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ABSTRACT

JOSEPH DEESE. NESTED OPTIMIZATION FRAMEWORK FOR FUSING
ITERATIVE PLANT OPTIMIZATION WITH CONTINUOUS CONTROLLER
OPTIMIZATION. (Under the direction of DR. CHRISTOPHER VERMILLION)

This research establishes a novel combined plant and controller optimization (termed

co-design) framework, aimed at complex systems, that speeds up the optimization pro-

cess by adjusting controller parameters during an experiment while plant parameters are

adjusted between batches of experiments. Most legacy co-design approaches have been

restricted to analytical or numerical approaches that require full knowledge of the system

dynamics and do not leverage the unique ability to optimize control parameters in real

time. To address these challenges, the proposed nested co-design framework relies on an

iterative outer loop to adjust the plant design and an inner loop that optimizes the control

parameters during an experiment. Following each round of experiments, performance of

the dynamical system is characterized across the design space, along with a statistical char-

acterization of uncertainty. Using these characterizations, the design space is reduced prior

to proceeding to subsequent iterations. The process is repeated until the design space has

been sufficiently reduced. This dissertation evaluates a variety of candidate methodologies

for both the outer-loop plant iteration and inner-loop control adaptation, including statisti-

cal design of experiments, Gaussian Process (GP) modeling, and more traditional adaptive

control techniques. The dissertation focuses heavily on the fusion of a GP-based technique

for plant iteration and a novel recursive GP (RGP)-based adaptive control technique for

control parameter adaptation. Not only does this result in a formulation where the inner-

loop control parameter adaptation mirrors the iteration-based plant parameter adaptation;
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the RGP-based adaptation technique also represents a standalone contribution to the adap-

tive control literature. All variations of this framework have been validated in simulations

and/or lab-scale experiments for an airborne wind energy system. The results in this disser-

tation demonstrate the efficacy of the nested co-design framework in efficiently converging

to optimal design parameters.
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CHAPTER 1: INTRODUCTION

For many active system designs, the desire of the designer is to achieve robust and ef-

ficient system operation. The robustness and efficiency of the system is directly related

to the design decisions made for the physical design and control schemes of the system.

However, in many applications, the best decisions are not intuitive, necessitate immense

knowledge of the system at hand, and require expertise in many different disciplines. To

develop such knowledge of a complex system requires either extensive simulations or an

experimental platform, both of which can require large financial and time commitments.

This research has developed optimization strategies that leverage combined plant and con-

troller optimization tools that are applicable to plant and controller design of complex,

active systems that require either extensive simulations or experiments.

1.1 Background - Combined plant and controller optimization

Traditionally, plant (the set of parameters describing the physical characteristics of the

system) and control (the set of parameters used to actively make decisions in real time)

design optimizations have been considered in isolation, but in many real-world systems,

coupling exists between the plant and controller designs. When the plant and controller

designs are coupled, the optimal plant design depends on the control design and vice versa.

Systems that have been shown to exhibit such coupling are automotive suspension sys-

tems ([1], [2], and [3]), elevator systems in [4], advanced powertrain systems in [5], and
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airborne wind energy systems in [6] and [7]. To address the challenges of coupled sys-

tems, combined plant and controller optimization, coined co-design, was introduced in [8].

Co-design techniques can be divided into four categories: sequential, iterative, nested, and

simultaneous. Sequential co-design techniques consecutively complete a single plant and

controller optimization. For a sequential strategy, the plant design is optimized for a given

controller design, followed by controller optimization for the optimized plant design. An

iterative strategy optimizes the plant design for a single controller design and then opti-

mizes the controller design for a fixed plant design (see [9] and [10]). Alternating between

plant and controller optimization is carried out until a prescribed convergence criterion is

met. Nested strategies are composed of two loops: an inner loop that completes an entire

controller optimization (for a specific plant design) and an outer loop that carries out an

iteration of the plant optimization (see [1], [2], and [4]). Lastly, a simultaneous approach

combines the plant and controller optimization into a single optimization problem and is

solved iteratively until convergence to a solution has been achieved.

In the presence of coupling, achieving a combined optimal solution can be challenging.

In [8], it has been shown that convergence to an optimal solution can only be guaranteed

for simultaneous and nested approaches (under limiting assumptions). However, varia-

tions of sequential and iterative optimization strategies have been developed that leverage

the computational advantages of sequential and iterative approaches. The authors in [11]

propose the use of control proxy functions to address the issue of unidirectional coupling

by decoupling the plant and controller design problems into two separate, but linked (via

a control proxy function) optimization problems. A decomposition-based optimization,

described in [12], partitions the combined plant and controller optimization problem by
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using Augmented Lagrangian Coordination (ALC). After partitioning, each subproblem is

solved simultaneously, where the plant design optimization is carried out using traditional

optimization techniques (e.g., sequential quadratic programming) and the controller opti-

mization is done using optimal control theory. In [1], a nested optimization strategy is used

to design an active suspension system, where the inner loop is solved by linear-quadratic

regulator and the plant is adjusted in the outer loop using an interior-point method. The

previously developed co-design techniques exhibit the following key gaps:

1. The complexity of systems that can be considered by existing co-design tools is lim-

ited — often substantially — by restrictions on the underlying optimization tools.

For example, LQR-based optimal control design techniques assume a linear system.

Plant optimization techniques that use sequential quadratic programming (SQP) re-

quire an accurate estimate of the gradient and Hessian of the objective function or

Lagrangian for constrained problems. Practical implementation of Pontryagin’s min-

imum principle (PMP)-based techniques requires a relatively simple, closed-form

expression for the system dynamics.

2. The vast majority of prior co-design research focuses exclusively on numerical and

analytical techniques. Furthermore, the more limited experimental co-design tech-

niques do not leverage the ability to adjust control parameters in real time. In a

nested co-design framework, in particular, the ability to adjust controller parameters

during the simulations/experiments can dramatically reduce the time and cost of the

optimization process.

My research focuses specifically on the development of co-design strategies that lever-
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age the unique ability for control parameters to be adapted in real time. This is naturally

appealing for a nested framework, wherein plant parameters can only be adjusted between

experiments, whereas control parameters can be fully optimized for a given plant design,

during an experiment. The framework presented here is classified as a nested co-design

strategy, but the techniques used at the outer and inner loop are specifically tailored to meet

the gaps discussed above. Table 1 compares the techniques that have been used at each

level of the nested strategy in the co-design literature. The work presented in [1], [2], and

[4], which performs offline optimization of both the controller and plant, is reliant on an

accurate model of the system that must be linear. This severely restricts the applicable

systems that can employ this technique. More recent work in [13], [14], and [15] has at-

tempted to broaden the types of systems that can utilize nested co-design techniques by

realizing the unique capability of control parameters to be optimized online, in real time.

In [14], Bayesian optimization is used to optimize the controller parameters in real time

by breaking the simulation into distinct intervals for periods of settling, evaluation, and

computation. By evaluating the performance of control design decisions over a large time

step, consideration of the temporal correlation of measurements due to system dynamics is

avoided. Although the controller parameters are optimized online in [14], the continuous-

time simulation is essentially discretized into a sequence of miniature experiments. My

work in [13] and [15] has established nested co-design techniques that achieve controller

parameter optimization in continuous time.

As noted earlier, a notable deficiency in the majority of co-design literature is its reliance

entirely on analytical and numerical models, rather than experiments. Recently, in [16], the

authors proposed a simultaneous optimization strategy that blends the results from cheap,
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Table 1: Comparison of nested co-design techniques.

Author

Outer loop
optimiza-
tion: single
design or
batch

Outer loop tech-
nique

Inner loop
optimiza-
tion: offline
or real-time

Inner loop tech-
nique

Fathy (see [1],
[2], and [4])

Single
Interior-point
method

Offline LQR/LQG

Deese (see [13]) Batch Optimal DoE
Real-time,
continuous

Extremum seek-
ing

Baheri (see [14]) Single
Bayesian opti-
mization

Real-time,
discontinu-
ous

Bayesian opti-
mization

Deese (see [15]) Batch Optimal DoE
Real-time,
continuous

Continuous-time
DoE

Deese (recent
work, awaiting
press)

Batch
Batch Bayesian
optimization

Real-time,
continuous

RGP-based adap-
tive control

but less accurate simulations with expensive, but accurate experiments. Within this simul-

taneous optimization strategy, a batch of candidate system designs are generated by optimal

design of experiments (DoE). In general, optimal DoE techniques populate a candidate de-

sign space with a set of candidate designs that maximize a statistical information metric.

The performance of each candidate system design is evaluated either in a simulation or ex-

periment. Fusion of the simulation and experimental results is used in an attempt to correct

simulations to more accurately reflect the true performance of the system at subsequent

iterations. However, since the approach in [16] is a simultaneous approach, there is no

distinction made between the control and plant parameters. Plant and controller parameters

are fundamentally different in the sense that control parameters can be optimized in real

time, which is accounted for in the proposed framework.

In contrast to the prior literature, this dissertation contributes a nested co-design frame-
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work that (i) utilizes statistical techniques that are highly relevant to experimental work,

(ii) readily enables real-time adaptation of control parameters during the course of ex-

periments, and (iii) has actually been demonstrated experimentally. A large number of

complex systems will benefit from this approach. Designing complex, active systems in

practice requires immense multidisciplinary knowledge base, financial expenses, and large

time commitments. Complicating matters further, the design parameter tuning rules can be

counterintuitive. One such application is the design optimization of active exoskeletons. In

[17], the authors detail various challenges associated with designing the controller param-

eters for optimal performance of active exoskeletons used in gait rehabilitation. Namely,

since the physiological needs of each patient varies, proper tuning of the patient-specific

parameters requires hours of trial-and-error tuning per patient. Additionally, the design

of the physical system (e.g., torque requirements at joints) also depends on the physical

characteristics of each patient [18]. Applying nested co-design with real-time adaptation of

control parameters would reduce the time required to tune the active exoskeleton for each

patient’s unique needs. Another system that could benefit from the application of co-design

techniques is the design optimization of diesel engine timing. The authors in [19] and [20]

present a number of critical parameters that contribute to the overall performance of the

engine, such as the mass air flow, rail pressure, drain orifice diameter, inlet orifice diam-

eter, and solenoid valve seat angle. Optimization of these parameters can be challenging

because of the increased regulation on emissions and a trade-off between fuel consump-

tion and emissions. By applying nested co-design, the time required to optimize the diesel

engine for ever-changing regulations would be significantly reduced.
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1.2 Proposed application: Airborne wind energy (AWE) systems

This research will focus on airborne wind energy (AWE) systems for the validation of

nested co-design tools with real-time controller adaptation. AWE systems replace the tower

of traditional wind turbines with tethers and a lifting body that enable the turbine to reach

high altitudes, where winds are typically stronger and more consistent. The material costs

associated with the foundation and tower of traditional wind turbines are significantly re-

duced by introducing tethers. The tethers enable the operating height of the turbine to be

adjusted during operation [21, 22, 23]. Additionally, the tethers can be used to induce cross-

wind motion of the system in order to augment power generation [24, 25, 26, 27, 28, 29].

Currently, a number of companies, specifically Makani [30], Altaeros [31], KiteGen [32],

Ampyx Power [33], and KiteMill [34], are exploring the development of deployable AWE

systems. Figure 1 displays the designs of each of the aforementioned companies. Energy

generation of AWE systems can occur onboard the lifting body or at the ground station.

Two examples of onboard generation systems are the Makani and Altaeros systems. Al-

taeros’ Buoyant Airborne Turbine (BAT), a three tether stationary flight system, houses an

onboard turbine in an annular shroud and transmits power to the ground station via a single

conductive tether. Makani’s system accommodates onboard turbines on a rigid wing struc-

ture equipped with control surfaces; however this system moves in crosswind motion to

augment power generation. Through tether tension induced by crosswind motion, Ampyx

Power’s rigid wing system generates power at the ground station. Lastly, KiteGen uses a

kite-like lifting body moving in a crosswind motion to generate power at the ground station

via tether tensions.
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Figure 1: Collection of AWE system designs from a) Altaeros Energies [31], b) Makani
[30], c) Kitegen [32], d) Ampyx Power [33], e) KiteMill [34], and f) EnerKite. [35]

The AWE community has placed extensive emphasis on control system design, with

much less attention paid to plant design. In particular, significant emphasis has been placed

on altitude optimization and crosswind flight trajectory optimization. Altitude optimiza-

tion, discussed in [21] and [22], attempts to optimize the operating altitude of the turbine in

the presence of a spatiotemporally varying environment. In [24], [25], [26], [27], [28], and

[29] power augmentation of AWE systems, realized by moving the system in controlled

crosswind flight patterns, is studied. Much of the AWE community has not considered the

coupling between plant and controller designs, even though coupling has been shown to

exist in [36, 37].

AWE systems are ideal candidate systems for the development of advanced co-design

techniques for five main reasons. First, the AWE system dynamics are complex and highly

nonlinear. Secondly, AWE system dynamics have not been fully characterized, and many

control-oriented dynamic models neglect key higher-order phenomena, such as unsteady
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flow effects, fluid/structure interaction, and effects of the spatially varying flow field in

the vicinity of the lifting body. Thirdly, the plant and controller design are coupled, which

means that the optimal plant design depends on the controller design and vice versa. Fourth,

complex system dynamics result in objective functions that cannot (for all practical pur-

poses) be expressed in an analytical form in terms of design parameters. Most impor-

tantly from the perspective of optimization, gathering first or second order information

from the objective function (or performance index) can be inaccurate in simulation and

time-consuming for experimental studies. Lastly, at the water channel in the Motorsports

Research Lab at UNC-Charlotte, a unique lab-scale testing platform was established in [6],

which provides a mechanism to evaluate AWE system designs and control systems experi-

mentally. Therefore, the co-design strategies developed in this proposal can be validated in

simulation and experimentally. Recently, [38] presented a experimentally-infused, simul-

taneous optimization strategy that addresses the coupling between the plant and controller

designs. Nevertheless, the application of co-design to AWE systems remains in a nascent

state.

1.3 Problem statement and intended contributions

The goal of this co-design framework is to determine the plant and controller parameter

vectors, denoted by pp and pc, respectively, that minimize an integral performance index,

subject to a dynamic model and bounds on the parameters. Mathematically, the optimiza-



10

tion problem can be expressed as follows:

minimize
pp,pc

J(pc,pp) =
∫ t f

0
Jinst(x(t),u(t);pp,pc)dt

subject to: pp ∈ P, pc ∈C

given: ẋ = f (x,u;pp,pc)

u = g(x;pc)

(1)

Here, Jinst is a instantaneous performance index that captures the performance characteris-

tics of the system, x(t) are the states that describe the system’s dynamics, and u(t) are the

control inputs to the system. The control inputs to the system are a function of the states

because the adaptation used to optimize the control parameters is a function of the system’s

states.

