
INTRUSION DETECTION AND DETERRENCE FOR CRITICAL
INFRASTRUCTURES

by

Muhammad Qasim Ali

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2016

Approved by:

Dr. Ehab Al-Shaer

Dr. Yongge Wang

Dr. Weichao Wang

Dr. Rakesh Bobba

Dr. Yu Wang

ii

c©2016
Muhammad Qasim Ali

ALL RIGHTS RESERVED

iii

ABSTRACT

MUHAMMAD QASIM ALI. Intrusion detection and deterrence for critical
infrastructures. (Under the direction of DR. EHAB AL-SHAER)

Critical infrastructures are the systems and networks that are so vital that their

unavailability would have a major impact on national security, economy, safety, or

any combination thereof [1]. Examples of critical infrastructure are power systems, fi-

nancial services, emergency services, health care, defense sector, and others [1]. While

these infrastructures are readily available, they are inherently vulnerable to attacks.

New emerging threats have been highlighted in the recent literature with respect to

critical infrastructures [2–5]. Therefore, ensuring both accurate detection and robust

deterrence is highly important for protecting these infrastructures from devastating,

sophisticated, and evasive cyber and cyber-physical attacks. Deterrence is the ability

to make intrusions very unlikely or highly expensive. However, the intrusion detec-

tion and deterrence techniques for critical infrastructure face many challenges. First,

intrusion detection techniques should be real-time, accurate, robust against stealthy

attacks, and economically feasible. Second, intrusion deterrence techniques should be

unpredictable, computationally inexpensive, and effective against persistent attack-

ers.

In this thesis, we focus on intrusion detection and deterrence for energy deliv-

ery systems (EDS) of smart grids. This thesis has two key goals. The first goal

is to develop real-time intrusion detection and robust deterrence techniques to pro-

tect EDS against stealthy attacks that can undermine the system’s integrity. The

iv

second goal is to identify the limitations of existing intrusion detection techniques

that allow for evasive attacks and develop techniques to reduce evasion margin for

attackers. We, particularly, investigate advanced metering infrastructure (AMI) and

automatic generation control (AGC) in the supervisory control and data acquisition

network (SCADA) of smart grids. We show, based on statistical analysis of AMI and

AGC operational data, that both AMI and AGC exhibit a predictable behavior that

can be exploited to develop accurate and robust intrusion detection and deterrence

techniques.

First, we model AMI configuration specification using stochastic temporal prop-

erties that can be used to detect anomalous activities. As the AMI exhibits static

behavior that can be exploited to launch mimicry and evasive attacks, we developed

a new deterrence approach that randomizes the AMI configuration frequently to mis-

lead attackers, without breaking the system operational integrity.

Second, we address the AGC attacks that might result from manipulating sensor

measurements that can bypass bad data detection algorithms. We developed a data-

driven multi-tier intrusion detection technique for a single and multiple AGC, which

exploits the temporal dependence of the measurements to identify potential anoma-

lous behavior at real-time, and then incorporate system-wide knowledge through an

offline process to reduce false positives.

Last and third, we investigate the inherent limitations of existing intrusion detec-

tion systems against evasive attacks and developed a key-based deterrence approach

to reduce the attack evasion margin by introducing a notion of randomized thresholds

in intrusion detection systems.

v

ACKNOWLEDGMENTS

I would first like to give thanks to the Almighty God for all of His blessings that

enabled me to complete this dissertation successfully.

Throughout the entire PhD program, my mother, Narjis Khatoon, has sacrificed

the most. I cannot thank her enough for leaving her hometown, staying up for my late

night meetings, taking care of me, and dealing with my hectic/unscheduled/frenetic

life. It is indeed because of her support, help, and prayers that I am able to complete

this dissertation.

I am thankful to Dr. Ehab Al-Shaer, Department of Software and Information

Systems, University of North Carolina at Charlotte. The experience and keen interest

of Dr. Al-Shaer in the field of network and information security encouraged and helped

me to conduct this research. His criticism and supervision has definitely helped me

in publishing the relevant research at conferences and in journals.

I would also like to express my gratitude to Drs. Weichao Wang, Yongge Wang,

Yu Wang, and Rakesh Bobba for serving on my dissertation committee and helping

me pursue the degree by offering their suggestions, feedback, and reviews. I must

acknowledge the help and support I received from the faculty and staff of the Software

and Information Systems Department, College of Computing and Informatics, and

the graduate school. They truly supported me whenever I needed them.

Last but not the least, I am thankful to all my friends, both those at the university

and others, who boosted my morale when I needed it most. I feel lucky to have such

a great group of friends.

vi

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xi

CHAPTER 1: INTRODUCTION 1

1.1. Smart Grids Overview 4

1.2. Limitations of Existing Intrusion Detection Techniques 6

1.3. Work Objectives 7

CHAPTER 2: RANDOMIZATION-BASED INTRUSION DETECTION
SYSTEM FOR ADVANCED METERING INFRASTRUCTURE

9

2.1. Background 12

2.2. Related Work 13

2.3. Challenges 17

2.4. Contribution and Approach Overview 17

2.5. Attack Model 18

2.6. Modeling Intrusion Detection and Deterrence Approach 22

2.6.1. Markov Model for AMI Logs 29

2.6.2. Model Checking for Intrusion Detection 33

2.6.3. Mutable Configuration Deterrence Approach 37

2.7. Experimentation & Evaluation 43

2.7.1. Robustness Against Evasion and Mimicry Attacks 43

2.7.2. Accuracy Evaluation 47

2.7.3. Scalability 55

2.7.4. Limitations 58

vii

2.8. Conclusion 59

CHAPTER 3: MULTI-TIER INTRUSION DETECTION FOR AUTO-
MATIC GENERATION CONTROL

61

3.1. Background 64

3.2. Related Work 67

3.3. Challenges 69

3.4. Contribution and Approach Overview 70

3.5. Attack Model 71

3.5.1. Attack on Power Load 71

3.5.2. Attack on Area Control Error 73

3.6. Modeling of Power Load and Area Control Error 74

3.6.1. Analysis of Load and Area Control Error 74

3.6.2. Prediction Algorithm for Load and Area Control Error 78

3.7. Anomaly Verification Module for Automatic Generation Control 81

3.7.1. Single Automatic Generation Control Model 82

3.7.2. Multiple Automatic Generation Control Model 84

3.8. Evaluation 86

3.8.1. Automatic Generation Control Setup 86

3.8.2. Detection Accuracy Evaluation for Single and Multiple
Automatic Generation Control Model

88

3.9. Conclusion 91

CHAPTER 4: MEASURING AND DETERRING ATTACK EVASION 93

4.1. Background 95

viii

4.2. Related Work 96

4.3. Challenges 97

4.4. Contribution and Approach Overview 98

4.5. Attack Model 99

4.5.1. Datasets 100

4.5.2. Anomaly Detection Systems 101

4.6. Evading Intrusion Detection Systems: A Feasibility Study 102

4.7. The Science of Intrusion Detection System Evasion 107

4.7.1. Evasion Measurement 108

4.7.2. Evasion Mitigation 111

4.8. Evaluation 119

4.8.1. Evaluating Evasion Margin Metric 119

4.8.2. Evaluating Evasion Mitigation 121

4.9. Conclusion 122

CHAPTER 5: CONCLUSION AND FUTURE WORK 124

REFERENCES 127

ix

LIST OF FIGURES

FIGURE 1: Schematic diagram of a smart grid 5

FIGURE 2: Basic AMI network 10

FIGURE 3: Autocorrelation coefficient trend 23

FIGURE 4: State probabilities for higher order markov chain 25

FIGURE 5: Conditional entropy trend over markov chain orders 27

FIGURE 6: Prediction accuracy using fourth order markov model 27

FIGURE 7: Conditional entropy for static and mutable configuration 45

FIGURE 8: Response probabilities when a request was generated for read-
ing and load management

48

FIGURE 9: Prediction accuracy for different markov chain order and PMF
for fourth order model

50

FIGURE 10: Detection accuracy and verification probability vs attack
rate

52

FIGURE 11: Meters vs number of states 55

FIGURE 12: SMT formalization time for mutation algorithm 57

FIGURE 13: Automatic generation control loop 64

FIGURE 14: Attack on load 72

FIGURE 15: Attack on ACE parameter, frequency 73

FIGURE 16: AutoCorrelation and conditional entropy of the load for both
areas

75

FIGURE 17: Prediction accuracy of the algorithm 80

FIGURE 18: Two-area power system 86

FIGURE 19: Load profile 88

x

FIGURE 20: ACE parameters 88

FIGURE 21: Comparison of single AGC and multiple AGC scenarios 89

FIGURE 22: Comparison of ADS performance with and without evasion
attack using configuration estimation

105

FIGURE 23: Threshold values observed in stealthy scanning time window
for TRW and maximum entropy

106

FIGURE 24: Evasion margin measurement of MaxEnt and TRW on end-
point and LBNL dataset

107

FIGURE 25: False positive and negative probability 116

FIGURE 26: False probability with different θ1 117

FIGURE 27: Evasion margin measurement of original and key-based Max-
Ent and TRW on endpoint and LBNL dataset

118

FIGURE 28: Detectors evasion margin comparison on varying thresholds 120

FIGURE 29: Accuracy comparison of detectors with and without key on
regular and evasive attacks

121

xi

LIST OF TABLES

TABLE 1: Some smart grids terminologies and their meaning 12

TABLE 2: Measurements under normal and attack scenarios 73

TABLE 3: Sample load and ACE values 75

TABLE 4: Endpoint attack traffic for two high- and two low-rate worms 100

TABLE 5: Traffic information for the LBNL dataset 100

CHAPTER 1: INTRODUCTION

In the recent past years, technology has witnessed an exponential growth. This ad-

vancement in technology has made users depend on technology infrastructures in their

day-to-day lives. While some of these infrastructures are general purpose, some are

critical in nature. Critical infrastructure is the driving force of the nation’s economy,

security, and safety. Our day-to-day lives are highly dependent on these infrastruc-

tures, e.g., the power we use in our homes, the transportation that moves us, and

the communication systems we rely on to stay in touch with friends and family. All

of these infrastructures have a high impact on the nation’s economy, security, and

safety. The Department of Homeland Security defines these infrastructures as the as-

sets, systems, and networks, whether physical or virtual, so vital to the United States

that their incapacitation or destruction would have a debilitating effect on national

security, economy, or safety, or any combination thereof [1]. Therefore, any damage

or unavailability of these infrastructures has a high impact on the nation. Examples

of these infrastructures are emergency services, energy delivery system (EDS), finan-

cial services, nuclear sector, defense sector, etc. Since these infrastructures generally

relate to the defense, economy, emergency services, and everyday life, availability and

protection of these infrastructures is highly important. Evolving threats targeting

these infrastructures have been discussed in the recent literature [2–5]. Therefore,

protection of these infrastructures using accurate detection and robust deterrence is

2

critical [6]. Deterrence is the ability to make intrusions unlikely or computationally

expensive.

Some effort has been made to make these infrastructures secure, however, new

emerging threats have been witnessed that can compromise these infrastructures.

Moreover, these infrastructures are complex as they exhibit a high level of dependency

on the underlying physical devices and multiple supporting applications. Therefore,

effectively managing the security for these infrastructures is complex, thus it requires

further investigation to develop tailored defense mechanisms. These infrastructures

still face challenges such as 1) accurate and real-time detection, economically feasi-

ble techniques, and robustness against stealthy attacks; 2) unpredictability and ef-

fectiveness against persistent attackers, and computationally inexpensive deterrence

techniques.

In this thesis, we focus on intrusion detection and deterrence techniques for energy

delivery systems of smart grids. The purpose of the work is to: 1) devise tailored

intrusion detection and deterrence techniques that can provide accurate and real-time

detection against stealthy attacks that can undermine the integrity of power system,

and 2) identify the inherent limitations in existing intrusion detection techniques that

allow stealthy and evasive attacks, and then devise an approach to reduce evasion

margin for attackers.

We particularly focus on advanced metering infrastructure (AMI) and automatic

generation control (AGC) of energy delivery systems of smart grids. First, we present

an intrusion detection and deterrence technique for AMI. Though efforts have been

made to devise intrusion detection techniques for AMI, no robust and practically fea-

3

sible defense technique exists. For example, the approaches lack practicality as all

the contemporary work assumes the availability of sensors and computation power

in the field. However, AMI do not provide enough computation power and memory

in the field. Therefore, the existing approaches are not cost effective and have been

avoided by the utility providers and vendors in the past. To this end, we develop an

intrusion detection and deterrence technique for AMI which does not require addi-

tional hardware or sensor deployment in the field. The developed approach utilizes

the already-collected logs in AMI for modeling the behavior and identifying the pres-

ence of anomalous behavior. Furthermore, we introduce key-based randomization to

make evasive attacks infeasible for persistent attackers. Second, although bad data

detection algorithms exist, recent studies show that the generation control system in-

tegrity can be disrupted by proficient attackers. We develop a data-driven multi-tier

intrusion detection approach that predicts the system behavior in an online manner

and flags deviation. The deviations are then verified in an offline manner by incorpo-

rating system-wide knowledge to confirm the presence of intrusion thereby reducing

false positives. The approach can work with both single and multiple AGC. Third,

we show that existing intrusion detection systems have inherent design limitations

that allow attackers to successfully evade these systems. We devise a metric that can

measure the evasion margin of these systems and show that some intrusion detection

systems are more susceptible to evasive attacks than others. To countermeasure the

evasive attacks, we develop a key-based deterrence technique to reduce the evasion

margin for attackers by introducing a notion of randomized thresholds in existing

intrusion detection systems.

4

In the later sections, we discuss the background of smart grids. We then discuss

the limitations of existing approaches that need to be investigated in depth followed

by the work objectives. Based on the limitations and work objectives, we develop

intrusion detection and deterrence techniques in the subsequent sections.

1.1 Smart Grids Overview

The paradigm for energy infrastructures is being shifted to a new era. Legacy

infrastructures are being replaced with the state-of-the-art smart grids. In the last

few years, leading utility providers have taken the initiative of shifting to smart grids

in order to efficiently manage the power while providing useful features [7]. The

basic premise of moving to smart grids infrastructure is to manage it efficiently while

providing uninterrupted low cost energy. The new smart infrastructure supports

numerous cyber and physical devices that exhibit a high level dependency. Thus,

smart grid is a highly complex and critical cyber-physical system that requires very

rigid security considerations.

Different communication networks are connected to the power system for sensing

measurements and control commands. These networks are associated with the su-

pervisory control and data acquisition (SCADA) system for its real-time operation.

SCADA system connects the generating stations, substations, corporate offices, and

control center. SCADA is mainly responsible for monitoring and obtaining data ac-

quisition from the remote equipment; and for controlling the equipment remotely

either by the operator or automatically based on the data acquisition. Though it has

several advantages along with the readily available communication infrastructure, it

5

Figure 1: Schematic diagram of a smart grid

makes the system inherently vulnerable to cyber threats.

A basic schematic diagram of a smart grid is shown in Figure 1. It can be noticed

that all the three control centers, i.e., generation, transmission, and distribution, are

connected to the power infrastructure using cyber infrastructure. In this work we

focus on generation and distribution network. Specifically, we focus on Advanced

Metering Infrastructure (AMI) in distribution and Automatic Generation Control

(AGC) in generation. Control centers take the sensor measurements and other data

from the power network in order to analyze and send the control commands using

the same infrastructure. This operation is part of SCADA schematic. Substations

have the power generation ability for their area and they communicate with the

generation control center to adjust the power generation to a required load. On the

other hand, AMI is responsible for providing a bi-directional communication between

smart meters at customers’ premises and headend at utility office for the purpose of

efficient energy management and remote management. Detailed background on AMI

and AGC is discussed in the later relevant sections.

6

1.2 Limitations of Existing Intrusion Detection Techniques

In this section we highlight the limitations of existing intrusion detection techniques

for the critical infrastructure under consideration, i.e., smart grid.

• Practical Infeasibility of AMI Defense: Contemporary intrusion detection tech-

niques for AMI network are practically infeasible. They assume the hardware

deployment in the field for capturing network traffic for detection purposes that

is not cost effective, therefore, these approaches have not witnessed a wide-

spread deployment. Moreover, these approaches require higher computational

power and memory in the field, which is not available.

• No Standard Protocol Implementation in AMI: In the recent literature, pro-

tocol specification based defense mechanism has been proposed since AMI is

homogenous in nature and exhibits a deterministic behavior. However, there is

no standard implementation of the protocol available and all the vendors use

proprietary protocols thereby limiting the applicability of the mechanism.

• Lack of Tailored Defense for Generation Control: No tailored approach exists for

intrusion detection in generation control. Since the load behavior changes over

the time, no data-driven approach exists that considers the temporal behavior

of the power system and system-wide knowledge to identify anomalies. All the

contemporary approaches utilize the traditional cyber defense mechanisms, thus

the approaches are not well suited for generation control.

• Incapable to Measure Evasion Margin: Although there are several existing in-

7

trusion detection systems approaches, there is no mechanism or metric that can

measure evasion margin of an intrusion detection system that is inherent due to

its design regardless of the network under consideration. All the contemporary

work focuses on comparing intrusion detection performance in terms of true

positive and false positive on a given network.

• Not Effective Against Persistent Attackers: Existing intrusion detection systems

employ static features for detection thus making it inherently vulnerable to

evasive and stealthy attacks. Persistent attackers exploit this inherent limitation

to go undetected thereby leaving the intrusion detection system useless against

such attacks.

1.3 Work Objectives

The main objective of this work is to strengthen the security of smart grids by

addressing the limitations of existing approaches mentioned in the earlier section.

• Configuration-based Modeling of AMI: Since AMI supports deterministic behav-

ior due to a limited type of supported devices, configuration, and applications,

we model the behavior using configurations. We utilize the logs generated in

the AMI, thus the approach does not require hardware deployment in the field.

• Robustness Against Evasion in AMI: Since AMI behavior is predictable, evasion

is possible. To this end, we mutate the configurations in order to introduce

robustness against the evasion attempts.

• Behavior Prediction for Generation Control: Load behavior changes over time,

8

therefore, we predict the behavior that is used as a metric for anomaly iden-

tification in the generation control. Moreover, we introduce the system-wide

knowledge in order to verify the presence of anomaly both in single and multi-

ple AGC scenarios.

• Evasion Margin Measurement: We devise a metric that can measure evasion

margin of a given intrusion detection technique that is due to its design lim-

itation regardless of the underlying network. The metric is used to compare

the performances of the intrusion detection techniques in terms of robustness

against evasive attacks.

• Key-based Randomization to Defend Against Persistent Attackers: We devise a

key-based randomization mechanism that overcomes the inherent limitation of

existing intrusion detection systems due to their design. The mechanism reduces

the evasion margin by introducing a notion of randomness for attackers thus

making it computationally infeasible or less likely for attackers to go undetected.

CHAPTER 2: RANDOMIZATION-BASED INTRUSION DETECTION SYSTEM
FOR ADVANCED METERING INFRASTRUCTURE

An important core network in smart grids is Advanced Metering Infrastructure

(AMI). AMI provides bi-directional communication for monitoring and demand-response

functions between end devices at customers’ premises like smart meters and headend

at the utility provider’s office. Bi-directional communication in an AMI makes it

possible for an end user to use the energy efficiently at low cost. Moreover, headend

systems can remotely configure, upgrade, and request meter reading etc. using the

AMI. This inherent criticality and availability of the AMI makes it a high potential

target for the large-scale attacks that can potentially cause a major regional blackout.

Despite these facts, limited progress has been made so far in order to detect mali-

cious behavior. Recent studies including those by the federal government have shown

that AMI is facing immense potential threats [2–5,8], which could affect the deploy-

ment and growth of smart grids. These outline existing vulnerabilities and exploita-

tion, even though secure communication protocols were used. These vulnerabilities

were exploited to penetrate in the AMI to gain control of a number of nodes for

nefarious purposes. To countermeasure, some efforts have been made to prevent

these threats [9–11]. Below we discuss that these proposals lack practical feasibility

due to AMI’s unique characteristics such as low computational power in the field.

Furthermore, details of these works are provided in Section 2.2. Intrusion detection

10

Figure 2: Basic AMI network

systems for networks such as RFID, which is similar to AMI in terms of low compu-

tational power in the field, have also been proposed [12]. However, the attack model

for such techniques is different as the challenge in these networks is information in-

tegrity. Moreover, smart collectors that have already-collected logs may not exist in

the RFID field networks and deploying these detection approaches may not be prac-

tically feasible. On the contrary, AMI threat model includes network level attacks

such as denial of service and mimicry attacks. Therefore, to this end, we developed

a technique tailored for AMI and its challenges. Please note that the work presented

in this section is published in recent studies [13–16].

Figure 2 presents a typical example of the AMI. This figure shows that the meters

communicate with the smart collectors using various mediums and smart collectors

communicate with the headend system (and vice versa) using public networks. Unlike

traditional networks, AMI has its own requirements which pose significant challenges

for monitoring and intrusion detection since it may require capturing network traffic.

First, sensor deployment in the meters in today’s smart grids network is practically

11

infeasible due to the limited computational power and space resources at the node [17].

Second, although some researchers have suggested the meter-based sensors [10,11,18],

smart grids providers as well as vendors avoid this option for today’s smart grids

networks due to the prohibitive cost increase associated with the large number of

meter deployments in the near future. Therefore, most IDS proposals for the AMI

lack practical feasibility. Though modern smart meters replacement is on schedule

for some smart grids providers, our goal is to provide a generic solution which does

not depend on replacement of modern smart meters.

Deploying detection modules at the smart collector provides the benefit of mon-

itoring both the meter-collector and collector-headend communication. Moreover,

AMI communication activity is by default logged at the smart collector thus it does

not pose any extra burden. Although device configuration and the log’s integrity is

protected using headend-collector key pairing, this AMI feature was never exploited

for monitoring and characterizing the AMI network communication behavior using

the key and configuration parameters. AMI exhibits a predictable behavior in terms

of communication and interaction features which can be characterized using device

configurations. Therefore, deviations from the configuration-based characterized AMI

communication behavior can be used for intrusion detection. Deterrence is introduced

by randomizing the AMI behavior for attackers while keeping it deterministic for the

system itself. AMI is a special purpose network and its traffic dynamics are often

very low since it supports a limited number of protocols and it is configuration-driven.

Moreover, similar devices from limited vendors are usually deployed. To exploit the

limited behavior, simple specification-based intrusion detection techniques are pro-

12

Table 1: Some smart grids terminologies and their meaning

Terminology Meaning
Smart Meter A meter capable of two-way communication between the

meter and the headend system
Smart Collector An intermediate device that acts as proxy/router be-

tween the meter and headend system to enable the com-
munication

Meter-based Sensors A specific purpose sensor either built-in or deployed next
to smart meter

Associated Collector A smart collector that is responsible for its neighboring
meter’s communication with the headend system

posed in the recent literature [10] instead of traditional anomaly-based intrusion de-

tectors.

2.1 Background

AMI is a core component of smart grids, which is responsible for bi-directional

communication between headend systems and smart meters. Basic architecture of

an AMI is shown in Figure 2. AMI has three main communication networks: Home

Area Network (HAN), Neighborhood Area Network (NAN), and Wide Area Network

(WAN). As shown in Figure 2, HAN can be realized as the customer home network

that is connected with the smart meter. Therefore, the smart meter acts as an inter-

face for an HAN as it connects AMI and HAN in the bi-directional communication

mode. NAN is responsible for the communication between the smart collectors and

the smart meters. NAN scales from hundreds to thousands of nodes including the

smart meters and the smart collectors. Lastly, WAN is mainly responsible for the

backhaul connectivity of the NAN to the headend system. Basic smart grids termi-

nologies and their meanings are shown in Table 1.

Different communication channels can be used in an AMI network, i.e., HAN,

13

NAN and WAN. For example, NAN may use wireless or power line communication in

order to interact among nodes. Moreover, WAN uses the high range and bandwidth

technologies for the purpose of connecting NAN to the headend. It can use cellular

technologies or another dedicated communication medium. Usually utility providers

utilize the existing network from a third party in order to connect the NAN to the

headend.

