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ABSTRACT 

 

  

RAN TAO. No boundary for spatial interactions — exploratory spatial flow data 

analysis. (Under the direction of DR. JEAN-CLAUDE THILL)  

  

 

Spatial interaction (SI) represents meaningful human relations between areas on the 

Earth’s surface, such as the reciprocal relations and flows of all kinds among industries, 

markets, regions, cities, or logistics centers. With the widespread adoption of location-

aware technologies and the global diffusion of geographic information systems (GIS), 

spatial interaction data have been remarkably enriched. In this dissertation research, I 

develop three unique but closely related exploratory spatial flow data analysis (ESFDA) 

methods, as an answer to the challenges and opportunities brought by the recent data 

revolution. Each new method stems from one or more of the following methodological 

subfields: geovisualization, spatial data mining, and spatial statistics.  

The first method, dubbed Flow K-function, is a spatial statistical approach to detect 

spatial clustering patterns of flow data. In other words, it upgrades the classical hot spot 

detection method to the stage of “hot flow” detection. A set of spatial proximity measures 

are designed for flow data by integrating endpoint location, length, and direction. The 

measures can extract both intra-relationships and inter-relationships of flows and serve as 

the basis of Flow K-function. The second approach, Flow HDBSCAN, is a hierarchical 

and density-based spatial flow cluster analysis method. Not only can it extract flow clusters 

from various situations including varying flow densities, lengths, hierarchies, but it also 

provides an effective way to reveal the potential hierarchical structure of the clusters. The 

last method is called FlowAMOEBA. It is a data-driven and bottom-up approach for 

identifying regions of anomalous spatial interactions, based on which it creates a spatial 
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flow weights matrix. It upgrades A Multidirectional Optimum Ecotope-Based Algorithm 

(AMOEBA) (Aldstadt and Getis 2006) from areal data to spatial flow data through a proper 

spatial flow neighborhood definition. The method breaks the tradition that spatial 

interaction data are always collected and modelled between two comparable predefined 

geographic units, as it delineates the boundaries of anomalous interacting regions 

regardless of size, shape, scale, or administrative level. The spatial flow weights matrix 

based on the identified regions can be used to account for network autocorrelation, thus 

improving confirmatory studies using spatial interaction modeling.  

These newly developed methods can be utilized individually for data exploration, 

pattern detection, and hypothesis development. They can also be used jointly to the same 

application to take advantage of each method. The results of these methods can further be 

used to form new hypotheses based on explored interesting patterns, to challenge old 

theories so as to form new ones, to deepen understanding of spatial interaction process, and 

to improve related confirmatory studies, thus improving related policy-making or problem 

solving strategies.  

Three different use cases are presented as to demonstrate the use of each of the methods. 

The data include a set of motor-vehicle theft and recovery flows, a set of online iPhone 

transaction flows on the eBay platform, and county-to-county migration flows. Advantages 

and limitations of each method are tested and discussed thoroughly. Practical usefulness 

and application implications are also explored and discussed in each scenario.   
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CHAPTER 1: INTRODUCTION 

 

  

 1.1 What Is Spatial Interaction 

Spatial interaction (SI) represents meaningful human relations between areas on the 

Earth’s surface, such as the reciprocal relations and flows of all kinds among industries, 

markets, cultures, or logistics centers (Ullman 1954). It is usually represented as a dynamic 

flow process from one location to another, referring to the movement of human beings such 

as daily commuters, or traffic in goods such as raw materials, or even flows of intangibles 

such as information (Haynes and Fotheringham 1984). Given that it is extremely versatile 

to represent physical or socioeconomic processes driven by essential forces with flows, 

spatial interaction data has been a critical component and an enduring object of research in 

a wide range of fields of research and decision-making including epidemiology, economics, 

geography, transportation, and emergency management (Guo 2009).  

Typically a flow event in geography consists of two components, i.e. the spatial 

component represented as a vector between two endpoints, as well as the nonspatial 

component which encapsulates the type or value of the flow (Tao and Thill 2016). Taking 

the common example of daily commuting flows, the spatial component is a directed line 

representing the dynamic movement process from the origin to the destination, i.e. from 

home to workplace, but ignoring the actual trajectory route in between (Zhu and Guo 2014). 

On the other hand, the nonspatial component includes all the related information such as 
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information of the traveler, cost of the trip, transport mode, time stamp and length of the 

movement, and so on.  

In general, there are two types of flow data, namely individual (discrete) flow and 

aggregated flow (Murray et al. 2011). The former pertains to individual activities, for 

example one person taking the subway from home to work on a weekday morning. In 

contrast, the latter represents the movement or interactions of a group of people or objects, 

for example a group of elks residing in the northern region of Yellowstone National Park 

and migrating to lower altitudes before winter arrives. Another taxonomy of spatial 

interaction data is to categorize flows according to whether there are constraints in their 

actual paths (Marble et al. 1997). If there exist explicit channels e.g. river systems, rail 

lines, road networks that the moving objects must follow in their paths from origin to 

destination, such flows are constrained flows. On the other hand, if only the origin and 

destination are known while the paths in between are not available or simply not important 

to be noted, such flows are called unconstrained flows. Take the refugee flows to Europe 

as an example; unconstrained flows contain the information of refugee’s original places 

and destination places, e.g. from Syria to Germany, but ignore the actual trajectory route. 

In contrast, the constrained flows convey more information regarding which paths refugees 

are taking for instance pass Turkey first or cross the Mediterranean Sea first.  

1.2 Previous Theories and Methodologies of Spatial Interaction 

As an enduring study object in various scientific disciplines, a number of theories and 

methodologies regarding spatial interaction have been developed. In geography, the 

concept of spatial interaction was first introduced by French geographers’ notions of 

“géographie de circulation” (Cavaillès 1940), including both the movement of physical 
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objects and the communication of intangible ideas. But the full development of SI as a 

fundamental topic that improves the understanding of the development of distinctive 

regional geography was initiated in the 1950s by Edward Ullman, who later brought up 

one of the most well-known SI theories, namely the “three bases” of spatial interactions. 

In this theory, most spatial interaction processes are driven or influenced by 

complementarity, transferability, and intervening opportunity. Complementarity 

refers to the rationale of spatial flow process as the demand or deficit at one location is 

satisfied by the movement of corresponding supply or surplus at another location. The 

explainable cases include spatial flows in both human geography and physical geography. 

For example, commuting flows represent human resources moving from residential places 

to where the job opportunities are; winds can be seen as air displaced from a high-pressure 

zone complementing a low pressure zone. Spatial interactions driven by complementarity 

could happen between places with extremely long distance, such as petroleum transported 

from the Middle East to the US, or between very close ones, for example students walk a 

few hundred yards from home to the nearby school. However, with all other things being 

equal, shorter distances hold an advantage over the longer ones. This is also called the 

“friction of distance” known as the second base of spatial interaction, i.e. transferability. 

Taking the example of a person shopping for groceries, he or she will be more likely to 

choose the nearest store over a distant one if all of them offer the same goods at the same 

price. On the other hand, if a distant store offers better goods at a lower price that 

compensate the costs of traveling a longer distance, it has the potential to win the customer 

back. Clearly distance plays an important but most likely negative role here as the spatial 

interaction activities have to overcome the travel costs. Nevertheless, spatial interactions 
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in the real world are usually more complex than a binary activity between a pair of places. 

The above grocery shopping case shows that the second store can potentially intervene in 

the original flow between the first store and the customer. It indicates that if there are more 

than one destination (origin) having supply (demand), the final spatial interactions are not 

only decided by complementarity and transferability between origins and destinations, but 

the internal relationship among destinations (origins) as well. Such effects are captured by 

the third base of SI called intervening opportunity. In general, interaction between two 

places would happen if their complementarity is strong enough to overcome the distance, 

and at the same time there exists no stronger intervening opportunity nearby. This “three 

bases” SI theory has had a profound influence on later research. A lot of research has been 

conducted to investigate, validate, or complement this theory in fields like economics, 

transportation, business management, urban planning, etc.  

An important family of methods dealing with spatial flow data is so-called spatial 

interaction (SI) modeling. The distinctive contribution of SI models to flow and movement 

analysis is to separate explanatory factors into three multiplicative classes, site attributes 

of origins, site attributes of destinations and measures of relative distance/travel time 

separating origins and destinations, sometimes collected under the heading “impedance” 

effect (Roy and Thill 2004).  Methods of SI modeling have been continually developed for 

several decades. From the early gravity models (Tobler 1981), to using causative matrices 

to monitor system change (Plane and Rogerson 1986), and to using more general concepts 

of entropy or information theory (Roy and Thill 2004), SI models have been developed to 

help understand underlying patterns or causality of spatial interaction data.  
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 1.3 Massive Novel Spatial Flow Data Bring Both Opportunities and Challenges 

With the widespread adoption of location-aware technologies and the global diffusion 

of geographic information systems (GIS), spatial interaction data have been enriched in 

several respects (Yan and Thill 2009; Guo et al. 2012). On one hand, traditional flow events 

such as flows of people and flows of commodities are recorded and are becoming available 

in tremendous data size and fine spatiotemporal granularity. For instance United Parcel 

Service (UPS) Inc. and FedEx Inc. delivered a combined 947 million packages1 from the 

warehouses of an electronic commerce, e.g. Amazon Inc., to a customer’s front door 

between Thanksgiving and Christmas Eve last year. The delivery processes can be seen as 

nearly a billion spatial flow events with trackable high-resolution spatiotemporal 

information, and this includes attributes pertaining the transaction merchants and agents.  

On the other hand, emerging types of interaction activities, especially information 

exchange on the Internet, have enhanced the richness of flow data. For example, one can 

easily make some online donation from one’s home to help the children suffering in Syria2; 

a breaking news can be transmitted from its origin place to millions of people’s smartphone 

using “#” and “@” on Twitter. Neither charitable donations on the worldwide web nor 

news transmission through social media requires physical movements in space, but 

interactions have indeed taken place between people from different places.   

Undoubtedly, we have entered a new era of spatial flow data. Naturally a number of 

questions have emerged. For instance, are the traditional theories of spatial interaction still 

valid and valuable to explain the new types of flow events? Specifically, are there any new 

                                                             
1 http://www.sgvtribune.com/business/20151222/how-fedex-handles-millions-of-packages-during-the-

christmas-season 
2 https://www.unicefusa.org/donate/help-syrian-children/ 
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types of spatial interactions driven by some other reasons than complementarity? Is it 

possible that transferability does not function as impedance in spatial interactions? Can 

nearby supply locations no longer act as competitors in the new online trading activities? 

In addition, can we quantitatively model the new flow data in a better way? Or even can 

we explore unprecedented patterns from the new flow data, thus proposing new theories? 

All these questions remain interesting but uncertain at this stage. As a conclusion, the 

increased availability of massive volumes of new forms of flow data inevitably brings 

unprecedented opportunities to improve our understanding of SI processes and thus 

enriching the SI theories. At the same time, great intellectual challenges exist for grasping 

these opportunities.  

The most direct challenge is to handle the large volume of data with existing computing 

resources: the current capability of computation techniques cannot handle big flow data 

well. For example, a normal personal computer with 4 Gigabyte memory can only load a 

twenty thousand by twenty thousand matrix, which is significantly insufficient to handle 

millions of OD flows that are quite common nowadays. Without the capability to store, 

compute, analyze, and visualize the data, almost no further research can be carried out to 

obtain meaningful results. Many scholars have been seeking solutions to solve these 

problems. In general, taking advantage of most advanced computing techniques such as 

high performance computing, and developing new or improving existing methods are two 

common ways. 

GeoComputation, the process of applying computing technology to geographical 

problems, is the solution to many pressing issues, including massive spatial flow data. In 

their book, Openshaw and Abrahart (2000) provide the example of the earliest uses of 
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parallel computing in geography, which was concerned the parallelization of the spatial 

interaction model. In this example, the predicted flow value from origin to destination is 

implicitly highly parallel since it can be computed independently. A parallel version of 

spatial interaction model including 10,764 OD commuting flows in the UK has been run 

on the KSR parallel supercomputer at Manchester and later ported on to the Cray T3D 

(Turton and Openshaw 1996). Although ten thousand flows are not considered big any 

more from today’s perspective, this start is quite meaningful to seek help from fast-

developing computating technology to handle large geographic datasets and speedup 

computing processes, and also to stimulate geographers to develop more micro models 

rather than aggregate, dynamic rather than static, non-linear rather than linear. Today it has 

become quite common that geographers make use of CyberGIS and GeoComputation 

techniques such as OpenMP, Message Passing Interface (MPI), MapReduce, Graphics 

Processing Units (GPU) to facilitate their studies of spatial flows (Wang 2010; Tang et al. 

2015). 

In addition to solving the data volume issue with advanced GeoComputation techniques, 

scholars have also been making efforts to overcome an even more urgent intellectual 

challenge, i.e. to transitioning from deductive reasoning guided by existing theories to 

inductive reasoning, which allows exploring unlimited possibilities. In particular, it 

requires developing more data-driven approaches tailored for spatial interaction data (Yan 

and Thill 2009). Exploratory spatial data analysis (ESDA) is a promising area to make 

contribution. 
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1.4 ESDA on Flows: A Promising Area to Make Contribution 

ESDA, as defined by (Anselin 1994, 1998, 1998a), refers to a collection of techniques 

to describe and visualize spatial distributions; identify atypical locations or spatial outliers; 

discover patterns of spatial association, clusters, or hot spots; and suggest spatial regimes 

or other forms of spatial heterogeneity. ESDA is a subset of exploratory data analysis (EDA) 

(Tukey 1977), but with an explicit focus on distinguishing characteristics of geographical 

data (Anselin 1989). In contrast with confirmatory analysis such as regression modeling, 

ESDA is extremely useful in assessing the existence and location of nonrandom local 

patterns in spatial data, but at the same time it is limited by a lack of mechanism to “explain” 

the observed patterns (Anselin 2000). In geographical research these two types of analytical 

methods are commonly used in combination. ESDA can be used to explore the data and 

“suggest” potential associations between variables and elicit hypotheses, especially when 

the data is not fully understood or the target research questions remain unclear. The 

suggested patterns or hypotheses can then be formally tested by confirmatory analysis, for 

example multivariate spatial regression modeling, following a deductive modality (Anselin 

and Getis 1992; Yan and Thill 2009). 

With respect to SI data, most previous research is deductive as spatial structure and 

spatial interdependencies are very much handled in an ad hoc fashion by spatial interaction 

modeling (Roy and Thill 2004). However SIM has gradually been found unadaptable to 

the current “extremely data rich and increasingly computational powerful but theory poor 

and hypothesis-free environments” (Openshaw 1995). As a new research trend, a number 

of ESDA methods have been designed for SI data in recent years. And some of them have 

already been applied to understanding emerging types of flow events such as airline origin-
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destination flows (Yan and Thill 2009), taxi pick-up and drop-off flows (Guo et al. 2012; 

Zhu and Guo 2014; Liu et al. 2015), telephone call (Gao et al. 2013), and spatial 

interactions embedded in social media (Cao et al. 2015). In general, ESDA methods on SI 

data can be placed into one or more of the following categories: geovisualization, spatial 

data mining (SDM), and spatial statistics. 

1.4.1 Geovisualization 

Visualizing spatial flow data, also referred as flow mapping, has always been an 

important task or goal of geographers. In a flow map, flows are commonly represented by 

a number of straight or curved lines connecting origin and destination locations (Zhu and 

Guo 2014). Accompanied with well-designed color schemes, labels, or symbols, it can be 

used as a visual analytic method to represent the dynamics of movement between two pair-

wise interacting geographical regions (Cao et al. 2015).  

The first known map of spatial flows can be traced back to 1837 in which Lt. Harness 

depicted bidirectional traffic flows between major Irish urban centers (Marble et al. 1997). 

While the first experiment of flow mapping (migration flows) with the assistance of a 

computer is done by Tobler (1987). Since then, considerable efforts have been made to 

design new layout of flow maps, to increase the manageable data size, to enhance the 

drawing speed, to emphasize important thematic information, and to integrate user-friendly 

features such as interactive selection and brushing.    

Notwithstanding, scholars have soon found that flow mapping is much more complex 

than a pure cartographic technique. Problems emerge even when mapping a relatively small 

dataset from today’s perspective (Marble et al. 1997). Severe visual cluttering caused by 
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massive intersections and overlapping of flows easily turns the map unreadable. The reason 

is that unlike mapping point or polygon data which are discrete spatial objects, mapping 

flows is to visually represent the dynamic processes or relationships between two sets of 

geographical locations, which can easily reach a massive size. For example, a single type 

of flow e.g. migration between the fifty states of the United States has 2,500 different 

combinations of origin and destination state (including the case when both origin and 

destination belong to the same state). If migrants are divided into six groups by age, the 

maximum number of total flow increases to 15,000. The size keeps growing if more 

categories are added, such as ethnicity, marital status, reason of moving, etc. Moreover, the 

size of the flow OD matrix increases exponentially when the number of flows’ starting or 

end location grows. Using again the same migration flow example, if upgrading the 

geographical resolution to the county level or even the census track level, the total flows 

can possibly be more than 9 million or 5 billion, respectively. Considering the fact that an 

increasing amount of flow data are collected at the individual level, flow mapping becomes 

even more troublesome. Traditional cartographic techniques are still valid in flow mapping 

but it only works for very small datasets only. For example drawing an arrow line to 

represent each flow and using color, width, and shape of the symbols for flow type and 

volume. Beyond a nominal dimensionality such flow maps result in clutter problems and a 

substantial loss of information. A number of geovisualization approaches have been 

proposed to address this problem for flow mapping.  

As a pioneer scholar in this area, Tobler (1987) suggests that information aggregation 

and removal is an important part of identifying patterns through visualization. For example, 

Tobler (1987) observes that 75% of migration flow connections on the small side contain 
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less than 25% of the flow volume. Therefore, filtering out small amount of flows but only 

visualizing the majority is a common solution. However, the choice of which to keep and 

which to remove is usually arbitrary and can result in a loss of key information. Visualizing 

flows by aggregating those with common origin or destination is another common way. 

The aggregation of endpoint can be based on common large administrative units for 

example aggregating county level flows to the state level. Tobler (2004) generates a series 

of flow maps of migration from California between 1995 and 2000 using a computer. In 

his maps, straight lines with arrows are representing migration flows as the width of lines 

and arrows correspond to flow magnitude and flow directions. In his later analysis of 

migration patterns, he chose to show flows starting from one common origin or destination 

point, e.g. California. Such selective and aggregative visualization methods prove to be 

effective in many cases, especially when users can interactively choose flows from or to 

which specific endpoints to explore. When data have accurate numeric coordinates or lack 

of region information, endpoint aggregation can be processed with other techniques. 

Andrienko and Andrienko (2011) utilize a point clustering method to group flow origins 

and destinations before drawing the flow maps. It works extremely well for visualizing 

discrete flows as it takes advantage of high spatial resolution of the data. Guo (2009) 

proposes another approach to aggregate locations into regions based on the flow topology 

with a graph partitioning technique. This approach also manages to discover the natural 

regions from massive individual flows instead of using pre-defined political boundaries. 

While endpoint location aggregation is effective at reducing the clutter, it also suffers from 

the modifiable areal unit problem (MAUP) (Openshaw 1983) as selecting a “perfect” 

geographic scale or region to aggregate the endpoints is impossible. Aggregating to big 
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regions would result in the loss of short-distance flows whose origin and destination locate 

within the same region. While aggregating to small regions may not be able to remove 

cluttering effectively. Even when there is an appropriate scale for aggregation, using the 

same one everywhere may smooth out much of the interesting local spatial structure of the 

spatially heterogeneous flow data.  

Another type of flow mapping method is to bundle nearby edges together in order to 

minimize edge crossing in flow maps. In contrast with previous methods built on flow 

endpoint locations, edge bundling methods make use of geometric characteristics of flows 

(edges) directly. Phan et al. (2005) present a method using hierarchical clustering to create 

a flow tree that connects a source (the root) to a set of destinations (the leaves). Their 

algorithm attempts to minimize edge crossings to create multiple-source flow maps by 

preserving branching substructure across flow maps with different roots that share a 

common set of nodes. Qu et al. (2006) propose an edge-clustering framework by grouping 

links based on their intersections in the Delaunay triangulation of the endpoints. Cui et al. 