In legacy co-design literature, severe restrictions have been placed on the system dynam-

ics. The overarching objective of this research is to extend the legacy co-design method-

ologies to be applicable to real-world systems that require either extensive simulations or

experiments. In light of this overarching goal, the following research questions can be

posed:

1. How can plant and control design points be selected in order to provide the most

information in each respective design space?

2. Can continuous-time adjustment of control parameters be leveraged within a nested

optimization strategy that does not require knowledge of the plant or first or second

order information of the objective function?

3. Can traditional DoE techniques (which generally are used to generate a discrete set
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of design points at discrete iterations) be continualized in a way that enables those

techniques to take the form of a real-time adaptive control law within the inner loop

of a nested strategy?

A general process diagram for the proposed nested framework can be seen in Figure 2.

To begin the process, a batch of candidate plant designs is generated using iterative experi-

mental design techniques. Each of the candidate plant designs is then tested in a simulation

or experiment, where an adaptive control law is used to optimize the control parameter(s)

in real time. After converging to the optimal control design, an integral objective function

value is calculated. A response surface characterization is carried out, which yields two

important sources of information used for design space reduction. The first is the approxi-

mate performance value at off design points. The second is an uncertainty characterization

that approximates the uncertainty in the approximate performance values across the design

space. Using these two mathematical quantities, the plant design space is reduced. Within

the reduced design space, another batch of candidate plant designs is generated. This pro-

cess is carried out iteratively until the plant design space has been sufficiently reduced.

Due to the limitations of the techniques in the adaptive control literature for perform-

ing non-parametric adaptive control in real time, using statistical, information-based tech-

niques, significant focus has been placed on the inner loop controller optimization. Overall,

three adaptive control laws have been utilized in this work; two of which are standalone

contributions of this research. The first, extremum seeking (ES) ([39]), is a popular non-

model based adaptive control technique that relies on an oscillatory perturbation to move

through the design space in order to search for a optimizer. The second adaptive control
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Figure 2: General process diagram of nested optimization strategy developed in this re-
search.

technique is an information-based algorithm inspired by traditional design of experiments

approaches, which we have coined entropy-based DoE. Continuous-time design space ex-

ploration and reduction is achieved by utilizing an information metric, based on the con-

cept of information entropy [40]. Specifically, design space exploration is accomplished

by maximizing a normalized information metric, while design space reduction is executed

by using the normalized information metric as an approximation of the response surface

uncertainty. The third, coined recursive Gaussian process (RGP)-based adaptive control,

formalizes the concepts from the entropy-based DoE approach by grounding them in a

statistical framework.

The overarching focus of this research was to develop a nested co-design framework

that is applicable to complex system design and leverages the ability to optimize controller

parameters in real-time. Specific contributions are as follows:
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1. Establishment of a real-time controller adaptation law that leverages RGP modeling

to recursively update predictive mean and variance in the presence of temporal corre-

lation that results from system dynamics, which is subsequently used to guide global

exploration of the design space;

2. Experimental validation of the RGP-based adaptation from 1;

3. Development of a nested co-design strategy that leverages GP modeling at the inner

and outer loops;

4. Experimental validation of the GP-driven nested optimization framework described

in 3.



CHAPTER 2: AIRBORNE WIND ENERGY SYSTEM: DYNAMIC MODEL,
PERFORMANCE CONSIDERATIONS, AND EXPERIMENTAL SETUP

The optimization strategies developed in this work are verified using the Buoyant Air-

borne Turbine (BAT) of Altaeros as a case study. The BAT replaces the tower of traditional

wind turbines with a Helium-filled annular shroud and three tethers. Each tether is attached

to winches, installed on a ground station, that enable the adjustment of position and orien-

tation of the system. Housed within the annular shroud, a horizontal axis turbine is used

to extract energy from the wind. Energy is transmitted to the ground station by a single

conductive tether. In Figure 3, the BAT system can be seen during full-scale flight testing

at Loring Air Force Base (decommissioned).

2.1 Dynamic model of the BAT

The simplified BAT dynamic model discussed in [41] is used for the simulation studies

in this work. Figure 4 illustrates the ground-fixed, body-fixed, and generalized coordinate

systems of the BAT dynamic model. To allow the dynamics to be modeled entirely through

ordinary differential equations (ODEs) (avoiding the need for a differential algebraic equa-

tion model), the three tethers are approximated as a single kinematic link with length, Lt .

At the shroud, the tether has a bridle joint with two controlled degrees of freedom. From the

resulting set of ODEs, the BAT position and orientation can be described by six generalized

coordinates: Θ, Φ, Ψ, Lt , θ ′ and φ ′. The orientation of the BAT tether can be described by

the first three of the generalized coordinates. Zenith angle (Φ), the angle between the tether
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Figure 3: Full-scale prototype of Buoyant Airborne Turbine (BAT) during 2012 flight test-
ing at Loring Air Force Base. [31]

and ground-fixed vertical axis, and azimuth angle (Θ), the angle of the tether projection on

the horizontal plane, describe the orientation of the tether with respect to the ground-fixed

coordinate system. Twist angle, Ψ, represents the orientation of the BAT shroud with re-

spect to the tether axis. The length of the single tether is described by Lt . The induced

roll (φ ′) and pitch (θ ′) angles are controlled angles induced from tether length differences

between the starboard and port tethers and forward and aft tethers, respectively. These con-

trolled coordinates can be described in terms of the individual lengths of each tether in the

three tether model by the following equations:
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φ
′ = tan−1(

l3− l2
llat
sep

), (2)

θ
′ = tan−1(

l1−0.5(l2 + l3)

llong
sep

), (3)

Lt =
1
3
(l1 + l2 + l3), (4)

where llong
sep and llat

sep are longitudinal and lateral tether attachment separation distances, re-

spectively. The control inputs are the tether release speeds, ūi, given by:

ūi =
d
dt

li, i = 1,2,3. (5)

Figure 4: Axis system for the BAT dynamic model. This diagram illustrates generalized
coordinates (left and bottom middle), Euler angles (top middle), and tether attachment
points (right).

Derived using an Euler-Lagrange formulation, the system dynamics are given by:
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D(Q)Q̈+C(Q, Q̇)Q̇+g(Q) = τ(Q, Q̇,V,ψwind), (6)

X = f (Q, Q̇), (7)

Ω = g(Q, Q̇), (8)

where:

Q = [Θ Φ Ψ Lt θ
′

φ
′], (9)

X = [x y z u v w], (10)

Ω = [φ θ ψ p q r]. (11)

Here, τ represents a vector of generalized forces, V is the wind speed, and ψwind is the wind

direction. The angle of attack (α) and sideslip angle (β ) describe the orientation of the

apparent wind vector with respect to the body-fixed coordinates of the BAT. Aerodynamic

forces and moments are functions of both α and β .

The surface areas of the BAT’s horizontal and vertical stabilizers represent important de-

sign parameters. However, prior to this work, the numerical model was a lumped aerody-

namic model, meaning that aerodynamic coefficients were characterized for the combined

shroud (fuselage) and stabilizers. In order to consider the impact the stabilizer geometry

has on the performance of the system, the aerodynamics of the system were partitioned

between the main body, horizontal stabilizers, and vertical stabilizers. Total aerodynamic
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coefficients are given by:

Ctotal
D,L,S(α,β ) = Cbody

D,L,S(α,β )+CV
D,L,S(α,β )

AV

Abody
(12)

+CH
D,L,S(α,β )

AH

Abody
,

Ctotal
Mx,My,Mz(α,β ) = Cbody

Mx,My,Mz(α,β ) (13)

+CV
Mx,My,Mz(α,β )

AV lV
Abodylbody

+CH
Mx,My,Mz(α,β )

AH lH
Abodylbody

.

Here CD, CL, CS, CMx, CMy, and CMz represent the drag, lift, side force, roll moment,

pitching moment and yaw moment coefficients of the BAT, respectively. The subscripts

body, V , and H correspond to the main body, vertical stabilizer, and horizontal stabilizer,

respectively.

2.2 Experimental platform for AWE systems

At UNC-Charlotte a unique experimental platform, first detailed in [6], provides a rapidly

reconfigurable platform for assessing the characteristics of AWE systems while operating

under closed-loop control with various environmental perturbations. The lab-scale exper-

imental platform facilitates the ability to rapidly iterate through various design configu-

rations at a fraction of the cost of full-scale flight testing. This work utilizes the UNC-

Charlotte water channel, shown in Figure 5, which is the 5th largest in the United States.

The UNC-Charlotte water channel has a cross section of 1.0 m× 1.0 m and is capable of

flow speeds up to 1.0m
s .

Scaled models of AWE systems are 3D printed and “flown” in the water channel en-
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Figure 5: Image of UNC-Charlotte water channel experimental platform highlighting the
components.

vironment. Tracking of the scaled model is achieved by three high speed cameras used

for image acquisition and an image processing algorithm detailed in [29]. One camera is

mounted on the side of the water channel, perpendicular to the side of the water channel.

Two cameras are placed on the bottom of the water channel, one of which is perpendicular

to the bottom of the water channel, the other of which is placed at a 45 degree angle with

respect to the bottom of the water channel. A schematic of the camera layout can be seen

in Figure 6. The experimental platform utilizes three DC motors, mounted on the testing
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frame at the top of the water channel, to control the lengths of each of the three tethers on

the scaled system. A target computer is used to handle the computational burden of the

image processing, geometric transformations that are used to calculate the position and ori-

entation of the BAT, and execution of the control algorithm. The target computer, equipped

with 6 cores and 64 GB of memory, carries out all calculations at a sample time of 0.025

seconds. The host computer is used for code development and provides a graphical user

interface (GUI) to execute real-time adjustments to the controller during each experiment.

𝑧𝑔

𝑥𝑔

𝑦𝑔

𝑙1

𝑙2

𝑙3

#1 Camera
(side)

#2 Camera 
(Underneath 

Upstream)

𝛷

#3 Camera 
(Underneath 
Downstream)

Flow Direction

𝑥𝑏

𝑦𝑏
𝑧𝑏

Figure 6: Schematic of water channel configuration.

In general, there are a number of candidate plant design parameters that could be consid-

ered in this co-design framework, such as tether attachment locations, stabilizer reference

areas, longitudinal location of center of mass, stabilizer angle of incidence, and stabilizer
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dihedral angle. Figure 7 illustrates the current features of the scaled models that can be

rapidly readjusted. The ballast holes allow for rapid variation of the center of mass location

of the BAT, while the multiple tether attachment locations allow the model to be tethered in

several configurations. Stabilizer slots provide a mechanism for rapidly adjusting the fea-

tures associated with the stabilizers, such as the stabilizer reference areas, stabilizer angle

of incidence, etc. The plant design parameters focused on in this dissertation are the stabi-

lizer reference area scale factor (KA), the longitudinal location of the center of mass (xcm),

and net buoyancy (ρβ ). The reference area scale factor uniformly scales the horizontal (AH)

and vertical (AV ) stabilizer reference areas.

Vertical fin slot

Ballast
holes

Vertical fin

Lead rod

Aft tether attachment

Horizontal fin

Horizontal
fin slot

Drag screen

Forward tether
attachment

Side dots

Bottom dots

Figure 7: Image of 3D printed scaled model of BAT illustrating the rapid reconfigurable
features.
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2.3 Control design structure for the BAT

To achieve autonomous flight, AWE systems are equipped with lower-level flight con-

trollers that adjust control inputs to the system in order to track desired setpoints. For the

BAT, the tether release speeds are actuated to track altitude, roll angle, and pitch angle

setpoints. The operation of the BAT during stationary and crosswind flight were used as

case studies throughout this research. Because desired flight objectives for each operational

mode are different, the controller varies to meet the desired flight characteristics of each

operational mode. During stationary flight, secondary tasks, such as telecommunications,

surveillance, etc., are executed while generating power. These secondary tasks during flight

require the BAT to remain sufficiently stationary. Crosswind flight, on the other hand, is

used to maximize the power production by increasing the apparent wind velocity presented

to the on-board turbine(s) through crosswind motions [25, 26, 27, 28, 29].

2.3.1 Attitude/Altitude Controller

Regardless of the operational mode of the BAT, the attitude/altitude controller remains

the same. The attitude/altitude controller structure for BAT can be seen in Figure 8. For

stationary flight θsp, φsp, and zsp are all considered to be constant setpoints.

Based on the tracking error, the flight controller uses three lead filters to compute pre-

liminary control inputs that describe the average tether release speed, the forward/aft tether

speed difference, and the port/starboard speed difference, denoted by ūz, ūθ , and ūφ , re-

spectively:
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Figure 8: Block diagram of attitude/altitude controller for the BAT.

ūz(s) =
kd,zs+ kp,z

τzs+1
(zsp(s)− z(s)), (14)

ūθ (s) =
kd,θ s+ kp,θ

τθ s+1
(θsp(s)−θ(s)), (15)

ūφ (s) =
kd,φ s+ kp,φ

τφ s+1
(φsp(s)−φ(s)). (16)

The commanded tether release speeds (ūcenter, ūstbd , and ūport) are calculated as linear

combinations of the preliminary control inputs shown in (14), (15), and (16). These linear

combinations are given by:

ūcenter = ūz− ūθ , (17)

ūstbd = ūz + ūθ + ūφ , (18)

ūport = ūz + ūθ − ūφ . (19)
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2.3.2 Crosswind controller augmentation

Crosswind motion is achieved in both simulation and experimentally by commanding a

nonzero roll angle to induce sideslip. The selection process for the roll angle setpoint varies

between simulation and experiment. Additionally, a rudder is used to independently adjust

the sideslip angle in simulation.

2.3.2.1 Design considerations for crosswind flight controller in simulation

The controller structure used to induce crosswind flight for the dynamic model discussed

in Section 2.1 is shown in Figure 9. This controller structure is detailed in [21]. By en-

gaging the motion setpoint and crosswind controllers within the hierarchical structure in

Figure 9, a nonzero roll angle setpoint is commanded to the lower-level roll controller. Lat-

eral translation of the AWE system is caused by the introduction of sideslip. The motion

setpoint block is used to determine the target crosswind velocity vcw
sp and periodic timing

of the system’s tack. Periodic reversal of the system’s tack is used to maintain the de-

sired crosswind motion. The target crosswind velocity is limited by the rated power of the

onboard turbines because operating above the rated power of the wind turbine is not bene-

ficial. To increase the efficiency of the crosswind motion, a rudder is added to the vertical

stabilizer to induce yaw, in order to maintain a sideslip angle that keeps apparent wind on

the correct side of the BAT.