2.2 Related Work

The work focuses on configuration-randomization for intrusion detection in AMI,

which is a component of smart grids. First, we discuss randomization-based defense

techniques. Second, we discuss intrusion detection for traditional networks followed

by intrusion detection for smart grids. We then discuss the studies that highlight the

cyber security issues in AMI and existing intrusion detection systems for AMI. Finally

we discuss the novelty of our approach and how it addresses the challenges/unique

characteristics of AMI.

Randomization-based defense techniques, also referred as moving target defense,

have been presented in the recent past [19,20]. Several studies show the effectiveness

of IP address randomization in traditional networks [21–24]. In addition to traditional

networks, randomization techniques for smart grids are also presented [25,26]. Some

studies also presented the randomization for network route and infrastructures for

improved performance and resiliency against attacks [27–30]. However, in this work,

we randomize AMI configurations for intrusion detection.

Intrusion detection has gained tremendous attention and many anomaly-based IDS

14

techniques have been proposed for cyber systems [31–36]. For example, n-gram based

intrusion detection and markov chain based approaches have been proposed in the

past [37–40]. n-gram can be seen as prediction using n-1 markov model. However, a

markov chain moves from one state to the next using a weighted list of possible fu-

ture states. n-gram can calculate the likelihood for next state, however, it only gives

the statistical distribution and cannot maintain the temporal order. Since AMI sup-

ports limited protocols and configurations, temporal specifications can be defined for

markov chain model to devise specification-based intrusion detector. Though n-gram

can be used to design anomaly detection systems based on statistical distribution,

we believe a specification-based approach is better suited for intrusion detection in

AMI due to its nature. Recently proposed techniques have reduced the false positive

rate for traditional networks [41–44]. However, we focus our attention on smart grids

since these techniques require learning and are computationally extensive. Therefore,

they do not fit the application requirements of smart grids.

In [45], an anomaly detection technique for smart grids has been proposed. It

considers the temporal anomalies and rank potential intrusion events based on the

credibility impact on power system. It also considers the scenario where simultaneous

cyber intrusions are launched over multiple substations. The work focuses on the

cyber security of substations in smart grids. A survey on supervisory control and data

acquisition system (SCADA) specific intrusion detection and prevention is presented

in [46]. However, these techniques do not cater for the intrusions on an AMI. An

anomaly detection module for industrial control systems is presented in [47]. The

work uses self-organizing maps to identify anomalies in the restricted IP network

15

that exhibits a deterministic behavior. A prototype is shown using self-organizing

maps built on top of Bro network security monitor. The work does not take into

account the computational resources availability, as it uses machine learning based

approach, in the AMI field network hence can not be used at the smart collector level.

The work [48] utilizes the theory of the Best Choice problem to identify the best time

to launch an attack against process control systems. It considers that the adversary

has compromised actuator or sensor signals and needs to identify the best time to

maximize the damage in terms of impact. However, it does not deal with the defense

mechanisms specific to AMI and its unique characteristics.

In addition to intrusion detection, few studies have been conducted to highlight

the cyber security issues in AMI and smart grids [2,6,49–52]. A distributed intrusion

detection technique in a multi-layer architecture of smart grids is proposed in [18]. It

proposes a three layer architecture for home area network, neighborhood area network

and wide area network. It uses trained support vector machines (SVM) for attack

classification at each layer. In [9], the requirements and architectural directions are

discussed for intrusion detection in an AMI. Based on the requirements and architec-

tural directions highlighted in [9], a specification-based intrusion detection technique

has been proposed in [10]. This approach defines a formal model for C12.22 standard

protocol, which is used by different meters in the AMI for communication purposes.

It verifies the specification at the application layer in order to identify anomalous

behavior. The proposed approach is protocol specific. However, not all the deployed

smart grids are using this protocol for communication. Therefore, it cannot be ap-

plied to those AMI infrastructures. Moreover, there is no standard implementation

16

of the protocol available and many vendors keep the implementation proprietary [53].

An intrusion detection architecture for the AMI has been proposed in [11]. It uses a

data mining based intrusion detection technique for the AMI. It requires deployment

at the smart meter, smart collector, and headend system.

All of the proposed approaches for intrusion detection in the AMI assume a com-

putationally expensive intrusion detection module deployment at the meter level.

However, this may not be practically feasible since meters do not have enough com-

putation power [17]. If the detection modules are to be deployed as a stand alone

unit next to the meter, it requires significantly higher cost. We argue that due to this

higher deployment cost, industrial deployments of the intrusion detector for the AMI

have not yet been witnessed. In this work, we develop a solution that is cost effective

and practical since it can be deployed either in the headend system or in the AMI.

The novelty of our approach lies in characterizing AMI configuration as a baseline

for developing a reliable IDS (high detection and low false positive rate), while con-

sidering the practical computation and operational constrains of AMI. To the best of

our knowledge, no approach exists yet that uses configurations for deriving the LTL

properties for markov model. In [14], we developed a proactive AMI configuration-

mutation based approach and a reactive AMI configuration-modeling based approach

was developed in [13]. However, in this work we combine the proactive and reactive

approaches by mutating the AMI configuration parameters and then model them to

improve the accuracy of the IDS.

17

2.3 Challenges

AMI comes with its own challenges that include, but are not limited to: 1) physical

environmental conditions since it is deployed in the field, 2) limited computation

and memory availability in the field devices like smart collectors and smart meters,

3) deployment costs of any new hardware in the field at thousands of locations.

Therefore, the existing intrusion detectors which require higher computation power

and memory can not be used for the AMI. Moreover, traditional intrusion detectors

require capturing the network traffic. Since capturing the network traffic requires

dedicated high computation power hardware, the approach is not practically feasible

due to a higher deployment cost associated with it. However, smart collector acts

as a gateway for smart meters to communicate with the headend. Moreover, smart

collectors log the network activity as a default feature. This can be exploited to

build an intrusion detector for the AMI. Therefore, the problem here is To reduce

the deployment cost and make it practical, the developed intrusion detector should

be able to work offline in the headend by pulling the smart collector’s logs instead of

deployment in the field. The deterministic behavior can be modeled using the network

activity information collected at the critical points only.

2.4 Contribution and Approach Overview

In this work, we present a novel stochastic model checking intrusion detection

technique. It is designed to meet the requirements and log characteristics of the AMI.

We show that AMI behavior is deterministic and can be predicted easily. This allows

attackers to evade intrusion detection systems by mimicking the behavior. To make

18

it robust against evasion, we mutate the behavior using the pre-shared secret key,

which keeps the behavior deterministic for the smart collector. We model the AMI

infrastructure behavior using the logs generated at the smart collector. A stochastic

model based on 4-th order markov chain is used, since it exhibits a low conditional

entropy in order to represent the AMI probabilistic behavior. Probabilistic behavior

is observed as a result of its configuration and nature of the network. Specifications

written in Linear Temporal Logic (LTL) are automatically generated from the a-priori

known configurations of the AMI devices (smart meters and collectors), which in turn

are then probabilistically verified using the stochastic model generated from the smart

collector’s logs. The developed technique exhibits high accuracy and it can be easily

deployed in the existing AMI of smart grids. For experimentation and evaluation we

use a real-world dataset of more than two thousand meters obtained as a result of

our collaboration with a leading smart grids based utility provider. Our experimental

evaluation shows promising results for the developed model, i.e., accuracy rate of

more than 95% with negligible false alarms of 0.1%, i.e., 0.35 to 0.50 false alarms per

meter per week.

2.5 Attack Model

Since we work with the logs collected at a smart collector, attacks that do not

involve any communication with the smart collector or do not create a log entry would

not be detected. This has been highlighted in the limitations of our work. However,

the effect of such attacks would be limited to a particular area. In short, our focus

is on the large scale attacks, which include compromising a large number of meters

19

to cause a major blackout in the area. These attacks include, but are not limited

to, spoofing, denial of service, distributed denial of service, scanning, penetration,

evasion, mimicry, etc. For example, a denial of service attack on the smart collectors

or its associated meters will cause service disruption in the area. Similarly, distributed

denial of service attacks on the large number of meters or smart collectors can cause

a major blackout in a wider area.

Since the infrastructure exhibits a deterministic behavior and is homogenous in

nature, spoofing, mimicry, and evasion techniques can inject similar traffic without

being detected, thus resulting in the destabilization of the infrastructure. Mimicry

attacks can compromise a number of meters and operate as though they were le-

gitimate, thus bypassing detection. In the recent literature [54], it is shown that

smart meters send the authentication password in the clear text, which may require

a physical access. It is also shown that spoofing and replay attacks are possible. It

is intuitive that evasive attacks, which mimics the behavior, would not be detected

by the existing AMI detector [10]. The underlying reason is that the detector follows

the protocol specification to detect the intrusions and mimicry attacks mimic the

behavior to follow the protocol. However, the developed mutation based approach

provides defense against such attacks. For example, randomizing the time interval

would defend against the replay attacks since the communication will not be expected

by the smart collector at the replay time. Similarly, type and size parameters will

defend against spoofing and mimicry attacks since the attacker wouldn’t know what

type and size of communication is expected by the smart collector at a given time.

Moreover, randomizing relay nodes will defend against the DoS and reconnaissance

20

attacks since attackers would not know that at a given time which relay node to use

for the communication. Since multiple parameters are randomized, it will be difficult

for the attacker to guess/predict all the parameters at a given time in order to stay

evasive. Therefore, it makes it more difficult for the attacker to mimic the normal

behavior and stay evasive. The basic assumption for key-based mutation here is that

the key is stored in a Trusted Platform Module (TPM) which can not be accessed

by other processes [55]. In our case study all the deployed smart meters had built-in

TPM modules.

Traditional attacks like denial of service will be detected by the property 10, which

is defined later, as it will create multiple entries in a time window shorter than T1.

Similarly, a distributed denial of service will cause the property 12, which is defined

later, to be invalid since it will cause multiple sources to create log entries in a time

window shorter than T2. If a penetration attack is launched against the AMI, it will be

detected depending on the attack graph. If the penetration is supposed to go through

the smart collector or it tampers with the meter (by changing the configuration), it

will be detected since the meter will not behave according to the a-priori known

configurations. Similarly, malware that tampers with the meter configuration will be

detected as well.

Data injection attacks that only tamper with the usage information will not be

detected. This work is not focused on the energy theft by individual users. Intrusion

detectors specially designed for detecting an individual user’s energy theft have been

proposed recently [54,56].

To evaluate the developed scheme, we generate attacks in a controlled environment

21

in a smart grid testbed. We use different attack scenarios that include not only

different attack types but also different attack locations. Since the home area network

has access to the smart meter, we consider two scenarios for this location: 1) try to

compromise the meter and tamper with its configuration, 2) using the smart meter

as entry point to an AMI, we launch scanning, DoS, evasion, mimicry and data

injection traffic. For scanning and DoS, we generate low rate attacks i.e., 0.1pkts/sec

to 1pkts/sec. Both the above mentioned scenarios were implemented for these attacks.

For evasion, mimicry, and spoofing, we placed a switch in between the meters and

collector, and attached an attack machine to it. We wrote a simple program that uses

the same configuration as that of a meter and generated similar reading reports in the

same format. In order to be evasive, less than 5% of the total generated traffic by the

machine was injected traffic and 95% was mimicked traffic. For mimicry and spoofing

attacks, all the traffic was mimicked traffic without any injected traffic. Injected traffic

includes malicious commands like random file uploads, requesting reports at irregular

intervals (requesting report itself is not an attack), administrative commands without

proper authorization and failed authorization attempts. These logs were collected

from the smart collectors and were labeled as malicious. Malicious logs were mixed

into the real-world logs collected at an AMI of the utility provider for the purpose

of the accuracy evaluation. It was ensured that the volume of malicious logs did not

exceed 10% in the mixed log (benign and malicious).

22

2.6 Modeling Intrusion Detection and Deterrence Approach

In this section we show that AMI behavior is predictable using a markov model. We

first show that log entries exhibit a certain level of temporal dependence, thus these

log entries can be modeled using markov chains. To find the order of markov chain

that can accurately predict the future behavior or states, we calculated conditional

entropy on different markov chain orders. It can be intuitively argued that, as long as

the log entries are produced by benign events, i.e., no attacks, the log entries observed

should exhibit a certain level of temporal dependence as it is a configuration driven

network. In case of malicious behavior, perturbations in this dependence structure

can be flagged as anomalous. Therefore, the level of temporal dependence can serve

as an important metric for modeling the log entries.

To find the temporal dependence in log entries we use autocorrelation, which mea-

sures the on-average temporal dependence between the random variables in a stochas-

tic process at different points in time. For a given time lag k, that represents log

entries at time k, the autocorrelation function of a stochastic process Xk is defined

as:

ρ[k] =
E{X0Xk} − E{X0}E{Xk}

σX0σXk

, (1)

where E{.} represents the expectation operation, σXk
is the standard deviation of the

random variable at time lag k (log entries at time k). The value of the autocorrelation

function lies in the range [−1, 1], where ρ[k] = 1 means perfect correlation at lag k

23

2 4 6 8 10
−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

1.1

Lags

A
ut

oC
or

re
la

tio
n

C
oe

ffi
ci

en
t

Log−1
Log−2

Figure 3: Autocorrelation coefficient trend

(which is obviously true for k = 0) and ρ[k] = 0 means no correlation at lag k.

Figure 3 shows the autocorrelation function plotted against the log entries at dif-

ferent times represented by lags. For both the logs collected – Log-1 and Log-2 –

a certain level of temporal dependence can be easily observed at small lags. This

correlation decays in time and eventually drops down to a negligible value. Tempo-

ral dependence is present for two reasons: 1) meters respond to the smart collector

requests in a short period of time and 2) regular requests and reports are seen, thus

justifying the homogeneity.

Since log entries exhibit temporal dependence at small lags, they can be modeled

using markov chains. Furthermore, it is well-known that a decaying temporal de-

pendence structure can be accurately modeled using markov chains [57]. Therefore,

the concern here is to identify the order of markov chain model that should be used

to accurately model the log entries. To determine the markovian order, we conduct

analysis on different markov chain orders. The order can be identified by noting the

probabilities at different markov chain orders. If the probability is low at a given

order, the next log entry can be predicted with high accuracy. For this reason we first

24

calculate the probabilities of states on different markov chain orders and then use the

conditional entropy based measure devised in [57] on different markov chain orders.

We define a markov chain based stochastic model as follows: Let the log entry tuple

at discrete time instance n represents the realization of a random variable derived

from a stochastic process Xn. This process is a markov chain if it satisfies the markov

property, which is defined as:

Pr {Xn = j |Xn−1 = i, Xn−2 = in−2, . . . ,X0 = i0} (2)

= Pr {Xn = j |Xn−1 = i} = pj|i.

In other words, the probability of choosing a next state is only dependent on the

current state of the markov chain.

In the present context, we can define a markov chain model Xn for an entry by

treating each unique log entry individually. Therefore, the number of total states

ψ will be dependent on the number of unique log entries. Based on this state rep-

resentation, we can define a 1-st order markov chain denoted by X
(1)
n . Similarly,

an l-th order markov chain, X
(l)
n , can be defined in which each state is an l-tuple

〈i0, i1, . . . , il−1〉 representing the l log entries. This will increase the size of state space

ψ since different combinations of l-log entries are possible.

Figure 4 shows the state probabilities calculated as described above for log entries

using different markov chain orders. We calculated it for up to 4-th order markov

chain as the possible number of states increase, computational complexity increases

and the scalability decreases when markov chain order increases as discussed later in

25

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

State

P
ro

ba
bi

lit
y

(a) First Order

0 100 200 300 400
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

State

P
ro

ba
bl

ity

(b) Second Order

0 200 400 600 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

State

P
ro

ba
bi

lit
y

(c) Third Order

0 200 400 600 800 1000
0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

State

P
ro

ba
bi

lit
y

(d) Fourth Order

Figure 4: State probabilities for higher order markov chain

Section 2.7. The figure shows that the total number of states ψ increases, which is

the x-axis in Figure 4(a) to (d), when markov chain order increases. Furthermore,

it can be noticed that the states get clustered with respect to probability values

(y-axis), therefore, very few states have a higher probability of occurrence and the

rest of the states’ probabilities drop to a negligible value. The underlying reason for

this behavior is the predictable dependency in AMI network behavior/activities. As

AMI is a configuration-driven network, behavioral patterns can be observed in the

log activities. For example, reading reports/responses always follow reading requests.

Also, meters generate readings at specific intervals. These (probabilistically) recurring

patterns due to state dependencies dominate the AMI activities and they are more

26

detectable using a higher order of markov chain. Therefore, as the order increases,

fewer clustered states have higher probabilities. Since the increase of markov chain

order also increases the complexity, our aim in this research is to balance between

detectability/accuracy and complexity. To explore it further, we use the conditional

entropy based measure [57] for the log entries for different markov chain orders. This

measure will tell at what order of markov chain most of the information about the

next time instance, i.e., log entry.

Conditional entropy, H(B|A), of two discrete random variables A and B charac-

terizes the information remaining in B when A is already known. Phrased differently,

conditional entropy is information about B not given by A. If A and B are highly

correlated, most of the information about B is communicated through A and H(B|A)

is small. On the other hand, if pA and pB (which respectively represent the proba-

bility mass functions of A and B) are quite different then H(B|A) assumes a high

value, which means that most of the information about B is not given by A. In the

limiting cases, H(B|A) = 0 when A = B, while H(B|A) = H(B) when A and B are

independent.

We can find the conditional probability of the 1-st order markov chain as:

H(1) = −
∑
i∈ψ(1)

π
(1)
i

∑
j∈ψ(1)

p
(1)
j|i log2

(
p

(1)
j|i

)
, (3)

where π
(1)
i is the average probability of being in state i which is computed by counting

the total number of times each state is visited and then normalizing the frequency

histogram.

The measure H(1) defines how much average information is remaining in log entry

27

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Markov Chain Order

C
on

di
tio

na
l E

nt
ro

py

Log−1
Log−2

Figure 5: Conditional entropy trend over markov chain orders

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Time

S
ta

te
s

Actual
Model

Figure 6: Prediction accuracy using fourth order markov model

Xn when it is calculated using log entry Xn−1. If the entry is not highly correlated

with entries before Xn−1, H(1) will be relatively large implying that information about

Xn not provided by Xn−1 is high. In such a case, we use higher l-th order markov

chain, X
(l)
n as defined previously, in which each state is an l-tuple 〈i0, i1, . . . , il−1〉.

The conditional entropy of X
(l)
n defined on ψ(l) can then be computed using the

same method as Equation (3). The number of previous entries required to accurately

predict the next entry can then be determined by plotting H(l) as the function of

the markov chain order, l = 1, 2, The order at which the conditional entropy

saturates defines the total number of previous entries, which have conveyed as much

information of the present entry as possible. It can be clearly seen in Figure 5 that log

28

entries exhibit a decaying conditional entropy trend over higher order markov chain.

It exhibits an exponential decay trend until the 4-th order, which was expected since

very few states had higher probability in Figure 4(d) at the same order. It is clear that

most of the information about the next instance is already given at the fourth order

since conditional entropy drops to a negligible value, i.e., ≤ 0.2. Therefore, we model

using the fourth order since it gives enough information and increases predictability.

To this end, we show the prediction accuracy of the fourth order markov model. We

divide the log into two halves. First half is used to learn the model for prediction and

second half is used to test the prediction accuracy. It can be seen in Figure 6 that the

model can predict the future log entries with a high accuracy, i.e., > 95%. Therefore,

an attacker can easily learn the AMI behavior to devise an evasion technique. To

combat this, we present a robust behavior mutation based technique for AMI that

minimizes the prediction notion and increases the attack detection.

We also show the results for a third order markov chain that exhibits lower accu-

racy as compared to fourth order but improves scalability since it exhibits a lesser

number of states. In later sections, we show that a higher order markov chain exhibits

better accuracy but it increases the number of states as compared to the lower order.

Therefore, the choice of markov chain order is a trade-off between scalability (number

of states) and accuracy. This is discussed in detail in the later sections, however, we

build a model using the fourth order markov chain.

29

2.6.1 Markov Model for AMI Logs

Since we work with logs of smart collectors, we first look at the format of a log

entry. It can be represented as:

t, sid, did, rel, sz, ty

where t represents the time stamp of the event. sid and did refer to the source and

destination, respectively. However, rel refers to the relaying/forwarding node for the

smart meter. It can either be the neighboring meter or meter itself. sz and ty denote

the size and type of communication, respectively.

Since the goal of the work is to model the AMI behavior for intrusion detection

we first discuss the AMI modeling approach followed by the properties specification

for model checking to verify the presence of intrusions. To counter the evasion and

mimicry attacks, we then develop the configuration randomization module.

We model the AMI behavior using smart collector logs that are generated as a

result of randomized configurations. We can encode the state of the network with the

following characteristic function derived from the log entry format:

σ : sid ∧ did ∧ rel ∧ sz ∧ ty → {true, false} (4)

The function σ encodes the state of the network by evaluating to true whenever the

parameters used as input to the function correspond to the log entry in the smart

collector. If the AMI observes 5 different log entries, then exactly 5 different assign-

ments to σ function will result to true. Since AMI communication occurs generally at

30

periodic intervals like meter readings after every X seconds or minutes and reading

response comes after reading request, AMI can be modeled using markov chains. Fur-

thermore, state transitions are probabilistic in nature as σ is a conjunction of random

variables sid ∧ did ∧ rel ∧ sz ∧ ty and these variables can observe different values at

a given time hence leading to a different state. Since smart collectors function inde-

pendently of each other in terms of collecting meter readings, we learn the markov

model for each smart collector separately as discussed below.

A Labeled Markov Chain (LMC) is a tuple M = {Q,Σ, π, τ, L} which is a state-

transition graph in which states are labeled, where Q is a finite set of states, π is

an initial probability distribution τ is the transition probability function and L is

a labeling function. Atomic propositions AP are assigned to states by a labeling

function using Σ = 2AP . Each state was assigned a unique label derived from σ,

which is used to define the state. A probability distribution for sequence of states

can then be defined using a markov chain. LMC M with alphabet Σ induces the

probability distribution P π
M over Σw through labeling of the states.

Set of states Q is strongly connected if for each state pair (qi, qj) there exists a path

q0, q1, . . . , qn such that qh ∈ Q for 0 ≤ h ≤ n, τ(qh, qh+1) > 0, q0 = qi, and qn = qh.

Therefore, if Q is strongly connected, then M is said to be strongly connected. A

distribution πsM is a stationary distribution for M if it satisfies

πs(q) =
∑
q́∈Q

πs(q́)τ(q́, q)

Since we are interested in keeping the history of previously visited states, we focus on

the probability suffix automata (PSA). A PSA is an extended LMC with a labeling

31

function H : Q → Σ≤N , which represents the history of previously visited, at most

N , states. However, if the history is fixed to N , i.e., Σ=N , the LMC will be called

(N + 1)th order markov chain since it includes the current state also. Therefore, each

state qi will be associated with a string si such that si = H(qi)L(qi).

Since the AMI system under consideration is a real-time system and can not be

restarted with different initial states, we argue that the model learning technique

should be able to start observing data from the system at any given time and can

work with a single long sequence of observations [58]. Suppose we have sequence

S = σ1, σ2, . . . , σn, σi ∈ Q, where σ represents a state as shown in Equation 4. Since

our statistical analysis showed that conditional entropy is negligible at 4-th order,

therefore, we use 4-th order markov chain. A finite state machine having directed

graph can be learned from the given sequence S. Each state in the graph at time i

will be represented by a tuple of 4, i.e., 〈σi−3, σi−2, . . . , σi〉, where σi is the L(qi) and

the rest are H(qi). Therefore, it can be realized as si in the finite state machine.