(2008) later on develop an improved edge-bundling framework with mesh generation 

method that can better capture the underlying graph patterns than using Delaunay 

triangulation. This line of method remains active as we see more recent contributions to 

the literature (Holten et al. 2009; Verbeek et al. 2011; Cao et al. 2015). These flow mapping 

methods are designed for visualizing datasets containing both hierarchical structures and 

adjacent relations. The flow maps resulting from edge bundling are usually no longer 

straight line graphs but in the road-map-style. The limitation of edge rerouting or bundling 

approaches is obvious. While it improves the overall visual clarity, it inevitably 

compromises the accuracy of both spatial and attribute information of the data. For 
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example, the endpoint location and length information of a flow is lost if it is bundled to a 

set of nearby flows.  

As a new trend, more flow-related geovisualization methods are backed by spatial data 

mining (SDM) techniques or spatial statistical analyses. For instance, one can perform 

hierarchical cluster analysis on flows first and then visualize only the flow clusters (Zhu 

and Guo 2014); alternatively, one can detect spatial autocorrelation in the flow dataset and 

then highlight the only parts with positive patterns on maps (Liu et al. 2015); generalize 

space-time kernel density of movement points and then utilize volumetric visualization to 

illustrate the density (Demšar and Virrantaus 2010). Especially in order to visualize a large 

volume of individual spatial flows, geovisualization is often combined with other ESDA 

approaches such as spatial data mining and spatial statistical analysis on spatial interaction 

data, which will be summarized in detail in the following sections.  

The purpose of visualization is not only to illustrate the geographic entities themselves, 

but also to discover underlying stories as a powerful exploratory tool. Therefore, visual 

analytic methods are frequently applied in studying massive flow data. Yan and Thill (2009) 

use self-organizing maps (SOM) as the data mining engine of how the characteristics of 

the air transport system interact with the spatial interaction (SI) system to create 

relationships and structures within the US domestic airline market. Guo (2009, 2012) also 

uses SOM in studying migration and vehicle movement. In addition, parallel coordinate 

plots (PCP) and density maps are applied to explore flow data from more perspectives. 

Demšar and Virrantaus (2010) introduce a novel concept of 3D space–time density of 

trajectories to solve the problem of clutter in the space–time cube. The three dimensions 
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and temporal information make this work noticeable but it requires trajectory data rather 

than simple OD flow data. The concept of cartogram can also find its application in spatial 

interaction studies. Thill (2011) introduces the concept of relative space to illustrate 

migration patterns. In those distorted maps, destination states are allocated further or closer 

to migration origins, in coordination with different amounts of migrants.  

Last but not least, developing handy tools for visualization and data mining on flows is 

an enduring important task. Beginning with Tobler’s Flow Mapper (Tobler 1987; Tobler 

2007), many scholars have developed various software applications for this purpose. Well-

known cases include Glennon’s Flow Data Model Tools in a series of ArcGIS 9 Visual 

Basic for Applications (VBA) macros (Glennon 2005), Flow Mapping with Graph 

Participating and Regionalization (Guo et al. 2009), and jFlowMap (Boyandin et al. 2010). 

Commercial software such as Gephi and VisIt also have flow mapping capability. 

Nowadays it is the trend that more applications are web-based because it has advantages 

such as light, portable, and highly-interactive. Some popular open source projects, e.g. R 

and D3.js, advance very fast in this direction. Popular contributions include FlowingData 

based on R (http://flowingdata.com/) by Dr. Nathan Yau, and several flow mapping examples 

of D3.js (http://d3js.org/). As open source projects are getting popular in both academics 

and industry, more web-based applications of visualizing and exploring flow data will be 

available in the coming years. 

1.4.2 Spatial Data Mining 

Spatial data mining (SDM) is the application of data mining techniques to spatial data, 

in order to discover previously unknown, but interesting and potentially useful patterns 

from high volume and nonhomogeneous spatial datasets. Due to the nature of the 
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geographic space and the complexity of spatial data, spatial data mining holds uniqueness 

from several aspects (Dao 2013). First, spatial objects are embedded in a continuous 

geographic space, which serves as a measurement framework for all spatial attributes. 

Second, the two basic effects of spatial data, namely spatial dependence and spatial 

heterogeneity, violate the fundamental assumption of many data analysis methods that 

every observation is independent and each process is consistent. Therefore, simply 

migrating data mining techniques to the spatial domain while ignoring these two effects 

will end up with biased results with limited external validity. Third, data with spatial 

dimensions cannot be easily reduced to points without information loss because spatial 

characteristics such as size, shape, and topological relationships, can have significant 

influence on the study process. In order to handle these unique features of spatial data listed 

above, various types of spatial data mining techniques have been developed, including 

spatial classification and prediction, spatial clustering, spatial outlier detection, and spatial 

association rule mining.  

In terms of spatial interaction data, spatial outlier detection, defined as the technique to 

extract a spatially referenced object whose spatial or non-spatial attributes appear to be 

inconsistent with other objects within its spatial neighborhood (Shekhar et al. 2003a), has 

been intensively applied. Yue et al. (2011) extract the pick-up and drop-off OD flows 

among one-week GPS trajectories of around 12,000 taxis in Wuhan, China, and single out 

the trips with destination of shopping mall. With little or no land-use data, such as 

population, employment, or other survey data, they successfully demonstrate the feasibility 

of identifying shopping center attractiveness using taxi trajectories and help understand 

consumer shopping choices, consumer travel (by taxi) behavior, as well as urban traffic 



16 
 

management. A similar data set has been used in another study in which the influences of 

critical transportation links, i.e. major road bridges, are illustrated (Fang et al. 2012). Three 

exploratory analysis functions are developed to examine and visualize traffic flows in an 

integrated spatial and temporal environment, and alternative travel paths for those bridges 

are identified. Besides consumers’ behavior patterns, taxi OD flows are also used to 

uncover taxi drivers’ behavior patterns. Liang Liu and his colleagues (2010) have 

conducted such research, utilizing a very large dataset including one-year taxi trajectories 

(48 million trips) in Shenzhen, China. They classify taxi drivers by their income, and relate 

this to their driving habits mined from millions of trips: such as operation time, average 

length of single trip, activity space coverage, capability of avoiding congestion, etc. 

Interestingly they found the “secrets” of top-earning cabdrivers: long operation time; good 

sense of business (short time intervals between trips); always avoid congestion; choose 

fastest path rather than shortest or longest ones. 

Another SDM technique that has been commonly used in studying spatial flows is 

spatial cluster analysis. The classical K-means algorithms have been proved very effective 

with respect to multi-location spatial data (Ossama et al. 2011; Genolini and Falissard 

2010). Density-based clustering methods such as DBSCAN (Ester et al. 1996), OPTICS 

(Ankerst et al. 1999), and their variants have also been adjusted to flow data (Nanni and 

Pedreschi 2006; Lee et al. 2007; Zhu and Guo 2014) as density-based methods are the most 

suitable for discovering clusters of arbitrary shapes and filtering out noise. The key of the 

method is to define a set of distance functions tailored for line-segment that can measure 

both positional and directional differences. Hierarchical clustering can also be used for 

flows. For instance, Zhu and Guo (2014) develop an approach that can generalize flows to 
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different hierarchical levels and has the potential to support multi-resolution flow mapping. 

In general, spatial flow methods are designed to group observations into “clusters” based 

on similarity. Unlike directly aggregating flows to predefined regions such as 

administrative units, cluster analysis methods are able to explore the data and find similar 

groups of flows that are usually previously unknown. Therefore, the impact of uneven 

density levels or ad hoc zoning definition of flow endpoints can be handled well. It is worth 

mentioning that cluster analysis methods are frequently combined with visualization 

techniques when analyzing spatial flows, as the extracted flow clusters are essential 

information that deserves visual emphasis on the map. 

1.4.3 Spatial Statistics 

While spatial data mining techniques are capable of discovering knowledge from large 

databases, an important question is whether it is possible to derive some understanding, 

explore relationships and develop hypotheses associated with observed movements and 

spatial interactions (Murray et al. 2011). In order to further examine these questions in a 

confirmatory way, spatial statistics are favored owing to their ability to establish inferential 

properties. The preponderance of the literature on spatial point pattern analysis treats each 

point as an event independent of all the others. Spatial flow data, however, encompass at 

least two points (polygons), one corresponding to the origin location (region) or start of the 

flow and one for the destination location (region) of the flow. Flow data, therefore, differ 

fundamentally from point data or polygon data and methods designed to handle the points 

and polygons cannot be directly applied to flow data. Several endeavors have been 

undertaken in previous research to fill this gap. Berglund and Karlström (1999) applied the 

Gi statistics introduced by Getis and Ord (1992) and Ord and Getis (1995) to identify local 
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spatial association in flow data. Although several different spatial weight matrices were 

proposed in this paper to address spatial non-stationarity, only the simplest binary spatial 

weight matrix based on identical origins or destinations was implemented, which certainly 

limits its usage. Lu and Thill (2003) proposed an ad hoc and partially qualitative approach 

in which they apply point cluster detection methods to analyze origin and destination points 

respectively, and combine the two sets of results via a relationship table to conclude on the 

patterns exhibited by the flows. Related issues such as sensitivity to scale and 

neighborhood definition were discussed in their later work (Lu and Thill 2008). While 

decomposing one-dimensional flows into zero-dimensional points can considerably 

simplify the problem, this approach would inevitably overlook the simultaneity of some 

critical information, such as flow direction and flow length. Murray et al. (2011) departed 

from this approach by combining exploratory spatial data analysis and confirmatory 

circular statistics to analyze the similarities of flow direction and length. However, they 

sacrifice the actual locational information in the process so that little knowledge on spatial 

relationships between movements can be extracted. More recently, Liu et al. (2015) 

extended both global and local Moran’s I statistics to a flow context, considering 

movement distances and directions at once. Nonetheless, their approach is still based on 

the spatial proximity relationship of either set of end points rather than entire vectors. 

Therefore, it remains within the scope of measuring spatial autocorrelation of vectors/flows 

in parts rather than as a whole. Novel statistical method that not only fully considers flow 

characteristics, i.e. end points, length, and direction, but also builds on proper measurement 

of spatial proximity relationship between entire flows, is anticipated.  
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The spatial statistical approaches listed above still belong to the broad ESDA family as 

they aim at exploring the data and detect patterns such as spatial clustering, spatial 

autocorrelation, and spatial heterogeneity. However, it is still one step away from taking 

these findings to confirmatory studies in order to reach solid explanatory conclusions. 

Taking spatial dependence as an example, many researchers have found that this type of 

spatial effects exists among OD flow data and specifically refer to it as network 

autocorrelation (Black 1992; Griffith 2007; LeSage 2008; Chun 2008). Implementing 

traditional spatial interaction models such as the gravity model without taking account of 

this effect tends to result in incorrect parameter estimation and unsound conclusions as it 

violates one of the key assumptions of those models, i.e. independence of observations. 

LeSage (2008) overcomes this problem by proposing spatial weight structures that model 

dependence among OD flows that are consistent with standard spatial autoregressive 

models. The spatial weight structures consist of three spatial connectivity matrices 

capturing origin, destination, and origin-to-destination dependences. Griffith and Chun 

come up with another solution by using eigenfunction-based filters for accommodating 

spatial autocorrelation effects within a spatial interaction model (Griffith 2007; Chun 2008; 

Chun and Griffith 2011). They have proved the effectiveness of using eigenvector filtering 

to improve spatial interaction modeling in various application cases. Except for common 

migration flows, scenarios such as journey-to-work commuting flows (Griffith 2009), 

interregional commodity flows (Chun et al. 2012), and space-time crime incidents flows 

(Chun 2014) have all been successfully tested. Accounting for spatial autocorrelation in 

traditional spatial interaction modeling provides an example of incorporation of 

exploratory spatial statistical considerations into confirmatory hypothesis-testing research. 
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More efforts should be made along this line to discover the usefulness of interesting 

findings of emerging ESDA methods.  

1.5 Statement of Research 

 

Figure 1: Roadmap of dissertation 

 

Figure 1 is the roadmap of this dissertation showing the motivations, the means, the 

functionalities, and the contributions. As summarized above, ESDA is tailored for spatial 

flows. In other words, exploratory spatial flow data analysis (ESFDA) is the solution to 

grasp the opportunities and overcome the challenges brought by the revolution of spatial 

flow data. In the meanwhile, as an emerging and fast-developing methodological area, 

there is plenty of room for new contributions to ESFDA. In this doctoral dissertation 

research, I propose to develop three unique but closely related ESDA methods tailored for 

analyzing spatial flow data. These methods are designed for detecting flow’s spatial 

patterns, extracting flow clusters and revealing their hierarchical structure, identifying 

regions of anomalous spatial interactions and create a spatial flow weights matrix. Their 

results can further be used to form new hypotheses based on explored interesting patterns, 
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to gain knowledge of spatial interaction process, and to improve related confirmatory 

studies. 

The first method, named Flow K-function, is a spatial statistical approach to detect 

spatial clustering patterns of flow data. In other words, it upgrades the classical hot spot 

detection method namely Ripley’s K-function, to the stage of “hot flow” detection. A set 

of spatial proximity measures is designed for flow data by integrating endpoint location, 

length, and direction. The measures are capable of assessing both intra-relationships and 

inter-relationships of flows and serve as the basis of this flow clustering detection approach. 

Flow K-function is designed to fill the gap that there is no such spatial statistical approach 

dedicated to detecting local spatial distribution patterns of flow data, in contrast with 

abundant methods available for point and polygon data. Experiment will be done on Motor 

vehicle theft and recovery data in Charlotte, NC. The detected “hot flows” link the common 

theft places and recovery places, which can certainly help law enforcement fight against 

such crime. 

The second one, called Flow HDBSCAN, is a hierarchical and density-based spatial 

flow cluster analysis method. It is an extension of hierarchical clustering and density-based 

clustering methods in data mining area to the context of spatial flows. The method not only 

can extract spatial flow clusters, but reveal their hierarchical data structure if there is any. 

Through experimentation with both a synthetic dataset and an eBay online trade dataset, 

the method proves its effectiveness of extracting flow clusters from various situations 

including varying flow densities and flow lengths. It is also robust to avoid problems like 

MAUP, false positive errors, and uneven density levels or ad hoc zoning definition of flow 
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endpoints. Moreover, its sole-parameter design saves the dilemma of parameterization and 

makes it easier to apply.  

The last approach is a data-driven and bottom-up approach dubbed FlowAMOEBA. It 

upgrades A Multidirectional Optimum Ecotope-Based Algorithm (AMOEBA) from areal 

data to spatial flow data through a proper spatial flow neighborhood definition. It has two 

major functionalities. The first one is to identify origin and destination regions that capture 

anomalous spatial interactions happening in between. It breaks the tradition that spatial 

interaction data are always collected and modelled between two comparable predefined 

geographic units, as it delineates the boundaries of anomalous interacting regions, 

regardless of the size, shape, scale, or administrative level. The second one is to create a 

spatial flow weights matrix based on the identified regions. The matrix can be used to 

account for network autocorrelation, thus improving confirmatory studies using spatial 

interaction modeling. Experiment has been carried out with both synthetic dataset, and a 

county-to-county migration dataset.  

These methods can be used jointly to the same application as well. For given flow data, 

the “hot flow” detection method Flow K-function can be applied to detect both global and 

local spatial patterns of the data to examine if there exist anything interesting, i.e. patterns 

that are statistically significant. Next the cluster analysis method Flow HDBSCAN can be 

used to extract where the flow clusters locate in what kind of form, and at the same time to 

reveal the data structure e.g. hierarchical or flat. In order to dig out more detail on the 

clustered flows, the third method can help accurately quantify and visualize the 

anomalously interacting places with clear boundaries. Therefore, using these methods 
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jointly for the same application can take advantage of each method to better solve the 

problem.    



 

 

 

CHAPTER 2: STUDY I. FLOW K-FUNCTION: A “HOT FLOW” DETECTION 

SPATIAL STATISTICAL METHOD 

  

 

2.1 Overview 

In the first study, I aim to develop a new spatial statistical approach to detect spatial 

clustering patterns of flow data with the aim of understanding their spatial relationships, 

while preserving the integrity of the flow data. The general principle is to extend the well-

known point data analysis method, namely the Ripley’s K-function, to the spatial flow 

context. In other words, to upgrade the classical hot spot detection method to the stage of 

“hot flow” detection. To this end, a set of new spatial proximity measures tailored for flow 

data are designed, which integrate a flow’s complete spatial components including 

endpoint location, length, and direction. The measures are capable of extracting both intra-

relationships and inter-relationships of flows and serve as the basis of this flow clustering 

detection approach. Specific aspects of the method are discussed to provide evidence of its 

robustness and expandability, such as the multi-scale issue and relative importance control. 

The experimental dataset consists of a set of vehicle theft and recovery location pairs in 

Charlotte, NC.   

2.2 Motivations 

The major contribution of this study to the literature is the innovative “hot flow” 

detection method itself. The method fills the gap that there is no such spatial statistical 

approach dedicated to detecting local spatial distribution patterns of flow data, in contrast 
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with abundant methods that have been continuously developed for point and polygon data. 

The method also meets the challenges brought by the emerging breadth of massive flow 

data, as it utilizes the accurate spatial characteristics of individual flows and it also leaves 

the room to integrate the semantic information. Not only can global spatial patterns of the 

entire study area be detected, but also the local pattern between different OD location pairs 

across scales can be revealed by the method as well. Therefore, the results can be easily 

visualized on maps. 

In addition, a set of spatial proximity measures conceived specifically for flow data is 

critical to the soundness of the approach. Specifically, the measures are created not only to 

be measures of spatial proximity, but also as an effective solution for the inclusion of the 

multi-location interaction objects within the scope of well-developed point pattern spatial 

statistics, namely the local K-function. Unlike approaches treating spatial flows as two 

separate sets of endpoints, these measures calculate a flow distance that regards flows as 

inseparable objects. Moreover, controlling for the impact of flow length can be useful and 

sometimes necessary to avoid the false positive detection of flow clusters so that the 

measures also include flow length. Last but not least, a pair of coefficients is added to offer 

some flexibility in measuring real flow data. By adjusting the parameters of endpoint 

coordinate pairs, the study emphasis can be purposely placed on the spatial associations 

between either flow origins or flow destinations. The usage of the spatial proximity 

measures is not limited to this particular approach. For example, other methods of 

exploratory spatial data analysis such as the local Moran’s I and G statistics for flow data 

analysis can use these measures to calculate spatial weight matrices.   
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Furthermore, this study contributes to the literature as a case where several ESDA 

approaches are combined to analyze flow data. Except for the proposed spatial statistics, 

geovisualization and geocomputation techniques can also be applied to improve the whole 

analysis process. For instance, the detected hot flows can be illustrated on map showing 

where exactly cars are frequently stolen and where are they transported to. Police are able 

to select a common stolen location and view the corresponding common recovery locations, 

or vice versa. On the other hand, the computing efficiency can also be boosted via high 

performance computing (HPC) techniques. For example, parallel computing technique 

OpenMP (Open Multi-Processing) can be easily applied to accelerate the Monte-Carlo 

simulation of statistical significance test with a prevalent multi-core computing 

environment. 

Last but not least, application usefulness is an important aspect that this new approach 

can contribute to. “Hot flow” detection can help identify heavily interactive location pairs, 

and thus help link the commonly stolen places and recovery places. Police can use the 

preliminary results to further investigate who are the criminals behind the hot flows, and 

their behavior patterns regarding target, place, and time. Therefore, more effective actions 

can be taken against gang crime activities. Citizens, on the other hand, can be informed by 

the results where vehicle-theft crimes are more likely to happen so that they can avoid 

parking in these high-risk places.  

2.2 Related Methods 

In spatial analysis, cluster detection is an approach to second-order analysis that is 

designed to examine spatial dependence, or spatial relationships between events (Getis and 

Franklin 1987). The first step is to choose an appropriate measure of spatial proximity 
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between events, for which distance is a common choice. Ripley’s K-function, the 

Geographic Analysis Machine, the Nearest Neighbor Index and many other statistical 

approaches are all distance-based methods. Aside from the default Euclidean distance, 

other kinds of distance are also applied in some cases, for instance the network distance 

(Yamada and Thill 2007). With spatial flow data, there is no natural mean to measure 

spatial proximity due to the multi-location nature of flow records and this is arguably the 

biggest difficulty in analyzing spatial patterns of flow data. In other words, with 

appropriately measured spatial proximity, cluster detection on flows boils down to the same 

algorithmic processes as for points or polygons. Although various distance measures have 

been proposed in data mining studies of trajectories, for example using the Hausdorff 

distance to extract clustered line segments of trajectories (Lee et al. 2007; Chen et al. 2011), 

I argue that these distances are not suitable to measure proximity between flows which 

have explicit and meaningful location correspondence. Accordingly, we devise a new 

proximity measure called the “Flow Distance” and a variant called the “Flow 

Dissimilarity”. Then I extend a well-developed spatial point statistic, namely Ripley’s K-

function, to the spatial flow context based on the newly defined proximity measures. 