2.3.2.2 Experimental crosswind flight controller

Experimental crosswind flight at the UNC-Charlotte water channel was first implemented

in [29]. Just as in the attitude/altitude controller structure for stationary flight, shown in
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Figure 9: Crosswind flight controller structure for numerical simulation of BAT. Setting βsp
and φsp to zero and turning off the crosswind motion controller results in stationary flight.

Figure 8, three lead filters are used to track roll, pitch, and altitude. The pitch angle (θsp)

and altitude (zsp) setpoints are constants. However, to induce lateral motion, the roll angle

setpoint is a square wave, which periodically redirects components of the lift vector in the

lateral direction in order to induce the desired motion. The roll angle setpoint is given by:

φsp =


asq(t),

∫ t
ti

1
Tsq(τ)

dτ ≤ 0.5

−asq(t), 0.5 <
∫ t

ti
1

Tsq(τ)
dτ ≤ 1

(20)

Here, asq denotes the amplitude of the square wave, Tsq denotes the period of the square

wave, and ti denotes the time at which the present square wave started. Once the integral

the reaches a value of 1, it is reset to zero.
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2.4 Dynamic Similarity Between Lab-Scale and Full-Scale

One hallmark of the lab-scale platform is its ability to replicate the full-scale flight dy-

namics of AWE systems at a fraction of the cost. Dimensional analysis, using the Buck-

ingham Pi Theorem, was performed on the plant design of an AWE system in [36] to

determine dimensionless groups that must be conserved across multiple scales to ensure

dynamic similarity. These dimensionless groups give rise to scaling laws that if followed

result in lab-scale flight that replicates full-scale with the exception of uniformly scaled

time constants. The scaling rules are as follows:

1. To achieve geometric similarity between full-scale and lab-scale, the individual tether

lengths must be scaled by the same scale factor as the model length.

2. Net buoyancy must be preserved between full-scale and lab-scale.

3. To conserve Froude number (the fifth dimensionless group in [36]), the lab-scale

flow velocity vlab must be scaled by the square root of the length-scale factor. For

example, if L is the length scale factor and v f ull is the full-scale target wind velocity,

then vlab =
√

Lv f ull

The aforementioned scaling laws are only valid if two assumptions are met. The first as-

sumption states that the mass distribution between lab-scale and full-scale are identical,

which is fulfilled by properly designing the mass properties of the 3D printed model. The

second assumption requires that fluid coefficients are preserved, in spite of Reynolds num-

ber differences. This has been validated for the BAT via force and moment testing in [36].

In order to extrapolate closed-loop performance to full-scale, not only must the plant
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parameters be properly scaled, but additionally the controller parameters must be properly

scaled. In [29], the Buckingham-Pi analysis from [36] was extended to the controller pa-

rameters to determine the dimensionless groups for the controller that must be conserved

to achieve dynamic similarity. The controller parameters must be scaled according to the

following scaling laws to ensure closed-loop dynamic similarity between full-scale and

lab-scale flight:

1. The derivative gains of the roll and pitch controller at lab-scale are proportional to

the length scale factor, L, i.e. kd,θ ,kd,φ ∝ L.

2. The lab-scale proportional gain of the roll, proportional gain of the pitch control, and

tether release speed saturation (vsat
l ) are proportional to the square root of the length

scale factor, i.e. kp,θ ,kp,φ ∝
√

L and vsat
l ∝

√
L.

3. The lab-scale proportional gain of the altitude controller is proportional to 1
L , i.e.

kp,z ∝
1
L .

4. The lab-scale filter time constants and roll setpoint period must be scaled by L, i.e.

τφ ,θ ,z ∝ L and Tsq ∝ L.

If the plant and controller scaling laws are satisfied, the lab-scale, closed-loop dynamics

will replicate the closed-loop dynamics during full-scale flight with uniformly scaled time

constants. In particular, the time constants will scale according to the square root of the

length scale factor, i.e. τ ∝
√

L. It is important to note that the work of this dissertation is

conducted at lab-scale because the overall goal is to implement the co-design methodolo-

gies developed here experimentally.
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2.5 Performance indices

One of the main ingredients to any optimization problem is a performance index (or ob-

jective function), which reflects features that are important to overall system performance.

The Altaeros BAT is a unique AWE system that can achieve both stationary and crosswind

flight. The optimization strategies developed in this work explore both. The performance

index associated with each mode of operation differ since the goal of each mode is different.

2.5.1 Stationary flight performance index

One economic use case for the BAT is the dual-use case of simultaneous energy har-

vesting and telecommunications. This dual use case requires substantially stationary ap-

plication. These qualitative requirements necessitate a control system whereby the BAT

remains sufficiently motionless in variable wind conditions. Furthermore, if multiple BATs

are implemented in a farm, it is beneficial that the “ground footprint” of each system (de-

fined as the projected area over which the turbines can float) be as small as possible, so as

to maximize the number of BATs in a tight farm. The ground footprint can be considered

by incorporating the zenith angle (shown as Φ in Figure 4) as a term within the perfor-

mance index. The quality of flight (i.e., the extent to which the BAT remains stationary)

is characterized by penalizing roll angle tracking error (φe = φdes−φ ) and yaw angle off-

set (ψe = ψ f low−ψ). In this specific application, φdes and ψ f low are both equal to zero.

The instantaneous performance index, used to drive the continuous-time control parameter

adaptation, is given by:

Jinst(pc,pp) = k1Φ
2 + k2ψ

2
e + k3φ

2
e . (21)
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To evaluate the performance of each candidate plant design, while operating at a fixed

controller, an integral performance index value is calculated. The integral performance

index value is calculated by:

J(p∗c(pp),pp) =
∫ tc+∆t

tc
(k1Φ

2 + k2ψ
2
e + k3φ

2
e )dt, (22)

where tc is the time at which the inner loop optimization converged to the optimal controller

design and ∆t represents the time interval over which the integral performance index is

evaluated over.

2.5.2 Crosswind flight performance index

The objective of an AWE system during crosswind operation is to maximize lap-averaged

power production. This is realized mathematically by selecting the instantaneous perfor-

mance index as the ratio between the power that could be generated through crosswind

flight and the power that would be generated under stationary flight, assuming the same

onboard turbine and corresponding power coefficient. This ratio, termed the power factor,

is given by

Jinst(pc,pp) =

 |vapp|
|vw|

3

. (23)

Here, vapp is the apparent wind velocity and vw is the free-stream wind velocity. After the

controller optimization has converged, an average power factor, while operating at a fixed

controller, is calculated. The average power factor is calculated by
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J(p∗c(pp),pp) =
1
∆t

∫ tc+∆t

tc

 |vapp|
|vw|

3

dt (24)

Here, tc is the time at which the inner loop optimization converged to the optimal controller

design and ∆t represents the time interval over which the integral performance index is

evaluated over.

2.6 Environmental perturbation during stationary flight

To evaluate the dynamic performance of the BAT during stationary flight, the system

must be perturbed. This is because the water channel, unperturbed, only supplies unidirec-

tional flow. Thus, a symmetric BAT starting in a direct downwind configuration will not

experience any excitement of its lateral modes in the absence of a perturbation. Perturba-

tions can be achieved by initializing the system at a point that is not an equilibrium or by

applying an external excitation. In selecting an appropriate perturbation for the AWE ap-

plication, there were two criteria considered. First, since online adaptive control techniques

will be used to optimize the controller parameters in real time, the perturbation must be con-

sistent throughout the simulation. A consistent perturbation ensures that the instantaneous

performance value is only dependent on the controller parameters, instead of characteris-

tics of the perturbation at a particular time within the simulation. Second, considering that

experimental implementation of the proposed design optimization strategies is the focus of

future work, a perturbation that can be implemented in a lab-scale experimental setup is

desirable. In [6], a lab-scale experimental platform was developed to perform flight per-

formance evaluations of AWE systems (discussed in Chapter 2.2). To provide a consistent
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excitation using the lab-scale platform in [6], a frequency approximation of vortex shed-

ding off of a cylinder was selected. The Strouhal number, a dimensionless parameter used

to characterize the frequency of vortex shedding in the wake of a cylinder, was used to

generate velocity profile presented to the BAT. The Strouhal number is given by:

St =
f L
U

= 0.198(1− 19.7
ReD

), (25)

where f is the vortex shedding frequency, L is the characteristic length of the cylinder, U is

the flow velocity, and ReD is the Reynolds number associated with L and U . The empirical

formula shown in equation (25) can be used to solve for the vortex shedding frequency, f ,

at a given Reynolds number. It is important to note that this empirical formula is only valid

for Reynolds numbers in the range 250 < ReD < 2 ·105, which is applicable to the lab-scale

platform to be used in future experiments. In simulation, the velocity components in each

direction are functions of the oscillation frequency f , solved for using equation (25). Each

of the velocity components is given by:

vx = vbase
x + vx0 sin(ωdistt +

π

2
), (26)

vy = vy0 sin(ωdistt), (27)

vz = vz0 sin(ωdistt +
π

2
), (28)

where vbase
x = 0.606m

s , vx0 = 0.0866m
s , vy0 = 0.0650m

s , vz0 = 0.00866m
s , and ωdist = 2π

rad
s .

These velocities correspond to flow velocities in the lab-scale platform described in [36].

Through the dimensional analysis discussed in [36], these lab-scale flow velocities are



32

equivalent to wind speeds of vbase
x = 6.06m

s , vx0 = 0.866m
s , vy0 = 0.650m

s , vz0 = 0.0866m
s

(i.e., a scale factor of 10) and an oscillation frequency of ωdist = 0.2π
rad

s (i.e., a scale factor

of 1/10) on the full-scale BAT, which has 100 times the characteristic length of the models

used in the lab-scale setup.



CHAPTER 3: PLANT-LEVEL ITERATION TOOLS

In the outer loop of this optimization strategy, the goal is to generate a batch of candidate

plant design points that populates a candidate design space in a fashion that yields the

maximum amount of information. While the details vary, the structure of the outer loop

remains the same throughout this work. That general structure takes the following form:

• A batch of candidate plant designs is generated using an information-seeking strat-

egy.

• Following the inner-loop controller optimization, which results in an optimal control

parameter vector and performance value for each plant design, a response surface

is used to characterize performance as a function of the design variables across the

design space.

• Using an uncertainty characterization and the response surface characterization, the

design space reduction rejects portions of the design space that are determined to be

suboptimal with a statistical level of confidence.

This structure is repeated until the design space has been significantly reduced. The re-

mainder of this chapter provides a detailed discussion of the methodologies that have been

used at the outer loop of the nested co-design framework.
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3.1 Optimal design of experiments approach

Optimal design of experiments (DoE) seeks to choose a set of experiments within a

given design space that maximizes a statistical measure of information [42]. Here, G-

optimal DoE is used to populate the plant design space with candidate design points at

each iteration of the co-design process, while a distance weighted regression approximates

the response at off-design points. Since optimal DoE populates experiments based solely

on information, statistical design space reduction must be used to exploit the perceived

optimum. Figure 10 displays the process diagram for the outer loop of the nested co-design

strategy that utilizes optimal design of experiments. The remainder of this section will

discuss each of these blocks in greater detail.

𝐩p
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Experiments
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loop 
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𝑆

J(𝐩c
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𝑘𝑐𝑜 = 𝑘𝑐𝑜 + 1

Iteration counter

Figure 10: Optimal DoE-based outer loop of the nested co-design framework.

3.1.1 G-optimal design of experiments

Efficiently populating design spaces with candidate points that supply large amounts of

information can be found throughout traditional optimization and design of experiments

literature [42]. The technique selected for a portion of this work falls into the category of

optimal design of experiments (DoE). In this class of DoE techniques, there are a number

of different methods for generating candidate design points, such as D-optimal, G-optimal,
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A-optimal, T-optimal, and I-optimal. In this work, the G-optimal DoE criterion is used,

which has been shown to efficiently populate design spaces with informative points that do

not repeat (see [43]). G-optimal DoE relies upon an assumed structure of the performance

index as a function of the design variables. The performance index of the candidate plant

design, operating at the optimal control parameters, is the focus at the outer loop, and is

given by:

J(p∗c(pp),pp) =
∫ t f

0
g(x(t),u(t);p∗c(pp),pp)dt. (29)

To begin the process of G-optimal DoE, the performance index given in equation (29) is

approximated as the inner product of an M element regressor vector, z(pp), and M element

coefficient vector, β , as follows:

Ĵ(p∗c(pp),pp) = zT (pp)β . (30)

The regressor vectors corresponding to each batch of N design points can be represented

compactly through a regressor matrix, Z:

Z = [ z1 . . . zN ]T , (31)

where each column of Z corresponds to a single design point. For example, the column zi

will correspond to the ith candidate design point. The structure of the regressor vector is

chosen to reflect the expected dependencies on the plant parameters; e.g., if it is anticipated

that the dependency of J on pp will be quadratic, then quadratic terms will be included in
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the regressor vector. G-optimal DoE populates the design space by minimizing an infor-

mation metric called the prediction variance, which is equal to the maximum entry in the

diagonal of zT
i (Z

T Z)−1zi (see [44]).

After generating the batch of candidate plant designs, the batch is separated into training

and validation points. The performance associated with each candidate plant design is

evaluated in a simulation or experiment. The response surface characterization is carried

out using the responses associated with the training points, while quality of fit is calculated

using the responses of the validation points.

3.1.2 Plant response surface characterization and design space reduction

After completing a control parameter optimization for each candidate plant design, the

plant design space must be reduced prior to the next full iteration of the co-design process.

To do this, the training points are used to characterize a response surface. This response

surface characterization is performed with respect to the plant parameters, having just opti-

mized the controller parameters. The response surface characterization is performed based

on the integral performance index value of each training plant design point. To fit a response

surface over the entire plant design space with this data, the estimated performance index

at any plant design, pp, is computed through the following distance-weighted average:

Ĵ(p∗c(pp),pp) =

Nt
∑

i=1
wiJ(p∗ic (pi

p),pi
p)

Nt
∑

i=1
wi

. (32)

The weight that point pp,i has on pp is given by

wi = exp(−Krd(pp,pi
p)

2), (33)
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where Kr is a tunable gain and d(pp,pi
p) is the Euclidean distance between pp and pi

p.