Algorithm 1 explains the learning of a markov model from the given sequence of

log entries. It initializes an empty graph representing nodes and edges, and then

starts observing the sequence S. It utilizes a sliding window approach where window

slides at instance i by one entry, i.e., σ. However, the size of the window to observe

si ∈ S is kept to 4, which is the order of model. If si already exists in a graph

then a directed edge from si−1 to si is created, if the directed edge does not exist

already. However, if si does not exist in graph, then a node is also created for si.

This process keeps repeating until S is empty. Once the state machine is created, it

is easy to calculate the transition probability matrix for that. For each state si in

32

Algorithm 1: Learn markov model
Data: Sequence S
Result: Finite state machine based on 4-th order Markov Model
Initialize empty Graph representing nodes and edges;
S = {σi|∀σi ∈ Σ} ;
∀σi Pr(σi) > 0 ;
while S 6= φ do

Slide window by one σ at instance i ;
Pick si ∈ S ;
if si ∈ Graph then

Make directed edge from si−1 to si ;
end
else

Create node si in Graph ;
Make directed edge from si−1 to si ;

end

end

graph,
∑
∀σi∈Σ τ(si, σi) = 1.

Since a log entry σ is a conjunction of different variables, total possible combinations

can exceed and may require a lot of processing power. However, it can be calculated

for each network under consideration. In our case study, 10 bits were assigned to

sid and did, 4 bits for relay, 8 bits for sz, and 3 bits for type ty of communication.

Therefore, the possible number of σ are 210×210×24×28×23, which is a relatively large

number. Since the model treats each smart collector’s log separately, either source or

destination of each log entry will be fixed to the ID of that particular smart collector.

Moreover, a smart collector can only be connected to its neighboring nodes/meters.

In our case study, the smart collector was connected to 8 other devices. Therefore,

the number of σ reduces to 1 × 8 × 8 × 28 × 23, which is relatively smaller. Since

4-th order markov model is being used, possible combinations of four σ can yield to

a lot of states. To this end, the developed algorithm only takes the combinations

33

that are observed in the sequence S and only keeps the edges that are observed since

all the combinations are not possible due to configuration, thus reducing the size of

transition probability matrix by ten(s) to hundred times.

2.6.2 Model Checking for Intrusion Detection

Since the developed AMI model is based on a markov chain and exhibits a temporal

dependence, we define properties in Linear time Temporal Logic (LTL) [59]. Unlike

traditional model checking, stochastic model checking allows you to check that with

what probability the property is satisfied by the model. These probabilities can be

thresholded in order to accommodate the unseen behavior up to a certain extent.

LTL over the alphabets Σ is defined by the syntax:

ϕ ::= true | σ | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1 ∪ ϕ2 (σ ∈ Σ)

The derived additional operators � (always) and � (eventually) are also used in the

LTL.

Let ϕ be the LTL formula over Σ. An LTL formula can be satisfied for a sequence

of alphabets s, which is a state definition in our case having s = σ1, σ2, . . . , σn where

σi ∈ Σ. Therefore, the probabilistic LTL can be defined as:

φ ::= P./p(ϕ), ./ ∈ {≥, >,≤, <,=}; p ∈ [0, 1]; ϕ ∈ LTL

Since the system under consideration is an online system and can not be restarted

with a specific initial state, we use the stationary distributions for satisfiability. LTL

properties can be verified with the markov chain model built in the earlier section.

For example, if a configuration parameter defines the sampling rate and report size,

34

a property can be written that whenever a report request is received the reply should

have this particular size. Temporally it can be stated that given the system is in

‘request’ state, the next expected state is ‘reply with size h’. In the PRISM model

checker tool [60], the ‘next’ state operator is defined using ‘X’. For the given state,

you can ‘filter’ the state space to ‘current’ state only. We wrote a small parser that

reads the configuration and generates the properties in LTL format for the tool.

The properties can be defined to make sure that AMI is operating per its configura-

tion. For example, whenever a reading request is generated, it should be followed by

a reading report and the reading report should have a size based on its configuration.

Furthermore, security related properties can also be defined such as all the meters

associated with a collector should not send a report at the same time to flood a smart

collector. Therefore, the properties can be derived from the configurations and the

security control guidelines such as NISTIR 7628 published by NIST, which defines its

operational constraints. Since the configurations shown are related to the reading re-

port, below we show some examples of the properties derived from the configuration.

Let γ be the number of meters associated with a smart collector. One basic example

is that whenever a report reading request is generated, a meter should respond with

a report. It can be formulated as:

φ ::= P≥d1(rrepi|rreqi), 1 ≤ i ≤ γ (5)

where rreqi and rrepi represent the reading request and reading report, respectively,

for meter i. However, d1 is used as a probability threshold that this property should

be satisfied with the probability greater than or equal to d1. The property defined

35

here is in conditional probability syntax, however, it can be represented in LTL as:

P≥d1(�(rreqi →©rrepi)) (6)

This is a strict property since it says that the next state has to be the rrepi. However,

a relaxed property can be defined as:

P≥d1(�(rreqi → �rrepi)) (7)

which says that eventually rrepi will be seen once rreqi is observed. However, we

use the strict property (Equation 6) in our experiments. Similarly, it can also be

defined that the report generated should have a size with in the limits defined since

the sampling rate is fixed. It can be formulated as:

φ ::= P≥d2(rszi|rrepi), 1 ≤ i ≤ γ (8)

where rszi denotes the report size for meter i. However, rszi ∈ szi, which is a valid

report size set for meter i. Moreover, Equations 5 and 8 can be combined to show

the temporal behavior, i.e., whenever a reading request is generated, it is followed by

the reading reply which has a valid size.

Moreover, a meter should not send the reading report twice in the next T1 consec-

utive time periods. It can be formulated as:

φ ::= P≤d3(rrepi|rrepi), 1 ≤ i ≤ γ (9)

where d3 is thresholded with≤ that the probability of seeing such a behavior should be

less than d3. Suppose t1 is a counter which observe values in the range {1, 2, . . . , T1}.

36

Equation 9 can be represented in LTL as:

P≤d3(� rrepi → (¬rrepi ∪ t1 ≥ T1)) (10)

To avoid flooding the smart collector with reports from multiple meters at the

same time, the associated meters were configured to have different reporting intervals.

Therefore, smart collectors will not receive consecutive reports from multiple meters

in consecutive T2 time periods. It can be formulated as:

φ ::= P≤d4(rrepj|rrepi), i 6= j, 1 ≤ (i, j) ≤ γ (11)

This prevents the multiple meters from sending the reports after each other for con-

secutive T2 time periods. It can be represented in LTL as:

P≤d4(� rrepi → ¬rrepj ∪ t2 ≥ T2),∀γj=1 (12)

To introduce the unpredictability notion for the attacker, a meter can not select

the same neighboring meter for relaying the report in consecutive T3 time periods. It

can be represented as:

P≤d5(� reli,j → ¬reli,j ∪ t3 ≥ T3),∀γi,j=1 (13)

where reli,j represents that meter i relayed the report via meter j. Similarly, to

avoid conflict and introduce randomness, a meter j can not be selected by multiple

neighboring meters, i.e., i and k for relaying the report in a given time window T4.

This also avoids the overwhelming of one meter by its neighboring meters. It can be

37

represented as:

P≤d6(� reli,j → ¬relk,j ∪ t4 ≥ T4),∀γk=1 (14)

Moreover, the thresholds dx are learned from the model built using the benign logs

collected under normal conditions, i.e., without any attack. However, they can also be

manually configured based on the requirements of the network under consideration.

We show the examples of reading reports’ property specification, however, other types

of configurations are also specified the same way using LTL. These properties are

dependent on the configuration of the network under consideration.

2.6.3 Mutable Configuration Deterrence Approach

In this section we discuss the deterrence approach using configuration random-

ization for smart meters configurations. Suppose we have γ neighboring meters (8

neighboring meters in our case study) associated with a smart collector c. We use

a range of values instead of a fixed value for the configuration parameters. In this

work we show it for three configuration parameters of a smart meter – report size,

reporting interval, and relaying node. Since sampling rate defines the size of the re-

port, we use size as a parameter in our discussion. Basic operational constraint for

our work is that both the smart collector and meter should have a unique pre-shared

key. First, we discuss the set of constraints on the assigned ranges followed by the

mutation algorithm.

Random Relay Mutation: Meters send the reports to the headend through smart

collector. However, to reach the associated smart collector they may use a neighboring

meter as a relay. We can apply mutation by selecting a random neighbor meter for

38

relaying the report to an associated collector. The mutation can defend against

reconnaissance and DoS attacks since the meter will use a random neighbor to relay

the report.

The following constraints should be satisfied for random relay mutation:

• A unique neighbor should be assigned to every meter in every time window

(Unique Assignment Constraint).

• A same neighbor should not be selected in two consecutive time windows by a

meter for relaying (Non-repeat Constraint).

• No meter should get more than Ur relaying requests at any given time window

(Capacity Constraint).

We can formalize the constraints for T consecutive time windows. We denote set

U = {1, 2, . . . , γ + 1} to be the index of all meters and the collector, where index i

(1 ≤ i ≤ γ) is the index of meter mi and γ + 1 is the index of the collector. We use

the set Ui (Ui ⊆ U) to denote the set of indices of neighbors of meter mi.

The Unique Neighbor Constraint can be formalized as follows:

∑
j∈Ui

wtij = 1, 1 ≤ i ≤ γ, 1 ≤ t ≤ T (15)

(j /∈ Ui)⇒ (wtij = 0), 1 ≤ i ≤ γ, 1 ≤ t ≤ T

0 ≤ wtij ≤ 1, 1 ≤ i ≤ γ, 1 ≤ t ≤ T, 1 ≤ j ≤ |Ui|

In the above equations, wtij is the indication variable. If wtij = 1 then the jth

element in Ui will be assigned to meter mi in time window t, otherwise the jth

element in Ui is not assigned to meter mi in time window t.

39

The Non-repeat Constraint can be formalized as follows:

(wtij = 1)⇒ (wt+1
ij 6= 1), (16)

1 ≤ i ≤ γ, 1 ≤ j ≤ γ + 1, 1 ≤ t ≤ (T − 1).

The Capacity Constraint can be formalized as follows:

γ∑
i=1

wtij ≤ Ur, 1 ≤  ≤ γ, 1 ≤ t ≤ (T − 1). (17)

We use SMT solver (such as Yices [61]) to find the satisfying neighbor assignment for

these constraints. In most cases, there is more than one satisfying assignment. We

denote the set of satisfying forwarding neighbors of meter mi in time window t as U t
i .

Random Report Size and Interval Mutation: Since we randomly mutate the report

size and interval, we denote sz and int to be the set containing all the possible valid

configuration values for report size and interval respectively, where szti and intti is the

randomly selected configuration value at time t for meter i.

To guarantee the maximum randomization of choices for report sizes and intervals

at any time period, we require that the range size (number of values in a set) for report

sizes and intervals should be greater than some threshold. This can be formalized as

(Size Constraint):

|szi| ≥ θ (18)

|inti| ≥ ε

where θ and ε are calculated based on the collision probability in the next t time

instances, which can be thresholded by the AMI provider.

40

To guarantee a certain delay between consecutive reports to avoid flooding, we

require that all intervals should be greater than a minimum value (Flooding Con-

straint):

∀intti ∈ int > szi/bi (19)

where bi and szi are the bandwidth channel and report size for meter i.

To avoid local meter memory overflow, a report must be pushed in less than the

certain time interval in which memory is not filled by the sampling for report size

(Meter Memory Overfull Constraint):

∀intti ∈ int < memi/sri (20)

where memi and sri are the memory and sampling rate for meter i.

To accurately measure the energy usage, there is a requirement on a minimum

sampling rate for meters. This minimum sampling rate differs for different meters,

however, a de facto minimum standard value is 128 samples/sec. Since report size

depends on the sampling rate, we require that the sampling rate should not fill the

buffer in the given reporting interval period. This can be formalized as (Maximum

Sampling Rate Constraint):

∀srti < memi/inti (21)

To guarantee unpredictability among k consecutive time periods, we require that

the assigned report size and interval should not be the same as that in the previous

41

k time periods. This can be formalized as (Non-repeat Constraint):

szti 6= szt−ji , 1 ≤ j ≤ k (22)

intti 6= intt−ji , 1 ≤ j ≤ k

To avoid the denial of service at the smart collector, we define aggregate constraints.

If all the meters associated with a smart collector pick the minimum reporting interval

and maximum reporting size (worst case), it should be less than the memory and

reporting interval of smart collector to headend.

∑γ
i=1 sz

max
i

∀γi=1int
min
i

<
memsc

intsc
(23)

where memsc and intsc are the memory size and reporting interval of smart collector

to headend. However, this is a worst case scenario and the constraint can be relaxed

in practical:

γ∑
i=1

∑
szi
l

< memsc (24)

It calculates the expected report size for each meter and adds it for all the meters to

get the aggregate report size.

2.6.3.1 Mutation Algorithm

To make the behavior deterministic for the smart collector, a pre-established hash

function H can be used. In order to make the behavior non-deterministic for the

attacker and deterministic for smart collector, we use the pre-shared key ki between

smart meter and smart collector along with the time stamp t and current values of

rate and interval as the input to the hash function.

42

Algorithm 2: Mutable configuration
Data: Interval range int and report size range sz
Pick a size from range sz /* Equation 25 */

Pick an interval value from int /* Equation 26 */

while timeCounter < int do
if sample < size then

KeepSampling();
end

end
Select relay neighbor from U /* Equation 27 */

SendReport();
Reset timeCounter;
Repeat Process;

sz(t+ 1) = H(ki, t, sz
t
i)mod l + 1 (25)

int(t+ 1) = H(ki, t, int
t
i)mod j + 1 (26)

rel(t+ 1) = H(ki, t, Ui)mod |Ui| + 1 (27)

where szti and intti denotes the current value of report size and interval, respectively,

for meter i at time t. We use the modulus function on the result of the hash function

to generate a random configuration value within the allowed range. These allowed

ranges, i.e., minimum and maximum configuration parameter values, are within the

operational constraints of smart grids network based on its architecture, topology,

and design, thus not affecting its functionality. A high level working of the algorithm

is shown in Algorithm 2. The algorithm takes ranges of interval and size parameters

as input. Using the hash function it then selects a value from the ranges for size

and interval parameters. It keeps sampling the report until the report size is less

than the selected report size parameter value or time counter is less than the the

selected report interval parameter value. The algorithm then selects a neighboring

meter as relay using the hash function to send the report. It resets the time counter

43

and repeats the process for next report.

2.7 Experimentation & Evaluation

Before discussing the experimentation and evaluation, we first discuss the robust-

ness against evasion and mimicry.

2.7.1 Robustness Against Evasion and Mimicry Attacks

In this section we discuss the effectiveness of randomization module against evasion

and mimicry attacks. Since evasion and mimicry attacks leverage the known behavior

of the network, they tend to stay below the radar to go undetected. Due to the

homogenous and deterministic nature of the network, it is not difficult for an attacker

to learn the behavior. Therefore, we randomize configuration parameters, which

makes it difficult for the attacker to guess its value. We randomize the reporting

interval, size, and relay configuration parameters. These parameters are mutated

every time a report is sent. Since it uses the pre-shared key for randomization, the

smart collector does the same computation in order to verify if the parameters values

are as expected or not. Behavior compliance of these configurations is checked using

the properties defined in the same section.

Robustness of the presented approach against evasion depends on two factors: 1)

the probability threshold used in the verification properties, and 2) the configura-

tion parameter randomization. Since the configuration parameters, such as reporting

interval, is verified by a property that is thresholded, in case of a low threshold eva-

sion is possible to a certain extent because significant deviation can be allowed. For

example, if the property threshold is 0.9, it means that 90% of the reports should

44

be in the correct time and 10% can be deviated to accommodate any unexpected

network behavior as learnt from the log training. Thus, attackers can leverage this

10% to launch mimicry and evasion attacks. If we assume that the key is not known

to attackers, an attacker has to accurately guess the configuration parameters from a

range of values such that success ratio will be above the property threshold in order to

evade detection. However, this accuracy (evasion) is highly dependent on the param-

eter randomization range and how many parameters are randomized. For example,

if the range defined as 10 minutes, for reporting interval parameter, in discrete inter-

vals of one second each, then the probability that the attacker can guess the correct

time interval (attack probability) is as low as 0.0017. Furthermore, the probability

of guessing all the parameters, at a given time, would be much less as it is a product

of probability of guessing each parameter accurately, which makes it much harder for

the attacker to evade by accurately guessing. In order to evade the detection, the

attack probability must be greater than or equal to the property threshold. However,

this case is extremely unlikely unless randomization range is poorly selected and/or

the property threshold has been immaturely determined based on improper training

data set (e.g., unclean or very few samples).

To analyze the normal behavior of the AMI, we use utility provider logs. Mutable

log was collected by applying mutable configuration in a smart grid test lab [62].

Multiple smart meters were connected to the smart collector. Network Management

System (NMS) was used for configuration management. Smart collector uses a pro-

prietary communication protocol built on top of C12.22 protocol. To apply mutable

configurations on a smart meter, script was written in C language using the API

45

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Markov Chain Order

C
on

di
tio

na
l E

nt
ro

py

Static
Mutable

(a) Relay Configuration

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Markov Chain Order

C
on

di
tio

na
l E

nt
ro

py

Static
Mutable

(b) Interval Configuration

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Markov Chain Order

C
on

di
tio

na
l E

nt
ro

py

Static
Mutable

(c) Size Configuration

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Markov Chain Order

C
on

di
tio

na
l E

nt
ro

py

Log−1
Log−2
Mutable
Evasive

(d) Combined

Figure 7: Conditional entropy for static and mutable configuration

of NMS. However, the developed mutation methodology should be embedded in the

smart meters.

The goal of the devised methodology is to increase the randomness of smart meter’s

behavior using mutation to make the prediction harder for the attacker. Randomness

of a distribution can be characterized using entropy, i.e., higher randomness yield to

higher entropy value. To evaluate the approach we calculate the conditional entropy

over a different markov chain order for normal logs (utility provider) and mutable

logs (testbed).

AMI exhibits a predictable behavior as shown in Figure 6. We apply the same

predictor on the mutable logs (testlab). The prediction accuracy was below 10% in

46

the mutable configuration environment. Therefore, an attacker cannot predict with

high accuracy about the next communication instance and its properties like size,

interval, and relay. We also calculate the conditional entropy (Equation 3) over dif-

ferent markov chain orders for the static and mutable configuration. It can be clearly

observed from Figure 7 that mutable configuration has higher conditional entropy

than static configuration. Therefore, it can be stated that the mutable configuration

introduces sporadic changes in the AMI behavior as opposed to the static configu-

ration, thus making it more random and hard to predict for the attacker. Figures

7(a), (b), and (c) show the conditional entropy for relay, report interval, and report

size, respectively. Figure 7(d) shows the conditional entropy for the entire tuple, i.e.,

conjunction of the three parameters. ‘Log-1’ and ‘Log-2’ denote the real-world logs

using static configuration. A steep decaying trend was observed for both the logs,

which eventually reveals the predictable nature of the behavior given few previous

observations. On the other hand, ‘Mutable’ log did not show a steep decaying trend.

Therefore, it is intuitive that mutation is harder to predict to launch an evasive attack.

To launch an evasive mimicry attack against mutated configuration, we use the

predictor to generate traffic similar to mutable configurations in a testbed, i.e., it

learns and predicts the future states of mutable logs. We connected an attack ma-

chine with the switch between the smart meters and collector. Predicted (mimicry)

and actual mutable configuration logs were merged and collected at the smart col-

lector. Merged (predicted and mutation) activities are labeled as ‘Evasive’ in Figure

7(d). Since prediction accuracy was low, ‘Evasive’ showed a much steeper curve as

compared to the ‘Mutable’ configuration. This change in behavior (‘Mutable’ and

47

‘Evasive’) helps in differentiating between mutable configuration and prediction for

mimicry/evasive attacks. Therefore, it can be concluded that the behavior is hard to

learn for an attacker to predict since prediction probability is low.

2.7.2 Accuracy Evaluation

The basic premise of our work is to develop a model using the logs of smart collectors

and verify the configuration properties written in LTL. If a property is verified against

the model with probability p > d, where d is set as a threshold, we say that it

is normal; otherwise, it is anomalous. Threshold d was learnt separately for each

property by noting the property verification probability using the benign logs model

(without attack).

Logs were collected from the smart collectors which were connected to the multiple

meters. Before discussing the accuracy evaluation, we first show the basic behavior of

the three randomly selected meters for two scenarios, i.e., when the mutable configu-

rations are known and not known to the system. It gives us interesting insight about

the temporally deterministic behavior. Then we analyze that how well the model

represents the system behavior. Please note that this temporal behavioral analysis

was done without the attack traffic. The model checking was conducted using a

probabilistic symbolic model checker tool PRISM [60].

2.7.2.1 Temporal Behavior of the Model

Since the model preserves the temporal behavior, the properties can be seen as

the conditional probability, i.e., P (A|B), where state B has already been observed

(given). Therefore, it can be stated as ‘what is the probability of seeing state A given

48

26 27 28 29 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Size

P
ro

ba
bi

lit
y

meter1
meter2
meter3

(a) Response for Reading Request

40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

States

P
ro

ba
bi

lit
y

meter−1

meter−2

meter−3

(b) Response for Load Management Re-
quest

Figure 8: Response probabilities when a request was generated for reading and load
management

state B?’. It can be easily written in the LTL using the ‘next’ or ‘eventually’ operator

for the state A by filtering all the states except the current/given state, i.e., B as

discussed in an earlier section.

Figure 8 shows the conditional probabilities given that the request was made for a

particular meter for the usage reading and load management as shown in Figures 8(a)

and 8(b), respectively. We provide the results for three meters only. However, similar

results were observed for the other meters as well. Figure 8(a) shows the probability

of response size, given that the system was currently in the reading request state, i.e.,

a usage/reading request was sent to a meter. It can be seen that all the three meters

generated responses within the range of 26 to 30KB with different probabilities. Two

meters generated responses of size 27KB with higher probability and the third meter

generated response of size 28KB. These responses belong to different states in the

model since size was used as a variable in the tuple (σ) used for the state definition.

However, none of the meters generated a response size more than 30 or less than

49

26KB, which was set as a variance boundary. The reading response size depends on

the sampling rate of the meter. Since the response size of the reading request was

within the range, the property ‘whenever a reading request is generated, the next

observed state is reading response with the size modeled’ (combining Equations 6

and 8) was verified with the probability 1. Here the probability 1 can be realized as

the sum of all the probabilities of the states having sizes within the range of 26 to

30KB. Please note that the system can be in one state at a given time, i.e., either

request sent to meter 1 or meter 2. These conditional probabilities were calculated

separately for the next state given that the system was in the request state.

Similarly, Figure 8(b) shows the next state transition probabilities given that the

system was in a load management request state. It can be seen that all the three

meters probabilistically responded to the request. Meter 2 (green line with circular

marker) showed the two transition probabilities: response of size 9KB with probability

close to 0.65 and size 6KB with probability close to 0.35. Similarly, meter-1 responded

with 6 different sizes. All of these sizes were within the range of 5 to 10KB. Lastly,

meter-3 responded with the three different sizes where one size was most likely and the

other two were less likely. It can be observed that whenever the system was in a load

management request state, the response state was observed next with the probability

of 1. However, response also had multiple states depending on the size of the response

that was used as a variable in defining the state s consisting of multiple σ. Therefore,

it can be concluded that the model exhibits a temporally deterministic behavior for

the system under consideration. It is clear that the temporal probabilities for the

properties can be learnt from the model built using the benign logs. Now we analyze

50

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

States

T
im

e

Actual
Model

(a) Model Prediction

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False Predictions

T
ru

e
P

re
di

ct
io

ns

Order−4
Order−3
Order−2
Order−1

(b) Different Markov Chain order

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

False Predictions

T
ru

e
P

re
di

ct
io

ns

pmf = 1.0
pmf > 0.8
pmf > 0.5

(c) Varying pmf on fourth order model

Figure 9: Prediction accuracy for different markov chain order and PMF for fourth
order model

whether the model truly represents the system or, in other words, how well the model

represents the logs.