Inferential properties are established through significance tests by Monte Carlo simulation 

against the null hypothesis of spatial randomness. Several aspects such as the multi-scalar 

relevance, relative importance control, and flow value, are discussed in detail here to 

demonstrate that this method is versatile and practical.  
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2.3 Method in Detail 

2.3.1 Flow Model 

The first step is to define the study object, namely the spatial flow process. Figure 2 shows 

two instances of a spatial process F that starts at location O and ends at location D. Basic 

characteristics of F include length: 𝑙 = |𝑂𝐷⃗⃗⃗⃗⃗⃗ |; direction: same as the direction of vector 𝑂𝐷⃗⃗⃗⃗⃗⃗ ; 

type: T (e.g. commuting flow); and value W (e.g. the number of commuters). This basic 

model is used to represent spatial flow processes in the rest of the chapter.  

 

Figure 2: Basic flow model 

 

2.3.2 Flow Proximity 

As mentioned earlier, defining an appropriate proximity measure is key to decoding 

spatial flow patterns. Here I introduce such measures based on which both intra-

relationships and inter-relationships of flows can be extracted.  

Let us take the simple case of measuring the spatial proximity between flow Fi (with 

origin point Oi (xi ,yi) and destination point Di (ui ,vi)) and flow Fj (from point Oj (xj ,yj) to 

point Dj (uj ,vj)) in a two-dimensional space (Figure 2). Measuring distance between these 

two spatial flows following the approaches advocated so far in the literature would 

generally be inadequate because distance between either origin points or destination points 

cannot fully represent the closeness between flows in their entirety. For instance, when 
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both origins are a short (or long) distance to each other and the same can be said of 

destinations, it is expected that Fi and Fj are also close (or distant, respectively). However, 

things become less trivial when the two endpoint pairs show dissimilar spatial closeness, 

i.e. origins are close while destinations are distant, or vice versa. Using categorical 

descriptions is certainly one way to associate distances among origins and destinations. For 

instance, both distances being short (or both endpoint pairs belong to the same region) 

would correspond to “high” spatial association between flows while only one pair of end 

points being close (or belonging to the same region) would correspond to a “medium” 

degree of association (Berglund and Karlström 1999; Lu and Thill 2003; Zhu and Guo 

2014). While such approaches make sense to some extent, they are very sensitive to the ad 

hoc description standards and exhibit limited external validity.   

Unlike approaches treating spatial flows as two separate sets of endpoints, I propose to 

calculate a flow distance that regards flows as inseparable objects. A flow process Fi with 

origin point Oi (xi ,yi) and destination point Di (ui ,vi) can be seen as a vector point with four 

coordinates Fi (xi ,yi ,ui ,vi) in a four-dimensional space. Derived from the general function 

of Euclidean distance I define the Flow Distance between flows Fi (xi ,yi ,ui ,vi) and Fi 

(xj ,yj ,uj ,vj) as Equation (1):  

𝐹𝐷𝑖𝑗 = √𝛼[(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2] + 𝛽[(𝑢𝑖 − 𝑢𝑗)2 + (𝑣𝑖 − 𝑣𝑗)2]. 

𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑎𝑠 ∶  𝐹𝐷𝑖𝑗 = √𝛼𝑑𝑂
2 + 𝛽𝑑𝐷

2.                                        (1) 

where 𝐹𝐷𝑖𝑗 denotes the distance between these two flows; 𝑑𝑂 and 𝑑𝐷 are the Euclidean 

distances between the two origins and two destinations, respectively; the coefficients α and 
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β serve to control the relative importance of either sets of endpoints (α > 0; β > 0; α + β = 

2; by default α = β = 1). Through this definition, both the closeness of origins and of 

destinations make a contribution to the calculation of the Flow Distance. For example in 

Figure 3a, 𝐹𝐷12 =  √22 + 22 =  √8 . The value of Flow Distance becomes larger (or 

smaller) if both endpoints are moved further (or closer) to their counterpart at the same 

time, e.g. 𝐹𝐷12 increases to √18 in Figure 3b while it decreases to √2 in Figure 3c. This 

corresponds to the general sense that proximities of endpoints are positively correlated to 

the flow closeness.  

 

Figure 3: Flow distance examples 

 

More importantly, the distance between origins and the distance between destinations 

are integrated by the same square root transformation so their variations are captured 

continuously and consistently, which leads to greater accuracy than qualitative descriptors. 
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For instance, compared with Figure 3a, Flow 𝐹2 in Figure 3d has its origin moved towards 

𝐹1 ’s and has its destination moved away from 𝐹1 ’s. According to previous methods, 

whether these two flows in Figure 3d are as close as they are in Figure 3a completely 

depend on the definition of endpoint’s contiguity relationship. In other words, if two points 

are defined as contiguous when their distance is less than or equal to 2, 𝐹1 and 𝐹2 would 

have two contiguous endpoint pairs in Figure 3a but only one in Figure 3d. As a result, the 

proximities between 𝐹1 and 𝐹2 are radically different. In contrast, by our definition of Flow 

Distance, measuring proximity between two flows is not subject to the definition of 

endpoint’s own region or the description of the combined endpoint’s closeness. Instead, I 

capture the variation of all locations seamlessly and let the flow data decide its own spatial 

neighbors for itself. Accordingly, the distance between 𝐹1 and 𝐹2 can be calculated and 

compared directly as 𝐹𝐷12 equals√8 in both Figure 3a and Figure 3d scenarios.  

Nevertheless, only using the location information of endpoints may sometimes be 

inadequate because a flow does not only represent the interaction or movement between 

two locations, but also indicates how far and in what direction the interaction or movement 

happens. As shown in Figure 3e, two flows have exactly the same endpoint distances as 

Figure 3a, therefore the Flow Distances are the same according to Equation (1). It would 

be controversial to say that the two flows in Figure 3e are as close as the ones in Figure 3a 

given that they are separated much more, relative to their lengths. Controlling for the 

impact of flow length may be necessary to avoid false positive detection of flow clusters. 

To this end, I propose an extended version of Flow Distance that involves a rescaling, as 

provided by Equation (2). By dividing by the geometric mean of two flow lengths, a flow 

pair with longer average length would be measured closer, ceteris paribus. Therefore, the 
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distance between the short flows 𝐹1 and 𝐹2 in Figure 3e becomes four times longer as the 

one in Figure 3a. The rationality behind this adjustment is that under many circumstances 

it is more difficult or rarer to witness spatial interaction or movement happen between two 

distant locations than close locations. For example, wild animals are more likely to travel 

to a nearby river than a distant one to seek water. Incorporating flow length into the 

measure is one way to adjust the criterion of clustering detection for flows with unequal 

lengths. Given the adjustment would impair some of the metric properties of distance, I 

name the adjusted Flow Distance as Flow Dissimilarity, short for FDS in the rest of this 

paper. Also, I choose to use the geometric mean over the arithmetic mean of flow lengths 

because the former is more capable to attenuate the impact of extremely unequal length 

values. In addition, it avoids the limit case of zero-length flows.  

𝐹𝐷𝑆𝑖𝑗 = √
𝛼[(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2] + 𝛽[(𝑢𝑖 − 𝑢𝑗)2 + (𝑣𝑖 − 𝑣𝑗)2]

(𝐿𝑖 𝐿𝑗 )
𝛾  .               

𝑜𝑟 ∶  𝐹𝐷𝑆𝑖𝑗 = √
𝛼𝑑𝑂

2 + 𝛽𝑑𝐷
2

(𝐿𝑖 𝐿𝑗 )
𝛾 .                                                             (2) 

Similar to Equation (1), 𝑑𝑂𝑖𝑗 and 𝑑𝐷𝑖𝑗  refer to the Euclidean distance between origins 

𝑂𝑖 and 𝑂𝑗, and between destinations 𝐷𝑖 and 𝐷𝑗, respectively. 𝐿𝑖 and 𝐿𝑗 are flow lengths. 

The rationale is that this metric integrates all the spatial elements of a flow, i.e. a pair of 

endpoints, length, and direction (implicitly). The numerator leverages the accuracy of 

endpoint coordinates and captures the variation of distances continuously and consistently. 

The denominator assigns advantage on longer flows given that under most circumstances 

spatial interaction between distant locations is scarcer due to the “friction of distance” 
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between origin and destination. The exponent 𝛾 offers flexibility to account for the effect 

of flow length. By default I assign 𝛾 = 1 by using the geometric mean of two flow lengths 

as the denominator. In addition, Equation (1) can be seen as a special case that 𝛾 = 0 when 

considering no effect of flow length. 

Although considering flow length in spatial pattern detection can be very useful and 

sometimes necessary, I am not arguing that this is a better approach in all situations. Instead, 

I believe that they both make sense under certain circumstances. Evidence can be found in 

literature that flow length was not discussed in some research (Lu and Thill 2003 and 2008; 

Berglund and Karlström 1999; Zhu and Guo 2014), while it was taken into consideration 

in some others (Murray et al. 2011; Liu et al. 2014). In this research experiments have been 

conducted with both Flow Distance (Equation 1) and Flow Dissimilarity (Equation 2) for 

comparison, and details are provided in the case study section below.  

Besides endpoint locations and flow length, the only remaining spatial element of a 

flow is its directionality. Although I do not directly measure directionality in Equation (1) 

and (2), its impact is implicitly accounted for. As illustrated in Figure 3f, to maintain 𝐹2 at 

the same distance from 𝐹1, according to our Flow Dissimilarity equation it is sufficient to 

keep its origin and destination at a constant distance from 𝐹1’s two endpoints, i.e. to keep 

its endpoints situated on circles centered on 𝐹1’s two endpoints (the dashed rings), e.g. 𝐹2
′. 

Given this geometric constraint, there are in fact few degrees of freedom in directionality 

for flows that exhibit a tendency towards clustering. Therefore, I argue that it is not 

necessary to discuss flow direction alone since it is heavily dependent on the endpoint 

locations and flow length. Our test results have also demonstrated this argument by 

identifying clusters of similar-direction flows.  
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Finally, the coefficients (α; β) in the distance and dissimilarity functions are designed 

to offer some flexibilities in measuring real flow data. The basic functions by default (α = 

β = 1) assign equal importance to the origin location and destination location of each flow. 

However, the research objectives may lead us to pay closer attention to one set of endpoints 

over the other. For instance, in a study of settlement of foreign immigrants in New York 

City in relation to national origin, socio-spatial patterns and processes would be better 

informed if more weight is put on where immigrants choose to reside rather than where 

they come from. As another example, the manager of a shopping center would be more 

interested in where customers come from so that more targeted and effective advertising 

strategies can be designed. The inconsistent spatial scale of flow origins and destinations 

may be another justification to rebalance the relative importance of origins and destinations 

in the Flow Distance and Dissimilarity measures. For example, different land uses are 

known to be spatially distributed differently across cities; in particular employment sites 

tend to be more clustered geographically than residential land uses. Therefore, to avoid a 

statistical bias, a spatial analysis of commuting flows should control for the spatial 

distribution of potential flow origins and destinations. With appropriate calibration, the 

same distance (e.g. 500 meters) would have the same impact on describing the proximity 

between two origin locations or between two destination locations.  

By adjusting the values of α and β, the Flow Distance or Dissimilarity can receive 

different contributions from origins and destinations. For example, if assigning α = 1.5 and 

β = 0.5, the Flow Distance or Dissimilarity would be more sensitive to the change of origin 

locations and the corresponding spatial pattern would put more weight on where flows start. 

In addition, I restrict that α + β = 2 to ensure the results with different coefficients are 
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comparable. They both must also have positive value to match the reality of flow datasets 

rather than points.  

2.3.3 Flow K-function 

Using our Flow Distance (or Flow Dissimilarity) as the spatial proximity measure, it 

becomes possible to apply well-developed distance-based methods to detect spatial 

clustering in flow data. In this study, I choose to adjust the original and local version of 

Ripley’s K-function. As a classical clustering detection method, the K-function has been 

continuously implemented and enhanced since it was redefined by Ripley in 1976 (Ripley 

1976; Okabe et al. 2007). The fundamental idea of the K-function is to count the number 

of events within a certain distance threshold of randomly selected event locations. This 

number is then used to calculate the K-function value after dividing by the event density; 

the analysis is repeated for other distances within a set interval. To obtain statistical 

conclusions, the K-function value needs to be compared with the expected value given by 

the null hypothesis, for example Complete Spatial Randomness (CSR). If the observed 

value is higher than expected, the study events exhibit a tendency toward clustering; or 

dispersed, if it is lower. Monte Carlo simulation is a frequently applied technique to assess 

statistical significance (Openshaw et al. 1987). One of the meaningful extensions of K-

functions was introduced by Getis and Franklin (1987) based on second-order 

neighborhood analysis of mapped point patterns, which has been known as local K-

function analysis.  

Here I adjust the original K-function as Equation (3) to calculate the global flow 

clustering pattern of the study area, and adjust the local K-function as Equation (4) to detect 

the local flow clustering pattern or “hot flows”. Instead of counting point events, flow 
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events are counted within a certain Flow Distance (or Flow Dissimilarity) r of flow Fi to 

represent the function value:  

𝐾(𝑟) =
𝐴

𝑛
 𝐸(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑓𝑙𝑜𝑤 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟 𝑜𝑓 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑓𝑙𝑜𝑤). (3) 

𝐿𝑜𝑐𝐾𝑖(𝑟) =  𝐸(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑓𝑙𝑜𝑤 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑖). (4) 

where 𝐾(𝑟) is the original or global K-function value at scale 𝑟. A is the area of study 

region and n is the total number of flow events. 𝐿𝑜𝑐𝐾𝑖(𝑟) is the local K-function value of 

flow𝐹𝑖 at scale 𝑟. The scale 𝑟, also known as the detection window radius or threshold 

distance, has always been a crucial factor in spatial statistics, especially the K-function, 

which is even known as “multi-distance cluster analysis” (Boots and Getis 1998). In this 

approach I implement the local K-function at multiple scales as well. By increasing the 

magnitude of scale 𝑟 within a certain range deemed suitable to the process under study, e.g. 

from 0.1 mile to 1 mile when using Flow Distance or from 0.1 to 1.0 when using Flow 

Dissimilarity, it is convenient to detect multi-scale clustering patterns at once.  

As with other spatial statistical methods, statistical inference is an important part of 

reaching any conclusion. Given the nature of flow data, normal approximation is not an 

appropriate null hypothesis (Lu and Thill 2003 and 2008; Liu et al. 2014). Random 

permutations with Monte-Carlo simulation can better serve this purpose. In a two-

dimensional space, there is normally more than one way to simulate a set of flows. On the 

one hand, it can be proceeded by setting the location of two endpoints for each simulated 

flow. Alternatively, I could use observed flows as objects and move or rotate them in the 

study area according to some randomization procedure. Whatever the technique used, the 

theory or basic assumptions behind the simulation must be fully spelled out.  
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The simplest way is to simulate two sets of points randomly and independently based 

on a Poisson distribution, and then pair and connect them as flows. However, the customary 

null hypothesis for point data, i.e. Complete Spatial Randomness, may not be the best 

option for flows. A more sensible way is conditional spatial randomness, which has been 

used widely for computing the pseudo P-value in spatial statistics (Anselin 1995). In terms 

of flow data, the “condition” should be considered when the endpoints are restricted to the 

distribution of an at-risk population. For instance, to simulate commuting flows according 

to residence distribution and workplace distribution (Lu and Thill 2003); to simulate car 

accident points on the road network and adjust by annual average daily traffic (Yamada 

and Thill 2010). In addition to endpoint locations, the distribution of flow length and flow 

direction can also be conditional. Liu et al. (2014) simulate a set of flows by moving one 

flow to another randomly selected flow’s endpoint location so that only flows’ locations 

are changed while the lengths and directions are kept the same. They propose another way 

by randomly pairing two points, one from observed origins and the other from observed 

destinations, to form simulated flows. This approach keeps endpoint locations the same but 

reshuffles the lengths and directions as opposed to the first approach. In sum, there is no 

unique way to simulate spatial flows for significance testing. It is subject to the data to 

make an appropriate assumption (e.g. restricted to at risk population). In addition, it is up 

to the analyst to choose which aspect to examine (e.g. to examine the contribution of flow 

location to the general flow clustering pattern by only randomizing locations, while fixing 

direction and length). Fundamentally, cluster detection is an exploratory method of analysis. 

The clusters identified can reflect the respective underlying geographical processes and can 
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also help us contemplate unknown ruling attributes contributing to the spatial pattern. The 

detailed algorithm is presented step by step as follows. 

2.3.4 Algorithm Steps  

(1) Calculate Flow Proximity 

(a) Prepare flow events as vectors with the coordinates of origin and destination 

points. For example, flow 𝐹𝑖 with origin 𝑂𝑖 (𝑥𝑖, 𝑦𝑖) and destination 𝐷𝑖 (𝑢𝑖, 𝑣𝑖) is 

formatted as 𝐹𝑖(𝑥𝑖, 𝑦𝑖 , 𝑢𝑖, 𝑣𝑖). 

(b) Apply Equation (1) or (2) to calculate the Flow Distance or Flow Dissimilarity 

between every two flows. Thus an N by N distance matrix is computed for 

subsequent use. 

(2) Calculate clustering detection statistics. 

Calculate global and local K-function using Equation (3) and (4) for all the flow 

events using a series of scales 𝑟𝑖 (t = 1, 2, …, 10; 𝑟𝑖 = 𝑟1× i). The unit of 𝑟1is 

chosen on the proximity equation used in previous step. 

(3) Evaluate statistical significance. 

(a) Randomly simulate a set of N flows in the study area.  

(b) Calculate global and local K-function value for each simulated flow same as step 

(1) and (2). 

(c) Repeat previous two steps n times (e.g. 1,000 times for 0.1% significance level). 

(d) Sort results of the n-time simulations for each flow at each scale. Set the smallest 

and largest ones as the lower and upper envelopes. 
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(e) Compare the actual result with the corresponding significance envelopes. If the 

observed value surpasses the upper envelop, or is below the lower envelope, the 

observed pattern is said to be clustered or dispersed, respectively.  

(4) Visualize and discuss the results. 

2.4 Experiment 

2.4.1 Data Description 

In this study, I test the new flow K-Function method and its algorithmic implementation 

using a dataset of vehicle theft and recovery location pairs in Charlotte, North Carolina. 

Given the determinate relationship and chronological order of the data, the locations where 

theft happened and the places where the vehicles were recovered can be regarded as flow 

origins and destinations, respectively. According to the crime report released by the 

Charlotte-Mecklenburg Police Department (CMPD), there were 14,064 vehicle theft cases 

within the city from 09/01/2008 to 08/31/2014. Of all these cases, 6,960 have correct 

corresponding recovery locations somewhere else in the city. In the data cleaning process, 

I excluded the records with identical theft and recovery locations to exclude the cases of 

attempted break-ins, damage to the vehicle, interrupted stealing, or other incomplete theft 

crimes. The final study dataset consists of 6,810 theft-recovery flow events. From the map 

shown as Figure 4 we can observe the distribution of these locations. Overall, both theft 

and recovery locations have similar distribution across the city: there is a concentration 

around the city center, except for the southern portion, which is known to encompass more 

affluent neighborhoods.  



40 
 

(a) (b)  

Figure 4: (a) Vehicle theft locations in Charlotte; (b) vehicle recovery locations in 

Charlotte 

 

To gain a more intuitive knowledge of the data I also estimated the kernel density (KDE) 

for both sets of locations. The hotspot pattern is most obvious on the map with a cell size 

of 400 square feet and bandwidth of 0.5 mile (Figure 5). The KDE maps indicate that many 

car thefts happened in the eastern and northern areas near the city center, while a significant 

part of them were recovered in the northwestern region, where Charlotte Douglas 

International Airport is located.  

http://www.charlotteairport.com/
http://www.charlotteairport.com/
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(a)   (b)  
Figure 5: Kernel density estimation of (a) theft locations; (b) recovery locations 

 

However, based on point pattern analysis only, it is difficult to build connections 

between theft locations and corresponding recovery locations. According to popular 

criminological theories of vehicle theft crimes, such as rational choice theory and routine 

activity theory, most criminals have meticulously designed their target places and 

destination places in advance based on their cost-benefit analyses (Lu 2008). As the new 

trend indicates, more vehicles are stolen by criminal gangs for money-making business 

rather than joy-riding (McGoey 2000). Thus, it would be extremely useful to discover the 

spatial patterns of how stolen vehicles are transported from their offense place to their 

destination.   

