes it difficult to 

solve. Yu and Li (2000) proposed a transformation to change equation as follows using the absolute 

value approach for representing variability. 

𝜎(𝑥, 𝑦1 , 𝑦2, … , 𝑦𝑠) = ∑ 𝑃𝑠(𝐶
𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠)𝑠𝜖𝑆 + ʎ∑ 𝑃𝑠|𝐶

𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠 − ∑ 𝑃𝑠′(𝐶
𝑇𝑥 + 𝑑𝑇𝑠′𝑦𝑠′)𝑠′𝜖𝑆 |𝑠𝜖𝑆 (5.46) 

While Equation (5.46) is still a nonlinear function, it can be linearized as follows (Yu and 

Li 2000, Leung, Lai et al. 2007): 
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𝑍 = 𝑀𝑖𝑛 ∑ 𝑃𝑠(𝐶
𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠)𝑠𝜖𝑆 + ʎ∑ 𝑃𝑠[𝐶

𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠 − ∑ 𝑃𝑠′(𝐶
𝑇𝑥 + 𝑑𝑇𝑠′𝑦𝑠′) + 2𝜃𝑠𝑠′𝜖𝑆 ]𝑠𝜖𝑆  (5.47) 

Subject to 

𝐶𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠 − ∑ 𝑃𝑠(𝐶
𝑇𝑥 + 𝑑𝑇𝑠𝑦𝑠) + 𝜃𝑠𝑠𝜖𝑆 ≥ 0    ∀ 𝑠𝜖𝑆 (5.48)  

𝜃𝑠 ≥ 0          ∀ 𝑠𝜖𝑆 (5.49) 

With this modification, the quadratic formula in (5.45) is initially changed to the mean 

absolute deviation in (5.46) and finally to the linear formulation (5.47), where the variability of 

the solution under various scenarios is minimized.  

The second term in the objective function (𝜌(𝛿1, 𝛿2, … , 𝛿𝑠)) is corresponding to the 

infeasibility function to penalize the violation of control constraints (Constraint set (5.45)) under 

some scenarios. Using weight 𝜔 the trade-off between solution robustness and model robustness 

can be modeled. For the model robustness part, the infeasibility variable (𝛿𝑠) could be related to 

any specific feasibility limitation consideration or logical infeasibility in the control Constraint 

(5.43) for some scenarios. For example, in Leung, Lai et al. (2007) the inventory balance constraint 

is assumed as a control constraint and shortage level is introduced as the infeasibility variable as 

no shortage is allowed and the shortage cannot carry over to next periods demand. Another 

example is presented for the aggregate production planning problem in Mirzapour Al-E-Hashem, 

Malekly et al. (2011) where the control constraint determines the amount of products transferred 

to customers’ zones and the amount of shortage in each period. This constraint is formulated in 

such a way that for each period, the customer demand is either fully fulfilled or there exist some 

shortage as product storage at the customers’ zones is impossible, and any positive storage value 

indicates model infeasibility and gets penalized in the objective function.  
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5.7 Robust-Stochastic APP (RS-APP) 

In our APP formulation, the demand uncertainty over the planning horizon can be defined 

using scenarios and as a result, the inventory balance constraint becomes the control constraint. 

The design variables could be defined as the production levels and the workforce variables. 

Similarly, the scenario-based variables, which will be controlling the scenario-based control 

constraint, can be taken as the inventory and shortage in each period. Please note that having both 

inventory and allowing shortages in each period would always result in a feasible solution under 

different demand scenarios. We now continue with the RS-APP formulation following the Robust-

Stochastic formulation. 

Let 𝑍𝑠 denote the scenario-based cost objective as follows: 

𝑍𝑠 = ∑ (𝑐𝑤. 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜 .𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻. 𝐻𝑡,𝑖 + 𝑐

𝐿 . 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. 𝐼𝑡,𝑖,𝑠 + 𝑏. 𝐵𝑡,𝑖,𝑠) (5.50)  

Then the robust-stochastic APP formulation can be written as follows: 

(RS-APP) 

Minimize 𝑍 = ∑ 𝑃𝑠(𝑍𝑠)𝑠𝜖𝑆 +  ʎ∑ 𝑃𝑠[𝑍𝑠 − ∑ 𝑃𝑠′(𝑍𝑠′)𝑠′𝜖𝑆 +𝑠𝜖𝑆 2𝜃𝑠]   (5.51) 

Subject to 

𝑍𝑠 − ∑ 𝑃𝑠(𝑍𝑠) + 𝜃𝑠𝑠𝜖𝑆 ≥ 0      ∀ 𝑠𝜖𝑆  (5.52) 

𝑃𝑡,0 = 𝑑𝑡,0,𝑠 + 𝐼𝑡,0,𝑠 − 𝐵𝑡,0,𝑠 − 𝐼𝑡−1,0,𝑠 + 𝐵𝑡−1,0,𝑠   ∀ 𝑠𝜖𝑆  (5.53) 

𝑃𝑡,𝑖 = 𝑑𝑡,𝑖,𝑠 + 𝐼𝑡,𝑖,𝑠 − 𝐵𝑡,𝑖,𝑠 − 𝐼𝑡,𝑖−1,𝑠 + 𝐵𝑡,𝑖−1,𝑠  ∀𝑖 = 1,… , 𝑁, ∀ 𝑠𝜖𝑆 (5.54) 

𝐼𝑡,𝑁,𝑠 ≥ 𝐼        ∀ 𝑠𝜖𝑆  (5.55) 

Constraints (5.35) - (5.38), (5.50) 

𝑊𝑡,𝑖, 𝑂𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖, 𝑃𝑡,𝑖, 𝐼𝑡,𝑖,𝑠, , 𝐵𝑡,𝑖,𝑠, 𝜃𝑠 ≥ 0   ∀𝑖 = 0,… , 𝑁, ∀ 𝑠𝜖𝑆 (5.56) 
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𝑊𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖: integers       ∀𝑖 = 0,… , 𝑁 (5.57) 

 

It should be noted that Constraint (5.53) is also formulated in a scenario-based format for 

consistency purposes with the demand, inventory and backorder notations, but this constraint has 

a deterministic nature as the current period demand has a known single value. 

5.8 Robust-Stochastic FRP-APP (RS-FRP-APP) 

Adding flexible bounds Constraint sets (3.21)-(3.23), we will have the RS-FRP-APP as 

follows: 

(RS-FRP-APP) = (RS-APP) + Constraints (3.21)-(3.23) 

The RS-FRP-APP also considers various stochastic scenarios for the planning problem’s 

future periods’ demand estimations and aims at minimizing expected cost and the variations among 

different planning cost scenarios. In addition, due to the high levels of uncertainty in future demand 

estimations, in case the future scenarios get updated and a new plan is developed, the FRP bounds 

instabilities resulting from plan updates.  

5.9 Computational Study 

To conduct our computational analysis, apart from the forecasted demand to be used in 

deterministic models, for the periods with scenario-based stochastic demand, we need to generate 

these scenarios as well. In each rolling horizon iteration (𝑡), the current period (𝑖 = 0) demand is 

a known parameter while the future periods’ demand values are defined using scenarios (estimated 

demands). After the current period’s plan is implemented, the next planning iteration (𝑡 + 1), again 

fixes the current period demand and could use updated demand scenarios for the future periods. 
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Using demand generation formulation, each period’s demand is generated 40 times and 

later used to estimate the distribution, mean and standard deviation of each period demand for 

stochastic models. For the case of Robust-Stochastic models, as the number of scenarios to fully 

represent all possible scenarios for a stochastic parameter could be very large, determining an 

adequate number of scenarios in a scenario-based formulation could have a noticeable impact on 

the quality of the stochastic problem solution. One approach would be doing a sensitivity analysis 

on random numbers of scenarios tested to see how the quality of the solution changes. Another 

popular technique, typically used when a two-stage or recourse-based stochastic formulation is 

used, is applying the Sample Average Approximation algorithm, which through sampling 

replications, gives an estimation of the stochastic solution through finding the solution with the 

minimum optimality gap (Verweij, Ahmed et al. 2003). Another approach utilized by Mirzapour 

Al-e-Hashem, Baboli et al. (2013) is using the statistical confidence intervals. The main idea 

behind this method is to specify the minimum number of scenarios by the preferred level of 

accuracy of the solution. According to this method, the Monte Carlo sampling variance estimator 

of the results for a stochastic programming problem, which is independent of the probability 

distribution of the uncertain parameters can be defined as: 

𝑆(𝑛) = √
∑ (𝐸(𝑍)−𝑍𝑠)2
𝑛
𝑠=1

𝑛−1
        (5.58) 

 Where 𝑛 is the number of scenarios, 𝐸(𝑍) is the mean of all scenarios objective function 

values, and 𝑍𝑠 is the total cost of scenario 𝑠. Then the confidence interval of 1 − 𝛼 is as: 

[𝐸(𝑍) − ∅𝛼
2

𝑆(𝑛)

√𝑛
, 𝐸(𝑍) + ∅𝛼

2

𝑆(𝑛)

√𝑛
]       (5.59) 
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Where ∅𝛼
2
 is a quantity for which the Equation (5.63) for a standard normal random variable 

𝜑 ≈ 𝑁(𝜇 = 0, 𝜎 = 1) will be satisfied (for example: according to the standard normal distribution 

table, for 𝛼 = 0.05, ∅𝛼
2
= 1.96): 

Pr (𝜑 ≤ ∅𝛼
2
) = 1 −

𝛼

2
         (5.60) 

As a result, if the sampling estimator 𝑆(𝑛) and the maximum tolerable error (𝑒𝑟) for 

confidence level 1 −
𝛼

2
 are given, the minimum required number of scenarios can be determined 

by: 

𝑛` ≥ [
∅𝛼

2⁄
𝑆(𝑛)

𝑒𝑟
]2         (5.61)  

Therefore, to determine the minimum number of scenarios 𝑛`, we can first solve the 

stochastic programming model with a small number of scenarios 𝑛 to estimate the required 

parameters in the above formula. The idea here is to control the variability of the objectives over 

various scenarios to minimize the sensitivity of the objective values to different scenarios. As our 

scenario-based formulation also aims at minimizing the variance of objectives over different 

stochastic scenarios, we expect the minimum required number of scenarios not to be very high. 

For this aim, we initially run the RS-APP model (as the basic scenario-based model) with 𝑛 = 10 

and asses the error to see if we need to run the models with the same or larger number of scenarios. 

