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ABSTRACT 
 
 

YUHONG ZHOU.  Space-time dynamics of single family residential water consumption 
in Charlotte, North Carolina.  (Under the direction of DR. JEAN-CLAUDE THILL) 

 
Water availability has become a more significant economic and policy issue in 

contemporary America. Although emerging as an attractive tool to water authorities, 

demand-side water management in urbanized areas is more complicated due to the high 

complexity of coupled human and natural (mainly water and land) systems and great 

heterogeneity of households and neighborhoods in urban environments. A better 

understanding of how water is used by whom and in what ways water savings can be 

realized will be necessary and useful for planning, implementing, and evaluating 

demand-side alternatives. The purpose of this research is to understand the spatial and 

temporal dynamics of water use or demand, and of its relations with various factors in a 

fast-growing urban environment of Charlotte, North Carolina.  

Using the water billing datasets over the 2000-2010 period for Mecklenburg 

County, North Carolina, this dissertation conducts a multidimensional investigation on 

the state, pattern, and process of the subject – single family residential (SFR) water 

consumption. It first explores the decennial evolution of SFR water usage and its 

association and sensitivity with historical weather conditions in Charlotte. Next, it 

examines the historically contingent effects of sociodemographic and housing factors on 

yearly SFR water consumption as well as the spatial heterogeneity and dependence in 

these effects. Lastly, monthly SFR water usage per household at the neighborhood level 

during the 2007-2009 period is explained by various factors (pricing, water usage 
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restriction, weather, sociodemographic and housing characteristics) within a spatial 

econometric modeling framework. 

The results show that SFR water consumption is unevenly distributed across 

Charlotte and some neighborhoods (especially in southern Charlotte) consumed 

considerably more water in summer than winter; spatial variability in climatic sensitivity 

of neighborhoods is evident; the historical states of explanatory factors have more 

influence on SFR water usage in 2008 than their temporal change between 2000 and 2008 

and those effects vary across space; the importance of price, non-price policy, mean 

temperature and precipitation in affecting monthly SFR water consumption during 2007-

2009 is highlighted after spatial heterogeneity is accounted for. 

This research is vital to the enhancement of the local community’s knowledge. The 

multidimensional analyses will not only offer first-hand evidence for answering critical 

questions on weather sensitivity and driving factors related to local water usage, but also 

help identify new research questions, formulate novel hypotheses, and introduce more 

opportunities for disentangling the problems in water management in a comprehensive 

manner. 
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CHAPTER 1:  INTRODUCTION 
 
 

Water availability has become a more significant economic and policy issue in 

contemporary America, especially in the areas where the demand for water is high and 

the supply of water is scarce. Urbanized areas with continuing and rapid growth face 

more problems and challenges related to water. On the one hand, continued growth 

demands more water and there is great pressure to exploit sources of water to the point of 

exhaustion and to make more costly investment to transfer water (Coyne 2003). On the 

other hand, the nature of urban/land development itself stresses water resources. 

Common problems with land use practices include wastewater discharge and run-off 

pollutants that degrade water quality, and impervious surfaces that impede the natural 

filtration of precipitation and water flows into the soils and thus affect water quality and 

water supply (Arnold 2005). The adverse impacts of urban development do great harm to 

aquatic ecosystems and water resources, which results in a decline in water supply and an 

inverse effect on water availability in those areas, such as the occurrence of water 

shortage or increased water scarcity (Shandas et al. 2015). In order to effectively use 

water, water (resource) management has been emphasized in the countries all over the 

world. The United States of America has devoted itself more to water (resource) 

management since the 1980s (Dziegielewski 1999). 

Managing water demand and supply is part of water management practices. 

Demand-side management has emerged more recently as a complement of more
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traditional approaches and proves to be crucial for coping with water vulnerability in the 

face of climate change (Bates et al. 2008; Russell and Fielding 2010). For urbanized areas, 

this task becomes more complicated due to the high complexity in the coupled human 

and natural (mainly water and land) systems (House-Peters and Chang 2011) and great 

heterogeneity of households and neighborhoods in urban environments. In addition to 

management of water sources, water demand and supply in urban settings are associated 

with the land development process and the water infrastructure construction process, 

respectively. Water use is mainly driven by different consuming behaviors of diverse 

human groups, and sometimes urban land uses contribute to water consumption pattern. 

Hence the form of urban development and the socio-economic characteristics attached 

with land uses are the most significant factors of water demand.  

There may also exist inequity among water users (Ingram et al. 2008). Actual water 

consumption can be different from the desired consumption, because it is constrained by 

both the users’ access to water supply infrastructure and the affordability of water service. 

Water affordability is dependent on the price of the water service and the social and 

economic status of water consumers. Some social groups such as low-income households 

may face water poverty issue (poverty related to water availability and human welfare) 

(Porcher 2013) or be at a more disadvantageous position when coping with the change in 

water pricing (Agthe and Billings 1987). 

Understanding the dynamics of water consumption at the city level is critical for 

local public water utility, planners and policy makers for several reasons. From an 

idiographic viewpoint, the uniqueness and complexity of a region/area could be best 

revealed by comprehensive empirical studies. The problems identified in water 
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management in warm, humid cities like Charlotte, North Carolina, are less likely to be 

same as the ones in hot, dry cities like Phoenix, Arizona. Most of the case studies related 

to water use and demand in the United States focus on the cities or metropolis in the west 

such as Phoenix, Arizona and Portland, Oregon. Emerging concerns on the pressure of 

rising demand, future droughts and climate change (Henderson 2015) on water supply in 

the Charlotte-Mecklenburg area have called for a better understanding on local 

consumption.  

From a systematic perspective, to come up with a work plan appropriate to the 

specific characteristics of water consumption, “to do some basic counting” will not be 

adequate. Instead, we have to grasp the multiple facets of water use dynamics. Thus a 

multidimensional investigation on the state, pattern, and process of the subject – water 

consumption, is essential. Among the many dimensions of water use, its relations to 

climate trend and change, and its driving factors are of interest to researchers and policy-

makers. Given that the concepts location and time are involved in the process of 

consuming water, more attentions should also be paid to the spatial and temporal aspects 

of water use dynamics (a spatial science viewpoint/focus).  

1.1 Statement of Research 

The purpose of this research is to understand the spatial and temporal dynamics of 

water use or demand, and of its relations with various factors in a fast-growing urban 

environment. Using the water billing datasets over the period between 2000 and 2010 for 

the county of Mecklenburg, North Carolina (NC), this dissertation aims to identify 

patterns, contingency, dependence, associations, and effects related to water use at the 

selected temporal (monthly and yearly) and spatial scale (block group). 
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This research has three major objectives aimed at contributing to the understanding 

of the dynamics of single-family residential (SFR) water use at an intra-urban scale. The 

first objective is to explore the decennial evolution of SFR water use and its association 

and sensitivity with historical climate conditions in Charlotte, Mecklenburg County, 

North Carolina. The second component of this research is to investigate the historically 

contingent effects of associated factors on yearly SFR water consumption as well as the 

spatial heterogeneity and spatial dependence in these effects. The third objective seeks to 

identify the factors explaining the monthly water consumption per SFR household at the 

neighborhood level during the 2007-2009 drought within a spatial econometric modeling 

framework and evaluate the effects of pricing and water usage restrictions. We 

hypothesize that (1) weather factors would make a great contribution to local water use in 

Charlotte, (2) some household and housing characteristics such as household size, income, 

and lot size better explain monthly water consumption than the others (for example age 

factors and housing density), (3) price effect would be inelastic, and become smaller with 

the intervention of water usage restrictions which supposedly show negative effects.  

Together these three objectives will contribute to the understanding of how SFR 

water use changes over time at a small temporal and spatial resolution and they approach 

the relationship of water use and its associated factors from different perspectives but 

within a spatio-temporal framework. These pieces of empirical work, built upon 

methodological advances in geographic information systems (GIS), spatial analysis, and 

statistical approaches, will collectively depict a relatively complete picture of the history 

and present of SFR water consumption in terms of its state, pattern and process. The 

evidences derived from the analyses on various issues from weather sensitivity, historical 
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contingency, and relational assessment on water demand’s determinants will serve our 

ultimate goal of deriving policy implications for water demand management. 

1.2 Contribution and Significance 

The case study of this research is vital to the enhancement of the local community’s 

knowledge (in this case, Charlotte, NC). Public water utility, planners and decision 

makers will benefit from the research with regard to better understanding the complex 

urban dynamics of water consumption. The multidimensional analyses will not only offer 

first-hand evidence for answering critical questions on weather sensitivity and driving 

factors related to water use, but also help identify new research questions, formulate 

novel hypotheses, and introduce more opportunities for disentangling the problems in 

water management in a comprehensive manner.  

In addition to the social values this study carries, the methodological highlight of 

our research is the development of the empirical spatial panel data models for water use 

research. The spatial econometric modeling approach is embraced to incorporate spatial 

dependence and heterogeneity in traditional panel data models. This framework not only 

helps reduce bias in coefficient estimates or standard errors from panel data models that 

do not account for spatial autocorrelation (LeSage and Pace 2009), but also is able to 

distinguish and quantify the direct and indirect effects of the household and housing 

factors on water use. The same specifications of the models will be tested against 

relatively small neighborhood unit - block groups.  

1.3 Structure of the Dissertation 

 The dissertation is organized into seven sections. Chapter 2 provides a literature 

review of the determinants of water use or demand. Descriptions of the study area, data 
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collection and processing are given in Chapter 3. Chapters 4, 5, and 6 will address the 

above three objectives respectively, and each of the chapters includes literature review on 

the topic in focus, methodology and results, and conclusion sections. The last chapter 

concludes the dissertation by an overall conclusion and limitations of the study. 



 
 

CHAPTER 2:   LITERATURE REVIEW 
 
 

The widening gap between water availability and demand in urban environments 

has been calling for water management practices integrating both extensive (supply-

oriented) and intensive (demand-centered) approaches. Governments and water providers 

who endeavor to satisfy the needs of their growing resident populations by bringing in 

more water from remote places have been challenged continuously by rising 

infrastructure costs, regional conflicts and competing uses in terms of water rights 

(Sewell, W. R. D. and Roueche 1974). The idea of managing urban water demands 

instead of expanding supply has become attractive to water authorities, due to its multiple 

(economic and ecological) benefits to the water supply system and the natural 

environment, and due to the improved feasibility supported by technological innovations, 

specialization and  privatization in water services, and progress in novel practices 

(Dziegielewski 1999). The core objective of demand management is to make more 

efficient use of existing supplies. A better understanding of how water is used by whom 

and in what ways water savings can be realized will be necessary and useful for planning, 

implementing, and evaluating demand-side alternatives (Jorgensen et al. 2009). This 

chapter will start with a review of the factors determining residential water use/demand 

and the mechanisms linking them with household water use behaviors. 

2.1 Determinants of Residential Water Demand 

2.1.1 A Behavioral Framework
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Quality water (mainly from water pipes for urban residents) is essential to human 

being’s daily life. It serves our needs ranging from the basic ones such as drinking, 

cooking and cleaning, to the life-style-induced ones like toilet flushing, laundry and 

bathing, and to the discretionary uses of water for lawns, landscaping/gardening and pool. 

The quantity of water used by a household is a direct result of the aggregation of 

individual consumption behaviors that are conducted within and hence constrained by 

their environment (internal and external to household and/or its individuals).  

Behavioral and psychological research has offered some insights into the causes of 

behavior related to water use and conservation and their interrelations. Russell and 

Fielding (2010) categorized the causal factors of water conservation behaviors into five 

groups, including attitudinal factors, beliefs, habits or routines, personal capabilities, and 

contextual forces. We organized these factor groups and key factor elements, their 

relations to household water consumption, and their interrelations into a conceptual 

model (Figure 1).  

In this conceptual model, rectangles in different colors represent different 

categories of factors and their key elements. Relations of attitude, belief and habit factor 

groups to water use behavior are symbolized by wide gray arrows. The factors from the 

capability and context categories encompass water consumption, implying their direct 

associations. Factor groups and/or their elements can interact, as indicated by various 

arrows. Solid lines with a single arrow represent direct impacts, while dashed arrows 

refer to mediation paths. For individual factors influencing each other (for example, price 

and non-price policies), double-arrows symbolize bi-directional impacts. The dotted line
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with arrow represents non-substantive direct effects. The specific details about this model 

will be elucidated as follows. 

The theory of planned behavior (TPB) (Ajzen 1999) suggests that a person's 

deliberate behavior is determined by his/her intention (i.e., a motivation or plan) to 

perform the behavior, and that attitude, subjective norms and perceived behavioral 

control lead to the formation of a behavioral intention. The three constructs (attitude, 

subjective norms and perceived behavioral control) are classified into one factor group 

named attitudes. Social norms denote the customary codes of behavior in a group or 

people or larger cultural context, and perceived behavioral control refers to a person's 

perception of the ease or difficulty of performing the behavior of interest. As a general 

rule, the more favorable the attitude and subjective norm, and the greater the perceived 

control, the stronger should be the person’s intention to perform the behavior in question. 