Following the complete algorithm given in the previous section, I implement this flow 

clustering detection approach on these crime data step by step. The null hypothesis of flow 

distribution is that car thefts and recoveries can happen anywhere on the street network 

within the Charlotte city limits. Therefore the 1,000-time Monte-Carlo simulation is 
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proceeded by randomly locating flows’ endpoints on the city’s street network. The reason 

to choose such assumption is that there is little prior knowledge about motor vehicle theft 

crime to add more restrictions to the distribution of car theft and recovery event locations, 

or to the flow lengths and directions. Not imposing constraints on the spatial characteristics 

of flows in the simulation process has the advantage of not excluding any possible 

contributions to the final cluster results. Edge effects are corrected by reducing the analysis 

area by a distance equal to the largest distance band used in the analysis (1 mile in this case 

study). Only the flows with both endpoints within this shrunk area are selected to 

computing the algorithm, while the background flow spatial process and the simulated 

flows remain within the original area. The implementation program is written in C/C++ 

and parallel computing technique OpenMP is also applied to accelerate computation, 

especially the simulation part. Results are visualized via software ArcMap 10.1 and 

jFlowMap (Boyandin et al. 2010).  

2.4.2 Results and Discussion  

Figure 6 shows the global Flow K-function results using two different flow proximity 

measures. With Flow Distance (Equation 1), the global Flow K-function value is above the 

upper envelope at the 0.1% significance level at several scales (Figure 6a). Especially at 

small scales such as 0.1, 0.2, and 0.3 mile, the clustering patterns are very significant. The 

global Flow K-function using Flow Dissimilarity (Equation 2) also reflects the flow 

distribution pattern of the entire study area across scales (Figure 6b). The two results are 

not dramatically different. However, global Flow K-function values are meaningful to 

indicate at which scale(s) the clustering pattern of the study area is more significant. Hence 

emphases can be anchored at these scales when looking at the local patterns.  
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(a)  

(b)  

Figure 6: Global Flow K-function results using different flow proximity measures at the 

0.1% significance level. (a) uses Flow Distance (Equation 1) with detection scale equal 

from 0.1 mile to 1 mile. (b) uses Flow Dissimilarity (Equation 2) with detection scale 

 

Figure 7 shows the local flow clusters detected with our method at selected scales 

according to the global Flow K-function results. The flows on the maps represent the local 

clusters detected by our new approach as significant at the 0.1% level. Each flow has one 

end colored in red to denote the theft location and the other end in green to show the 

recovery location. In order to avoid visual clutter, I aggregate nearby flow clusters into the 

census block groups where their end points are situated.  
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Figure 7: Detected flow clusters using different flow proximity measures. (a), (b), (c) use 

Flow Distance (Equation 1) with detection scale equal to 0.1 mile, 0.2 mile, and 0.3 mile, 

respectively; (d), (e), (f) use Flow Dissimilarity (Equation 2) with detection scale equal to 

0.03, 0.04 and 0.05, respectively 

 

The results are analyzed from two aspects. First, I compare the results obtained using 

the same equation of flow proximity measure, but different parametrizations. The first three 

results use Flow Distance with scale of different magnitudes, i.e. 0.1, 0.2, and 0.3 of a mile. 

As the magnitude of the scale increases, more flows are detected as local clusters. The same 

pattern can be found in the other set of results using Flow Dissimilarity. The variance 

caused by scale magnitude is consistent with the basic feature of the K-function that the 
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spatial pattern is partly dependent upon the size of the detection window. The increasing 

number of local flow clusters indicates that more nearby flows are included to contribute 

to the local K-function value as the detection window becomes larger. At the same time, 

the increase of scale does not have an equivalent impact on the background distribution 

which represents our null hypothesis. It is because I simulate the background distribution 

by randomly placing the flow events on the street network without further specific control, 

e.g. crime risk; therefore the simulated flows are distributed more sparsely throughout the 

city. As a result, the increase of scale has a positive impact on the number of local flow 

clusters that are detected. As in other K-function related research, choosing the optimal 

magnitude of scale remains an open question. It is typically selected in relation to how the 

results can make sense to explain context-dependent research questions. In this case, Figure 

7f presents some interesting patterns about vehicle theft and recovery flows. Vehicles 

stolen from the area in the Southwestern section of the city are usually found somewhere 

far away and their transport directions vary considerably. In addition, there is another group 

of clusters in the Southeast showing much shorter transport distances and with similar 

directions towards the North. One possible reason is that for the vehicles stolen in the 

Southwest area there are only a few “favorable” places nearby for criminals to dispose of 

them. Therefore, these cars are transported over a long distance to places like chop shops 

for selling or to places like the airport. Routine criminals who steal from the Southeast area 

may find it much easier because there are sites nearby in the North to dispose of the cars.  

On the other hand, it is useful to compare the results using different types of flow 

proximity measures, namely the Flow Distance and Flow Dissimilarity. Comparing the two 

series of maps in the top and bottom row of Figure 7 for a similar number of local clusters, 
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the most obvious difference is the average length of clustered flows. The results using Flow 

Distance contain many short flows, while the results using Flow Dissimilarity tend to 

indicate longer flows as local clusters. Taking a closer look, it is clear that some flows, 

especially shorter ones within the same cluster identified using Flow Distance do not share 

many geographic and geometric similarities with their neighboring flows, e.g. quite 

different flow directions and flow lengths. In contrast, flows within the same cluster using 

Flow Dissimilarity tend to be very similar to each other. The reason behind this difference 

is that, when flow length is not considered in measuring flow proximity, short flows need 

not be as similar in endpoint locations, length and direction to each other as longer ones to 

have the same flow distance. Therefore, they are more readily detected as the locus of a 

significant cluster than long ones, all other things being equal. It results in false positive 

detection since some flows are detected as local clusters simply because they are short 

enough to be captured by the detection window.  

On the contrary, local clusters identified with Flow Dissimilarity include flows with 

close vehicle theft sites, close vehicle recovery sites, and similar movement directionality 

and distance. for selected scales within the range of statistical significance. The pattern is 

consistent throughout the study region. Moreover, the results would be of practical use to 

law enforcement agencies to detect routine gang-related crimes with locational preference 

for stealing and selling/disposing of vehicles in the city. As a conclusion, I argue that the 

algorithm using Flow Dissimilarity to measure flow proximity is less likely to lead to false 

positive errors as it controls for one source of spurious cluster detection. Besides, it 

provides a meaningful alternative to the traditional distance scale in solving the instability 

or inequality in cross-scale flow clustering detection. 
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So far I have only discussed experiments with the basic version of the flow proximity 

measures. Further usefulness of the measures can be explored by changing its parameter 

value. In both Equation (1) and Equation (2), I specify two coefficients, i.e. α and β, to 

control the relative importance of origins and destinations. The expectation is that changing 

the relative value of these coefficients can purposely create a tendency for alternative 

cluster detection results. To test this hypothesis, I adjust the approach by changing the 

coefficient values in Flow Distance. I assign 𝛼 = 1.5 and 𝛽 = 0.5 for the first group and 

𝛼 = 0.5 and 𝛽 = 1.5 for the second. The sum of the coefficient values is controlled as 2, 

for the sake of the comparability of the results.  

Figure 8 includes two comparable result maps. Figure 8a shows the clusters detected 

by the Flow Dissimilarity with 𝛼 = 1.5 and 𝛽 = 0.5, while Figure 8b shows the outcomes 

setting 𝛼 = 0.5 and 𝛽 = 1.5, both using Flow Dissimilarity measure with a scale equal to 

0.04. Comparing these two maps and also comparing them with Figure 7d for which 𝛼 =

𝛽 = 1 by default, I find that Figure 8a contains more unique clusters with very close theft 

locations (red end) but relatively distant recovery locations (green end), while Figure 8b 

tends to show the opposite pattern. In other words, flows with close theft locations are easy 

to be detected as clusters in Figure 8a and flows with close recovery locations are favored 

in Figure 8b.  
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(a) (b)  

Figure 8: Flow clusters with different endpoint emphases. (a) clusters more focused on 

theft locations (𝛼 = 1.5;  𝛽 = 0.5); (b) clusters more focused on recovery locations (𝛼 =
0.5 ;  𝛽 = 1.5) 

 

These observations are in line with our premise that changing the value of Flow 

Distance coefficients can lead to results with different emphases, which can cater to people 

with different interests. In terms of practical usefulness, citizens would be more interested 

in looking at Figure 8a which can inform where vehicle-theft crimes are more likely to 

happen so that they can avoid parking in these highly risky places. On the contrary, police 

would find Figure 8b more useful in order to know where the concentrations of car-disposal 

places are and where they should search for the lost vehicles. By comparing the result maps 

with Google Maps I found that the neighborhoods surrounding the main campus of UNC 

Charlotte correspond to the cluster of theft sites in the northeastern part of Figure 8a, which 

indicates that this area is a popular car theft locus. Some clusters of recovery places near 

the city center in Figure 8b match the locations of savage vehicle yards or chop shops, 

where stolen cars can be quickly transacted with cash and be sold again in parts. 
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2.5 Summary and Future Directions 

Spatial statistical approaches to clustering detection have been continuously developed 

for decades. In contrast with abundant methods designed for point and polygon data, 

approaches well suited to handling spatial flow data have not been well developed so far. 

To fill this gap and also to meet the challenges brought by the emerging breadth of massive 

flow data, this research has developed an innovative spatial statistical method for flows. A 

pair of particular spatial proximity measures called the Flow Distance and Flow 

Dissimilarity have been designed. Based on these measures the original and local version 

of the K-function is adjusted and implemented to examine the second-order effects of 

spatial flows. The global Flow K-function indicates at which scale(s) the flow clustering 

pattern of the entire study area is significant. By comparing the observed local K-function 

value with the statistical confidence envelops generated via Monte Carlo simulation, the 

local clustering pattern of each flow event can be identified at a certain statistical 

significance level. The new method is an intuitive extension of the principles embedded in 

the K-function for one-dimensional point events and is applicable to all types of flow data. 

To test the effectiveness and usefulness of our method, a series of experiments have 

been implemented using a real dataset of vehicle theft-recovery flows in Charlotte, NC. 

The results demonstrate that our method is capable of identifying local clusters from the 

several thousands of tangled flows. Specifically, the measures I designed proved not only 

to be measures of spatial proximity, but an effective solution for the inclusion of the multi-

location interaction objects within the scope of well-developed point pattern spatial 

statistics, namely the local K-function. By adjusting the parameters of endpoint coordinate 

pairs, the study emphasis can be purposely placed on the spatial associations between either 
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flow origins or flow destinations. In addition, the impact of flow length has also been 

thoroughly discussed. To overcome the statistical bias brought by flow lengths, I 

introduced a variant of Flow Distance called Flow Dissimilarity. The experiment shows 

that the algorithm using Flow Dissimilarity leads to more stable spatial patterns and is 

adaptive to flows with varied lengths across the study region. Overall, the method designed 

in this research has fully utilized the spatial characteristics of flow data, and it is 

demonstrated to be capable of investigating spatial associations of flow events across scales. 

The results examined with this method have practical implications as well. In this vehicle-

theft crime example, it can inform not only where frequent car theft and recovery happen, 

but how the stolen cars are moved from one place to another in the form of spatial flow 

clusters. The results are especially useful to devise effective police responses to routine 

gang crime activities. 

The proposed analytic method can be extended in several ways. First, further work can 

be done to expand the capability of this method to include additional event characteristics, 

for example considering flow type and value in “hot flow” detection. A plausible idea is to 

use the local cross K-function (Boots and Okabe 2007) instead of the traditional local K-

function to detect clusters of flows with different types, e.g. rescue goods flow spatially 

associated with refugee flow; and to accumulate the total value of nearby flows instead of 

simply tallying their frequency in calculating the local K-function so as to adjust the 

contribution of flows with unequal value, e.g. a one-thousand-people commuting flow 

versus a single-person commuting flow. Also, the Flow Distance and Flow Dissimilarity 

measures can be shown to be effective with other methods of exploratory spatial data 

analysis including the local Moran’s I and G statistics for flow data analysis. Equation (1) 
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and Equation (2) can also be modified by using other types of distance such as network 

distance to calculate 𝑑𝑂 and 𝑑𝐷, in order to better solve context-related questions.  

Furthermore, the principles of the flow proximity measure can be further expanded to 

higher dimensionality for the space-time analysis of flow data. For example Equation (3) 

below is an extension to Equation (2) to measure the spatiotemporal dissimilarity between 

two flows, where 𝑡𝑂𝑖  and 𝑡𝑂𝑗  denote the starting time of two flows, 𝑡𝐷𝑖and 𝑡𝐷𝑗  are the 

ending time of these flows (after normalization). With the same rationale of adjusting flow 

length, the temporal lengths are factored into the denominator as 𝑇𝑖𝑇𝑗 with an exponent 

parameter 𝛾𝑡 for adjusting the weight. 

𝐹𝐷𝑆𝑇𝑖𝑗 = √
𝛼[(𝑥𝑖−𝑥𝑗)

2+(𝑦𝑖−𝑦𝑗)
2]+𝛽[(𝑢𝑖−𝑢𝑗)

2+(𝑣𝑖−𝑣𝑗)
2]+𝛼𝑡(𝑡𝑂𝑖−𝑡𝑂𝑗)

2+𝛽𝑡(𝑡𝐷𝑖−𝑡𝐷𝑗)
2

(𝐿𝑖 𝐿𝑗 )
𝛾(𝑇𝑖 𝑇𝑗 )

𝛾𝑡
. (5) 

Incorporating temporal dimension can potentially upgrade the findings from pure 

spatial patterns to spatiotemporal patterns. The advantage of this new method would 

include overcoming not only the MAUP, but the Modifiable Temporal Unit Problem 

(MTUP) (Cheng and Adepeju, 2014) as well. And the hot flows are detected based on not 

only flows’ spatial similarity, but the time of their co-occurrence. In order to extend the 

spatial clustering detection to spatiotemporal clustering detection, I can adjust the local K-

function by adding the temporal dimension as Equation (6): 

𝐿𝑜𝑐𝐾𝑡𝑖(𝑟𝑡) =  𝐸(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑓𝑙𝑜𝑤 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑡 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑖). (6) 

where 𝐿𝑜𝑐𝐾𝑡𝑖(𝑟) is the space-time local K-function value of flow Fi at scale 𝑟𝑡. This 

version of local K-function is capable to detect the “hot flows” clustered in space and 

happen closely in time. Accordingly, the scale 𝑟𝑡 is the threshond distance combining both 
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spatial and temporal proximity. The spatiotemporal proximity is measured by Equation (5), 

of which the input variables need normalization and the parameters need to be adjusted 

after proper sensitivity analysis.  

 

 

  



 

 

 

CHAPTER 3: STUDY II. FLOW HDBSCAN: A HIERARCHICAL AND DENSITY-

BASED SPATIAL FLOW CLUSTER ANALYSIS METHOD 

 

  

 3.1 Overview 

Understanding the patterns and dynamics of spatial origin-destination flow data has 

been a long-standing goal of spatial scientists. As a common family of data mining methods, 

cluster analysis has proved useful in exploratory analysis of large sets of spatial flows. This 

study aims at developing a new flow cluster analysis method called Flow HDBSCAN 

(hierarchical DBSCAN) that not only can extract spatial flow clusters from various 

situations including varying flow densities, lengths, hierarchies, but also avoids problems 

like MAUP, false positive errors, and loss of spatial information. The method combines 

density-based clustering and hierarchical clustering approaches from data mining area and 

extends them to the context of spatial flows. The flow proximity measures proposed in the 

first study of this dissertation are used again here to accurately calculate flow density. 

Moreover, the method is designed to effectively reveal hierarchical structures of the data, 

for example one flow cluster might be composed of several smaller ones. Moreover, the 

sole-parameter design guarantees its ease of use, and a special index is designed to relieve 

the challenge of selecting clusters as the final results in some complex situations. 

Experiments are conducted with both a synthetic dataset and an eBay online trade flow 

dataset in the contiguous U.S. 
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3.2 Motivations 

In this study I develop a hierarchical and density-based clustering approach for 

disaggregated spatial flow data. Compared with other flow clustering methods, Flow 

HDBSCAN stands out as in several ways. One type of related methods measures the spatial 

relationships among origins and destinations, respectively, before combining them, as the 

basis for clustering flows. Here, spatial relationships can be contiguity or proximity of 

origin or destination regions (Guo 2009; Zhu and Guo 2014). However, these methods are 

sensitive to uneven density levels or ad hoc zoning definition of flow endpoints; besides 

they are prone to false positive errors on short-distance interactions. Another type of related 

approaches uses flow geometry to bundle nearby ones (Cui et al. 2008). While the results 

usually have desirable visual clarity, these methods compromise the accuracy of both 

spatial and attributive information of the data. For example, the endpoint location and 

length information of a flow would be lost if it is bundled to a set of nearby flows. Flow 

HBDSCAN inherits the strengths of density-based methods in the sense that it can extract 

flow clusters in various situations including varying flow densities, lengths, and hierarchies. 

Common problems for flow clustering approaches, like MAUP, false positive errors, and 

loss of information, are well handled. The method also inherits the unique advantage of 

hierarchical cluster analysis methods as it can reveal the implicit flow data structure, which 

is meaningful to understand structural relationships embedded in massive and cluttered sets 

of individual flows. In comparison with the “hot flow” detection method developed in the 

first study, this method is different as it embraces the principle of data mining to group 

observations into “clusters” based on similarity (Waller 2009), in spite of the overlapped 

terminology of “spatial flow cluster”.  
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3.3 Method in Detail 

3.3.1 Theoretical Bases 

Of various clustering methods, I choose to design this flow clustering method based on 

density-based clustering because of its capability to discover clusters of arbitrary shape and 

to filter out noise. More specifically I borrow the two classic notions of density-based 

clustering measures, namely core distance and reachability distance (Ester et al. 1996; 

Ankerst et al. 1999). Core distance (CoreDist), calculated as Equation (7), refers to the 

distance between an object to its (𝑀𝑖𝑛𝑡𝑃𝑡𝑠 − 1)th nearest neighbor, within a search radius 

of ε. 𝑀𝑖𝑛𝑡𝑃𝑡𝑠 is the minimal size of a cluster. In Figure 9, the core distance of point o is 

the distance to its third nearest neighbor, w.r.t. 𝑀𝑖𝑛𝑡𝑃𝑡𝑠 = 4. 

𝐶𝑜𝑟𝑒𝐷𝑖𝑠𝑡ε,𝑀𝑖𝑛𝑃𝑡𝑠(o) = 𝐷𝑖𝑠𝑡(𝑝, (𝑀𝑖𝑛𝑡𝑃𝑡𝑠 − 1)𝑡ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑖) (7) 

 

Figure 9: Core distance and reachability distance from Ankerst et al. (1999) 

 

The other important density measure is called reachability distance (ReachDist), 

calculated as Equation (8). Taking the example in Figure 9, if a point p1 is located inside 



56 
 

the core distance range of point o, the reachability distance between them equals 

𝐶𝑜𝑟𝑒𝐷𝑖𝑠𝑡𝜀,𝑀𝑖𝑛𝑃𝑡𝑠(𝑜). Alternatively, if a point p2 falls outside the core distance range of 

point o, their reachability distance is the actual distance between them.  

𝑅𝑒𝑎𝑐ℎ𝐷𝑖𝑠𝑡𝜀,𝑀𝑖𝑛𝑃𝑡𝑠(𝑝, 𝑜) = 𝑚𝑎𝑥 (𝐶𝑜𝑟𝑒𝐷𝑖𝑠𝑡𝜀,𝑀𝑖𝑛𝑃𝑡𝑠(𝑜), 𝐷𝑖𝑠𝑡(𝑝, 𝑜))       (8) 

These two density metrics are essential to density-based clustering methods. Figure 10 

is reachability plot from the article of the classic density-based method OPTICS (Ankerst 

et al. 1999). In this plot, all objects are listed horizontally in a way that those sharing similar 

reachability distance stick together. The height denotes the reachability distance value.  The 

plot shows a mountain-like space where the “valleys” and “peaks” correspond to clustered 

and non-clustered objects, respectively. A deeper “valley” indicates a higher density of the 

corresponding cluster. To extract clusters a global parameter rd is introduced, which acts 

as a cutoff threshold of reachability distance to extract the “valleys” below it. For example 

in Figure 10, setting the threshold at the level of rd1 leads to four clusters. Lowering the 

threshold to the level of rd2 implies extracting clusters of a higher density. The leftmost 

“valley” is not identified as cluster anymore, while on the right side a big cluster is broken 

down into three smaller ones. As seen, the reachability plot is an effective way to visualize 

clusters of varying densities and potential hierarchical structures (nested clusters). 