2.7.2.2 Model Accuracy

In order to determine whether the model actually represents the logs or not, we

conduct a model accuracy experiment as shown in Figure 9. It does not include the

attack traffic or property verification. We divide the benign logs into two halves. The

first half was used to build a model using Algorithm 1. The second half was used as

the test dataset and the model was applied to it for the prediction. For each step, the

current state was learned and based on the current state, the next state was predicted

51

using the model, i.e., states having higher probabilities in probability mass function

(pmf) were predicted. Figure 9(a) shows the prediction using the fourth order model.

The red cross marker denotes the actual states observed in the test log. However,

blue dashed line represents the prediction of the model. It can be observed that the

model predicts the future states with high accuracy though a few false predictions

(less than 1%) were encountered as well. These false predictions were observed as a

result of the unseen behavior since the benign log was divided into two halves. As

a result, few lower probability states were not observed after a certain state s (i.e.,

tuple history of order four) present in the first half, thus yielding to false prediction.

To check the model confidence, we did the prediction using one hour learning to one

week learning. In all the cases, the false predictions observed were below 1%.

We used different criteria and show the results in Figures 9(b) and (c). We count

the total number of predictions and classify whether they were true or not. In Figure

9(b), we used different markov chain orders, i.e., the current state was defined using

one tuple or multiple tuple history. It can be observed in Figure 9(b) that the fourth

order markov chain provides the best prediction accuracy as compared to the lower

order markov chains. In another experiment, we change the pmf bound used for the

prediction. For example, pmf of 0.5 means a minimum number of next transition

states having probabilities sum of 0.5. If there are three possible next states based

on the current state having probabilities 0.6, 0.2, and 0.2, only states having 0.6

probability will be selected as the ‘predicted’ state since it has probability greater

than or equal to 0.5. However, if none of the states has a probability higher than 0.5,

a minimum number of multiple states will be selected whose sum reaches 0.5. Figure

52

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

100

False Positive

D
et

ec
tio

n
R

at
e

(a) Detection Accuracy

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Attack Rate (pkts/sec)

V
er

ifi
ca

tio
n

P
ro

ba
bi

lit
y

(b) Probability vs Attack rate

Figure 10: Detection accuracy and verification probability vs attack rate

9(c) shows the prediction accuracy for the different pmf. It can be seen that pmf of 1,

i.e., based on the current state all the next possible states in the model are predicted,

provides the best accuracy with a very low false prediction rate. It can be intuitively

argued that this false prediction rate will be the bound for the false positive for the

attack detection accuracy, since this shows how well the model represents the data.

Therefore, it can be concluded that the fourth order markov chain can accurately

model the underlying network with minimal loss, hence we use the fourth order for

the model checking.

2.7.2.3 Detection Accuracy

Mixed data was used to calculate the detection accuracy that had both attack and

benign logs. Since the attack logs were generated separately in a controlled environ-

ment, the time stamps of the attack logs were adjusted by a fixed constant to have the

same time window as of normal/benign logs. Allowed communication type ty values

were used for the attack logs since other communication types do not exist in the

model and can be detected easily. For attack detection, model learning was done in a

53

continuous online learning fashion using a sliding window approach. The size of the

sliding window was kept to one hour and the sliding window interval was set to one

minute. The model was learnt separately for each smart collector in the dataset and

detection results were averaged. Figure 10(a) shows the detection accuracy achieved

by the presented model. It can be seen that high detection rate of more than 95%

was achieved with a negligible false alarm rate of approximately 0.1%. Logs were

collected from smart collectors for approximately 2000 meters. Average false alarm

rate varies from 0.35 to 0.50 false alarms per meter per week, depending upon the

threshold used for detection rates > 70%. Please note that these rates are on the en-

tire dataset collected. The utility provider we worked with has hundreds of thousands

of smart meters in a state. This might increase to millions of meters in a state for

large-scale providers. These could be managed by one or multiple headend systems.

The Receiver Operating Characteristics (ROC) curve is generated by changing the

verification probability (threshold) of configuration-based LTL properties that were

verified against the model built using the mixed data logs. Figure 10(b) shows the

effect of verification probability for multiple degree of DoS attacks. It is intuitive that

the attack activity does not follow the state transitions as allowed in the temporal

properties. It can be observed that the higher attack rate is detectable even with

a loose verification probability threshold. The underlying reason is that the higher

attack rate generates a larger volume of log entries, which causes the verification

properties to not to satisfy even with a lower or loose verification probability thresh-

old. On the other hand, a lower attack rate generates less malicious traffic reflecting

in logs, thus a strict or higher verification probability threshold is required to de-

54

tect such attacks. Please note that the attack rates that are detected by loose/lower

verification probability threshold will always be detected by strict/higher verification

probability threshold. However, the opposite may not be true.

Complexity of the probabilistic model checker (PRISM) for a markov chain model

and LTL property verification is doubly exponential in the size of an LTL formula

and polynomial in the size of state space [63]. Algorithm 1 was implemented in Java

on a dual core machine to learn the model from the logs. The run-time complexity

is in hundreds of milliseconds (≈ 300ms) and the memory size of the model for

each collector was a few kilobytes (≈ 20KB). The complexity was measured using

an HPROF [64] tool. The model was then verified against the LTL properties using

PRISM. The run-time complexity of the properties verification is approximately 1.5

secs. We discuss the complexity of the mutation algorithm in a later section.

The presented model can be used in two fashions: 1) use a centralized approach

and build a single giant model for the entire AMI. The model defines smart collector

in either source or destination, thus the model can reduce the state space to possible

states only for that particular smart collector. In this case, offline model checking can

be done in the headend by pulling the logs, 2) if the giant state machine exceeds the

scalability limit of the model checker, each smart collector can be modeled separately.

In the case of modeling each smart collector separately, the model checking can be

done online or offline, depending on the computational power available. Therefore,

the developed approach is flexible.

55

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Meters

M
ar

ko
v

C
ha

in
 S

ta
te

s

(a) First Order

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

9

10
x 10

9

Meters

M
ar

ko
v

C
ha

in
 S

ta
te

s

(b) Second Order

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

11
x 10

9

Meters

M
ar

ko
v

C
ha

in
 S

ta
te

s

(c) Third Order

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12
x 10

9

Meters

M
ar

ko
v

C
ha

in
 S

ta
te

s

(d) Fourth Order

Figure 11: Meters vs number of states

2.7.3 Scalability

PRISM is shown to be scalable up to 1010 states [60]. We also investigate the

maximum number of meters that can be handled with various markov chain orders

as shown in Figure 11. We show this for multiple markov chain orders, i.e., 1 to 4

in Figure 11. For the first order markov chain, it can be observed from Figure 11(a)

that the number of states increase linearly with the number of meters. In this case,

it can accommodate up to 25, 000 meters per collector, although we show it up to

1, 000 meters in the graph in order to show the linear trend.

Similarly, the second order markov chain can handle up to 5, 000 meters as shown

56

in Figure 11(b). It can be observed that the trend tends to be exponential. Scalability

for third and fourth order markov chains is shown in Figure 11(c) and (d), respectively.

It can be clearly observed that both the markovian orders increase the state space

exponentially with the increase in number of meters. More specifically, the third and

fourth order markov chains can work up to 108 and 16 meters, respectively.

Since many vendors (including our smart grids provider collaborator) use 8 − 16

smart meters per collector, we found that using the fourth order markov chain is

the optimal choice to maximize accuracy. We also found that many major vendors

similarly use limited number of meters per collector due to limited bandwidth or

coverage, in power line communication and WiFi, respectively [65], [66]. However,

vendors might support different models of the AMI technologies that offer different

capacities of handling meters. For example, some smart grids providers/vendors plan

to use other technologies that can support hundreds of meters per collector [66].

For this reason, we discuss two approaches that offer much more scalable solutions

that sacrifice the accuracy reasonably. First, a third order markov chain can be used

since it also incurs a low conditional entropy as shown in Figure 3(b). Moreover, it

shows acceptable prediction accuracy, with slightly more false predictions as compared

to fourth order as shown in Figure 9(b). Second, we alternatively extend the fourth

order markov chain approach to handle more meters by state compression. Moreover,

logs can also be divided based on the group of meters (16 in each) to conduct the

analysis.

It can be seen from Figure 4(d) that very few (only tens of) states are highly likely

(high probability) out of 1, 000. Thus, eventually less than 10% of states are seen more

57

100 200 300 400 500
0

5

10

15

20

25

30

Meters per Collector

T
im

e
(s

ec
s)

U=10
U=20
U=30
U=40

(a) Randomization Computation vs No.
of Meters

1 2 3 4 5
5

10

15

20

25

30

35

40

45

50

55

Meter Capacity

T
im

e
(s

ec
s)

r=100
r=200
r=300
r=400

(b) Randomization Computation vs Me-
ter Capacity

Figure 12: SMT formalization time for mutation algorithm

frequently than others. Therefore, once the graph is made using Algorithm 1, we run

a compression algorithm to remove the nodes having lower probability. We run the

detection accuracy using the compressed model and note that it incurs an increase in

the false positive rate, i.e., from 0.1% to 0.2% while maintaining the same detection

accuracy. However, the compressed state model can easily scale to more than 1, 000

meters per collector. Choosing the appropriate alternative approach depends on the

AMI network technology under consideration.

We also evaluate the computational cost and scalability of the mutation algorithm.

The Figure 12(a) shows the SMT solving time for the constraints with respect to

different numbers of meters per collector. U is the number of average neighbors

for every single meter. Solving time is almost linear with the number of meters

per collector, and the number of neighbors has only negligible effect. The Figure

12(b) shows the SMT solving time for the combination of constraints such as unique

neighbor assignment, non-repeat, and meter capacity, with respect to meter capacity.

r is the number of meters for every collector. We can see that the solving time

58

increases when the number of meters per collector increases, and decreases when

meter capacity increases. This is because when the meter capacity increases, it is

easier for the solver to find satisfiable solutions.

The developed mutation scheme is shown for the three configuration parameters,

however, it can be extended to more. Since the configuration mutation randomly

picks a configuration value from a given range, the larger the size of the range, it

is easier to satisfy the mutation constraints. It can be seen in Figure 12(b) that as

the meter capacity to handle more relay request increases, the computational cost

to satisfy constraint decreases. Therefore, the approach is scalable to hundreds of

meters per collector. However, in practice, tens of meters per collector are used. In

our case we used 8 neighboring meters as relay, 80 different sampling rates ranging

from 128 samples per second to 208 samples per second, and 105 different reporting

intervals ranging from 15 seconds to 120 seconds.

2.7.4 Limitations

In this section we discuss the limitations of the presented approach

• The original fourth order markov chain based approach only scales up to 16

meters per collector. In actuality, a smart collector may have a higher number

of meters associated with it. To combat this, we discussed an alternative in the

scalability section that supports up to 1, 000 meters per collector while incurring

a slight increase in false alarm rate. Moreover, the original approach can also

be used by dividing a smart collector’s log into multiple chunks based on the

groups of smart meters. Each chunk may have up to 16 meters grouped into it.

59

This can easily be done by filtering the log based on the meter id.

• Attacks that do not involve communication with a smart collector will not be

detected. However, we believe that the effect of such attacks would be limited

to a particular area, i.e., not large scale.

• Evasion robustness relies on the key used for mutation. We assume that the key

is secured and attacker can not access it. However, if an attacker compromises

the key and knows the mutation algorithm along with parameter ranges, the

attacker can evade the detection algorithm by generating similar traffic.

• The technique provides robustness against evasion, however, an attacker that

has full access to and complete knowledge of the AMI may still be able to evade

it.

2.8 Conclusion

In this work, we present a fourth order markov chain based model for intrusion

detection since it incurs lower conditional entropy and higher prediction accuracy.

Moreover, it fits the state space requirement of the AMI network under consideration.

The novelty of the model lies in the configuration-based stochastic modeling of the

AMI using the logs collected at smart collector and device configuration. Moreover,

considering the challenges of an AMI network, the approach is practical since it

does not require high computation power and memory in the field. However, it

can also work offline in the substation by pulling the smart collector logs from the

area. Therefore, it is flexible and incurs low cost. However, if smart collectors provide

60

enough computation and memory, it can be deployed in parallel. It also does not need

to be trained, unlike traditional intrusion detectors. The model provides acceptable

detection accuracy of more than 95% with a false alarm rate close to 0.1%. The model

can be easily extended and customized based on the AMI network under consideration

using other information in the logs and configurations. Therefore, the scope is not

limited to what is presented here.

CHAPTER 3: MULTI-TIER INTRUSION DETECTION FOR AUTOMATIC
GENERATION CONTROL

Smart grids have been replacing the legacy power infrastructure as they provide ef-

ficient energy management by utilizing bi-directional communications. Bi-directional

communications enable the smart grid to take different sensor measurements using

cyber infrastructure in order to control the power generation, transmission, and distri-

bution effectively and in real time. The bi-directional communications are associated

with the supervisory control and data acquisition system (SCADA). An important

task of SCADA is automatic generation control, which is responsible for adjusting

the power generation according to the load in the area.

Several threats have been targeted towards the SCADA system due to its depen-

dency on the cyber infrastructure. According to a recent Bipartisan Policy Center

report, a Washington D.C. think tank, more than 150 cyber attacks targeted the

energy sector in 2013 [67]. There can be several entry points for an attacker to enter

the SCADA system and/or control center, including malware attachments in email,

malware on a storage device, and WiFi enabled systems in SCADA and/or control

center. Moreover, SCADA systems and control centers are connected to the corporate

offices using virtual private networks, therefore, anybody having access to the corpo-

rate office can access the system. Attacks can be launched by two types of attackers:

naive and experienced/knowledged. Naive attackers lack the working knowledge of

62

the smart grid system. On the contrary, experienced attackers may manipulate the

generation control measurements such that it still satisfies the smart grid environment

and look benign/normal. Although bad data detection algorithms provide some secu-

rity to identify data integrity attacks, recent studies have shown that these algorithms

can be bypassed by experienced attackers [68]. Moreover, attacks on measurements

sent from state estimation, i.e., the initial infection vector or attack entry point is

after the state estimation component in the AGC loop (shown in Figure 13), cannot

be detected by these detection algorithms [69].

To this end, we developed a data-driven multi-tier intrusion detection approach,

which is published in a recent study [70]. The first tier is an online short-term

adaptive predictor for both the load and Area Control Error (ACE), which are system

variables in AGC. Load measurements are taken by the field sensors. However, ACE is

calculated, in AGC, using the frequency and tie-line flow measurements. Generation

control takes these measurements every few seconds. The basic hypothesis is that both

the load and ACE have different behavior at different times of the day, therefore, at

short intervals they exhibit a certain level of temporal dependence, which can be used

to predict their future behavior. The developed predictor has the ability to adapt

to the change in behavior of the variables. Since load and ACE forms the basis of

calculation of set points and lowering/raising the generation, respectively, we use a

data-driven multi-tier approach to predict these variables. We show the prediction

accuracy of the developed predictor under normal conditions in a well known and

widely used two-area power system model. Since the predictor shows high accuracy

under normal conditions, therefore, deviations from the prediction can be flagged as

63

anomalous.

Prediction is done independently and does not take into account the other AGC

system variables. Therefore, we build a markov model of AGC using its system vari-

ables in the second tier of the intrusion detection system. The model incorporates the

system-wide knowledge to detect anomalies. It observes the state transitions, where

state is defined using multiple system variables, and calculates the individual variable

probability given the system state. If the probability does not fall in the probability

range learnt from the normal data, it raises an alarm. The two-tier approach pro-

vides the benefit of timeliness, using light-weight online prediction, and accuracy, by

reducing the false positives offline using multiple AGC system variables. The first tier

does online prediction for timeliness and the output alerts of the first tier are passed

on to the second tier, which incorporates the system-wide knowledge to reduce false

positives. We also extend the devised framework to an interconnected multi-AGC

scenario. In this scenario, the state of one AGC is verified by incorporating the other

AGC’s knowledge. This helps in identifying which particular AGC is under attack

and causing the system de-stabilization overall. We conduct multiple attack case

studies, which include tampering with the system frequency and the load in order

to mimic the integrity attacks by knowledged attackers. Tampered parameters still

satisfy the generation control equations. Our approach detected all of the integrity

attacks successfully.

64

Figure 13: Automatic generation control loop

3.1 Background

AGC is another core component of the smart grid. Figure 13 shows a high level

diagram of generation control. AGC takes measurements from the field that also

goes to state estimation [69]. However, there are some measurements that are AGC

specific and calculated based on different field measurements. The main functionality

of AGC is to calculate ACE based on the tie line flow (Ptie) and frequency (f) of the

tie line. In our case, a tie line is connected to two areas for the inter-area power flow.

P
(t)
ACE = (f (t) − fref).β + (

∑
i∈τ

Pitie − Psch) (28)

where τ , β, fref , Pitie and Psch represent all tie lines, frequency bias factor, base

reference frequency, tie line flow for line i, and the scheduled tie line flow, respectively.

The first part of Equation 28 considers the system’s frequency deviation from standard

frequency, and the second part considers the deviation of power flow in each tie line

from the schedule flows. Thus, ACE is an error between the scheduled and actual

values in the system, which is transmitted to each local generation control in order

to adjust the generation accordingly.

65

Once the composite area-wide error is calculated, it is used along-with the economic

dispatch (such as demand-based pricing or other) to define the generation schedule.

It is done at intervals of 1 to 15 minutes. In case of continuously changing generation

demand, allocation of generation must be made instantly. This task is performed

through allocation control logic by means of base points and participation factor

algorithms. After calculations, each control action, i.e., either raise or lower the pulse

signal, is transmitted to the generation unit at remote generation station for changing

the generating unit’s load reference point,

P
(t)
isch = Pibase(k) + pfi ×∆P

(t)
total (29)

∆P
(t)
total = P

(t)
actual −

∑
i∈ξ

Pibase(k) (30)

where ξ represents all the generators, Pibase is the base point set by unit commitment,

pfi is participation factor and Pactual is actual generation demand. These variables

such as Pibase are generation control specific and are input to the system as shown

in Figure 13, denoted by ‘set point’. The output of the overall AGC system is the

raise/lower generation command. Therefore, attacks on these variables or the vari-

ables that constitute them such as load, after the state estimation cannot be detected

by intrusion detectors working at state estimation or SCADA field measurements.

Generators are generally modeled by swing equation (Equation 31). The equation

considers the physical rotor angle and speed as states of the system. Primary con-

trollers, Governor, Automatic Voltage Regulator (AVR) and Power System Stabilizer

(PSS) are designed to make these states in their equilibrium values by controlling

66

mechanical and electrical torques,

∆Pmech −∆Pelec = M
d∆ω

dt
(31)

where M is the angular momentum of the machine. The generator calculates the dif-

ference in change in electrical and mechanical power being generated. These balancing

equations (Generator and Scheduling) can be modeled using model-based estimation

approaches such as Kalman-Filter based approach [71]. However, the estimation

model does not take into account the temporal dependence in the data. We build a

hybrid approach in which the first tier is a light-weight online data-driven predictor

that leverages the temporal dependence in the data. The second tier builds the sys-

tem model by incorporating the system-wide knowledge using AGC system variables.

This makes the approach practical since the online prediction module (first tier) is

light weight and flags any deviation in the data. The output of the first tier is given

to the second tier offline verification module, which utilizes the system-wide knowl-

edge to verify the presence of anomaly. Thus, the developed approach benefits from

temporal dependence in the data along-with the system model.

Since ACE raises/lower the generation, we change the frequency f that is used

to calculate the ACE in order to mimic the attack on ACE. It can be simulated by

unbalancing the Equation 31 since that is used to model the generators. To mimic

the attack on load we manipulate the active and reactive power by changing R and

L of the power system. Since load is used as an input to define the base point and

scheduled flow subsequently (Equation 29), and tie-line flow and frequency deviation

reflects in ACE, we use these variables for prediction as the first tier of our approach.

67

In the second tier, we model the system using system variables including scheduled

flow, tie line, and frequency along-with load and ACE to determine the AGC state

for anomaly verification. Probability of each system variable is verified against all

the system variables to verify the anomaly presence. We further extend it to multi-

AGC scenario by conditionally comparing the states of one AGC given the state of

interconnected AGC in order to mimic a scenario where two different power companies

share the power resources.

3.2 Related Work

Since we developed AGC parameters’ prediction based intrusion detection ap-

proach, we discuss work related to prediction of AGC parameters and intrusion de-

tection. There is no data-based prediction approach that can predict all the AGC

parameters. However, there are approaches that can predict short term future load,

an AGC parameter, [71,72]. The work [71] presents a Kalman-Filter based load pre-

diction approach. The approach does not take into account the temporal dependence

in AGC data. Furthermore, it assumes that the introduced noise in AGC data is

white, which may not be the case in real life. On the contrary, our approach takes

into account the temporal dependence in the data and it is specifically designed to

classify anomalous behavior in the data. Another approach that uses a hybrid model

for adaptive load prediction is presented in [72]. It uses computationally expensive

machine learning tools like a support vector machine (SVM) and self organizing maps,

and requires supervised learning. Due to its complexity, it does prediction in hourly

intervals. Our approach is an online and real-time light weight predictor.

68

Recent literature discusses attacks on AGC [68, 73–75]. The work [68] presents

integrity attacks on AGC by a knowledged attacker. The parameters are manipulated

in an acceptable range, thus attack is not detected by embedded data verification

modules and causes imbalance in power generation. Cyber attack’s impact assessment

on a two-area power system is presented in [73]. The work also shows how an attacker

can cause undesirable behavior under the conditions established using reachability

methods by interrupting the AGC signals. The work is followed by [74] where it is

assumed that the attacker has partial information about the system parameters to

launch an attack. Protective measures to minimize potential risks were developed

using game theoretic framework in [75]. Our work infers the attack model from [68].

Based on the work [71], an anomaly detection technique for AGC is also proposed

in [76]. As discussed earlier, the work [71] does not take into account the temporal

dependence in predicting the load. In later sections, we show that our developed

prediction algorithm outperforms the Kalman-Filter based approach presented in [71].

Although the work [76] introduces temporal dependence by an offline module, which

takes the aggregated algebraic sum of estimated and real-time ACE values, it averages

out the temporal dependence for short intervals due to aggregation. On the contrary,

our work utilizes the temporal dependence in a sliding window manner to predict each

AGC parameter value in real time. Furthermore, our work incorporates all the system

wide AGC variables (as shown later) to verify the presence of anomalies, however,

the approach [76] only works with the ACE parameter. Our approach also considers

single and multi AGC scenarios.

Intrusion detection techniques for smart grids have been proposed recently [13,46,

69

77–79]. While these techniques address cyber security challenges in smart grids, none

of these techniques are designed specifically for AGC. A distributed intrusion detec-

tion technique in a multi-layer architecture of smart grids is proposed in [18]. In [13],

we presented an intrusion detection approach for advanced metering infrastructure.

In [45], an anomaly detection technique for smart grids has been proposed. It fo-

cuses on the cyber security of substations and does not take into account the AGC

parameters. In [80] an approach for anomaly detection in a SCADA system has been

proposed. It considers the SCADA measurements that are used for state estimation

in a control center. However, attacks that target control centers, such as AGC that

takes state estimation as an input, will not be detected. Since AGC is the last mile

to raise or lower the generation, we work with variables related to AGC.

3.3 Challenges

Smart grids are different in nature than traditional networks, therefore, the nature

of attacks is also different. In smart grids, the objective of the attacker may not

be just to gain unauthorized access, however, an adversary may disrupt the energy

system. Power generation collects data at regular intervals, which usually vary from

1 to 15 minutes in order to adjust the generation with respect to the load observed. If

an attacker gains access and injects malicious data, the control center will be mislead

to a wrong estimate of the load.