Take the water conservation behavior as an example. If people have a positive attitude 

toward water conservation, if they perceive that important others in their life think that it 

is a good thing, and if they think that it is something they can easily do, then they will 

intend to engage in water conservation and their intentions should in turn translate into 

water conservation actions (Russell and Fielding 2010). The TPB research has important 

implications for policy-level water conservation efforts. Any conservation campaign or 

program merely providing information may not help change behavior very much. Instead, 

water conservation efforts should aim at influencing attitudes toward the behaviors of 

consuming and saving water, seek to gain widespread support in the community, and 

offer strategies to ensure people easily engage in water conservation behaviors. 
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Similarly, beliefs, often identified as significant drivers in the environmental 

psychology literature, are supposed to play an important role in predicting water (Russell 

and Fielding 2010). According to the TPB, there are three kinds of beliefs corresponding 

to the three attitudinal factors (attitude, subjective norms and perceived behavioral 

control). Beliefs may be conceived as a precursor to them (Eagly and Chaiken 1993; 

Ajzen and Fishbein 2000). When water conservation is concerned, water-specific beliefs 

such as viewing water as a scarce resource are regarded as the most immediate drivers, in 

contrast to generalized worldviews about the environment (Corral-Verdugo et al. 2003).  

Recognizing that behaviors may not always be deliberative or rational, researchers 

(Aitken et al. 1994; Gregory and Di Leo 2003; Trumbo and O’Keefe 2005) have also 

examined the effect of habits on water use behaviors, and emphasized their importance 

for the design of policies and intervention strategies aimed at changing behaviors (Russell 

and Fielding 2010). Although a number of habit measures such as the number of showers 

and baths, clothes washing loads, and dish loads per week and the past water 

consumption and conservation behaviors were included in past studies in the domain of 

environmental psychology, habits relating to outdoor water use have not been assessed 

(Kenney et al. 2008).  

All three categories of factors mentioned so far can explicitly characterize water 

use/saving behaviors. However, data or information on most of these factors are not 

readily available, and usually are collected by household surveys and interviews designed 

specifically for the purpose of attitudinal or behavioral analysis.  

The determinants of water consumption commonly identified in the bodies of 

literature outside psychology and cognitive science largely belong to the causal 
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categories of personal capabilities and contextual factors. Personal capabilities refer to 

knowledge and skills, availability of time, literacy, money, social status and power, while 

contextual factors can involve many different considerations including household 

characteristics and experiences, physical infrastructure, technical facilities and products 

in a household, pricing and non-pricing factors as well as other features of broader social, 

economic and political contexts (Stern 2000; Steg and Vlek 2009; Russell and Fielding 

2010). A number of sociodemographic variables fit both categories, playing the roles of 

being proxies for personal capabilities as well as being contextual factors per se (income 

is a typical example). Since behaviors could be facilitated or constrained by personal 

capabilities and contextual factors, it is important to consider their impacts on water 

consumption. Next, we will review some popular determinants from these two groups 

with an emphasis on their connections with household intentions and behaviors toward 

residential water consumption. 

2.1.2 Water Pricing and Rate Structure 

North American economists first became interested in best price mechanisms to 

regulate water in the late 1960s and through the 1970s (Corbella and Pujol 2009), when 

water demand management started to take shape. The increasing applications of new rate 

and pricing structures during the later 20th century have provided many opportunities for 

water demand research (Kenney et al. 2008). Numerous econometric models for water 

use were developed to quantify price elasticity (the economic measure of how demand 

for water moves in response to price changes) and evaluate various pricing policies from 

flat rate to uniform, increasing or decreasing block (Arbués et al. 2003). These studies 

benefited the practices of urban water utilities mainly in forecasting water demand and 
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performing benefit-cost analysis of demand management alternatives (Dziegielewski 

1999). 

Water pricing is regarded an important economic driver for water consumption 

because water as a commodity has its economic and market value, thus the price theory 

(that price can determine the quantity demanded of goods and services) would apply. 

Dozens of empirical pieces of research on residential water demand confirmed the 

negative effect of price, meaning that household water demand decreases when price 

increases. However, the estimates of the price elasticity vary widely (more lying between 

0.25 and 0.75), and the general conclusion is that demand is largely price inelastic (less 

than 1) (Arbués et al. 2003; Kenney et al. 2008; Worthington and Hoffman 2008). There 

are different reasons to account for water price inelasticity. From an economic 

perspective, the price of water does not reflect its economic value since water is a public 

good and public goods lack substitutes for basic uses, are usually offered cheaply to 

urban residents; there also are other issues such as fairness and equity for water 

authorities to concern when setting water price.  From a behavioral perspective, price 

plays the role of contextual factors, and its interactions with the other contextual factors 

(such as income, the number of occupants in household), with personality capabilities 

(income, typically knowledge about pricing or price change, understanding of the rate 

structure and water bill), and with psychological variables (e.g. the change in attitudes, 

intentions and beliefs during drought/water scarcity) complicate its net effect on water 

consumption (Jorgensen et al. 2009). The complexity in block rate structure (the 

increasing block is commonly employed by American public water suppliers) makes it 

difficult to separate the effect of marginal prices within each block of the pricing from the 
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effect of the rate structure per se due to the increasing nature of the tiers (Olmstead et al. 

2003; Carter and Milon J. Walter 2005).  From the policy perspective, price elasticities 

can be influenced by the existence of non-price policies (such as water usage restrictions 

and other conservation programs). Moreover, price elasticity can vary significantly 

among seasons, uses, regions, and various social/economic conditions (Kenney et al. 

2008). 

Given the relatively low price elasticity, two different viewpoints hold with regard 

to the use of the pricing tool to reduce demand. One is that prices can play a crucial role 

in demand management as long as urban water prices reflect marginal costs and the 

elasticities are different from zero (Arbués et al. 2003). The opposite viewpoint is that 

price is an ineffective tool and other mechanisms would be more appropriate 

(Worthington and Hoffman 2008). For any specific local water authority, the choice of a 

position should be based upon a comprehensive understanding of the local pricing effect 

and its interrelations with other factors in determining water consumption. 

Among the literature on estimating residential water demand using econometric 

techniques, price specification has been a focal issue with great controversy. Two 

mainstream specifications and their variations can be identified. We will briefly describe 

the two major price measures (marginal price and average price) and their 

disadvantages/problems here. For details, we suggest a reference to the two review papers 

by Arbués et al. (2003) and Worthington and Hoffman (2008) and the seminal papers on 

electricity demand that introduced the two original specifications. 

Marginal price is defined as the price a customer paid for the last quantity he/she 

consumed (Taylor 1975). Marginal price is either a constant value for a flat rate (fixed fee 
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no matter how much quantity) or a uniform water tariff (rate is quantity-independent). 

Given a non-uniform rate structure, marginal price varies by particular quantities. More 

volumes of water consumption are usually associated with a higher marginal price in an 

increasing block structure, vice versa for a decreasing pricing. Average price is a derived 

measure for price, simply equivalent to the division of total charge paid and the 

corresponding water quantity consumed.  In comparison, marginal and average price are 

the same for simpler pricing structures, and marginal price is larger or smaller than 

average price for increasing and decreasing blocks respectively.  In the price specification 

using marginal price, a difference variable was suggested to be included by Nordin 

( 1976) to account for the income effect imposed by the block structure. Difference price 

is calculated as the difference between the total bill and what the user would have paid if 

all units were charged at the marginal price (Arbués et al. 2003).  

The marginal price specification is theorized under the assumption that perfectly-

informed consumer should react to marginal price and rate premium. However, the reality 

is that most consumers lack of knowledge about the pricing structure or intramarginal 

rates (difference in rates between blocks), thus the Nordin specification is contentious. 

Although average price has been widely accepted as an alternative measure of price, it is 

less efficient since marginal price is implicitly captured by this variable, and requires an 

appropriate translation for the purpose of pricing design. Some empirical research (Gibbs 

1978; Dalhuisen et al. 2003; Schleich and Hillenbrand 2009) showed that price elasticity 

tends to be overestimated using average price rather than marginal price. Nieswiadomy 

and his co-workers used a price perception model (proposed by Shin ( 1985) to account 

for information imperfection in water use decision) to test customers’ reactions to 
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marginal, average and perceived price (Nieswiadomy and Molina 1989; Nieswiadomy 

1992; Nieswiadomy and Cobb 1993), and their findings are not conclusive due to 

different case studies and data. The results from their panel model showed that customers 

react to marginal prices when facing increasing block rates and average prices when 

faced with decreasing block rates (Arbués et al. 2003), while the effect of average price is 

stronger for both decreasing and increasing structure as indicated in their models for the 

national cross-sectional data (Worthington and Hoffman 2008). To deal with the 

endogeneity 1  (sometimes called simultaneity) problem involving both specifications 

under non-uniform structures, advanced statistical methods have been employed 

including instrumental variables (IV) approach (e.g. two-stage or three-stage least square 

models (2SLS or 3SLS)) and simultaneous equation method (Arbués et al. 2003). 

Although researchers may prefer one specification to another, it is common to apply both 

average and marginal price in the same model and compare the parameter estimates, 

especially if price elasticity is of central interest.  

In the earlier water demand models dominated by an economic perspective, only a 

few kinds of variables other than price were considered as control variables (maybe due 

to data availability and computing and software constraints), chief among them were 

climate/weather and income variables.  

2.1.3 Weather Factors 

Weather is the most dynamic factor (changeable at every moment) that impacts 

water consumption but is beyond the control of water authorities and households. Based 

on daily life experiences, people could come up simple and intuitive rules describing the 

                                                 
1 Prices are endogenously determined by quantity demanded. 
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responses of their water use behaviors to weather condition and change. For example, 

water demands are higher in hot-dry weather than cold-wet conditions (especially in 

regions with distinct summer and winter seasons), because additional water is used for 

more frequent showering, bathing and laundering, irrigating vegetation (grass, tree, and 

other plants) and pursuing entertainment in pools and through fountains, etc. That great 

outdoor water use reduction occurs in the summers with abundant rainfall is another 

example. However, to fully understand the influences of climate factors on water demand 

is challenging for several reasons.  

First, there are multiple weather proxies that potentially can explain water 

consumption patterns. Precipitation/rainfall, temperature, and evapotranspiration (ET) are 

commonly studied, and the underlying mechanism of how each of them is linked to water 

use differs.  The values of these factors are recorded at a small temporal scale (daily and 

even hourly) and of ratio type, so we can characterize weather using their descriptive 

statistics. For example, average, maximum, minimum temperature and their changes have 

been included in the empirical models (Maidment and Miaou 1986; Griffin and Chang 

1990; Stevens et al. 1992; Agthe and Billings 1997; Pint 1999; Martinez-Espiñeira 2002, 

to list a few), yielding different conclusions about temperature effects. Second, the 

assumption about the linear effect of the weather variables may not hold, and some 

empirical evidence revealed the diminishing nature of weather effects. In a case study in 

Australia, (Gato et al. 2007) found that, above a certain level, more precipitation would 

not reduce water use, and similarly there exists a threshold for temperature above which 

its effects are greatest. However, it lacks of easy criteria or guidelines for identifying 

these thresholds. Third, individual sensitivity to weather can be influenced by personal 
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psychology. People are more aware if there is rain or not and for how long rather than the 

exact quantity of rainfall they receive, probably because the former is based on perceived 

information that is more easily available than the inquiry of actual information (Zhou et 

al. 2000; House-Peters and Chang 2011). Hence, the number of rainy or rainless or 

abnormally hot days (frequency and time between weather events) could be a better 

explanatory variable (Maidment and Miaou 1986; Martinez-Espiñeira 2002). Fourth, the 

complication of weather effects can be caused by the interactions between weather 

condition and personal knowledge or contextual factors related to a household. For 

example, the existence of rainfall tank or evaporative coolers will help reduce the use of 

tap water for irrigation; different types of grasses for lawn demand different amounts of 

water at different times; when abnormal weather conditions occur or persist (such as 

droughts), the use of pricing and non-price management tools could interfere with 

households’ normal response to weather conditions (Kenney et al. 2008). It is also found 

that having specific knowledge about climate change impacts would encourage water 

conservation behavior (Clark and Finley 2007; Russell and Fielding 2010). Lastly, 

climate data sampled at the limited number of weather stations may not represent 

microclimates at the neighborhood level; household-level consumption data are usually 

available at best at a monthly scale while weather conditions change daily (Kenney et al. 

2008). Thus temporal and spatial mismatch between data for water consumption and 

household may induce noise in modeling. 

Despite the lack of preferred weather variables being suggested and the remaining 

complications, the intimate association between weather factors and water consumption 

is undeniable. More empirical research on this topic from multiple perspectives 
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(climatologic, psychological and geographical) will be needed, given the challenge and 

uncertainty that climate change may impose on water consumption. 

2.1.4 Sociodemographic Factors 

A range of sociodemographic variables of households have been investigated in the 

residential water demand literature, probably due to the ease in collecting such data either 

from standard questionnaires on socio-demographics in survey studies or from census 

databases. Although all of them play the role of facilitator or constraints, their effects on 

water demand are not equally important, and sometimes the same single factor is found to 

impact water use in different ways. 

2.1.4.1 Income 

Similar to price, income elasticity of water demand has been widely studied with 

econometric models. Because income is believed to greatly affect the responsiveness to 

price mechanism (Corbella and Pujol 2009), it is essential to estimate the elasticities of 

both price and income for designing better pricing regimes (Worthington and Hoffman, 

2008). Research looking at the responses of different household income groups to water 

pricing showed that both low and high income households may not respond to price for 

different reasons.  The increase in price would not discourage low income families’ basic 

water needs, while for well-off households the magnitude of price change is not large 

enough to put pressure on their disposable income and curb their consumption (Corbella 

and Pujol 2009).   