However, choosing the best global threshold to extract clusters is a difficult task in many 

situations.  
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Figure 9: Reachability plot adapted from Ankerst et al. (1999) 

 

In this study I choose not to follow the convention of density-based method to extract 

flow clusters. One reason is that choosing a global threshold to extract clusters is always 

arbitrary. On the other hand, I aim to reveal more information of the data, for example the 

potential hierarchical data structure, in addition to extract flow clusters. Therefore after 

calculating the cored distance and reachability distance, I depart from the standard practice 

of density-based clustering and choose to embrace the principles of hierarchical clustering 

in order to extract the hierarchical structures exhibited by clusters, if any.  

3.3.2 Calculate Flow Density 

To calculate the density measures for flows, choosing an appropriate distance measure 

is the very first step. Cluster analysis critically rests on an appropriate distance metric. 

Regarding spatial flow data, there exists no ‘natural’ metric. In the preceding chapter, I 

introduced a set of flow proximity metrics integrating corresponding endpoint coordinates 

as Equation (1), with additional considerations for the impact of flow length as seen in 

Equation (2), which are used again in this study. Flow Distance 𝐹𝐷𝑖𝑠𝑡𝑖,𝑗  denoting the 

distance between flows Fi (xi ,yi ,ui ,vi) and Fj (xj ,yj ,uj ,vj) is calculated as Equation (9) or 

Equation (10) as below: 
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𝐹𝐷𝑖𝑗 = √𝛼[(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2] + 𝛽[(𝑢𝑖 − 𝑢𝑗)2 + (𝑣𝑖 − 𝑣𝑗)2].   (9) 

𝐹𝐷𝑆𝑖𝑗 = √
𝛼[(𝑥𝑖−𝑥𝑗)

2+(𝑦𝑖−𝑦𝑗)
2]+𝛽[(𝑢𝑖−𝑢𝑗)

2+(𝑣𝑖−𝑣𝑗)
2]

(𝐿𝑖 𝐿𝑗 )
𝛾  .                   (10) 

where 𝐹𝐷𝑖𝑗 and 𝐹𝐷𝑆𝑖𝑗 are the two versions of Flow Distance 𝐹𝐷𝑖𝑠𝑡𝑖𝑗 . The latter 

addresses the impact of flow lengths  𝐿𝑖 and 𝐿𝑗 while the former does not. The coefficients 

α and β serve to control the relative importance of either sets of endpoints (α > 0; β > 0; α 

+ β = 2; by default α = β = 1). 

Based on the flow proximity metrics, flow density measures can be calculated. 

Following Ankerst et al. (1999), I do not set a search radius threshold for CoreD, like 

DBSCAN does (Ester et al. 1996), as it is usually arbitrary and has little impact on final 

results. Instead, CoreD here (Equation 11) is only decided by the minimum cluster size 

MinFlows, or the minimal number of flows a cluster must have. For example in Figure 11 

if setting MinFlows = 3, the core distance of flow F1 (𝐶𝑜𝑟𝑒𝐷1) is given by the flow distance 

between F1 and its second nearest neighbor F3. Every flow object has its own core distance. 

A small CoreD suggests tight connections to one’s neighbors, thus a likely belongingness 

to a cluster. In Figure 11, 𝐶𝑜𝑟𝑒𝐷1 is smaller than 𝐶𝑜𝑟𝑒𝐷11 for MinFlows = 3; this suggests 

a higher likelihood of F1 to be detected as a cluster member compared with F11.   

𝐶𝑜𝑟𝑒𝐷𝑖 = 𝐹𝐷𝑖𝑠𝑡𝑖,   (𝑀𝑖𝑛𝐹𝑙𝑜𝑤𝑠−1)𝑡ℎ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑖       (11) 
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Figure 10: A sample set of flows 

I choose to calculate the other density measure using the developed version of original 

reachability distance, called mutual reachability distance (MReachD) (Campello et al. 

2013). Calculated as Equation (12), 𝑀𝑅𝑒𝑎𝑐ℎ𝐷𝑖𝑗 between two flows Fi and Fj I need flow 

distance 𝐹𝐷𝑖𝑠𝑡𝑖𝑗 and two core distances 𝐶𝑜𝑟𝑒𝐷𝑖 and 𝐶𝑜𝑟𝑒𝐷𝑗. The largest value of these 

three distances is the MReachD between two flows.  

𝑀𝑅𝑒𝑎𝑐ℎ𝐷𝑖𝑗 = max (𝐶𝑜𝑟𝑒𝐷𝑖, 𝐶𝑜𝑟𝑒𝐷𝑗, 𝐹𝐷𝑖𝑠𝑡𝑖𝑗)       (12) 

3.3.3 From Density to Hierarchy 

As mentioned earlier, the reachability distance can be plotted to reveal clusters and 

noises of the dataset, but choosing a global threshold to extract clusters is arbitrary. 

Therefore I design this method by integrating ideas and techniques of hierarchical 

clustering, for example using a tree-like structure to help illustrate hierarchical structure 

and facilitate the cluster-extracting process. Based on the calculated MReachD values, I 

build a minimum spanning tree (MST) (Campello et al. 2013) as Figure 12. The vertices 
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of this tree represent all flow objects; they are connected by edges with lengths proportional 

to the MReachD value between the two end vertices. In practice, this tree is built by 

sequentially adding the shortest edge that connects the current tree to a vertex not yet in 

the tree, starting from an arbitrarily selected vertex. In other words, the MST is constructed 

by connecting vertices with shortest possible edges. Figure 12 illustrates the MST for the 

sample data presented in Figure 11. All eleven flows are connected by at least one edge 

and together they compose the minimum spanning tree. To help explanation I choose a set 

of unitless numbers (1, 2, 3, and 4) to represent relative magnitudes of MReachD. Flows 

that are more likely to form a cluster, such as F1, F2 and F3 are connected with short edges, 

whereas potential outlier F11 is linked with a long edge that suggests weak connection to 

the rest of the tree.  

 

Figure 112: Minimum spanning tree  

 

Then by sorting the edges of the tree in an increasing order of MReachD value, the 

MST is converted to a dendrogram that connects all vertices in a single hierarchical 

structure (Figure 13). This dendrogram reflects the density-based mutual reachability 

distance of the entire dataset in a hierarchical fashion. However, this hierarchy contains the 
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entire set of flow objects. It still needs a further step to discriminate vertices belonging to 

a cluster from noise. An analogy to this process is to prune a tree by removing the unwanted 

leaves and twigs (noises) and retaining the meaningful trunk and branches (clusters).   

 

Figure 13: Dendrogram 

 

3.3.4 Simplify the Hierarchy 

Pruning the minimal spanning tree is an iterative process. The algorithm iterates 

through the dendrogram in reverse, from the highest MReachD, and decides at each split 

whether it should be removed. The minimum cluster size MinFlows serves as the only 

criterion. If the sizes of two descendant sets of a split are both greater than MinFlows, I 

maintain this split as both descendant sets can be standalone clusters. On the other hand, if 

one of the descendant sets contains fewer than MinFlows flows, I remove this split from 

the dendrogram, drop the small descendant set, maintain and keep processing the larger 

one. Continue this process until no more split can be removed.  

In the example of Figure 13, if setting MinFlows = 3 the first split emerges at the level 

of MReachD = 4. One of the descendant sets contains flow F11 alone, so I remove this split 
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and drop F11 from the tree. For the next split at level of MReachD = 3, both descendant 

sets have more than three flows. Therefore I keep this split and both descendent sets. 

Keeping iterating the dendrogram, there are two splits at level of MReachD = 2. On the 

left side one set splits into two as each contains three flows, which is the minimum cluster 

size. On the right side only one descendant set (F7, F8, and F9) remains while F10 has been 

dropped. This iteration process continues until every flow object is singled out. In this case 

the last step of split happens at the level of MReachD = 1. While iterating through the 

whole dendrogram, the algorithm marks down at which level each flow was dropped. 

Those dropped earlier at a high MReachD level such as F11 are more likely noises, while 

those separated in the end at a low MReachD level such as F1, F2, F3, F4, F5, F6, F7, F8, 

and F9 are potential members of clusters.   

3.3.5 Extract Flow Clusters 

The simplified dendrogram reflects the data structure in a hierarchical way and suggests 

the potential clusters as well as noise. However it is still one step away from presenting the 

result clusters. Following the case above, F11 is less disputed as a noise since it cannot form 

a cluster with any nearby flows. The identity of F10 is however debatable. It can either form 

a four-member cluster together with F7, F8, and F9, or be labelled as a noise. Confusion 

exists with respect to the other six flows (F1, F2, F3, F4, F5, and F6) as it is arguable to split 

them into two small clusters or keep them as a whole. To solve these confusions and decide 

the final clustering results, a special index called cluster stability inspired by Campello et 

al. (2013) is introduced as Equation (13): 

S(𝐶𝑖) =  ∑ 𝜆𝑠𝑡𝑎𝑦(𝐹𝑗)𝐹𝑗∈𝐶𝑖
=  ∑ (𝜆𝑒𝑛𝑑(𝐹𝑗) − 𝜆𝑏𝑒𝑔𝑖𝑛(𝐹𝑗))𝐹𝑗∈𝐶𝑖

                     (13) 
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where S(𝐶𝑖)  is the cluster stability of cluster 𝐶𝑖 , 𝜆 = 1/𝑀𝑅𝑒𝑎𝑐ℎ𝐷 , 𝜆𝑏𝑒𝑔𝑖𝑛(𝐹𝑗)  and 

𝜆𝑒𝑛𝑑(𝐹𝑗) correspond to the smallest and largest 𝜆 value that flow 𝐹𝑗 belongs to cluster 𝐶𝑖, 

respectively. And 𝜆𝑠𝑡𝑎𝑦(𝐹𝑗) means the range of 𝜆 value in between. 

The idea is that if a flow stays with a cluster for a large range of 𝜆  values, it is 

considered a loyal member of this cluster. If a cluster contains many loyal members, it is 

considered stable. To solve the confusion like whether to split one cluster into smaller ones, 

or whether to drop disputed cluster members as noise, we only need to calculate and 

compare the cluster stability of the two ambiguous situations. Figure 14 shows the 

simplified dendrogram as a hierarchical cluster tree. Only noise 𝐹11  has been dropped 

(hollow vertex) and the corresponding split has been removed (dash line). Clusters are 

highlighted by red boxes. According to the cluster stability index, 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, and 𝐹6 

split into two three-member clusters, and 𝐹10 sticks with 𝐹7, 𝐹8, and 𝐹9 as a four-member 

cluster.  

 

Figure 12: Hierarchical cluster tree with red boxes denoting extracted clusters 
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3.3.6 Algorithm Steps 

(a) Calculate an N by N flow distance matrix with FDist (Equation 9 or 10);  

(b) Calculate CoreD with a selected minimum cluster size MinFlows (Equation 11); 

(c) Calculate an N by N MReachD matrix (Equation 12); 

(d) Build a minimum spanning tree (MST) based on MReachD; 

(e) Sort the MST to obtain a hierarchical dendrogram; 

(f) Simplify the dendrogram based on MinFlows. More specifically, iterate through 

the dendrogram from the highest MReachD. If one of the descendant sets is smaller 

than MinFlows, drop it from the dendrogram, remove the split, and keep processing 

the large descendant set; if both descendant sets are equal or larger than MinFlows, 

keep the split and continue iterating both sets;    

(g) Extract flow clusters from the hierarchical cluster tree through calculating and 

comparing cluster stability (Equation 13). 

3.4 Experiment 

3.4.1 Evaluation with Synthetic Data 

To test the effectiveness of this method, I designed a synthetic spatial flow dataset of 

3,000 flows in various group configurations. Figure 15 depicts the spatial distributions of 

flows. The legend indicates the color and size of each group of flows. All the flows’ 

endpoints are distributed in a two-dimensional space with x and y both within the range 

from 0 to 1,000. Table 1 describes the size of each group and the range of the flows’ four 

coordinates (𝑥𝑜, 𝑦𝑜 , 𝑥𝑑, 𝑦𝑑). Within its range, a coordinate is randomly generated. Group 1 

are the “background” flows. The origin and destination points of these 1,000 flows are 

randomly distributed within the entire area. Group 8 shares the similar characteristics with 
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group 1, but the flows are encased in a very limited area. Given that most existing flow 

clustering methods mistakenly identify short flows as clusters regardless of their distinct 

spatial characteristics such as direction, length, and endpoint location, group 8 is designed 

to test whether Flow HBDSCAN can avoid such false positive errors. Each of groups 2 to 

7 is a group of clustered flows with similar directions. Group 2 and 6 have relatively low 

density in comparison with group 3, 4, 5, and 7. This varying density design is to test 

whether Flow HDBSCAN is able to extract all of these clusters. If so, to check if clusters 

of different densities are extracted at the same time or with different parameter settings. 

Hierarchical clusters, namely nested clusters, are also designed. For instance group 3 and 

4 have the potential to form one cluster. Group 2, 3, 4, and 5 can potentially compose an 

even bigger cluster. This hierarchical design is to test another claimed functionality of Flow 

HBDSCAN: to reveal potential hierarchical data structure of flow clusters.  

 

Figure 13: Map of synthetic flow dataset  
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Table 1: Details of synthetic flow dataset 

Group No. Size Range of 𝑥𝑜 Range of 𝑦𝑜 Range of 𝑥𝑑 Range of 𝑦𝑑 

1 1000 0 – 1000 0 – 1000 0 – 1000 0 – 1000 

2 200 0 – 100 0 – 100 500 – 600 500 – 600 

3 300 0 – 10 90 – 100 500 – 510 590 – 600 

4 200 45 – 55 45 – 55 500 – 510 590 – 600 

5 300 90 – 100 0 – 10 590 – 600 500 – 510 

6 600 400 – 600 700 – 900 800 – 850 600 – 650 

7 300 300 – 310 700 – 710 300 – 310 800 – 810 

8 100 100 – 200 700 – 800 100 – 200 700 – 800 

 

Performing Flow HDBSCAN with FDS (Equation 10) as flow distance metric, results 

w.r.t. MinFlows = 50 and 250 are picked out as examples for discussion. Figure 16a shows 

the map of four detected clusters for MinFlows = 50. Figure 16b reveals the hierarchical 

structure of the clusters. All the branches remaining on the hierarchical tree qualify as 

clusters w.r.t. MinFlows = 50, however not all of them are extracted as final results. The 

width of each branch represents the cluster size. And the height 𝜆 value denotes the density 

level. The figure clearly shows at which density level a cluster begins to form, and how a 

cluster gradually loses members (shrinks width) until it disappears or splits into smaller 

clusters while the density level increases (𝜆 decreases). According to the cluster stability 

index, only four of the branches are selected as final clusters. Figure 16c illustrates the 

composition of each final cluster. Cluster C1 contains the entire group 6 and 18 nearby 

flows from group 1. C2 consists of the entirety of groups 3 and 4, with 37 nearby flows 
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from group 2. Similarly, C3 contains the entire group 5 with 15 flows from group 2 as well. 

C4 is identical to group 7.   

The results reflect the correctness of Flow HDBSCAN as there are only a few false 

positive (FP) errors but no false negative (FN) errors. False positive errors in this context 

mean the flows designed as noises but detected as clusters. Such errors only exist in C1, 

where 18 out of 618 are from randomly distributed group 1. On the other hand, false 

negative errors represent the designed flow cluster members detected as noises. Figure 16c 

shows that the extracted clusters include the complete set of groups 3, 4, 5, 6, 7. The special 

case is group 2; some of its flows join cluster C2 and C3, while the rest of its members are 

detected as noise. This is due to the choice suggested by cluster stability rather than failure 

of detection. To quantify the correctness of the results, I use an index called cluster 

correctness (CC) adapted from Guo and Wang (2011).  For each extracted cluster, CC is 

calculated as follows: 

CC = TP (TP + FP + FN)⁄                    (8) 

where CC as cluster correctness; TP is short for true positive, or the number of flows that 

are both designed and identified as cluster members; FP and FN denotes the number false 

positive errors and false negative errors, respectively. An index close to 1 indicates that 

there is very limited FP or FN. The four clusters in this set of results all have very high 

CC, as CC1 = 0.97 while the CC for the other three all equal to 1.  
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(a)  

(b)  

Figure 16: Results w.r.t. MinFlows = 50. (a) Result map; (b) hierarchical cluster tree; 

(c) composition of each flow cluster 
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(c)  

Figure 14 continued 

 

Another set of results is presented in Figure 17 w.r.t. MinFlows = 250. Compared with 

the previous result w.r.t. MinFlows = 50, only three final clusters are extracted (Figure 17a). 

Given that group 4 has only 200 flows which is not enough to form a cluster, there exists 

no branch of group 4 on the hierarchical cluster tree (Figure 17b) any more. Figure 17c 

shows that C1 and C3 are almost identical as for MinFlows = 50. C2 is a huge cluster 

combining the complete groups 2, 3, 4, and 5, with a few false positive errors from group 

1. It indicates that w.r.t. MinFlows = 250 the algorithm chooses to extract the nested 

clusters as a whole instead of smaller ones. This time the cluster correctness index for each 

cluster is also very high, as CC1 = 0.97, CC2 = 0.95, CC3 = 1.  
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(a)  

(b)  

Figure 17: Results w.r.t. MinFlows = 250. (a) Result map; (b) hierarchical cluster 

tree; (c) composition of each flow cluster 
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(c)  

Figure 15 continued  

 

Sensitivity analysis is conducted for the single parameter MinFlows. Table 2 is an 

overview of the test results. The second row reports how many flow clusters are extracted 

at each MinFlows value. For example, “3 (56)” means the algorithm extracts 56 clusters 

w.r.t. MinFlows = 3. Four clusters are detected w.r.t. MinFlows = 30, 50, 100, or 200, and 

three clusters w.r.t. MinFlows = 250. As seen, the number of clusters is consistent for 

MinFlows value from 30 to 200.  
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Table 2: Results of Flow HDBSCAN on Synthetic Flow Dataset 

Group 

No. 

Size % of clustered flow members when MinFlows =  

3 (56) 30 (4) 50 (4) 100 (4) 200 (4) 250 (3) 

1 1000 28.6 1.8 1.9 2.2 2.1 6.8 

2 200 48.0 26.0 26.0 25.5 23.5 100 

3 300 100 100 100 100 100 100 

4 200 100 100 100 100 100 100 

5 300 100 100 100 100 100 100 

6 600 100 100 100 100 100 100 

7 300 100 100 100 100 100 100 

8 100 47.0 0 0 0 0 0 

 

The main part of Table 2 lists the proportion of each group identified as member of any 

cluster, with respect to every MinFlows value. These statistics also reflect consistent results 

within a large parameter value range. Group 1 and Group 8 show similar patterns as both 

contain flows distributed randomly within a certain square region. The difference is that 

the longer flows of group 1 have a slight chance to join a cluster as false positive errors. 

While none of group 8 flows is detected as cluster when MinFlows value is equal or more 

than 30. It proves that Flow HDBSCAN overcomes the common false positive errors that 

may be caused by short flows. The statistics of the other groups are the same 100 percent 

of group members are detected as cluster. It verifies there is no false negative error. The 

only exception is group 2. Part of it forms clusters with other groups when MinFlows is 

equal to or smaller than 200. This was explained earlier as a choice made by cluster stability, 

rather than failure of detection.  
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As a simple sensitivity test, the sole parameter of Flow HDBSCAN, namely MinFlows, 

has been tested with multiple values. Within the range of 30 to 200, the results remain quite 

stable in terms of total cluster number and outcome within each group. Additional small 

clusters are detected when setting MinFlows very small, while fewer clusters are identified 

with a very high requirement of minimal cluster size. It shows that the algorithm is not 

sensitive to the changes of its sole parameters. In practice, the rule of thumb is to select an 

appropriate MinFlows value at a relatively small level. But it is always recommended to 

conduct sensitivity analysis.  