Once the minimum number of scenarios for Stochastic APP is identified, we make sure the 

minimum number of scenarios we use to run any scenario-based model is greater than the 

minimum required sample size. We repeat the same for all 5 Cases, and 16 demand scenarios and 

use the maximum of all identified minimum sample sizes to further continue running scenario-

based models.  
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5.9.1 Computational Results & Analysis  

Our RS-APP results with  𝑛 = 10 indicated for most of 5 Cases over 16 demand scenarios, 

the scenario-based model with ʎ = 1, is able to well capture objective function variability over 

various scenarios and the error value is less than the desired value. There are a few Cases, however, 

for which the minimum needs to be not lower than 𝑛` = 20. This implies that the model can absorb 

variability and get a good nominated mean objective value for the stochastic problem. For 

consistency purposes, however, we run all scenario-based models with 50 scenarios. In addition, 

the α value for all Chance-Constraint models is set equal to 0.75. 

The comparative results of FRP-APP, and Stochastic APP compared models with the 

Stochastic APP model using either Chance-Constraint or the Robust-Stochastic formulations for 

different industries over various demand scenarios are presented in Figures 5.1-5.20. In addition, 

we have inserted the graphs demonstrating the sensitivity of the FRP-APP and sample Stochastic 

FRP-APP cost and stability performance to varying flex-limit sets in Figures 21-40 in Appendix. 

On a general observation about the Stochastic APP models compared to the FRP-APP, 

with a slightly better cost performance, the CC-APP has a noticeable control over the input 

uncertainty and the stability of the plans as compared to the FRP-APP for almost all flexible 

bounds scenarios. This trend is more visible for the Automotive (Figure 5.6), Wood and Paper 

(Figure 5.14), and Air conditioning (Figure 5.18) industries. For the Textile (Figure 5.2) and 

Machinery and Transmission (Figure 5.10) Cases however, still the FRP-APP with 1% flexible-

limits, shows reliable results in terms of stability.  

When the problem setting and the available data, urges the utilization of the scenario-based 

formulation for the planning problems, without a significant adverse effect on the cost gap, the 
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FRP-APP outperforms the RS.APP in stability for all demand scenarios for different Industry 

Cases specially if 1% flex-limits are used. These inferences can be observed in the stability figures 

and also the stability ratio of different models as presented in Table 5.2. 

If the FRP-APP is formulated as a stochastic model addressing both input uncertainty and 

stability concerns at the same time, it can outperform the Stochastic APP in stability regardless of 

which stochastic technique is used. Another interesting observation is that, Stochastic FRP-APP 

models show the potential to not only have better stability performance, but also to shrink the cost 

gap with the Stochastic APP, as compared to the deterministic FRP-APP (Table 5.1). This 

observation holds for all Industry Cases: Textile (Figures 5.1-5.4), Automotive (Figures 5.5-5.8), 

Machinery and Transmission (Figures 5.9-5.12), Wood and Paper (Figures 5.13-5.16), Air 

Conditioning Units (Figures 5.17-5.20). As a result, both stochastic techniques show promising 

results for the FRP-APP performance as an attractive modeling alternative, where the stochastic 

model uncertainty is captured besides controlling plan stability and cost. 

Another general note on all stochastic models cost and stability specially the Stochastic 

APP is that the RS formulation tends to result in higher cost and more instable plans. This could 

be expected specially for the stability since the RS models deal with different scenarios of demand 

and being able to optimize the problem with the same stability performance as the Chance-

Constraint models is more difficult. However, the RS-FRP-APP can still maintain a better planning 

performance. In addition, more restrictive flex-limit sets further highlight the noticeable stability 

improvement of the RS-FRP-APP as compared to the RS-APP model without a noticeable negative 

impact on the cost measure.  
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Figure 5.1: Total current cost comparison, FRP-

APP, CC-FRP-APP, CC-APP, Textile Industry 

 

Figure 5.2: Stability comparison, FRP-APP, CC-

FRP-APP, CC-APP, Textile Industry 

  

 

Figure 5.3: Total current cost comparison, FRP-

APP, RS-FRP-APP, RS-APP, Textile Industry 

 

Figure 5.4: Stability comparison, FRP-APP, RS-

FRP-APP, RS-APP, Textile Industry 
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Figure 5.5: Total current cost comparison, FRP-

APP, CC-FRP-APP, CC-APP, Automotive Parts 

Industry 

 

Figure 5.6: Stability comparison, FRP-APP, CC-

FRP-APP, CC-APP, Automotive Parts Industry 

  

 

Figure 5.7: Total current cost comparison, FRP-

APP, RS-FRP-APP, RS-APP, Automotive Parts 

Industry 

 

Figure 5.8: Stability comparison, FRP-APP, RS-

FRP-APP, RS-APP, Automotive Parts Industry 
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Figure 5.9: Total current cost comparison, FRP-

APP, CC-FRP-APP, CC-APP, Machinery and 

Transmission Industry 

 

Figure 5.10: Stability comparison, FRP-APP, CC-

FRP-APP, CC-APP, Machinery and Transmission 

Industry 

  

 

Figure 5.11: Total current cost comparison, 

FRP-APP, RS-FRP-APP, RS-APP, Machinery 

and Transmission Industry 

 

Figure 5.12: Stability comparison, FRP-APP, RS-

FRP-APP, RS-APP, Machinery and Transmission 

Industry 
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Figure 5.13: Total current cost comparison, 

FRP-APP, CC-FRP-APP, CC-APP, Wood and 

Paper Industry 

 

Figure 5.14: Stability comparison, FRP-APP, CC-

FRP-APP, CC-APP, Wood and Paper Industry 

  

 

Figure 5.15: Total current cost comparison, 

FRP-APP, RS-FRP-APP, RS-APP, Wood and 

Paper Industry 

 

Figure 5.16: Stability comparison, FRP-APP, RS-

FRP-APP, RS-APP, Wood and Paper Industry 

 

 

  

  

  

 

 



111 

 

 

Figure 5.17: Total current cost comparison, 

FRP-APP, CC-FRP-APP, CC-APP, Air 

Conditioning Units Industry 

 

Figure 5.18: Stability comparison, FRP-APP, CC-

FRP-APP, CC-APP, Air Conditioning Units 

Industry 

  

 

Figure 5.19: Total current cost comparison, 

FRP-APP, RS-FRP-APP, RS-APP, Air 

Conditioning Units Industry 

 

Figure 5.20: Stability comparison, FRP-APP, RS-

FRP-APP, RS-APP, Air Conditioning Units 

Industry 
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Table 5.1: Average cost gap percentage of different models in different industries 

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

CC-FRP-APP 1% 0.770 0.003 0.057 0.834 1.209 

CC-FRP-APP 5% 0.192 0.000 0.000 0.138 0.175 

CC-APP 0.000 0.000 0.008 0.000 0.000 

RS-FRP-APP 1% 3.862 0.023 0.573 6.131 8.692 

RS-FRP-APP 5% 0.463 0.005 0.394 0.888 1.158 

RS-APP 0.191 0.003 0.268 0.069 0.206 

FRP-APP 1% 9.926 0.159 8.144 12.700 21.618 

FRP-APP 5% 4.763 0.061 2.634 6.165 9.639 

*0.0 means the lowest average cost, and a cost gap percentage closer to 0.0 shows a better cost performance. 

Table 5.2: Comparison of average instability ratio for different models in different industries  

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

CC-FRP-APP 1% 1.00 1.00 1.00 1.00 1.00 

CC-FRP-APP 5% 2.82 2.50 3.06 2.47 2.51 

CC-APP 4.26 2.80 5.36 2.83 2.81 

RS-FRP-APP 1% 1.10 2.66 1.89 2.48 2.50 

RS-FRP-APP 5% 4.90 8.37 4.11 12.18 10.51 

RS-APP 5.56 9.53 6.69 16.23 11.79 

FRP-APP 1% 1.46 3.02 2.02 2.98 3.02 

FRP-APP 5% 4.61 6.68 5.03 7.66 6.67 

*1.0 means the best stability control, and a ratio closer to 1.0 shows a better stability performance. 

As the comparative results, specially the stability performance of the stochastic models 

developed seem to be sensitive to the demand scenario, stochastic technique change and also 

occasional changes to different test Cases, we conduct the same experimental analysis as in 

Chapter 4 on the cost and stability of the stochastic models to different factors : demand generation 

components, stochastic technique and also cost and capacity parameters of various Case studies to 
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identify influencing factors. Table 5.3 includes the main factors and their level values for running 

the GLM. 

Figures 5.41, 5.42 present the main effect plots for each factor for cost and stability, 

respectively and the ANOVA results are presented in Tables 5.4, 5.5. The results for cost 

performance shown in Table 5.4 and Figure 5.41 indicate that, demand structure (base, trend, 

seasonality) and the industry Case have significant effect. However, flex-limits and stochastic 

technique change do not seem to have a significant impact. The stability however (as shown in 

Table 5.5 and Figure 5.42), is highly affected by the flex-limit and the choice of the stochastic 

technique followed by the Industry Case, and some of the demand related components (base, trend 

and magnitude of error). 

Table 5.3: Experimental design components and designs to be tested, Stochastic models 

Factors 
Number of 

Levels 
Levels 

Demand-base 2 Low(1000),High(3000) 

Demand-trend 2 Low(20),High(100) 

Demand-seasonality 2 Low(+/-0.1),High((+/-0.3) 

Demand-magnitude of error 2 Low(std=50),High(std=200) 

Flex-limits 4 1%,3%,5%,No-flex-limits 

Stochastic-technique 2 Chance-Constraint, Scenario-based 

Industry 5 1,2,3,4,5 

 

Table 5.4: Selected ANOVA results for plan cost, Stochastic FRP-APP, Stochastic APP 

Factor DF Adj SS Adj MS F-Value P-Value 

Demand-base 1 2.7569E+15 2.7569E+15 28800.91 0 

Demand-trend 1 1.12475E+14 1.12475E+14 1175.01 0 

Demand-seasonality 1 4.55272E+13 4.55272E+13 475.62 0 

Demand-error 1 1.92432E+12 1.92432E+12 20.1 0 

Industry 4 2.37667E+16 5.94167E+15 62071.66 0 

Demand-base*Demand-trend 1 1.88817E+12 1.88817E+12 19.73 0 

Demand-base*Demand-seasonality 1 2.13469E+13 2.13469E+13 223.01 0 

Demand-base*Demand-error 1 1.62071E+12 1.62071E+12 16.93 0 

Demand-base*Industry 4 5.3844E+15 1.3461E+15 14062.47 0 
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Demand-trend*Demand-seasonality 1 9.92287E+12 9.92287E+12 103.66 0 