From a behavioral perspective, household income reflects financial (in)capability 

for water spending. The positive relation between income and water consumption is 

consistently supported by various studies with different objectives and model 
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specifications. The phenomenon that higher income households generally use more water 

was often explained by higher living standard (e.g. for hygiene and cleaning) and higher 

probability of the presence of water demanding outdoor uses such as lawn gardens, 

swimming pools, and even fountains (Cole 2004; Harlan et al. 2009). Although 

households with a higher income level can afford and may have intentions to install water 

efficient appliances and infrastructure (dual-flush toilet, front-load washing machine, 

garden sprinkle system, etc.) (Lam 2006), the amount of water supposed to be saved via 

these means is possibly offset by larger water consumption demanded by luxury indoor 

(e.g. spa) and outdoor activities (Ouyang et al. 2014). Therefore, income elasticity is 

thought to be larger in hot-dry seasons when outdoor water use is desired. Moreover, 

within affluent individuals and households, the group with higher education may have 

more knowledge about the environment and water saving products, and thus will exhibit 

greater conservation awareness and intentions (Russell and Fielding 2010).   

As for the estimates of income elasticity, the literature almost universally reported 

low values (less than 1 in magnitude), and Worthington and Hoffman (2008) summarized 

possible explanations: income elasticity of residential water demand is actually low, 

sample or specification bias may take effect, increasing and decreasing block structures 

hypothetically capture income effects, or income may exhibit its effects over the longer 

term rather than in the short run.  

2.1.4.2 Household Composition and Characteristics 

Household composition is typically described by the number of occupants 

(household size) and their age and sex compositions in a household.  Sex has not been 

recognized as an important determinant of water use in the American literature. 
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Household size and people’s age are believed relevant to residential water consumption, 

but their effects are not simply linear.  

Household size is a variant factor, especially for the western world in which a 

second demographic transition has been undergoing for decades. The trend of decreasing 

household size and increasing number of households in our modern society definitely has 

strong implications on water use patterns (Corbella and Pujol 2009), in spite of its various 

influences.  In principle, more water is needed for larger household, however, economies 

of scale possibly lead to the negative association between household size and water 

demand when water use per capita is considered instead of aggregated demand (Höglund 

1999; Arbués et al. 2003; Kenney et al. 2008; Worthington and Hoffman 2008). Arbués 

et al. (Arbués et al. 2004) argued that the effect of economies of scale becomes 

diminished when an optimum household size is reached, implying the influence of 

household size on residential water consumption per capita could be positive. Gilg and 

Barr (2006) provided psychological reasoning for this - it is more difficult for large 

households to establish conservation norms or have similar consumption behaviors, while 

households with fewer residents were more often categorized as committed 

environmentalists and thereby more likely to enact water conservation behaviors (Russell 

and Fielding 2010). Few researches have examined the interference of household size 

with price effect. It is found that smaller households in Zaragoza, Spain are more 

sensitive to price changes (Arbués et al. 2010). 

As a factor that is part of capability, the age effect is relatively complicated. Retired 

people (often older) may consume more water due to more of their time spent at home 

and on gardening (Lyman 1992), or less water because they are more likely be thriftier 
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(Nauges and Thomas 2000; Shove 2003). More water could be expected in the families 

with children and teenagers, since their frequency of doing laundry, showing, and playing 

with water outdoor and indoor is higher (Hurd 2006; Balling et al. 2008) and children and 

younger persons are less careful when using water. The major problem with the studies 

addressing the age effect is that information on the age distribution of all the residents in 

a household is hard to obtain. Thus either the age of the household head or the census 

variables on percentage of the population over 64 years or under 19 years, the number of 

dependents per household, percentage of the household with own children under 18 years 

are used as proxies (Worthington and Hoffman 2008). 

Regarded as a proxy for knowledge capability, the factor education is more often 

encountered in the literature on water conservation behaviors. It is assumed that people 

with higher levels of education may have greater awareness of water scarcity and 

environmental consciousness, which could be translated into water conservation actions 

such as purchasing water efficient appliances and planting drought-tolerant garden 

species (Geller et al. 1983; Gilg and Barr 2006). However, the findings from the 

behavioral studies showed contrasting results (Russell and Fielding 2010). Although the 

association between higher education and deeper conservation commitment has been 

supported (Gilg and Barr 2006; Lam 2006), some research has shown that less educated 

households demonstrate higher water conservation intentions and more water 

conservation behaviors (Gregory and Di Leo 2003; Clark and Finley 2007). The 

questions of why the conservation intentions of better educated people were not turned 

into actual water saving behaviors and whether other factors such as income confounded 
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the influence of education on water conservation for lower educated households remain 

unanswered. 

Race and nationality/cultural background composition of the household are 

occasionally discussed in water demand estimation. Griffin and Chang (1990) and 

Gaudin et al. (Gaudin et al. 2001) specified the percentage of the population of Hispanic 

origin as a determinant of water consumption in their Texas case study. It is argued that 

immigrant households may retain the habits of water usage from their country of origin 

where water is often a scarce resource and where there more consciousness of water 

saving (Pfeffer and Stycos 2002; Smith and Ali 2006).  

2.1.5 Housing Characteristics 

Physical features of houses can impose constraints on household water 

consumption. For example, the households with larger lawns are more likely to use more 

water for irrigation than the households with the same characteristics but smaller lawns.  

Other housing attributes similar to the size of lawn are lot size, yard size, pool size, 

dwelling size or physical size, and they are expected to positively influence water use. 

The information on the appliances, fixtures (e.g. faucets) and other water-using 

technologies featured in a house is supposed to be relevant to water consumption 

behavior. When such detailed information is not available, the number of bathrooms and 

the number of bedrooms are examined as proxies.  These two variables can also 

substitute for household size, since they are recorded in typical cadastral databases which 

can be available to the public upon request. Another alternative to underscore the water 

efficiency potential of water fixture is age of house. The reasoning is that newer homes 

built after 1992 have more efficient water fixtures installed in order to comply with 
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national minimum efficiency standards for all toilets, showers, urinals and faucets 

manufactured according to the U.S. Energy Policy Act of 1992(Harlan et al. 2009).  

Change et al. (2010) found a negative association between the age of building and water 

consumption and argued that it could because older houses are smaller in terms of 

physical and lot size and most of them were remodeled with more water-efficient fixtures 

and appliances. 

Sometimes assessed property value is introduced in addition to income into water 

demand models because it may imply household preferences for home lifestyle and social 

status (Arbués et al. 2003), and the households living in an expensive house intend to 

maintain their property carefully (including irrigating lawns more frequently) to display 

status and convey social distinction (Askew and McGuirk 2004; Domene et al. 2005; 

Breyer 2014).  

Sometimes the features of a lot such as landscaping type (e.g. grass and vegetation 

types), garden condition, and presence of a pool have been considered to scrutinize their 

effects on outdoor water use (Syme et al. 2004; Wentz and Gober 2007; Harlan et al. 

2009; Ouyang et al. 2014). The type of dwelling (e.g., single family house vs. multi-

family apartment) has occasionally been included when the study subject is urban or 

residential water demand in general (Mylopoulos et al. 2004; Domene and Saurí 2006; 

Hoffmann et al. 2006). Information about home ownership (owned vs. rented) will be 

useful in explaining some heterogeneity of households’ water consumption and 

conservation behaviors. Hoffmann et al. (2006) found that residents of owner occupied 

houses have higher price and income elasticity of water demand than those living in 

rented dwellings. From the psychological perspective, home owners may be more likely 
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to engage in efficiency behaviors, compared to tenants because tenants have less control 

over the installation of water efficient fixtures and appliances in their rented house and 

also do not necessarily receive a water bill as it is often a hidden cost of the rent 

(Randolph and Troy 2008; Russell and Fielding 2010). Another variable characterizing 

the social feature of a house is use of home (for vacation/seasonal vs. all-year-around 

residence), and is assumed helpful in identifying those communities where seasonal use 

can have a greater impact (Arbués et al. 2003). 

A common concern with quantifying the influences of these housing characteristics 

is their correlations with household features, particularly income (Corbella and Pujol 

2009). For several variables such as landscape type, pool size, ownership etc., the data 

sources are still limited. 

2.1.6 Urban Structure and Land Use Patterns 

There has been a growing interest in understanding the role of urban spatial 

structure in urban water management. The availability of Geographical Information 

System (GIS), spatial analysis techniques, and reliable spatial data for water consumption 

and land cover/use at fine spatial scales offer new opportunities for researchers to 

examine the spatial complexity of urban water consumption at the neighborhood scale as 

well as the spatial association between urban structure/land use pattern and residential 

water use (House-Peters and Chang 2011).  

Several studies analyzed water use distribution across space and found significant 

clustered patterns of high/low water uses at multiple spatial scales (county, census tract, 

block group) (Balling et al. 2008; Franczyk and Chang 2008; House-Peters et al. 2010; 

Polebitski and Palmer 2010; Breyer et al. 2012; Ouyang et al. 2014; Gage and Cooper 
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2015). It is observed that the spatial concentration of water use is partially coincident 

with the land use patterns in a municipal area. For example, single family residential 

water use in Portland, Oregon tended to be lower and less weather-sensitive in older 

neighborhoods near the city center, which are featured with higher building 

densities/smaller average lot size (Chang et al. 2010; House-Peters et al. 2010; Breyer et 

al. 2012). In contrast, the high water users concentrated in more affluent suburban 

neighborhoods, and these neighborhoods typically have more elaborate water-intensive 

landscapes (e.g. grass lawns) and sometimes have swimming pools (Chang et al. 2010). 

Wentz and Gober (2007) reported similar findings in their study of Phoenix. This is not 

hard to interpret since both water consumption and land use/development patterns are the 

consequences of people’s preferences and decisions on house and water use to a large 

extent.  We have known that housing characteristics such as dwelling type and size, lot 

size, and landscape type are important determinants of water consumption, and these 

features are basic elements composing land use pattern which is one spatial 

representation of urban structure. There is no doubt that people who choose to live in 

places with large houses and larger lots are more likely to use more water, and those 

places are largely distributed outside urban centers. 

 Nevertheless, urban planning and design have the power to regulate land use type 

and development density and guide the formation of urban structure. After examining the 

influence of urban zoning (i.e., single-family residential or commercial), total building 

area, and the density of single-family residential developments on water consumption in 

Portland during the period 1999-2005, Shandas and Parandvash (2010) confirmed the 

significant relationship between land use and water consumption and elucidated the 
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possibility to improve the effectiveness of water-conservation activities through the lens 

of urban planning. They also suggested planners to develop predictive models for 

assessing water demand given alternative scenarios of urban development. In line with 

this suggestion, Polebitski et al. (2011) coupled their statistical water demand model with 

an urban simulation model (UrbanSim) to evaluate regional water needs of the residents 

living in the Puget Sound region under different planning scenarios accounting for 

climate change and transitions. Embracing a similar idea, a couple of international 

researchers in Australia (Urich et al. 2011) and the Netherlands (Sanchez et al. 2011) 

have been working on the integration of urban environment dynamics and water supply 

systems for better water management. Fox et al. (2009) developed a methodology for 

statistically forecasting the amount of water that a new residential development would 

demand based on three housing characteristics, number of bedrooms, architectural type 

(i.e., detached or semidetached), and presence of a garden. Gage and Copper (2015) 

demonstrates the value of high resolution land cover and Lidar-derived vertical structure 

data for understanding urban water use patterns (especially outdoor) and emphasized 

their potentials in helping target water conservation efforts. The studies investigating the 

relationship of landscape types and water use can provide us insights into how urban 

design tools can facilitate water reduction.  

All the existing research efforts concerning the influences of urban form and land 

use structures on water demand patterns highlight the need for coordinating urban land 

use planning and water management as well as the possibilities of utilizing land use 

planning and urban design as a potentially robust and equitable non-price mechanism to 

develop spatially explicit water conservation strategies (Chang et al. 2010; Breyer 2014). 
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However, the studies incorporating factors that represent urban structure and that can be 

influenced by planning policies are still limited, particularly in the literature from 

econometrics and psychology. More collaborative research across the disciplines such as 

water management and planning, urban planning and design, geography, and behavioral 

sciences are required before we translate significant and valuable findings into the 

practice of water management. 

2.1.7 Non-Price Policies 

Non-price policies are usually classified into three broad categories: informational 

strategies (such as public information campaigns, rationing, and increased billing 

frequency), technological change (such as installation of low-flow appliances) and 

quantitative restrictions (restrictions and bans on the quantity and timing of outdoor water 

use during periods of peak demand). Water utilities commonly implemented quantitative 

restrictions as short-run tools within their service territories/municipalities to limit the 

total water consumption and maintain the level of water source during droughts. A few 

studies have evaluated non-price policies and found the statistically significant effect 

(Renwick and Archibald 1998; Renwick and Green 2000; Timmins 2003; Olmstead et al. 

2007; Ramachandran and Johnston 2011).  

In summary, we summarized the key determinants widely examined in the 

literature of modeling residential water demand. They can be grouped into the broad 

categories including belief and attitudinal factors, price and non-price policies, climate 

factors, household sociodemographics, housing characteristics, and urban structure/land 

uses. The mechanisms explaining how they are correlated with water consumption were 

emphasized in this review. The combinations of these factors in the literature vary greatly, 
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depending on research objective, the temporal and spatial scale of interest, data 

availability, and local contexts. For this dissertation, we compiled datasets covering some 

of the factors falling within the categories of capabilities and contextual factors (see the 

factors within the dashed circle of the conceptual model in Figure 1). There is no data 

readily available for understanding the effects of beliefs, attitudes and habits on water 

consumption behaviors. Next, we move to the introduction of the study area and datasets. 