3.4.2 eBay On-line Trade Flow 

In order to test our method in a real situation and discover its practical usefulness, I 

further experiment with an eBay online trade flow dataset. The dataset contains 8,607 

transaction records of the first generation of iPhone in 2007 within the contiguous US states. 

The locations of all the sellers and buyers are available so that each seller-buyer pair can 

be viewed as an individual spatial flow. In terms of the flow direction, both buyer and seller 

can be seen as the origin or destination. In fact, sellers post their iPhone on eBay for sale 

in the form of an auction. By the time an auction is scheduled to end, usually a day or two 

after posted, the buyer who bid with the highest price can successfully purchase it. If the 

focus is the online transaction, then the buyers are seen as the origins as they transfer the 

money to the sellers. On the other hand, the merchandise itself, namely iPhone in this case, 

will be shipped by the seller to the buyer after the online transaction so that the actual 

spatial movements of cellphones start from the sellers. In this study, I set seller to buyer as 

the flow direction.  
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Figure 18a and Figure 18b show the distribution of sellers and buyers, respectively. 

Overall the patterns of their distribution are very similar. Both sellers and buyers locate 

heavily in the most populous regions such as the coastal areas, while remote regions have 

few or no activities. The difference between these two distributions is not obvious. But the 

buyers seem to locate according to a pattern that is slightly more spatially scattered than 

the sellers. The point distributions however offer very limited information about patterns 

of the flows, which the method designed in this study can help analyze and present.  

(a)    (b)  

Figure 16: Distribution of (a) sellers and (b) buyers 

 

Figure 19 shows the flow clusters extracted by Flow HDBSCAN for MinFlows = 30 

and FDS (Equation 10) as flow distance metric. There are in total 39 flow clusters and most 

of them are between big cities. More patterns are discovered with the flow length 

distribution as follows. 
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Figure 17: Map of eBay trade flow clusters 

 

The distances separating the seller and buyer are clearly not normally distributed 

(Figure 20a). In fact, it is flat at most distances but extremely high in very short distance 

range, which means that a lot of transactions happened within the city where the seller is 

located, even though it is online shopping. It also has some local peaks and this becomes 

obvious when short flows are filtered out. The peak at 300 km could be flows between 

cities on the east coast such as New York City and Boston or New York City and 

Washington, DC, while the peak near 4,000 km probably corresponds to coast to coast 

flows e.g. Los Angeles and New York City or San Francisco and New York City. 

To cancel bias brought by flow length thus avoiding false positive errors created by the 

massive short flows, FDS (Equation 10) is chosen as the flow distance metric. The result 

shows that flow clusters between iPhone supply and demand individuals can help reveal 

interesting patterns of these online eBay transaction activities. The length distribution of 
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clustered flows shown in Figure 20b validates that the peaks in Figure 20a are picked out. 

The three peaks of flow lengths correspond to the most popular location pairs of buyers 

and sellers in the US, i.e. two places within the same metropolitan area, two places of the 

same regions, and two places between East Coast and West Coast. This distribution reveals 

a unique pattern of online trade, that is its insensitivity to physical distance. Weak evidence 

has been found to support transferability of Ullman’s (1953) spatial interaction theory since 

the long physical distance does not seem to heavily impede clustered online trade flows.  

(a) (b)    

Figure 18: Distribution of length of (a) all flows; (b) clustered flows 

 

Another major functionality of Flow HDBSCAN, namely to reveal the data structure, 

is also validated in this experiment. The flow clusters (Figure 21a from New York 

metropolitan area (Tri-State Area) to San Francisco Bay Area (Bay Area) is chosen to 

discuss this aspect. The hierarchical cluster tree in Figure 21b shows that this cluster can 

be broken down into two smaller ones. Zooming onto the destination area (Figure 21c) it 

shows that the buyers are from two separate regions, i.e. the North Bay Area including San 

Francisco and Oakland, and the South Bay Area including San Jose and Santa Clara. 

Notwithstanding, the origins (Figure 21d) of these flows are concentrated around NYC. 

This means this hierarchy is caused by the two separated regions of buyers alone. 
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(a) (b)  

(c)             (d)  

Figure 19: Result flow cluster from Tri-State Area to Bay Area. (a) Map of flow cluster; 

(b) hierarchical cluster tree; (c) flow destinations at Bay Area; (d) flow origins at Tri-

State Area 

 

3.5 Summary and Future Directions 

This study developed an innovative spatial flow cluster analysis method called Flow 

HBDSCAN. The method is a combination of density-based clustering and hierarchical 

clustering methods and it is tailored to spatial flow data. It has the potential to be an 

effective tool of exploring massive spatial flow data. Experiments have been done with 

both a synthetic dataset and an eBay online trade dataset. The results demonstrate its 

capability to extract flow clusters and reveal hierarchical data structure at the same time.  

Compared with other related methods, Flow HBDSCAN has some clear advantages. 

First, it has only one parameter which is the minimum size of cluster. This avoids 

introducing many arbitrary parameters and it saves the dilemma of parameterization. In 
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addition, the experiment shows it is not sensitive to the choice of parameter value within a 

large range. Second, the method overcomes the difficulties brought by varying flow 

densities and flow lengths. It avoids potential false positive errors of mistaking short flows 

as clusters by using the Flow Dissimilarity (FDS) as flow distance metric. In addition, it is 

designed for individual flows with fine spatial resolution so that problems like MAUP, loss 

of spatial information, and uneven distribution or hoc zoning definition of flow endpoints 

do not exist. More importantly, the method can reveal the internal data structure of flow 

clusters. By visualizing the hierarchical cluster tree it provides the full information of 

identified clusters and their internal relationships, for example one flow cluster might be 

composed of several smaller ones. Moreover, an index called the cluster stability is 

designed to help decide which clusters as the final results.  

In terms of future work, one possible direction is to extend the current method from 

unsupervised clustering to supervised classification. By introducing the sample training 

process from the domain of machine learning, the method can be more pragmatically useful 

in real scenarios for example target on flow clusters of specific characteristics.  

3.6 Comparison with Hot-Flow Detection  

As stated earlier, Flow HDBSCAN has some overlaps in terminology with the hot-flow 

detection method namely Flow K-function introduced in the previous chapter, as they both 

center on spatial flow and cluster. Their methodological bases, however, are quite different. 

Flow HDBSCAN belongs to the family of spatial data mining, while Flow K-function 

stems from spatial statistics. Geovisualization techniques have been incorporated to both 

for better illustration of cluster results. Although they are different types of methods, they 

are within the common scope of exploratory spatial data analysis. This means that the two 



79 
 

methods share the common goal to explore spatial flow data, thus discovering interesting 

patterns, describing distributions, identifying outliers, and validating spatial effects such as 

spatial association and spatial heterogeneity. Therefore, they can be applied to the same 

dataset to obtain complementary findings. To shed light on their complementarity in joint 

applications as well as to deepen the understanding of their uniqueness, I produce the 

results of both methods on the same dataset and compare them side by side (Figure 22). 

The experiment dataset is the same one used in the previous chapter. It consists of 6,810 

motor vehicle theft-recovery flow events within the city of Charlotte, NC from 09/01/2008 

to 08/31/2014. Figure 22a and Figure 22b illustrate the result of Flow K-function and Flow 

HBDSCAN, respectively.  

(a) (b)  

Figure 20: Comparison between Flow K-function and Flow HDBSCAN. (a) local Flow 

K-function at scale of 0.05 w.r.t. Flow Dissimilarity and (b) Flow HDBSCAN w.r.t. 

MinFlows = 10 on the Charlotte motor-vehicle theft and recovery dataset  
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Despite that both results are visualized as clusters of flows in a map, it is necessary to 

clarify the difference on what those cluster results stand for. For short, Flow K-function 

detects clustering as a pattern of flow distribution, while Flow HDBSCAN groups flows 

into clusters based on similarity. More specifically, a clustered flow in Figure 22a means 

that vehicle theft and recovery event are significantly more likely to happen between its 

origin and destination or in their vicinity, with respect to the overall average. While flows 

of the same color in Figure 22b are the groups of nearby flows who satisfy the requirements 

of minimal cluster size and density level.  

By understanding the meanings of the flow clusters, the differences of the two sets of 

results can also be better explained. First, both methods have their own parameters or 

criteria. The choices of significance level, flow distance metric, size of detection window, 

and minimal size of a cluster are all important to the outcomes, even though in this case I 

customized the choices to produce results that would as similar as possible. Second, some 

areas in Figure 22b have more flow clusters than their counterparts in Figure 22a. This is 

because Flow HDBSCAN extracts and visualizes every member of a cluster, no matter the 

cluster size is ten or one hundred. On the other hand, Flow K-function uses a moving 

detection window technique such that every time the window centers at one flow while the 

algorithm counts the neighboring flows within it. In contrast with those big flow clusters 

detected by Flow HDBSCAN, fewer flows have enough amount of neighbors within its 

detection window to be statistically significant. This standard can be higher than the 

minimal cluster size adopted in Flow HDBSCAN, which explains a more scattered pattern 

in Figure 22a. Third, as a statistical method, Flow K-function considers edge effect while 

the other does not. That is why very few clustered flows are observed near the border of 
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the study area in Figure 22a. Fourth, Flow HDBSCAN has the advantage of visualizing 

clusters with different colors according to their unique identities. The differences on two 

sets of results shed light on the characteristics of these methods. A better understanding of 

their advantages and disadvantages can certainly help choose the better one to suit the 

context. In addition, it helps understand how these methods can complement each other if 

being used jointly.   

The key difference is that Flow K-function assesses the space while Flow HDBSCAN 

focuses on the flow events themselves. In analogy to the widely used hot spot detection in 

crime analysis, which assesses the distribution of point-based crime events and draws 

conclusion such as this type of crimes are more likely to happen near a commercial place. 

Hot flow detection assesses the distribution of spatial flow events, and obtains conclusion 

such like it is statistically more likely to observe such flow phenomena near a pair of 

locations. The inputs are flow events, while the conclusion is clustering pattern of the space, 

which can be the entire study area of local places, corresponding to the global and local 

version of Flow K-function. However, like any other statistic approach, the distribution of 

the population is essential as it serves the benchmark of clustering pattern. Although 

techniques such as Monte-Carlo simulation can be used to avoid biased results based on 

normal distribution, it is not intuitive especially for beginners to design an appropriate 

simulation test.  

 Flow HDBSCAN decides whether a flow event can be grouped with others which 

share similarity with it. If so, it identifies which group it belongs to. In contrast with Flow 

K-function, this technique is free from any assumption so that it is unaffected by abnormal 

population distribution. In addition to extracting clustered flows, it provides abundant 
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information including the identify of each cluster and the hierarchical data structure. 

Moreover, users can modify the sole parameter to interactively explore the data. The 

downside is that not all clusters results are meaningful and easy to interpret, since the 

algorithm returns all flow clusters that meet the criteria.  

To sum up, both methods are designed to explore spatial flow data. Flow K-function is 

more suitable to assess a long-term or large amount of spatial flow phenomena, as it 

measures the distribution pattern of the entire area or local places. Flow HBDSCAN works 

better on examining the data with no assumption at all. It is especially useful to focus on 

specific flow events, e.g. whether they have similar events happened nearby, and what is 

the structural relationship between them.  



 

 

 

CHAPTER 4: STUDY III. FLOWAMOEBA: IDENTIFY REGIONS OF ANOMALOUS 

SPATIAL INTERACTIONS AND CREATE A SPATIAL FLOW WEIGHTS MATRIX 

 

  

4.1 Overview 

This study aims at developing a data-driven and bottom-up method to identify regions 

of anomalous spatial interactions, based on which to create a spatial flow weights matrix. 

Benefiting from the ready availability of individual flow data with fine spatiotemporal 

resolution, this method offers a solution by identifying the origin and destination regions 

that capture anomalous spatial interactions happening in between. The core idea of the 

method is to extend the well-known method of identifying spatial clusters, namely A 

Multidirectional Optimum Ecotope-Based Algorithm (AMOEBA) (Aldstadt and Getis 

2006), to the context of spatial flow data. The method, dubbed FlowAMOEBA, starts from 

a “seed” flow to which neighboring flows are iteratively attached until the addition of any 

neighbor fails to increase (or decrease) the magnitude of the local spatial statistic, e.g. local 

𝐺𝑖
∗ statistic (Getis and Ord 1992; Ord and Getis 1995). The outcome is a cluster of high (or 

low) value flows, and their combined origin and destination regions are called a flow 

ecotope. This iterative process is repeated by assigning every flow as the “seed” flows 

across the study region. After resolving overlaps of all identified flow ecotopes, those that 

pass statistical significance test are preserved. Boundaries of the resulting flow ecotopes 

are delineated as regions of anomalous spatial interactions, regardless of the size, shape, 

scale, or administrative level. The second product of this method consists of a spatial flow 

weights matrix, which is derived from the identified flow ecotopes. The matrix is designed 
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not only on the basis of flows’ spatial relationships, but also spatial associations between 

flows within the same flow ecotope. One of its promising applications is to improve spatial 

interaction modeling by accounting for the common issue of network autocorrelation. The 

spatial contiguity relationships and growth rules are tailored for spatial flow data so that 

FlowAMOEBA can take advantage of the finest possible spatial resolution to represent the 

spatial context of interaction processes including shape, size, location, and topology. The 

method has the potential to dramatically change the way we study spatial interactions. First, 

it breaks the convention that spatial interaction data are always collected and modelled 

between spatial entities of the same granularity, as it delineates the OD region of anomalous 

spatial interactions. Second, the method creates an empirical spatial flow weights matrix 

that can handle network autocorrelation embedded in spatial interaction modeling, thus 

improving related policy-making or problem solving strategies.  

4.2 Motivations 

The major contribution of this study is to develop a novel method of identifying regions 

of anomalous spatial interactions. The method is a heavily data-driven approach as it lets 

the data speak for themselves. It adopts a bottom-up strategy to identify clusters of high (or 

low) value flows by delineating the boundaries of their origin and destination regions, 

regardless of the size, shape, scale, or administrative level. The usefulness of this method 

is twofold. First, it can serve as tool for exploratory spatial flow data analysis. Compared 

with Flow K-function and Flow HBDSCAN developed in the previous two chapters, this 

method is the only one that is capable of accounting for non-spatial attributes of flows in 

addition to the spatial elements. Therefore, the regions of anomalous spatial interactions 

identified by FlowAMOEBA not only reflect the spatial closeness of individual flows, but 
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the spatial association of the value carried by flows. As a bottom-up approach, 

FlowAMOEBA takes advantage of fine spatial resolution to delineate the boundaries of 

detected regions without restrictions of the size, shape, scale, or administrative level. 

Therefore, the results can potentially change our intuition that large volume of interactions 

always happen between predefined regions at the comparable level. For example in Figure 

23, a large number of migrants move from a certain region of city A (polygon filled with 

blue lines) toward city B and its surrounding areas (polygon filled with red lines). The 

traditional and intuitive way of migration study would collect data between city A (yellow 

circle) and city B (green circle), and model interactions with characteristics of the two cities. 

In contrast, FlowAMOEBA can be used to delineate the regions (polygons filled with lines) 

between which a large volume of migration actually occurs. The explored results can be 

further used to solve the uncertain geographic context problem (UGCoP) in spatial 

interaction context, known as studied geographical units that fail to address the contextual 

uncertainty of actual and dynamic sociogeographic processes (Kwan 2012).   

 

Figure 21: Comparison of predefined regions and detected regions by FlowAMOEBA 
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Second, the method can serve as a bridge between exploratory spatial data analysis 

(ESDA) and confirmatory spatial data analysis (CSDA) in the context of spatial flow data, 

i.e. the results of this ESDA method can be used to improve CSDA studies. The other result 

of FlowAMOEBA, namely the spatial flow weights matrix, can account for network 

autocorrelation, which is defined as the dependence of values of random variables 

associated with given flows on the values of the variables associated with other nearby 

flows (Black 1992). For example, a large number of tourists from a certain city to 

Yellowstone National Park may imply significant tourist flows from that city to the nearby 

Grand Teton National Park. Heavy traffic flows observed on a highway during rush hours 

may imply that equivalently heavy traffic is also likely to be observed on a nearby road 

parallel to the said highway. Similar to most quantitative studies with spatial regression 

models, spatial dependence exists as an inevitable issue that has to be solved in modeling 

spatial interactions, because it violates one of the key assumptions of those models that 

observations are independent to each other. Previous solutions include LeSage (2008) who 

proposed spatial weight structures that consist of three spatial connectivity matrices 

capturing origin, destination, and origin-to-destination dependence. Another approach is 

by using an eigenfunction-based filter for accommodating spatial autocorrelation effects 

within a spatial interaction model (Griffith 2007; Chun 2008; Chun and Griffith 2011). 

Using the spatial flow weights matrix derived by FlowAMOEBA can be a new solution. 

The idea is to use spatial weight structures of the identified flow ecotopes to capture the 

spatial dependence among flow data. The advantage of an approach based on 

FlowAMOEBA is that a single matrix suffices instead of three separate matrices. Moreover, 
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this solution does not require major modification of original autoregressive models and it 

is easy to understand.  

4.3 Method in Detail 

4.3.1 AMOEBA 

As the theoretical basis of this method, it is necessary to first introduce how AMOEBA 

works. AMOEBA (A Multidirectional Optimal Ecotope-Based Algorithm) was originally 

proposed in Getis and Aldstadt (2004) and Aldstadt and Getis (2006) as a spatial cluster 

identification method and a spatial weight matrix construction tool. In contrast to other 

cluster detection methods such as SaTScan (Kulldorff 1997), AMOEBA does not make the 

implicit assumption that clusters are circular and compact regions, which may allow for 

the inclusion of low-value spatial events in identified clusters of high values and vice versa 

(Duque et al. 2010). Instead, AMOEBA follows a bottom-up strategy to identify irregular-

shaped ecotopes of high/low values without having such false-positive error. It starts with 

one or more seed cell (spatial unit) to which neighboring cells are iteratively included until 

the maximum (or minimal) magnitude of the local spatial statistics, e.g. local G statistics 

(Getis and Ord 1992; Ord and Getis 1995) has been reached.   

For a given cell i, local G statistic 𝐺𝑖
∗ is defined as follows: 

𝐺𝑖
∗ = (∑ 𝑤𝑖𝑗𝑥𝑗

𝑁
𝑗=1 − �̅� ∑ 𝑤𝑖𝑗)

𝑁
𝑗1 𝑆√

𝑁 ∑ 𝑤𝑖𝑗
2−∑ 𝑤𝑖𝑗

𝑁
𝑗1

2𝑁
𝑗=1

𝑁−1
⁄                     (14) 

where 𝑤𝑖𝑗  are the spatial weights that reflect the proximity between cell i and 

cell j, N is the total number of cells (spatial units), 𝑥𝑗 is the value of the attribute at 

cell j, �̅� is the mean of all values, and  
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𝑆 = √
∑ 𝑥𝑗

2𝑁
𝑗=1

𝑁
− �̅�2                                                         (15) 

The nature of local G statistics is that it follows an asymptotical distribution as a normal 

N (0, 1). A positive (negative) value of 𝐺𝑖
∗ indicates the presence of a cluster of high (low) 

values of attribute x around cell i. The original AMOEBA algorithm (Getis and Aldstadt 

2004; Aldstadt and Getis 2006) works as follows: first it picks a seed cell i and calculates 

its 𝐺𝑖
∗ value. A positive (negative) 𝐺𝑖

∗ value indicates that the value of the attribute x at cell 

i is larger (lower) than the overall mean �̅�. Next, the algorithm tries to expand the ecotope 

in space from the seed cell. 𝐺𝑖
∗ statistic is calculated for every possible combination of 

neighboring cells of cell i. After each calculation, the new 𝐺𝑖
∗ is compared with the original 

value at seed cell. If the absolute value of the new 𝐺𝑖
∗ is larger, then such combination is 

considered meaningful and the neighbor(s) are included into the ecotope.  

The algorithm repeats this process for every neighboring cell of cell i and forms a stable 

ecotope by including only the neighbors that increase the absolute value of 𝐺𝑖
∗. Next, the 

included cells are considered as a new region (ecotope) and the above expansion process 

will be carried out based on it. The neighboring cells of this ecotope are included in the 

calculation to determine whether or not they will be included to a larger ecotope. This 

iterative process of identifying sets of neighboring cells that maximize the value of 𝐺𝑖
∗ is 

repeated until it fails to increase the absolute value of the 𝐺𝑖
∗ statistic by addition of new 

neighbors. By then a stable ecotope is identified with respect to the seed cell i.   