Demand-trend*Demand-error 1 1.52266E+12 1.52266E+12 15.91 0 

Demand-trend*Flex-limits 3 379873733 126624578 0 1 

Demand-trend*Industry 4 1.67263E+14 4.18157E+13 436.84 0 

Demand-seasonality*Industry 4 1.79031E+14 4.47578E+13 467.58 0 

Demand-error*Industry 4 7.88213E+12 1.97053E+12 20.59 0 

Demand-base*Demand-trend*Demand-

error 
1 1.79566E+12 1.79566E+12 18.76 0 

Demand-base*Demand-trend*Industry 4 7.12334E+12 1.78084E+12 18.6 0 

Demand-base*Demand-

seasonality*Demand-error 
1 1.32392E+12 1.32392E+12 13.83 0 

Demand-base*Demand-

seasonality*Industry 
4 7.82942E+13 1.95735E+13 204.48 0 

Demand-base*Demand-error*Industry 4 6.12008E+12 1.53002E+12 15.98 0 

Demand-trend*Demand-

seasonality*Demand-error 
1 7.044E+12 7.044E+12 73.59 0 

Demand-trend*Demand-

seasonality*Industry 
4 3.46147E+13 8.65368E+12 90.4 0 

Demand-trend*Demand-error*Industry 4 4.7627E+12 1.19068E+12 12.44 0 

Error 430 4.11608E+13 95722760258  

Total 639 3.2642E+16  

 

Table 5.5: Selected ANOVA results for plan stability, Stochastic FRP-APP, Stochastic APP 

Factor DF Adj SS Adj MS F-Value P-Value 

Demand-base 1 95111 95111 840.91 0 

Demand-trend 1 15406 15406 136.21 0 

Demand-error 1 32690 32690 289.02 0 

Flex-limits 3 379875 126625 1119.54 0 

Stochastic-technique 1 331695 331695 2932.63 0 

Industry 4 59017 14754 130.45 0 

Demand-base*Demand-error 1 3195 3195 28.25 0 

Demand-base*Flex-limits 3 9361 3120 27.59 0 

Demand-base*Stochastic-technique 1 11340 11340 100.26 0 

Demand-base*Industry 4 18857 4714 41.68 0 

Demand-trend*Demand-seasonality 1 1600 1600 14.15 0 

Demand-trend*Demand-error 1 585 585 5.17 0.023 

Demand-trend*Flex-limits 3 2180 727 6.43 0 

Demand-trend*Stochastic-technique 1 731 731 6.46 0.011 

Demand-trend*Industry 4 4546 1136 10.05 0 

Demand-seasonality*Flex-limits 3 1892 631 5.58 0.001 

Demand-seasonality*Industry 4 37207 9302 82.24 0 

Demand-error*Flex-limits 3 24234 8078 71.42 0 

Demand-error*Stochastic-technique 1 14194 14194 125.49 0 

Demand-error*Industry 4 3223 806 7.12 0 
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Flex-limits*Stochastic-technique 3 72362 24121 213.26 0 

Flex-limits*Industry 12 30824 2569 22.71 0 

Stochastic-technique*Industry 4 79108 19777 174.86 0 

Demand-base*Demand-trend*Demand-seasonality 1 533 533 4.71 0.031 

Demand-base*Demand-trend*Demand-error 1 819 819 7.24 0.007 

Demand-base*Demand-seasonality*Industry 4 14053 3513 31.06 0 

Demand-base*Demand-error*Flex-limits 3 3617 1206 10.66 0 

Demand-base*Demand-error*Stochastic-technique 1 833 833 7.36 0.007 

Demand-base*Demand-error*Industry 4 1540 385 3.4 0.009 

Demand-base*Flex-limits*Stochastic-technique 3 3220 1073 9.49 0 

Demand-base*Flex-limits*Industry 12 13302 1108 9.8 0 

Demand-base*Stochastic-technique*Industry 4 6168 1542 13.63 0 

Demand-trend*Demand-seasonality*Flex-limits 3 843 281 2.48 0.06 

Demand-trend*Demand-seasonality*Industry 4 2653 663 5.86 0 

Demand-trend*Flex-limits*Industry 12 4159 347 3.06 0 

Demand-trend*Stochastic-technique*Industry 4 1647 412 3.64 0.006 

Demand-seasonality*Demand-error*Industry 4 1008 252 2.23 0.065 

Demand-seasonality*Flex-limits*Stochastic-technique 3 179 60 0.53 0.664 

Demand-seasonality*Flex-limits*Industry 12 32014 2668 23.59 0 

Demand-seasonality*Stochastic-technique*Industry 4 1411 353 3.12 0.015 

Demand-error*Flex-limits*Stochastic-technique 3 8258 2753 24.34 0 

Demand-error*Flex-limits*Industry 12 3818 318 2.81 0.001 

Demand-error*Stochastic-technique*Industry 4 1090 272 2.41 0.049 

Flex-limits*Stochastic-technique*Industry 12 37157 3096 27.38 0 

Error 430 48635 113  

Total 639 1420249  
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Figure 5.21: Main effects plot for cost, Stochastic models 

 

 

Figure 5.22: Main effects plot for stability, Stochastic models 

 

We further continue our analysis with the Plackette-Burman design as in Chapter 4 using 

the same design in Table 4.10. Figure 5.23 includes the average cost performance of the Stochastic 

FRP-APP and Stochastic APP models using either stochastic technique over 12 Industry Cases, 
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and Figure 5.24 includes the relative stability results. While the overall results show relatively 

close cost values for all models, there are 3 Industry scenarios (3,5,9) in which the overall cost of 

all models are higher that other Cases. According to Table 4.10, we see that these Cases correspond 

to the Industry scenarios with highest workforce and hiring/layoff costs.  

The ANOVA results shown in Table 5.6 concur that the cost analysis of the models using 

each of the stochastic techniques are unanimously affected by the workforce cost and the 

workforce hiring and layoff costs. This could explain the sharp change in the cost values in Figure 

5.23 for designs 3,5,9 and also the sharp line slope in Figure 5.21. While the stability of the 

scenario-based models is mainly affected by inventory and shortage costs, the chance constraint 

FRP-APP models stability is mainly affected by inventory cost and the chance-constraint APP 

stability is vulnerable to the changes in all cost components. 

 

Figure 5.23: Total current cost comparison of 

Stochastic FRP-APP and Stochastic APP model, 

12 experimental industries, Averaged over 16 

demand scenarios 

 

Figure 5.24: Stability comparison of Stochastic 

FRP-APP and Stochastic APP model, 12 

experimental industries, Averaged over 16 demand 

scenarios 
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Table 5.6: Plackett-Burman design results for influential factors effect on cost and stability, Stochastic 

models, averaged demand results 

    𝑪𝒘 𝑪𝒐/𝑪𝒘 𝑪𝑯/𝑪𝑳 𝑪𝑷 b h 𝒎𝑹 

R
o

b
u

st
-s

to
ch

as
ti

c APP Cost √   √        

APP Stability     √ √  

FRP-APP Cost 1% √   √        

FRP-APP Stability 1%      √  

FRP-APP Cost 5% √   √        

FRP-APP Stability 5%     √ √  

C
h
an

ce
-c

o
n
st

ra
in

t APP Cost √   √        

APP Stability √ √ √ √  √  

FRP-APP Cost 1% √   √        

FRP-APP Stability 1%      √  

FRP-APP Cost 5% √   √        

FRP-APP Stability 5%      √  

 

5.10 Conclusions 

In this chapter, the analysis of the performance of APP and FRP-APP models is continued 

under stochastic uncertainty. After presentation of the two stochastic techniques, which are: 

Robust-Stochastic and Chance-Constraint programming, the FRP-APP is compared to the 

Stochastic APP as two different modeling approaches for dealing with future uncertainties. In 

addition, the Stochastic uncertainty is officially considered into the FRP-APP formulation and the 

resulting models are compared with the Stochastic APP model where the APP is just taking care 

of input uncertainty while the Stochastic FRP-APP has an additional concern of plan stability.  

The Stochastic APP stability in general shows high vulnerability to the stochastic 

programming technique and as a result, when compared with the FRP-APP, a scenario-based 

modeling could adversely affect its stability performance. While maintaining the same cost 

preference as compared to the FRP-APP, the CC-APP on the other hand, shows more control on 

the stability of the plans compared to the FRP-APP.  
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Adding stochastic uncertainty into the planning formulation of the FRP-APP to incorporate 

input uncertainty and use FRP bounds to control the stability of the developed plans retrieves its 

stability preference and reduces the cost gap when compared with the Stochastic APP using either 

Chance-Constraint or the Robust-Stochastic formulation for different test Cases. Although the 

Stochastic FRP-APP and Stochastic APP stability results are affected by selection of stochastic 

technique, the Stochastic FRP-APP can maintain its improved stability performance as compared 

to the Stochastic APP in all Industry Cases specially when more restrictive flex-limit sets are used. 

As a result, taking into account both the cost and stability results, the Stochastic FRP-APP can be 

considered as a reliable candidate planning model when the nature of the problem or the available 

historical makes it possible to incorporate a stochastic planning formulation.  

There are demand scenarios, and test Cases with some variations to the above mentioned 

results, and as a result, experimental analysis is conducted to identify the most affecting factors on 

either cost or stability of the Stochastic FRP-APP and Stochastic APP for future use in other Cases 

with different demand scenarios or cost structures. Our results indicate the demand scenario and 

industry changes are the most influential factors on stochastic models’ cost change, while in 

addition to these two factors, the stability of the stochastic models is mainly affected by selection 

of stochastic technique, and also the consideration and changes to the flexible-limits magnitude as 

well. 
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 BI-OBJECTIVE STOCHASTIC AND FUZZY APP MODELS 

6.1 Introduction 

As we have seen in Chapters 3-5, FRP-APP formulation deals with the stability of the 

production plans using flexibility bounds by limiting the production level change over sequential 

planning iterations. Our analysis results have shown that the FRP-APP has good potentials to 

incorporate both input uncertainty and the stability concerns at the same time and still maintain a 

good cost and stability performance as its Fuzzy/Stochastic APP counterpart. An alternate 

approach would be formulating a bi-objective optimization where cost and stability are optimized 

simultaneously. In this chapter, we will develop Bi-objective APP counterparts of the Fuzzy Max-

Min (MM), Fuzzy Ranking (R), Robust-Stochastic (RS), and Stochastic Chance-Constraint (CC) 

APP models. As discussed in the literature review, there are multiple approaches for the Multi-

objective, hence Bi-objective decision problems. Here we utilized the compromise technique, 

mainly because it is one of those techniques that helps maintain the problem linearity to be 

formulated as a mixed-integer linear program. Below we initially present an introduction to the 

Multi-objective optimization, followed by the Bi-objective APP formulation, and then continue 

with the fuzzy and stochastic formulations in subsequent sections. 

