
GOODNESS-OF-FIT TESTS UNDER PERMUTATIONS

by

Chen Chen

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2019

Approved by:

Dr. Zhiyi Zhang

Dr. Jiancheng Jiang

Dr. Jun Song

Dr. Weidong Tian



ii

c©2019
Chen Chen

ALL RIGHTS RESERVED



iii

ABSTRACT

CHEN CHEN. Goodness-of-Fit Tests Under Permutations. (Under the direction of
DR. ZHIYI ZHANG)

Several new goodness-of-�t tests are proposed on countable alphabets, where cer-

tain fundamental statistical concepts associated with random variables, such as cu-

mulative distribution functions, characteristic functions and moments, may not exist.

An entropic perspective by ways of the entropic basis, derived from the well-known

Turing's formula, is introduced. A new characterization theory of probability distri-

butions on alphabets is established by means of the entropic basis. Based on this

logic framework several goodness-of-�t tests are developed.

Toward developing the new goodness-of-�t tests, a one-to-one correspondence be-

tween a given probability distribution and its entropic basis is �rst established. In

case the cardinality of underlying distribution is �nite, say K, the �rst K entropic

moments uniquely determine the underlying probability distribution up to a permu-

tation on the index set. For each of the entropic moments, a uniformly minimum

variance unbiased estimator (UMVUE) is introduced. Based on the sampling distri-

bution of the UMVUEs of the entropic moments and the multivariate delta method,

two new Chi-squared goodness-of-�t tests are constructed and their asymptotic distri-

butional properties are established in theory. However, it is also observed that these

new tests are di�cult to implement numerically. To alleviate the computational dif-

�culty in implementation, a heuristic exact test for goodness-of-�t is proposed. The

performance of the proposed tests is evaluated by simulation studies under a range

of distributions. The new tests are also illustrated in several real-life applications.
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CHAPTER 1: Introduction

1.1 Alphabet

Let X = {`k; k ≥ 1} be a countable and categorical set, where each category is

assigned with a label `k for some k. In many information theory literatures, sample

space in this kind is referred to as an alphabet, and those labels are called letters [1].

Let p = {pk; k ≥ 1} where pk > 0 for every k, be a probability distribution associated

with X . Let S = {Xi; i = 1, · · · , n} be an identically and independently distributed

(i.i.d.) sample of size n drawn from X under p. Let the sample data be summarized

into frequencies Y = {Yk; k ≥ 1} and relative frequencies p̂ = {p̂k = Yk
n

; k ≥ 1}.

By using the name alphabet, as opposed to the usual sample space where random

variables reside, we emphasize that, under the consideration of this dissertation, no

metric is required nor imposed. All letters don't have to be numeric, not even or-

dinal, and can be purely nominal just like �labels�. The central concept of modern

probability theory and statistics is random variable, which is a measurable function

that maps the sample space into a real space. But if the sample space can not be

properly metricized, then a random variable can not be well-de�ned, consequently

many usual statistical concepts such as cumulative distribution functions, character-

istic functions, and moments no longer exist. Theoretically, one may manually assign

a numeric order to letters or use dummy variables, but that doesn't make too much

sense for interpretability.

This kind of issues are becoming more and more common in modern data science,

as we're facing many challenges due to data uncertainty, data complexity, high di-

mensionality, and so on. In many cases, it might be hard to completely determine

the sample space or sample indexes before you see the data. The fundamental rea-
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son is lack of knowledge, either current knowledge or newly generated. As the data

generating process is much extended, convoluted and �nally complicated, the sample

space structure would be unknowable. Moreover, the dimensionality, the cardinality

of each dimension, the data type and eventually the whole sample space can dynami-

cally change over time. In addition, when dealing with qualitative data like personal

names, it is almost impractical to �nd a totally prescriptive and meaningful numeric

metric. However, probabilities, or proportions of all letters can always be de�ned,

without using any metric or concepts like random variable. All those situations se-

riously challenge the usual sample space settings, and promote us to de�ne a more

loosely structured and more generalized sample space, ie., an alphabet.

Another noteworthy property of alphabet is that, it is dimensionless. Humans like

to use L2 metric since we live in a three-dimensional space and are very familiar with

Euclidean distance. However, when dimensionality increases to a million or billion

level, many fundamental concepts including Euclidean distance become meaningless,

or non-existent, as the ghost of sparsity and counter-intuitiveness always come along

with high dimensionality, aka. curse of dimensionality [2]. In real spaces, the Carte-

sian product of a K1-dimensional sample space and a K2-dimensional sample space

will make a new K1 ·K2-dimensional space. When the system keeps involving more

and more variables, the curse of dimensionality almost surely happens, not to mention

the in�ation from dummy variables. Whereas, if you join a K1-categorical alphabet

with a K2-categorical alphabet, you still get an alphabet, with K1 · K2 categories.

But the 2 marginal alphabets and the joint alphabet Alphabets, along with all alpha-

bets de�ned as such, are all one-dimensional, or dimensionless, as we don't assume

any metric nor coordinate structure. Alphabets preserve a degenerated dimensional-

ity under cross product, by means of converting extra dimensionality into additional

cardinality.

Now we have an alphabet as the sample space, one can de�ne a variable that
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randomly takes values on the alphabet as a random element (as opposed to a usual

random variable). The collection of all possible values of a random element, together

with the probabilities for each value, is called a probability distribution on the alpha-

bet.

1.2 Goodness-of-Fit Test

When given a probability distribution and a random sample, a very basic objective

in statistics is to check that, does this sample come from this distribution [3]. Mea-

sures of goodness-of-�t typically summarize the discrepancy between observed values

and the expected values under a given distribution. A goodness-of-�t test is a statis-

tical hypothesis testing method that examine whether the given distribution is suited

to a sample. Goodness-of-�t tests play an important role in many areas like data

mining and model validation, and are usually the �rst and last steps in modeling.

This question can be stated in formal mathematical language as follows. Let p =

{pk; k ≥ 1} be a probability distribution on X , with pks all unknown. Let S =

{Xi; i = 1, · · · , n} be an i.i.d. sample of size n drawn from X under p. Let q =

{qk; k ≥ 1} be another probability distribution on X , with qks all pre-speci�ed and

known. The goodness-of-�t test is to check the hypothesis:

H0 : p = q vs. Ha : p 6= q (1.1)

based on sample data S. In classical statistics, many goodness-of-�t tests have been

proposed, for example, Kolmogorov-Smirnov test [4], Anderson-Darling test [5], Pear-

son's Chi-squared test [6], Multinomial test [3], G-test [7], etc. Most of those well-

known tests work well under certain assumptions, in the usual sample spaces.

1.2.1 Issues of Classical Tests

However, it can be quite di�erent and challenging to test goodness-of-�t on alpha-

bets, mainly due to two issues.
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The �rst problem is about metric. Let's look at the statistic of Kolmogorov-Smirnov

test,

D = sup
x
|Fn(x)− F (x)| (1.2)

and that of Anderson-Darling test,

A2 = n

∫ ∞
−∞

(Fn(x)− F (x))2

F (x) (1− F (x))
dF (x) (1.3)

where F (x) is the cumulative distribution function of underlying distribution q, and

Fn(x) is the empirical distribution function of given sample S of size n. It is clear

those two statistics wholly rely on cumulative distribution functions. However, as

we stated above, a numeric order as well as a valid cumulative distribution function

can not be guaranteed on alphabets. As a result, those tests based on CDF may not

work. Even manually assigned a metric or numeric order to all letters, it may not

serve the testing purpose well due to issues such as continuity or scale.

The second situation is about linkage, or more precisely, the (pairwise) linkage

between a random sample and the underlying distribution. Again, let us look at the

statistic of Pearson's Chi-squared test,

χ2 =
K∑
k=1

(Yk − Ek)
Ek

2

(1.4)

and that of G-test,

G = 2
K∑
k=1

Yk · ln
(
Yk
Ek

)
(1.5)

where Ek = n · qk is the expected frequency for letter `k under distribution q. As

we can see, those two tests work only when each pair of Yk and Ek is one-to-one

matched, ie., they need a perfect pairwise linkage between the sample and underlying

distribution. If we don't have enough information about this linkage, then all such

kind of tests no longer work. One may wonder does this issue really happen in
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practice, the answer is yes. For your understanding, let's consider the following two

scenarios.

Scenario 1. The linkage is well-de�ned, but our sample data set is incomplete or

damaged. We only have a set of frequencies that counting from di�erent letters, but

we don't clearly know which frequency is for which letter.

Scenario 2. The linkage can not be pre-speci�ed before the random experiment.

For a simple example, consider drawing n chips from a box containing chips of K

di�erent colors, distinguishable but unspeci�ed colors. In this case, an assignment of

which k is which color is not possible, and is not necessary for the experiment to be

carried out and data collected.

In classical statistics, before an experiment is conducted, the sample space is often

completely prescribed, that is, every possible outcome of the experiment is completely

describable and identi�able when observed. This speci�city of sample space is relaxed

in di�erent ways and to di�erent degrees in some situations of modern data science,

partially inspired by the empirical Bayesian school of thought and partially due to

the data uncertainty and high dimensionality. The said speci�city, or the lack of it,

could vary over a wide spectrum. To put this argument in a broader perspective, one

may view many statistical problems in modern data science as those with countable

discrete sample spaces, non-metricized, non-ordinal, not completely prescribed (ie.,

alphabets), but with distinguishable elements (ie., letters). This is another important

reason why we introduce alphabet and letter concepts at the beginning, rather than

using usual sample space settings.

The metric issue and linkage issue are real instances of the challenges classical

statistics has been facing in modern data science, and we will introduce you how to

handle such situations on alphabets, from a new perspective.
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1.3 A Weaker Hypothesis

As we discussed in previous section, the original hypothesis in (1.1) become untestable

when necessary information such as linkage is missing. But we can still make some

inferences similar to the original goodness-of-�t testing on alphabets. Let's consider

an alternative hypothesis:

H0 : p↓ = q↓ vs. Ha : p↓ 6= q↓ (1.6)

where the sub-index ↓ denotes a decreasingly ordered probability distribution, ie.,

p↓ = {p(k); k ≥ 1}, as p(1) is the maximum of all pks, p(2) is the second largest, so and

so forth. Similar notations are also de�ned for q↓. For a probability distribution p

on alphabet X , p↓ is named as the corresponding entropic probability distribution,

and will be introduced with more details in Section 2.1.