 
 

CHAPTER 3:  STUDY AREA AND DATA 
 
 

3.1 Study Area 

3.1.1 County Facts and Water Use Profile 

Mecklenburg County is located in the State of North Carolina, and it contains seven 

municipalities including the City of Charlotte and six towns of Huntersville, Davidson, 

Cornelius, Pineville, Matthews, and Mint Hill. According to the 2010 census, the total 

population in the county was 919,628 people, 79.5% of which live in Charlotte. In 2010, 

the city’s population density was 2,457 people per square mile, which is about the 

average density for an urban area of the South census region (Cox 2014), while the 

county’s density is relatively lower, only 1650 people per square mile. The county/city is 

still ranked as the most populated and densely populated county/incorporated area in the 

state of North Carolina. Also, the county/city has been growing fast in the past two 

decades (for the county, 35.2% in the 2000s and 36.6% in the 1990s; for the city, 32.2% 

and 36.0%, respectively). According to a report prepared by UNC Charlotte Urban 

Institute (2011) using Census data, the Charlotte Metro Area (consisting of City of 

Charlotte, two neighboring cities Concord and Gastonia) is ranked as the fourth fastest 

growing large urban region in the U.S., and notably it is the only Metropolitan Statistical 

Area (MSA) within the top ten fastest-growing MSAs during 2000-2010 that keeps an 

increasing growth pace. Other indicators for economy, society, transportation, and so on
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 (Charlotte Chamber 2011) depict the City of Charlotte (as well as Mecklenburg County) 

as a growing, diverse, more progressive (than before) and promising community. The 

population density and growing trend will undoubtedly add pressure to Charlotte’s future 

water supply. 

Charlotte Water (formerly Charlotte-Mecklenburg Utilities Department (CMUD)), 

established in 1972, is the largest public utility in the Carolinas today (Utilities 2011). It 

is the major water supplier for the Charlotte-Mecklenburg community, and also sells 

water to its neighboring counties and municipalities in North and South Carolina. In total, 

there are 267,664 active water service accounts being serviced and over 4,232 miles of 

pipe (water mains) being maintained by Charlotte Water today (Charlotte Water 2015). 

As in most urbanized areas, a centralized water supply system was built in 

Charlotte gradually over a long time period to provide water to its urban population. 

Currently the system withdraws daily on average 103 Million Gallon per Day (MGD) of 

surface water from two reservoirs (Lake Norman and Mt. Island Lake), and water is 

treated at three water treatment plants (Franklin, Lee S. Dukes, and Vest WTPs) 

(Charlotte Water 2016a). The total capacity of the three WTPs is 242 MGD, and 

according to their historical records, the maximum daily water pumped over the past 

years was about 169 MGD and occurred in August, 2007, which was still relatively 

below the amount of water that can be treated every day by the existing plants. The two 

reservoirs store 163 MGD water for daily use, and an additional water supply of 25 MGD 

is supposed to be available in 2020. Thus it is estimated that the community can be 

supplied with around 188 MGD of water in the future. Assuming the per capita 

residential demand remains constant (5,236 gallons per month per home) and the 
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household size is 2.5, based on the population projection from the Mecklenburg-Union 

Metropolitan Planning Organization (MUMPO) study, it is forecasted that the community 

may not face water shortage problem (demand greater than supply) until 2060 (Division 

of Water Resources 2014).  

In terms of metered daily average water use (Figure 2), residential use (around 58 

MGD in 2010) ranks first and is more than twice as much as commercial use and 

surpasses the sum of all the other types of water use. Assuming the service population 

were the entire census population in 2010 (788,000 people), the metered consumption 

would be 73.65 gallons per capita per day (gpcpd). Compared to the amount of water for 

fundamental and standard human requirements, 36 and 50 liters per capita per day (lpcpd) 

(or around 9.51 and 13.21 gpcpd) (Gleick 1996), the water consumption standard of the 

residents living in the Charlotte-Mecklenburg community is relatively high. In the past 

five years, the per capita residential consumption has been decreasing from 74 to 69 

gallons, however.   

 

Figure  2:  Metered daily average water usage by types in 2010 

Source: North Carolina Division of Water Resources 
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3.1.2 Pricing 

Charlotte Water is a community-owned enterprise fund of the City of Charlotte, not 

operating on a for-profit basis. Use fees support the full cost to run and maintain water 

and sanitary sewer operation. The residential water bill structure is relatively complicated, 

consisting of flat monthly charges (fixed fees and availability fees (effective after July 1, 

2013) and usage charges for water and sewer together with storm water fees. The sewer 

rate by usage is of uniform structure, while the rate structure for water has been 

increasing block since 1998. The sewer charge is based on metered water usage each 

month with a sewer cap, meaning sewer fees are only charged by up to a maximum 

amount of water usage. 

Charlotte Water classifies its customers’ service accounts by rate type (17 in total). 

For example, residential water use involves three types, multi-family (WA), single family 

detached (WAD) and residential (WR). The rate structures for the WAD and WR rate 

types are exactly the same. For the WA rate type, the marginal prices are same as the 

ones for WR/WAD, but the threshold levels of the tiers are different for the years before 

May 1st, 2008. Actually, the tiered usages for the WA type remained same over time (10 

and 12 CCFs for the first and second tiers). Next, we mainly discuss the changes in 

pricing for the WR/WAD types. 

Since 1998, water and sewer pricing have been adjusted every fiscal year. For most 

of those years, at least one of the tier rates of water increased (Figure 3), meaning water 

rate structure has been changing continuously. The most significant change is that a four-

tier rate structure replaced the existing three-tier one in May 2008, when the most severe 

drought in history was ongoing. The general longitudinal trends of the 3-tier structures 
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are 1) the lowest tier rate grew at the slowest speed (except for a faster drop in 2011); 2) 

the highest usage charges were increased by a much higher percentage, and experienced a 

major boost (slightly over 100%) between 2000 and 2003 when the first severe drought in 

the twenty-first century occurred.  For the 4-tier rate structures, the increments were 

small for the years from 2008 to 2010. A moderate drought hit Charlotte in 2011. After 

that drought the third tier had a sharp growth and the second tier also increased faster 

than before, while the lowest tier rate had a drop. The tier with the highest rate remained 

relatively stable but started to grow after 2011. Note that when the real dollar rates were 

adjusted by the annual Customer Price Index (CPI), only the trend line for the lowest tier 

became virtually flat with a subtle decrease at a few time points, the rising trend in the 

other tiers was still evident though. 
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Figure  3:  Primary rate structure for water 

(Upper: in real dollars; Lower: in 1999 dollars) 

The value of rates has to be combined with the quantity of water usage defined in 

the corresponding tier (termed usage threshold) to reveal the full picture of water pricing. 

The usage thresholds were less frequently changed over time but generally decreased in 

all the tiers (Figure 4). Such decreases indicate that the bar defining higher water user is 

lowered. In other words, more customers would be paying more, assuming the same 

amount of water was consumed and the rates for each tier were same. In this sense, local 

water pricing has been encouraging water conservation behavior, and at the same time 

gaining more revenues from the enlargement of customer base with relatively high water 

use. Another possible reason is that the overall population may have been reducing their 

water consumption, thus the adjustment to usage levels would be made to accommodate 

such a trend.   
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Figure  4:  Usage tiers defined for water rate structure from 1998 to present 

We also observe that consumption ranges are shifted downward more with the 

larger increases in rates in the 4-tier structure. This is due to the huge revenue reduction 

resulting from water usage restrictions implemented and the residents’ cooperative efforts 

of conserving and protecting the water supply during the severe drought in 2007 and 

2008. Such a pricing policy change was intended to recover and ensure the revenues in 

future years. It also split the lower water user groups into two, signaling Utilities’ 

appreciation for aggressive conservation practices. 

3.1.3 Historical Droughts and Local Water Management in Practice 

While close attention has been paid to water shortages in the Western areas with 

arid conditions for some time, shortages are an emerging phenomenon in the Southeast of 

the United States (Henderson 2015). In fact, droughts are not new to the Carolina region.  

By the early 1990s, North Carolina had recorded seven major droughts occurring in 

1925-29, 1930-35, 1950-57, 1965-1971, 1980-82, and 1985-88 (Weaver 2005). It was not 

until 2002 that threats of water scarcity became more pronounced. Attributed to several 

years of below-normal precipitation since 1998, river and reservoir levels became 
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critically low in the summer 2002. The 2002 drought severely impacted water systems 

and numerous water users across the state (Lackstrom et al. 2011). Mandatory water 

restrictions, which usually impose rules for lawn watering, residential car-washing and 

pool/fountain filling and are called when the utility reaches Drought Stage 2 or higher, 

was implemented between August 21 and November 1, 2002. 

After half a decade, Charlotte experienced another drought of record in 2007-2009. 

Characterized by its rapid and intense onset in summer 2007 and prolonged hot and dry 

conditions through 2008 and into 2009 (Charlotte Water 2016b), this drought was much 

more severe and many community water systems in North Carolina, including Charlotte-

Mecklenburg Utilities were vulnerable to running out of water had the drought continued 

(Lackstrom et al. 2011). With the escalation of the drought classification for the Catawba 

River Basin from a Drought 2 stage (severe drought) to a Drought 3 stage (extreme 

drought) in 2007, tougher mandatory water restrictions were announced in the county. 

Taking lawn watering as an example, the restriction was changed from limiting lawn 

watering to two days a week to a complete ban on it. The tough restrictions were enacted 

from September 26, 2007 to April 5, 2008, and then got amended twice when water 

conditions were improved gradually.  

In addition, there were several short periods between 2002 and 2015 (specifically in 

2006, 2011, and 2015) when the Charlotte-Mecklenburg Utilities declared a Stage 1 

drought (meaning moderate drought) and voluntary water conservations were 

recommended. Such moderate droughts are usually due to Dry weather conditions and 

above-average/warm temperatures. 
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With the continuous growth of population and urban development and the aging 

water supply system in Charlotte, and climate change at global and local scales, the 

residents of Charlotte (“Charlotteans”) may face more droughts and water shortages in 

the future. Although the water restrictions guided by the regional drought response plan 

have been able to help limit local water demands under the safe level, such a solution is 

reactive and temporary instead of proactive and sustainable. We lack a basic 

understanding of local water consumption dynamics and its sensitivity to droughts and 

climate conditions. 

The water management efforts made from the utility side in Charlotte-Mecklenburg 

are two-sided. On the one hand, the utility has been implementing capital improvement 

projects and water and wastewater rehabilitation/replacement projects to ensure water 

supply. It also strived to reduce water loss via active leak detection, pressure management, 

advance metering infrastructure, district metered areas and/or meter right-sizing 

programs(Division of Water Resources 2014). Additionally, the utility is participating in 

the Partnership for Safe Water Distribution System Optimization program and the Non-

revenue Water and Loss Mitigation program, which are all currently active and funded. 

On the other hand, a number of water conservation education campaigns and programs 

were organized in the past (especially during drought periods), and the WaterSmart 

program (in the form of a website), the educational facility (Blue Planet Water 

Environmental Center), and community awards program have been available throughout 

the years. Other efforts such as a meter replacement program, a plumbing retrofit 

program and non-revenue water audits are also part of demand management programs of 

the utility.  
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However, it seems that the effectiveness of these non-price approaches to urban 

water conservation has never been formally evaluated, and there are no educational 

campaigns and programs specifically designed for certain consumer groups with 

potentials to save more water. To support demand-side management in a southeastern 

urban area like Charlotte, disentangling the associations between water consumption and 

its determinants specific to Charlotte is essential. We could get to know what kinds of 

households and neighborhoods consume more (or less) water and how much effects 

household and neighborhood characteristics have via modeling water demand. It may 

also offer some insights on the possible ways in which land use planning facilitates or 

even reinforces urban water conservation efforts.  

Similarly, no studies reported the exact impacts of Charlotte’s prescriptive water 

consumption programs such as mandatory restrictions during droughts, although their 

implementation did result in evident reduction of water consumption and keeping water 

demands manageable even at times when droughts persisted. For example, water use in 

total was cut by 15 percent during the first month when mandatory restrictions were 

called in August 2007 and by a total of 35 percent (53 million gallons per day) within 23 

weeks from that August (Charlotte Water 2016b). Such a huge reduction presumably is 

mainly attributed to the lawn watering ban since it is regarded as the most effective 

means by the Charlotte-Mecklenburg Utilities. Putting assumptions aside, it is possible 

for us to elucidate the effects of water restrictions and investigate the spatial variations of 

residential consumption reduction resulted from the prescriptive mechanism, using 

analytical methods.  
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Another common water conservation mechanism is price-based. Increasing tiered 

water pricing was found to be effective to demand reduction as well as being less costly 

and more equitable in comparison with prescriptive and market-pricing programs 

(Baerenklau et al. 2014). Charlotte water has executed such a pricing for more than 

fifteen years. Although its block rate structure has been changed almost every year, the 

needs for recovering revenues that dropped due to the consumption cut during droughts 

and supporting the increasing operating budget and capital improvement projects due to 

growing system (for growing population) overweigh the conservation motivation.  

In summary, this study has important social values aiming to empower our 

community with better knowledge and possible preventive strategies to cope with the 

uncertainty related to water shortages. 