Therefore, as the distance between pp and pi
p increases, the weight of J(p∗ic (pi

p),pi
p) on

Ĵ(p∗c(pp),pp) decreases. In this work, a golden-section search algorithm is used to select

the value of Kr that minimizes the mean-squared error between the validation data and

estimated response surface, denoted by S and given mathematically by:

S =

√√√√ 1
Nval

Nval

∑
k=1

(J(p∗c(p
Nt+k
p ),pNt+k

p )− Ĵ(pk
c(p

Nt+k
p ),pNt+k

p ))2. (34)

Since the overall goal of the co-design framework is to converge to an optimal system

design, it is important to reduce the size of the design space at each iteration so as to focus

only on plant designs that could possibly be optimal. The main idea of the design space

reduction is to reject, with confidence, portions of the design space that produce inferior

performance. The response surface computed in the outer loop yields two important quan-

tities that are used to shrink the design space. The first is the approximated performance

index for a given plant design operating at the optimal controller design (Ĵ(p∗c(p∗p),p∗p)).

The second is the quality of fit metric, S, which characterizes how well the response sur-

face approximates the true system performance index at validation points. To reduce the

plant design space, an aggregate quality of fit metric is used because it is assumed that the

variance of the integral performance index value will be constant across the plant design

space.

By comparing the approximated optimal performance with the approximated perfor-

mance at all other points in the design space, some plant designs can be rejected. This

comparison is carried out by hypothesis testing, which computes a z-score by:
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z =
Ĵ(p∗c(pp),pp)− Ĵ(p∗c(pp*),pp*)

S
√

2
(35)

Design points are rejected whenever the test statistic falls outside of a designated thresh-

old (i.e. z > zthres). For this work, a 95% confidence interval, which corresponds to

zthres = 1.96, was chosen. The reduced plant design space, which excludes all points re-

jected by the z-test, is denoted by P.

Using aggregate quality of fit metrics as a surrogate for uncertainty is practical in sce-

narios where the variance is assumed to be consistent throughout the design space. Since

the response surface characterization at the plant level is based on an integral performance

index value, as opposed to an instantaneous performance index value in continuous-time,

it is reasonable to assume that the variance of the response surface is relatively constant

throughout the design space. Additionally, the design space at the plant level is populated

with multiple design points at each iteration that cover the space in an informative manner,

which provides a response surface that is driven by the response associated with designs

that efficiently cover the design space. Therefore, the response surface characterization

accurately characterizes the response at off-design points.

3.2 Gaussian process-based plant-level approach

The outer loop of the nested framework has two main goals:

1. Maintain a characterization of the expected performance index and measure of un-

certainty over the entire plant design space,

2. Select a batch of candidate plant design points that will yield the most information

when evaluated experimentally.
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Gaussian process (GP) modeling is used to achieve the first goal. GP modeling is a prob-

abilistic regression technique that characterizes a distribution over all possible functions

[45]. This distribution is defined by a predictive mean and variance, which is precisely

what is needed to achieve the first goal above. A popular machine learning technique

that leverages GP modeling to select design points is Bayesian optimization. Bayesian

optimization is traditionally an iterative GP-based optimization strategy, but Bayesian opti-

mization only selects a single point at each iteration instead of a batch of points. Therefore,

batch Bayesian optimization, a variation of Bayesian optimization presented in [46], was

selected to populate the plant design space with a batch of candidate design points. Figure

11 displays the process diagram for the outer loop of the nested co-design strategy that

utilizes Gaussian process modeling.
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Figure 11: GP-based outer loop of the nested co-design framework.

3.2.1 Background: Gaussian process modeling

Gaussian process (GP) modeling is a non-parametric regression method for learning

a unknown function (sometimes called a latent function) from noisy data. A GP model

is a collection of Gaussian distributions over a function, conditioned upon the collected

data. The mean and covariance parameters from a Gaussian distribution over vectors are
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analogous to mean and covariance functions for GP models. To fully define a GP model,

one must define a mean function and covariance function, which provide an expectation of

the latent function and structure for covariance of collected observations, respectively. It is

important to note that the true function value is never observed. Instead, a noise corrupted

version of the function is observed. Let the observation model take on the following form:

yi = f (xi)+ ε, (36)

where i corresponds to the iteration of the observation, x represents the input whose rela-

tionship with f is of interest, and yi is the observation at iteration i. The process or latent

function, f (x), from which the data is collected is completely unknown and is corrupted

by ε , which is assumed to be white Gaussian noise (i.e. ε ∼N (0,σ2
noise)). As mentioned

earlier, a GP model is fully defined by a mean function, m(x), and covariance function

k(x,x′):

F(x)∼ GP(m(x),k(x,x′)). (37)

Here, the mean function represents the expected value of the latent function and the covari-

ance function characterizes the correlation between points within the design space. Math-

ematically, this is given as:
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m(x) = E[ f (x)], (38)

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))]. (39)

There are a number of different covariance functions that are used within the GP lit-

erature. The most common covariance function is the squared exponential, which in the

multivariable case is given by:

k(x,x′) = α
2exp(

−1
2
(x−x′)T

Λ
−1(x−x′)). (40)

Here, α represents the signal noise of the latent function (which is assumed to be constant

for all inputs) in x and Λ
−1 is a diagonal matrix that contains the squared characteris-

tic length scales (l1, l2, . . . ld) for each input along the diagonal. The signal noise (α2),

characteristic length scales (l1, l2, . . . ld), and noise variance (σ2
noise) are referred to as hy-

perparameters of the GP model. Tuning of these hyperparameters is discussed in detail in

[45].

A GP model is a methodology for updating prior beliefs about a stochastic process as

data are made available. If a collection of observations are taken from a stochastic process

and stored in a database, i.e. D= {XD = x1:k−1,YD = y1:k−1}, a posterior belief about the

the function at the next iteration k can be generated. Consider an arbitrary point within the

design space, xk, whose function value is described by a Gaussian distribution. We arrive

at a joint Gaussian distribution for y1:k−1 and y, given by:
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y1:k−1

yk

∼N


0

0

 ,

k(XD,XD) k(XD,xk)

k(xk,XD) k(xk,xk)


 . (41)

Using the joint distribution of Gaussian variables provided in the Appendix, the conditional

probability distribution of p(yk|y1:k−1) can be calculated. This conditional probability dis-

tribution is characterized by a mean function and prediction variance. For any candidate

point xk, the mean and prediction variance are calculated by:

µ f (xk) = E{ f (xk)}= k(xk,XD)K−1
x YD, (42)

σ
2
f (xk) = var{ f (xk)}= k(xk,xk)− k(xk,XD)K−1

x k(XD,xk), (43)

respectively. Here, Kx, is the covariance between all inputs of the collected data plus

measurement noise (which is assumed to be white noise) (i.e. Kx = k(XD,XD)+σ2
noiseI).

3.2.2 Batch Bayesian optimization

The ultimate objective of the outer loop plant iteration is to generate a batch of candidate

design points. In this work, that is accomplished through batch Bayesian optimization via

local penalization, as initially described in [46]. Traditionally, Bayesian optimization se-

quentially selects a single design point at each time step, but the approach in [46] generates

a batch of design points at each iteration by using a local penalization function to model

the interaction between elements of the batch. It is important to note that the penalization

strategy from [46] is for a maximization problem. The maximization-penalization strategy

selects a point p j
p by the following



43

p j
p = arg max

pp∈P

g(α(pp))
j−1

∏
a=1

φ(pp;pt,a
p )

. (44)

Here, φ(pp;pt,a
p ) are local penalizers that are centered at the points in the batch and g(·)

is a differentiable transformation that forces the acquisition function, α(pp), to be strictly

positive without changing the location of the extrema. The acquisition function used in this

work is simply the prediction variance, which is already positive across the design space

(i.e. g(z) = z). The local penalizer is given by

φ(pp;pt,a
p ) = 0.5er f c(−z), (45)

z =
1√

2σ2
f (p

j
p)
(L||p j

p−pp||−M+µ f (p j
p)), (46)

where µ f is the mean function estimate across the entire design space, σ2
f is the prediction

variance at p j
p, M is the maximum value of the objective function over the design space

(i.e. M = max f (pp)), and L is a valid Lipschitz constant. The Lipschitz constant is ap-

proximated locally according to the rules provided in [46]. This local penalizer builds a

ball centered around p j
p, with radius dependent on the values of M, L, and value of f at p j

p.

Large values for L (i.e. high variability in f ) and proximity of f (p j
p) to the optimum shrink

the radius. As points are added to the batch, the acquisition function is decreased locally

to discourage selecting another point in the batch to be in the same region. The amount of

discouragement depends on the variables above.
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3.2.3 Plant response surface characterization and design space reduction

After evaluating the performance of each candidate plant design while operating at the

optimal controller parameter(s), GP modeling is used as the regression technique to approx-

imate the response at off-design points. Since the outer loop is conducted in an iteration

domain, traditional GP modeling can be applied directly. The power of the GP model lies

in its ability to provide an estimate of the expected function value and uncertainty at any

arbitrary input vector. The predictive mean and variance across the plant design space are

updated at each iteration of the outer loop based on equations (42) and (43), respectively.

Since the proposed exploration strategy described in Section 3.2.2 relies on selecting

points that maximize uncertainty, the exploration strategy must be augmented with design

space reduction to exploit the optimal combined plant and controller design parameters.

Based off of the prediction variance characterization from the GP model, error bars around

the mean estimate, corresponding to a user-specified level of confidence, can be calculated

across the design space. Upper and lower confidence intervals at a generic location i within

the plant design space are given by

Ĵupper(p∗c(pp,i),pp,i) = Ĵ(p∗c(pp,i),pp,i)+ kcon f

√
σ2

pred(p∗c(pp,i),pp,i), (47)

Ĵlower(p∗c(pp,i),pp,i) = Ĵ(p∗c(pp,i),pp,i)− kcon f

√
σ2

pred(p∗c(pp,i),pp,i), (48)

respectively. The level of confidence, corresponding to the notion of a z-score, is set by the

constant kcon f . In a minimization problem, a candidate design point is rejected if the lower

bound at any candidate point is greater than the upper bound at the perceived optimum,
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which is mathematically given by the following condition:

Ĵlower(p∗c(pp,i),pp,i)≥ Ĵupper(p∗c(p
∗
p),p

∗
p) ∀i ∈ [1,s]. (49)



CHAPTER 4: REAL-TIME CONTROLLER OPTIMIZATION TOOLS

The nested co-design approach involves a full optimization of the controller for every it-

eration on the outer loop. In complex systems where it is necessary to run time-consuming

simulations and/or experiments to evaluate the performance index of a given design, it be-

comes advantageous to consider real-time control optimization strategies, which allow the

control parameter to be optimized during the simulations/experiments. Since the desired

applications for this controller optimization are for complex systems where a closed-form

dynamic model may not exist, there are a number of limitations on the type of controller

optimization strategies that can be employed. Those limitations require a controller opti-

mization that:

• does not make any parametric assumptions about the system,

• is implementable in a real-time environment on real hardware,

• explores the design space in a continuous fashion.

4.1 Background: Adaptive control literature

Designing a controller that operates optimally for a system with uncertainties and varia-

tions in operating conditions/parameters can be challenging. These uncertainties typically

arise when designing a controller for complex systems and can be in the form of uncertain

parameter values, varying environmental characteristics, or unmodeled higher-order phe-
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nomena. Adaptive control strategies exist for the very purpose of controlling such systems

(see [47]).

Most traditional adaptive control strategies depend on significant structural knowledge

and assumptions with regard to the system to be controlled. For example, indirect tech-

niques employing gradient-based or recursive least-squares (RLS) parameter estimations

are restricted to parametric uncertainties. Direct techniques, such as model reference adap-

tive control (MRAC) (see [47, 48, 49, 50]) and nonlinear backstepping techniques (see [51]

and [52]), require a minimum-phase plant with known relative degree. Unfalsified control,

discussed in [53] and [54], identifies the optimal controller from a finite set of candidate

control solutions by falsifying candidate solutions that violate desired performance spec-

ifications. Performance of each candidate controller is evaluated by switching between

controllers from the finite set. The optimal controller is identified by falsifying candidate

controllers that violate desired performance specifications. While the aforementioned tech-

niques come with significant performance guarantees, their underlying assumptions limit

their application to complex systems.

As the complexity of engineering systems increases, our ability to accurately describe

the system dynamics by a small, finite set of equations (and corresponding parameters)

diminishes. Many real-world engineering systems rely on complex simulation models or

require experimental evaluation. Therefore, optimization strategies that do not require as-

sumptions about the parametric structure of the system are desired. One such strategy in the

control literature is extremum seeking (ES) [39]. ES is a non-model based adaptive con-

trol technique that relies on a sinusoidal (or random) perturbation and system performance

feedback to converge to optimal controller parameter(s). Because of an inherent assump-
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tion of time scale separation between the system time constants, filter time constants, and

perturbation period in ES, the technique is known to suffer from slow convergence times in

many instances.

A number of techniques from the iterative machine learning and design optimization lit-

erature avoid making significant assumptions about the system at hand and could conceiv-

ably be used as adaptive control laws. In Chapter 3, two compelling strategies from these

communities were discussed. The first was optimal design of experiments (DoE), which

uses a statistical information metric to make informed design decisions at each iteration.

Through the use of response surface characterization and design space reduction, those de-

sign decisions are tailored towards a perceived optimum. An analogous continuous-time

implementation would require an adaptive control law that maintains a regression and un-

certainty characterization in real time, while only visiting a single point at each time step.

Secondly, Gaussian process (GP) modeling — a traditionally iterative machine learning

strategy — could be used as an adaptive control law by using GP modeling to character-

ize the system of interest in real time and drive the parameter exploration procedure. To

characterize a predictive mean and variance function, GP modeling requires maintenance

of a database that includes all of the previously observed points. In adaptive control main-

taining this database becomes computationally burdensome because multiple observations

are collected every second. For real-time implementation, a GP-based adaptive control law

would require a computationally-efficient update law that circumvents the need to main-

tain the entire database. In the remainder of this chapter, we introduce three options for

performing the control parameter adaptation within the inner loop:
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• ES, which serves as a benchmark in our simulation and experimental studies;

• A novel heuristic ”continualized” entropy-based adaptation technique;

• A novel recursive Gaussian Process (RGP)-based adaptation technique, which tailors

tools from Gaussian Process modeling to a real-time framework.