An instant bene�t of the hypothesis in (1.6) is that, it doesn't su�er from metric

issue. Since all pks, as probabilities, are real numbers between 0 and 1, they can

always be well and easily ordered, that means p↓ always exists, no matter the letters

are ordinal or not. Moreover, p↓ is invariant under permutations on the index set, and

its construction doesn't require any pre-speci�ed metric. In this regard, all statistical

methods that can test the hypothesis in (1.6) are called goodness-of-�t tests under

permutations, which is the focal point of this dissertation. For linkage issue, it's due

to the pairwise construction of test statistic, and can be handled if we choose some

ensemble measures of distance as new statistics.

Noting that p↓ = q↓ is a weaker statement than p = q, in the sense that the

latter implies the former but not vice versa. This can be also viewed as a generalized

hypothesis, in the sense that we no longer focus on a single distribution p, but on a

family of di�erent distributions, all of which share the same p↓.

It's worth to mention that, we propose several new goodness-of-�t tests mainly
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to overcome the metric issue and linkage issue on alphabets, but those new tests

also work for numerical variables and samples carrying on linkage information. More

interesting, the new tests perform even better than traditional tests when they both

work, especially when sample size n is relatively small as compared to distribution

cardinality K.

This dissertation is organized as follows. In Chapter 2, we introduce the entropic

probability distribution and the entropic moments, prove the one-to-one correspon-

dence between entropic distribution and entropic basis, and give sampling distribution

of entropic moments estimators. In Chapter 3, we present the main results of this

dissertation, including the construction of two new Chi-squared goodness-of-�t tests

and a heuristic test, with both theoretical analysis and simulation studies. In Chapter

4, two real data examples are demonstrated. In Chapter 5, we introduce an R package

�Entropic�, which provides core functions to implement entropic perspective related

computations. Some detailed simulation results, additional data and descriptions are

provided in Appendix.



CHAPTER 2: Entropic Perspective

2.1 Entropic Probability Distribution

As discussed in Section 1.2.1 (Scenario 2) and Section 1.3, when the sample space

indexes are not pre-speci�ed, the mere notion of p = {pk; k ≥ 1} is not well-de�ned,

but p↓ is and hence a legitimate object for inference. For a probability distribution

p = {pk; k ≥ 1} on alphabet X , we de�ne the decreasingly ordered probability

distribution p↓ = {p(k); k ≥ 1} as the corresponding entropic probability distribution.

With the notation of p↓, the utility of the hypothesis in (1.6) is seen more readily

in an alternative form. Consider the family of all functionals, denoted F , such that

each of its members, denoted F , satis�es F (p) = F (q) if and only if p↓ = q↓. The

hypothesis of (1.6) can then be equivalently represented by

H0 : F (p↓) = F (q↓) for all F ∈ F vs.

Ha : F (p↓) 6= F (q↓) for some F ∈ F (2.1)

In modern data science, the energy in a random data �eld is often summarized by

functionals of p↓ that are invariant under permutations on on the index set {k; k ≥ 1}.

For example, in information theory, many types of information are summarized by

functionals such as Shannon's entropy [8] or mutual information [9]; and in ecology,

the concept of diversity is often measured by functionals such as Rényi's entropy or

Simpson's index. To see a list of such indices, one may refer to Zhang and Grabchak

(2016) [10]. Each particular functional represents a particular perspective to an un-

derlying interest, which varies from situation to situation. The family F represents

the totality of all such symmetric tensors. A non-rejection of H0 in (2.1) indicates
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a lack of evidence for a shift with any F ∈ F , while a rejection would encourage

further research into identifying �ner features of the di�erence between p and q. The

hypothesis in (2.1) is a general hypothesis, paralleling the logic structure of the F -

test in detecting di�erences among multiple treatment e�ects in a classical ANOVA

setting.

2.2 Entropic Moments

Let p be a probability distribution on X . For any positive integer u, let

ηu = ηu(p) =
∑
k≥1

puk (2.2)

be referred to as the uth entropic moment [10].

Lacking natural metricization and hence usual moments, the associated probability

and statistics theory on alphabets could rely on information measures such as entropy,

mutual information, and Kullback-Leibler divergence, which are all functions of a

sequence of entropic moments of varying order. Entropic moments essentially o�er

a re-parameterization of underlying distribution p. Every entropic moment contains

information about the entire distribution and not just one or several frequencies. This

helps to deal with unobserved data and to recover unseen information, and hence plays

an important role in estimation of entropy, mutual information, diversity indices and

other informational functions [1]. It can be easily veri�ed that, all entropic moments

are invariant under permutations on the index set, ie., they are all symmetric tensors,

and this fact indicates they can contribute to resolving the linkage issue in goodness-

of-�t tests.

In next section, we will show that the entropic moments collectively characterize the

entropic probability distribution on the alphabet, and hence provide an opportunity

to develop statistical procedures for related inferences.
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2.3 A New Characterization Theory

Zhang and Zhou (2010) [11] gave this result:

Lemma 1. Let p and q be two probability distributions on the same countable alphabet

X . Then p↓ = q↓ if and only if ηu(p) = ηu(q) for all integers u ≥ 1.

It is stated that for any probability distribution p = {pk; k ≥ 1}, including those

with countably in�nite pk > 0, {ηu;u ≥ 1} uniquely determines p↓. In fact, it can

be shown that any tail of the in�nite sequence {ηu;u ≥ u0} for any �xed u0 ≥ 1,

uniquely determines p↓. Now we see all entropic moments collectively characterize

probability distributions on alphabets.

When the cardinality K of the distribution is �nite, we have a similar but stronger

result, as stated in the following theorem. Let the �rst K entropic moments, η(p) =

{ηu(p);u = 1, · · · , K} be referred to as the entropic basis.

Theorem 1. Let p and q be two probability distributions on the same countable

alphabet X , with the same �nite cardinality K. Then p↓ = q↓ if and only if η(p) =

η(q).

Theorem 1 says the �rst K entropic moments are already su�cient to uniquely

determine p↓, under a �nite cardinality. It consequently justi�es the following hy-

pothesis as an equivalent form of (1.6), also a speci�c instance of (2.1):

H0 : η(p) = η(q) vs. Ha : η(p) 6= η(q) (2.3)

ηu = η(u) =
∑

k≥1 p
u
k may be viewed as a characteristic function or a moment

generating function, in the sense that η(p) is obtained by being evaluated at positive

integer values of u. η(p) may also be viewed as a re-parametrization of p↓, and

the re-parametrization has fundamental implications beyond the scope of this article.
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Interested readers may refer to Zhang (2018) [12] and Molchanov, Zhang and Zheng

(2018) [13] for additional details.

As we introduced in Section 2.1, functionals of p↓ are often of interest in modern

data science. For example, Shannon de�ned self-information to be associated with a

distinguishable event `k as − ln pk, an information quantity not associated with the

description (numerical or otherwise) of the event itself but only of its probability.

Furthermore, on such sample spaces, the usual notions of moments are non-existent

and therefore many classic theories of probability and statistics are no longer useful.

However the notion of entropic moments provides a new characterization of the un-

derlying p↓. In short, the entropic basis, {ηu;u ≥ 1}, has theoretical implications in

its own right.

The complete proof of Theorem 1 can be found in Appendix A.1.

2.4 Estimation and Sampling Distributions

The core support to the inferential procedure to be proposed in the subsequent text

is the existence of an unbiased estimator of ηu =
∑

k≥1 p
u
k for every positive integer

u ≤ n (sample size),

Zu =
∑
k≥1

[
1[p̂k≥u/n]

u−1∏
j=0

(
Yk − j
n− j

)]
(2.4)

This fact is established by the U-statistic construction of Zu estimators [11], since ηu

are symmetric tensors of pks. Furthermore, when the cardinality K of probability dis-

tribution is �nite, Zu is a uniformly minimum variance unbiased estimator (UMVUE)

of ηu for all u ≤ n. Since Zu is unbiased, by the Lehmann-Sche�é theorem, it su�ces

to note that {p̂k} is as set of complete and su�cient statistics under p [1].

The U-statistic construction also paves the path for establishing asymptotic nor-

malities [14]. Noting η1 = Z1 = 1, let Z∗ = (Z2, Z3, · · · , ZK)ᵀ and η∗ = (η2, · · · , ηK)ᵀ.

The following theorem gives asymptotic distribution of entropic moments.
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Theorem 2. For any given p = {pk; k = 1, · · · , K} satisfying pk > 0 for each k,

√
n(Z∗ − η∗)

L−→ N(0,Σ∗) (2.5)

where 0 is the (K−1)-dimensional column vector of zeros and Σ∗ is a (K−1)×(K−1)

covariance matrix as given in (2.6) below.

The asymptotic normality of Z∗ is established in two steps. The �rst part is to

establish asymptotic normality of the plug-in estimators η̂∗ in (2.6), and then the

second part is to show that Z∗ and η̂∗ are su�ciently close to warrant the same

asymptotic distributional behavior, as stated in Lemma 2 and Lemma 3 below.

Lemma 2. Let η̂u =
∑K

k=1 p̂
u
k for u = 1, · · · , K and η̂∗ = (η̂2, · · · , η̂K)ᵀ. Then

√
n(η̂∗ − η∗)

L−→ N(0,Σ∗) (2.6)

where Σ∗ = AᵀΣA,

Σ =



p1(1− p1) −p1p2 · · · −p1pK−1

−p1p2 p2(1− p2) · · · −p2pK−1
...

...
. . .

...