6.2 Multi-objective Optimization 

To deal with the problem of existing more than one objective in an optimization problem, 

multiple techniques are available. One of the most common and popular classical methods is the 

Ꜫ-constraint method. In this method, one objective is kept as the main objective in the model while 

the rest of the objectives are kept within user-specified values (Ꜫ). The following formulation 
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presents the transformed version of a multi-objective problem with multiple minimization and 

conflicting objectives (Deb 2014): 

Minimize 𝑓𝜇(𝑥)         (6.1) 

Subject to 

𝑓𝑚(𝑥) ≤ Ꜫ𝑚      ∀𝑚 = 1,2, … ,𝑀 and 𝑚 ≠ 𝜇 (6.2) 

𝑔𝑗(𝑥) ≥ 0        ∀𝑗 = 1,2, … , 𝐽 (6.3) 

𝑥𝑖 ≥ 0         ∀𝑖 = 1,2, … , 𝑁 (6.4) 

In the FRP-APP formulation, we use the previously optimized production levels to come 

up with bounds between which the new production levels could get updated. As a result, the 

resulting bounds can be considered as constraining Ꜫ for the stability objective value while keeping 

the cost as the main objective in the problem formulation, and hence the FRP-APP formulation 

uses an indirect format of the Ꜫ-constraint to balance both the cost and stability objectives. 

Another classical and popular multi-objective method is the compromise programming 

formulation. This method uses importance weights for different objectives and typically uses the 

normalized objective values as a “compromise” formulation to sum the weighted normalized 

objective values. The weights for each objective are the relative importance of each objective as 

compared to other objectives. In order to normalize each objective, the “Utopia” and “Nadir” 

points for each objective need to be defined. These two points are the best and worst possible 

values for each objective and are not target values determined by decision makers as in the goal 

programming models. After the objectives are normalized, a compromise objective function can be 

formed by summing the weighted normalized objectives and the problem is then converted to a single-

objective optimization problem. The compromise formulation aims at finding the solutions that are 
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closest to the utopia point of each objective. The following formulation presents the compromise 

formulation of the Model (6.1), (6.4) using weights and Utopia and Nadir points for each objective. 

Maximize 𝐹(𝑥) = ∑ 𝑤𝑚
𝑀
𝑚=1

𝑓𝑚(𝑥)−𝑁𝑚

𝑈𝑚−𝑁𝑚
      (6.5) 

Subject to 

Constraints (6-3), (6-4) 

In the above formulation, 𝑁𝑚 is the worst outcome for each objective and 𝑈𝑚 is the best 

possible outcome or utopia point for objective 𝑚. For a minimization problem, the best and worst 

outcomes are the minimum and the maximum possible values and the compromise objective is 

changed to a maximization form to find solutions where each objective is closest to its utopia 

value.  

Although both Ꜫ-constraint and compromise programming techniques result in linear 

programming formulations, in this research we decided to utilize compromise programming. One 

justification is compromise programing can be seen more practical for planners/decision makers. 

It requires identification of the preferences (objective weights) for the planner. Given the weights 

for the planner, the pareto-optimal solution can be identified in a single iteration. On the other 

hand, Ꜫ -constraint technique identifies pareto optimal solutions by varying the epsilon value hence 

requires multiple iterations.  

6.3 Bi-objective APP (BO-APP) 

The main formulation for the BO-APP with cost and stability objectives is as follows: 

(BO-APP) 

 

Minimize Objective1: 𝑤 ∗ (∑ |𝑃𝑡,𝑖 − 𝑃𝑡−1,𝑖+1|
𝑁−1
𝑖=0 )     (6.6) 

Minimize Objective2:∑ (𝑐𝑤. 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜 .𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻. 𝐻𝑡,𝑖 + 𝑐

𝐿 . 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. 𝐼𝑡,𝑖 +

𝑏. 𝐵𝑡,𝑖)           (6.7) 



123 

 

Subject to 

Initial Inventory: 𝑃𝑡,0 = 𝑑𝑡,0 + 𝐼𝑡,0 − 𝐵𝑡,0 − 𝐼𝑡−1,0 + 𝐵𝑡−1,0    (6.8) 

Inventory: 𝑃𝑡,𝑖 = 𝑑𝑡,𝑖 + 𝐼𝑡,𝑖 − 𝐵𝑡,𝑖 − 𝐼𝑡,𝑖−1 + 𝐵𝑡,𝑖−1   ∀𝑖 = 1,… , 𝑁 (6.9) 

End Inventory: 𝐼𝑡,𝑁 ≥ 𝐼        (6.10) 

Initial Workforce: 𝑊𝑡,0 = 𝑊𝑡−1,0 +𝐻𝑡,0 − 𝐿𝑡,0     (6.11) 

Workforce: 𝑊𝑡,𝑖 = 𝑊𝑡,𝑖−1 + 𝐻𝑡,𝑖 − 𝐿𝑡,𝑖    ∀𝑖 = 1,… , 𝑁 (6.12) 

Production Capacity: 𝑃𝑡,𝑖 ≤ 𝑚𝑅 . 𝑡ℎ.𝑊𝑖 +𝑚
𝑅 . 𝑂𝑖   ∀𝑖 = 0,… , 𝑁 (6.13) 

Overtime Capacity: 𝑂𝑖 ≤ 𝑡ℎ.𝑊𝑡,𝑖. 𝑚
𝑂    ∀𝑖 = 0,… , 𝑁 (6.14) 

𝑊𝑡,𝑖, 𝑂𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖, 𝑃𝑡,𝑖, 𝐼𝑡,𝑖, 𝐵𝑡,𝑖 ≥ 0     ∀𝑖 = 0,… , 𝑁 (6.15) 

𝑊𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖: integers       ∀𝑖 = 0,… , 𝑁 (6.16)  

The first term in the objective function is controlling the total change of the production 

levels over consecutive planning iterations, while the second conflicting term is the cost objective. 

It should be noted that in planning iteration t, 𝑃𝑡,𝑖 is the decision variable while 𝑃𝑡−1,𝑖+1 is an input 

parameter previously determined in planning iteration 𝑡 − 1. 

As the stability objective is formulated in form of summation of absolute values, we need 

to use a transformation technique to make sure it follows the linear programming requirements. 

As a result, we do the following transformation in this objective by defining two decision variables 

(𝑒1𝑖 ≥ 0, 𝑒2𝑖 ≥ 0) and also two Constraints (6.18) and (6.19). The transformed formulation for 

the stability objective function is as follows: 

Minimize (∑ 𝑒1𝑖 + 𝑒2𝑖
𝑁−1
𝑖=0 )        (6.17) 

The newly defined constraint are: 

𝑃𝑡,𝑖 − 𝑃𝑡−1,𝑖+1 = 𝑒1𝑖 − 𝑒2𝑖      ∀𝑖 = 0,… , 𝑁 − 1  (6.18) 

𝑒1𝑖, 𝑒2𝑖 ≥ 0       ∀𝑖 = 0,… , 𝑁 − 1  (6.19) 
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By applying the techniques mentioned earlier, the transformed linearized and standardized 

BO-APP model is as follows: 

Maximize  𝑤 ∗
(∑ 𝑒1𝑖+𝑒2𝑖

𝑁−1
𝑖=0 )−𝑆𝑡𝑎𝑏𝑚𝑎𝑥

𝑆𝑡𝑎𝑏𝑚𝑖𝑛−𝑆𝑡𝑎𝑏𝑚𝑎𝑥
+ 

(1 − 𝑤) ∗
∑ (𝑐𝑤.𝑡ℎ.𝑊𝑡,𝑖+𝑐

𝑜.𝑁
𝑖=0 𝑂𝑡,𝑖+𝑐

𝐻.𝐻𝑡,𝑖+𝑐
𝐿.𝐿𝑡,𝑖+𝑐

𝑝.𝑃𝑡,𝑖+ℎ.𝐼𝑡,𝑖+𝑏.𝐵𝑡,𝑖)−𝐶𝑚𝑎𝑥

𝐶𝑚𝑖𝑛−𝐶𝑚𝑎𝑥
   (6.20) 

Subject to 

Constraints (6-8)-(6-16), (6-18), (6-19) 

In the above objective function, best (worst) values for stability objective could be obtained 

through solving the single objective stability (cost) optimization model. For the cost objective, 

APP model results in the best cost while the worst cost would result from a single objective 

stability minimization model. In addition, changing 𝑤 would affect the relative importance of each 

objective in the optimization process and produces a Pareto-Frontier of non-dominating solutions. 

Hence, we use the compromise programming formulation (6.20) as the basis for all 

Stochastic/Fuzzy Bi-objective APP models in the next sub-sections. However, as we will further 

explain in the sub-sequent sections, depending on the uncertainty modeling technique, we may 

need to modify the Bi-objective formulation accordingly. 

6.4 Fuzzy Max-Min Bi-objective APP (MM-BO-APP) 

Recalling from the MM-APP formulation in Chapter 4, λ represents the intersection 

(minimum) value for all membership functions (fuzzy objective and fuzzy inventory constraints) 

and the Max-Min formulations aims at finding the maximum intersection value of the membership 

functions. When transforming MM-APP into a Bi-objective version, there are some notes we need 

to make: 1. The resulting formulation needs to be formulated in such a way to give the decision 

maker the option to change the weight of the two main objectives which are: cost and stability, 2. 
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The intersection of fuzzy membership functions still needs to be taken into account for the 

maximization as the main idea behind the Max-Min technique. Recalling from the literature 

review, the Max-Min technique could have an extended version in form of a Max-weighted sum 

formulation as proposed by Bellman and Zadeh (1970). In this formulation, the relative importance 

of different membership functions in the model are determined based on the decision maker’s 

preference. We will use the idea of this method to develop the objective of the MM-BO-APP 

problem. The first part of the objective is a variable (𝜆𝑐) related to the intersection of all fuzzy 

constraints’ membership functions (fuzzy inventory constraint for different periods (𝑖 = 1,… ,𝑁) 

in the planning problem). We add a second part to the objective which is the compromise 

formulation of the cost and stability objectives. This way, the intersection of fuzzy constraints as 

well as the weight consideration in the compromise programing formulation are both maintained. 

We would like the Bi-objective formulation to treat both the fuzzy constraints and the compromise 

cost and stability objectives with equal importance (so we used 0.5 as an equal weight for both 

parts), while in the compromise formulation, the relative importance of either cost or the stability 

objectives is defined as in the BO-APP formulation.  