3.2 Data Collection and Processing 

3.2.1 Water Consumption Data 

It is widely acknowledged that water consumed by households living in single 

family residential (SFR) housing units accounts for a large portion of total water usage in 

an urban area (Wentz and Gober 2007; Balling et al. 2008). This is similar to land 

development in American cities where land developed for SFR dominates urban land 

uses. A focus on SFR water use has great implications for planning water supply systems 

and designing demand management programs since the single family residential sector 

exerts the strongest influence on water consumption dynamics (such as peak and seasonal 

demand due to outdoor water needs) (Day and Howe 2003).  Hence SFR water 

consumption is the subject of interest in our study. 
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We obtained 1999-2013 water billing records for all types of water uses of all the 

customers served by Charlotte Water. Due to the nature of water bills, the usage and 

charge (only for water) in each record is for the corresponding billing cycle, which 

usually does not match calendar months. We have to estimate the daily consumption and 

charge based on the consecutive billing records, then multiple the number of days in 

calendar months (this number differs by month and by leap/regular year) to derive 

monthly consumption and charge. We also prepared annual consumption data according 

to our research needs. There are generally two ways in the literature to aggregate monthly 

water use. One is to sum up the water usage of the twelve months in a calendar year.  

Another way is to group months into seasons, and then to add up seasonal uses to get 

yearly use. The usages in November and December of the previous year are counted into 

the yearly usage of the current year, since these two months are for cold (winter) season. 

To differentiate the computed values from these two ways, we refer the first one as 

calendar yearly use, and the second as season-based yearly use here.  

The billing records over time are attached to the unit called “premise” (a name 

given by Charlotte Water). The premise dataset has the billing address attribute as well as 

latitude and longitude; therefore it can be geocoded and linked to parcel data via a spatial 

relationship (point within polygon). A premise is not equivalent to a household because 

households can move, while a premise is immobile. Also household is a concept in 

sociology and premise is merely created for and exist in the computer system that is used 

to manage water services. Additionally, a premise is not equivalent to a parcel. One 

parcel could have zero, or one or more premises associated with it. Since our studies 

mainly focus on SFR water use and most of the time only one or two premises are 



42 
 

 
 

identified for an SFR parcel, we could regard premise as residential unit. Furthermore, if 

we assume that each residential unit accommodates one and only one household, a 

premise could be conceptualized as an abstract household (thus premise and household 

are used interchangeably when discussing data processing). Thus, we term the average of 

the water uses across multiple premises on an SFR parcel as the average water 

consumption per household. Because no household survey data is available to retrieve 

household size information, we use average SFR water consumption per household 

(monthly or yearly) as the dependent variable. The shorter term average water 

consumption will replace the full name of this variable in the following chapters, and we 

will specify when referring to its actual meaning.     

In addition to temporal aggregation, we conducted spatial aggregation to derive 

average SFR water consumption per household for the analyses at the neighborhood level 

(including census tracts and block groups). We decided to address our research objectives 

using census geographies as the analysis unit for several reasons. The unavailability of 

household-level data especially for sociodemographic variables and for a long time span 

and availability of census variables at the same geography for multiple years is the first 

reason. Second, compared to household and city/county, census geographies are more 

appropriate spatial scales for the representation (as continuous surface) and investigation 

of spatial pattern or spatial dependency in water use within a municipal or metropolitan 

area (Chang et al. 2010; Polebitski and Palmer 2010; Ouyang et al. 2014). It is neither too 

rough nor too detailed to discover and generalize spatial variation. Third, we are 

interested in examining the influence of urban structure and land use patterns on water 

consumption, and the structural variables such as SFR housing density (current or zoned) 
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are usually calculated at the neighborhood level. This spatial scale is useful for water 

managers and urban planners to translate research along this line to spatially explicit 

water-conservation-oriented land use policy and water demand management initiative 

and policy (Chang et al. 2010). Moreover, it is argued that econometric models developed 

at the household level cannot directly capture the inter-household interactions or social 

norms that influence individual water use behaviors (Edwards et al. 2005; Ouyang et al. 

2014), though little research progress has been achieved in elucidating this concern. 

However, we should be aware of the disadvantages of using aggregated data, including 

impossibility of analyzing behavioral and attitudinal drivers, overlook of variations 

across households (Worthington and Hoffman 2008), unavoidable modifiable areal unit 

problem (MAUP), ecological fallacy, and  uncertain geographic context problem 

(UGCoP) (Ouyang et al. 2014). 

The data processing procedure can be summarized into four steps, calculating 

monthly consumption for each premise, geocoding premise’s address, filtering premises, 

data aggregation. There are a few challenges we have dealt with when preparing SFR 

water consumption data. It is due to the fact that the firsthand data from Charlotte Water 

was not collected for our specific research purpose and the reality captured by that data is 

much more complicated than we would think of.  

We have roughly discussed the problem that water consumption was recorded on a 

basis of billing period instead of calendar month and our solution. Although the regular 

billing period is supposed to be approximately one month, there are cases in which the 

time interval of the two consecutive bills is more than two months. This situation occurs 

because the bills with zero usage sometimes are not recorded in the database made 
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available to us. For such cases, if we divide the consumption by the number of days in a 

billing period, we probably will end up with underestimated daily consumption. So we 

make the assumption that a billing period will be at maximum the number of days 

between the billing date and the first day of the immediate month prior to the month of 

the current bill. Another observation is that negative consumption as well as charge could 

exist in the records, representing the correction made to the previous bill. In this case, we 

will need to combine the two billing records into one with the time stamp of the earlier 

bill before calculating daily consumption/charge. 

Address geocoding is always a time-consuming process, which is particularly true 

when the number of total premise records is huge (around 337,000 in total and 248,000 

involving residential water types). Although the majority of the premise addresses was 

georeferenced either directly using the coordinates information from the original data 

table (almost 95%) or using street network (almost 4%), there were still a few thousands 

addresses to be processed one by one. By joining the geocoded points with parcel data, 

we can not only retrieve housing characteristics but validate the correctness of those 

locations. Adding up the unsuccessfully geocoded and wrongly geocoded premises, 

unless you decide to ignore them, the manual work required is fairly intensive. This 

geocoding step also serves as the preliminary filtering process. To choose the premises 

associated with SFR water use, we used the water rate type information in the billing 

dataset together with the land use type of the parcel to which a premise is matched. A 

premise located on a single family residential parcel and with majority of bills charged by 

residential water rate will be a qualified candidate for analysis. 
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The purpose of the filtering step is to keep the premises with unique residential 

water use, legitimate consumption and charge, relatively complete time series, and being 

matched with parcel data. The whole process is complicated and iterative, and various 

assumptions and rules were established.  We will only describe the major issues here. The 

original billing data is extracted from the computer system that Charlotte Water uses to 

manage the water service accounts, billing transactions and more. Although the CW IT 

staff has been working carefully to only retrieve the information we requested, there still 

exist some irregular records that result from the manipulation of water bills but are 

counterintuitive. For example, sometimes a billing record has zero consumption but non-

zero water usage charge, or non-zero consumption but zero usage charge, or zero 

consumption and zero charge. Occasionally either consumption or charge recorded is 

negative. We simply exclude the above-mentioned cases. It is often observed that the 

quantity of water consumed and the dollars charged do not follow the tiered rate structure. 

Thus, we make use the average price variable derived to identify the billing records with 

‘abnormal’ average price (defined by the values falling outside of the normal range of 

tiered rate – lowest and highest tier rates). There are special cases that have a very large 

value (>9800) for either usage or charge, though the calculated average price is 

reasonable. We finally exclude the records whose values in usage or charge are larger 

than two times the standard deviation of the billing record population being kept, since 

we regard them as the outliers. 

Another common issue is that a premise may miss data for one or multiple billing 

cycles in a year or have zero values for water consumption recorded. There could be 

many good or ‘bad’ reasons for this. For example, the water service is suspended for a 
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short or long time due to being absent from the house (in holidays, on vacation, or 

vacation/seasonal house), or the sale or demolition of the house or any other reasons for 

no water use for that time period. Sometimes a new premise is created to replace the old 

one, thus they store the billing records for different time periods. It is easily understood 

that the premise for the houses newly developed would only have the records from the 

date of opening service and on. The zero consumption may be an indication of erroneous 

bills or system errors. There could be unknown reasons too. Note that this issue may not 

be important if the analysis is based on household-level data combining with appropriate 

modeling methods that could tolerate missing data. However, for our analysis purposes 

(with a focus on the neighborhood level), we have to take care of those premise records 

when compiling time series datasets for consumption or aggregating all the available 

premise-level observations by geographical unit. The general and simple rule is to ensure 

the completeness of the records for a specific temporal scale and/or spatial scale. 

Specifically, for average monthly/yearly water consumption per household, we excluded 

the premises with any billing record that has missing data or zero value for a specific 

month or an entire year.  

Aggregating data by a hierarchy of spatial units is the last step. For the parcels with 

multiple premise records, we first sum up or calculate the average of the usages 

depending on the rate types of premise and the relationship between premises and 

buildings on the same parcel. Then we aggregate parcel-level average water consumption 

to the selected geographic unit (census tract or block group). With regard to temporal 

aggregation, there are two options. One is to start with the month-based filtered data and 

add up monthly water consumption per household across geographical units to get 
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average annual water consumption per household. Another way is to first filter the 

premises on a yearly basis then get the summation of the usages within the year. The 

former option will include more premises in the dataset, while the latter will more likely 

yield smaller yearly values. We tried both approaches and concluded that the choice will 

not meaningfully affect the spatial pattern of SFR water consumption. 

3.2.2 Data for the Selected Determinants 

Although driven by convenience, our selection of determinants of water 

consumption covers all the other five categories of factors discussed in the early section, 

except attitudinal and behavioral groups. The variable definitions and their data sources 

are presented in Table 1. 
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We choose three climatic measures for our analyses, including average maximum 

temperature, cumulative precipitation, and the Palmer Hydrological Drought Index 

(PHDI). The temperature and precipitation variables are the most commonly used 

measures in the literature on climatology and water research. The PHDI variable is 

mainly employed for addressing the research objective related to climate sensitivity 

(Chapter 4). PHDI was developed by Palmer (1965) to measure hydrological (long-term 

cumulative) drought and wet conditions. Because it accounts not only for precipitation 

totals, but also for temperature, evapotranspiration, soil runoff and soil recharge, and 

more accurately reflects groundwater conditions, reservoir levels, etc., it is useful in 

measuring the abnormality of recent weather for a region and representing historical 

droughts spatially and temporally (National Oceanic and Atmospheric Administration 

2013).  

There are two public data sources for climate data, both available through the 

National Climate Data Center. The United States Historical Climatology Network 

(USHCN) provides high-quality daily and monthly data for the three variables of our 

interest. The USHCN records are calculated from many long-term observing stations (the 

NOAA Cooperative Observer Program (COOP) Network) within relatively homogeneous 

climate divisions. Charlotte belongs to the fifth climate division of North Carolina (NC). 

USHCN has daily and monthly weather records for a long term (data from 1988 to 

present is available for the climate division where Charlotte is situated). USHCN data 

have undergone extensive quality control and corrections to remove biases (identified as 

systematic, nonclimatic changes), and the detailed station history information and the 

new, high quality U.S. Climate Reference Network data are made use of in the processing 
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of USHCN data (National Oceanic and Atmospheric Administration 2016). Another 

source of weather data is based on the Global Historical Climatology Network (GHCN), 

which was established to serve research communities across the globe. In Mecklenburg 

County, the observing station of GHCN that can provide a relatively long-term dataset is 

located at the Charlotte-Douglas-International-Airport (USW00013881). This station 

started collecting daily records from July 1st, 1939. Both GHCN-Daily and GHCN-

Monthly databases are subjected to a suite of quality assurance reviews. The data were 

collected locally (instead of regionally) and may capture the coarse trend of local climate 

in a better way. No drought indices are derived from the GHCN data, but yearly 

summaries are made available, thus there is no need for users to derive them additionally. 

Thus, we employ both USHCN and GHCN datasets to conduct our analyses. 

Our initial goal is to collect sociodemographic variables representing household 

characteristics for the time period 2000-2010. Although these variables seem easy to get 

from the Census Bureau, census data are only available for selected years before 2010. 

For 2000, 2009 and 2010, we retrieved data from decennial census and American 

Community Survey (ACS) 5-year estimates. For the other years, we obtained a list of 

census variables in the CD “Annual Estimates for 2001 through 2008” published by the 

commercial data provider Geolytics Inc. Different estimation procedures together with 

different data sources were developed for population, household, housing and income 

estimates. Here we simply summarize Geolytics’ methodology for deriving population 

estimates, and readers can refer to the company’s webpage for the other procedures in 

details (Geolytics Inc. 2016). The basic idea in estimating population at the block level is, 

first to distribute the County level annual estimates in 2001 reported by the Census 
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Bureau to blocks, based on a 2000 Short Form (SF1) block level dataset and the race and 

age distribution coefficients derived from the county level totals, then developed a linear 

regression death-birth model to estimate the number of population who died or were 

newly born during the one-year interval, and relied on data from the US Postal Service to 

estimate immigrants and emigrants. In this way, an estimation base of population was 

created for 2001, which was employed to get next year’s estimation by repeating the 

procedure. 

Based on the data sources described above, we derived the variables on income, 

household size, age composition, ethnicity (Hispanic), owner-occupancy, education, and 

population density at the 2000 block group level. The potential issue with this multiple-

year dataset is data (in)compatibility, due to the differences in the nature of the data 

sources (population-based or sampled) and the estimation methods. 