After the ecotope for each and every cell within the study area is identified, the 

algorithm keeps the non-overlapping ecotopes with the highest 𝐺𝑖
∗ values. A Monte-Carlo 
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simulation is performed to examine the statistical significance of each ecotope. The 

ecotopes (or clusters) that pass the significance level are reported as the final result.   

The original AMOEBA algorithm is a bottom-up and exhaustive approach designed to 

identify the high-valued or low-valued ecotopes, in other words, subsets of geographically 

connected cells within which all spatial units carry high/low value. Despite the brilliant 

idea and many advantages, its computational cost is so high that it cannot be practically 

applied to sizable datasets. The most time-consuming step is to test every possible 

combination of neighboring cells in order to expand the ecotope. For example, an ecotope 

with 20 neighbors requires 1,048,575 iterations to fully explore the search space (Duque et 

al. 2010). Later, Duque et al. (2010) proposed a constructive approach as the solution. They 

adjust the original local G function as Equation (16). 

𝐺𝑅
∗ = (∑ 𝑥𝑖 − 𝑛�̅�𝑖∈𝑅 ) 𝑠√

𝑁𝑛−𝑛2

𝑁−1
⁄                                             (16) 

The equation is almost identical to Equation (14), except that the local G statistic is 

calculated for the associated region, or ecotope, rather than one cell i. While expanding 

ecotope in space, this constructive AMOEBA approach first sorts the neighbors in the 

descending order based on their absolute value. Then it sequentially includes the neighbors 

to the ecotope and calculate the 𝐺𝑅
∗  as Equation (16). The inclusion process stops when 

adding the kth neighbor that cannot increase the absolute value of 𝐺𝑅
∗  anymore. Therefore, 

it saves the time of examining the rest of neighbors which have smaller absolute value than 

the kth one.  
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Compared with the original exhaustive search of all possible combinations, this 

constructive AMOEBA significantly improves the computing efficiency without losing 

optimality. The approach is packaged as an online Python library, namely clusterPy (Duque 

et al. 2011), publicly available to others. The FlowAMOEBA approach introduced in this 

paper is based on it. Most recently, AMOEBA has been further developed to suit the 

requirements of the big spatial data era (Aldstadt et al. 2012). For instance, Widener et al. 

(2012) developed a parallel computational implementation of AMOEBA which further 

boosts the computing efficiency and capability.  

4.3.2 Flow Neighbor Relationships 

To extend the AMOEBA algorithm to FlowAMOEBA, I consider each flow as a single 

object. A crucial step is to define the spatial relationship between flow events so as to 

regulate the ways of expanding from “seed” flows toward their neighboring flows. The 

principles to define this spatial relationship are straightforward: to well represent flow’s 

spatial relationships and to serve as reference for the algorithm to iterate the process of 

searching and calculation.  

In previous two chapters I have defined a set of flow distance metrics; here I choose to 

define spatial flow neighbor relationships based on contiguity. Please note that either 

distance or contiguity works, because they are both basic measures of spatial relationships. 

Distance can well handle point-based individual flows, while contiguity might be the better 

choice for zone-based aggregate flows. Given that FlowAMOEBA takes a bottom-up 

strategy, defining neighboring relationships boils down to assigning spatial weights 

between every two individual flows. The spatial weights are then used for deciding the 
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iteration process of searching and expanding from the “seed” flows. Taking the blue flow 

in Figure 24 as an example, several situations can be considered as follows.  

 

Figure 22: Different situations of flow neighboring relationship 

 

Situation (1): same origin and destination. For example, the origins and destinations of 

the dashed blue flow a’ in Figure 24 are the same as for flow a. In such case these two 

flows should be aggregated as a single flow first. The value carried by each flow should be 

aggregated accordingly as well, for instance to sum the number of migrants while 

aggregating migration flows that share the same origin and destination.  

Situation (2): same origin (destination) while destinations (origins) are neighbors. For 

example, either of the two green flows b in Figure 24 shares one same end zone with flow 

a, while their other end zone are adjacent. In this case, both green flows are regarded as 

neighbor of flow a and the spatial weight between them is set to wij = λ1 (λ1 > 0).  

Situation (3): both origins and destinations are neighbors. This also indicates the two 

flows are neighbors and the spatial weight between them is wij = λ2 (λ2 > 0). In Figure 24 
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the yellow flow c represents such situation where both origin and destination are neighbors 

of flow a.  

Situation (4): neither origins nor destinations are the same nor near neighbors. This 

means the two flows are not neighbors and their spatial weight is wij = 0. In Figure 24, the 

red flow d is not considered a neighbor of flow a if we derive polygon contiguity based on 

Rook’s Case. However, if Queen’s case is adopted, flow d is considered as neighbor of 

flow a, just like flow c.  

The situations discussed above are based on the contiguity relationship of the basic 

spatial unit that flows are aggregated into. This is of course not the only way to define flow 

neighborhood given that uncertainties remain regarding the choice of basic unit, for 

example rectangular or hexagonal grid cells, smallest possible administrative region, 

Thiessen polygons, etc. Also there are other ways to measure the relationship among basic 

units in addition to contiguity, such as distance and density. If one chooses to use other 

types of basic units or definitions of neighborhood, the same logic of categorizing 

situations into the above four can be applied. However, it is the goal of FlowAMOEBA to 

remove the dilemma of choosing the actual spatial interacting regions via taking advantage 

of the large volume and fine spatial granularity of individual flows.  

4.3.3 Growing Process of Flow Ecotope  

In this section I explain the growing process of a flow ecotope in space from the seed 

flow. Figure 25 shows a study area consisting of 25 spatial units (cells), and several spatial 

flows starting at cell 1.  
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Figure 23: Example of flows within a 5 × 5 grid cells 

 

Table 3 is an OD matrix summarizing all spatial flows within the region. The first 

column is the identifier of origin cell while the first row is the identifier of destination cell. 

Each entry in the matrix represents the value of a flow, for example flow from cell 1 to cell 

2, denoted as 𝐹1,2, has a value of 100. If the study application is migration, it means there 

are 100 migrants from cell 1 moving to cell 2. On the diagonal of the matrix the flow values 

are noted as ‘–’. This is because a flow cannot have both origin and destination at the same 

location. Theoretically, the maximal number of unique OD flows is n*(n-1) for inner-

region interactions (e.g. domestic migration within the U.S.), and n*n for cross-region 

interactions (e.g. international migrations from Mexico to the U.S.). In example of Figure 

25, there can be as many as 600 unique flows. However the actual total number of flows 

are usually much smaller than the theoretical maximum. For instance from 2010 to 2014 

there are 4, 073 county-to-county migration flows within North Carolina, in comparison 

with the theoretical maximum 9,900. For the whole contiguous U.S. there are only 419,775 
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unique county-to-county flows, in contrast with theoretical maximum 9,656,556. Therefore, 

except for the diagonal there are also other ‘–’ in the matrix, for example there is no flow 

starting from cell 1 and ending at cell 4. It means there exists no actual interactions between 

these two cells. 

Table 3: OD Matrix 

O\D 1 2 3 4 5 … 24 25 

1 – 100 15 – 30 … 120 150 

2 50 – 25 80 17 … 10 40 

3 12 15 – 77 – … 35 36 

4 19 56 33 – 150 … 15 – 

5 66 – 56 34 – … – 29 

… … … … … … – … … 

24 10 48 – 33 – … – 30 

25 70 37 189 66 – … 25 – 

 

The OD matrix can be further converted to a dictionary-like data structure by keeping 

only the non-zero flows. This is an effective strategy to reduce computer memory 

requirements, thus boosting computational performance. In the dictionary structure flows 

are represented in a form like (Oi, Di): xi and they are separated by comma. The tuple (Oi, 

Di) indicates the origin and destination of a flow and serves as the key of this flow element, 

while xi corresponds to the flow value. Thus the data look as follows:    

{(1, 2): 100, (1, 3): 15, (1, 5): 30, …, (25, 22): 15, (25, 23): 40, (25, 24): 10} 

Applying the spatial flow neighbor relationship introduced in the previous section, a 

spatial flow neighbor dictionary can be obtained. The dictionary is created for fast query 
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of the neighbors of flows; thus, it indicates the flow ecotope where to expand in the next 

step. In this dictionary, each element contains a flow and its neighboring flows in the form 

of (Oi, Di): [(O1, D1), (O2, D2), …, (On, Dn)]. The list inside the square brackets contains 

the neighboring flows of flow from Oi to Di.  For the case depicted in Figure 25, the flow 

neighbor dictionary looks like:  

 { 

(1, 2): [(1, 1), (1, 3), (1, 7), (2, 1), (2, 2), (2, 3), (2, 7), (6, 1), (6, 2), (6, 3), (6, 7)], 

(1, 3): [(1, 2), (1, 4), (1, 8), (2, 2), (2, 3), (2, 4), (2, 8), (6, 2), (6, 3), (6, 4), (6, 8)], 

… 

(25, 24): [(25, 19), (25, 23), (25, 25), (20, 19), (20, 23), (20, 24), (20, 25), (24, 19), (24, 

23), (24, 25)] 

} 

As stated earlier, AMOEBA starts from a seed cell and expands the cluster of high (low) 

values, also known as the ecotope, to the neighboring area. Similarly, FlowAMOEBA 

starts from a seed flow and expands the flow ecotope towards its neighbors. Next, I 

illustrate how the flow ecotope grows over space step by step. Figure 26a shows the initial 

status of the seed flow 𝐹1,25  with the blue cell and red cell representing origin and 

destination, respectively.  

The first step is to calculate the local G statistic for the seed flow with Equation (16). 

Obtaining the local G statistic value as 𝐺1,25
∗ = 1.5, which is positive and indicates that 

flow 𝐹1,25  carries a higher-than-average value. Accordingly, in the following steps the 

algorithm will try to include more neighboring flows in order to increase this statistic value.  

In the second step, the algorithm expands the flow ecotope towards the neighboring 

flows. Referring to the flow neighbor dictionary, the seed flow 𝐹1,25 has eight neighboring 
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flows, namely [𝐹1,20 , 𝐹1,24 , 𝐹2,20 , 𝐹2,24 , 𝐹2,25 , 𝐹6,20 , 𝐹6,24 , 𝐹6,25]. Since FlowAMOEBA 

inherits the features of the constructive AMOEBA (Duque et al. 2010; Duque et al. 2011), 

these eight neighboring flows are sorted in a descending order based on their flow value. 

The sorted neighboring flows become a queue as [𝐹1,24 , 𝐹6,24 , 𝐹6,25 , 𝐹2,20 , 𝐹2,24 , 𝐹6,20 , 

𝐹1,20, 𝐹2,25]. Next the algorithm picks the first neighbor 𝐹1,24 and merge it with the seed 

flow 𝐹1,25 as a flow ecotope. The local G statistic is then calculated for this new flow 

ecotope and the value is compared with the original 𝐺1,25
∗ . If the statistic becomes larger, 

then this neighboring flow 𝐹1,24 is considered contributive and is confirmed to be included 

to the flow ecotope. The same procedure is applied for the other neighboring flows one by 

one in the descending order. It stops when the local G statistic of the flow ecotope fails to 

increase by adding new flows. For instance after successful inclusion of the first three 

neighbors 𝐹1,24, 𝐹6,24, and 𝐹6,25, the expansion stops at 𝐹2,20. This means the algorithm has 

finished searching and expanding to the first-order neighbors of the seed flow. At this point 

the flow ecotope evolves in the status illustrated by Figure 26b, where both origin and 

destination include one additional cell.  

The expansion has not stopped yet. The same process as in the second step is repeated 

to search and include the second-order neighbors, namely the neighbors of neighbors. 

Again, the criterion for including any new flow is whether or not the local G statistic of the 

flow ecotope increases after inclusion. For instance, in this step some of the second-order 

neighboring flows are added and the flow ecotope now expands as Figure 26c.  
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This iterative and expansion process is repeated for new neighbors of the flow ecotope 

until it fails to increase the absolute value of the 𝐺𝑖
∗ statistic any more. By then a stable 

flow ecotope is identified with respect to the seed flow 𝐹1,25.  

(a)                                      (b)                                             (c) 

Figure 24:  Growth flow Ecotope with blue denoting origin and red denoting destination. 

(a) Seed flow; (b) Ecotope expands to first-order neighbors; (c) Ecotope expands to 

second-order neighbors 

 

The steps above illustrate how FlowAMOEBA works to extract a stable flow ecotope 

for a given seed flow. For flows with below-average value, the process is very similar, 

except that the goal is to minimize the local G value instead of to maximize. The same 

process has to be performed N times (N is the total number of flows). After the flow ecotope 

for each and every flow within the study area is identified, the algorithm keeps the non-

overlapping ecotopes with the highest 𝐺𝑖
∗  values. The next and the final step is to test 

statistical significance, which is discussed in the following section.  

4.3.4 Test Statistical Significance  

Given that AMOEBA is fundamentally a spatial statistical approach, a necessary step 

before drawing any conclusion is to test the statistical significance of the results. In the first 

method Flow K-function, I have discussed the importance of significance testing and 
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justified that Monte Carlo simulation is the appropriate way to carry out the test for spatial 

flows. However, the situation here becomes more complex than for the previous two 

methods. This is because FlowAMOEBA is designed for aggregate flows that carry 

nonspatial attributes. Except for flow’s spatial elements including endpoint locations, 

length, and flow direction, the nonspatial attribute value of flow is another critical variable 

to consider in the simulation process.  

Again, there is no unique way to simulate spatial flows for significance testing. Given 

that the aggregate flows have both spatial and nonspatial elements, there are at least three 

general ways to design the randomization of the simulation. An analogy can be adopted 

here to better describe the data: we can see the flows as jars filled with jam. The jars 

represent flow’s spatial elements, namely the vector line, and the jam represent the flow 

value. The first way is to control spatial elements the same while permutating the nonspatial 

attributes. This means that we keep all the jars unchanged, i.e. same sizes, shapes, and 

locations, but we permutate the amount in the jams and fill them in the jars randomly. The 

second way is the opposite, i.e. to control the nonspatial attributes the same but to 

randomize the spatial elements. In the jars and jam analogy, it means the amount of the jam 

in each jar stays unchanged, but the locations of jars are redistributed randomly. The third 

way is the combination of the previous two which means both spatial and nonspatial 

elements of flows are randomized.  

Here I do not conclude which way is the optimal choice, because it is the goal of such 

exploratory spatial data analysis method to reflect the respective underlying geographical 

processes and can also help us contemplate unknown ruling attributes contributing to the 

spatial pattern. The most reasonable simulation method is always the one that fits the 
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context the best. No matter which way is chosen to carry out the simulation, only those 

flow ecotope that passed the significance level are saved as the final ecotopes.  

4.3.5 Construct a Spatial Flow Weights Matrix  

Spatial weights matrix (W) is a classic notion in spatial modeling. It is particularly 

useful to account for spatial association in spatial regression models. Getis and Aldstadt 

(2004) reviewed over a dozen different types of W. They summarize that there are three 

kinds of representations behind the designs of spatial weights matrices. The first 

representation is a theoretical notion of spatial association, such as a distance decay 

function. A W can also be designed as a geometric indicator of spatial nearness such as 

polygon contiguity. And the last one is to construct a W as descriptive expression of spatial 

association within a set of data, such as empirical variogram functions. In the original paper 

of AMOEBA, Aldstadt and Getis (2006) create spatial weights matrix following the third 

kind of representation. The greatest advantage is to allow study data speak for themselves, 

as they create W based on the spatial associations identified by AMOEBA.   

Similarly, spatial flow weights matrix (Wf) created here is an empirical representation 

of network autocorrelation. It is derived from flow ecotopes identified by FlowAMOEBA. 

To create Wf, the first thing is to divide flows into two categories: those belong to a flow 

ecotope and those do not. The idea is that if a flow has spatial association with any other 

flow, it is certainly part of a flow ecotope because the smallest size of a flow ecotope is 

two. Therefore, to design Wf that can best capture spatial associations of the data, only 

those flow ecotope members need to be taken care of.   
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Taking the previous example, assume the flow ecotope shown in Figure 26c is the only 

one that passes significance test as identified by FlowAMOEBA, then only the flows origin 

from cell 1, 6, or 7, and end at cell 23, 24, or 25 have strong spatial associations with each 

other. Other flows such as 𝐹9,16 belong to no flow ecotope and their spatial weights equal 

zero. In the Wf matrix, each row lists the spatial weights between one flow and every other 

flow within the same flow ecotope. Using w [𝐹𝑖,𝑗, 𝐹𝑢,𝑣] to represent spatial weight between 

flow 𝐹𝑖,𝑗 and 𝐹𝑢,𝑣, in this example the row for 𝐹1,25 consists of w [𝐹1,25, 𝐹1,23], w [𝐹1,25, 

𝐹1,24], w [𝐹1,25, 𝐹6,23], w [𝐹1,25, 𝐹6,24], w [𝐹1,25, 𝐹6,25], w [𝐹1,25, 𝐹7,23], w [𝐹1,25, 𝐹7,24], and 

w [𝐹1,25, 𝐹7,25]. Wf is designed as row standardized which means the sum of weights in one 

row equals to 1. And the values of weights are assigned by the relative weighting scheme 

as follows.  

w [𝐹𝑖,𝑗 , 𝐹𝑢,𝑣] = 𝜌𝑖𝑗,𝑢𝑣 (𝐹𝐷𝑖𝑠𝑡𝑚𝑎𝑥(𝐹𝑖,𝑗) − 𝐹𝐷𝑖𝑠𝑡 (𝐹𝑖,𝑗 , 𝐹𝑢,𝑣))                (17) 

where 𝐹𝐷𝑖𝑠𝑡 (𝐹𝑖,𝑗, 𝐹𝑢,𝑣)  denotes the flow distance between flow 𝐹𝑖,𝑗  and 𝐹𝑢,𝑣 . 

𝐹𝐷𝑖𝑠𝑡𝑚𝑎𝑥(𝐹𝑖,𝑗) is the maximal distance from 𝐹𝑖,𝑗 to any other flow within the same flow 

ecotope. 𝜌𝑖𝑗,𝑢𝑣 is the parameter for row standardization. This design means within a flow 

ecotope, a smaller flow distance leads to a larger relative spatial weight between two flows.  

 In the previous section I have defined flow neighbor relationships based on contiguity 

of origin and destination regions. So the distance between two flows in this example means 

the moves from one flow to the other. For example 𝐹1,25 and 𝐹1,24 share the same origin 

and their destinations are one move away, so 𝐹𝐷𝑖𝑠𝑡 (𝐹1,25, 𝐹1,24) = 1. Similarly, I can 

obtain other distances for 𝐹1,25 such as 𝐹𝐷𝑖𝑠𝑡 (𝐹1,25, 𝐹6,24) = 2, 𝐹𝐷𝑖𝑠𝑡 (𝐹1,25, 𝐹7,24) = 3, 
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𝐹𝐷𝑖𝑠𝑡 (𝐹1,25, 𝐹7,23) = 𝐹𝐷𝑖𝑠𝑡𝑚𝑎𝑥(𝐹1,25) = 4.  With Equation (17) I can calculate the 

corresponding spatial weights, for instance w [𝐹1,25, 𝐹1,24] = 3/14, w [𝐹1,25, 𝐹1,23] = 2/14, 

w [𝐹1,25, 𝐹7,23] = 1/14, and of course the total weights for 𝐹1,25 equal to 1.  

As seen, spatial flow weights matrix is designed not only based on spatial relationships 

such as contiguity, but spatial associations between flows within the same flow ecotope. 

Compared with conventional spatial weights matrix based on pure spatial relationships 

such as contiguity, Wf excludes those spatially adjacent flows but with no explicit spatial 

association, for example w [𝐹1,25, 𝐹2,25] = 0. On the other hand, Wf takes into consideration 

of those spatial associated yet not directly adjacent flows, for example w [𝐹1,25, 𝐹7,23] = 

1/14.  

To incorporate Wf to spatial interaction models, I can modify the common model by 

adding a spatial lag variable as Equation (18). 