−p1pK−1 · · · · · · pK−1(1− pK−1)


(K−1)×(K−1)

(2.7)

and

A =



2(p1 − pK) 2(p2 − pK) · · · 2(pK−1 − pK)

3(p21 − p2K) 3(p22 − p2K) · · · 3(p2K−1 − p2K)

...
...

. . .
...

K(pK−11 − pK−1K ) · · · · · · K(pK−1K−1 − p
K−1
K )


(K−1)×(K−1)

(2.8)

Furthermore, Σ∗ is of rank r, if p has exactly r + 1 distinct probability values.
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η̂us, as plug-in estimators, are asymptotically e�cient due to the maximum like-

lihood principle. However, they always tend to overestimate ηus. Simply consider

function fu(x) = xu, where u ≥ 2 is a positive integer and x ∈ [0, 1], then dfu
dx

= uxu−1

and d2fu
dx2

= u(u − 1)xu−2. Jensen's inequality implies E[f(x)] ≥ f [E(x)] and hence

E(η̂u) ≥ ηu.

For a given p = {pk; k ≥ 1}, p̂ = {p̂k = Yk/n; k ≥ 1} from an iid sample of size n,

and any positive integers u ≥ 1 and v ≥ 1, let

ζu,v =
K∑
k=1

puk(1− pk)v (2.9)

ζ̂1,v =
K∑
k=1

p̂k(1− p̂k)v (2.10)

Z1,v =
K∑
k=1

p̂k

v∏
j=1

(
1− Yk − 1

n− j

)
(2.11)

Lemma 3. For any v ∈ {0, 1, . . . , K}, n(Z1,v − ζ̂v)
p−→ c as n → ∞, where c is a

constant.

The complete proofs of Lemma 2, Lemma 3 and Theorem 1 are provided in Ap-

pendix A.2.

To summarize this chapter, entropic basis is a new characterization of probability

distributions on alphabets, so inferences about distributions can be done through en-

tropic moments. By using U-statistic method, UMVUE is constructed for all entropic

moments. The asymptotic normality in Theorem 2 and the availability of consistent

estimators of Σ∗ permit large sample con�dence regions for the entropic moments η,

and hence a test for the hypothesis of (1.6) and (2.3), as will be described in following

chapter.



CHAPTER 3: New Testing Methods

3.1 New Chi-squared Tests

Under the null hypothesis in (1.6), H0 : p↓ = q↓ = {q1, · · · , qK}, where q↓ is

completely speci�ed, all the repeated values of qk can be identi�ed. Suppose there

are r + 1 distinct values in q↓, denote these r + 1 values and their multiplicities as:

q(1) q(2) · · · q(r) q(r+1)

m1 m2 · · · mr mr+1

speci�cally noting that q(1) > q(2) > · · · > q(r + 1) > 0. Consequently q↓ can be

viewed as r + 1 blocks of equal values, that is,

q↓ = {q(1)1ᵀ
m1
, q(2)1

ᵀ
m2
, · · · , q(r)1ᵀ

mr
, q(r+1)1

ᵀ
mr+1
} (3.1)

where 1ᵀ
m denotes a row vector of m “1”s. Consider a r× (K−1) matrix, C, of which

the ith row, of size K − 1, consists of a sub-row of “ 1
mi

”s and of length mi, and two

other all-zero vectors of lengths
∑i−1

j=1mj and (K − 1)−
∑i

j=1mj respectively.

C =



1
m1

1ᵀ
m1

0 · · · · · · · · · 0

0 1
m2

1ᵀ
m2
· · · · · · · · · 0

...
...

. . .
...

...
...

0 0 · · · 1
mr

1ᵀ
mr
· · · 0


r×(K−1)

(3.2)
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It can be veri�ed that when A (2.8) is evaluated at p = q↓,

ACᵀ =



2(q(1) − qK) 2(q(2) − qK) · · · 2(q(r) − qK)

3(q2(1) − q2K) 3(q2(2) − q2K) · · · 3(q2(r) − q2K)

...
...

. . .
...

K(qK−1(1) − qK−1K ) K(qK−1(2) − qK−1K ) · · · K(qK−1(r) − qK−1K )


(K−1)×r

(3.3)

and therefore ACᵀ is of full rank r. This fact and Lemma 2 immediately give the

following corollary.

Corollary 1. Under the null hypothesis H0 : p↓ = q↓, suppose that there are exactly

r+ 1 distinct qks in q↓ and that, η∗ = (η2, · · · , ηK)ᵀ, Σ of (2.7), A of (2.8) and C of

(3.2) are evaluated at p = q↓. Then:

1.
√
n[C(η̂∗ − η∗)]

L−→ N(0, CAᵀΣACᵀ) and CAᵀΣACᵀ is of full rank r; and

2. n[C(η̂∗ − η∗)]ᵀ(CAᵀΣACᵀ)−1[C(η̂∗ − η∗)]
L−→ χ2(r).

It is to be noted that if q↓ is an uniform distribution then r+1 = 1, so A is of rank

r = 0 and both limiting distributions of Corollary 1 degenerate; in fact, r + 1 = 1

if and only if the underlying distribution is a uniform distribution. It may also be

interesting to note that the action of C on η̂∗ as in C(η̂∗) corresponds to taking

averages in blocks of size mi, i = 1, · · · , r, in the (K − 1) dimensional vector η̂∗.

Theorem 2 gives a similar as stated in the following corollary, since asymptotic

normality is also established for Z∗.

Corollary 2. Under the null hypothesis H0 : p↓ = q↓, suppose that there are exactly

r+ 1 distinct qks in q↓ and that, η∗ = (η2, · · · , ηK)ᵀ, Σ of (2.7), A of (2.8) and C of

(3.2) are evaluated at p = q↓. Then:

1.
√
n[C(Z∗ − η∗)]

L−→ N(0, CAᵀΣACᵀ) and CAᵀΣACᵀ is of full rank r; and

2. n[C(Z∗ − η∗)]ᵀ(CAᵀΣACᵀ)−1[C(Z∗ − η∗)]
L−→ χ2(r).
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3.1.1 Testing Procedures

Part (2) of Corollary 1 devises a large sample Chi-squared test for goodness-of-�t

under permutations, which rejects H0 if

Tp = n[C(η̂∗ − η∗)]ᵀ(CAᵀΣACᵀ)−1[C(η̂∗ − η∗)] > χ2
α(r) (3.4)

where for some α ∈ (0, 1), χ2
α(r) is the 100(1 − α)th percentile of the Chi-squared

distribution with degrees of freedom r. This test is referred to in the subsequent text

as the plug-in test Tp.

Part (2) of Corollary 2 also devises a large sample Chi-squared test, which rejects

H0 if

Tz = n[C(Z∗ − η∗)]ᵀ(CAᵀΣACᵀ)−1[C(Z∗ − η∗)] > χ2
α(r) (3.5)

where for some α ∈ (0, 1), χ2
α(r) is the 100(1 − α)th percentile of the Chi-squared

distribution with degrees of freedom r. This test is referred to in the subsequent text

as the entropic test Tz.

Two remarks may be made regarding the plug-in test and the entropic test. First,

in comparing Corollaries 1 and 2, the two tests are equally e�cient asymptotically,

noting speci�cally that the plug-in test is based on the maximum likelihood principle.

Second, one would expect the entropic test to perform better for �nite samples since

Z∗ is an unbiased estimator of η∗ but η̂∗ is not. In fact, Lemma 3 indicates that the

decay rate of the bias of η̂∗ is much slower.

As we stated in Section 1.2.1, the original Pearson's Chi-squared test doesn't work

without linkage information. Here to use the numerical performance of Pearson's

Chi-squared test as a benchmark, we manually link each category in the sample

to one in the hypothesized distribution, based on their value orders. For example,

the highest frequency in the sample will be linked to the largest probability in the

hypothesized distribution, the second highest frequency will be linked to the second
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largest probability, and so forth. Based on law of large numbers (LLN), the manually

assigned linkage converges to the true linkage when sample size is su�ciently large,

thus induces a large sample Chi-squared test. The linked Pearson's Chi-squared test

Tl rejects H0 if

Tl =
K∑
k=1

(Y(k) − E(k))

E(k)

2

> χ2
α(r) (3.6)

where Y(k) is the k
th largest observed frequency, E(k) = n·q(k) is the expected frequency

for q(k), the k
th largest probability under distribution q, and for some α ∈ (0, 1), χ2

α(r)

is the 100(1−α)th percentile of the Chi-squared distribution with degrees of freedom

r.

3.1.2 Simulations

In this section, we run numerical simulations to evaluate the plug-in test Tp and

entropic test Tz, and compare them with the linked Pearson's Chi-squared test. To

evaluate size of those tests, we simply pick both the underlying and the hypothesized

probability distributions to be:

p = q =

{
5

15
,

4

15
,

3

15
,

2

15
,

1

15

}
(3.7)

as shown in Figure 3.1.

Figure 3.1: Distributions p and q
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And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 100 to 1000, 000. The simulation results are summarized into

Table 3.1 and Figure 3.2.

Table 3.1: Rejection Rates Under H0

Sample Size 102 103 104 105 106

Tl 0.0083 0.0484 0.0502 0.0498 0.0506

Tp 0.2483 0.1101 0.0606 0.0505 0.0498

Tz 0.3677 0.1022 0.0571 0.0507 0.0501

Figure 3.2: Rejection Rates Under H0

As one can see, under the null hypothesis that a random sample is really drawn

from distribution q, when the sample size is small (n ≤ 1, 000), the linked Pearson's

test Tl tends to reject less than 0.05 of all random samples, while the plug-in test Tp

and entropic test Tz tend to reject more than 0.05. When the sample size increases

(1, 000 ≤ n ≤ 10, 000), size of Tl reaches 0.05 very fast, but Tp and Tz don't. When
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sample size is su�ciently large (n ≥ 10, 000), all 3 tests tend to have a size = 0.05 as

expected.

This is not too surprising, because all 3 tests are derived from large sample distri-

butions, and can't guarantee small sample performance.