(MM-BO-APP) 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 0.5 ∗ 𝜆𝑐 + 0.5 ∗ (𝑤 ∗
(∑ 𝑒1𝑖+𝑒2𝑖

𝑁−1
𝑖=0 )−𝑆𝑡𝑎𝑏𝑚𝑎𝑥

𝑆𝑡𝑎𝑏𝑚𝑖𝑛−𝑆𝑡𝑎𝑏𝑚𝑎𝑥
+  

(1 − 𝑤) ∗
∑ (𝑐𝑤.𝑡ℎ.𝑊𝑡,𝑖+𝑐

𝑜.𝑁
𝑖=0 𝑂𝑡,𝑖+𝑐

𝐻.𝐻𝑡,𝑖+𝑐
𝐿.𝐿𝑡,𝑖+𝑐

𝑝.𝑃𝑡,𝑖+ℎ.𝐼𝑡,𝑖+𝑏.𝐵𝑡,𝑖)−𝐶𝑚𝑎𝑥

𝐶𝑚𝑖𝑛−𝐶𝑚𝑎𝑥
)  (6.21)  

Subject to  

𝜆𝑐. 𝑣𝑡𝑖 − 𝑃𝑡𝑖 + (𝐼𝑡𝑖 − 𝐵𝑡𝑖 − 𝐼𝑡𝑖−1 + 𝐵𝑡𝑖−1) ≤ −𝑑𝑡𝑖 + 𝑣𝑡𝑖   ∀𝑖 = 1,… , 𝑁 (6.22) 

𝜆𝑐. 𝑢𝑡𝑖 + 𝑃𝑡𝑖 − (𝐼𝑡𝑖 − 𝐵𝑡𝑖 − 𝐼𝑡𝑖−1 + 𝐵𝑡𝑖−1) ≤ 𝑑𝑡𝑖 + 𝑢𝑡𝑖   ∀𝑖 = 1,… , 𝑁 (6.23) 

Constraints (6.8), (6.10) - (6.16), (6.18), (6.19)  



126 

 

0≤ 𝜆𝑐≤1          (6.24) 

Another note we would like to make here is that, as the 𝐶𝑚𝑖𝑛 in the compromise formulation 

is defined as the Utopia for the objective, and the cost objective in the MM-APP formulation is 

assumed to have predetermined upper and lower goal values as 𝑧𝑚𝑎𝑥, 𝑧𝑚𝑖𝑛, the Utopia (𝐶𝑚𝑖𝑛) for 

the cost objective is determined by solving the following Max-weighted sum optimization 

problem.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 0.5 ∗ 𝜆𝑐 + 0.5 ∗ (
∑ (𝑐𝑤.𝑡ℎ.𝑊𝑡,𝑖+𝑐

𝑜.𝑁
𝑖=0 𝑂𝑡,𝑖+𝑐

𝐻.𝐻𝑡,𝑖+𝑐
𝐿.𝐿𝑡,𝑖+𝑐

𝑝.𝑃𝑡,𝑖+ℎ.𝐼𝑡,𝑖+𝑏.𝐵𝑡,𝑖)−𝑧
𝑚𝑎𝑥

𝑧𝑚𝑖𝑛−𝑧𝑚𝑎𝑥
) 

           (6.25)  

Subject to  

Constraints (6.8), (6.10) - (6.16), (6.22)-(6.24)  

6.5 Fuzzy Ranking Bi-objective APP (R-BO-APP) 

The R-BO-APP has the same sets of constraints as the R-APP model, where the inventory 

constraint related to any future period in the planning problem is formulated using the expected 

interval values of the fuzzy demand in each period as in Constraint (6.27). However, the Bi-

objective formulation requires the compromise formulation in the objective function (6.26) and 

adding Constraints (6.18) and (6.19). 

(R-BO-APP) 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤 ∗
(∑ 𝑒1𝑖+𝑒2𝑖

𝑁−1
𝑖=0 )−𝑆𝑡𝑎𝑏𝑚𝑎𝑥

𝑆𝑡𝑎𝑏𝑚𝑖𝑛−𝑆𝑡𝑎𝑏𝑚𝑎𝑥
+ (1 − 𝑤) ∗   

∑ (𝑐𝑤.𝑡ℎ.𝑊𝑡,𝑖+𝑐
𝑜.𝑁

𝑖=0 𝑂𝑡,𝑖+𝑐
𝐻.𝐻𝑡,𝑖+𝑐

𝐿.𝐿𝑡,𝑖+𝑐
𝑝.𝑃𝑡,𝑖+ℎ.𝐼𝑡,𝑖+𝑏.𝐵𝑡,𝑖)−𝐶𝑚𝑎𝑥

𝐶𝑚𝑖𝑛−𝐶𝑚𝑎𝑥
      (6.26) 

Subject to 

𝑃𝑡,𝑖 − 𝐼𝑡,𝑖 + 𝐵𝑡, + 𝐼𝑡,𝑖−1 − 𝐵𝑡,𝑖−1 = 0.5𝐸2
𝑑𝑡,𝑖 + 0.5𝐸1

𝑑𝑡,𝑖   ∀𝑖 = 1,… , 𝑁 (6.27) 
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Constraints (6.8), (6.10) - (6.16), (6.18), (6.19) 

6.6 Stochastic Chance-Constraint Bi-objective APP (CC-BO-APP) 

The CC-BO-APP model follows the same formulation as the CC-APP for the cost objective 

while adding the stability objective as another objective to be minimized. The chance-constraint 

inventory related constraints ((6.29) and (6.30)) as well as the rest of the constraints are still the 

same as the CC-APP. Again, the stability objective related constraints are added here as well. 

(CC-BO-APP) 

 

Maximize  𝑤 ∗
(∑ 𝑒1𝑖+𝑒2𝑖

𝑁−1
𝑖=0 )−𝑆𝑡𝑎𝑏𝑚𝑎𝑥

𝑆𝑡𝑎𝑏𝑚𝑖𝑛−𝑆𝑡𝑎𝑏𝑚𝑎𝑥
+ (1 − 𝑤) ∗   

∑ (𝑐
𝑤
.𝑡ℎ.𝑊𝑡,𝑖+𝑐

𝑜
.

𝑁
𝑖=0 𝑂𝑡,𝑖+𝑐

𝐻
.𝐻𝑡,𝑖+𝑐

𝐿
.𝐿𝑡,𝑖+𝑐

𝑝
.𝑃𝑡,𝑖+ℎ.(𝐼𝑡,0+∑ 𝑃𝑡,𝑗

𝑖
𝑗=0 −∑ 𝜇𝑡,𝑗

𝑖
𝑗=0 )) −𝐶𝑚𝑎𝑥

𝐶𝑚𝑖𝑛−𝐶𝑚𝑎𝑥
  (6.28) 

Subject to 

𝐼𝑡,0 + ∑ 𝑃𝑡,𝑖
𝑖
𝑗=1 ≥ 𝐹

∑ 𝐷𝑡,𝑖
𝑖
𝑗=1

−1 (𝛼)     ∀𝑖=1,…,N (6.29) 

𝐼𝑡,0 + ∑ 𝑃𝑡,𝑗
𝑁
𝑗=1 ≥ 𝐹

∑ 𝐷𝑡,𝑗
𝑁
𝑗=1

−1 (𝛼) + 𝐼       (6.30) 

Constraints (6.8), (6.11) - (6.14), (6.16), (6.18), (6.19) 

𝑊𝑡,𝑖, 𝑂𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖, 𝑃𝑡,𝑖, 𝐼𝑡,𝑖 ≥ 0      ∀𝑖 = 0,… , 𝑁 (6.31) 

6.7 Robust-Stochastic Bi-objective APP (RS-BO-APP) 

The RS-BO-APP equivalent to RS-APP is as the formulations below (Mirzapour Al-E-

Hashem, Malekly et al. 2011). Since the main objective function in RS-APP is summation of 

expected cost and the cost variance over different scenarios, the compromise formulation is using 

the maximum (𝑍𝑚𝑎𝑥) and minimum objective values (𝑍𝑚𝑖𝑛) as the Nadir and Utopia parameters 
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in the Bi-objective formulation. The minimum value is resulting from the RS-APP and the 

maximum value results from RS formulation with the stability minimization objective.  

(RS-BO-APP) 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤 ∗
(∑ 𝑒1𝑖+𝑒2𝑖

𝑁−1
𝑖=0 )−𝑆𝑡𝑎𝑏𝑚𝑎𝑥

𝑆𝑡𝑎𝑏𝑚𝑖𝑛−𝑆𝑡𝑎𝑏𝑚𝑎𝑥
+ (1 − 𝑤) ∗   

∑ 𝑃𝑠(𝑍𝑠)𝑠𝜖𝑆 + ʎ∑ 𝑃𝑠[𝑍𝑠−∑ 𝑃
𝑠′
(𝑍
𝑠′
)𝑠′𝜖𝑆 +𝑠𝜖𝑆 2𝜃𝑠]−𝑍𝑚𝑎𝑥

𝑍𝑚𝑖𝑛−𝑍𝑚𝑎𝑥
      (6.32) 

Subject to 

𝑍𝑠 = ∑ (𝑐𝑤. 𝑡ℎ.𝑊𝑡,𝑖 + 𝑐
𝑜 .𝑁

𝑖=0 𝑂𝑡,𝑖 + 𝑐
𝐻. 𝐻𝑡,𝑖 + 𝑐

𝐿 . 𝐿𝑡,𝑖 + 𝑐
𝑝. 𝑃𝑡,𝑖 + ℎ. 𝐼𝑡,𝑖,𝑠 + 𝑏. 𝐵𝑡,𝑖,𝑠) (6.33)  

𝑍𝑠 − ∑ 𝑃𝑠(𝑍𝑠) + 𝜃𝑠𝑠𝜖𝑆 ≥ 0      ∀ 𝑠𝜖𝑆  (6.34) 

𝑃𝑡,0 = 𝑑𝑡,0,𝑠 + 𝐼𝑡,0,𝑠 − 𝐵𝑡,0,𝑠 − 𝐼𝑡−1,0,𝑠 + 𝐵𝑡−1,0,𝑠   ∀ 𝑠𝜖𝑆  (6.35) 

𝑃𝑡,𝑖 = 𝑑𝑡,𝑖,𝑠 + 𝐼𝑡,𝑖,𝑠 − 𝐵𝑡,𝑖,𝑠 − 𝐼𝑡,𝑖−1,𝑠 + 𝐵𝑡,𝑖−1,𝑠  ∀𝑖 = 1,… , 𝑁, ∀ 𝑠𝜖𝑆 (6.36) 

𝐼𝑡,𝑁,𝑠 ≥ 𝐼        ∀ 𝑠𝜖𝑆  (6.37) 

Constraints (6.11)-(6.14) , (6.16), (6.18), (6.19) 

𝑊𝑡,𝑖, 𝑂𝑡,𝑖, 𝐻𝑡,𝑖, 𝐿𝑡,𝑖, 𝑃𝑡,𝑖, 𝐼𝑡,𝑖,𝑠, , 𝐵𝑡,𝑖,𝑠, 𝜃𝑠 ≥ 0   ∀𝑖 = 0,… , 𝑁, ∀ 𝑠𝜖𝑆 (6.38) 

6.8 Computational Results & Analysis  

We use the same data sets for the Bi-objective fuzzy and stochastic models as previously 

explained in Chapters 4 and 5. In addition, for sensitivity purposes, we test 5 main scenarios for 

𝑤, which are: 0, 0.1, 0.5, 0.9, 1. Please note that 𝑤 = 0 is equivalent to the APP and 𝑤 = 1 results 

in a pure stability minimization problem. We initially run the single objective cost and stability 

minimization related to each model to come up with the minimum and maximum cost (and 

objective in the RS-APP) values for each iteration and consider these as estimates of lower and 

upper bounds for the cost related objective standardization in the bi-objective formulation. In 
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addition, the resulting stability from the cost and stability minimization models is used to estimate 

𝑆𝑡𝑎𝑏𝑚𝑎𝑥, 𝑆𝑡𝑎𝑏𝑚𝑖𝑛 for normalizing the stability objective. 