𝑦 = 𝜌𝑓𝑊𝑓y + 𝜌𝑜𝑋𝑜 + 𝜌𝑜𝑋𝑜 + αι𝑁 + γg + ε                    (18) 

where 𝑦 is the dependent variable or flow value. A spatial lag variable 𝑊𝑓y is added to 

account for spatial associations of flows, or known as network autocorrelation in the 

literature. 𝑋𝑜 and  𝑋𝑑 represent characteristics of flow origin and destination, respectively. 

𝜄𝑁 is the constant term. 𝑔 represents distance or flow length. 𝜀 is the error term. 𝜌𝑓, 𝜌𝑜 ,

𝜌𝑜 , 𝛼, and 𝛾 are the corresponding parameters.  
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4.4 Experiment 

4.4.1 Evaluation with Synthetic Data  

A synthetic dataset is created to test this method. As shown in Figure 27, I have 

designed two 10 × 10 lattices, with one as the flow origin area and the other as flow 

destination area, respectively. Flows are created in the way that each of them originates at 

one cell on the left and ends at another cell on the right. Technically, there can be up to ten 

thousand different OD pairs. To mimic reality, I create 2,000 unique flows with non-zero 

values. Out of these 2,000 flows, I assign a high value to 200 of them, a low value to 

another 200 of them, while the rest is assigned a medium value. For a medium-value flow, 

I randomly pick a cell in Figure 27a as the origin, and randomly pick another cell in Figure 

27b as destination (no redundant OD pairs). For anomalous-value flows, I design them as 

four groups, of which two are high-value and two are low-value. Figure 27 shows 

corresponding origin and destination cells of each group. The values are assigned following 

a process similar to the original AMOEBA paper (Aldstadt and Getis 2006), that is the high, 

medium, and low values are randomly assigned to each flow according to a normal 

distribution as N (150, 5), N (100, 5), and N (50, 5), respectively.  

Extreme situations are carefully crafted to test the capability of FlowAMOEBA in 

terms of delineating the boundaries of anomalous interacting regions constructed for the 

synthetic dataset. As shown in Figure 27, some of flows with extreme high or low values 

are assigned to four groups of corresponding concentrated OD regions. They serve as 

targets or baits of the test. Several thoughts are behind the design. First, they all come with 

irregular-shaped OD regions. This is common but essential to test the accuracy of most 

cluster analysis methods. Second, pitfalls of false-positive errors are embedded. For 
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instance the “holes” (cell with regular value) at origin cell 83 and destination cell 28 might 

be challenging to avoid being included as positive results. Third, overlaps of flow’s O/D 

regions are intentionally created to add more difficulties to the task. In the origin region, 

there are four cells, namely cell 23, 24, 33, and 34, belong to two groups of high-value 

flows at the same time. On the right side there is a more extreme case that cell 53 and 63 

are the destination cells of a group of high-value flow and a group of low-value flow 

simultaneously.  

(a) (b)  

Figure 25: Synthetic dataset. (a) origin grid cells; (b) destination grid cells 

 

FlowAMOEBA has been implemented on this synthetic dataset. Outcome of the 

approach is to add a group label to each of the 3,000 flows. By default flows with medium 

value are labeled as group 0, and extracted flow ecotopes of high (low) value are labeled 

as 1 (-1), 2 (-2), 3 (-3) … A 1,000-time Monte Carlo simulation is carried out to extract 

results at 0.1% significance level. 

The results show that FlowAMOEBA has successfully extracted the designed 

interacting regions of extreme high (low) flow value, namely flow ecotopes. In spite of 
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irregular shapes of these designed regions, no cell outside regions is mistakenly included 

as false positive error, neither is any cell inside designed regions omitted as false negative 

error. Two high-value flow ecotopes and one low-value flow ecotope are identified. Flows 

of group 1 that start from one of the origin cells {12, 13, 22, 23, 24, 33, 34} and end at one 

of the destination cells {17, 18, 19, 27, 29, 37, 38, 39} are extracted as ecotope 1. Flows of 

group 2 that start from one of the origin cells {23, 24, 33, 34, 35, 36, 44} and end at one of 

the destination cells {52, 53, 54, 62, 63, 64, 72, 74} are identified as ecotope 2. And flows 

of group 3 that start from one of the origin cells {58, 68, 77, 78, 79, 88} and end at one of 

the destination cells {53, 63, 73, 83, 84, 85} are labeled as ecotope -1. However, flows of 

group 4 that start from one of the origin cells {73, 82, 84, 93} and end at the destination 

cell {89} are not identified as flow ecotope by FlowAMOEBA.  

The results of this experiment demonstrate that FlowAMOEBA can accurately extract 

the actual spatial interacting regions under extreme circumstances. The irregular shapes of 

the designed targets have not been a problem as the boundaries of extracted flow ecotopes 

are precisely delineated. Overlaps of origin or destination regions of flow ecotopes are also 

resolved very well. This proves that FlowAMOEBA strictly follows the definition of flow 

neighborhood, which will not be affected if only one of the end regions overlapped in space. 

The “holes” inside target groups have not created false-positive errors or false-negative 

errors in the outcome. On one hand, destination cell 28 is not mistakenly included to flow 

ecotope 1. On the other hand, the normal value at origin cell 83 leads to the failure of 

detecting group 4 as a flow ecotope is also expected. The reason is that Rook’s case of 

contiguity rule is adopted to determine flow neighborhood in this experiment. Hence 

without high-value flow ending at destination cell 28, the other cells around it can still form 
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a connected region. But without a low-value flow starting at origin cell 83, the other four 

flows (73, 89), (82, 89), (84, 89), (93, 89) cannot be neighbors to each other. Accordingly, 

they cannot form as a larger interacting region and group 4 is not identified as flow ecotope 

by FlowAMOEBA. To verify this, a follow-up test is conducted. By modifying the value 

of flow (83, 89) to 50 (the mean of low-value flows), FlowAMOEBA detects the flows 

starting at one of the origin cells {73, 82, 83, 84, 93}and end at the destination cells {89} 

as a low-value flow ecotope. The result will also be different if using Queen’s case as the 

contiguity rule instead of Rook’s.    

4.4.2 Experiment with Migration Data  

To test how FlowAMOEBA can be useful in real-world applications, I choose to use 

county-to-county migration flow data. In recent years, the Carolinas, namely North 

Carolina (NC) and South Carolina (SC), have witnessed significant population growth. 

One reason is the large amount of inflow migrants. According to U.S. Census Bureau, 

during 2010 to 2014 there were 911,378 domestic residents moving in and 839,463 moving 

out of the Carolinas which results in 71,915 net inflow migrants. The top three most popular 

states of these migrants’ origin are New Jersey (NJ), New York (NY), and Pennsylvania 

(PA) which altogether contribute 42% of the total migrations to the Carolinas. In this 

application, I focus on the gloss migration flows from the NJ-NY-PA region to the NC-SC 

region (Figure 28). With FlowAMOEBA, interesting patterns can be extracted to show 

where exactly these migrants come from and where have they resettled, thus quantifying 

and locating the actual interacting regions.   

The raw migration data are downloaded from the website of U.S. Bureau of the Census. 

The basic spatial unit is the county. There are 150 counties in the origin NJ-NY-PA region, 
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and 146 counties in the destination NC-SC region. The raw data contain 2,356 unique 

county-to-county migration flows between these two areas, which accounts for 10.8% of 

the theoretical maximum number of OD pairs (150 × 146). For instance there is no person 

from Centre County, PA moving to York County, SC during these five years. 

FlowAMOEBA has been implemented with the actual amount of migration, as well as the 

ratios by accounting for impacts of population.    

 

Figure 26: County-to-county migration flow from NJ-NY-PA to NC-SC 

 

FlowAMOEBA is carried out using the Rook’s case contiguity rule to determine flow 

neighborhoods. Monte Carlo simulation is used to test statistical significance and it is 

designed to suit the context. As stated earlier, there are three general ways to simulate the 

situation of null hypothesis, i.e. randomize spatial elements only, randomize nonspatial 

attributes only, and randomize them both. Here I choose to randomize the nonspatial 

attributes only as the simulation strategy for two reasons. First, in migration study the 

emphasis leans to the distribution of flows’ attribute rather than the vector themselves. In 
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other words, it is of more interest to find abnormal number of migrants from one region to 

another than to find where migration can happen. Second, given the low percentage (10.8%) 

of non-zero OD pairs in the observation data, it would be implausible to randomly pair an 

origin county with a destination county, thus creating new OD flows. Because 89.2% of 

the chance a randomly generated OD pair carries no migration in reference to the raw data. 

Hence randomizing the spatial elements of flows (OD vectors) would not simulate a 

reasonable benchmark situation. As a result, I choose to simulate by randomly assigning 

migrants to the existing OD pairs.  

Setting the significance level as 0.001, five high-value flow ecotopes are extracted 

using actual amount of migrants from NJ-NY-PA to NC-SC. Figures 29 to 33 illustrate 

these flow ecotopes, with blue represents origin and red represents destination. Figure 29 

shows that there were many people from New York City and Long Island moving to 

Charlotte. This indicates concentration of migration flows from one major city to another, 

along with some spatial spillover effects.  

 

Figure 27: Migration flow ecotope 1 
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As the largest city in the Carolinas, Charlotte attracts migrants from other regions as 

well. Figure 30 shows concentrated migrations from Buffalo area to Charlotte area. This is 

an example of the smallest flow ecotope. It takes at least two neighboring flows with 

extreme value to form an ecotope with FlowAMOEBA. In this case, the destination for 

migrants from Buffalo contains Mecklenburg County and Lincoln County on its west. 

  

Figure 30: Migration flow ecotope 2 

 

Figure 31 is a very good example of how FlowAMOEBA deals with irregular shapes. 

The origin region of this flow ecotope concentrated at New York City. On the other side, 

the dumbbell-like are connects Columbia area and Charleston area as the whole destination 

region, which validates the strictness of the algorithm on controlling flow ecotope’s growth 

to include only the anomalous flows. 
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Figure 28: Migration flow ecotope 3 

 

Figures 32 and 33 show large flow ecotopes. The two origins are the most populous 

area on the East Coast, namely NYC-Newark-Philadelphia mega region, with some 

differences about the surrounding satellite cities. The destination in Figure 32 combines 

Raleigh-Durham-Chapel hill and Fayetteville metropolitan area. While the destination in 

Figure 33 connects Columbia, Wilmington, and Myrtle Beach as a whole. Although these 

cities are connected as a huge destination region, their actual connections are debatable. 

The corridor-like destination region in Figure 33 might be a counterexample of using 

contiguity to decide neighbor relationships, as geographic connection does not necessarily 

indicate actual tight connection between two places.    
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Figure 29: Migration flow ecotope 4 

  

Figure 30: Migration flow ecotope 5 

 

From this experiment with migration flows, some interesting patterns have been 

extracted. Comparing these results with common hypotheses of spatial interaction 

modeling, population’s influence is obvious but distance’s effect is not. Most flow ecotopes 

are between very populous regions as the heavily interacting regions contain one or several 

big cities and the surrounding area. Nevertheless, population is not the deciding factor. 
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Populous places such as Pittsburgh and Syracuse are not detected as popular origins, 

neither has Greenville-Spartanburg-Anderson been identified as popular destinations. 

Moreover, the formation of a flow ecotope is more than to identify places with large inflow 

or outflow migrants, but also how they pair with each other as origin-destination. On the 

other hand, there is no clear evidence to support distance’s effect, which is understandable. 

Given that migration happens once in a long period, traveling a few hundred miles more 

on the way is not a big concern in comparison with other compelling reasons like job 

opportunity.   

In order to account for population’s impact on migration patterns, further tests have 

been done with ratios. Three ratios called Ratio_O, Ratio_D, and Ratio_OD, have been 

designed by dividing amount of migrants by population of origin county (Equation 19), by 

population of destination county (Equation 20), and by population of both origin and 

destination counties (Equation 21), respectively.  

Ratio_O = # 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑛𝑡𝑠/ 𝑜𝑟𝑖𝑔𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛               (19) 

Ratio_D = # 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑛𝑡𝑠/ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛            (20) 

Ratio_OD =
# 𝑜𝑓 𝑚𝑖𝑔𝑟𝑎𝑛𝑡𝑠

(𝑜𝑟𝑖𝑔𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛∗𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
                   (21) 

Figure 34 shows the only flow ecotopes identified by FlowAMOEBA using Ratio_O. 

Compared with results directly using amount of migrants, distinct patterns are found by 

removing the impacts of origin population. The origin of flow ecotopes is Seneca County, 

the population of which was only 35,251 according to the 2010 census. And the identified 
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destination contains two counties near Charleston, which are not populous either though 

Ratio_O does not account for destination population.  

Figure 35 shows two flow ecotopes identified by FlowAMOEBA using Ratio_D. The 

results are similar with the ones in Figure 32 and Figure 33 to some extent. It implies weak 

impacts of destination population on migration patterns. In other words, large population 

of destination does not have an obvious positive relationship to destination attractiveness. 

This implication is also verified by the only result using Ratio_OD, which is exactly the 

same as the first one in Figure 34. Overall, patterns using ratios especially Ratio_O can 

better reveal the preferences of migrants. In confirmatory studies of migration, it is 

potentially useful to incorporate such result and spatial flow weights matrix derived from 

it to improve discovering, predicting, and explaining migration flows. 

 

Figure 31: Flow ecotopes identified with Ratio_O 
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Figure 32: Flow ecotopes identified with Ratio_D 

 

4.5 Summary and Future Directions 

Experiments with a synthetic dataset and with a migration dataset verified the 

functionality of FlowAMOEBA and depicted its characteristics. There are several clear 

advantages of this novel method. First and most importantly, it can delineate regions of 

anomalous spatial interactions. Irregular shapes, overlaps of origin or destination regions, 

as well as false-positive errors and false-negative errors can be successfully overcome. 

Second, the method is developed based on well-accepted concepts and functions. Flow 

neighbor relationships are defined based on standard Rook or Queen contiguity, and the 

core function adopts the widely-used local G statistics. Third, the extracted ecotopes are 

labeled unambiguously to separate one from another. High-value ecotopes and low-value 

ones can be easily differentiated as well. Fourth, some designs enable the method to 

suitably fit the context of larger datasets. The dictionary data structure helps avoid huge 

memory cost of zero-value OD pairs, which in many cases are the vast majority. Adopting 

ideas of developed AMOEBA, namely constructive AMOEBA (Duque et al. 2010), can 

also dramatically lighten the computation. Flexible simulation strategies tailored for 
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different scenarios guarantee its applicability to more domains. Last but not least, a spatial 

flow weights matrix is created based on the identified flow ecotopes. And it has great 

potential to handle network autocorrelation embedded in spatial interaction modeling. 

However, some limitations are discovered. While contiguity is easy to understand, 

sometimes it can create problem just like the example in Figure 33. Fortunately, there exist 

other options such as distance to build up flow neighborhood. Another shortcoming is the 

modifiable areal unit problem (MAUP) exists. Choosing the basic spatial unit is always 

tricky. Setting unit too big cannot take advantage of this bottom-up method, while using 

very small unit is not necessarily the best as the results might be too scattered.  

In terms of future directions, there are two general directions. One is to improve the 

method itself and the other is to expand application domains. To integrate the latest 

geocomputation and geovisualization techniques is a natural extension. For instance to 

boost computation efficiency of the algorithm by processing the ecotope search at multiple 

seed flows in parallel. Interactive maps can help clarify final results with heavy overlaps. 

Furthermore, it is of great interest to conduct empirical studies to test how and to what 

extent that spatial flow weights matrix can improve current spatial interaction models by 

addressing network autocorrelations.  

Applications with massive individual spatial flows is a promising direction. For 

example, to analyze human movement data obtained from smart fitness devices and ride-

sharing system will lead to deeper understanding of mobility in a complex urban system. 

Beyond interactions in a physical space, interactions happening in a virtual or 

communication space is also a bright area of future application. For instance to apply 
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FlowAMOEBA to extract heavily interacted cyber community embedded in social 

networks has great potential to reveal the information spreading mechanism on social 

media platforms. 

  



 

 

 

CHAPTER 5: CONCLUSIONS 

 

  

This dissertation research developed three novel methods of the same subject matter, 

namely exploratory spatial flow data analysis (ESFDA). These newly developed methods 

can serve as means for effectively exploring massive new flow data, thus they make unique 

contributions to the literature. More importantly, they are responses to the challenges and 

opportunities brought by the recent data revolution, which has significantly enriched spatial 

interaction data in terms of accessibility, types, volume, and spatiotemporal granularity.  

Given the common theme of ESFDA, these three methods share some characteristics. 

First, “cluster” is a common keyword to describe their functionalities, though it has 

different interpretations in each method. The first method Flow K-function is designed for 

detecting “hot flows”. In other words, it can detect the local spatial clustering patterns of 

individual flows. Therefore “clustering” here means a spatial distribution pattern such that 

flows are statistically more likely to locate close to each other in space, as oppose to random 

or dispersed distribution. While “cluster” in the second method Flow HDBSCAN means 

group of flow objects that are similar to each other in terms of their spatial characteristics 

including location, length, and direction. Unlike the spatial statistical approach Flow K-

function, which needs the distribution of the population as the benchmark to reach a 

conclusion about the existence of a cluster, Flow HDBSCAN is free from any assumption 

or null hypothesis given its root in spatial data mining. With respect to the third method 

FlowAMOEBA, “cluster” reflects similarity not just in space, but in nonspatial attributive 
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dimension as well. The identified regions of anomalous spatial interactions, also called 

flow ecotopes, are clusters of high (or low) value flows. Compared with the previous two 

methods, it not only reflects the spatiotemporal closeness of individual flows, but the 

spatial association of the nonspatial attribute carried by flows.  

Beside the common keyword of “cluster”, another important aspect is that they all take 

advantage of fine spatial resolution of flow data. For instance, a set of spatial proximity 

measures has been designed for flow data by integrating endpoint location, length, and 

direction. The measures can assess both intra-relationships and inter-relationships of flows 

and play an important role in Flow K-function and Flow HDBSCAN to overcome issues 

like MAUP. The bottom-up strategy adopted in FlowAMOEBA is another way to benefit 

from fine spatial resolution. The strategy guarantees that the boundaries of anomalous 

interacting regions delineated by FlowAMOEBA are free from restrictions of size, shape, 

scale, and administrative level, no matter how irregular the final regions look like.  

Of course, each of these methods holds its own uniqueness. Flow K-function upgrades 

the classical hot spot detection method to the stage of “hot flow” detection. Hence it fills 

the gap that there is no such spatial statistical approach to detect local spatial distribution 

patterns of flow data, despite abundant methods for point and polygon data. Moreover, it 

can be easily adjusted to detect the global patterns of the entire study area as well. Flow 

HDBSCAN is unique in the way that it combines hierarchical clustering and density-based 

clustering. Therefore, it inherits the strengths of density-based methods that it can extract 

flow clusters in various situations, including varying flow densities, lengths, and 

hierarchies. On the other hand, it inherits the advantage of hierarchical cluster analysis 

methods to reveal the hierarchical structure of extracted clusters if there is any. In addition, 
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its sole-parameter design guarantees its ease of use and flexibility to explore the data 

interactively. FlowAMOEBA stands out as the first method to delineate anomalous spatial 

interacting regions, to the author’s best knowledge. It not only offers a way to identify a 

cluster of high (or low) value flows, but it also creates a spatial flow weights matrix that 

can potentially improve spatial interaction modeling by accounting for the common issue 

of network autocorrelation.  

These methods are not without limitations. Like any other statistic approach, the 

population distribution is essential to Flow K-function as it serves as the benchmark of 

clustering pattern. Although techniques like Monte-Carlo simulation can be used to avoid 

biased results, it is not intuitive especially for beginners to design an appropriate simulation 

test. Flow HDBSCAN provides an alternative way to explore flow data without any 

assumption or null hypothesis. However, not all extracted clusters are meaningful and easy 

to interpret, since the algorithm returns all flow clusters that meet the criteria. For the last 

method FlowAMOEBA, the modifiable areal unit problem (MAUP) exists, as setting the 

basic spatial unit too big cannot take advantage of this bottom-up method, while using very 

small units is not necessarily the best as the results might be too scattered. 

This research also indicates that exploratory spatial flow data analysis (ESFDA) is a 

promising direction of research. In the future, I propose to build on this foundational work 

to enhance the ability to analyze massive data sets in ways that leverage the respective 

strengths of spatial analytical, spatial data mining, and visual analytical traditions. As 

spaces and places are created by relationships (in most respects analogous to flows), multi-

scalar space-time modeling of relational entities will remain a critical priority across 

various sciences. 
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