Strictly speaking, if the test size cannot be controlled, then power analysis doesn't

make too much sense. But for your reference and also to illustrate the di�erences

between those 3 tests, we still run another simulation to examine test power.

Again, we pick the underlying probability distribution p as in (3.7), and pick the

hypothesized probability distribution to be:

q =

{
9

35
,

8

35
,

7

35
,

6

35
,

5

35

}
(3.8)

as shown in Figure 3.3 and Figure 3.4.

Figure 3.3: Underlying Distribution p Figure 3.4: Hypothesized Distribution q

And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 5 to 10, 000. The simulation results are summarized into Table

3.2 and Figure 3.5.
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Table 3.2: Rejection Rates Under Ha

Sample Size 5 10 50 102 103 104

Tl 0.0057 0.0310 0.2205 0.5531 1.0000 1.0000

Tp 0.9812 0.9416 0.9811 0.9956 1.0000 1.0000

Tz 1.0000 1.0000 0.9968 1.0000 1.0000 1.0000

Figure 3.5: Rejection Rates Under Ha

One can see the entropic test Tz and the plug-in test Tp behave closely, and both

signi�cantly outperform the linked Pearson's test Tl over all sample sizes, especially

on a small sample (n ≤ 100). As we mentioned above, due to the lack of test size

control, those powers may be falsely high and can't be compared fairly. But this

result still indicates some possible merits in the entropic test Tz and the plug-in test

Tp under small samples.
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3.2 A Heuristic Test

3.2.1 Testing Procedures

During the simulations in Section 3.1.2, we observed two issues for the new Chi-

squared tests. First, the minimum sample size to reach expected test size is too

huge, ie., the sampling distribution of test statistics is far away from Chi-squared

distribution when sample size is small. The second issue is more about computation,

and quite realistic, that is we may easily encounter singularity errors when inverse

matrices mentioned in (3.4) and (3.5), as cardinality increases (K ≥ 15).

The �rst problem is well-known for many approximate tests [15], not just for our

Chi-squared goodness-of-�t tests. The fundamental issue comes from the approxi-

mation to asymptotic distribution, which is derived by making the sample size big

enough, and hence may not be able to describe small sample phenomenon. So we may

use exact test in substitution of approximate test, ie., we use exact sampling distribu-

tion of test statistic to select critical values, instead of using asymptotic Chi-squared

distribution. The exact distribution can be obtained by explicit formulation (for some

simple cases, but very rare), or by large scale simulations [16] (in this dissertation

we do N = 100, 000 iterations for each simulation). For critical value approach, we

select critical values from the simulated exact distribution; for p-value approach, we

calculate p-value as the percentage of randomly generated samples which produces a

larger statistic value than the given sample S. In some cases, p-value approach may

be computationally more e�cient, and works better in small samples than critical

value approach. But theoretically the two approaches are equivalent, so we will stick

to critical value approach in the subsequent text for consistency.

The second problem doesn't challenge theoretical correctness of our method, but

is fatal in real practice. After reviewed many literatures, we realized the inversion

of large sparse matrix is still one of the biggest problems in computational algebra,

so we consider modifying the test statistic instead. Recall the expression of entropic
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test statistic in (3.5):

Tz = n[C(Z∗ − η∗)]ᵀ(CAᵀΣACᵀ)−1[C(Z∗ − η∗)] (3.9)

This is actually a weighted sum of squared di�erences between each pair of ηu and

Zv, also a measure of the distance between all ηus and all Zvs. Generally speaking,

goodness-of-�t measures the discrepancy between underlying distribution and hy-

pothesized distribution. Now from the entropic perspective, probability distributions

can be characterized by entropic moments, so it's quite straightforward to measure

that di�erence by the distance between ηus and Zvs. Fortunately we have so many

mathematical instruments that can measure the distance between two functionals.

Inspired the Euclidean distance, we construct the following test statistic:

Th = (Z∗ − η∗)ᵀ(Z∗ − η∗) =
K∑
u=2

(Zu − ηu)2 (3.10)

and hence a new heuristic goodness-of-�t test, which rejects H0 if

Th =
K∑
u=2

(Zu − ηu)2 > Cα(q, n) (3.11)

where for some α ∈ (0, 1), Cα(q, n) is the 100(1−α)th percentile of statistic Th's exact

distribution under the null hypothesis with sample size n. Cα(q, n) can be estimated

from a large scale simulation.

This test is referred to in the subsequent text as the heuristic test Th. The following

corollary of Theorem 1 provides a theoretical support for this heuristic test.

Corollary 3. Let p and q be two probability distributions on the same countable

alphabet X , with the same �nite cardinality K. Then p↓ = q↓ if and only if

K∑
u=1

[ηu(p)− ηu(q)]2 = 0 (3.12)



23

In fact, statistic Th in (3.11) can also be viewed as a special case of statistic Tz in

(3.9), if we replace the covariance matrix Σ∗ with the identity. Given the asymptotic

multivariate normality of Zvs (2.5), Th in (3.11) is a linear combination of squared

dependent normal variables. Unfortunately, a closed analytic expression for general

sum of correlated Chi-squared variables is not yet known, which may be approximated

e�ciently using characteristic functions [17]. This is another reason why we choose

to use exact test.

3.2.2 Simulations

We expect this heuristic test to be computationally more e�cient than the entropic

test Tz, since its statistic has been simpli�ed a lot, and not to lose too much power,

since it still uses entropic moments. That is to say, we believe in the merits of entropic

perspective as a new statistical methodology, rather than the existence of a speci�c

dominating statistic.

We again run simulations to evaluate the performance of Th. In order to make

the comparisons between di�erent tests fair enough, we use exact test method, ie.,

use simulated critical value for all of them. Here we have 4 di�erent tests in total,

linked Pearson's exact test Tl
∗, plug-in exact test Tp

∗, entropic exact test Tz
∗ and the

heuristic test Th.

A great bene�t of exact tests over approximate tests is that, the size can be easily

controlled at any given level (if the sample size is not extremely small), since the

critical values come from an exact distribution, so there is no need to examine test

size anymore, we evaluate test power directly.

The simulations in this section are organized into 3 parts, the �rst of which follows

similar studies as those in Section 3.1.2, comparing all 4 tests on small cardinality

distributions (K = 5), and the second and third parts compare Tl
∗ and Th on large

cardinality distributions (K = 30).
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Simulation 1. Use the same settings as those in Section 3.1.2, underlying distri-

bution p and hypothesized distribution q are given as follows,

p =

{
5

15
,

4

15
,

3

15
,

2

15
,

1

15

}
(3.13)

q =

{
9

35
,

8

35
,

7

35
,

6

35
,

5

35

}
(3.14)

And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 5 to 10, 000. Additionally, let N = 100, 000 be the number of

simulations to get Cα(q, n) for each test. The simulation results are summarized into

Table 3.3 and Figure 3.6.

Table 3.3: Rejection Rates Under Ha

Sample Size 5 10 50 102 103 104

Tl
∗ 0.0731 0.0967 0.5517 0.8588 1.0000 1.0000

Tp
∗ 0.0730 0.1165 0.5911 1.0000 1.0000 1.0000

Tz
∗ 0.0732 0.0868 0.4185 0.7593 1.0000 1.0000

Th 0.0739 0.1126 0.5131 0.8359 1.0000 1.0000
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Figure 3.6: Rejection Rates Under Ha

This result shows that all 4 tests perform closely in power sense, as the rejection

rates reach 1 fast and smoothly when sample size exceeds 1, 000. The plug-in exact

test is the best, as the linked Pearson's test and the heuristic test are almost the same.

And that's a practical support for that on small cardinality distributions (K = 5),

the heuristic test is totally quali�ed and comparable to those Chi-squared tests.

Besides, due to the computation issue as we stated above, the plug-in test and

entropic test hardly work on large cardinality distributions. So in the second and

third parts of this simulation, we only use the linked Pearson's test and the heuristic

test for K = 30 cases.

Simulation 2. We pick the underlying probability distribution p and the hypoth-

esized probability distribution q to be:

p =

{
1

30
,

1

30
, · · · , 1

30

}
(3.15)
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q =

{
3

60
, · · · , 3

60
,

2

60
, · · · , 2

60
,

1

60
, · · · , 1

60

}
(3.16)

as shown in in Figure 3.7 and Figure 3.8.

Figure 3.7: Underlying Distribution p

Figure 3.8: Hypothesized Distribution q

And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 30 to 600. Additionally, let N = 100, 000 be the number of

simulations to get Cα(q, n) for each test. The simulation results are summarized into

Table 3.4 and Figure 3.9.
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Table 3.4: Rejection Rates Under Ha

Sample Size 30 60 90 150 300 400 500 600

Tl
∗ 0.0117 0.0026 0.0007 0.0001 0.0201 0.3561 0.8522 0.9862

Th 0.0273 0.0874 0.2186 0.6010 0.9889 1.0000 1.0000 1.0000

Figure 3.9: Rejection Rates Under Ha

In this part, we give a real case where Th thoroughly beats Tl
∗ over all sample

sizes. We take this example as an evidence of the merits of Th, as well as of entropic

perspective on alphabets.

Strictly speaking, we haven't proven any optimality of one test over others yet. But

for all the simulations we've done so far (not just those presented here or in Appendix,

but much more that we've done during the research), Th never does signi�cantly worse

than Tl
∗. In fact, for many cases, Th is more likely to win, such as when sample size

is relatively small, or when the hypothesized distribution has a thinner tail than the

underlying distribution. More interesting, as will be shown in next part of simulations,
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when the hypothesized distribution has a thicker tail than the underlying distribution

instead, Th doesn't lose power as compared to Tl
∗, and we take this phenomena as

another evidence of the merits of Th and entropic perspective.

Simulation 3. We simply swap the values of p and q, then redo Simulation 2.

p =

{
3

60
, · · · , 3

60
,

2

60
, · · · , 2

60
,

1

60
, · · · , 1

60

}
(3.17)

q =

{
1

30
,

1

30
, · · · , 1

30

}
(3.18)

The results are summarized into Table 3.5 and Figure 3.10.