In the following sections, we will present and discuss the results corresponding to the 

Fuzzy/Stochastic Bi-objective APP model. 

6.8.1 Fuzzy Bi-objective APP Results 

 

The box-plots in Figures 6.1-6.10 shows the distribution of cost and stability values of 

average FRP-APP, Fuzzy APP, Fuzzy FRP-APP, and the Fuzzy BO-APP models using the two 

fuzzy technique (Max-Min and Ranking) and different weights for the stability and cost objectives. 

Figures 6.11-6.20 show the pareto frontier of the cost versus stability for the Fuzzy Bi-objective 

APP using different importance weights (0, 0.1, 0.5, 0.9, 1) for the stability (cost) objectives and 

also the Fuzzy FRP-APP with different flex-limits (1%, 3%, 5%). To have a more concise look, in 

these graphs, the results of each model are averaged over the 16 demand scenarios. In addition, 

Tables 6.1 and 6.2 also provide insights about the average cost gap and average stability 

performance of Fuzzy BO-APP, Fuzzy FRP-APP, and Fuzzy APP for different industries for each 

fuzzy technique. 

The box-plots in Figures 6.1-6.10 show although the different planning approaches have 

very competitive cost values, consideration of the stability as a second objective can noticeably 

stabilize the resulting plans from the respective APP model specially when using MM-BO-APP 

formulation. In addition, incorporation of stability as a second objective can result in less variation 

in the stability of the APP model over various demand scenarios. These improvements are even 

more noticeable if higher weights are given to the stability objective. The cost performance 

differences in Table 6.1 as well as the box-plots indicate for the Wood and Paper and Air 
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Conditioning Units Cases, the Max-Min technique shows potentials for noticeable cost increase 

for the MM-BO-APP while if formulated using the Fuzzy Ranking method, the combinatorial cost 

and improved stability measures are much more promising. For other cases however, using either 

fuzzy technique can result in promising improved stability with comparable cost values as 

compared to the Fuzzy APP. 

In addition, comparing the Fuzzy FRP-APP and the Fuzzy BO-APP planning approaches 

(Figures 6.11-6.20) indicates the noticeable improved stability of the APP with consideration of 

the stability objective has the potential to even outperform the Fuzzy FRP-APP in terms of cost 

and stability in the majority of the industries tested (Textile, Automotive Parts, Machinery and 

Transmission, and the Air Conditioning Units industries). The Wood and Paper Industry results 

indicate when a Max-Min formulation is used, the MM-FRP-APP with 1% and 3% flex-limits 

yield more reliable planning choices in terms of both cost and stability specially when compared 

with the MM-BO-APP with  𝑤 = 0.2 or higher.  

As a result, if formulated using the Max-Min technique, the MM-BO-APP can result in 

more noticeable stable plans as compared to the MM-FRP-APP, with occasional possibilities to 

have higher cost, but the Ranking formulation results in more competitive stability for the R-BO-

APP and R-FRP-APP with a consistent better cost performance for the R-BO-APP. 
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Figure 6.1: Textile cost variation: Fuzzy APP, 

Fuzzy FRP-APP, Fuzzy Bi-objective APP, FRP-

APP 

 

Figure 6.2: Textile stability variation: Fuzzy APP, 

Fuzzy FRP-APP, Fuzzy Bi-objective APP, FRP-

APP 

  

 

Figure 6.3: Automotive parts cost variation: 

Fuzzy APP, Fuzzy FRP-APP, Fuzzy Bi-objective 

APP, FRP-APP 

 

Figure 6.4: Automotive parts stability variation: 

Fuzzy APP, Fuzzy FRP-APP, Fuzzy Bi-objective 

APP, FRP-APP 

  

 



132 

 

 

Figure 6.5: Machinery and Transmission cost 

variation: Fuzzy APP, Fuzzy FRP-APP, Fuzzy Bi-

objective APP, FRP-APP 

 

Figure 6.6: Machinery and Transmission stability 

variation: Fuzzy APP, Fuzzy FRP-APP, Fuzzy Bi-

objective APP, FRP-APP 

  

 

Figure 6.7: Wood and Paper cost variation: Fuzzy 

APP, Fuzzy FRP-APP, Fuzzy Bi-objective APP, 

FRP-APP 

 

Figure 6.8: Wood and Paper stability variation: 

Fuzzy APP, Fuzzy FRP-APP, Fuzzy Bi-objective 

APP, FRP-APP 
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Figure 6.9: Air Conditioning Units cost variation: 

Fuzzy APP, Fuzzy FRP-APP, Fuzzy Bi-objective 

APP, FRP-APP 

 

Figure 6.10: Air conditioning stability cost 

variation: Fuzzy APP, Fuzzy FRP-APP, Fuzzy 

Bi-objective APP, FRP-APP 

 

 

Figure 6.11: Pareto Frontier of Fuzzy MM-BO-

APP, Fuzzy MM-FRP-APP 1%, 3%, 5% 

(Average of 16 demand scenarios), Textile 

 

Figure 6.12: Pareto Frontier of Fuzzy R-BO-APP, 

Fuzzy R-FRP-APP 1%, 3%, 5% (Average of 16 

demand scenarios), Textile 
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Figure 6.13: Pareto Frontier of Fuzzy MM-BO-

APP, Fuzzy MM-FRP-APP 1%, 3%, 5% 

(Average of 16 demand scenarios), Automotive 

Parts 

 

Figure 6.14: Pareto Frontier of Fuzzy R-BO-APP, 

Fuzzy R-FRP-APP 1%, 3%, 5% (Average of 16 

demand scenarios), Automotive Parts 

  

 

 

Figure 6.15: Pareto Frontier of Fuzzy MM-BO-

APP, Fuzzy MM-FRP-APP 1%, 3%, 5% 

(Average of 16 demand scenarios), Machinery 

and Transmission 

 

Figure 6.16: Pareto Frontier of Fuzzy R-BO-APP, 

Fuzzy R-FRP-APP 1%, 3%, 5% (Average of 16 

demand scenarios), Machinery and Transmission 

  



135 

 

 

Figure 6.17: Pareto Frontier of Fuzzy MM-

BO-APP, Fuzzy MM-FRP-APP 1%, 3%, 5% 

(Average of 16 demand scenarios), Wood and 

Paper 

 

Figure 6.18: Pareto Frontier of Fuzzy R-BO-APP, 

Fuzzy R-FRP-APP 1%, 3%, 5% (Average of 16 

demand scenarios), Wood and Paper 

  

 

 

Figure 6.19: Pareto Frontier of Fuzzy MM-BO-

APP, Fuzzy MM-FRP-APP 1%, 3%, 5% 

(Average of 16 demand scenarios), Air 

Conditioning 

 

Figure 6.20: Pareto Frontier of Fuzzy R-BO-APP, 

Fuzzy R-FRP-APP 1%, 3%, 5% (Average of 16 

demand scenarios), Air Conditioning 

  



136 

 

Table 6.1: Average cost gap percentage of different fuzzy models in different industries 

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

MM-FRP-APP 8.9 0.7 15.2 6.2 20.1 

MM-BO-APP 4.6 0.6 1.7 23.7 13.4 

MM-APP 0.0 0.0 0.0 0.0 0.3 

R-FRP-APP 6.5 0.1 4.0 9.4 14.6 

R-BO-APP 0.6 0.4 1.4 0.4 2.0 

R-APP 0.3 0.9 0.1 0.0 0.0 

*0.0 means the lowest average cost, and a cost gap percentage closer to 0.0 shows a better cost performance. 

Table 6.2: Comparison of average instability ratio for different fuzzy models in different industries  

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

MM-FRP-APP 2.1 8.9 4.5 2.1 1.5 

MM-BO-APP 1.0 1.1 1.0 1.0 1.0 

MM-APP 4.4 13.0 16.2 3.4 2.5 

R-FRP-APP 2.0 7.1 4.1 2.1 1.6 

R-BO-APP 2.4 1.0 3.4 2.4 1.8 

R-APP 4.2 10.2 11.4 3.4 2.3 

*1.0 means the best stability control, and a ratio closer to 1.0 shows a better stability performance. 

6.8.2 Stochastic Bi-objective APP Results 

 

In this section, we present similar analysis and charts as in the fuzzy case for the 

comparison of the stochastic models. The distribution of cost and stability performance of the 

stochastic models over 16 demand scenarios using each stochastic technique (Chance-Constraint 

and Robust-Stochastic) are presented in box-plots in Figures 6.21-6.30, while the Pareto charts of 

cost and stability of the Stochastic BO-APP and the stochastic FRP-APP (averaged over 16 

demand scenarios) for different Industry Cases are presented as in Figures 6.31-6.40. In addition, 
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Tables 6.3, 6.4 give an overall idea of the average cost and stability performance of the Stochastic 

BO-APP, Stochastic FRP-APP, and Stochastic APP approaches.  

The general observation from the box-plots in Figures 6.21-6.30 and also analyzing Tables 

6.3, 6.4 indicates that using each stochastic modeling technique, with no noticeable adverse effect 

on the cost of plan, the Stochastic BO-APP is able to improve the stability of its Stochastic APP 

counterpart. The results are more noticeable if 𝑤 = 0.5 or higher. 