While several approaches related to bad data detection have been proposed re-

cently [81], the authors of [69] show that bad data detection approaches can still

be evaded by knowledged attackers. Moreover, attacks that target the control cen-

70

ter after the state estimation component can go undetected by the state estimation

based intrusion detection techniques. Therefore, it is possible that generation control

receives malicious data injected by an knowledged adversary. To this end, there is a

need for another layer of security in the generation control that can model the depen-

dencies present in the data in order to accurately predict the short-term future load

that identifies anomalous behavior. We show that load behavior changes over time

and exhibits a certain level of temporal dependence at short intervals, which can be

exploited to predict the load. We develop an adaptive technique that has the ability

to learn and adapt to the change in behavior of the underlying load. Based on the

learning, the technique predicts the short term future load, which acts as a threshold

in order to find the anomalous behavior in the load. Moreover, ACE is calculated

using the frequency and net tie line flow of the area. Since tie line flow is also related

to the load behavior in the area, ACE also exhibits a temporal dependence at short

intervals. Prediction of both system variables (input and output) helps in identifying

if the system is operating as expected or not. If not, intrusion verification is done by

incorporating the system-wide knowledge to verify the presence of anomalies.

3.4 Contribution and Approach Overview

The main contribution is to build an anomaly detector for AGC. The approach

takes into account system wide variables and also any collaborating AGCs in a multi-

AGC scenario. To build an anomaly detector for the generation control, we adaptively

predict the short-term future load and ACE behavior for anomaly identification by

exploiting temporal dependence. To verify the presence of an anomaly, we incorporate

71

the system-wide knowledge using markov models. This detector will serve as another

layer of security to the existing defense mechanisms, such as bad data detection

algorithms, to defend against evasion attacks by experienced attackers.

3.5 Attack Model

Control centers are generally connected to two networks - corporate and control

network. Corporate and control networks are separated using added layers of security

generally through a firewall. Corporate networks are also connected to the internet

through a security layer using firewalls. Therefore, for an attacker to reach a control

network, he/she first has to reach corporate network by bypassing the first layer

of security. Then the attacker has to gain access to the control network in order

to manipulate AGC. Another entry point for an attacker could be a WiFi network

in the control center. The intrusions addressed by the work are manipulation of

AGC parameters for power imbalance as shown in [68]. We introduce two different

types of integrity attacks for two different parameters related to AGC and generation

allocation logic. All the parameters used in this work affect the control logic unit. We

reiterate that the attack point is the control center, after the state estimation in the

control flow, as shown in Figure 13. These attacks will not be detected by SCADA

specific intrusion detection systems focusing on SCADA data or state estimation.

3.5.1 Attack on Power Load

First, we change the load of the system by injecting a false load, which satisfies the

generation control equations. By manipulating R and L of the loads, we can control

the active and reactive power loads. The false load directly impacts the generation

72

0 1000 2000 3000 4000
2.30

2.35

2.40

2.45

2.50

2.55

2.60

Time Sequence

Lo
ad

 (
pu

)

Attack
Prediction

Figure 14: Attack on load

allocation control to generate the power as per the new load observed, since base

point is calculated on the load. However, it indirectly affects the AGC parameters as

well, i.e., Ptie and f . Three cases have been studied in this attack model:

• Case1: 0.15p.u. change in total system’s load

• Case2: 0.1p.u. change in area 1’s load

• Case3: 0.1p.u. change in area 2’s load

As it can be seen, in Figure 14, the load value is increased by 0.15p.u. from the normal

condition at time 16hr, which has the max load and minimum frequency. Psch.tie

is set to 0.29p.u. derived from economic dispatch. Reference for f is 1p.u. Detailed

normal and attack scenario measurements are provided in Table 2. Moreover, to

mimic a sophisticated attacker who has consistent access to the data, we introduce

instances of stealthy attacks such that 0.1p.u. change commutatively in 100 time

instances.

73

0 1000 2000 3000 4000 5000 6000
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time Sequence

A
C

E
 (

pu
)

Prediction
Attack

Figure 15: Attack on ACE parameter, frequency

Table 2: Measurements under normal and attack scenarios

Parameter Normal Attack Case1 Attack Case2 Attack Case3
Pload1 0.844 0.919 0.944 0.844
Pload2 1.558 1.633 1.558 1.658
f 0.9902 0.9881 0.9865 0.9867
Ptie 0.3578 0.3513 0.3413 0.3849

ACE area 1 0.0492 0.0387 0.0257 0.0696

3.5.2 Attack on Area Control Error

In the second case study, we change frequency f , which affects the value of ACE.

This task is simulated by unbalancing the swing equation of generator 3. A sudden

0.2p.u. mechanical power change is simulated at 16 hr, which directly causes a fre-

quency deviation from its reference (Equation 31). This gives a false estimate of the

frequency f of generator 3 and total system, thus resulting in the disruption of ACE,

as shown in Figure 15. It can be observed that the error has been increased, thus

destabilizing the system since AGC adjusts according to the error for power gener-

ation. We also introduce the stealthy attack instances as described earlier for load.

Please note that all the values changed still satisfies the AGC equation.

Since the attack targets measurements and two layers are used in a sequential

manner for alert generation, i.e., alerts from the first layer are passed onto second

74

layer for validation, below we show that the alerts generated by offline validation

layer is a subset of alerts generated by the online prediction layer. This essentially

means that the attacks that are not detected by the online prediction layer cannot

be detected by the offline verification layer.

Lemma 0.1. Let A and B are detection alert sets of online and offline layers respec-

tively. For all alerts x ∈ B also implies x ∈ A.

Proof. AGC operates on system variables Ptie, f , l, ACE, and Psch. The online layer

uses l and ACE for generating detection alerts that are passed onto offline layer for

verification. The offline layer uses all the AGC variables Ptie, f , l, ACE, and Psch for

anomaly verification. Since Ptie, f and Psch constitutes ACE, there exists no attack

that affects Ptie, f , and Psch but does not affect ACE. Therefore, there is no attack

that is detectable by offline layer and can not be detected by online layer hence for

all alerts x ∈ B implies x ∈ A.

3.6 Modeling of Power Load and Area Control Error

In this section we discuss the analysis of load and ACE data followed by the adaptive

prediction algorithm.

3.6.1 Analysis of Load and Area Control Error

To reveal the load and ACE behavior, we conduct statistical analysis on the 24-hour

data. The data was generated using the two-area Kundur power system model [82],

which is well known and widely used in the power community [73–75]. Sample load

and ACE data is shown in Table 3, where tx represents the value realized at time

75

0 1000 2000 3000 4000 5000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
ut

oC
or

re
la

tio
n

C
oe

ffi
ci

en
t

Load Area−1
Load Area−2
Area Control Error

(a) AutoCorrelation

2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Markov Chain Order

C
on

di
tio

na
l E

nt
ro

py

Load Area−1
Load Area−2
Area Control Error

(b) Conditional Entropy

Figure 16: AutoCorrelation and conditional entropy of the load for both areas
Table 3: Sample load and ACE values

t0 t1 t2 t3 t4
ACE 0.059 0.069 0.080 0.091 0.103
Load 0.950 0.952 0.955 0.957 0.959

instance x. It can be intuitively argued that, as long as the load and ACE values

are produced by the benign events, the values observed should exhibit a certain level

of temporal dependence. In case of an anomalous behavior, perturbations in this

dependence can be flagged as anomalies. Therefore, the level of temporal dependence

can serve as an important metric for the modeling.

Autocorrelation measures the on-average temporal dependence between the random

variables in a stochastic process at different points in time. For a given lag k, data

values window shift, the autocorrelation function of a stochastic process Xn (where

n is the time index) is defined as:

ρ[k] =
E{X0Xk} − E{X0}E{Xk}

σX0σXk

, (32)

where E{.} represents the expectation operation and σXk
is the standard deviation

of the random variable at time lag k. In our case, load and ACE values are the

realization of the random variable X. For example, X0 represents the ACE or load

76

value at time 0 as shown in Table 3. The value of the autocorrelation function lies in

the range [−1, 1], where ρ[k] = 1 means perfect correlation at lag k (which is obviously

true for k = 0) and ρ[k] = 0 means no correlation at lag k.

Figure 16(a) shows the autocorrelation function plotted against the load and ACE

values at different lags. For both the load and ACE, a certain level of temporal

dependence can be easily observed at small lags. This correlation decays in time

and eventually drops down to a negligible value. Temporal dependence is present

because load and ACE values are similar in a short time interval. It decreases when

the behavior of the load and ACE is changed and it increases when similar values are

observed.

It is well-known that a decaying temporal dependence structure can be accurately

modeled using markov chains [57]. Therefore, to identify the markov chain order, we

conduct analysis on different markov chain orders. We define a markov chain based

stochastic model as follows: Let the load and ACE value at discrete time instance n

represents the realization of a random variable derived from a stochastic process Xn.

This process is a markov chain if it satisfies the markov property, i.e., the probability

of choosing a next state is only dependent on the current state.

Each unique realization of Xn for ACE and load is assigned to a unique bin among

multiple non-overlapping bins. Therefore, the number of bins will be dependent on

the number of unique values. Each bin then represents a state of the markov chain,

while the set of all bin indices ψ is its state space. Based on this state representation,

we can define a 1-st order markov chain, X
(1)
n , in which each bin represents a state

of the random process. Probability of each state i can be calculated by counting the

77

number of times state i occurred and dividing it by the total occurrences of all the

states in the markov chain model Xn. Similarly, an l-th order markov chain, X
(l)
n , can

be defined in which each state is an l-tuple 〈i0, i1, . . . , il−1〉 representing the values

taken by the random process in the last l time instances. In this case the occurrences

of l-load values will be counted. This will increase the size of state space ψ since

different combinations of l-tuple can be observed.

Conditional entropy, H(B|A), of two discrete random variables A and B charac-

terizes the information remaining in B when A is already known. If A and B are

highly correlated, most of the information about B is communicated through A and

H(B|A) is small. On the other hand, if A and B are quite different then H(B|A)

assumes a high value, which means that most of the information about B is not given

by A.

The transition probability matrix of the 1-st order markov chain P (1) can be com-

puted by counting the number of times the state i is followed by state j. The resulting

|ψ(1)| histograms can be normalized to obtain the state-wise transition probability

mass functions as the rows of P (1).

We can find the conditional probability of the 1-st order markov chain as:

H(1) = −
∑
i∈ψ(1)

π
(1)
i

∑
j∈ψ(1)

p
(1)
j|i log2

(
p

(1)
j|i

)
, (33)

where π
(1)
i is the average probability of being in state i, which is computed by counting

the total number of times each state is visited and then normalizing the frequency

histogram.

It can be clearly seen in Figure 16(b) that load and ACE values exhibit a very

78

low conditional entropy at all orders. There is a slight decaying trend in conditional

entropy, if observed closely; however, the decay is not significant enough. Moreover,

conditional entropy at all the markov chain orders is very small for both the param-

eters, i.e., < 0.012. Therefore, prediction can be done using the first order markov

chain.

3.6.2 Prediction Algorithm for Load and Area Control Error

Based on the analysis and results in the previous section, we now develop a simple

predictor based on the markov chain. This prediction algorithm is in essence a variant

of the adaptive thresholding algorithm presented in [83]. The presented algorithm

along-with the prediction is also capable of adapting to the underlying variation

observed in the load and ACE behavior. Below we discuss the algorithm and its

prediction accuracy under normal conditions, i.e., no attack.

The data was generated using the well known two-area power system, as discussed

earlier. Let us subdivide the data values into ψ equal sized bins. Since multiple values

will fall into each bin, the prediction will give us the range of expected values for the

future time instance. The number of total bins ψ can then be calculated by dividing

the minimum and maximum allowed value by the size of each bin. Since allowed

values are defined by the capacity of the network, we do not expect to see a smaller

value than minimum or greater value than maximum, thus prediction is not needed

for those values.

Since the conditional entropy was very low for the load and ACE values at all

the markov chain orders, we decide to use the first order markov chain in order to

79

Algorithm 3: Load prediction algorithm
Data: Observed values l
Result: Prediction for the value
ε = |ltp − lto| ;

if ε > α then

P
(t+1)

lt−1
o ,lto

= β × P (t)

lt−1
o ,lto

;

end
else

P
(t+1)

lt−1
o ,lto

= ω × P (t)

lt−1
o ,lto

;

end

l
(t+1)
p = P

(t+1)
lto,max(lk) ; where lk ∈ ψ

keep the complexity of the algorithm low. Let P (t) denote the transition probability

matrix at time t, where P
(t)
i,j denote the i− th row and j − th column of the matrix.

Also, ltp and lto denote the predicted and observed values, respectively, at time t. The

working of the algorithm is shown in Algorithm 3. The input to the algorithm is

the observed value at the current time instance t and the output is the predicted

value for the next time instance t+ 1. The algorithm first calculates the error in the

prediction and the observed value for time instance t. If the difference is greater than

a particular threshold, we update the transition probability matrix, in order to be

adaptive, by giving a higher weight (β) to the transition from l
(t−1)
o to l

(t)
o . However, if

the difference is not greater than a threshold α, we update the transition probability

matrix by a regular weight ω, where ω < β and α, β and ω are tunable parameters.

Once the transition probability matrix is updated, it is used to make a prediction for

the next time instance t + 1 based on the current value lto. Since each row is a pmf

for a given state, the column with the highest probability, i.e., the bin representing

the range of values, is selected as the predicted range of values for the next time

instance t+ 1. Since it is an adaptive online prediction algorithm, it adapts and gives

80

0 50 100 150 200
60

70

80

90

100

110

120

130

140

Time Sequence

Lo
ad

 V
al

ue
s

Actual
Prediction
Holt−Winters
Kalman Filter

(a) Load Prediction

10 20 30 40 50 60 70 80 90 100
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Time Sequence

A
re

a
C

on
tr

ol
 E

rr
or

 V
al

ue

Actual
Prediction
Holt−Winters
Kalman Filter

(b) ACE Prediction

Figure 17: Prediction accuracy of the algorithm

higher weight to learn the prediction error greater than the threshold α. This makes

the algorithm learn the anomalous behavior as well on the run-time. However, it

keeps flagging those instances until the behavior is completely learnt and has higher

probability than observing any other state. This helps in reducing the false alarms

in case the deviation was caused due to a legitimate change in load behavior.

The prediction accuracy of the developed predictor for load and ACE values is

shown in Figures 17(a) and (b), respectively. We show the prediction accuracy com-

parison with a well-known Kalman-Filter based power system load predictor [71] and

general purpose predictor Holt-Winters [84]. Although Kalman-Filter based predictor

was originally developed for load prediction only, we also predict the ACE values since

our detection approach requires monitoring both the data feeds. We do not compare

with the hybrid predictor [72] since it does prediction on hourly basis only, however,

we are predicting in an online manner for each data value. The solid blue line denotes

the actual values observed while the red cross, dotted green, and black dashed lines

denote the prediction using Algorithm 3, Holt-Winters, and Kalman-Filter, respec-

81

tively. It can be clearly seen that even in the constant load increase and ACE decrease

trend, the prediction algorithm was highly accurate and outperformed Kalman-Filter

and Holt-Winters. Moreover, the prediction followed the complete trend until the

values were stabilized. We show a subset of data for clarity; however, similar results

were obtained for the entire 24-hour data. Therefore, this prediction algorithm can

be a good measure in order to predict the short term future load and ACE values for

the purpose of anomaly detection.

3.7 Anomaly Verification Module for Automatic Generation Control

Prediction serves as the first tier in identifying anomalies. Since prediction is done

for short intervals and considers only the temporal dependence in the single variable

without complete knowledge of the system, it may yield false positives. To this end,

as a second tier, we build a model for the AGC system. AGC can be seen as a control

system taking finite inputs and generating finite outputs. The main inputs are Ptie, f ,

and l, where l is for all the areas participating in an AGC. Similarly, the outputs or

calculations it does areACE and Psch, where Psch is for all the participating generators

in an AGC. We consider two different cases: 1) single AGC and 2) multiple AGC for

two-area power system. Single AGC is the environment where a power company

focuses on its own AGC without any collaboration with any other power company’s

AGC. However, a multi-AGC scenario considers multiple power companies sharing

power resources for power generation and control.

82

3.7.1 Single Automatic Generation Control Model

Since AGC has a finite set of input and output variables, the state of a single AGC

can be encoded using the following characteristic function:

σ : Ptie ∧ f ∧ l ∧ ACE ∧ Psch → {true, false} (34)

The function σ encodes the state of the AGC by evaluating to true whenever the

parameters used as input to the function correspond to the values observed in the

system. If the AGC observes x unique combinations, then exact x assignments to σ

function will evaluate to true. We use these assignments to learn the markov model

for the AGC. Since conditional entropy does not show an exponential decay on higher

order markov chains, in analysis, we use the first order.

A Labeled Markov Chain (LMC) is a quintuple M = {Q,Σ, π, τ, L}, where Q is a

finite set of states, π is an initial probability distribution, τ is the transition probability

function, and L is a labeling function. Atomic propositions AP are assigned to states

by a labeling function using Σ = 2AP . Each state is assigned a unique label derived

from σ, i.e., s, which is used to define the state. A probability distribution for

sequence of states can then be defined using markov chain. Suppose we have sequence

S = s1, s2, . . . , sn, si ∈ Q. A finite state machine having a directed graph can be

learned from the given sequence S.

To learn the markov model, we initialize an empty graph and then start observing

the sequence S from AGC. It utilizes a sliding window approach where the window

slides at instance i by one entry, i.e., s. If si already exists in the graph then a

83

directed edge from si−1 to si is created, if the directed edge does not exist already.

However, if si does not exist in the graph, then a node is also created for si. This

process keeps repeating until S is empty. Once the state machine is created, the

transition probability matrix is calculated using the frequency of transitions observed

while building the finite state machine.

Since the devised model is based on markov chain and exhibits a temporal de-

pendence, we define properties in Linear time Temporal Logic (LTL) [59]. Unlike

traditional model checking, stochastic model checking allows you to check that with

what probability the property is satisfied by the model. These probabilities can be

thresholded in order to accommodate the unseen behavior up to a certain extent.

The probabilistic LTL can be defined as:

φ ::= P./p(ϕ), ./ ∈ {≥, >,≤, <,=}; p ∈ [0, 1]

where ϕ is an LTL formula. Since the states are defined using measurement/calculation

variables, properties can be written in the form of conditional probability. For exam-

ple, given the AGC is in a state having some values for the variables under consider-

ation, what is the probability of seeing the current value of any variable? That will

determine the state transition at a discreet time interval,

φ ::= P≥min&≤max(ACEi+1|Ptiei , fi, li, ACEi, Pschi); (35)

i ∈ Υ;

where Υ is the sequence of measurements in the time domain. The above property

checks if the probability of current ACE value observed, given the system was in a

84

particular state, is less-or-equal- and greater-or-equal-than the minimum and max-

imum probability thresholds, respectively. These probability thresholds are learnt

from the data collected at AGC under normal conditions. This identifies whether

the system behaves as expected or not. Moreover, it also identifies which particular

variable is causing the anomalous behavior. The thresholds are derived from models

built under different operating conditions, like different load levels and hours of day.

We define the properties for all the variables, mentioned in Equation 34, in similar

fashion.

3.7.2 Multiple Automatic Generation Control Model

One feature of the smart grid is its large-scale distributed generation networks. In

interconnected AGCs, power imbalance in one area can be caused by the attack on

the interconnected AGC. To this end, we extend the single AGC framework to the

case of multiple AGCs, which reflects the scenarios where multiple power companies

cooperate for power generation and control. We assume that participating organiza-

tions communicate state variable data. The state for each AGC can be calculated in

the similar fashion as described earlier.

σagcj : Ptie ∧ f ∧ l ∧ ACE ∧ Psch → {true, false} (36)

where σagcj represents the characteristic function for AGC j. Note that Ptie and f

are the same at a given time for both the AGCs. The common state information is

shared between two AGCs that are connected to a tie-line. Both the participating

AGCs will share the characteristic function output with each other in order to define

85

the overall state of the entire system, i.e., two AGCs. The shared information allows

each AGC to check its own state variables and detect local anomalies. The model

will be built using the state transitions for both of the AGCs. Consider the sequence

of states is:

S = (σt0agc1 , σ
t0
agc2

), (σt1agc1 , σ
t1
agc2

), . . . , (σtnagc1 , σ
tn
agc2

) (37)

where σtkagcj represents the state of AGC j at time k. Thus, the finite state graph can be

learnt the same way as described previously. However, in this case the state function

comes from both AGCs instead of one AGC. Similarly, intrusion can be identified by

checking the probability of one AGC characteristic function, given the other AGC’s

characteristic function instead of individual variables, in order to incorporate the

knowledge of both of the AGCs, i.e., the entire system. Thus, it can be written in

conditional probability form for the case of two connected AGCs as an example,

φ1 ::= P≥min&≤max(σ
t+1
agc1
|σtagc2); (38)

where the minimum and maximum probabilities are learnt from the model built for

both of the AGCs. Similarly we calculate the probability of AGC 2 state given the

state of AGC 1.

φ2 ::= P≥min&≤max(σ
t+1
agc2
|σtagc1); (39)

The iterative process yielded by Equations 38 and 39 provides a distributed and

scalable detection for large scale AGC networks. At each time t, two AGCs exchange

their state variables. In order to verify an anomaly in an interconnected AGC scenario,

we verify the state of one AGC given the state of the other connected AGC using

86

Figure 18: Two-area power system

the above equations. This verifies the overall behavior of both the AGCs together

by incorporating system-wide knowledge. This helps in identifying whether both the

AGCs behave normally as learnt. It also helps in identifying which AGC deviated

away from normal behavior since the property for that AGC would not be validated

with respect to the other AGC. This process can be applied to any pair of two

connected AGCs.

3.8 Evaluation

In this section we discuss the experimentation and evaluation of the developed

approach.

3.8.1 Automatic Generation Control Setup

In our work, we adopt a well-known two-area Kundur’s power system model [82].

Figure 18 shows a one-line diagram of the model. This system has been modeled in

a power simulation software, PSCAD, which is widely used by power system profes-

sionals [85]. The system consists of 2 areas, 11 buses, 4 generation units, and 2 tie

lines. All generation units are frequency dependent and the balance is initially re-

stored locally due to the load that varies with frequency. Generator governors change

generator output in response to the frequency changes. The two tie lines are identical

87

in this case study, which can be considered as one equivalent tie line connecting area

1 to area 2. In this simulation, loads are modeled in PSCAD as varying resistance

and inductance. Load profile data is derived from September 1, 2010 at NYISO’s

LONGIL [86]. In this case, the hourly demand curve for NYISO’s LONGIL is scaled

and used at all the load buses of the test system with time intervals of 5 sec to meet the

SCADA data transfer rate as shown in Figure 19. In addition, frequency and tie line

power flow (ACE parameters), with respect to time of the day at normal condition,

are provided in Figure 20. It can be observed that a power of 0.4p.u. flows from area

1 to area 2 under normal conditions (legitimate change in behavior without attack) at

maximum load demand, which is hour 16. This high load demand also brings down

the system’s frequency from 1p.u. to 0.99p.u. According to our assumption, all the

generators respond to change in load and their participation factor is related to their

capacity of generation. The value of β, which is the frequency deviation coefficient

in Equation 28, is set to 1.9. We show experimental results on a 24-hour dataset.

However, the load and ACE can be modeled for a longer duration (e.g., weeks) us-

ing their respective base values. The prediction algorithm has been implemented in

Java that collects the measurements from PSCAD and predicts accordingly. If an

alarm is raised, it is passed on to the anomaly verification module, which has been

implemented in PRISM [60]. PRISM supports building the markov model and allows

probabilistic property verification.