Table 3.5: Rejection Rates Under Ha

Sample Size 30 60 90 150 300

Tl
∗ 0.1465 0.3222 0.4955 0.8211 0.9972

Th 0.1386 0.2885 0.4720 0.7946 0.9963

Figure 3.10: Rejection Rates Under Ha
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To summarize this chapter, we construct 7 goodness-of-�t tests in total, 3 ap-

proximate Chi-squared tests and 4 exact tests. Of course Chi-squared test are more

computational e�cient under large samples, but they may not work well for small

or sparse samples, that's why we choose exact test method later. Unfortunately the

plug-in test and entropic test face more tough issues like the matrix singularity, which

cannot be easily solved yet. On large cardinality probability distributions, the simu-

lation results show a great power advantage of the heuristic test over linked Pearson's

exact test. One can �nd more simulation results in Appendix B.

We also believe the advantages of this heuristic test are mainly due to entropic

perspective, ie., the using of entropic moments and their estimator Zvs. In this regard,

one may de�ne many similar statistics by imposing di�erent metric or measures on

entropic moments, which is completely up to the researcher's underlying interest and

choice.



CHAPTER 4: A Real Example: Language Detection

4.1 Frequency Analysis

In cryptanalysis, frequency analysis is the study of the frequency of letters or groups

of letters in a ciphertext. The method is used as an aid to breaking classical ciphers.

Frequency analysis is based on the fact that, in any given stretch of written language,

certain letters occur with varying frequencies. Moreover, there is a characteristic

distribution of letters that is roughly the same for almost all samples of that lan-

guage. For instance, given a section of English language, E, T,A and O are the most

common, while Z,Q and X are rare [18]. In some ciphers, such properties of the

natural language plaintext are preserved in the ciphertext, and these patterns have

the potential to be exploited in a ciphertext-only attack.

But to make such decryption methods successful, the cryptanalyst must know a

speci�c language in which the plaintext was written. Now the question is, given a piece

of encrypted ciphertext, how to detect the language of its plaintext. Let's assume

the encryption is done by some simple ciphers, ie., the same letters in plaintext

are still the same in ciphertext, and di�erent letters in plaintext are still di�erent

in ciphertext. Given the fact that the distribution of letter frequencies vary across

di�erent languages (Figure 4.1), we can use the letter frequencies counting from the

ciphertext to detect the language of plaintext. This is indeed a goodness-of-�t test

on letter frequency distributions, between the ciphertext and all possible languages,

and it can also be viewed as a text language classi�er.
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Figure 4.1: Frequency Distributions of 26 Most Common Latin Letters

Here we provide two examples to illustrate how this language detection method

works. In each example, we select a piece of text from corpus, encrypt it by a Caesar

cipher, then break the ciphertext down to bag of letters, count the shu�ed letter

frequencies, test the goodness-of-�t (the heuristic test, p-value approach) on letter

frequencies between the ciphertext and all possible languages, and �nally suggest the

one with largest p-value as possible underlying language.

The relative letter frequencies in 15 Latin languages were retrieved from Wikipedia

[19] as references, and that version of data we've been using is included in Appendix

C.

4.2 Testing Results

Example 1. We select the text of Martin Luther King's famous speech �I Have

a Dream� as plaintext, with 885 words and 4781 letters in total. The full text was

retrieved from BBS website [20]. The testing results are summarized into Table 4.1

and Table 4.2.
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Table 4.1: Language Detection Statistic Values

English French German Spanish Portuguese

8.3749e-07 1.0828e-05 2.5821e-05 2.1515e-06 5.1154e-05

Esperanto Italian Turkish Swedish Polish

2.9310e-06 5.0269e-05 3.4679e-05 3.5491e-05 1.9809e-04

Dutch Danish Icelandic Finnish Czech

1.8395e-04 2.2458e-06 1.6565e-04 2.4033e-05 1.2554e-04

Table 4.2: Language Detection P-values

English French German Spanish Portuguese

0.4016 0.0102 0.0017 0.2106 0.0000

Esperanto Italian Turkish Swedish Polish

0.1130 0.0000 0.0000 0.0000 0.0000

Dutch Danish Icelandic Finnish Czech

0.0000 0.2996 0.0000 0.0000 0.0000

Our test shows English is the most probable language among all 15 candidates,

and it does discover the truth. Someone may notice that, the observed signi�cance

levels of Spanish and Danish are also high. It might be due to the time e�ect in

language evolution. Because the letter frequencies data we retrieved from Wikipedia

were collected in year 2014, and this famous speech was given in year 1963, so 50 years

may make a big di�erence between �old� English and current English. The second

example supports this guess in another direction.

Example 2. We select the text of Donald Trump's inauguration speech as plain-
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text, with 1427 words and 8077 letters in total. The full text was retrieved from CNN

website [21]. Compared with the �rst sample text, this speech was given in year 2017,

which is more �modern�, so we expect to see a more signi�cant testing conclusion.

The results are summarized into Table 4.3 and Table 4.4.

Table 4.3: Language Detection Statistic Values

English French German Spanish Portuguese

7.5360e-08 1.9926e-05 3.8940e-05 6.9679e-06 6.9297e-05

Esperanto Italian Turkish Swedish Polish

8.3422e-06 6.8332e-05 2.2258e-05 2.2867e-05 1.6641e-04

Dutch Danish Icelandic Finnish Czech

2.1696e-04 6.7131e-06 1.3679e-04 3.6943e-05 1.0059e-04

Table 4.4: Language Detection P-values

English French German Spanish Portuguese

0.7493 0.0001 0.0000 0.0040 0.0000

Esperanto Italian Turkish Swedish Polish

0.0005 0.0000 0.0000 0.0000 0.0000

Dutch Danish Icelandic Finnish Czech

0.0000 0.0179 0.0000 0.0000 0.0000

Not surprisingly, English, as the truth, is again detected by the heuristic goodness-

of-�t test. And English is the only one producing a high p-value, with all other

p-values are almost zero. We take this example as a strong indication of practical

utility of the heuristic test, and of entropic perspective.



CHAPTER 5: An R Package

During the research on entropic perspective, we �nd all computations related with

entropic moments ζu,vs and their estimators Zu,vs are quite time consuming, as they

involve a lot of huge combinatorics. To improve the computation e�ciency and con-

sequently to save more time for thinking instead of coding, we build an R package

named as �Entropic�. All computation intensive functions are written in C++, and

some auxiliary functions are written in R. The source code of several key functions can

be downloaded from [https://webpages.uncc.edu/cchen55/entropic/Entropic.zip].

Here is a brief introduction of some core functions:

• tf1(obs) returns the Turing's Formula for an observed sample;

• entropy(prob, k) returns the entropy of a given distribution of length k;

• entropyz(obs, k, n) returns the entropic estimator of entropy Ĥz;

• zeta1(prob, k, v) returns the ζ1,v value for a given v;

• zeta1f(prob, k, vmax) returns a vector of all ζ1,v values for v ≤ vmax;

• eta(prob, k, u) returns the ηu value for a given u;

• etaf(prob, k, umax) returns a vector of all ηu values for u ≤ umax;

• z1(obs, k, n, v) returns the Z1,v value for a given v;

• z1f(obs, k, n) returns a vector of all Z1,v values for v < n.



CHAPTER 6: Conclusion

In modern data science, many challenges are arising from data uncertainty, data

complexity and high dimensionality. To handle those problems from a broader per-

spective, one may view them as on a countable sample space, non-metricized, non-

ordinal, not completely prescribed (ie., alphabet), but with distinguishable elements

(ie., letters). Entropic moments can collectively characterize probability distributions

on alphabets, while many traditional concepts like random variables, cumulative dis-

tribution functions and moments may not exist.

This dissertation focuses on goodness-of-�t test under permutations. Equipped

with entropic moments, we propose two approximate Chi-squared tests and a heuristic

test. For Chi-squared tests, asymptotic distributional properties are established in

theory. For exact tests, computation e�ciency and size control are greatly improved.

The real data example, language detection classi�er demonstrates a great potential

of this methodology in practice. An R package is also introduced.

Entropic perspective, in the forms of entropic basis, builds a bridge from seen to

unseen, and provides a whole new methodology to make interpretations and inferences

on alphabets. One can see the power of this new perspective in many applications,

such as estimation of information functionals like entropy, mutual information [22]

[23] [24] [25] and diversity indices [11] [10] [26], hypothesis testing on goodness-of-�t

and independence [27], variable selection, etc.
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APPENDIX A: Proofs

A.1 Proofs in Section 2.3

To prove Theorem 1, a result by Garcia and Li (1980) [28] is stated as Lemma 4

below.

A.1.1 Lemma 4

Toward stating the lemma, let z = {z1, · · · , zn} be a multivariate variable in the

n-dimensional complex space Cn. Consider a system of n polynomial equations where

each equation is a summation with terms of the following form

azr11 z
r2
2 · · · zrnn (A.1)

equal to zero, where the sum of non-negative integers r1 + · · · + rn is the degree of

the additive term, and a ∈ C is the coe�cient of the term. For the ith equation, let

qi denote the highest degree among all the additive terms. Let the term coe�cients

of all equations be denoted as a = {ai,j; i = 1, · · · , n and j = 1, · · · ,m} for some

positive integer m which depends on max{qi; i = 1, · · · , n}. For notation simplicity,

let ai = {ai,j; j = 1, · · · ,m}. Let P(z, a) = 0 denote the polynomial equation system.

The ith equation in P(z, a) = 0 has the form of Pi(z, ai) = 0 with the left hand side

being a polynomial of degree qi. For each i, removing all the additive terms of degrees

less than qi in Pi(z, ai) results in a homogeneous polynomial Qi(z, ai) of degree qi,

and setting it to zero gives an adjusted equation, Qi(z, ai) = 0. Let the adjusted

system be denoted as Q(z, a) = 0.