4.2 Continuous-time control parameter optimization: option 1 - extremum seeking

based adaptation law

Extremum seeking (ES) is a common adaptive control algorithm used in continuous-

time optimization, where there is limited or no knowledge of how the performance index

depends upon the control variable(s) (i.e. no first or second order information is available).

A brief summary of ES is provided here. The general block diagram of multivariable ES

from [39], with added context to the co-design problem at hand, is shown in Figure 12. In

general, ES uses a sinusoidal or random perturbation applied to the approximated optimal

controller parameter, in conjunction with feedback of the instantaneous performance index

value, to converge to the true optimal controller parameter. The control parameter update

shown in Figure 12 corresponds to a single control parameter contained within the control

design vector (i.e. pc =

[
pc,1 pc,2 . . . pc,L

]T

). In the multiparameter ES case, L per-

turbation frequencies ω1 < ω2 < · · · < ωL are used for the identification of L parameters

(see [55]). The perturbation frequencies are selected to be sufficiently small with respect to

system dynamics and not equal to the frequencies associated with noise. Each perturbation

frequency corresponds to a single element within the control design vector. The filter cutoff

frequencies (ωl,i and ωh,i) are selected to be slower than the perturbation cutoff frequency.

It has been shown that with proper selection of ωi, ki, ωh,i, ωl,i, and ai (all of the param-
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eters associated with ES are listed in Table 2), ES will converge to a local minimizer or

maximizer [39]. As presented in Figure 12, ES is used for maximizing the instantaneous

performance index, but minimization problems can be handled by changing the integrator

gain to −ki.

Figure 12: Multiparameter ES block diagram displaying the update for a single element of
the control vector. In general, i = 1,2,3, ...,L and L is the number of elements in the control
design vector. For odd i, ωi+1 = ωi, βi = 0, and βi+1 = 0.

Once standard ES has converged to an optimal solution, the algorithm will continue to

perturb the system about the perceived optimal solution. In this framework, the perfor-

mance index at the optimal controller design (J(p∗c(pp),pp)) is needed for the response

surface characterization at the outer loop of the co-design strategy. Therefore, at the inner

loop, pc must converge to a sufficiently small space around p∗c . Convergence of pc to p∗c

is detected by comparing a filtered derivative of pc to a threshold. Denoting this filtered

derivative by ṗ f ilt
c , convergence is detected at time tc if:
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‖ṗ f ilt
c ‖ ≤ εES,∀t ∈ [tc, tc−∆t]. (50)

Proper tuning of ε and ∆t ensures that ṗ f ilt
c must remain sufficiently small for a sufficiently

long time period before convergence is detected.

Table 2: Description of extremum seeking signals and parameters for single control param-
eter update

Variable Description
Jinst Instantaneous performance index value

J̇inst
Filtered derivative of instantaneous performance
index value

pc
Commanded control parameter vector that has the

form: pc =
[

pc,1 pc,2 . . . pc,L

]T

η Low-level noise
pc,i Commanded control parameter
p̂c,i Estimated optimal control parameter
ζ Low-pass filter output
u Control command
y Feedback vector
ki Integrator gain vector
ai Perturbation amplitude
ωi Perturbation frequency
ωl,i Low-pass filter frequency
ωh,i High-pass filter frequency

For t ≥ tc, the extremum seeking perturbation is suspended, allowing for calculation

of the integral performance index under the optimized control parameter vector, p∗c . The

portion of data acquired after convergence is detected is used for the purpose of calculating

the integral performance index; i.e., the integral performance index is calculated as:

J(p∗c(pp),pp) =
∫ tc+t f

tc
g(x(t),u(t);pc,pp)dt. (51)
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4.3 Continuous-time control parameter optimization: option 2 - entropy-based DoE

adaptation law

One clear limitation of the extremum seeking-based adaptation law is that it is local in na-

ture, thereby resulting in a co-design formulation where the outer loop explores the global

plant design space, but the inner loop is limited to local control parameter optimization.

To remedy this limitation, it is desirable to develop a continuous-time control parameter

optimization technique that mirrors the global design space exploration performed by the

outer loop plant DoE.

Ultimately, the optimal DoE technique used at the outer loop is based on selecting de-

signs that maximize a statistical information metric (for G-optimal design, this is prediction

variance). At the end of each iteration, the design space is reduced based on a response sur-

face characterization and quality of fit estimate. To mirror these techniques at the inner

loop, we adjust the control parameters, pc, based on a continuous-time information met-

ric. Furthermore, we reject parameters from the design space in continuous time, based

on a continuous quality of fit update. A fundamental tenet in performing this continuous-

time information-based control parameter adjustment and design space reduction is the

continuous-time estimate of normalized information entropy, H(pc), which characterizes

how uncertain we are about the performance index for a given value of pc. While this

process is conceptually similar to existing literature on adaptive DoE ([56] and [57]), a

fundamental distinction lies in the fact that the adaptive DoE results of [56] and [57] are

iteration-based, not continuous time. The novel contribution of the entropy-based DoE is

the ability to optimize a parameter vector of interest based on an information metric in
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continuous time. The entropy-based control parameter optimization framework is shown

graphically in Figure 13.
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Figure 13: General block diagram of entropy-based DoE adaptation.

4.3.1 Continuous-time quantification of normalized information entropy

In general, information entropy describes the uncertainty associated with a particular

variable [40]. Within this framework, information entropy is used to characterize how

much we have left to learn about a specific design point. To begin the process, normalized

information entropy, denoted by H(pc), is initialized to a maximum value of one for all

points in the design space. In order to implement an the update law for information entropy

in continuous time, we begin with an iterative entropy update law from equation (52),

where the estimated entropy at each point in the design space (where an arbitrary point in

the design space is denoted by p̄c) is updated based on the proximity of p̄c to the present

design point, pc. We then “continualize” the iterative entropy update law of equation (52)

as follows:
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Hk+1(p̄c) = Hk(p̄c)exp
(

−Kent

d(pc, p̄c)+ ε

)
, (52)

⇒ Hk+1(p̄c)−Hk(p̄c) = Hk(p̄c)

(
exp
(

−Kent

d(pc, p̄c)+ ε

)
−1
)
. (53)

Because Hk+1(p̄c)−Hk(p̄c)≈ dH
dt (p̄c)∆T it follows that

dH
dt

(p̄c)∆T ≈ H(p̄c)

(
exp
(

−Kent

d(pc, p̄c)+ ε

)
−1
)
. (54)

Here, H(p̄c) is the normalized information entropy for a candidate design point, ∆T is the

amount of time between parameter adjustments in the iterative framework, Kent is a gain

that reflects the “value” of a single point, d(pc, p̄c) is the distance between the current

control design and candidate control design p̄c, and ε is a small constant that prevents

division by zero. Kent is tunable by the designer based on the system of interest. Ultimately,

the above derivation leads to the following continuous-time normalized entropy update law:

dH
dt

(p̄c) = KH(p̄c)

(
exp
(

−Kent

d(pc, p̄c)+ ε

)
−1
)
. (55)

To implement this entropy update law, the control parameter design space is quantized into

a finite grid of p̄c values, and the update law is applied for each value in the grid.

Figure 14 illustrates how information entropy evolves during a ten second sample sim-

ulation for a one-dimensional design space. The upper half of the figure shows the values

of pc (a scalar in this case) as a function of time. In the lower portion, the entropy at the

beginning (left) and end (right) of the simulation can be seen. Because values of pc greater
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than 0.2 were not visited during the 10 second period, no reduction in normalized entropy

was observed over this range of design parameters.

Figure 14: Visualization of normalized entropy evolution over 10 seconds. The top plot
shows the design points that have been visited as a function of time. The bottom plots
show the values of entropy at the over the design space.

4.3.2 Continuous-time control parameter update law

Unlike extremum seeking, where the control parameter is driven gradually toward the

(local) estimated optimal value, the entropy-based control parameter update law selects the

next control parameter based on which regions of the design space are likely to yield the

most information about behavior of Jinst with respect to pc. Thus, the controller moves

towards locations of high entropy. However, it is quite common that the regions of highest

entropy are far from the current operating point. To capture the requirement that pc cannot
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undergo very large jumps over very short time intervals, the following update law is used

to determine the best subsequent control design to evaluate, denoted by p′c:

p
′
c = argmax

p̄c∈C
H(p̄c)exp

(
−Ksel(d(pc, p̄c)d(pc,pc,prev))

2
)

(56)

where pc,prev(t) = pc(t − Td) for a small delay time, Td . Here, Ksel is a constant gain

and d(pc,pc,prev)) is the distance between the controller design tested at time t − Td and

the controller design presently tested. Inclusion of the term d(pc,pc,prev) in equation (56)

ensures that p′c does not continue to get adjusted after it was recently changed by a large

amount. Inclusion of the term d(pc, p̄c) helps to ensure that near-term subsequent candidate

designs do not veer too far from the present value of pc. To ensure that the lower-level

controller can track the commanded control design, the output of the entropy-based DoE is

passed through a first-order filter, as illustrated in Figure 13.

4.3.3 Continuous-time controller response surface characterization and design space

reduction

As discussed in the previous subsection, the entropy-based control parameter adaptation

law adjusts the control parameter in the direction of maximum entropy, not necessarily in

the direction of the optimal value. To estimate the optimal control parameter, p∗c , another

step is needed. This step is the continuous-time response surface characterization and de-

sign space reduction, wherein (i) a continuous estimate of Jinst(pc(pp)) is maintained and

(ii) control parameters that are nearly certain to be sub-optimal based on this response sur-

face are excluded from the candidate controller design space, C. It is important to note that
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the response surface characterization at this stage is performed with respect to the control

parameters alone, for a given plant design. Once the inner loop control parameter opti-

mization is complete, a separate response surface characterization, with respect to the plant

parameters, is performed.

To perform a response surface characterization in continuous time, we rely on recur-

sive least squares (RLS) estimation. To do this, the instantaneous performance index is

parameterized as:

Ĵinst(pc(pp)) = XT (pc)β , (57)

where X is a regressor vector and β is a vector of undetermined coefficients. These un-

determined coefficients are estimated through the following discrete-time recursive least

squares (RLS) update law, detailed in [58], where k represents the time step:

V (k+1) = V (k)− V (k)XT (k+1)X(k+1)V (k)
1+X(k+1)V (k)XT (k+1)

, (58)

γ(k+1) = V (k+1)XT (k+1), (59)

e = Jinst(pc(pp))−X(k+1)β̂ (k), (60)

β̂ (k+1) = β̂ (k)+ γ(k+1)e. (61)

Once Ĵinst(pc(pp)) has been obtained, the corresponding minimizer, p∗c(pp), can be

found. To avoid future exploration of regions of the design space that cannot possibly
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be optimal, a mechanism for reducing the size of the design space must be introduced. The

goal of the design space reduction is to reject portions of the design space that are deter-

mined to be sub-optimal, with some amount of certainty. Here, the normalized entropy was

used as an estimate of uncertainty. In particular, candidate designs are rejected when the

following inequality holds:

Ĵinst(p̂∗c(pp))< Ĵinst(pc(pp))−Kre jH(pc), (62)

where Kre j is tuned to capture the relationship between normalized entropy and uncer-

tainty. Thus, a candidate control design will be rejected if its associated performance index

exceeds the estimated optimal performance index by an amount that depends on uncertainty

(the larger the uncertainty, the larger this amount will be). Note the inequality presented

above is for a minimization problem, but can be reformulated for maximization problems.

For the entropy-based DoE adaptation, design space reduction is carried out by utilizing

a normalized information metric as a surrogate for uncertainty. Design space reduction

based on normalized entropy is an imperfect approach because the statistical significance

of normalized entropy has not been quantified. However, this approach is valuable because

the normalized information metric characterizes the uncertainty for each point within the

design space, thereby acting as vectorized quality of fit. In a continuous-time environment,

a vectorized quality of fit is preferred over an aggregate quality of fit because:

1. aggregate quality of fit metrics require partitioning points into training and validation

points, which in continuous time would require discrete intervals of training and

validation;
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2. extensive exploration of some portions of the design space may result in a good

aggregate quality of fit that could result in rejecting portions of the design space that

remain unexplored.

4.3.4 Summary of tuning parameters for entropy-based DoE

This section is provided as an aid for tuning the parameters involved with entropy-based

DoE. There are four parameters that require tuning by the user, namely K, Kent , Kr, and Ksel .

Table 3 provides insight for tuning these parameters. Proper tuning of these parameters

requires some knowledge of the system to be optimized. Additionally, the tuning here is

heuristic, and formalization of this adaptive technique is a topic discussed in Chapter 4.4.

Table 3: Description of tuning parameters for entropy-based DoE control strategy.

Parameter Description Tuning Description

Kent
Entropy reduction length
scale

Reflects the “distance” that two design
points must lie from each other be-
fore information at one design point no
longer reduces entropy at another.

K Entropy gain
Reflects the significance of a collecting
the results at a single design point

Kr
Exponential regression
length scale

Reflection of covariance between de-
sign points; tuned using Golden Sec-
tion Search

Ksel Selection gain
Incentivizes selecting design points at
time step k+1 that are around previous
design point at time step k

4.4 Continuous-time control parameter optimization: option 3 - Recursive Gaussian

process-based adaptive control

One adaptive control solution from the machine learning community involves maintain-

ing a Gaussian process (GP) model characterization of the system at hand, then using that
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GP model to drive a parameter exploration law. GP modeling arose as an iterative technique

for developing models of uncertain systems by treating the systems as black-box functions

[45]. However, traditional GP modeling requires new observations to be appended to an

ever-growing database of all past data. Sparse GP strategies, such as [59], reduce the com-

putational burden by fixing the size of the database. Once the cap for the database has been

met, a criterion is evaluated to determine if the new point should replace a point in the

database or be considered via a projection onto the points in the database. The author in

[60] and [61] describes a recursive Gaussian Process (RGP) modeling technique that avoids

the need to maintain a library at all by recursively updating the statistics of the GP model

as observations from the system are collected. Since the RGP modeling strategy was devel-

oped for iterative applications, two key challenges still exist for real-time adaptive control

applications:

• RGP modeling traditionally assumes noise to be uncorrelated from one iteration to

the next. However, in a real-time control environment with short time steps, temporal

correlation must be taken into account.

• RGP modeling provides a mechanism for characterizing a complex system’s perfor-

mance over the design space, but it is still necessary to define a strategy for exploring

that design space and identifying the optimal parameter value in that design space.