88

16 21 1 6 11
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Hour

Lo
ad

 (
pu

)

Load Area 2
Load Area 1
Load Area 2 (Hourly)
Load Area 1 (Hourly)

Figure 19: Load profile

16 19 22 1 4 7 10 13
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Hour

A
C

E
 P

ar
am

et
er

s
(p

u)

Frequency
Tie line Power Flow

Figure 20: ACE parameters

3.8.2 Detection Accuracy Evaluation for Single and Multiple Automatic Generation

Control Model

We evaluate accuracy for both the single and multiple AGC scenarios. Since pre-

diction is done individually for AGC system variables, it is the same in both case

studies. Multiple attack instances were introduced and data was collected using the

PSCAD tool. The prediction algorithm was employed on the data that included at-

tack instances for both the load and ACE values. It can be clearly seen in Figures

14 and 15 that the prediction follows the trend learnt from the normal data and do

not deviate with the sporadic changes observed in the load and ACE values. Per-

turbations in the ACE values as a result of attack are clear, which ultimately causes

the de-stabilization of the power system. All the attack instances were successfully

89

0.05 0.1 0.15 0.2 0.25

60

65

70

75

80

85

90

95

100

Probability Window Size

D
et

ec
tio

n
R

at
e

Multiple AGC

Single AGC

(a) Detection Rate

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

Probability Window Gap

F
al

se
 A

la
rm

 R
at

e

Multiple AGC
Single AGC

(b) False Alarm Rate

Figure 21: Comparison of single AGC and multiple AGC scenarios

flagged by the prediction algorithm, i.e., deviated from the prediction; however, one

percent false alarms were observed in a 24-hour dataset. These flagged instances were

then passed to the anomaly verification module.

The anomaly verification module is evaluated in two fashions – single and multi-

ple AGC. Single AGC is a centralized (or composed) verification of two-area power

system as a whole, and the multiple AGC is the distributed verification of the two-

area system. In the case of a single AGC, all the attack instances were successfully

detected, i.e., 100% detection rate with no false alarm. Similarly, for multiple AGC,

we also observed 100% detection rate but with a false alarm rate of 0.1%. Since the

properties are probabilistically verified using the model, we change the probability

verification threshold and show its effect on the accuracy for both single and multiple

AGC in Figure 21. Specifically, we change the minimum and maximum verification

threshold, thus increasing or decreasing the window gap between probability verifica-

tion thresholds. It can be explained by the fact that if the window gap is 1 (maximum

gap possible), i.e., the minimum threshold is 0 and the maximum is 1, the property

will always be validated successfully. Therefore, it will not detect any intrusions and

90

hence there is no false alarm. Similar trends can be observed in Figure 21(a) that as

the probability window gap increases, detection rate decreases. It can be noticed that

the multi-AGC scenario observed a higher detection rate, as compared to single AGC

scenario, for the same probability verification window gap. The underlying reason is

that the multi-AGC case is more sensitive to intrusions since it checks its local system

state given the system state of the other AGC. Intuitively, since it involves all the

system variables (in conjunction form) from both the AGCs, all the system variables

are verified against all the other variables. Thus, it is a strict property to satisfy and

can be thought of as a strict threshold for verification and it is well known that strict

thresholds yield higher detection and more false alarm. Hence, it is more sensitive

to even slight deviation from normal behavior. On the other hand, in the case of a

single AGC, the probability of each system variable is checked only against the entire

system state of that particular AGC, thus it is not as sensitive as the multi-AGC

scenario. Consequently, multi-AGC observes a higher false alarm rate as shown in

Figure 21(b). Although the multi-AGC false alarm rate is higher than the single

AGC, it is still negligible and overall higher accuracy was observed in all the cases.

Though the multi-AGC scenario provides higher detection accuracy, it is not an

obvious choice. Multiple AGCs requires sharing the system state data among co-

operating AGCs, which may be owned by different companies. Thus, it may raise

technical and non-technical issues. Moreover, delay in sharing the system state data

may cause an incorrect estimate of the system state, thus it requires reliable and

efficient communication. Thus, sharing the system state data introduces extra over-

head on the system. In such cases, the single AGC scenario is a better suited option.

91

However, it is not as sensitive to attacks as the multi-AGC scenario. Therefore, the

choice depends on the trade off.

3.9 Conclusion

This work presents a two-tier intrusion detection system for AGC. The first tier is

an online short-term adaptive predictor for load and ACE variables, which are the key

input and output variables in AGC. We show that both load and ACE parameters ex-

hibit a temporal dependence that can be modeled in order to make future short-term

predictions accurately. The second tier provides offline probabilistic model checking

of the overall system by incorporating system-wide knowledge. Markov models have

been used to represent the system state. Two case studies were conducted analyzing

single- and multi-AGC scenario. Single AGC verifies the behavior of each system

variable with respect to the system state. On the other hand, multi-AGC verifies the

state of one AGC given the state of other AGC to verify anomalies. Anomaly verifi-

cation reduces the overall false alarm rate by incorporating system-wide knowledge.

Since measurements are collected every few seconds, model checking at run-time is

not computationally feasible. Therefore, the first tier does online prediction for indi-

vidual variables, and as a result, the flagged instances are then passed to an offline

anomaly verification module, which incorporates the complete knowledge of the sys-

tem in order to verify the anomaly presence. The prediction algorithm exhibits high

prediction accuracy (> 95%) under normal conditions. Multiple attack scenarios, in-

spired from [68], have been implemented. All the malicious measurements have been

found to deviate from predicted values, thus being successfully detected. One false

92

alarm was observed by the prediction on 24-hour data. The second tier successfully

verified all the anomalies present with a negligible false alarm rate, i.e., 0% for single

AGC and 0.1% for multi-AGC, thus increasing the overall accuracy of the approach.

CHAPTER 4: MEASURING AND DETERRING ATTACK EVASION

In this chapter, we discuss the limitations of existing traditional intrusion defense

mechanisms. In previous chapters, we discussed intrusion detection and deterrence

for smart grids; however, existing detectors are susceptible to evasion attacks and

provide no deterrence against such attacks. While several intrusion detection tech-

niques exist, no effort has solved the problem of comparing the performance of these

systems in terms of evasive attacks and deterrence. Critical infrastructure organiza-

tions are usually targeted by persistent attackers who have the working knowledge of

the targeted system and the capability to evade defense mechanisms. Therefore, we

investigate the science of intrusion detection systems and investigate the inherent lim-

itations that allow attackers to evade. Furthermore, to provide deterrence we develop

a key-based randomization module that can introduce a notion of randomness for

attackers to make evasion more difficult and yet stay deterministic for the intrusion

detection system itself.

While the original models for intrusion detection systems were proposed more than

two decades ago, intrusion detection still remains an active area of research as the

attackers continue to adapt and evade intrusion detection solutions. If an attacker

can estimate the normal behavior of the network and the threshold, he/she can easily

evade the detection system and send attack packets into the network without detec-

tion. Moreover, the possibility of detecting such evasion attacks is bleak due to the

94

fact that normal network behavior and IDS thresholds are seldom updated.

Advanced persistent threat (APT) attacks can be launched on a network or host.

An APT attacker can monitor egress and ingress traffic in a network and launch

parameter estimation attacks. While ingress traffic can give information about the

normal behavior of the network, egress can provide the information about the alarm.

Combining this information can yield the threshold used for detection. Once the

attacker develops an estimate of the detection principle and the ADS threshold, it can

easily launch evasion attacks that lay below the threshold and hence evade detection.

In the later section we show how these parameters can be estimated to paralyze an

anomaly detection system. Please note the work focuses on anomaly-based intrusion

detection systems, thus we use the terms anomaly detection systems (ADSs) and

intrusion detection systems (IDSs) interchangeably.

Numerous studies [87], [88], [89], [90] have focused on the evasion of network intru-

sion detection systems. As new evasion techniques evolve, new anomaly detection sys-

tems are sought to detect and prevent these new evasion attacks. However, to the best

of our knowledge, little effort has been invested in studying evasion as a science and

developing mathematical models that help future scientists design evasion-resistant

anomaly detection systems. Consequently, how to measure the evasion margin for an

ADS in a given scenario is still an open research question. Moreover, there are many

different categories of evasion techniques depending upon the way they operate. In

this work, however, we limit ourselves to the study of parameter estimation attacks

only.

Cryptographic systems are robust against estimation attacks due to the extra level

95

of complexity offered by key-based security. By making the key space exponentially

large, it becomes computationally infeasible for an attacker to launch evasion attacks.

We use the same principle in our developed key-based randomization technique. The

aim is to make it more difficult for the attacker to estimate the parameters and launch

a well crafted evasive attack. To this end, we present a case study of the key-based

ADS design, which is published in a recent study [91].

4.1 Background

Evasion is one of the most challenging threat in cyber security. Evasion is primarily

about staying under the radar and remaining undetected while launching the attack

successfully. Attackers who generally launch evasive attacks are sophisticated and

persistent. They generally learn or already know the intrusion detection system con-

figuration along with the normal behavior of the underlying network and/or system.

The learnt configuration helps attackers carry out nefarious activities without raising

an alarm thereby staying undetected.

While some solutions exist for detecting and filtering stealthy attacks, it is still an

open challenge in cyber security. Attackers can either initiate a large number of low-

volume traffic flows (e.g., from botnets) simultaneously or generate tailored traffic.

This helps them stay below the radar, thus avoiding detection. Stealthy evasion

attacks take hours, days, or even weeks before they are discovered and mitigated. In

turn, they penetrate the network and could consume resources, depriving legitimate

users (e.g., provider staff or customers) of access to their information and causing

significant loss. Advancing state-of-the-art research requires addressing the following

96

key research questions: 1) how do they evade existing defense mechanisms, 2) how

much can they evade given a defense mechanism and the normal traffic, 3) what

changes need to be made in order to detect them or reduce their impact, 4) what

valid traffic feature(s) can constitute significant information gain for determining

such attacks, and (5) how to measure and evaluate these features in real time.

4.2 Related Work

Science of different systems has been studied in the past to improve systems’ per-

formance. The studies [92–95] develop science of firewalls for packet filtering and

policy configuration optimization to improve the performance. The study [96] devel-

ops adaptive packet filtering of firewall to defend against denial of service attacks.

The science of smart grids is developed in study [97] for security and resiliency. In

all of these studies, science of systems such as firewalls and smart grids has been de-

veloped. However, in this work, we develop a science for intrusion detection systems

to improve the performance against evasive attacks.

Intrusion detection systems have been successfully evaded in the past [87, 90, 98–

101]. Moreover, new attack techniques were also discovered, which could paralyze

the intrusion detection [102–107]. The work [100] discusses practical techniques to

evade intrusion detection systems. To countermeasure such evasion techniques, new

robust intrusion detection systems have been proposed [41,108–112]. Moreover, quan-

titative approaches for designing detection algorithms for IDSs have been widely in-

vestigated in the past. Methods such as hypothesis testing [32, 113] and machine

learning [114, 115] have been applied to provide a scientific basis for IDSs. These

97

methods aim at designing optimal and effective algorithms to achieve low false nega-

tive and false positive rates from the perspective of IDSs. They do not consider the

strategic behaviors of the attackers, who intend to evade IDSs by finding counter-

measures. Our work develops evasion metrics to evaluate the susceptibility of an IDS

to evasion attacks, and designs key-based detection algorithms to defeat attackers’

evasion.

One area of related work is the application of game-theoretic tools to model the

strategic behaviors of the attackers as in [116–118]. However, due to the lack of ap-

propriate metrics of evasion, few studies have focused on modeling attacker’s evasion

behavior. Our work aims to fill this gap and provides the basis for game-theoretic

analysis of attack evasion.

4.3 Challenges

The performance of intrusion detection techniques is generally compared by com-

paring the true positive or detection rates on an Receiver Operating Characteristics

(ROC) curve. The performance may vary based on the underlying network and/or

system used for generating the ROC curve. While this provides a good overview of

what type of attacks can be detected by an intrusion detection technique on a given

network and/or system, it does not highlight or measure evasion an intrusion detec-

tion technique is susceptible to due to its design. There is yet no metric available

that can measure evasion susceptibility of an intrusion detection technique regardless

of the network and/or system under consideration.

Existing traditional intrusion detection techniques employ static features for the

98

purpose of anomaly identification. For example, some intrusion detection techniques

work on specific fields of a network packet header information or specific charac-

teristics of a system. Intrusion detection technique creates a profile of normal or

baseline distribution based on these features, which is then compared with the real-

time behavior for the purpose of identifying the presence of anomalous behavior. This

inherently limits the intrusion detection technique in identifying the malicious activi-

ties that do not cause a deviation in the features employed by the intrusion detection

technique. Persistent attackers gain system knowledge, including the features used

by the intrusion detection technique and/or the configurations such as threshold to

conduct nefarious activities while staying undetected. This is due to the fact that

the features employed by an intrusion detection technique are static and may yield a

deterministic behavior that can be learnt by persistent attackers to launch attacks.

Unlike cryptographic systems, there is yet no approach that can obfuscate or ran-

domize the behavior for attackers to make learning such behavior very unlikely or

computationally inexpensive.

4.4 Contribution and Approach Overview

In this work, our contribution is twofold. First, we design a mathematical model

to measure evasion for intrusion detection techniques. This enables us to understand

the suitability and robustness of an intrusion detection technique against evasion by

measuring its evasion margin on different thresholds caused by its inherent design.

Second, we develop a key-based randomization technique for existing traditional in-

trusion detection techniques, that aims to minimize the evasion margin.

99

We first show that existing intrusion detection techniques can be evaded by per-

sistent attackers. Intrusion detection techniques can be evaded with or without the

knowledge of its design and configurations. In this work, we use parameter estimation

attacks that monitor the intrusion detection system behavior to infer its design and

configuration parameters. We then launch attacks against the intrusion detection

techniques by staying under the radar, thus not exceeding the threshold set by intru-

sion detection technique. This helps us in measuring the evasion margin an intrusion

detection technique is inherently susceptible to due to its design.

Evasion margin is a sum of injections that do not cause a deviation in intrusion

detection technique’s behavior, called the averaging out effect, and the injections that

do cause deviations but do not exceed threshold, called the gap between distribution

and threshold. To minimize the evasion margin, we then present a mutation approach

that can introduce a notion of randomness using key-based randomization for attack-

ers while staying deterministic for the system itself. We use the approach to mutate

thresholds and alarms generated by an intrusion detection technique so that the per-

sistent attacker cannot learn the underlying behavior, thus making the intrusion less

likely or computationally inexpensive.

4.5 Attack Model

Before we discuss the evasion and how it can be minimized, we first discuss the

attack model, datasets, and intrusion detection systems used in this work.

The attack model primarily mimics persistent attackers who are sophisticated. The

underlying assumption is that intrusion detection technique’s design principle and

100

Table 4: Endpoint attack traffic for two high- and two low-rate worms

Malware Avg. Scan Rate(/sec) Port(s) Used
Dloader-NY 46.84 TCP 135,139
Forbot-FU 32.53 TCP 445
MyDoom-A 0.14 TCP 3127− 3198
Rbot-AQJ 0.68 TCP 139,769

Table 5: Traffic information for the LBNL dataset

Date LBNL Remote Avg. Background Avg. Attack
Hosts Hosts Pkt Rate(/sec) Pkt Rate(/sec)

10/4/04 4,767 4,342 8.47 0.41
12/15/04 5,761 10,478 3.5 0.061
12/16/04 5,210 7,138 243.83 72

configurations can be estimated or revealed by various methods such as social engi-

neering or observing the underlying network and systems where intrusion detection

is deployed. We launch parameter estimation attacks that try to estimate multiple

parameters of an intrusion detection technique such as detection thresholds, baseline

distribution and real-time distribution by monitoring the system behavior to identify

the presence of anomalies. For this purpose, we leverage the temporal dependence in

anomaly scores that help estimating the parameters.

4.5.1 Datasets

We use two publicly available and independently collected real-world datasets. The

first dataset was collected at the endpoints and the second dataset was collected at

the routers of a lab. Thus, both the datasets are different.

4.5.1.1 Endpoint Dataset

This dataset comprises session-level traffic collected at 13 network endpoints. The

users of these endpoints included home users, research students, and technical/administrative

staff. The endpoints were running different types of applications, including peer-to-

peer file sharing software, online multimedia applications, network games, SQL/SAS

101

clients, etc. Attack traffic in this dataset is mostly comprised of outgoing portscans;

see [119] for details. Attack traffic was generated using the following malware:

Zotob.G, Forbot-FU, Sdbot-AFR, Dloader-NY, SoBig.E@mm, MyDoom.A@mm, Blaster,

Rbot-AQJ, and RBOT.CCC [120]. Table 4 shows statistics of the highest and low-

est scan rate worms. For completeness, we also simulated three additional worms,

namely Witty (worm with fixed source port 4000), CodeRedv2 (worm with fixed des-

tination port 80), and a low-rate TCP worm (with a fixed and unusual source port

2200). Witty and CodeRedv2 were simulated using the scan rates, pseudocode, and

parameters given in [120,121].

4.5.1.2 LBNL Dataset

This dataset was collected at two international network locations at the Lawrence

Berkeley National Laboratory (LBNL), USA. The main applications in internal and

external traffic were Web (HTTP), Email, and Name Services. Some other applica-

tions like Windows Services, Network File Services, and Backup were also being used

by internal hosts. Malicious traffic was mostly comprised of failed incoming TCP SYN

requests targeted towards LBNL hosts; see [122] for details. Some pertinent statistics

of the LBNL dataset are given in Table 5. Note that the attack rate is significantly

lower than the background traffic rate. Thus these attacks can be considered low rate

relative to the background traffic rate. We filtered local traffic from the dataset.

4.5.2 Anomaly Detection Systems

We use two well known existing anomaly detection systems. These detectors have

shown acceptable accuracy in the recent literature [119]. ADSs used in this work are

102

diverse in their underlying detection features and principles. Maximum entropy [33]

is a self learning system while TRW [32] is sequential hypothesis testing based.

4.5.2.1 Maximum Entropy Anomaly Detector

The Maximum Entropy anomaly detector [33] divides traffic into 2, 348 packet

classes and maximum entropy estimation is then used to develop a baseline benign

distribution for each packet class. ADS scores of packet class distributions observed in

real-time windows are computed by comparing them with their baseline distributions

using the Kullback-Leibler (KL) divergence measure. An alarm is raised if a packet

class’s ADS score repeatedly exceeds a fixed threshold.

4.5.2.2 Threshold Random Walk (TRW) Detector

The TRW algorithm [32] detects incoming portscans by noting that the probability

of a connection attempt being a success should be much higher for a benign host than

for a scanner. To leverage this observation, TRW computes an ADS score by applying

the sequential hypothesis on a remote host’s connection attempts. This ADS score is

thresholded to determine whether or not a remote host is a scanner.

4.6 Evading Intrusion Detection Systems: A Feasibility Study

Before we discuss the evasion margin measurement for an ADS, we first show

how these ADSs can be evaded using parameter estimation attacks. Currently ADSs

assume that the underlying detection principle is not known to the attacker. However,

it does not hold in the real world where some knowledge about the ADS principle

can be obtained through methods like social engineering, fingerprinting, etc. [102].

In fact, ADS can be evaded without knowing the exact design principle. Several

103

types of attacks (e.g., polymorphic blending attacks, mimicry attacks, etc.) have

been proposed in existing literature.

Moreover, ADSs rely significantly on the belief that the attacker does not know the

network topology and/or the services running within the network. Hence, it tends to

communicate with hosts that do not exist or hosts that do not have the requested

service available. Thus the malicious packets from the attacker would considerably

alter the real-time traffic characteristics from the baseline distribution. However, we

show that this is also a flawed assumption.

For the attacker to estimate the evasion margin, i.e., the number of attack packets

that it can send into the network without detection, it has to estimate three ADS

parameters [123]: a) baseline distribution, b) realtime distribution, and c) detection

threshold.

As a proof of concept, we use two existing, prominent, and diverse statistical ADSs:

Maximum Entropy [33] and TRW [32]. These ADSs are briefly described in Section

4.5.2. The rest of the section provides a detailed estimation of the ADS parameters.

The baseline distribution can be estimated by either: a) observing traffic generated

from a host within the target network, or b) brute force estimation. For the realtime

observation, a realistic scenario for estimating the baseline distribution is that the

attacker compromises a host X in network A that communicates with the target host

[102]. Hence, it can observe the normal traffic from host X to the target entity that can

be used to build the normal profile for network A. Brute force estimation is the most

common modus operandi used in cryptanalysis. Despite its computational complexity,

it has been shown that with the current high-performance COTS (multithreaded and

104

multicore) hardware, it is not difficult for a craft attacker to acquire and exploit

hardware parallelism to carry out a bruteforce analysis [102], [89].

We developed a markovian stochastic model of temporal dependence in an ADS’s

anomaly scores [83]. While the motivation for the original work was to improve the

accuracy and automation of an ADS using threshold estimation, the technique can

be adapted to estimate the ADS detection threshold for evasion. However, we restrict

the evaluation of conditional entropy to first order markov chains only:

H (pj|pi) = −
∑
ω

p(pi, pj) log (p (pj|pi)) . (40)

The conditional entropy H(pj|pi), of two random variables pi and pj correspond to

the information in pj not given by pi. Thus, computing the maximum conditional

entropy between baseline distributions in two consecutive time bins, as we slide from

bin 1 to bin n, can provide us the minimum information overlap in normal benign

data.

Once the baseline distribution and the threshold have been estimated, the detection

logic can be used to estimate the realtime distribution. This realtime distribution can

then be used by the attacker to generate attack sessions in different feature classes

that stay below the threshold and thereby evade ADS detection.

The Maximum Entropy detector [33] employs the Kullback-Leibler (KL) diver-

gence measure for anomaly detection. The measure computes how much the baseline

distribution p(ω) varies from the real-time distribution q(ω). Traffic is divided into

2, 348 packet classes based on the destination ports and the protocol. The detector

uses maximum entropy estimation to develop the baseline distribution for the traffic

105

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False alarms per day

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

)

MaxEnt
MaxEnt under known configuration attack
TRW
TRW under known configuration attack

(a) Endpoint Dataset

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False alarms per day

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

)

MaxEnt
MaxEnt under known configuration attack
TRW
TRW under known configuration attack

(b) LBNL Dataset

Figure 22: Comparison of ADS performance with and without evasion attack using
configuration estimation

classes. If the divergence between the baseline and the real-time distributions for

a particular packet class exceeds the threshold τKL in h of these W windows, an

anomaly is flagged by the detector. Maximum entropy has been shown to provide

high accuracy dividends in the recent literature [119].

Sequential hypothesis testing based TRW ADSs employ the likelihood ratio test to

determine if local/remote hosts are scanners. The TRW classifier [32] detects remote

scanners and has been shown to be quite accurate and commercial ADSs also deploy

it for portscan detection.

For both Maximum Entropy and TRW ADSs, we launched a stealthy scanning

attack by estimating the ADS’s parameters as described. It can be observed in

Figure 22 that both the ADSs failed to detect the evasive scanning probes (known

configuration attack using parameter estimation) on two different datasets. However,

it can be seen that both the ADSs were able to achieve acceptable accuracy for

traditional scanning attacks (without parameter estimation) discussed in Section 4.5.

Figure 23(a) shows that TRW failed to detect the scan traffic in a malicious time

106

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Packets

S
co

re

Observed Value
Fixed Threshold

(a) TRW

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Time (sec)

A
no

m
al

y
S

co
re

Observed Value
Fixed Threshold

(b) Maximum Entropy

Figure 23: Threshold values observed in stealthy scanning time window for TRW
and maximum entropy

window. It can be clearly observed that the likelihood ratio did not exceed the

threshold. TRW calculates the likelihood ratio for each connection attempt and

classify them as anomalous if the likelihood ratio for any host increases more than

the threshold. Since the hosts were also generating benign traffic, the likelihood ratio

did not cross the threshold set. Similarly, Figure 23(b) shows the threshold values

observed in a 60-second time window for Maximum Entropy. As presented in [33], if

the threshold (15) is exceeded 30 times within a 60-second time window, an alarm

is raised. Due to stealthy scanning the run-time distribution exceeded the threshold

only 10 times. Therefore, just by slowing down (or the effect of averaging out) in the

normal traffic, scanning was able to go undetected.