The determinants in the housing characteristics category are mainly calculated from 

the 2008 parcel and building data, based on tax data generated from the Mecklenburg 

County Assessor Database. The variables we compiled include the physical attributes of 

SFR buildings (livable area, number of bathrooms and bedrooms, age of building -

derived from the built year attribute) and parcels (lot size), and assessed property value. 

The information about the size of swimming pool was retrieved from the original 

Mecklenburg County Assessor Database. We do not have the attribute for the size of 

lawn in the parcel and building data, but we have information about building stories. 

Assuming all the SFR buildings have the same area for each of its stories and assuming 

that the impervious area accounts for ten percent of lot area, we estimated the irrigable lot 

size with the following formula (Harlan et al. 2009; Ouyang et al. 2014): 
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ILS = LS – LA/S – PS                                                                  (Eq. 2.1) 

where ILS is the irrigable lot size, LS is the lot size, LA is the livable area, S is the 

number of stories, and PS is the pool size. The percent of irrigable land is computed by 

dividing irrigable lot size by lot size (equal to ILS/LS). In addition to the variable age of 

building, we also derived another variable on the number of SFR dwellings built after 

1992 at the neighborhood level to estimate the water efficiency potential of neighborhood 

housing stock.  

The last variable in the list is housing density, a measure for the urban structure 

factor. It is defined as the ratio of the number of total SFR residential units within a 

geographical unit and the total area of the corresponding unit. 

Unfortunately, the data for the housing and structural variables is only for the year 

2008, since we did not have the readily available parcel and building data for the entire 

study period. If we assume the parcels/buildings developed before 2008 do not change 

their physical features (for many cases, it is a reasonable assumption),  we could either 

use the same values for the majority of the variables or infer their values of the variables 

such as age of building and housing density for the years between 2000 and 2007. This 

solution does not count the buildings demolished before 2008. However, the way we 

filtered data for the completeness reason may to some extent lessen this problem. The 

problem we would be more concerned with is that it is hard to generate data of these 

housing and structural variables for the year 2009 and 2010, because there should be new 

parcels and buildings emerging after 2008. This means the new development pattern 

emerging in those two years will be neglected from our analyses. 
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In summary, we introduced the variables that are thought to be useful in addressing 

our different research objectives. Note that not all of the variables are employed and 

reported in each of the following chapters, although we did examine each of them during 

the whole process. We did not provide descriptive statistics for these variables here 

because the dataset used in each chapter varies slightly; thereby we prefer to report them 

in each individual chapter. In the next section, we present a few maps and descriptive 

statistics generated from the residential water consumption data. 

3.2.3 Water Consumption in Charlotte in 2000-2013 

Based on the derived monthly water consumption data, we calculate average annual 

water use for each water rate type (Table 2). The procedure is to first sum up monthly 

water use for each year, then get the mean of the annual water use for the period 2000-

2013. We roughly exclude the records with negative value in consumption, and keep the 

premises that were successfully matched to parcel data. As seen from the table, the 

customers paying for residential, commercial and multi-family water rates rank the top 

three largest water user based on total average annual water consumption. The total 

volume of water used for lawn purpose ranks the fourth. When the mean or median of 

average annual water use across the premises/service accounts is considered, the water 

consumption per user is the smallest for the residential rate type (WR) (excluding water 

used for fire protection). The mean/median volumes of average annual water use in the 

multi-family and single family detached rate categories are very high, which is 

reasonable since each service account records the aggregated water uses in multi-family 

dwellings. The boxplot (Figure 5) illustrates the variation of average annual water use by 
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rate type. For each of the rate categories WA, WC, WG, WL, WN and WR, there are 

some customers using much more water.  

Table 2:  Average annual water usage by rate type 

Water 
rate 
code 

Description User 
Descriptive statistics (unit: CCF) 

Min Max Sum Mean Median Std. 
dev. 

WA Multi-Family 2,338 1 113496.2 7558755 3233 872.9 6287.4 

WAD 
Single Family 

Detach 39 50 192656 167105.2 4284.7 2793.2 4775.7 
WB Sale for Resale 7 4 40149.3 125483.1 17926.2 17288.6 14388.8 
WC Commercial 13,177 0.118 157556.3 9592275 728 121.5 3351.1 
WF Fire Line 2,450 0.035 19998 131537.6 53.7 4.41 517.9 
WG Governmental 364 0.13 108717.2 436350.2 1198.8 156 7138.6 
WH Health Facility 7 53.65 73185.7 114455.8 16350.8 380.2 26788 
WI Industrial 65 1.5 19969.2 107127.7 1648.1 498.2 3435.7 
WL Lawn Meter 9,305 0.035 18785.6 3340824 359 156.3 715.3 
WN Institutional 483 0.258 129885.4 1117750 2314.2 406.9 9808.3 

WO 
Other Non-

Profit 728 1 11578.8 206200.0 283.2 109.4 718.6 
WR Residential 243,640 0.115 33449.7 2.32E+7 95.4 82.0 143 

WS 
Swimming 

Pool 167 1 3064.2 66169 396.2 265.5 462.5 

WTUC 
Union County 

Residential 16 57.77 320.8 2122.8 132.7 118.3 67 
 

 

Figure  5:  Average annual water usage by rate yype in 2000-2013 

 (excluding the uses larger than 6500 CCF for illustration purpose) 
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We are interested in the spatial distribution of annual household water use. We 

identify the premises/service accounts that are associated with the parcels used only for 

single family housing, multi-family housing and condos and are mainly charged by 

residential-related water rates (WA, WAD, WR, and WTUC) and the lawn and 

swimming pool water rates. Then the monthly records are aggregated to obtain annual 

totals for each year in 2000-2013. The annual uses are averaged across the time for each 

premise, and finally the values are aggregated to the neighborhoods (represented by the 

block groups in 2010). The average annual water consumption per service account shows 

the concentration of higher water users mainly in the wedge of affluence south of Uptown 

(Figure 6a). There are a few neighborhoods in the north, south-eastern and south-western 

corners of the county consuming more water as well. Lower water usage is found pretty 

ubiquitously in closer-in neighborhoods.  

  
        (a) 2000-2013                                               (b) 2013 

Figure  6:  Single family residential average annual water use per service account 
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Due to the two severe droughts in Charlotte’s recent history, the average annual 

water use could be influenced by the peak annual uses in certain years (e.g. 2007 and 

2008). Thus, we separately mapped the annual use per premise in 2013 when the most 

recent data is available and had a normal weather. Although the general pattern of annual 

water use in 2013 is similar to the averaged trend during the time period 2000-2013 

(Figure 6b), its range of the annual water usage across the block groups is smaller and 

fewer neighborhoods are associated with higher water consumption.  

Similarly the average annual water use per premise by multi-family or condo 

households in 2000-2013 and in 2013 is presented in Figure 7. The spatial patterns and 

the value ranges are similar for the 14-year period and the single year. Higher water 

usage primarily concentrates in the northeastern and southeastern areas along I-485, 

including the University City area. Surprisingly the center of the city where a few 

apartment/condo buildings are located does not have any higher water users. The possible 

reason is that the apartment/condo buildings near the periphery of the city have large 

areas of lawn and pools demanding water since we included the water volumes recorded 

from the water meters for lawn and pools.  
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       (a) 2000-2013                                                 (b) 2013 

Figure  7:  Multi-family residential/condo average annual water usage per service account 
by 2010 block group 

The descriptive statistics for the single family and multi-family residential/condo 

average annual water usage per service account during 2000-2013 are listed in Table 3. 

The value range for the multi-family/condo-related usage is very large, indicating the 

mixture of building with various residential units.  

Table 3:  Average annual water usage by residential land use types 

Land use type Users 
Descriptive statistics (unit: CCF) 

Min Max Sum Mean Median Std. dev. 
Single Family 

Residential 
227,554 0.129 33449.7 22700000 99.833 84.743 152.394 

Multi-Family 
Residential/Condo 

15,897 0.903 113496.2 6197934 389.881 58.167 2283.434 

 

 

 



 
 

CHAPTER 4:  SENSITIVITY OF SINGLE FAMILY RESIDENTIAL WATER 
CONSUMPTION TO WEATHER VARIABILITY 

 
 
4.1 Introduction 

Urban water resource management in Charlotte has been challenged by continuing 

population growth, urbanization, and potential climate change since the beginning of the 

twenty-first century. Although the estimated metered average water usage per capita per 

day within the service area of Charlotte Water showed a (slightly) declining trend 

(Division of Water Resources 2014), its variation over the years is evidently large. Such a 

variation could be attributed to the combined effects of climatic variability, water 

conservation efforts and household behavioral changes of water consumption (Balling 

and Gober 2007).   

The average SFR residential water usage per premise (equivalent to households to a 

large extent) in Charlotte is approximately 75,000 gallons per year over the time period 

2000-2013. This amount is similar to the ones reported for Seattle, Washington 

(Polebitski and Palmer 2010) and Hillsboro, Oregon (Chang et al. 2010). Among 

Charlotte’s customers living in a SFR house, it is estimated that around 5 percent use at 

least as much as the water (around 171,712 gallons) consumed by the residents in 

Phoenix, Arizona (a city in a semi-arid climate). Although we do not have much 

knowledge about the outdoor portion of SFR residential water usage, considering the 

distinct four seasons in Charlotte and the possible need for irrigation and outdoor 

activities such as the use of swimming pool, outdoor usage may account for a large
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proportion of the average residential household water consumption, and we know that 

outdoor water usage is usually responsive to weather variation.  

Given Charlotte’s steady 2 percent or above annual population growth rate during 

the 2010-2014 period (Charlotte Observer 2015), the projected population of Charlotte 

will reach 1.3 million by 2040. The potential water demand of such a huge population 

will undoubtedly impose pressure to local water supply and its sources, and the climate 

change related to global warming (such as more extreme daily temperatures and more 

intense precipitation events) may intensify the threats of water shortage in future. 

Therefore, despite the humid subtropical climate, it is still relevant and important to 

understand the sensitivity of local water usage in Charlotte to weather variations from a 

demand management perspective. There lacks empirical research (of any kind) dedicated 

to Charlotte regarding this topic. This study as the first step will bring some insights on 

the relationship between weather variability and Charlotteans’ water consumption, and 

hopefully contribute to local water conservation efforts particularly related to outdoor 

water use reduction. 

4.1.1 Research Statement 

Research relating water use to climatic conditions has mostly been conducted on 

the cities in the southwest. Although an obvious link between weather and climate 

conditions and water consumption would be anticipated, research findings have been 

disparate and inconsistent (Gutzler and Nims 2005). Some studies discovered significant 

associations between temporal variations in water consumption and variations in weather, 

while others found no link at all (Balling et al. 2008). The mixed results about weather 

effects may be in part because of differences in measures of climatic factors and other 



60 
 

 
 

variables, temporal scales (yearly vs. monthly vs. daily), and methods (Table 4), but more 

importantly, each case has a unique context including water pricing, environmental 

circumstances, urban lifestyles, and individual and household preferences toward water 

use in general and the relative importance of outdoor versus indoor use (Balling et al. 

2008). Since the cities in the southeast have distinctive climate conditions and water 

ethics, it is interesting to investigate how the mechanism linking climatic variation and 

water consumption pattern in the case study of Charlotte disagree or agree with the 

existing literature, in what aspects, and maybe why. 

Previous research rarely examined the relationship between climatic variability and 

residential water consumption with a dedicated focus on weather conditions (rather than 

price) and at a fine spatial scale. Balling et al. (2008) proposed a study to explore the 

intraurban spatial variations of the sensitivity of residential water usage to climatic 

conditions in Phoenix, AZ. They found that different neighborhoods (represented by 

census tracts) show sensitivity of variable magnitude (from zero up to 70%) to climatic 

variation during the period of 1995-2004. The neighborhoods with greater sensitivity 

share common characteristics including large lots, many pools, a high proportion of 

irrigated mesic landscaping, and a high proportion of high-income residents, while the 

neighborhoods accommodating large families and many Hispanic population are less 

sensitive to the same climatic conditions. Based on these findings, they suggested specific 

ways to encourage the development of low sensitivity for the purpose of enhancing the 

resilience of urban water use to climatic change. We will follow their approach to 

examine the climatic sensitivity of single family residential water consumption in 

Charlotte at a smaller geography of neighborhood (block group). 
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In this chapter, we will address three objectives and their related research questions.  

(1) Explore the temporal trend and spatial patterns of water consumption during 

2000-2010 and examine their association with historical climatic conditions in Charlotte. 

This objective will focus on the question that “Does water consumption and its change 

before, during, and after drought represent spatial variation?”   

(2) Determine whether there were evident geographic patterns in climate sensitivity 

of SFR water consumption (measured by the ratio of summer versus winter water use) 

and their changes before, during, and after drought. The corresponding research question 

is: “Is there an evident geographic pattern in climate sensitivity (measured by the ratio of 

summer versus winter water use)?” 

(3) Determine how much variations of water consumption can be explained by 

climatic factors, whether the neighborhoods (block groups) in Charlotte have different 

levels of sensitivity and respond to climatic variation differently across space. We are 

interested in answering the questions “Are some neighborhoods more climatically 

sensitive than others?” and “what are the socio-demographic and housing characteristics 

of the neighborhoods with lower or higher sensitivity?” 