As a standalone contribution of this research, the RGP-based adaptation replicates tradi-

tional iterative design optimization (namely Bayesian optimization) techniques in real-time

by overcoming the limitations listed above. The RGP-based adaptation places the concepts

from the entropy-based DoE adaptation into a statistical foundation. Specifically, the novel
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concept of recursively updating a regression and uncertainty characterization in continuous

time from the entropy-based DoE adaptation was statistically formalized by extending RGP

modeling to real-time applications. The process diagram for the RGP-based adaptation is

shown in Figure 15.
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Figure 15: General block diagram of RGP-based adaptation.

4.4.1 Background: recursive Gaussian process modeling

From predictive mean and variance equations (see equations (42) and (43)), it is clear that

the prediction mean and variance at any candidate point within the design space relies on

the inverse of a covariance matrix, Kx, which is increasing in size at each time step. In the

context of control, this corresponds to inverting the covariance matrix and augmenting the

covariance matrix with an additional row and column at each time step. Obviously, with

a small time step (i.e. a sub-second time step), this matrix can become extremely large

in a relatively short amount of time. For this reason, directly applying update laws that

are driven by GP modeling (such as Bayesian optimization) to continuous-time controller
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adaptation is not practical.

To overcome this limitation of iterative GP modeling techniques, the author in [60] and

[61] presents a recursive update for GP modeling that avoids the need to maintain a database

of previously tested points. The mean and covariance functions are updated sequentially

as new observations are collected. A finite number of basis vectors are used to discretize

a continuous design space. The collection of basis vectors that span a given design space

will be denoted by the matrix X =

[
p̄c,1 p̄c,2 . . . p̄c,s

]T

. Each element of this matrix,

p̄c,i, corresponds to an individual design in the candidate design space. If the candidate

design space is 1D, the basis vectors will correspond to a simple grid of the design space

(i.e. p̄c,i ∈ R1×1), but higher order design spaces may require more efficient basis vectors.

Introducing basis vectors allows the algorithm to maintain a consistent computation time

as time evolves.

The RGP algorithm uses two steps to calculate the posterior distribution of the latent

function. The first is an inference step that calculates the expected mean and covariance at

the current point based upon the prior distribution. The inference step is given by:

Jk = k(pk
c,X)k(X,X)−1, (63)

µ
p
k = E[ f (pk

c)] = m(pk
c)+Jk(µ

f
k−1−m(X)), (64)

Cp
k = k(pk

c,p
k
c)−Jk(C

f
k−1− k(X,X))JT

k . (65)

Here, µ
p
k is the predicted mean function value for the input vector at the current time step

and Cp
k is the expected variance for the input vector at the current time step. The vector Jk
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is used to interpolate the mean function and uncertainty estimates at any generic point pk
c,

which may not correspond exactly to a basis vector. The RGP formulation treats the mean

function at each basis vector location as a state within a Kalman filter update. Therefore, at

each time step the approximation of the mean, µ
f
k , is updated. As new observations are col-

lected, the prior mean and covariance estimates are updated to reflect the new observation.

The update step is given by:

Ḡk = C f
k−1JT

k (C
p
k +σ

2I)−1, (66)

µ
f
k = E[ f (X)] = µ

f
k−1 + Ḡk(yk−µ

p
k ), (67)

C f
k = C f

k−1− ḠkJkC
f
k−1. (68)

4.4.2 Extension of RGP modeling to real-time systems

The RGP update described in [60] and [61] makes a key assumption that restricts its

ability to be directly applied to a real-time control application. Namely, it is assumed

that each successive observation can be characterized by a latent function, J(pc), which

is corrupted by white noise. In real-time control applications, however, the instantaneous

performance index of the system depends not only on the instantaneous choice of control

parameter (pc), but also upon the system’s state (x) at that time. Because of this, two

measurements taken in rapid succession are likely to be correlated even in the event that pc

changes by a large amount between time steps. That is because the amount by which the

state changes over a single time step is restricted by the system’s dynamics. Therefore, to

use an RGP algorithm effectively for online adaptive control, temporal correlation must be
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taken into account. In order to do this, the RGP model is extended to consider colored noise

in the observations, the parameters of which are tuned to reflect the temporal correlation

between measurements taken in rapid succession, which arises from the system dynamics.

One method for considering colored noise is to introduce a state model that characterizes

the temporal correlation in the noise, resulting in the following set of dynamic equations:

ξ̇

ṅ

=

0 0

0 −1
τ


ξ

n

+
0

1
τ

w,

y =

[
Jk 1

]ξ

n

 .
(69)

Here, ξ represents the mean function value at the basis vector locations, n represents the

colored noise state, τ represents the colored noise time constant (providing a measure of

temporal correlation), w is Gaussian white noise with zero mean, and Jk has the same

interpretation as equation (63). Note that the present work, as suggested in equation (69),

assumes a time-invariant latent function. Time-varying latent functions represent a future

area of research that remains open.

Using the above dynamic model formulation, colored noise can be considered within a

Kalman filter update through the use of two different strategies. The first is augmented

state approach, which uses the system dynamics presented in equation (69) in a Kalman

filter; however, this has been shown to lead to numerical issues in certain cases [62]. The

second is the measurement differencing approach detailed in [62]. Since the Kalman filter

equations are more easily digestible in discrete time than continuous time, let’s convert the
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system dynamics into discrete time. The system dynamics in discrete time are given by:

xk = Fk−1xk−1 +wk−1, (70)

yk = Hkxk + vk, (71)

vk = ψk−1vk−1 +ζk−1. (72)

Here, Fk−1 is the state transition matrix in discrete time, Hk is the output vector in discrete

time, vk is the colored noise state, wk−1 is white noise, ζk−1 is white noise, xk is the unob-

served state, and yt is the observation of the state corrupted by colored measurement noise.

An auxiliary signal, y′, that contains only white noise instead of colored noise, is defined

as follows:

y′k−1 = yk−ψk−1yk−1, (73)

= (HkFk−1−ψk−1Hk−1)xk−1 +(Hkwk−1 +ζk−1), (74)

= H ′k−1xk−1 + v′k−1. (75)

By using the new output vector, H ′k, the system dynamics are now represented by the

following set of equations:

xk = Fk−1xk−1 +wk−1,

y′k = H ′kxk + v′k.

(76)

The dynamic equations presented in equation (76) are corrupted by random noise with zero-

mean and finite variance (i.e. v′k ∼N (0, Q̄k) and wk−1 ∼N (0,Qk)), which allows for the
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Kalman filter to be directly applied to the new system dynamics presented in equation (76).

If the system dynamics of the GP model shown in equation (69) are applied to the

Kalman filter considering colored noise discussed in [62], the update step for the RGP

now changes to the following:

Ḡk =C f
k−1H ′Tk (H ′kC

f
k−1H ′Tk +σ

2I)−1, (77)

µ
f

k = µ
f

k−1 + Ḡk(y′k−H ′kµ
f

k−1), (78)

C f
k =C f

k−1− ḠkH ′kC
f
k−1. (79)

In summary, the proposed extension of the RGP algorithm utilizes a measurement dif-

ferencing approach in order to consider colored noise within a Kalman filter update, where

the states are the mean function value at each basis vector location. The real-time RGP

algorithm will be referred to as the RGP-C update to distinguish it from the iterative RGP

algorithm in [60]. The inference step of the RGP-C algorithm remains the same as the RGP

update, while the update step for the RGP-C algorithm is given by equations (77)-(79).

4.4.3 Recursive Gaussian process-based adaptive control: Real-time design space

exploration strategy

Even though the RGP-C update provides a mechanism for updating a predictive mean

and variance estimate over the design space, it does not tell us which point to visit at

the next time step. For this reason, we must define an exploration strategy. Inspired by

iterative optimal design of experiments, the exploration strategy used here selects points

that maximize an information metric (e.g. prediction variance) at each time step.
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The overall goal with this exploration strategy at each time step is to select the point

that maximizes the prediction variance (σ2
pred(pc)), but it must be acknowledged that large

design space moves cannot be realized within a single time step. For physical systems de-

scribed by slow time constants, large design space moves at each time step will result in

large transients that need to settle before additional design decisions can be made. Recog-

nizing the physical limitations of large design space moves, the control parameter update

law is given by:

p̄k
c = argmax

p̄c∈C
σ

2
pred(p̄c)exp

(
−Ksel(d(p̄k

c, p̄
k−1
c ))2

)
. (80)

This update law accounts for uncertainty (through prediction variance) and distance be-

tween potential control parameters at subsequent time steps. The exponential term discour-

ages the selection of design points that are far from the design point at the previous time

step.

4.4.4 Recursive Gaussian process-based adaptive control: Real-time design space

reduction

As with the entropy-based DoE adaptation, the design space exploration strategy focuses

on moving to control parameters corresponding to high uncertainty, without explicitly con-

sidering expected performance at those parameters. Thus, the design space exploration

strategy must be augmented with a design space reduction scheme in order to exploit areas

of improved performance. Portions of the design space are rejected when that region is

determined to be sub-optimal with some level of confidence. To determine if a point is

sub-optimal, we determine if the difference between the mean function value at any point
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within the design space and the mean function value at the perceived optimum point is sig-

nificant by calculating error bars throughout the design space. From the RGP-C update, an

estimate of the prediction mean and variance are available to calculate an error bar at each

basis vector location. The upper and lower error bars at an arbitrary point i, are given by:

Ĵupper(p̄c,i) = Ĵ(p̄c,i)+ kcon f σpred(p̄c,i), (81)

Ĵlower(p̄c,i) = Ĵ(p̄c,i)− kcon f σpred(p̄c,i), (82)

respectively. Here, kcon f is a constant that corresponds to the desired confidence level in

the form of a z-score, and σpred is the prediction standard deviation, which is calculated as

the square root of the prediction variance, σ2
pred . In a maximization problem, a candidate

design point is rejected if the upper bound at the candidate point is less than the lower bound

at the perceived optimum, which is mathematically given by the following condition:

Ĵupper(p̄c,i)≤ Ĵlower(p̄∗c) ∀i ∈ [1,s]. (83)

Note that s denotes the number of basis vectors in the RGP formulation.

4.4.5 Convergence detection for RGP-based adaptive control law

As the RGP-based adaptive control proceeds, the control parameter design space (C)

continues to shrink in size. To evaluate the performance of this adaptation and calculate

an integral performance value, an algorithm for detecting sufficient convergence must be

defined. To accomplish this, convergence is detected by calculating a metric that quantifies

the “flatness” of the response surface over the reduced design space. The metric used here is
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the percent difference between the maximum and minimum value of the response surface

over the reduced design space. Once the percent difference falls below a user-specified

threshold value (e.g. 1%, 5%, etc.), the design space exploration is turned off and the

point that minimizes the objective function over the reduced design space is selected as the

operating point. Quantitatively, convergence is detected when the following inequality is

met:

|Ĵmax,r(p̄c)− Ĵmin,r(p̄c)|
0.5(Ĵmax,r(p̄c)+ Ĵmin,r(p̄c))

≤ εR, (84)

where

Ĵmax,r(p̄c) = max(Ĵ(p̄c)) ∀ p̄c ∈C(k), (85)

Ĵmin,r(p̄c) = min(Ĵ(p̄c)) ∀ p̄c ∈C(k). (86)

Here, C(k) denotes the reduced design space at the kth time step and εR is the desired

percent difference in performance at convergence.

4.4.6 Uncertainty characterization of RGP-based adaptive control

The statistical nature of GP modeling requires convergence to be detected probabilisti-

cally, rather than deterministically. Specifically, convergence can be detected in a statistical

sense (i.e., with some probability, the converged-to design falls within some threshold of

the true optimum). To characterize the uncertainty in the maximum (or minimum) value

of the latent function, the GP model over the basis vectors is used to characterize a joint

cumulative distribution function (CDF). In general, a joint CDF gives the probability that
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two or more random variables fall within a specific range of values. Quantitatively, the

joint CDF is specified as follows:

FX1,...,XN (x1, . . . ,xN) = P(X1 ≤ x1, . . . ,XN ≤ xN). (87)

From the basis vectors in the RGP-based adaptation, there is a finite set of s normally

distributed random variables, each with a mean and prediction variance approximation.

Since the design space is discretized into s design points, there will always be a nonzero

probability that any point in the design space is the true optimum (and the corresponding

latent function value is the true optimum objective function value). To characterize the

expectation and uncertainty of the maximum of the latent function value, each of the s

normally distributed random variables are used to generate a joint CDF over potential latent

function values. From the joint CDF, the probability of the latent function value at each

basis vector location taking on any value (aµ ∈ R) can be calculated by

Fµ(p̄c,1),...,µ(p̄c,s)(aµ , . . . ,aµ) = P(µ(p̄c,1)≤ aµ , . . . ,µ(p̄c,s)≤ aµ). (88)

To characterize a CDF over potential values of the maximum of the latent function, a large

range of values for aµ was considered. The resulting CDF, denoted by Fmax, provides the

probability that the maximum latent function value from the RGP model falls below any

value of aµ . A probability density function (PDF), denoted by fmax, was calculated by

taking the derivative of Fmax with respect to aµ .

The goal here is to calculate the expectation and variance of the maximum of the latent
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function, which are given by

E[max(Ĵ)] = µ(max(Ĵ)) =
∫

∞

−∞

x fmax(x)dx, (89)

var[max(Ĵ)] = σ
2(max(Ĵ)) =

∫
∞

−∞

(x−µ)2 fmax(x)dx, (90)

respectively. The notation of this section is generalizable to the minimum or maximum of

the latent function.

When the RGP-based adaptation is placed in the inner loop of the nested co-design

framework, σ2(max(Ĵ)) is used to approximate the uncertainty associated with the perfor-

mance values at the perceived optimum by replacing σ2
noise in equations (42) and (43).

4.4.7 Recursive Gaussian process-based adaptive controller adaptation

simulation-based results

Having described the mathematical formulation for the RGP-based control parameter

adaptation, we now examine the performance of this technique in isolation on the AWE

system. Stationary and crosswind flight case studies were used to evaluate the performance

of the RGP-based adaptation. Due to its esteemed place in the adaptive control literature,

ES is used as a benchmark to illustrate the efficiency and potential of the novel adaptation

strategies in this work, namely the entropy-based approach and RGP-based adaptation.

4.4.7.1 Stationary flight controller optimization

Initially the RGP-based adaptation was validated by optimizing the attitude/altitude con-

troller for stationary flight of the BAT. The attitude/altitude controller of the BAT discussed

in Chapter 2.3 was augmented with the RGP-based adaptation to optimize the pitch angle
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setpoint in real time. Table 4 summarizes the decision variables and objective function used

for this case study.