It can be observed that of the three parameters an attacker has to estimate, two of

those are dependent on the features employed by the ADS for detection. Since these

features are inherently fixed by design, the attacker can easily estimate them to evade

the ADSs.

107

MaxEnt TRW
0

0.5

1

1.5

2

2.5

3

Detectors

A
ve

ra
g

e
 P

kt
s/

S
e

c

(a) Endpoint

MaxEnt TRW
0

1

2

3

4

5

6

7

Detectors

A
ve

ra
g

e
 P

kt
s/

S
e

c

(b) LBNL

Figure 24: Evasion margin measurement of MaxEnt and TRW on endpoint and
LBNL dataset

4.7 The Science of Intrusion Detection System Evasion

Though several intrusion detection systems have been proposed in the recent past,

no science has been developed unlike cryptographic algorithms. Therefore, if the

detection principle is known and attacker has some access to the network, he/she can

launch evasive attacks. To this end, in this section we discuss the science of intrusion

detection. The contribution is two fold. First, we show how evasion can be measured

for intrusion detection systems. This helps in measuring the robustness of intrusion

detection system against evasion under a given scenario, i.e., network. Second, we

introduce a concept of key-based intrusion detection systems, which minimizes the

evasion margin and makes it difficult for an attacker to estimate the parameters

accurately in order to launch successful evasion attacks. The purpose is to highlight

the fact that we need to rethink the design philosophy of an ADS and develop a

science.

108

4.7.1 Evasion Measurement

Evasion occurs when attack traffic does not perturb the run-time distribution more

than a threshold. To measure this for an ADS, we inject attack traffic, i.e., SYN

flood at rates 0.1pkts/sec and higher. The traffic was injected in each time window

with an increasing rate until the alarm was raised by the detector, i.e., the run-time

distribution score reached the threshold. The process was repeated for all the time

windows to observe how much traffic can go without detection. Figure 24 shows the

evasion margin for Maximum Entropy and TRW detectors on endpoint and LBNL

datasets. We noticed, for each time window separately, that the amount of traffic

that was going undetected was the sum of averaging out and gap between run-time

distribution and threshold. Averaging out was the amount of traffic that did not

cause any change in the run-time distribution due to its very low volume [124]. In

addition, there was some traffic that caused the deviation in run-time distribution

but not more than the set threshold. Therefore, the total allowed evasion for each

detector was the sum of these two metrics. Below we show the calculation of each

separately.

4.7.1.1 Averaging Out

Intrusion detection systems compare the run-time distribution with the baseline

distribution to find the deviation between the two. Ideally, there should be a change

in the run-time distribution when the attack traffic is inserted into the network.

However, if the volume of the normal traffic is overwhelming and the fact that ADS

computes distribution using its detection principle, attack traffic might bury inside it

109

without causing any change in the overall run-time distribution. This phenomenon

is known as the averaging out effect. Suppose â is the attack traffic launched by the

attacker then:

D̂r = Dr + â (41)

where D̂r and Dr represents the run-time distribution with and without attack, re-

spectively. To calculate the effect of attack traffic on the normal run-time distribution

we compute:

Distt = diff(D̂r,Dr)t (42)

where diff is a function that calculates the difference in the two distributions. It

can be the intrusion detector’s own classification function that is used to compare the

run-time distribution with the baseline distribution. However, if the distribution Dr

is statistical/probability based, the difference function can be the Kullback-Leibler

(KL) divergence measure as used in Maximum Entropy detector. This will calculate

the distance between the two distributions, i.e., with and without attack traffic. To

calculate how much attack traffic is allowed in the average out scenario,

σt = max(â)ts.t.Distt = 0 (43)

where an attacker wants to maximize the attack traffic â such that the distance

between the two distributions, i.e., one without attack traffic and with attack traffic

remains 0. This implies that both the distributions are the same and attack traffic is

successfully averaged out, thus causing no change to the normal run-time distribution.

110

To calculate it for the t time windows of the network traffic:

avgids =

∑t
i=1 σ

i

t
(44)

The above equation calculates the averaging out effect for all the time windows and

gives us the on-average averaging out in terms of packets allowed by the intrusion

detection system. Since the underlying network can change and each intrusion detec-

tion system calculates distributions differently, we use ratio or percentage of attack

traffic with respect to the normal traffic, which can be calculated using:

avgids =

∑t
i=1(σi/pi)

t
(45)

where pi is the normal background traffic in time window i.

4.7.1.2 Gap between Distribution and Threshold

The second factor to consider in measuring the evasion margin available to the

attacker is the gap between run-time distribution score and the threshold. Since

threshold is learnt as an average and run-time distribution may change during its

course, the gap size between the two will change. Given a fixed threshold and the

run-time distribution score, the gap can be calculated as:

gap = 4 = f(τ, α) (46)

where α is basically derived from the run-time distribution α = f(Dr) and 4 is

the number of packets required to make run-time distribution hit the threshold τ .

Intrusion detection systems quantify the distance between baseline and run-time dis-

tribution in order to compare it with the threshold. If it exceeds a threshold τ , an

111

alarm is raised, otherwise not.

if(α > τ); anomaly, else;normal

Since threshold is mostly fixed for the intrusion detection systems and run-time dis-

tribution keeps changing over the period of time. Therefore, percentage or ratio of

attack traffic for the gap can be calculated using:

gapids =

∑t
i=1(4i/pi)

t
(47)

The above equation calculates the on-average gap available to an attacker. This gap

is the resultant of the distance between the threshold and the run-time distribution

observed.

Therefore, the total evasion margin available to an attacker is the sum of the

averaging-out effect and the gap available. This can be leveraged by the attacker to

launch a certain amount of attack traffic while staying undetected

ε =

∑t
i=1(σi/pi)

t
+

∑t
i=1(4i/pi)

t
(48)

4.7.2 Evasion Mitigation

We showed in Section 4.6 that ADSs can be evaded. To evade an ADS successfully,

an attacker needs to know the detection principle, normal traffic, threshold estima-

tion, and the output, i.e., whether an alarm was raised or not. Since some of these

parameters are easily observable or can be estimated, our goal is to deceive the at-

tacker while reducing the evasion margin. For example, detection principle can be

revealed using social engineering, thus it is hard to keep it a secret. If an attacker

112

has access to the network, he/she can infer the normal behavior of the network thus

hiding this information is not trivial. We present a key-based ADS design as a case

study for key-based adaptive mutation for threshold and the output, i.e., alarm.

Mutating the threshold would deceive the attacker by giving the wrong estimate of

the evasion margin. It can be seen in Equation 48 that if the value of τ is changing or

not known to the attacker, an accurate estimate of the evasion margin available can

not be made. Moreover, to estimate the evasion margin accurately an attacker relies

on observing the output, i.e., whether an alarm was raised or not. To this end, we

mutate the output using a secret key in order to deceive the attacker by hiding the

actual alarm. Therefore, an attacker would not know whether the alarm was actually

raised or not. Consequently, he/she would get a false estimate of the evasion margin

available. In the subsequent section we discuss the key-based ADS design as a case

study and show its effectiveness in reducing the evasion margin.

4.7.2.1 Key-based Threshold Mutation

Several ADSs have been proposed in the recent past. Most of them do not provide

any scientific method to calculate the threshold, however, some of them provide a

threshold calculation method specific to the detector. In general, thresholds are cal-

culated by observing the ADS’s performance on a network using a Receiver Operating

Characteristics (ROC) curve. The threshold point providing the acceptable accuracy

is selected. Threshold range for generating an ROC curve is selected based on the

minimum and maximum deviation observed in the baseline distribution.

τi,n → dmin(Db), . . . , d
max(Db) (49)

113

where τi,n represents the threshold range for ADS i on a network n, Db is the baseline

distribution and d is the deviation function of the baseline distribution. Since the

minimum deviation is a strict constraint and yields a higher false positive rate, average

deviation is often selected. Therefore, the above equation becomes:

τi,n → davg(Db), . . . , d
max(Db) (50)

Moreover, maximum deviation allows the maximum evasion gap, thus reducing the

detection rate. Therefore, we replace it with the point providing acceptable accuracy

on the ROC curve. Hence, the equation becomes:

τi,n → davg(Db), . . . , d
roc(Db) (51)

We mutate the threshold in this range using a secret key and a hash function as

follows:

τ t+1
i,n = H(k, τ ti,n, t)mod|τi,n|+ 1 (52)

where τ ti,n represents the threshold selected at time t, k is the secret key and modulus

is taken for the threshold set size to pick a threshold from the given range. Therefore,

if the key is not known, an attacker would not know which threshold is being used at

a given time.

Since the run-time behavior of the network is ever changing, it may allow more

evasion margin at a given time. Therefore, we tend to adaptively mutate the threshold

with respect to the network behavior observed. We divide the entire possible range

114

of thresholds for a network into subranges.

τi,n,1 → dmin(Db), . . . , d
avg(Db)

τi,n,2 → davg(Db), . . . , d
roc(Db) (53)

τi,n,3 → droc(Db), . . . , d
max(Db)

where τi,n,j represents the subset range j from the entire range τi, n. The mutation

function becomes:

τ t+1
i,n = H(k, τ ti,n, t)modβ + 1 (54)

β = f(Dr, Db); β ∈ {τi,n,1, τi,n,3, τi,n,3}

where β is a function of the run-time distribution observed and the baseline distribu-

tion. It is selected based on the distance between the two distributions. Therefore, if

the distance falls in the subrange τi,n,1, then this subrange will be selected as β and

the threshold will be randomly selected from this range.

4.7.2.2 Accuracy and Performance Analysis of Key-based Threshold Mutation

We use the similar notations as those used in [32]. First we define Y to be the

random variable such that Y = 0 means a successful attempt by a fixed source host

and Y = 1 means an unsuccessful event. H0 and H1 are the hypotheses that the

source host is benign or malicious, respectively. Assume p(Y = 0|H0) = θ0 and

p(Y = 0|H1) = θ1, then we have p(Y = 1|H0) = 1 − θ0 and p(Y = 1|H1) = 1 − θ1.

Suppose the alarm criteria is set to be that, given a source host, if it makes between

n1 and n2 unsuccessful attempts out of N total attempts, an alarm is raised. Here

115

the threshold mutation range is between n1 and n2.

The probability that a benign user makes n unsuccessful attempts out of N total

attempts is:

ζ0(n) =
N∑
i=n

(
N

n

)
(1− θ0)iθN−i0 (55)

The probability that a malicious user makes n unsuccessful attempts out of N total

attempts is:

ζ1(n) =
N∑
i=n

(
N

n

)
(1− θ1)iθN−i1 (56)

Suppose the ratio of benign users out of all users is u, then given the condition that n

unsuccessful attempts out of N attempts, the probability that the source is malicious

is:

ζ1(n)(1− u)

ζ0(n)u+ ζ1(n)(1− u)
(57)

If the ADS raises an alarm and if there are n unsuccessful attempts out of N attempts,

the false positive probability is:

ξ1(n) =
ζ0(n)(u)

ζ0(n)u+ ζ1(n)(1− u)
, (58)

and the false negative probability is:

ξ2(n) =
(1− ζ1(n))(1− u)

(1− ζ0(n))u+ (1− ζ1(n))(1− u)
(59)

For the mutation range between n1 and n2, the false positive probability is between

ξ1(n2) and ξ1(n1), and the false negative probability is between ξ2(n1) and ξ2(n2).

116

3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Threshold

R
a
tio

False Positive
False Negative

Figure 25: False positive and negative probability

The expected false positive probability and false negative probability are:

n2∑
i=n1

ξ1(i)/(n2 − n1), and

n2∑
i=n1

ξ2(i)/(n2 − n1), (60)

respectively. If (1 − θ0) > n2/N , then the expected number of attempts that a

malicious source will be identified is between

un1/(1− θ0) + (1− u)n1/(1− θ1), and

un2/(1− θ0) + (1− u)n2/(1− θ1)

Figure 25 shows the false positive and negative probability for N = 8, 3 ≤ n ≤ 8,

u = 0.999, θ0 = 0.95 and θ1 = 0.1. We can see that under the parameters the false

positive and negative are all smaller than 0.1 (except the case of n = 3). Figure 26

shows the expected false positive and negative probability with the same parameters

except different θ1. We can see that the false positive is stable for the range of θ1 in

consideration and there is a slight decrease of false negatives with the decrease of θ1.

117

0.2 0.15 0.1 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

θ
1

R
a

tio

False Positive
False Negative

Figure 26: False probability with different θ1

4.7.2.3 Key-based Alarm Mutation

Since an attacker relies on observing the alarm (whether raised or not) to estimate

the evasion margin, we mutate the alarm to deceive the attacker. Suppose the alarm

is represented by l → true, false, where the alarm can generally take two values,

i.e., true indicates that there was an anomaly and false indicates that there was

no anomaly. Instead of sending the original alarm, which may be observable by the

attacker, we send a hashed alarm:

lt+1 = H(k, lt+1, t)mod l + 1 (61)

where lt+1 refers to the alarm raised at time t + 1. We take the hash of the original

alarm with the key and time stamp and send the resultant hashed alarm. The receiver

side, security engineer, or administrator, will repeat the same process for both the

true and false alarm along-with the time stamp and the key. The one that matches

will reveal the original alarm. This helps in deceiving the attacker and gives him/her

a wrong estimate.

Since the alarm set has only two possible values, i.e., true and false, collision

118

MaxEnt Key−MaxEnt TRW Key−TRW
0

0.5

1

1.5

2

2.5

3

Detectors

A
ve

ra
g

e
 P

kt
s/

S
e

c

(a) Endpoint

MaxEnt Key−MaxEnt TRW Key−TRW
0

1

2

3

4

5

6

7

Detectors

A
ve

ra
g

e
 P

kt
s/

S
e

c

(b) LBNL

Figure 27: Evasion margin measurement of original and key-based MaxEnt and
TRW on endpoint and LBNL dataset

probability of the hash function is higher, i.e., both the true and false might yield to

the same hashed alarm with the key and time stamp. There are two countermeasures

to this. First, increase the alarm set size, i.e., instead of only true and false, it may

have severity level of the alarm with it. Second, the hash of the alarm can also be sent

with the hashed alarm to verify the actual alarm. However, it might give the attacker

a chance to recover the key, as it happens in known text attacks in cryptography. To

defend this, keys can be changed periodically, thus not providing enough time for the

attacker to reveal the key for a given time period. There are several other ways of

hiding the original alarm such as cryptographic algorithm. However, the goal here is

to deceive the attacker. Therefore, we send the alarm itself but it is randomly selected

using a hash function. The purpose of this work is to re-think the design philosophy

and we present a case study here, though other techniques can be devised. Therefore,

we only work with the resultant hashed alarm, which looks like the original alarm

while deceiving the attacker.

To show the effectiveness of the key-based intrusion detection system design, we

119

repeat the same experiment of measuring the evasion margin in time windows but

with key-based intrusion detection employed. Figure 27 shows the evasion margin

comparison of original and key-based MaxEnt and TRW. It can be seen that the eva-

sion margin is reduced significantly, i.e., 60-70% in the case of key-based counterparts

of intrusion detectors. Evasion margin can be reduced further if observed anomaly

scores are predicted to set the threshold. However, that will not be able to deceive

the attacker since thresholds can be estimated. Therefore, we divide the anomaly

scores in subranges and randomly select a threshold from the observed subrange.

This introduces the notion of randomness to deceive the attacker, which is a goal of

the approach.

4.8 Evaluation

In this section we present the evaluation of our developed approach. First, we

show the evasion margin measurement for both the ADSs. This measure gives an

estimate of how much an ADS is susceptible to evasion attacks, i.e., the evasion

margin available to the attacker to launch evasive attacks. Please note that evasion

margin is not the opposite of detection. It is rather the susceptibility of attacks to go

undetected. Second, we show the effectiveness of key-based ADS design in detecting

evasion attacks, i.e., parameter estimation attacks.

4.8.1 Evaluating Evasion Margin Metric

To measure the evasion margin for an ADS, we inject attack traffic, i.e., SYN flood

at rates 0.1pkts/sec and higher. The traffic was injected in each time window with an

increasing rate until the alarm was raised by the detector, i.e., run-time distribution

120

a1 a2 a3 a4 a5
0

1

2

3

4

5

6

7

8

Thresholds

A
tt

a
c
k
 T

ra
ff

ic
 P

e
rc

e
n

ta
g

e

Maximum Entropy
TRW

(a) Endpoint

a1 a2 a3 a4 a5
0

1

2

3

4

5

6

7

8

Threshold

A
tt

a
c
k
 T

ra
ff

ic
 P

e
rc

e
n

ta
g

e

Maximum Entropy
TRW

(b) LBNL

Figure 28: Detectors evasion margin comparison on varying thresholds

score reached the threshold. We repeated the process with different thresholds to

discover the susceptibility of ADSs to evasion attacks. Figure 28 shows the results for

both the detectors on both the datasets. It can be seen that the evasion trend remains

the same for each ADS on both the datasets, i.e., Endpoint and LBNL using different

thresholds. This is because evasion margin is a property of ADS’s detection principle

and to eliminate the effect of the underlying dataset on evasion margin we work with

attack traffic percentage with respect to normal traffic. It can be observed in Figure

28 that as the threshold changes from strict to lose bound, maximum entropy evasion

margin increases exponentially because it requires the same traffic class to exceed h

of W time windows above threshold in order to raise an alarm. On the other hand,

TRW evasion margin increases linearly as it works on successful connection ratio.

Therefore, if the threshold is configured improperly/lose bounded or attack traffic is

distributed evenly across multiple classes, maximum entropy will allow more evasion

margin to an attacker as compared to TRW.

121

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False alarms per day

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

)

Key−TRW
Key−TRW under evasion attack
Key−MaxEnt
Key−MaxEnt under evasion attack
MaxEnt
MaxEnt under evasion attack
TRW
TRW under evasion attack

(a) Endpoint

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

False alarms per day

A
ve

ra
g

e
 d

e
te

ct
io

n
 r

a
te

 (
%

)

Key−TRW
Key−TRW under evasion attack
Key−MaxEnt
Key−MaxEnt under evasion attack
MaxEnt
MaxEnt under evasion attack
TRW
TRW under evasion attack

(b) LBNL

Figure 29: Accuracy comparison of detectors with and without key on regular and
evasive attacks

4.8.2 Evaluating Evasion Mitigation

In this section we show how key-based design, when employed with an ADS, im-

proves the detection accuracy against evasion attacks. We conduct experiments on

parameter estimation attacks and traditional portscan attacks explained earlier to

evaluate the performance of key-based design. Figure 29 shows the evaluation results

for both detectors on both datasets. It can be observed that evasion attacks were

able to paralyze the performance of an ADS, i.e., almost 0% detection rate, however,

key-based ADSs were able to detect most of evasion attacks for both the ADSs on

both the datasets. These attacks are labeled as “evasion attacks” in the figure. It

can be seen that significant performance improvement is achieved by the key-based

design over original ADS in all the cases.

Moreover, key-based ADSs show accuracy improvement for traditional portscan

attacks as highlighted in the results. Although traditional portscans were not injected

in an evasive manner, some instances of these attacks stayed below the threshold.

122

Since key-based design adaptively mutates the threshold, it was able to flag some of

such undetected instances, thus increasing the accuracy. Although key-based design

helps in reducing the evasion margin overall, it does not cater to the averaging out or

incapability of an ADS to detect some attacks, which is mainly related to the inherent

limitation of an ADS due to its detection principle. Therefore, it does not achieve

100% detection accuracy.

4.9 Conclusion

Anomaly-based intrusion detection systems (ADSs) are capable of detecting zero-

day attacks. However, ADSs are inherently susceptible to evasion attacks. As a

remedy, we have established a novel design methodology based on cryptographic

concepts by making evasion computationally infeasible or harder to estimate for the

attackers. To achieve this, we first developed a metric for measuring evasion, and have

demonstrated that evasions can be easily achieved under the current ADS scheme.

We developed key-based designs that mutate the threshold and alarms to deceive

the attacker, and render it difficult for the attacker to estimate the parameters of

ADSs. Our results have shown that the key-based mutation strategy was able to

successfully detect most of the evasion attacks that were undetected by the original

ADS by reducing the evasion margin. Although we show mutation for threshold and

the alarm output, the framework can be extended to mutate other parameters of an

ADS. The goal of the work is to rethink the design philosophy of ADSs such that

their inherent susceptibility to evasion attacks can be addressed. In the future we

aim to extend the current work to a game-theoretic framework, which incorporates

123

the model of attackers’ evasion strategies. The extended model will allow us to design

optimal mutation strategies for ADSs.

CHAPTER 5: CONCLUSION AND FUTURE WORK

In this work we investigate the intrusion detection and deterrence for critical infras-

tructure, i.e., smart grids. Critical infrastructures are the infrastructures that have

high impact in our day to day life. Unavailability of such infrastructures may cause

serious damage to the nation’s economy, safety, and/or security. To this end, we in-

vestigate two core components in smart grids, i.e., AMI and AGC. We devise intrusion

detection and deterrence techniques for these components. Lastly, we investigate the

inherent limitations of evasion in existing intrusion detection systems that make them

unsuitable for smart grids. We devise an evasion margin measurement metric that

can be used to measure an intrusion detection system’s performance against evasive

attacks. To minimize evasion and make it less likely or computationally inexpensive,

deterrence is introduced by randomizing intrusion detection systems’ parameters.

First, we show that the current approaches for defense in AMI lack practical fea-

sibility as they require hardware deployment in the field. Moreover, protocol imple-

mentation is vendor specific, thus such solutions may not hold true. We show that

AMI behavior is static due to limited configurations, devices and application support.

To this end, we present an approach that does not require hardware deployment in

the field and can work with the logs that are already generated in the current infras-

tructure. The approach utilizes the configurations in order to derive specifications

which in turn can be validated against the model built from logs. We show that the

125

logs can be modeled using 4− th order markov chain and the properties are defined

in LTL to detect intrusions. To overcome the static behavior of the network and

mitigate against evasion/mimicry attacks, we design a configuration randomization

module that introduces a notion of randomness in the AMI behavior for the attacker

while staying deterministic for the network itself. We show that the false predic-

tions by the model were less than 1%. Furthermore, the model was able to achieve a

more than 95% detection rate with a false positive rate of approximately 0.1%. The

run-time complexity of the model was approximately 1.5 secs and it can scale up to

approximately 5, 000 to 16 meters per collector depending on the order of markov

chain selected, however, as an industry practice we have seen 8 meters per collector.

Second, we investigate AGC in smart grids. Although bad data detection mecha-

nisms exist in smart grids, recent studies show that these algorithms can be bypassed.

Moreover, knowledged attackers can manipulate measurements such that they look

benign to the AGC environment. We also discuss that there is no tailored defense

mechanism for generation control in smart grids that caters to the changing behavior

over time. To this end, we develop a two-tier approach for anomaly detection. The

first tier utilizes the temporal dependence presence in the key variables to predict

short term future behavior. The second tier incorporates system-wide knowledge to

verify the alarms raised in the first tier. The developed approach complements ex-

isting defense mechanisms such as bad data detection. We show that the approach

yields high prediction accuracy of > 95% under normal conditions. The detection

rate was almost 100% with negligible false alarm rates of 0% and 0.1% for single and

multi-AGC scenarios, respectively.

126

Third, since existing defense mechanisms are susceptible to evasion attacks, we

present a metric for evasion margin measurement that can help in comparing the per-

formances of intrusion detection systems with and without deterrence. We showed

that evasive attacks dropped the performance of intrusion detection rate to 0%

thereby paralyzing it. Since evasion susceptibility is due to intrusion detection sys-

tems’ static design, we present a key-based randomization module that can intro-

duce deterrence and a notion of randomness in an intrusion detection system thereby

making evasion more difficult. We showed that the key-based approach reduces the

evasion margin of an intrusion detection by 60-70%. We also show that the key based

approach improved the accuracy detection by at least 70% against evasive attacks.