We first examine the spatial patterns of average per-household annual water 

consumption for single family homes over the 11-year study period 2000-2010. The ratio 

of summer versus winter water usage within each year is also mapped to reveal 

geographic patterns in climate sensitivity. Using the same spatial data, spatial clusters are 

identified for the change rate of winter, summer and annual water usage from the 

consecutive years of drought periods in Charlotte in the first decade of the twenty-first 

century. Next, we construct a time series of monthly SFR water use anomalies and 
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explore their variation with three climatic measures (temperature, precipitation, and the 

Palmer Hydrological Drought Index); with this series, we identify social-demographic 

variables and housing characteristics that are associated with the explained variations. 

We hypothesize that among the household and housing determinants of residential 

water consumption discussed in chapter 2, those that are closely linked to outdoor water 

usage will contribute to the intraurban spatial variations of the sensitivity being 

investigated in this case study. We also anticipate that the neighborhoods in Charlotte 

would respond differently to atmospheric conditions, but the relationship between 

temporal variations in SFR water consumption at the neighborhood level and weather 

variations may be weaker than in other studies given Charlotte’s humid climate and 

relatively cooler and shorter summer compared to Phoenix.  

4.1.2 Methods 

Three basic methods are applied to address our objectives. One is to use GIS 

mapping method to present the spatial distribution of SFR water consumption in different 

years. Correlation and regression analysis which we apply to deal with the third objective 

are common methods for studying the associations between/among variables. We also 

conduct spatial clustering analysis to assess global and local spatial clustering in the 

percent change and the climatic sensitivity of SFR water consumption. A brief 

introduction is given to this analytical approach since it is originated from geography and 

regional science and has been gaining popularity in other domains in the past decade. 
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Global patterns can be assessed by Moran’s I test (Moran 1950) 2 . The null 

hypothesis of this test in our application is that the spatial pattern in the SFR water 

consumption in Charlotte is random. Rejection of the null hypothesis indicates a spatial 

autocorrelation in the distribution of SFR water consumption. The Moran’s I statistic is 

given as: 

ܫ ൌ 	 ൬
௡

∑ ∑ ௪೔ೕ
೙
ೕసభ

೙
೔సభ

൰ ൈ ൬
∑ ∑ ௪೔ೕ

೙
ೕసభ

೙
೔సభ ሺ௬೔ି௬തሻ൫௬ೕି௬ത൯

∑ ሺ௬೔ି௬തሻమ
೙
೔సభ

൰                          (Eq. 3.1) 

where ݊ is the number of spatial units (block groups in our case); ݅ and ݆ are indices 

of spatial units; ݕ is the outcome variable of interest; ݕത is the mean of ݕ; and ݓ௜௝ is the 

spatial weight between units ݅ and ݆. The spatial weights for each pair of units compose a 

݊ ൈ ݊ spatial weight matrix W, quantifying the conceptualized spatial relationships that 

exist among the spatial units being investigated. There are various ways to specify a 

spatial weight matrix, and contiguity-, k-nearest-neighbor- and distance-based spatial 

weights are commonly used. As for contiguity-based spatial weight matrix, the spatial 

weight between two units is assigned to one when the units share a common border or 

corner, otherwise the spatial weight is zero. The other two spatial weight matrix 

specifications are more intuitive, basing on a threshold of the number of nearest 

neighbors or the distance between two spatial units (centroid distance for polygon 

features). The latter two are better options when there are holes in the distribution of 

spatial units.  As a common practice, the spatial weight matrix is row-standardized to get 

the sum of the weights for each row (each unit ݅) equals to one (Anselin et al. 2008). 

                                                 
2 There are other statistics measuring global spatial autocorrelation, such as Geary’s C and Getis-Ord G 
statistic. 
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The Moran’s I statistic ranges from -1, denoting the highest negative 

autocorrelations (dispersion), to +1, reflecting the highest positive autocorrelations 

(clustering). The expected value of Moran's I under the null hypothesis of no spatial 

autocorrelation (randomness) is 
ିଵ

௡ିଵ
.  

As a measure of global spatial autocorrelation, Moran’s I does not identify where 

the significant clusters are, nor does it indicate what type of autocorrelation is occurring 

spatially (Anselin 1995). Therefore, local indicators of spatial association (LISA) were 

proposed to test the null hypothesis of spatial randomness (or no local spatial 

autocorrelation) by comparing the values in a given location with values in neighboring 

regions (Anselin et al. 1996). 

A local measure of Moran’s I is a special case of a LISA, and it decomposes spatial 

autocorrelation patterns into four types of clusters, high-high, low-low, high-low, and 

low-high (Anselin et al. 1996). Positive spatial autocorrelation refers to a geographical 

distribution of values when an above-average value is surrounded by the neighbors with 

above-average values (high-high, HH) and vice versa (low-low, LL). If a location with a 

high value (above-average) is encompassed by low-value neighbors, or inversely, a 

location with a low value (below-average) is encompassed by high-value neighbors, a 

negative spatial autocorrelation is present (Messner and Anselin 2004). The local 

Moran’s I statistic is calculated as: 

௜ܫ ൌ 	
∑ ௪೔ೕ
೙
ೕసభ ሺ௬೔ି௬തሻ൫௬ೕି௬ത൯

∑ ሺ௬೔ି௬തሻమ
೙
೔సభ

                                                     (Eq. 3.2) 
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We calculate the global and local Moran’s I in GeoDaTM, a spatial analysis software. 

A randomization approach is used to generate a spatially random reference distribution to 

assess statistical significance (GeoDa Center).  

4.2 Overall Trends in Meteorological Conditions and SFR Water Consumption 

4.2.1 Historical Meteorological Conditions in Charlotte 

We follow the extend literature on weather and water research and choose the three 

typical weather measures including average temperature, accumulative precipitation, and 

the Palmer Hydrological Drought Index (PHDI) to analyze the temporal variability of 

weather in Charlotte. Temperature and precipitation are supposed to impact outdoor 

water usage (mainly for watering lawn and swimming pool) more than indoor usage 

(mainly showering, laundering and drinking). The PHDI is a composite indicator of 

meteorological conditions, and has been used as one of the state-level drought indicators 

of South Carolina (Mizzell Hope et al. 2010) and as an important index included in the 

Catawba River Basin Drought Model (North Carolina Division of Water Resources and 

Department of Environment and Natural Resources 2005). Due to the different nature of 

the meteorological data sources (GHCN and USHCN) described in chapter 2, we employ 

both GHCN and USHCN datasets, especially for the third objective. 

Figure 8 presents the trend of the monthly PHDI of North Carolina’s fifth climate 

division (referred as the Charlotte region in the following discussion) for the periods of 

1990-2015 and 2000-2010. The National Oceanic and Atmospheric Administration 

(NOAA) classifies the values of various Palmer Drought Indices including PHDI into 

seven categories. Values less than -4 or more than +4 indicate extreme drought or 

extremely wet conditions; values near zero (between -2 and 2) indicate normal conditions 
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for a region. The value ranges [-4, -2] and [2, 4] are divided into two classes each (-3 and 

3 are the break points), representing extreme drought and moderate drought, and 

moderately wet and very wet conditions. Figure 9 shows the seasonal transitions of the 

drought conditions in the region, based on NOAA’s classification and Table 5 lists the 

PHDI values over time.  
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Within the 25-year time span of 1990-2015, the Charlotte region has experienced 

extreme drought conditions three times. All of the extreme drought periods occurred after 

2000. However, their characteristics differ significantly. The first drought starting in the 

summer of 2000, gradually developed over 2001, then worsened, and reached the worst 

situation (in history) during summer 2002. Such extreme drought condition persisted until 

the beginning of 2003, and reversed to extremely wet quickly, in less than a year. Within 

the next three and a half years, the region’s drought condition stayed at a more or less 

normal status. However, without a clear warning sign, the second drought threatened the 

region starting in September 2007, continued and peaked in January 2008, and retreated 

gradually. Compared to the first drought, the drought between 2007 and 2008 was more 

acute, was a little shorter, and had a lower peak value. The acuteness and persistence of 

the 2007-2008 droughts jeopardized the water supply and usage in the county. A series of 

water use restrictions were enacted to limit local water demands under the safe level and 

to ensure the uninterrupted water supply for the entire river basin that might face 

continuous drought conditions. Among the restrictions, the toughest ones were 

announced at the end of September 2007, banning lawn watering and the operation of any 

sprinkler system and disallowing the operation of ornamental fountains (without fish), 

residential car washing and refilling of swimming pools. These rules were enforced for 

seven months, and then amended to allow one-day-a-week outdoor water use until 

September 2008, as drought conditions improved. It took the region a longer time to 

arrive at a wetter condition after the 2007-2008 droughts. The development of the third 

drought in 2011 was also quick, but not as extreme as the second one. After the greatest 
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extreme level of the third drought was reached, the drought condition kept at the severe 

level for almost a year. The mild wet condition came back in winter 2013. 

Table 5:  The monthly PHDI for the period 2000-2010, 5th climate division of NC 

Yr/M Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2000 -0.88 -1.39 -1.86 -1.25 -1.99 -2.42 -2.76 -3 -1.91 -2.61 -2.5 -2.95
2001 -3.3 -3.54 -2.72 -3.32 -3.48 -2.83 -2.87 -3.42 -3.21 -3.43 -4.26 -5.07
2002 -4.34 -4.69 -4.42 -5.02 -5.04 -5.61 -6.31 -6.08 -5.5 -4.28 -3.32 -2.2
2003 -2.5 -1.82 -0.74 3.45 4.7 5.27 5.83 6.11 5.8 5.21 4.21 3.68
2004 2.43 2.33 0.99 -2.43 -2.83 -2.06 -2 -1.31 2.61 1.88 1.73 1.23
2005 0.61 -1.27 -1.16 -1.16 -1.34 0.76 0.81 -0.28 -1.37 -0.95 -0.82 0.88
2006 -0.45 -1.17 -2.1 -2.33 -2.54 -0.84 -1.26 -0.93 -0.71 1.1 2.46 2.08
2007 1.65 1.17 -1.16 -1.03 -1.69 -1.69 -2.44 -3.88 -4.74 -4.54 -5.17 -5.09
2008 -5.31 -5.09 -4.82 -3.95 -3.84 -4.37 -4.25 -3 -2.1 -2.14 -1.84 -1.51
2009 -1.73 -2.19 -1.44 -1.67 -0.9 -1.03 -1.18 -1.77 -2.19 -2.15 -1.07 2.06
2010 2.25 2.23 1.68 0.58 -1.26 -1.46 -2.06 -2.43 -2.24 -2.81 -3.41 -4.09

Note: extreme drought conditions are highlighted in yellow. 

Both GHCN and USHCN temperature datasets show seasonal cycles over time 

(highest in summer and lowest in winter).  The GHCN mean temperature data for the 

county by month (Figure 10a) indicate the highest temperature (28.7°C) in August 2007 

and the lowest (1.5°C) in December 2010, while the monthly average temperature records 

from USHCN (Figure 10b) show a range from 29.32°C in August of 2005 to 2.25°C in 

December 2008. 

There is less seasonality captured in the plot of monthly precipitation during 2000-

2010 (Figure 11). The differences between the precipitation curves of GHCN and 

USHCN imply that Mecklenburg County has on average higher monthly rainfall than the 

region as a whole.  There were two months (271.8mm in May 2003 and 263mm in 

August 2003) among the months of 2000-2010 having more than 250 millimeter rainfall. 

In October, 2000, the county had zero rain recorded for the entire month.  The monthly 

precipitation from GHCN during the first drought period (mainly in 2002) is much higher 
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than the one from USHCN. The differences in GHCN and USHCN precipitation records 

in 2007 (the early stage of the second drought) are less obvious. 

    
(a) GHCN data for Mecklenburg County        (b) USHCN data for the 5th climate division of NC 

Figure  10:  Monthly mean temperature, 2000-2010 

        
(a) GHCN data for Mecklenburg County        (b) USHCN data for the 5th climate division of NC 

Figure  11:  Monthly accumulative precipitation, 2000-2010 

4.2.2 Single Family Residential Water Consumption in Charlotte 

We use season-based annual use of SFR water consumption per household to 

understand its spatial and temporal variations across years from 2000 to 2010. Two ways 

were introduced in chapter 2 (on page 41) to conduct filtering and temporal aggregation 

of the monthly consumption dataset. Figure 12 shows the mean of average annual water 
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consumption across block groups (the smallest geographical unit examined in this 

research) for each year within the time period 2000-2010, applying the two methods 

(month- and year-based filtering) described above. The two curves reveal similar trends 

in the change of annual consumption over time except between the years 2005 and 2006. 

We can recognize the first drought period from both curves (highest yearly consumption 

in 2002 and lowest in 2003). For the second drought period, the annual water use in 2007 

is higher than the one in 2008, although during the early months of 2008 the drought 

condition had been persistently extreme. The decrease in yearly average consumption in 

2008 is more likely to result from the water bans issued in Fall 2007, though it may also 

be attributed to the recovery from the regional drought condition in the second half of 

2008. 

When the annual consumptions based on the two methods are averaged across time 

for each block group and then mapped (Figure 13), we observe similar spatial patterns 

with higher usage concentrating in the south and the north of Mecklenburg County and 

lower usage surrounding the urban core.  