Table 4: Summary of optimization problem features for simulation-based stationary flight
optimization

Feature Symbol Description
Control Param-
eters

θsq Pitch angle setpoint

Instantaneous
objective func-
tion

k1Φ2 + k2ψ2
e + k3φ 2

e Instantaneous quality of flight

Integral objec-
tive function

∫ tc+∆t
tc (k1Φ2 + k2ψ2

e + k3φ 2
e )dt Integral quality of flight

Figure 16 displays the design space reduction for the trim pitch angle when initializing

the trim pitch angle at 2◦. The upper and lower limit on the design space at the end of the

simulation are 14.86◦ and 12.7◦, respectively. The percent difference between the maxi-

mum mean function value and the minimum mean function value within the reduced design

space is 1.6%; thus any point within this reduced space results in similar performance. In

contrast, the percentage difference between the maximum and minimum mean function

value over the full design space is 40.3%.

Figure 17 provides the raw instantaneous performance measurements obtained over the

course of the simulation, along with the RGP and RGP-C estimates of the objective func-

tion (to be minimized in this case). The raw data exhibits tremendous variation about the

mean due to the perturbation; however, a clear trend can be observed from observation,

which is properly accounted for by the RGP-C model. Also, from the raw data, it can seen

that the optimal pitch angle setpoint lies somewhere between 12.5◦ and 15◦, which is ex-

tremely close to the final design space to which the adaptive control algorithm converges
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Figure 16: Visualization of design space reduction for AWE controller optimization with
1D design space (trim pitch angle setpoint). The initial condition of the trim pitch was 2◦.

(as indicated by Figure 16).

Figure 17: Visualization of the mean function approximation of the RGP-C update com-
pared to the original RGP algorithm after the simulation.

To evaluate the performance of the RGP-based adaptation, the convergence time and

performance of the point to which the ES and RGP-based adaptions converged to was

compared. A Pareto front for each algorithm was generated by varying the convergence

criteria for each algorithm. For ES, this corresponds to adjusting the threshold on the fil-
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tered derivative (i.e. εES in equation (50)). Meanwhile, for the RGP-based adaptation, the

percent difference threshold was adjusted (i.e. εR in equation (84)). For each convergence

criterion, multiple simulations were executed for different plant designs. The average con-

vergence time and resulting integral performance value for each convergence criterion were

calculated. As the criterion is made smaller, the convergence time increases, but the result-

ing performance is improved, as seen in Figure 18. It is clear from Figure 18 that the

RGP-based adaptation results in similar convergence to ES with tight convergence crite-

ria. When the criteria are loosened, convergence times decrease and performance of the

ES controller degrades, whereas RGP-based adaptive control maintains consistent perfor-

mance under these looser convergence criteria (and correspondingly shorter convergence

times).

Figure 18: Pareto front for comparing performance of ES and RGP-based adaptation in 1D.

Figure 19 displays each of the components of the instantaneous performance index value

while operating at a nominal controller parameter, an RGP-based optimized controller pa-

rameter, and ES optimized controller parameter. Since there is only a single (global and

local) optimum for the stationary flight case (see Figure 17), the optimized controller pa-
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rameters from ES and the RGP-based adaptation are extremely similar. Additionally, the

performance values while operating at the optimized parameters are extremely close in

value.

Figure 19: Comparison of controller parameter performance between a nominal design,
design from the RGP-based adaption, and design from ES.

4.4.7.2 Crosswind flight controller optimization

The RGP-based adaptation was also applied to real-time crosswind flight optimization in

simulation. This analysis demonstrates the RGP-based adaptation’s efficiency in multidi-

mensional control parameter design spaces. The crosswind flight controller for simulations

(see Chapter 2.3.2.1) was augmented with the RGP-based adaptation in order to optimize

the azimuth angle limit and sideslip angle setpoint in real time. Table 5 summarizes the

decision variables and objective function used for this case study.

Although the design space exploration in the 1D case study simply moves back and forth

between the extremes of the design space, the 2D exploration strategy, shown in Figure 20
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Table 5: Summary of optimization problem features for simulation-based crosswind flight
controller optimization

Feature Symbol Description
Control
Parameters

Φlim Azimuth angle limit
βsp Sideslip angle setpoint

Instantaneous ob-
jective function

(
|vapp|
|vw|

)3

Instantaneous power factor

Integral objective
function

1
∆t
∫ tc+∆t

tc

(
|vapp|
|vw|

)3

dt Avg. power factor

is much more complex. In Figure 20, the variation in color from blue to yellow reflects the

exploration of the design space in time (blue corresponds the initial time, whereas bright

yellow corresponds to the final time of 3000 seconds). Figure 21 displays the (reduced)

design space at selected times throughout the simulation, as well as contours that represent

the RGP-C based performance index characterization across the reduced design space at the

corresponding times. After 3000 seconds of the RGP-based adaptation, the design space

has been significantly reduced to 5% of the original design space and consists of control

parameters that all result in power augmentation of at least 40% through efficient crosswind

motion.

Similar to the stationary flight (1D) comparison, a 2D comparison for the crosswind

flight case was carried out between ES and the RGP-based adaptation. Again, the conver-

gence criterion was adjusted for each algorithm. For each convergence criterion, multiple

simulations were run for different system designs to calculate an average convergence time

and integral performance (to be maximized in this case) across all system designs. A single

point in either of the Pareto fronts seen in Figure 22 corresponds to a single convergence

criterion.
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Figure 20: Design exploration for 2D controller design space, where the color represents
the time at which each point was visited.
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Figure 21: Design space and response surface characterization (contours) for crosswind
flight case study at t = 100, t = 500, t = 710, and t = 3000 seconds.
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Figure 23 displays the instantaneous performance index versus time for a nominal set

of controller parameters, the controller parameters converged to by the RGP-based adapta-

tion, and the controller parameters converged to by ES. In this case study, the RGP-based

controller adaptation significantly outperforms the ES algorithm. This arises from the fact

that the optimal control parameters in the crosswind flight case lie on the boundary of the

stable design space. When using ES, a barrier function was required to ensure that the ES

algorithm did not visit points within the unstable region; therefore, the performance asso-

ciated with the optimal controller parameters from ES was significantly less than those of

the RGP-based adaptation.

The flight path of the BAT while operating at the controller parameters from the nominal

design, ES adaptation, and the RGP-based adaptation are displayed in Figure 24. Recall

that the dimensions here are lab-scale dimensions. Additionally, the behavior of the roll

and heading angle for each controller can be seen in Figure 25.

Figure 22: Pareto front for comparing performance of ES and RGP-based adaptation in 2D.
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Figure 23: Comparison of instantaneous performance index values of controllers from the
RGP-based and ES adaptations.

Figure 24: Comparison of crosswind flight paths between controller parameters from the
nominal case, ES adaptation, and RGP-based adaptation.
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Figure 25: Comparison of roll and heading angle between controllers from the nominal
case, ES adaptation, and RGP-based adaptation.

4.4.8 Experimental controller adaptation results: Crosswind flight optimization

By leveraging the experimental platform discussed in Chapter 2.2, the RGP-based adap-

tation was applied to the experimental crosswind flight optimization of the BAT. To induce

crosswind flight experimentally, the controller detailed in Chapter 2.3.2.2 was used. The

RGP-based adaptation seeks to optimize the square wave amplitude and period, which ulti-

mately govern the geometric characteristics of the figure-8 flight path. Table 6 summarizes

the decision variables and objective function used for this case study.

To demonstrate the efficient operation of the RGP-based adaptation, multiple experi-

ments were conducted with various initial conditions for the controller design parameters.

Table 7 provides a summary of the results for multiple initial conditions. It is clear that

the adaptation converges to nearly the same design point, where small observed differences

may be attributed to experimental noise. Figure 26 displays the control parameter design
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Table 6: Summary of optimization problem features for experimental crosswind flight con-
troller optimization

Feature Symbol Description
Control
Parameters

asq Square wave amplitude
Tsq Square wave period

Instantaneous ob-
jective function

(
|vapp|
|vw|

)3

Instantaneous power factor

Integral objective
function

1
∆t
∫ tc+∆t

tc

(
|vapp|
|vw|

)3

dt Avg. power factor

space exploration from the RGP-based adaptation. Approximately the first 100 seconds

are used to initialize the experiment, which involves initializing the motion capture algo-

rithm and crosswind flight at the prescribed initial condition. Once convergence is detected,

around 1600 seconds in Figure 26, the adaptation is turned off and the design variables are

set to the optimal values to calculate the average power factor over a prescribed time win-

dow. The effectiveness of crosswind flight is illustrated in Figure 27, which displays the

lateral velocity of the BAT while operating at the optimized controller parameters. Figure

28 displays the mean function estimate from the RGP modeling over the reduced design

space at multiple times throughout the experiment. By the time convergence is detected,

the design space has been reduced to 12% of the original design space.

Table 7: Summary of experimental RGP-based adaptation results for multiple controller
parameter initial conditions

Initial Condition Opt. Control Design Conv.
Time(s)

Avg.
PFasq,0(

◦) Tsq,0(s) a∗sq(
◦) T ∗sq(s)

7 5 15 5.588 1717.75 1.67
10 8 15 5.588 1752.125 1.60
10 10 15 5.882 1590.35 1.60
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Figure 26: Experimental design space exploration for initial condition setting with asq,0 =
10◦ and Tsq,0 = 10 s. Note the first 100 seconds is used to initialize the experiment.

Figure 27: Lateral velocity of the BAT while operating at the optimized control parameters.
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Figure 28: Design space and response surface characterization (contours) at t = 100, t =
500, t = 950, and t = 1600 seconds.



CHAPTER 5: SIMULATION-BASED COMBINED PLANT AND CONTROLLER
OPTIMIZATION

Simulation-based studies were used to initially demonstrate the impact of nested co-

design on complex system design. This chapter details each of the simulation-based studies

that were used to progress toward the GP-driven, nested co-design framework. Simulation-

based studies provided an initial mechanism for evolving the nested co-design process with-

out having to overcome the challenges associated with experimental evaluation. A brief

summary is provided to convey the unique features of each study. All of the simulation-

based studies explored here use the dynamic model of the BAT detailed in Chapter 2.1.

5.1 Simulation-based stationary flight airborne wind energy system optimization

To evaluate the efficacy of the nested co-design framework for complex system design,

stationary flight of the dynamic model presented in Chapter 2.1 was analyzed initially. Sta-

tionary flight is the common operational model for AWE with secondary objectives, such

as telecommunications or surveillance, which require the system to remain motionless.

Three proportional plus derivative controllers regulate the altitude, pitch angle, and roll an-

gle to constant setpoints by adjusting tether length in order to keep the system motionless

throughout operation. To capture the performance under this mode of operation, the quality

of flight metric detailed in Chapter 2.5.1 was used. The plant parameters to be optimized

are the longitudinal location of the center of mass and reference area scale factor, while

the controller optimization only optimizes a single parameter, the pitch angle setpoint. A



85

Table 8: Summary of optimization problem features for simulation-based co-design of
AWE system operating in stationary flight.

Feature Symbol Description
Plant
Parameters

xcm Longitudinal location of center of
mass

KA Reference area scale factor
Control Param-
eters

θsq Pitch angle setpoint

Instantaneous
objective func-
tion

k1Φ2 + k2ψ2
e + k3φ 2

e Instantaneous quality of flight

Integral objec-
tive function

∫ tc+∆t
tc (k1Φ2 + k2ψ2

e + k3φ 2
e )dt Integral quality of flight

summary of the objective function and design variables is provided in Table 8.

5.1.1 Combined plant and controller optimization results using optimal design of

experiments and extremum seeking

The tools employed on each level of the nested co-design framework play a critical

role in the efficiency of the co-design process. Initially, the motivation was to transform

our previous work in [38] from a simultaneous strategy to a nested strategy by leveraging

a unique characteristic of controller parameters. Specifically, controller parameters are

unique because these parameters can be optimized during an experiment, whereas a plant

parameter can only be adjusted in between experiments. To evolve to a nested co-design

framework, the outer loop of the nested strategy replicated the simultaneous strategy from

[38] by using G-optimal DoE to generate a batch of candidate plant designs and design

space reduction to exploit the perceived optimum. However, to optimize the controller

parameters in real time on the inner loop, ES, a classic, non-model based adaptive control

law, was used. The process diagram for the nested structure that utilized G-optimal DoE

on the outer loop and ES on the inner loop can be seen in Figure 29.
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Figure 29: Nested optimization framework utilizing optimal DoE on the outer loop and ES
on the inner loop.

The results presented in this section were generated when using ES as the inner loop

optimization strategy. Table 9 displays the perceived optimal plant design, the optimal

controller parameter for the given plant design, and the percent reduction in the size of

the design space following the corresponding iteration. The candidate plant design points,

generated by G-optimal DoE at each iteration, are represented by the black diamonds in

Figure 30. The contours in this figure correspond to the response surface characterization

following the evaluation of each candidate plant design point at the corresponding iteration.

The plant design space reduction following each iteration can be visualized in Figure 30.

Table 9: Optimal system design at each iteration when using ES for the adaptation law.

Iteration K∗A x∗cm (% chord) θ ∗sp(
◦) % Reduction

1 1.455 52.40 12.99 95.36
2 1.391 52.40 13.10 96.49
3 1.406 52.40 13.08 96.49
4 1.435 52.40 13.03 98.38
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Figure 30: Response surface characterization at 1st (top left), 2nd (top right), 3rd (bottom
left), and 4th (bottom right) iterations with candidate design points overlaid, when ES for
the adaptation law in the nested co-design strategy.

5.1.2 Combined plant and controller optimization results using optimal design of

experiments and entropy-based DoE

The entropy-based DoE adaptation was used as the inner loop optimization strategy to

form a nested strategy that relied on the same mathematical machinery at both the inner

and outer loops. The process diagram for the nested structure that utilized G-optimal DoE

on the outer loop and entropy-based DoE on the inner loop can be seen in Figure 31.

The results presented in this section were generated when using the nested framework

shown in Figure 31. Figure 32 illustrates the design space exploration and convergence of

the entropy-based DoE adaptation. Table 10 displays the perceived optimal plant design,

the optimal controller parameter for the given plant design, and the percent reduction in

the size of the plant design space following the corresponding iteration. The candidate

plant design points, generated by G-optimal DoE at each iteration, are represented by the
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Figure 31: Nested optimization framework utilizing optimal DoE on the outer loop and
entropy-based DoE on the inner loop.

black diamonds in Figure 33. The contours in this figure correspond to the response surface

characterization following the evaluation of each candidate plant design point. The plant

design space reduction following each iteration can be visualized in Figure 33.