Lemma 4. Let P(z, a) = 0 be given and let Q(z, a) = 0 be its corresponding highest

order system of equations. P(z, a) = 0 has exactly q =
∏n

i=1 qi solutions (counting

multiplicity) if Q(z, a) = 0 has only the trivial solution z = {0, · · · 0}.
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A.1.2 Proof of Theorem 1

Proof. Given p = {pk; k = 1, · · · , K}, η = {ηu;u = 1, · · · , K} is uniquely determined.

It su�ces to show that η uniquely determines p↓. Toward that end, consider the

system of equations in (A.2) and its adjusted system in (A.3), denoted respectively

as P(z, a) = 0 and Q(z, a) = 0.



∑K
k=1 pk = η1∑K
k=1 p

2
k = η2

...∑K
k=1 p

K
k = ηK

(A.2)



∑K
k=1 pk = 0∑K
k=1 p

2
k = 0

...∑K
k=1 p

K
k = 0

(A.3)

Clearly p = {p1, · · · , pK} is a solution to (A.2) and so is every permutated p. There-

fore counting multiplicity, there are at least q =
∏K

i=1 qi = K! solutions to (A.2) and

all these solutions share the same p↓. It only remains to show that there are no other

solutions. By Lemma 4, it is desired to show that the system (A.3) only has trivial

solution of pk = 0 for every k = 1, · · · , K.

Toward that end, consider the linear system in u1, u2, · · · , un:



1 · u1 + 1 · u2 + · · ·+ 1 · un = 0

x1 · u1 + x2 · u2 + · · ·+ xn · un = 0

...

xn−11 · u1 + xn−12 · u2 + . . .+ xn−1n · un = 0

or A



u1

u2
...

un


n×1

= 0 (A.4)
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where

A =



1 1 · · · 1

x1 x2 · · · xn

· · ·

xn−11 xn−12 · · · xn−1n


n×n

(A.5)

Assuming not all xi are 0, that is, the system has the non-trivial solution u1 =

x1, u2 = x2, · · · , un = xn, so its determinant, det(A), must be 0 . But the respective

determinant is a Vandermonde determinant which evaluates to
∏

1≤i<j≤n(xj − xi), so

it can only be zero if xi = xj for some pair i 6= j.

Assume without loss of generality that xn−1 = xn, then consider:



1 · u1 + 1 · u2 + · · ·+ 1 · un−1 = 0

x1 · u1 + x2 · u2 + · · ·+ xn−1 · un−1 = 0

...

xn−21 · u1 + xn−22 · u2 + · · ·+ xn−2n−1 · un−1 = 0

(A.6)

Again, if not all xi are 0, then u1 = x1, u2 = x2, · · · , un−2 = xn−2, un−1 = 2xn−1 is

a non-trivial solution, which implies that another pair of xi = xj, i 6= j.

It follows by induction that all xi must be equal, and therefore all must be 0.

A.2 Proofs in Section 2.4

A.2.1 Proof of Lemma 2

Proof. When given a sample of size n, for any i ∈ {1, 2, · · · , K}, Yi = n · p̂i follows

a binomial distribution B(n, p), so E(p̂i) = pi and V ar(p̂i) = pi(1−pi)
n

. Let Ii,l be an

indicator function that equals to 1 if the lth observation falls into category i and 0
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otherwise. So for any i 6= j, Yi =
∑n

l=1 Ii,l and Yj =
∑n

m=1 Ij,m. Then

E(Yi · Yj) =E

[
(
n∑
l=1

Ii,l) · (
n∑

m=1

Ij,m)

]
=
∑
l,m

E(Ii,l · Ij,m)

=
∑
l=m

E(Ii,l · Ij,m) +
∑
l 6=m

E(Ii,l · Ij,m) = (n2 − n)pipj

Cov(p̂i, p̂j) =
Cov(Yi, Yj)

n2
= −pipj

n

Let p− = (p1, · · · , pK−1)ᵀ and p̂− = (p̂1, · · · , p̂K−1)ᵀ. An asymptotic multivariate

normal distribution,
√
n(p̂− − p−)

L→ N(0,Σ), can be derived from the multivariate

central limit theorem (CLT). For i ≤ K − 1, noting pK = 1−
∑K−1

k=1 pk,

∂ηu
∂pi

=∂(
K∑
k=1

puk)/∂pi = ∂

[
K−1∑
k=1

puk + (1−
K−1∑
k=1

pk)
u

]
/∂pi

=∂(
K−1∑
k=1

puk)/∂pi + ∂(1−
i−1∑
k=1

pk − pi −
K−1∑
k=i+1

pk)
u/∂pi

=upu−1i − u(1−
K−1∑
k=1

pk)
u−1 = upu−1i − upu−1K

Then (2.6) can be veri�ed by a straightforward application of the multivariate delta

method [29]. Since Σ has full rank, it only remains to show that A has rank r.

Toward that end, consider �rst the case that all pks are distinct, that is, r = K−1.

Suppose there exists (w1, · · · , wK−1) such that, w1(p
i
1 − piK) + w2(p

i
2 − piK) + · · · +

wK−1(p
i
K−1 − piK) = 0 for every i, i = 1, · · · , K − 1, that is,



w1p
1
1 + w2p

1
2 + · · ·+ wK−1p

1
K−1 − (

∑K−1
j=1 wj)p

1
K = 0

w1p
2
1 + w2p

2
2 + · · ·+ wK−1p

2
K−1 − (

∑K−1
j=1 wj)p

2
K = 0

· · ·

w1p
K−1
1 + w2p

K−1
2 + · · ·+ wK−1p

K−1
K−1 − (

∑K−1
j=1 wj)p

K−1
K = 0

(A.7)

Letting wK = −
∑K−1

j=1 wj,
∑K

j=1wj = 0 by de�nition and this equation can be added
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to the system in (A.7) to obtain an equivalent system in w1, · · · , wK below.



1 · w1 + 1 · w2 + · · ·+ 1 · wK−1 + 1 · wK = 0

p11 · w1 + p12 · w2 + · · ·+ p1K−1 · wK−1 + p1K · wK = 0

· · ·

pK−11 · w1 + pK−12 · w2 + · · ·+ pK−1K−1 · wK−1 + pK−1K · wK = 0

(A.8)

If (w1, · · · , wK−1) 6= 0 then (w1, · · · , wK) 6= 0, which implies that the Vandermonde

determinant associated with (A.8) must be zero, which evaluates to
∏

1≤i<j≤K(pi−pj),

so it can only be zero if pi = pj for some pair i 6= j, which contradicts the assumption.

It follows that A is of full rank, r = K − 1, if all pks are distinct.

Next consider the case there are r+ 1 distinct values in {p1, · · · , pK} where r is an

integer such that 0 ≤ r ≤ K − 1. In this case, any set of more than r columns of A

in (2.8) are linearly independent. This claim may be seen in two scenarios. First, if

pK has multiplicity 1, say mK = 1, then the K − 1 columns of A include exactly r

distinct columns. Therefore any subset of more than r of these columns must contain

at least a pair of identical columns. Second, if pK has multiplicity greater than 1,

that is, mK ≥ 2, then the K − 1 columns of A include exactly mK − 1 ≥ 1 all-zero

columns and other r non-zero distinct columns. In this case, any subset of more r

columns either contains at least one pair of identical columns or an all-zero column.

That is to say that the rank of A is at most r. It su�ces to show that the said rank

is at least r. Toward that end, consider r distinct columns of A, (A.9). Without loss

of generality, suppose these columns are for j = 1, · · · , r.

A1 =



2(p1 − pK) 2(p2 − pK) · · · 2(pr − pK)

3(p21 − p2K) 3(p22 − p2K) · · · 3(p2r − p2K)

...
...

. . .
...

K(pK−11 − pK−1K ) K(pK−12 − pK−1K ) · · · K(pK−1r − pK−1K )


(K−1)×r

(A.9)

The desired independence of the columns of (A.9) is established by showing that the
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columns of (A.10) are linearly independent. Consider a r × r sub-matrix of (A.9)

below.

A2 =



(p1 − pK) (p2 − pK) · · · (pr − pK)

(p21 − p2K) (p22 − p2K) · · · (p2r − p2K)

...
...

. . .
...

(pr1 − prK) (pr2 − prK) · · · (prr − prK)


r×r

(A.10)

Suppose the columns of (A.10) are linearly dependent, then there exists

(w1, · · · , wr) 6= 0 such that



w1p
1
1 + w2p

1
2 + · · ·+ wrp

1
r − (

∑r−1
j=1 wj)p

1
K = 0

w1p
2
1 + w2p

2
2 + · · ·+ wrp

2
r − (

∑r−1
j=1 wj)p

2
K = 0

· · ·

w1p
r
1 + w2p

r
2 + · · ·+ wrp

r
r − (

∑
j=1wr)p

r
K = 0

(A.11)

Letting wr+1 = −
∑r−1

j=1 wj,
∑r+1

j=1 wj = 0 by de�nition and this equation can be added

to the system in (A.11) to obtain an equivalent system in w1, · · · , wK below.