The comparative results of Stochastic FRP-APP and Stochastic BO-APP approaches for 

the Automotive Industry (Figures 6.23, 6.24, 6.33, 6.34) advocates the utilization of BO-APP as a 

more cost and stability beneficial planning approach. Other Industry cases show very competitive 

cost and stability performance for the CC-FRP-APP and CC-BO-APP approaches, and more 

noticeable stability improvement for the CC-BO-APP if 𝑤 = 0.9 or higher. The RS-FRP-APP and 

RS-BO-APP comparative results indicate the RS-BO-APP can result in more cost beneficial plans 

with competitive average stability performance for the two planning approaches, and potentials 

for further stable plans if RS-BO-APP uses 𝑤 = 0.5 or higher.  

  



138 

 

 

Figure 6.21: Textile cost variation: Stochastic APP, 

Stochastic FRP-APP, Stochastic Bi-objective APP, 

FRP-APP 

 

Figure 6.22: Textile stability variation: Stochastic 

APP, Stochastic FRP-APP, Stochastic Bi-

objective APP, FRP-APP 

  

 

 

Figure 6.23: Automotive Parts cost variation: 

Stochastic APP, Stochastic FRP-APP, Stochastic 

Bi-objective APP, FRP-APP 

 

Figure 6.24: Automotive Parts stability variation: 

Stochastic APP, Stochastic FRP-APP, Stochastic 

Bi-objective APP, FRP-APP 
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Figure 6.25: Machinery and Transmission cost 

variation: Stochastic APP, Stochastic FRP-APP, 

Stochastic Bi-objective APP, FRP-APP 

 

Figure 6.26: Machinery and Transmission stability 

variation: Stochastic APP, Stochastic FRP-APP, 

Stochastic Bi-objective APP, FRP-APP 

  

 

 

Figure 6.27: Wood and Paper cost variation: 

Stochastic APP, Stochastic FRP-APP, Stochastic 

Bi-objective APP, FRP-APP 

 

Figure 6.28: Wood and Paper stability variation: 

Stochastic APP, Stochastic FRP-APP, Stochastic 

Bi-objective APP, FRP-APP 
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Figure 6.29: Air Conditioning Units cost 

variation: Stochastic APP, Stochastic FRP-APP, 

Stochastic Bi-objective APP, FRP-APP 

 

Figure 6.30: Air Conditioning Units stability 

variation: Stochastic APP, Stochastic FRP-APP, 

Stochastic Bi-objective APP, FRP-APP 

 

 

 

Figure 6.31: Pareto Frontier of CC-BO-APP, CC-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Textile 

 

Figure 6.32: Pareto Frontier of RS-BO-APP, RS-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Textile 
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Figure 6.33: Pareto Frontier of CC-BO-APP, CC-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Automotive Parts 

 

Figure 6.34: Pareto Frontier of RS-BO-APP, RS-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Automotive Parts 

  

 

 

Figure 6.35: Pareto Frontier of CC-BO-APP, CC-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Machinery and Transmission 

 

Figure 6.36: Pareto Frontier of RS-BO-APP, RS-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Machinery and Transmission 
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Figure 6.37: Pareto Frontier of CC-BO-APP, CC-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Wood and Paper 

 

Figure 6.38: Pareto Frontier of RS-BO-APP, RS-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Wood and Paper 

  

 

 

Figure 6.39: Pareto Frontier of CC-BO-APP, CC-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Air conditioning 

 

Figure 6.40: Pareto Frontier of RS-BO-APP, RS-

FRP-APP 1%, 3%, 5% (Average of 16 demand 

scenarios), Air conditioning 
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Table 6.3: Average cost gap percentage of different stochastic models in different industries 

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

CC-FRP-APP 0.4 0.0 0.0 0.4 0.6 

CC-BO-APP 0.1 0.1 0.1 0.2 0.7 

CC-APP 0.0 0.0 0.0 0.0 0.0 

RS-FRP-APP 1.8 0.0 0.4 3.0 4.1 

RS-BO-APP 0.5 0.3 0.5 0.3 0.7 

RS-APP 0.2 0.0 0.3 0.1 0.2 

*0.0 means the lowest average cost, and a cost gap percentage closer to 0.0 shows a better cost performance. 

Table 6.4: Comparison of average instability ratio for different stochastic models in different industries  

 

Textile  Automotive  
Machinery & 

Transmission  
Wood & Paper  

 

Air 

Conditioning  

CC-FRP-APP 1.0 8.7 1.4 1.0 1.1 

CC-BO-APP 1.6 1.0 1.0 1.2 1.0 

CC-APP 2.1 12.6 3.6 1.5 1.6 

RS-FRP-APP 1.5 28.0 2.1 4.0 4.1 

RS-BO-APP 1.8 5.7 1.3 6.1 4.5 

RS-APP 2.7 43.0 4.4 8.6 6.9 

*1.0 means the best stability control, and a ratio closer to 1.0 shows a better stability performance. 

6.9 Conclusions 

The fuzzy results indicate the Bi-objective APP has the potential to noticeably improve the 

stability of the APP model. In addition, it can further alleviate another issue with the stability of 

the Fuzzy APP, which is controlling the stability variation over various demand scenarios specially 

if higher weight is given to the stability objective. In general, the MM-BO-APP shows better 

stability control over the developed plans, but since it also could result in higher cost values in 

some Industry Cases , with comparable stability improvement performance, the R-BO-APP results 

in a better combination of cost and stability behavior as compared to the Fuzzy APP models. 
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Furthermore, the comparison of the Fuzzy BO-APP and the Fuzzy FRP-APP models shows for 

most of the test Cases (Wood and Paper, and Air Conditioning Units), the former model can 

outperform the cost and stability of the latter. The stability preference of the Fuzzy BO-APP 

becomes more visible if formulated as MM-BO-APP, with occasional chances to result in higher 

costs. The ranking formulation, however, can result in more competitive stability performance for 

the R-BO-APP and R-FRP-APP models. The Automotive Industry results, however, indicate very 

competitive cost values for both Fuzzy BO-APP and Fuzzy FRP-APP with more noticeable stable 

plans resulting from Fuzzy BO-APP approach as compared to the Fuzzy FRP-APP using either 

fuzzy technique. 

The stochastic results for each of the Chance-Constraint and the Robust-Stochastic 

methods, indicate the Stochastic BO-APP has potential to improve the stability of its Stochastic 

APP counterpart, with more promising results for the Robust-Stochastic models comparisons when 

𝑤 ≥ 0.5. In addition, the comparison of the CC-FRP-APP and CC-BO-APP models indicate very 

competitive cost and stability performance with possibility of better stability performance if CC-

BO-APP uses 𝑤 ≥ 0.9. The RS-BO-APP cost and stability results indicate this planning method 

could result in better cost performance as compared to RS-FRP-APP and also show better control 

over plan stability if 𝑤 ≥ 0.5. The Automotive Industry results, again, indicate very competitive 

cost values with more noticeable stable plans resulting from Stochastic BO-APP approach as 

compared to the Stochastic FRP-APP using either stochastic technique. 

As a concluding mark, we would like to mention both the Fuzzy/Stochastic FRP-APP and 

the Fuzzy/Stochastic BO-APP models are promising planning approaches with varying parameters 

to balance the cost and stability of the developed plans as compared to the regular Fuzzy/Stochastic 

APP. The FRP follows an incremental flexibility level consideration policy and gives the decision 
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maker or the planner the ability to adjust and decide about a specific level of flexibility for each 

period in the planning horizon. The BO-APP on the other hand, treats stability as a second 

objective and the importance weight it gives to the stability objective is not a period-dependent 

adjustable parameter. Based on the planner preference for adjusting the stability of the planning 

problems, the fuzzy/stochastic technique utilized, and the industry the models are going to be 

tested on, the FRP-APP and the BO-APP could be considered as viable candidates, however, a 

careful selection of either flex-limit sets or the stability objective weight becomes crucial. 
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 SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Summary 

In this research, several stochastic and fuzzy techniques have been proposed to create 

flexible aggregate production plans (APPs) to deal with planning variability related “nervousness” 

under uncertainty by trading off plan cost versus plan stability. More specifically 8 new APP 

models have been proposed here as follows: Stochastic CC-FRP-APP, Stochastic RS-FRP-APP, 

Stochastic CC-BO-APP, Stochastic RS-BO-APP, Fuzzy MM-FRP-APP, Fuzzy R-FRP-APP, 

Fuzzy MM-BO-APP, and Fuzzy R-BO-APP. A comprehensive sensitivity analysis was conducted 

utilizing experimental design techniques to test the proposed models with respect to different 

flexibility levels, industry types, demand patterns, and uncertainty modeling techniques. 

7.2 Conclusions 

The main conclusions of this research can be summarized as follows: 

• Fuzzy FRP-APP Results and Conclusions: 

- For the majority of the industries tested (Textile, Automotive Parts, Machinery and 

Transmission Parts, and Wood and Paper), the Fuzzy FRP-APP shows as a promising 

planning approach to have a noticeable better stable performance with comparable cost 

values as compared to the Fuzzy APP. This however requires a careful analysis on the 

performance of Fuzzy FRP-APP with different flex-limit options and the fuzzy 

technique used. 

- Fuzzy FRP-APP and FRP-APP models show similar performances specially when the 

R-FRP-APP formulation is used. 
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- MM-FRP-APP can result in slightly better stability while R-FRP-APP could further 

improve the cost performance of Fuzzy FRP-APP model. The cost-stability results 

indicate R-FRP-APP to be a more promising planning approach.  

- Depending on the Industry Case and demand structure, careful selection of flex-limits 

for the FRP-APP can make it a viable planning approach as compared to the Fuzzy 

APP. The 1% flex limits promise a reliably better stability with occasional higher cost 

as compared to other flex limits scenarios, while other flex-limits cases may result in 

lower cost values and less control over plan stability. 

- Fuzzy models’ cost performance is mainly affected by the demand structure and the 

industry parameters (especially the workforce related costs) 

- Fuzzy models’ stability performance is mainly affected by the demand structure, 

industry parameters (especially inventory cost and also the production capacity), fuzzy 

technique selection (this is more tangible for the Fuzzy APP), and the flex-limits. 

• Stochastic FRP-APP Results and Conclusions: 

- Robust- Stochastic technique in general seem to have less control over plan stability as 

compared to the Chance-Constraint technique. This is because the scenario-based 

formulation includes more volatility with respect to demand as compared to the 

distribution-based formulation in Chance-Constraint, and as a result, the stability is 

more difficult to maintain. 

- CC-APP is a preferred planning approach for developing stable plans with better cost 

values as compared with the FRP-APP and RS-APP models. 



148 

 

- When FRP-APP is formulated as a Stochastic planning problem, using either RS-FRP-

APP or the CC-FRP-APP, it yields noticeably better stability performance, and also 

close cost values as compared to the Stochastic APP counterparts. 