Table 10: Optimal system design at each iteration when using entropy-based DoE for the
adaptation law.

Iteration K∗A x∗cm (% chord) θ ∗sp(
◦) % Reduction

1 1.160 52.4 13.7 75.3
2 1.212 52.4 13.3 81.7
3 1.750 52.4 14.3 99.0
4 1.750 52.4 14.3 99.8

5.1.3 GP-driven, nested co-design framework

A GP-driven, nested co-design framework was established by utilizing batch Bayesian

optimization for the outer loop plant iteration and the RGP-based adaptation (detailed in

Chapter 4.4.1) for the inner loop controller optimization. There is a close mathematical
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Figure 32: Convergence for entropy-based DoE algorithm for a sample plant design (xcm =
45.4% and KA = 1).
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Figure 33: Response surface characterization at 1st (top left), 2nd (top right), 3rd (bottom
left), and 4th (bottom right) iterations with candidate design points overlaid when entropy-
based DoE for the adaptation law in the nested co-design strategy.



90

relationship between batch Bayesian optimization and the RGP-based adaptation. Specif-

ically, the RGP-based adaptation is essentially the continuous-time version of the batch

Bayesian optimization outer loop. The process diagram for the GP-driven, nested co-design

framework that employs batch Bayesian optimization on the outer loop and the RGP-based

adaptation on the inner loop can be seen in Figure 34. It is important to note that the ampli-

tude of the sinusoidal wind perturbation was reduced by 50% for these simulation results,

which results in a much lower integral performance index.
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Figure 34: Nested optimization framework utilizing batch Bayesian optimization and RGP-
based adaptive control (both GP-based tools) on the outer and inner loops, respectively.

Table 11 displays the perceived optimal plant design, the optimal controller parameter

for the given plant design, and the percent reduction in the size of the plant design space

following the corresponding iteration. After completing four iterations of the co-design

process, the candidate plant design space was reduced by 98%. The red circles in Fig-

ure 35 represent the candidate design points evaluated during the co-design process. The

contours in this figure correspond to the response surface characterization following the
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evaluation of each candidate plant design point. The plant design space reduction follow-

ing each iteration can be visualized in Figure 35. After significant design space reduction,

batch Bayesian optimization begins to populate the plant design space with repetitive de-

sign points.
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Figure 35: Response surface characterization over the reduced design space the at 1st (top
left), 2nd (top right), 3rd (bottom left), and 4th (bottom right) iterations with candidate
design points tested at each iteration overlaid for the GP-driven, nested co-design strategy.

Table 11: Optimal system design at each iteration when using GP-driven, nested co-design

Iteration K∗A x∗cm (% chord) Ĵ(p∗c(pp),pp) % Reduction
1 1 51.93 9.724 0
2 0.98 51.93 9.731 94.3
3 0.97 51.93 9.726 95.5
4 0.97 51.93 9.728 98.2

5.2 Simulation-based crosswind flight optimization using GP-driven nested co-design

framework

The final simulation-based case study focused on optimizing the plant and controller

parameters for crosswind flight. For this simulation-based analysis, the controller from
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Chapter 2.3.2.1 was used to achieve crosswind flight. In addition to representing an impor-

tant flight mode, the crosswind flight investigation allowed us to consider both plant and

controller design spaces with multiple dimensions. The process diagram for the GP-driven,

nested co-design framework can be seen in Figure 34.

Recall that the goal of crosswind flight is to increase the apparent wind presented to the

onboard turbines by moving in figure-8 flight patterns. For the crosswind flight controller

used in simulation, the two key parameters that control the shape of the figure-8 flight

path are the azimuth angle limit Φlim and sideslip angle setpoint βsp. The azimuth angle

limit dictates the width of the crosswind flight pattern, while the sideslip angle setpoint is

known to significantly influence the aerodynamic efficiency of crosswind flight. Because

the domain of stabilizing Θlim and βsp is not rectangular, a new variable, β̄sp is defined,

such that the resulting design space is rectangular in Θlim and β̄sp:

βsp = β̄sp(1−2.29Θlim), (91)

where β̄sp ∈ [0,5]◦ and Θlim ∈ [0,20]◦. These parameters are selected as the controller pa-

rameters in the inner loop optimization of the co-design framework. The plant parameters

are selected to be the longitudinal location of center of mass (xcm) and reference area scale

factor (KA).

Table 13 displays the perceived optimal plant design, the expected performance associ-

ated with the optimal plant design while operating at the optimal controller design, and the

percent reduction in the size of the plant design space following the corresponding itera-

tion. The red circles in Figure 36 represent the candidate design points evaluated during the
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Table 12: Summary of optimization problem features for simulation co-design of AWE
during crosswind flight.

Feature Symbol Description
Plant
Parameters

KA,vert Vert. stabilizer reference area scale factor
KA,horz Horiz. stabilizer reference area scale fac-

tor
Control
Parameters

Φlim Azimuth angle limit
βsp Sideslip angle setpoint

Instantaneous ob-
jective function

(
|vapp|
|vw|

)3

Instantaneous power factor

Integral objective
function

1
∆t
∫ tc+∆t

tc

(
|vapp|
|vw|

)3

dt Avg. power factor

co-design process. The contours in this figure correspond to the response surface charac-

terization following the evaluation of each candidate plant design point. The plant design

space reduction following each iteration can be visualized in Figure 36. Following four

complete iterations of the co-design process, the candidate plant design space was reduced

by nearly 99%.

Table 13: Optimal plant design at each iteration when using the GP-based, nested co-design
framework.

Iteration K∗A,vert K∗A,horz Ĵ(pc(pp),pp) % Reduction
1 1.1 1.06 1.526 53.18
2 1.1 1.08 1.522 93.10
3 1.1 1.1 1.506 97.62
4 1.1 1.1 1.509 98.99
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Figure 36: Plant-level response surface characterization at 1st (top left), 2nd (top right), 3rd

(bottom left), and 4th (bottom right) iterations with candidate design points overlaid for the
GP-driven, nested co-design strategy.



CHAPTER 6: EXPERIMENTAL COMBINED PLANT AND CONTROLLER
OPTIMIZATION

The most valuable use cases of the co-design tools developed in this work are those in

which expensive and time-consuming experiments are part of the co-design process. In

these scenarios, rapid identification of optimal control parameters during the course of an

experiment, using the adaptation tools developed in this work, can dramatically decrease

the economic cost of carrying out a co-design process. To illustrate the efficacy of the

developed co-design tools in an experimental regime, this chapter focuses on the use of

a lab-scale experimental platform in optimizing both the physical design parameters and

flight control parameters for an AWE system that executes power-augmenting crosswind

flight.

To optimize the controller and physical system of an AWE system operating in crosswind

flight, the GP-driven, nested strategy discussed in Chapter 5.2 is leveraged. The process

for the experimental co-design framework is detailed in Figure 37. At the outer loop of

the nested strategy, batch Bayesian optimization is used to populate a batch of candidate

plant designs. During the experiment, the RGP-based adaptation, detailed in Chapter 4.4,

optimizes the control design in real time for each candidate plant design.

As discussed in Chapter 2.5.2, the objective of crosswind flight is to increase the apparent

wind velocity presented to the onboard turbine by moving perpendicular to the wind. To

quantitatively capture how much more energy the system could produce by moving in a
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Figure 37: Process diagram for experimental nested co-design framework.

crosswind motion, the power factor objective function from Chapter 2.5.2 was used. The

plant parameters to be optimized for the analysis in this chapter are the net buoyancy of the

system and longitudinal location of the center of mass (xcm) because these parameters have

a dramatic impact on the performance of crosswind flight. Recall from Chapter 2.3.2.2, that

to induce crosswind flight experimentally, the roll angle is commanded to follow a square

wave defined by a square wave amplitude (asq) and period (Tsq). The roll angle setpoint

and period govern the geometric characteristics of the crosswind flight path. Therefore, the

controller parameters to be optimized are the square wave amplitude and period. The key

features of the optimization are summarized in the Table 14.

6.1 Results: Gaussian process-based nested combined plant and controller optimization

The results presented here extend the controller optimization results from Chapter 4.4.8

by placing the adaptation in the inner loop of a nested optimization framework. At each

iteration of the GP-driven, nested co-design framework, sixteen plant design points were
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Table 14: Summary of optimization problem features for experimental co-design.

Feature Symbol Description
Plant
Parameters

xcm Longitudinal location of center of mass
ρBuo Net Buoyancy

Control
Parameters

asq Square wave amplitude
Tsq Square wave period

Instantaneous ob-
jective function

(
|vapp|
|vw|

)3

Instantaneous power factor

Integral objective
function

1
∆t
∫ tc+∆t

tc

(
|vapp|
|vw|

)3

dt Avg. power factor

evaluated experimentally, where the RGP-based adaptation optimized the control parame-

ters in real time for each of the 16 candidate plant designs. Figure 38 displays the iterative

evolution of the response surface over the candidate design space. The top left plot shows

the response surface over the reduced design space after evaluating the batch of candidate

design points at the first iteration. The top right plot shows the response surface over the re-

duced design space following the second iteration and candidate design points to be tested

at the third iteration. Similarly, the bottom left displays the response surface over the re-

duced design space following the third iteration and candidate design points to be tested

at the fourth iteration and so on. The design space reduction following the fourth iteration

results in three distinct “islands”. The island in the lower left corner contains the perceived

optimum, while the island in the middle section contains points whose performance indices

fall within 1% of the performance at the perceived optimum. The island in the upper left

corner was nearly rejected, but the error bars in that area were just large enough to remain in

the design space for subsequent iterations. This result shows the potential of the GP-driven,

nested co-design strategy to handle highly nonlinear functions that may contain many local

optima.
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Figure 38: Response surface characterization over the reduced design space following the
1st (top left), 2nd (top right), 3rd (bottom left), and 4th (bottom right) iterations for the GP-
driven, nested co-design framework. The candidate design points for the following iteration
are overlaid on the response surface for the top right, bottom left, and bottom right plots.

Table 15: Optimal system design at each iteration of GP-driven, nested co-design

Iteration x∗cm(%) ρ∗Buo(%) Ĵ(p∗c(pp),p∗p) % reduction
1 47.3 15.4 1.508 0.34
2 47 17.7 1.699 24.73
3 47 16.5 1.589 87.62
4 47 16.5 1.588 93.25

Table 15 displays the perceived optimal plant design at each iteration of the co-design

process. The last column of this table presents the total reduction of the design space of

the plant design space (P). Following four iterations of the co-design process, the original

plant design space was reduced by 93.25%.

After completing four iterations of the co-design process, the percent difference in per-

formance across the reduced design space was less than 10%. The co-design framework

was considered to be converged after this point, and the optimal point was selected to be the
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Table 16: Comparison of optimal system design to suboptimal system designs.

Description xcm(%) ρBuo(%) asq(
◦) Tsq(s) J(pc(pp),pp)

Optimal system design 47 16.5 13.93 7.647 1.63
Optimal plant design with
suboptimal controller de-
sign

47 16.5 10 10 1.199

Suboptimal plant design
with optimal controller de-
sign

51.6 23.1 15 5 1.1629

Suboptimal system design 51.6 23.1 10 7 1.093

point that maximized the mean function. Table 16 compares the perceived optimal design

after four iterations to other suboptimal system designs. From the last column of this table,

it is clear that optimizing the plant and controller parameters in a co-design framework is

critical to maximizing system performance. Figure 39 compares the instantaneous perfor-

mance index for each system design in Table 16. It is clear from Figure 39 that optimizing

either the plant or controller in isolation does not maximize performance. One property

of the system that is indicative of efficient crosswind flight is the lateral velocity of the

system. Figure 40 displays the lateral velocity of the combined optimal system design, the

optimal plant design operating at a suboptimal controller design, and a suboptimal design

in the space. Compared with the selected suboptimal design, crosswind flight speeds are

more than an order of magnitude greater than those of optimized flight. Even compared

with an optimized plant but suboptimal controller, the crosswind flight velocity is doubled

with the fully optimized design. As seen in Table 16, this ultimately results in 50 percent

greater power output
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Figure 39: Comparison of instantaneous power factor for the combined optimal system
design, the optimal plant design operating at a suboptimal controller design, a suboptimal
plant design operating at a optimal controller design, and a suboptimal design in the space.

Figure 40: Comparison of crosswind flight velocity for the combined optimal system de-
sign, the optimal plant design operating at a suboptimal controller design, a suboptimal
plant design operating at a optimal controller design, and a suboptimal design in the space.



CHAPTER 7: CONCLUSIONS AND FINAL REMARKS

A nested co-design framework that leverages the ability to optimize controller parame-

ters during a simulation or experiment has been presented. By optimizing the controller pa-

rameters in real time, the time required to optimize a complex system can be reduced. The

nested co-design framework presented here is unique relative to legacy co-design strategies

in its ability to be applied to complex system designs that require either extensive simu-

lations or experiments. Through the use of simulation-based and experimental AWE case

studies, the efficacy of the nested co-design framework in converging to optimal design

parameters was demonstrated.
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APPENDIX

Definition of Gaussian distribution

A random varible x∈Rn has a Gaussian distribution with mean m∈Rn and covariance

P ∈ Rn×n if its probability density has the form

N(x|m,P) =
1

(2π)n/2|P|1/2 exp(
−1
2
(x−m)T P−1(x−m)) (92)

where |P| is the determinant of the matrix P

Definition of joint distribution of Gaussian variables

If random variables x ∈ Rn and y ∈ Rn have the Gaussian probability distributions

x ∼ N(m,P), (93)

y|x ∼ N(Hx+u,R), (94)

then the joint distribution of x,y and the marginal distribution of y are given as

x

y

 ∼ N


 m

Hx+u

 ,

 P PHT

HP HPHT +R


, (95)

y ∼ N(Hx+u,HPHT +R). (96)

Conditional distribution of Gaussian variables

If the random variables x and y have the joint Gaussian probability distribution
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x

y

 ∼ N


a

b

 ,

 A C

CT B


, (97)

then the marginal and conditional distributions of x and y are given as follows

x ∼ N(a,A), (98)

y ∼ N(b,B), (99)

x|y ∼ N(a+CT B−1(y−b),A−CT B−1C), (100)

y|x ∼ N(b+CT A−1(x−a),B−CT A−1C), (101)