1 · w1 + 1 · w2 + · · ·+ 1 · wr + 1 · wr+1 = 0

p11 · w1 + p12 · w2 + · · ·+ p1r · wr + p1K · wr+1 = 0

p21 · w1 + p22 · w2 + · · ·+ p2r · wr + p2K · wr+1 = 0

· · ·

pr−11 · w1 + pr−12 · w2 + · · ·+ prr · wr + prK · wr+1 = 0

(A.12)

If the system in (A.12) has an not all-zero solution in w1, · · · , wr+1, then its associated

determinant must be zero, which is a Vandermonde determinant and evaluates to∏
i,j=1,··· ,r,K;i<j(pi − pj), so it can only be zero if pi = pj for some pair i 6= j, which

contradicts the assumption. It follows that A is of rank, r, if r+ 1 of pks are distinct.
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A.2.2 Proof of Lemma 3

Proof. Since

Z1,v − ζ̂v = Z1,v −
K∑
k=1

p̂k(1− p̂k)v

=
K∑
k=1

p̂k

v∏
j=1

(
1− Yk − 1

n− j

)
−

K∑
k=1

p̂k(1− p̂k)v

=
K∑
k=1

p̂k

[
v∏
j=1

(
1− Yk − 1

n− j

)
−

v∏
j=1

(1− p̂k)

]

=
K∑
k=1

p̂k (1− p̂k)v
∏v

j=1

(
1− Yk−1

n−j

)
∏v

j=1 (1− p̂k)
− 1


=

K∑
k=1

p̂k (1− p̂k)v

∏v

j=1

[
1− j−1

n(1−p̂k)

]
∏v

j=1

(
1− j

n

) − 1




=
K∑
k=1

p̂k (1− p̂k)v

∏v−1

j=0

[
1− j

n(1−p̂k)

]
∏v−1

j=0

(
1− j+1

n

) − 1




=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∏
j=0

[
1− j

n(1−p̂k)

1− j+1
n

]
− 1

}}

=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∏
j=0

[
1 +

j(1− p̂k)− (j − 1)

n(1− p̂k)− j(1− p̂k)

]
− 1

}}

=
K∑
k=1

{
p̂k (1− p̂k)v

{
1 +

v−1∑
j=0

[
j(1− p̂k)− (j − 1)

n(1− p̂k)− j(1− p̂k)

]
+Op(n−2)− 1

}}

=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∑
j=0

[
j(1− p̂k)− (j − 1)

n(1− p̂k)− j(1− p̂k)

]
+Op(n−2)

}}
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Therefore

n

[
Z1,v −

K∑
k=1

p̂k(1− p̂k)v
]

=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∑
j=0

[
j(1− p̂k)− (j − 1)

(1− p̂k)− j(1− p̂k)/n

]
+Op(n−1)

}}
p−→

K∑
k=1

{
pk (1− pk)v

{
v−1∑
j=0

[
j(1− pk)− (j − 1)

(1− pk)

]}}

=
K∑
k=1

{
pk (1− pk)v−1

{
v−1∑
j=0

[j(1− pk)− (j − 1)]

}}

=
K∑
k=1

{
pk (1− pk)v−1

[
v −

(
v−1∑
j=0

j

)
pk

]}

= vζ1,v−1 −
v(v − 1)

2
ζ2,v−1 (A.13)

A.2.3 Proof of Theorem 2

Proof. Since
√
n(Z∗ − η∗) =

√
n(Z∗ − η̂∗) +

√
n(η̂∗ − η∗), it su�ces to show that

√
n(Z∗ − η̂∗)

p−→ 0. Toward that end, noting the following two easily veri�able

re-expressions of Zu and η̂u,

Zu =
u−1∑
i=0

(
u− 1

i

)
(−1)iZ1,i and η̂u =

u−1∑
i=0

(
u− 1

i

)
(−1)iζ̂1,i (A.14)

then by Lemma 3,

√
n(Zu − η̂u) =

√
n

[
u−1∑
i=0

(
u− 1

i

)
(−1)iZ1,i −

u−1∑
i=0

(
u− 1

i

)
(−1)iζ̂i

]

=
u−1∑
i=0

(
u− 1

i

)
(−1)i

√
n(Z1,i − ζ̂i)

p−→ 0
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APPENDIX B: More Simulation Results

We de�ne a family of 10 di�erent distributions, as described in (B.1) and shown in

Figure B.1.

pi = (
1− εi

30
, · · · ,︸ ︷︷ ︸

10

1

30
, · · · ,︸ ︷︷ ︸
10

1 + εi
30

, · · ·︸ ︷︷ ︸
10

), εi =
i− 1

10
, i = 1, 2, · · · , 10 (B.1)

Figure B.1: A Family of 10 Probability Distributions

Now for all possible combinations of pi and pj where i, j ∈ {1, 2 · · · , 10}, let pi = p

be the underlying distribution, pj = q be the hypothesized distribution, α = 0.05,

number of iterations (for each sample size) m = 5, 000, and sample sizes vary from 30

to 90. Additionally, let N = 1, 000, 000 be the number of simulations to get critical

for each test. The test rejection rates are summarized into Tables B.1, B.2 and B.3.
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Table B.1: Rejection Rates When n = 30

p|q j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

i=1 0.0451 0.0470 0.0376 0.0343 0.0365 0.0360 0.0285 0.0655 0.1378 0.2892
i=2 0.0492 0.0440 0.0414 0.0333 0.0322 0.0355 0.0301 0.0670 0.1330 0.2763
i=3 0.0550 0.0551 0.0495 0.0406 0.0371 0.0340 0.0318 0.0563 0.1116 0.2611
i=4 0.0682 0.0697 0.0636 0.0447 0.0409 0.0344 0.0272 0.0489 0.0940 0.2291
i=5 0.0985 0.0897 0.0848 0.0657 0.0476 0.0393 0.0313 0.0373 0.0737 0.1830
i=6 0.1378 0.1189 0.1175 0.0926 0.0666 0.0496 0.0345 0.0383 0.0576 0.1414
i=7 0.2002 0.1681 0.1659 0.1379 0.0996 0.0704 0.0481 0.0337 0.0440 0.1016
i=8 0.2700 0.2367 0.2257 0.1883 0.1435 0.1087 0.0722 0.0509 0.0378 0.0638
i=9 0.3641 0.3316 0.3156 0.2670 0.2081 0.1581 0.1043 0.0714 0.0493 0.0506
i=10 0.4892 0.4406 0.4368 0.3810 0.3058 0.2362 0.1632 0.1178 0.0780 .05290

Table B.2: Rejection Rates When n = 60

p|q j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

i=1 0.0518 0.0420 0.0401 0.0359 0.0453 0.0808 0.1968 0.3988 0.6662 0.8669
i=2 0.0543 0.0482 0.0395 0.0392 0.0417 0.0827 0.1933 0.3933 0.6422 0.8615
i=3 0.0707 0.0634 0.0473 0.0397 0.0399 0.0631 0.1484 0.3337 0.5883 0.8120
i=4 0.1149 0.0961 0.0706 0.0502 0.0360 0.0452 0.1086 0.2453 0.4980 0.7467
i=5 0.1759 0.1656 0.1200 0.0876 0.0491 0.0391 0.0661 0.1708 0.3681 0.6435
i=6 0.2848 0.2666 0.2021 0.1473 0.0883 0.0487 0.0473 0.0915 0.2366 0.4942
i=7 0.4460 0.4175 0.3511 0.2622 0.1653 0.0947 0.0508 0.0479 0.1243 0.3182
i=8 0.6458 0.6082 0.5326 0.4274 0.3044 0.1847 0.0928 0.0533 0.0611 0.1690
i=9 0.8264 0.7981 0.7261 0.6371 0.4985 0.3492 0.1931 0.0993 0.0489 0.0672
i=10 0.9504 0.9350 0.8986 0.8366 0.7278 0.5622 0.3823 0.2080 0.0989 0.0481

Table B.3: Rejection Rates When n = 90

p|q j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

i=1 0.0524 0.0471 0.0376 0.0408 0.0980 0.2227 0.4776 0.7763 0.9403 0.9935
i=2 0.0560 0.0557 0.0385 0.0394 0.0848 0.2039 0.4507 0.7566 0.9273 0.9891
i=3 0.0806 0.0749 0.0508 0.0370 0.0599 0.1458 0.3581 0.6765 0.8874 0.9853
i=4 0.1561 0.1359 0.0880 0.0492 0.0441 0.0889 0.2495 0.5508 0.8107 0.9561
i=5 0.2731 0.2516 0.1757 0.1051 0.0493 0.0455 0.1328 0.3602 0.6539 0.9021
i=6 0.4746 0.4515 0.3360 0.2109 0.1080 0.0485 0.0618 0.1860 0.4567 0.7760
i=7 0.6994 0.6775 0.5621 0.4216 0.2487 0.1138 0.0494 0.0763 0.2442 0.5689
i=8 0.8966 0.8746 0.8041 0.6816 0.4792 0.2769 0.1246 0.0517 0.0846 0.3114
i=9 0.9833 0.9769 0.9541 0.8971 0.7560 0.5457 0.2994 0.1240 0.0488 0.1108
i=10 0.9998 0.9990 0.9977 0.9876 0.9539 0.8183 0.5917 0.3164 0.1303 0.0549
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APPENDIX C: Relative Frequencies of Letters in Latin Languages