- Stochastic models’ cost is mainly affected by demand structure and industry change 

(specially changes in workforce related costs and production capacity). 

- Stochastic models’ stability performance is mainly affected by stochastic technique 

selection, and the flex-limits, followed by the behavior of demand structure and 

industry parameters (specially inventory cost). 

• Bi-objective Fuzzy Results and Conclusions: 

- Based on the results, it seems the Fuzzy BO-APP can noticeably improve the stability 

of the Fuzzy APP. It also seems to result in less variable stability values over different 

demand scenarios. However, due to the potentials for increased cost values in the Bi-

objective APP model as compared to the APP model (as indicated in MM-BO-APP 

results for the Wood and Paper, and Air Conditioning Units Industry cases), depending 

on the industry structure, selection of the fuzzy technique could become more 

important. 

- The Fuzzy BO-APP also yields better cost-stability performance as compared to the 

Fuzzy FRP-APP, with more noticeable stability improvement with occasional higher 

cost for the MM-BO-APP and more consistent cost improvement with competitive 

stability for R-BO-APP. 
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• Bi-objective Stochastic Results and Conclusions: 

- Irrespective of the stochastic technique used (i.e. either chance-constraint or the robust 

stochastic formulation), the Stochastic BO-APP with comparable cost performance, 

can result in more stable plans specially with stability importance weight of ≥0.5.  

- The Stochastic CC-FRP-APP and the Stochastic Bi-objective CC-APP models have 

very competitive results in terms of both cost and stability. On the other hand, the RS-

BO-APP shows more promising cost and stability performance results specially with 

stability importance weight of ≥0.5. 

- In general, the Bi-objective Stochastic/Fuzzy APP models with stability importance 

weight of ≥0.5 seem to perform well in terms of stability without sacrificing the cost 

objective.  

• General Results and Conclusions: 

- FRP-APP models’ cost and stability performance are dependent on the flex-limits. 

FRP-APP models with 1%-3% flex-limits seem to yield more promising stability 

results. 1% flex-limit results in the most stable plans with a potential to increase the 

cost of plans.  

- Stochastic/Fuzzy FRP-APP seems to give more control to the planners and decision 

makers to adjust their level of flexibility levels over the planning horizon compared to 

the Stochastic/Fuzzy Bi-objective models since the importance weight is fixed for the 

stability objective.   

- Speaking of the optimal model parameters, both Stochastic/Fuzzy -based methods 

require sensitivity analysis. FRP-APP requires sensitivity with respect to flex-limits 

while the Bi-objective APP requires sensitivity with respect to 𝑤. 
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- From a computational complexity perspective, the Gurobipy solver was able to handle 

all developed models (irrespective of the Industry Case) and reach to an optimal 

solution for all 50 planning iterations within a few minutes (typically less than 5 

minutes). The scenario-based models seem to be the most time-consuming models as 

compared to other models due to the model size growth based on different possible 

scenarios. In conclusion, we believe increasing the number of scenarios, size of the 

planning horizon, number of planning iterations, and having multiple interdependent 

products in the planning problem could further increase the computational time and 

effort. However, we still believe the complexity of these problems could be handled by 

existing solvers within reasonable time. 

7.3 Future Directions 

Our findings could lead to several directions for further research and analysis in the future: 

• Varying Flex limits: According to our analysis, the flex limits are among the most 

influential factors on the relative stability performance of the planning models. In this 

research, we have incorporated flex-limits with incremental increase from one period to 

another making the control tighter for current/near periods and looser for future periods. 

While this approach seems to work, other distributions or selections of flex-limits can be 

tested for example perhaps adjusting the flex-limits dynamically from period to period 

based on either planners’ preferences and/or demand uncertainties.   

• Time-varying objective function weights: We have considered constant weight for stability 

and cost in the bi-objective optimization; however, this assumption can be relaxed by 

varying the weights over the planning horizon. This approach can enable a planner to have 
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tighter control of stability in the current and near periods by selecting higher weights for 

the stability objective. Similarly, for future periods the weights can be reduced. 

• Effect of Forecasting Methods: In this research the forecasted demands are generated using 

the decomposition technique for 16 demand scenarios. An investigation on different 

forecasting methods and other demand patterns can be interesting to further validate the 

FRP-APP and well as the Bi-objective APP models proposed here.  

• Multi-product planning: Also, as this research considers the single product case, future 

research could also include multi-products cases where there could exist shared resources, 

setups as well as demand correlations among some or all products.  

• Other Stochastic and Fuzzy Techniques: While we have utilized the most popular 

stochastic and fuzzy techniques to build the FRP and bi-objective models, other techniques 

could be utilized such as dynamic, multi-stage planning, and the fuzzy possibilistic linear 

programming. 

• Other Industry Scenarios:  The results indicate that stability of the models may show 

vulnerability to mainly the inventory cost and also the production capacity, as both could 

affect levels of production and as a result, the effort the models put on meeting customers’ 

demand. While we tested five industry-based cases and twelve hypothetical industrial 

scenarios under 16 demand scenarios and various flex-limits, continuing the sensitivity 

analysis and applications of the proposed methods on other industry test cases could be 

interesting and could further validate the models and related conclusions.   

• Other areas of planning applications: Finally, in addition to the production planning, the 

FRP-based planning approach as well as the Bi-objective planning models presented here, 

could be extended to other planning problems such as: lot-sizing and scheduling, 
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distribution and transportation planning, and resource planning problems in service 

industries . We also think that the FRP-based planning could be applied to address other 

stability related concerns, such as: workforce level changes and resource utilization levels 

especially when workforce satisfaction is important or there exist expensive bottleneck 

resources in the planning problems. 
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APPENDIX A: FUZZY SUPPLEMENTARY GRAPHS ON FRP-APP 

SENSITIVITY 

 

Figure 1: Total current cost comparison, FRP-

APP, R-APP, MM-APP, Textile Industry 

 

Figure 2: Stability comparison, FRP-APP, R-APP, 

MM-APP, Textile Industry 

 

 

Figure 3: Total current cost comparison, FRP-

APP, R-APP, MM-APP, Automotive Parts 

Industry 

 

Figure 4: Stability comparison, FRP-APP, R-APP, 

MM-APP, Automotive Parts Industry 

 



165 

 

 

Figure 5: Total current cost comparison, FRP-

APP, R-APP, MM-APP, Machinery and 

Transmission Industry 

 

Figure 6: Stability comparison, FRP-APP, R-APP, 

MM-APP,Machinery and Transmission Industry 

 

 

Figure 7: Total current cost comparison, FRP-

APP, R-APP, MM-APP, Wood and Paper 

Industry 

 

Figure 8: Stability comparison, FRP-APP, R-APP, 

MM-APP, Wood and Paper Industry 
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Figure 9: Total current cost comparison, FRP-

APP, R-APP, MM-APP, Air Conditioning Unite 

Industry 

 

Figure 10: Stability comparison, FRP-APP, R-

APP, MM-APP, Air Conditioning Unite Industry 

 

 

 

Figure 11: Total current cost comparison, MM-

FRP-APP, MM-APP, Textile Industry 

 

Figure 12: Stability comparison, MM-FRP-APP, 

MM-APP,, Textile Industry 
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Figure 13: Total current cost comparison, MM-

FRP-APP, MM-APP, Automotive Parts Industry 

 

Figure 14: Stability comparison, MM-FRP-APP, 

MM-APP, Automotive Parts Industry 

 

 

Figure 15: Total current cost comparison, MM-

FRP-APP, MM-APP, Machinery and 

Transmission Industry 

 

Figure 16: Stability comparison, MM-FRP-APP, 

MM-APP, Machinery and Transmission Industry 
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Figure 17: Total current cost comparison, MM-

FRP-APP, MM-APP,Wood and Paper Industry 

 

Figure 18: Stability comparison, MM-FRP-APP, 

MM-APP,Wood and Paper Industry 

 

 

Figure 19: Total current cost comparison, MM-

FRP-APP, MM-APP, Air Conditioning Unite 

Industry 

 

Figure 20: Stability comparison, MM-FRP-APP, 

MM-APP, Air Conditioning Unite Industry 
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APPENDIX B: STOCHASTIC SUPPLEMENTARY GRAPHS ON FRP-APP 

SENSITIVITY 

 

Figure 21: Total current cost comparison, FRP-

APP, RS-APP, CC-APP, Textile Industry 

 

Figure 22: Stability comparison, FRP-APP, RS-

APP, CC-APP, Textile Industry 

 

 

Figure 23: Total current cost comparison FRP-

APP, RS-APP, CC-APP,  Automotive Parts 

Industry 

 

Figure 24: Stability comparison, FRP-APP, RS-

APP, CC-APP,  Automotive Parts Industry 
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Figure 25: Total current cost comparison, FRP-

APP, RS-APP, CC-APP,  Machinery and 

Transmission Industry 

 

Figure 26: Stability comparison, FRP-APP, RS-

APP, CC-APP, Machinery and Transmission 

Industry 

 

 

Figure 27: Total current cost comparison, FRP-

APP, RS-APP, CC-APP, Wood and Paper 

Industry 

 

Figure 28: Stability comparison, FRP-APP, RS-

APP, CC-APP, Wood and Paper Industry 
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Figure 29: Total current cost comparison, FRP-

APP, RS-APP, CC-APP,  Air Conditioning Unite 

Industry 

 

Figure 30: Stability comparison, FRP-APP, RS-

APP, CC-APP,  Air Conditioning Unite Industry 

 

 

 

Figure 31: Total current cost comparison, RS-

FRP-APP, RS-APP, Textile Industry 

 

Figure 32: Stability comparison, RS-FRP-APP, RS-

APP, Textile Industry 
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Figure 33: Total current cost comparison RS-

FRP-APP, RS-APP, Automotive Parts Industry 

 

Figure 34: Stability comparison, RS-FRP-APP, RS-

APP, Automotive Parts Industry 

 

 

Figure 35: Total current cost comparison, RS-

FRP-APP, RS-APP, Machinery and Transmission 

Industry 

 

Figure 36: Stability comparison, RS-FRP-APP, 

RS-APP, Machinery and Transmission Industry 
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Figure 37: Total current cost comparison, RS-

FRP-APP, RS-APP, Wood and Paper Industry 

 

Figure 38: Stability comparison, RS-FRP-APP, 

RS-APP, Wood and Paper Industry 

 

 

Figure 39: Total current cost comparison, RS-

FRP-APP, RS-APP, Air Conditioning Unite 

Industry 

 

Figure 40: Stability comparison, RS-FRP-APP, 

RS-APP, Air Conditioning Unite Industry 

 

 