In the future, we aim to investigate smart grids as a whole and develop a correlation-

based intrusion detection and deterrence system that can identify attacks by incorpo-

rating system-wide knowledge of smart grids. We also aim to introduce a key-based

randomization mechanism to other parameters used by intrusion detection systems

such as features that build the run-time distribution. For example, intrusion detection

systems use static features to detect specific types of attacks, thus they are unable to

detect other type of attacks. Mutating the feature space would allow for detecting a

variety of attacks. Furthermore, we aim to use a game-theoretic framework to model

attackers’ evasion strategies so that the optimal mutation mechanism can be devised

at the run-time.

127

REFERENCES

[1] Department of homeland security. "hXXp://www.dhs[.]gov/

what-critical-infrastructure".

[2] F. M. Cleveland. Cyber security issues for advanced metering infrasttructure
(AMI). In IEEE Power and Energy Society General Meeting - Conversion and
Delivery of Electrical Energy in the 21st Century, 2008.

[3] U.S. Government Accountability office (GAO). information security: TVA
needs to address weaknesses in control systems and networks, 2008.

[4] Idaho National Laboratory (INL). NSTB assessments summary report: Com-
mon industrial control system cyber security weaknesses, May 2010.

[5] The White House. Homeland Security Presidential Directive 7: Critical infras-
tructure identification, prioritization and protection, December 2003.

[6] T. Baumeister. Literature review on smart grid cyber security. Technical report,
Department of Information and Computer Sciences, University of Hawaii, 2010.

[7] Smart grid news. "hXXp://www.smartgridnews[.]com".

[8] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka, A. Delozier, and P. McDaniel.
Multi-vendor penetration testing in the advanced metering infrastructure. In
Proceedings of the 26th Annual Computer Security Applications Conference,
(ACSAC), 2010.

[9] R. Berthier, W. Sanders, and H. Khurana. Intrusion detection for advanced
metering infrastructures: Requirements and architectural directions. In First
IEEE International Conference on Smart Grid Communications (SmartGrid-
Comm), 2010.

[10] R. Berthier and W. Sanders. Specification-based intrusion detection for ad-
vanced metering infrastructures. In IEEE 17th Pacific Rim International Sym-
posium on Dependable Computing (PRDC), 2011.

[11] M. A. Faisal, Z. Aung, J. Williams, and A. Sanchez. Securing advanced metering
infrastructure using intrusion detection system with data stream mining. In
Proceedings of Pacific Asia Workshop on Intelligence and Security Informatics
(PAISI), 2012.

[12] Geethapriya Thamilarasu and Ramalingam Sridhar. Intrusion detection in
RFID systems. In Military Communications Conference (MILCOM). IEEE,
2008.

128

[13] Muhammad Qasim Ali and Ehab Al-Shaer. Configuration-based IDS for ad-
vanced metering infrastructure. In Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security, CCS ’13. ACM, 2013.

[14] Muhammad Qasim Ali, Ehab Al-Shaer, and Qi Duan. Randomizing AMI con-
figuration for proactive defense in smart grid. In SmartGridComm, 2013.

[15] M. Q. Ali and E. Al-Shaer. Probabilistic model checking for AMI intrusion
detection. In SmartGridComm, 2013.

[16] Muhammad Qasim Ali and Ehab Al-Shaer. Randomization-based intrusion
detection system for advanced metering infrastructure. ACM Transactions on
Information and System Security (TISSEC), 18(2):7:1–7:30, December 2015.

[17] Smart meter - arm. "hXXp://www.arm[.]com/markets/embedded/

smart-meter.php".

[18] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam. Distributed intrusion
detection system in a multi-layer network architecture of smart grids. IEEE
Transactions on Smart Grid, 2011.

[19] Ehab Al-Shaer, Qi Duan, and Jafar Haadi Jafarian. Random Host Mutation
for Moving Target Defense, pages 310–327. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[20] Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and X. Sean Wang.
Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[21] J. H. Jafarian, E. Al-Shaer, and Q. Duan. An effective address mutation ap-
proach for disrupting reconnaissance attacks. IEEE Transactions on Informa-
tion Forensics and Security, 10(12):2562–2577, Dec 2015.

[22] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Adversary-aware ip address ran-
domization for proactive agility against sophisticated attackers. In 2015 IEEE
Conference on Computer Communications (INFOCOM), pages 738–746, April
2015.

[23] Jafar Haadi H. Jafarian, Ehab Al-Shaer, and Qi Duan. Spatio-temporal ad-
dress mutation for proactive cyber agility against sophisticated attackers. In
Proceedings of the First ACM Workshop on Moving Target Defense, MTD ’14,
pages 69–78, New York, NY, USA, 2014. ACM.

[24] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random host
mutation: Transparent moving target defense using software defined network-
ing. In Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, pages 127–132, New York, NY, USA, 2012. ACM.

129

[25] S. Groat, M. Dunlop, W. Urbanksi, R. Marchany, and J. Tront. Using an ipv6
moving target defense to protect the smart grid. In 2012 IEEE PES Innovative
Smart Grid Technologies (ISGT), pages 1–7, Jan 2012.

[26] Mohammad Ashiqur Rahman, Ehab Al-Shaer, and Rakesh B. Bobba. Moving
target defense for hardening the security of the power system state estimation.
In Proceedings of the First ACM Workshop on Moving Target Defense, MTD
’14, pages 59–68, New York, NY, USA, 2014. ACM.

[27] Ehab Al-Shaer. Toward Network Configuration Randomization for Moving Tar-
get Defense, pages 153–159. Springer New York, New York, NY, 2011.

[28] F. Gillani, E. Al-Shaer, S. Lo, Q. Duan, M. Ammar, and E. Zegura. Agile
virtualized infrastructure to proactively defend against cyber attacks. In 2015
IEEE Conference on Computer Communications (INFOCOM), pages 729–737,
April 2015.

[29] Qi Duan, E. Al-Shaer, and H. Jafarian. Efficient random route mutation consid-
ering flow and network constraints. In Communications and Network Security
(CNS), 2013 IEEE Conference on, pages 260–268, Oct 2013.

[30] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Formal Approach for Route
Agility against Persistent Attackers, pages 237–254. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[31] Pedro Garcia-Teodoro, Jesús E. Dı́az-Verdejo, Gabriel Maciá-Fernández, and
Enrique Vázquez. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Computers & Security, 2009.

[32] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection
using sequential hypothesis testing. In Proceedings of the IEEE Symposium on
Security and Privacy, 2004.

[33] Y. Gu, A. McCullum, and D. Towsley. Detecting anomalies in network traffic
using maximum entropy estimation. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement (IMC), 2005.

[34] Matthew V Mahoney and Philip K Chan. PHAD: Packet header anomaly
detection for identifying hostile network traffic. Proceedings of the 2003 ACM
symposium on applied computing, 2001.

[35] Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in
network intrusion detection using clusters. In Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38, pages 333–342. Aus-
tralian Computer Society, Inc., 2005.

[36] Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and Kuobin Dai.
An efficient intrusion detection system based on support vector machines and

130

gradually feature removal method. Expert Systems with Applications, 39(1):424–
430, 2012.

[37] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network intrusion
detection. In Recent Advances in Intrusion Detection (RAID), 2004.

[38] Animesh Patcha and Jung-Min Park. An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends. Computer networks,
51(12):3448–3470, 2007.

[39] Rahul Khanna and Huaping Liu. System approach to intrusion detection using
hidden markov model. In Proceedings of the 2006 international conference on
Wireless communications and mobile computing, pages 349–354. ACM, 2006.

[40] Yingbo Song, Angelos D Keromytis, and Salvatore J Stolfo. Spectrogram: A
mixture-of-markov-chains model for anomaly detection in web traffic. In NDSS,
volume 9, pages 1–15. Citeseer, 2009.

[41] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke
Lee. McPAD: A multiple classifier system for accurate payload-based anomaly
detection. Computer Networks, 2009.

[42] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. Net-
work anomaly detection: methods, systems and tools. IEEE Communications
Surveys & Tutorials, 16(1):303–336, 2014.

[43] Davide Ariu, Roberto Tronci, and Giorgio Giacinto. Hmmpayl: An intru-
sion detection system based on hidden markov models. computers & security,
30(4):221–241, 2011.

[44] Aruna Jamdagni, Zhiyuan Tan, Xiangjian He, Priyadarsi Nanda, and Ren Ping
Liu. Repids: A multi tier real-time payload-based intrusion detection system.
Computer Networks, 57(3):811–824, 2013.

[45] C. Ten, J. Hong, and C. Liu. Anomaly detection for cybersecurity of the sub-
stations. IEEE Transactions on Smart Grid, 2011.

[46] B. Zhu and S. Sastry. SCADA-specific intrusion detection/prevention systems:
A survey and taxonomy. In First Workshop on Secure Control Systems (SCS),
2010.

[47] Matti Mantere, Mirko Sailio, and Sami Noponen. A module for anomaly de-
tection in ICS networks. In Proceedings of the 3rd International Conference on
High Confidence Networked Systems. ACM, 2014.

[48] Marina Krotofil and Álvaro A. Cárdenas. Is this a good time?: Deciding when
to launch attacks on process control systems. In Proceedings of the 3rd Interna-
tional Conference on High Confidence Networked Systems, HiCoNS ’14. ACM,
2014.

131

[49] Wenye Wang and Zhuo Lu. Cyber security in the smart grid: Survey and
challenges. Computer Networks, 57(5):1344–1371, 2013.

[50] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. A survey on cyber security
for smart grid communications. IEEE Communications Surveys & Tutorials,
14(4):998–1010, 2012.

[51] Mihui Kim. A survey on guaranteeing availability in smart grid communica-
tions. In Advanced Communication Technology (ICACT), 2012 14th Interna-
tional Conference on, pages 314–317. IEEE, 2012.

[52] Andreas Berl, Michael Niedermeier, and Hermann de Meer. Smart grid consid-
erations: Energy efficiency vs. security. Advances in Computers, 88:159–198,
2013.

[53] Jun Wang and Victor CM Leung. A survey of technical requirements and
consumer application standards for IP-based smart grid ami network. In The
International Conference on Information Networking 2011 (ICOIN2011), pages
114–119. IEEE, 2011.

[54] Stephen McLaughlin, Dmitry Podkuiko, and Patrick McDaniel. Energy theft
in the advanced metering infrastructure. Critical Information Infrastructures
Security, 2010.

[55] David Carroll Challener, Scott Thomas Elliott, James Patrick Hoff, and
James Peter Ward. Storing keys in a cryptology device, 2002. US Patent
App. 10/051,495.

[56] Daisuke Mashima and Alvaro A. Cárdenas. Evaluating electricity theft detectors
in smart grid networks. In Research in Attacks, Intrusions, and Defenses, 2012.

[57] M. Merhav, M. Gutman, and J. Ziv. On the estimation of the order of a markov
chain and universal data compression. IEEE Transactions on Information The-
ory, 1989.

[58] Yingke Chen, Hua Mao, Manfred Jaeger, ThomasDyhre Nielsen, Kim Guld-
strand Larsen, and Brian Nielsen. Learning markov models for stationary sys-
tem behaviors. In NASA Formal Methods, Lecture Notes in Computer Science.
Springer, 2012.

[59] C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[60] Probabilistic symbolic model checker PRISM. "hXXp://www.

prismmodelchecker[.]org/".

[61] Yices: An SMT solver. "hXXp://yices.csl.sri[.]com/".

[62] Smart grid lab. "hXXp://epic.uncc[.]edu/facilities/

duke-energy-smart-grid-laboratory.html".

132

[63] M. Kwiatkowska and D. Parker. Advances in probabilistic model checking. In
Proceedings 2011 Marktoberdorf Summer School: Tools for Analysis and Veri-
fication of Software Safety and Security, 2012.

[64] HPROF: A heap/CPU profiling tool. "hXXp://docs.oracle[.]com/javase/

7/docs/technotes/samples/hprof.html".

[65] Ambient communication nodes. "hXXp://www.ambientcorp[.]com/

prod-nodes/".

[66] Echelon data concentrator. "hXXp://www.echelon[.]com/products/

controllers/meter-data-concentrator/default.htm".

[67] M. Hayden, C. Hebert, and S. Tierney. Cybersecurity and the north american
electric grid: New policy approaches to address an evolving threat. Bipartisan
Policy Center, 2014.

[68] S. Sridhar and G. Manimaran. Data integrity attacks and their impacts on
scada control system. In Power and Energy Society General Meeting, 2010
IEEE, 2010.

[69] Y. Liu, P. Ning, and M.K. Reiter. False data injection attacks against state es-
timation in electric power grids. ACM Transactions on Information and System
Security, 2011.

[70] M. Q. Ali, R. Yousefian, E. Al-Shaer, S. Kamalasadan, and Q. Zhu. Two-tier
data-driven intrusion detection for automatic generation control in smart grid.
In Communications and Network Security (CNS), 2014 IEEE Conference on,
pages 292–300, Oct 2014.

[71] Daniel J Trudnowski, Warren L McReynolds, and Jeffery M Johnson. Real-time
very short-term load prediction for power-system automatic generation control.
Control Systems Technology, IEEE Transactions on, 2001.

[72] Shu Fan and Luonan Chen. Short-term load forecasting based on an adaptive
hybrid method. Power Systems, IEEE Transactions on, 2006.

[73] P Mohajerin Esfahani, Maria Vrakopoulou, Kostas Margellos, John Lygeros,
and Göran Andersson. Cyber attack in a two-area power system: Impact iden-
tification using reachability. In American Control Conference (ACC), 2010,
pages 962–967. IEEE, 2010.

[74] Peyman Mohajerin Esfahani, Maria Vrakopoulou, Kostas Margellos, John
Lygeros, and Göran Andersson. A robust policy for automatic generation con-
trol cyber attack in two area power network. In Decision and Control (CDC),
2010 49th IEEE Conference on, pages 5973–5978. IEEE, 2010.

133

[75] Yee Wei Law, Tansu Alpcan, Marimuthu Palaniswami, and Subhrakanti Dey.
Security games and risk minimization for automatic generation control in smart
grid. In Decision and Game Theory for Security, pages 281–295. Springer, 2012.

[76] Siddharth Sridhar and Manimaran Govindarasu. Model-based attack detection
and mitigation for automatic generation control. IEEE Transactions on Smart
Grid, 5(2):580–591, 2014.

[77] Mustafa Amir Faisal, Zeyar Aung, John R Williams, and Abel Sanchez. Data-
stream-based intrusion detection system for advanced metering infrastructure
in smart grid: A feasibility study. IEEE Systems Journal, 9(1):31–44, 2015.

[78] Divya M Menon and N Radhika. Anomaly detection in smart grid traffic data
for home area network. In 2016 International Conference on Circuit, Power
and Computing Technologies (ICCPCT), pages 1–4. IEEE, 2016.

[79] Fadwa Abdul Aziz Alseiari and Zeyar Aung. Real-time anomaly-based dis-
tributed intrusion detection systems for advanced metering infrastructure uti-
lizing stream data mining. In 2015 International Conference on Smart Grid
and Clean Energy Technologies (ICSGCE), pages 148–153. IEEE, 2015.

[80] John Bigham, David Gamez, and Ning Lu. Safeguarding SCADA systems with
anomaly detection. In Springer Lecture Notes in Computer Science, 2003.

[81] Weiyu Xu, Meng Wang, and Ao Tang. On state estimation with bad data
detection. In Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on, 2011.

[82] P. Kundur. Power System Stability and Control. McGraw-Hill, 1994.

[83] Muhammad Qasim Ali, Ehab Al-Shaer, Hassan Khan, and Syed Ali Khayam.
Automated anomaly detector adaptation using adaptive threshold tuning. ACM
Transactions on Information and System Security (TISSEC), 2013.

[84] H. L. V. Trees. Detection, estimation and modulation theory: part I. Wiley-
Interscience, 2001.

[85] Power system simulation tool. "hXXps://hvdc[.]ca/pscad/".

[86] Meysam Doostizadeh and Hassan Ghasemi. Day-ahead scheduling of an ac-
tive distribution network considering energy and reserve markets. European
Transactions on Electrical Power, 2012.

[87] Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion de-
tection: Evasion, traffic normalization, and end-to-end protocol semantics. In
USENIX Security Symposium, pages 115–131, 2001.

[88] C. Kruegel. Full system emulation: Achieving successful automated dynamic
analysis of evasive malware. In BlackHat USA Security Conference, 2014.

134

[89] C. Smith, A. Matrawy, S. Chow, and B. Abdelaziz. Computer worms: Architec-
tures, evasion strategies, and detection mechanisms. In Journal of Information
Assurance and Security, 2008.

[90] Thomas H Ptacek and Timothy N Newsham. Insertion, evasion, and denial of
service: Eluding network intrusion detection. Technical report, DTIC Docu-
ment, 1998.

[91] M. Q. Ali, A. B. Ashfaq, E. Al-Shaer, and Q. Duan. Towards a science of
anomaly detection system evasion. In Communications and Network Security
(CNS), 2015 IEEE Conference on, pages 460–468, Sept 2015.

[92] A. El-Atawy, T. Samak, E. Al-Shaer, and H. Li. Using online traffic statistical
matching for optimizing packet filtering performance. In IEEE INFOCOM 2007
- 26th IEEE International Conference on Computer Communications, pages
866–874, May 2007.

[93] H. Hamed, A. El-Atawy, and E. Al-Shaer. Adaptive statistical optimization
techniques for firewall packet filtering. In Proceedings IEEE INFOCOM 2006.
25TH IEEE International Conference on Computer Communications, pages 1–
12, April 2006.

[94] H. Hamed, A. El-Atawy, and E. Al-Shaer. On dynamic optimization of packet
matching in high-speed firewalls. IEEE Journal on Selected Areas in Commu-
nications, 24(10):1817–1830, Oct 2006.

[95] Hazem Hamed and Ehab Al-Shaer. On autonomic optimization of firewall policy
configuration. Journal of High Speed Networks, Special issue on Security Policy
Management, 13(3):209–227, Aug 2006.

[96] Adel El-Atawy, Ehab Al-Shaer, Tung Tran, and Raouf Boutaba. Adaptive early
packet filtering for defending firewalls against dos attacks. In INFOCOM, 2009.

[97] Ehab Al-Shaer and Mohammad Ashiqur Rahman. Security and Resiliency An-
alytics for Smart Grids. Springer International Publishing, 2016.

[98] David J Chaboya, Richard A Raines, Rusty O Baldwin, and Barry E Mullins.
Network intrusion detection: automated and manual methods prone to attack
and evasion. IEEE Security and Privacy, 4(6):36–43, 2006.

[99] Tsung-Huan Cheng, Ying-Dar Lin, Yuan-Cheng Lai, and Po-Ching Lin. Eva-
sion techniques: Sneaking through your intrusion detection/prevention systems.
IEEE Communications Surveys & Tutorials, 14(4):1011–1020, 2012.

[100] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems:
formal reasoning and practical techniques. In Proceedings of the 13th ACM con-
ference on Computer and communications security, pages 59–68. ACM, 2006.

135

[101] Igino Corona, Giorgio Giacinto, and Fabio Roli. Adversarial attacks against
intrusion detection systems: Taxonomy, solutions and open issues. Information
Sciences, 239:201–225, 2013.

[102] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection sys-
tems. In ACM Conference on Computer and Communications Security (CCS),
2002.

[103] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Gio-
vanni Vigna. Automating mimicry attacks using static binary analysis. In Pro-
ceedings of the 14th conference on USENIX Security Symposium, pages 11–11.
USENIX Association, 2005.

[104] Chetan Parampalli, R Sekar, and Rob Johnson. A practical mimicry attack
against powerful system-call monitors. In Proceedings of the 2008 ACM sympo-
sium on Information, computer and communications security, pages 156–167.
ACM, 2008.

[105] Weiqin Ma, Pu Duan, Sanmin Liu, Guofei Gu, and Jyh-Charn Liu. Shadow
attacks: automatically evading system-call-behavior based malware detection.
Journal in Computer Virology, 8(1-2):1–13, 2012.

[106] Zhenyu Wu, Steven Gianvecchio, Mengjun Xie, and Haining Wang. Mimimor-
phism: A new approach to binary code obfuscation. In Proceedings of the 17th
ACM conference on Computer and communications security, pages 536–546.
ACM, 2010.

[107] Hilmi Günes Kayacik and A Nur Zincir-Heywood. Mimicry attacks demystified:
What can attackers do to evade detection? In Privacy, Security and Trust,
2008. PST’08. Sixth Annual Conference on, pages 213–223. IEEE, 2008.

[108] Yves Younan, Wouter Joosen, and Frank Piessens. Runtime countermeasures
for code injection attacks against C and C++ programs. ACM Computing
Surveys (CSUR), 44(3):17, 2012.

[109] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient malware
detection at the end host. In USENIX security symposium, pages 351–366,
2009.

[110] Darren Mutz, William Robertson, Giovanni Vigna, and Richard Kemmerer.
Exploiting execution context for the detection of anomalous system calls. In
International Workshop on Recent Advances in Intrusion Detection, pages 1–20.
Springer, 2007.

[111] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou,
Lintao Zhang, and Paul Barham. Vigilante: End-to-end containment of internet
worm epidemics. ACM Transactions on Computer Systems (TOCS), 26(4):9,
2008.

136

[112] Xuxian Jiang, Helen J Wangz, Dongyan Xu, and Yi-Min Wang. Randsys:
Thwarting code injection attacks with system service interface randomization.
In Reliable Distributed Systems, 2007. SRDS 2007. 26th IEEE International
Symposium on, pages 209–218. IEEE, 2007.

[113] Quanyan Zhu, C.J. Fung, R. Boutaba, and T. Basar. A distributed sequen-
tial algorithm for collaborative intrusion detection networks. In 2010 IEEE
International Conference on Communications (ICC), 2010.

[114] S. Jha, K. Tan, and R.A. Maxion. Markov chains, classifiers, and intrusion
detection. In Computer Security Foundations Workshop, 2001. Proceedings.
14th IEEE, 2001.

[115] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques for
an intrusion detection system. In Proceedings of the 2004 ACM Symposium on
Applied Computing, SAC ’04, 2004.

[116] Quanyan Zhu, H. Tembine, and T. Başar. Distributed strategic learning with
application to network security. In American Control Conference (ACC), San
Francisco, CA, 2011.

[117] Q. Zhu and T. Başar. Dynamic policy-based ids configuration. In 48th IEEE
Conference on Decision and Control, 2009 held jointly with the 2009 28th Chi-
nese Control Conference (CDC/CCC 2009), 2009.

[118] M. Manshaei, Q. Zhu, T. Alpcan, T. Başar, and J.-P. Hubaux. Game theory
meets network security and privacy. ACM Computing Survey, 2013.

[119] A. B. Ashfaq, M. Joseph, A. Mumtaz, M. Q. Ali, A. Sajjad, and S. A. Khayam.
A comparative evaluation of anomaly detectors under portscan attacks. In
Proceedings of the 11th International Symposium on Recent Advances in Intru-
sion Detection (RAID ’08), pages 351–371, Berlin, Heidelberg, 2008. Springer-
Verlag.

[120] Symantec security. "hXXp://securityresponse.symantec[.]com/avcenter".

[121] C. Shannon and D. Moore. The spread of the witty worm. IEEE Security and
Privacy (SP ’04), 2004.

[122] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A first
look at modern enterprise traffic. In Proceedings of the 5th ACM SIGCOMM
Conference on Internet Measurement (IMC ’05), pages 2–2, Berkeley, CA, USA,
2005. USENIX Association.

[123] A.B. Ashfaq, M.Q. Ali, E. Al-Shaer, and S.A. Khayam. Revisiting anomaly
detection system design philosophy. In ACM SIGSAC Conference on Computer
& Communications Security, 2013.

137

[124] A. B. Ashfaq, S. Rizvi, M. Javed, S. A. Khayam, M. Q. Ali, and E. Al-Shaer.
Information theoretic feature space slicing for statistical anomaly detection.
Journal of Network and Computer Applications, 2014.