Table C.1: Relative Letter Frequencies in 15 Latin Languages

Letter English French German Spanish Portuguese Esperanto Italian Turkish
a 8.17% 7.64% 6.52% 11.53% 14.63% 12.12% 11.75% 12.92%
b 1.49% 0.90% 1.89% 2.22% 1.04% 0.98% 0.93% 2.84%
c 2.78% 3.26% 2.73% 4.02% 3.88% 0.78% 4.50% 1.46%
d 4.25% 3.67% 5.08% 5.01% 4.99% 3.04% 3.74% 5.21%
e 12.70% 14.72% 16.40% 12.18% 12.57% 9.00% 11.79% 9.91%
f 2.23% 1.07% 1.66% 0.69% 1.02% 1.04% 1.15% 0.46%
g 2.02% 0.87% 3.01% 1.77% 1.30% 1.17% 1.64% 1.25%
h 6.09% 0.74% 4.58% 0.70% 0.78% 0.38% 0.64% 1.21%
i 6.97% 7.53% 6.55% 6.25% 6.19% 10.01% 10.14% 9.60%
j 0.15% 0.61% 0.27% 0.49% 0.40% 3.50% 0.01% 0.03%
k 0.77% 0.07% 1.42% 0.01% 0.02% 4.16% 0.01% 5.68%
l 4.03% 5.46% 3.44% 4.97% 2.78% 6.10% 6.51% 5.92%
m 2.41% 2.97% 2.53% 3.16% 4.74% 2.99% 2.51% 3.75%
n 6.75% 7.10% 9.78% 6.71% 4.45% 7.96% 6.88% 7.99%
o 7.51% 5.80% 2.59% 8.68% 9.74% 8.78% 9.83% 2.98%
p 1.93% 2.52% 0.67% 2.51% 2.52% 2.76% 3.06% 0.89%
q 0.10% 1.36% 0.02% 0.88% 1.20% 0 0.51% 0
r 5.99% 6.69% 7.00% 6.87% 6.53% 5.91% 6.37% 7.72%
s 6.33% 7.95% 7.27% 7.98% 6.81% 6.09% 4.98% 3.01%
t 9.06% 7.24% 6.15% 4.63% 4.34% 5.28% 5.62% 3.31%
u 2.76% 6.31% 4.17% 2.93% 3.64% 3.18% 3.01% 3.24%
v 0.98% 1.84% 0.85% 1.14% 1.58% 1.90% 2.10% 0.96%
w 2.36% 0.05% 1.92% 0.02% 0.04% 0 0.03% 0
x 0.15% 0.43% 0.03% 0.22% 0.25% 0 0.00% 0
y 1.97% 0.13% 0.04% 1.01% 0.01% 0 0.02% 3.34%
z 0.07% 0.33% 1.13% 0.47% 0.47% 0.49% 1.18% 1.50%
à 0 0.49% 0 0 0.07% 0 0.64% 0
â 0 0.05% 0 0 0.56% 0 0 0
á 0 0 0 0.50% 0.12% 0 0 0
å 0 0 0 0 0 0 0 0
ä 0 0 0.58% 0 0 0 0 0
�a 0 0 0 0 0 0 0 0
æ 0 0 0 0 0 0 0 0
÷ 0 0.02% 0 0 0 0 0 0
ç 0 0.09% 0 0 0.53% 0 0 1.16%
�c 0 0 0 0 0 0.66% 0 0
¢ 0 0 0 0 0 0 0 0
£ 0 0 0 0 0 0 0 0
¤ 0 0 0 0 0 0 0 0
ð 0 0 0 0 0 0 0 0
è 0 0.27% 0 0 0 0 0.26% 0
é 0 1.50% 0 0.43% 0.34% 0 0 0
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Table C.2: Relative Letter Frequencies in 15 Latin Languages Continued

Letter English French German Spanish Portuguese Esperanto Italian Turkish
ê 0 0.22% 0 0 0.45% 0 0 0
ë 0 0.01% 0 0 0 0 0 0
�e 0 0 0 0 0 0 0 0
¥ 0 0 0 0 0 0 0 0
�g 0 0 0 0 0 0.69% 0 0
�g 0 0 0 0 0 0 0 1.13%
�h 0 0 0 0 0 0.02% 0 0
î 0 0.05% 0 0 0 0 0 0
ì 0 0 0 0 0 0 -0.03% 0
í 0 0 0 0.73% 0.13% 0 0.03% 0
ï 0 0.01% 0 0 0 0 0 0
� 0 0 0 0 0 0 0 5.11%
�j 0 0 0 0 0 0.06% 0 0
ª 0 0 0 0 0 0 0 0
ñ 0 0 0 0.31% 0 0 0 0
« 0 0 0 0 0 0 0 0
¬ 0 0 0 0 0 0 0 0
ò 0 0 0 0 0 0 0.00% 0
ö 0 0 0.44% 0 0 0 0 0.78%
ô 0 0.02% 0 0 0.64% 0 0 0
ó 0 0 0 0.83% 0.30% 0 0 0
õ 0 0 0 0 0.04% 0 0 0
ø 0 0 0 0 0 0 0 0
° 0 0 0 0 0 0 0 0
�s 0 0 0 0 0 0.39% 0 0
³ 0 0 0 0 0 0 0 1.78%
± 0 0 0 0 0 0 0 0
² 0 0 0 0 0 0 0 0
ÿ 0 0 0.31% 0 0 0 0 0
´ 0 0 0 0 0 0 0 0
þ 0 0 0 0 0 0 0 0
ù 0 0.06% 0 0 0 0 -0.17% 0
ú 0 0 0 0.17% 0.21% 0 0.17% 0
û 0 0.06% 0 0 0 0 0 0
�u 0 0 0 0 0 0.52% 0 0
ü 0 0 1.00% 0.01% 0.03% 0 0 1.85%
· 0 0 0 0 0 0 0 0
ý 0 0 0 0 0 0 0 0
¹ 0 0 0 0 0 0 0 0
» 0 0 0 0 0 0 0 0
º 0 0 0 0 0 0 0 0
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Table C.3: Relative Letter Frequencies in 15 Latin Languages Continued

Letter Swedish Polish Dutch Danish Icelandic Finnish Czech
a 9.38% 10.50% 7.49% 6.03% 10.11% 12.22% 8.42%
b 1.54% 1.74% 1.58% 2.00% 1.04% 0.28% 0.82%
c 1.49% 3.90% 1.24% 0.57% 0 0.28% 0.74%
d 4.70% 3.73% 5.93% 5.86% 1.58% 1.04% 3.48%
e 10.15% 7.35% 18.91% 15.45% 6.42% 7.97% 7.56%
f 2.03% 0.14% 0.81% 2.41% 3.01% 0.19% 0.08%
g 2.86% 1.73% 3.40% 4.08% 4.24% 0.39% 0.09%
h 2.09% 1.02% 2.38% 1.62% 1.87% 1.85% 1.36%
i 5.82% 8.33% 6.50% 6.00% 7.58% 10.82% 6.07%
j 0.61% 1.84% 1.46% 0.73% 1.14% 2.04% 1.43%
k 3.14% 2.75% 2.25% 3.40% 3.31% 4.97% 2.89%
l 5.28% 2.56% 3.57% 5.23% 4.53% 5.76% 3.80%
m 3.47% 2.52% 2.21% 3.24% 4.04% 3.20% 2.45%
n 8.54% 6.24% 10.03% 7.24% 7.71% 8.83% 6.47%
o 4.48% 6.67% 6.06% 4.64% 2.17% 5.61% 6.70%
p 1.84% 2.45% 1.57% 1.76% 0.79% 1.84% 1.91%
q 0.02% 0 0.01% 0.01% 0 0.01% 0.00%
r 8.43% 5.24% 6.41% 8.96% 8.58% 2.87% 4.80%
s 6.59% 5.22% 3.73% 5.81% 5.63% 7.86% 5.21%
t 7.69% 2.48% 6.79% 6.86% 4.95% 8.75% 5.73%
u 1.92% 2.06% 1.99% 1.98% 4.56% 5.01% 2.16%
v 2.42% 0.01% 2.85% 2.33% 2.44% 2.25% 5.34%
w 0.14% 5.81% 1.52% 0.07% 0 0.09% 0.02%
x 0.16% 0.00% 0.04% 0.03% 0.05% 0.03% 0.03%
y 0.71% 3.21% 0.04% 0.70% 0.90% 1.75% 1.04%
z 0.07% 4.85% 1.39% 0.03% 0 0.05% 1.50%
à 0 0 0 0 0 0 0
â 0 0 0 0 0 0 0
á 0 0 0 0 1.80% 0 0.87%
å 1.34% 0 0 1.19% 0 0.00% 0
ä 1.80% 0 0 0 0 3.58% 0
ã 0 0 0 0 0 0 0
�a 0 0.70% 0 0 0 0 0
æ 0 0 0 0.87% 0.87% 0 0
÷ 0 0 0 0 0 0 0
ç 0 0 0 0 0 0 0
�c 0 0 0 0 0 0 0
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Table C.4: Relative Letter Frequencies in 15 Latin Languages Continued

Letter Swedish Polish Dutch Danish Icelandic Finnish Czech
¢ 0 0.74% 0 0 0 0 0
£ 0 0 0 0 0 0 0.46%
¤ 0 0 0 0 0 0 0.02%
ð 0 0 0 0 4.39% 0 0
è 0 0 0 0 0 0 0
é 0 0 0 0 0.65% 0 0.63%
ê 0 0 0 0 0 0 0
ë 0 0 0 0 0 0 0
�e 0 1.04% 0 0 0 0 0
¥ 0 0 0 0 0 0 1.22%
�g 0 0 0 0 0 0 0
�g 0 0 0 0 0 0 0
�h 0 0 0 0 0 0 0
î 0 0 0 0 0 0 0
ì 0 0 0 0 0 0 0
í 0 0 0 0 1.57% 0 1.64%
ï 0 0 0 0 0 0 0
� 0 0 0 0 0 0 0
�j 0 0 0 0 0 0 0
ª 0 2.11% 0 0 0 0 0
ñ 0 0 0 0 0 0 0
« 0 0.36% 0 0 0 0 0
¬ 0 0 0 0 0 0 0.01%
ò 0 0 0 0 0 0 0
ö 1.31% 0 0 0 0.78% 0.44% 0
ô 0 0 0 0 0 0 0
ó 0 1.14% 0 0 0.99% 0 0.02%
õ 0 0 0 0 0 0 0
ø 0 0 0 0.94% 0 0 0
° 0 0 0 0 0 0 0.38%
�s 0 0 0 0 0 0 0
³ 0 0 0 0 0 0 0
± 0 0.81% 0 0 0 0 0
² 0 0 0 0 0 0 0.69%
ÿ 0 0 0 0 0 0 0
´ 0 0 0 0 0 0 0.01%
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Table C.5: Relative Letter Frequencies in 15 Latin Languages Continued

Letter Swedish Polish Dutch Danish Icelandic Finnish Czech
þ 0 0 0 0 1.46% 0 0
ù 0 0 0 0 0 0 0
ú 0 0 0 0 0.61% 0 0.05%
û 0 0 0 0 0 0 0
�u 0 0 0 0 0 0 0
ü 0 0 0 0 0 0 0
· 0 0 0 0 0 0 0.20%
ý 0 0 0 0 0.23% 0 1.00%
¹ 0 0.08% 0 0 0 0 0
» 0 0.71% 0 0 0 0 0
º 0 0 0 0 0 0 0.72%