 

Figure  12:  Average annual single family residential water consumption per household 
across block groups 

(1 Centum Cubic Feet (CCF) = 748.05 Gallons = 2831.68 Liters) 
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(a) Year-based filtering                               (b) Month-based filtering 

Figure  13:  Average annual SFR water consumption per household by 2000 block group, 
2000-2010 

4.3 Spatial and Temporal Patterns of SFR Water Consumption per Household  

4.3.1 Average Annual Water Consumption in Charlotte 

We focus on investigating the average annual water consumption per household 

derived from year-based filtering and map its spatial patterns before, during and after the 

two drought periods in history (Figure 14 and 15). All the block-group-level annual 

values over the entire study period (2000-2010) are stacked together to define the 

classification scheme. The break points are chosen based on the standard deviation 

classification method. The seven classes in the legend (colored in blue-green-yellow-

orange-red) represent the levels of less than -2.5, -2.5~-1.5, -1.5~-0.5, -0.5~0.5, 0.5~1.5, 

1.5~2.5, and more than 2.5 standard deviations. 
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2000 2001 

 
2002 2003 

Figure  14:  Average annual SFR water consumption per household by 2000 block group, 
2000-2003 
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2006 2007 

2008 2009 

Figure  15:  Average annual SFR water consumption per household by 2000 block group, 
2006-2009 

The general patterns across the county are consistent with the trend of average 

annual consumption per household shown in the curves of Figure 12 and with the pattern 

seen in Figure 13. From 2000 to 2002, more than half of the block groups experienced a 

gradual upward shift in the levels of water use; then the average annual water 

consumption levels quickly and dramatically decreased within a year in the majority of 
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places within the Mecklenburg County. As for the second drought period, a number of 

block groups responded with an increase in water consumption, and the slowly improving 

drought conditions during the years 2008 and 2009 resulted in gentle down-grading in the  

levels of water use.  

When we closely examine the geographical differences in the patterns seen in the 

maps for before, during and after the two droughts, it is noticeable that the responses of 

neighborhoods to droughts are not homogeneous. During the time period 2000-2003, the 

northern and the southern Charlotte neighborhoods were fairly responsive to the change 

in drought conditions. So were the municipalities of Davidson and Mint Hill. The towns 

of Cornelius and Pineville were more sensitive to extreme drought, while Matthews and 

the east and the west of Charlotte were more susceptible to moistness. The neighborhoods 

along Independence Boulevard (Highway 74) and along the I-77 South corridor behaved 

differently (following the weather conditions vs. responding more to the moist condition) 

when the first drought occurred.  The areas west or south to the outer ring (I-485) showed 

the similar changes in pattern (responsive consistently), while most of the block groups 

east to the outer ring had a greater drop in water consumption when high rainfall occurred. 

The sensitivity of Huntersville neighborhoods to droughts showed a mixed pattern across 

the town.  

Compared to the first drought, the second drought resulted in a simpler pattern of 

change. Most of the places responded correspondingly to the changes in the drought 

conditions (higher use in 2007) as well as the implementation of city-level water use 

restrictions in 2008 (lowered use). Only in a few neighborhoods such as southern 

Charlotte, along the I-77 South, and the southwestern/southeastern corners, average 
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annual water usage per household kept increasing or remained same during 2007-2008, 

and the effect of the non-price policy was least observed. There were no obvious 

responses to the meteorological conditions observed (no change in the class of water 

consumption) within the center and west of Charlotte and the neighborhoods along 

Independence Boulevard.  

In summary, the response of the average annual water consumption per household 

over time shows spatial heterogeneity across the county and this also transpires for the 

two drought periods with distinct characteristics. However, the annual aggregation 

masked the seasonal changes in water usage. To discover further evidence of geographic 

pattern of water consumption in weather sensitivity, it is better to examine the average 

usage during two distinct seasons – winter and summer. 

4.3.2 Average Winter and Summer Water Consumption in Charlotte 

Based on the average monthly data, we sum up the values in December, January 

and February as average winter usage and the values in June, July and August as average 

summer usage. Figure 16 presents the aggregated mean of winter and summer average 

across block groups over time. The red curve (for summer) bounces and drops throughout 

the study period (responding strongly to the trend of PHDI), while the blue curve (for 

winter) showed larger changes in value during 2000-2003, which was followed by slight 

variations even during the second drought period. The similar winter usage in 2007 and 

2008 again implies the effectiveness of water use restriction policy. 

Both the spatial distributions of the average winter and summer water 

consumptions across the 11 years highlight a concentration of higher water consumption 

neighborhoods in the southern part of the county (Figure 17) and of relatively smaller 
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water consumption neighborhoods surrounding the urban core.  The north of the county 

(including several towns) had moderate water usage level in winter and mixed water 

usage levels in summer. The water usage of more block groups within the eastern and 

western side of the county fell within the classes of higher level in winter, compared to 

the moderate level in summer.   

 

Figure  16:  Average winter and summer SFR water consumption per household across 
block groups, 2000-2010 

Comparing the value ranges of the classification of the water consumption for 

winter and summer, the lower user groups (first three classes) consumed twice as much 

water in summer as in winter, while the higher consumer groups tripled their average 

winter water use when summers came. Although we are not sure of the exact proportions 

of water usage for outdoor and indoor purposes, it is reasonable to assume that outdoor 

usage contributes a lot to the difference between summer and winter SFR water 

consumptions. Given that the neighborhoods in different areas have different 

CCF 
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combinations of water usage levels of winter and summer, we adopt the measure called 

“peak factor” to analyze geographic patterns in weather sensitivity.  

 
(a) Winter (December, January and February)    (b) Summer (June, July, and August) 

Figure  17:  Average seasonal water consumption per household by block group, 2000-
2010 

The peak factor is calculated by dividing the summer usage of a block group by its 

winter usage. If we assume that indoor water usage is invariant throughout the year, 

outdoor water usage tends to spike in the summer months, thus the ratio of summer 

versus winter usage can capture the sensitivity to meteorological conditions to a large 

extent. Considering that sometimes there is a substantial amount of outdoor usage in 

fall/winter months (for example after overseeding lawn), the peak factor can be regarded 

as the variable measuring the extra water usage in hot seasons versus cold seasons.  

Different aggregation procedures yield similar temporal trends in peak factors 

across the geographic space (Figure 18).  One way is to get the summation of the average 

summer and winter usage for the entire city, then calculate the ratio (shown as the blue 

dashed line). This measure is a city-wide indicator. Another way is to get the ratio for 



81 
 

 
 

each block group first, then calculate the mean of the block group level peak factor 

(shown as the red solid line). Such a peak factor represents the sample mean.    

The first high spike of the peak factor appeared in 2002, following the first drought. 

The ratio of summer versus water usage reached the highest peak in 2007, and the peak 

factor in 2008 was lower than in 2007 and 2009. The latter observation seems surprising 

but is reasonable if the seasonal changes in drought condition are accounted for. The 

winter of 2008 is in the middle of the process that the region has been becoming more 

and more drought stricken, and the drought did not worsen in the summer period; instead, 

the PHDI indices in summer were lower than in winter, and even in August the value was 

around 3. The phenomenon that the 2009’s peak factor was slightly higher than the 2008 

peak is counterintuitive given the second drought was recovering from 2008 to 2009. The 

average summer use in 2009 increased, while the average winter usage decreased a little 

bit. The possible explanation is that the policy had a positive effect on winter use, and the 

previous years’ drought made people desire more outdoor usage for watering lawn and 

engaging in water-related activities. 

We observe a spatially clustered pattern on the map showing the peak factor 

averaged for each block group (Figure 19). In general, the neighborhoods in the eastern 

and western Charlotte and along the I-77 South have lowest values, and the south of the 

county contains block groups with highest peak factor as well as greatest level of average 

consumption. The peak factor values were moderately higher in northern Mecklenburg, 

in which areas a few block groups had relatively large water usage.   
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.   

Figure  18:  Peak factors across block groups, 2000-2010 

 (Blue: the ratio of average summer use versus average winter use across block groups; Red: the mean of 
block group level peak factor that is the ratio of block group’s average summer use vs. average winter use) 

 

 
(a) Ratio of Summer to Winter               (b) Winter and Summer Combined 

Figure  19:  Average winter & summer SFR water consumption per household by block 
group, 2000-2010 

The following series of maps demonstrates the spatial distributions of peak factors 

before, during and after the two drought periods (Figure 20 and 21). Before the first 

drought reached its peak, the areas within and bordering the outer ring had decreased 
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peak factor, except a few blocks in the south of the city. In 2002, an increase in the ratio 

of summer versus winter was prevailing all over the study area. After rainfall returned to 

normal in 2003, the area with higher peak factor disappeared, instead, the neighborhoods 

to the east of Independence Boulevard and in the west and northwest of the urban core 

experienced a slight rise in peak factor.  

2000 2001 

 
2002 2003 

Figure  20:  Peak factor by block group, 2000-2003 
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2006 2007 

 
2008 2009 

Figure  21:  Peak factor by block group, 2006-2009 

When the county was exposed to the second drought, interestingly, not all places 

involved a gain in peak factor. Only the north and the south of Mecklenburg County, and 

some neighborhoods distributed along the ring I-485 had increased value in 2007. After 

one year, the values in these areas dropped. A bounce back was observed for the northern 

and southern edges of the county in 2009. Most of the area within the I-485 ring kept the 

same level of the ratio before, during and after the second drought period. Relating such 
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pattern changes with the counterintuitive variability of peak factor over time (Figure 18), 

we conclude that the areas with larger water consumption and more sensitive to drought 

dominated the overall temporal trend. The spatial and temporal patterns of the peak factor 

provide graphical evidence for meteorological sensitivity across block groups. 

We also calculate the percent changes of winter, summer, and annual SFR water 

consumption per household from 2002 to 2000 and from 2003 to 2002, and created the 

cluster maps using queen contiguity-based spatial weight matrix. As shown in Figure 22, 

during the first drought, the neighborhoods to the north of the city center and along 

Independence Boulevard see an increase in household water usage in winter, while the 

residents in south Charlotte use much more water in summer 2002 than their regular 

usage before the drought. However, these clusters disappeared when the change in annual 

water consumption was considered. When the 2002 drought transitioned to the extremely 

moist condition in 2003, southern Charlotte exhibited a large decrease in water usage in 

summer, but a dramatic increase in winter water usage after the rainfall season past 

(Figure 23).  The high-high clusters of percent change of water usage in summer are 

shown in the north and the west of the city center, while the low/low clusters of water 

usage percent change in winter appear along Independence Boulevard. The different 

clustering patterns described above indicate that households located in different 

neighborhoods have different preferences to winter/summer water use. Examining the 

yearly consumption only may mask such a preference difference. The remaining 

questions are why household preferences differ and what factors are influential.
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4.4 Temporal Analyses of Block Group Level Sensitivity of Water Use to Climatic 

Variations in Charlotte 

Although we have found evidence supporting the hypothesis that neighborhoods in 

Charlotte responded differently during the drought periods via a mapping of the spatial 

patterns of average water usage per household living in a SFR home, it is important to 

test such an assumption in statistical ways. We follow the methodology of the case study 

of Phoenix (Balling et al. 2008) to test the hypothesis. 

All monthly water consumption values in each block group are converted to the 

deviation from the mean values calculated for each month (mean monthly value) across 

all the block groups. The purpose of such a conversion is to eliminate the obvious annual 

cycle (Figure 24) in the monthly data. We do not want this cycle to dominate temporal 

variance in the water usage values. The new time series data has 132 rows, one for each 

month from January 2000 to December 2010, and 355 columns, one for each block group. 

The value is the deviation from normal monthly water consumption for each geographical 

unit. 

 

Figure  24:  Mean monthly average SFR water consumption per household in Charlotte 
across the time period 2000-2010 

C
C

F
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The monthly mean and maximum temperature records show strong cyclic trend 

within a year (Figure 25). In meteorological studies, anomalies of such variables are 

usually derived from time series analysis.  The anomalies of GHCN monthly temperature 

ranged from +3.618°C in December 2007 to -4.182°C in December 2010. This means 

Charlotte had a relatively warmer December in 2007 and a relatively colder December in 

2010 when all the December temperatures during the time period 2000-2010 are 

compared. The range of the maximum temperature anomalies in Charlotte is from 

+4.218°C in August 2007 to -4.427°C in December 2000. 

 

Figure  25:  Monthly weather anomalies 

 (Upper left: mean temperature; Upper right: maximum temperature; Lower: precipitation) 
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Similarly, we transform the monthly precipitation values to departures from the 

mean (anomalies). The highest anomaly value (+182.7mm) in Charlotte data occurred in 

May 2003, when the 2002 drought transitioned to the most moist condition in history. 

The lowest anomaly value was -103.6mm in August 2007, corresponding to the driest 

summer time in Charlotte’s history when the severest 2007-2008 droughts started. The 

PHDI data has no annual cycle, thus the original values are used.   

For each block group, the monthly deviation values of monthly water consumption 

are compared with the temperature anomalies, precipitation anomalies, and PHDI values. 

The three climatic variables share little variance (<15%) over the 132 months and can 

thus be treated as independent variables. The mean and the range of the Pearson product-

moment correlation coefficients (PCC) between the weather dataset of Charlotte and the 

monthly deviation are listed in Table 6. The results from the USHCN temperature and 

precipitation datasets are similar, thus not reported here. 

Table 6:  Pearson product-moment correlation coefficients between climatic variables and 
the deviation of monthly water consumption 

Climatic variables Mean Range 
Num. of  BG with 

the dominant 
sign 

Data 
sources 

Maximum Temperature 0.112 -0.063 ~ 0.377  335 (+) GHCN 

Average Temperature 0.049 -0.123 ~ 0.265 280 (+) GHCN 

Total Precipitation -0.16 -0.425 ~ 0.164 338 (-) GHCN 

PHDI -0.175 -0.399 ~ 0.113 343 (-) USHCN 

Note: 355 block groups (BG) in total; the dominant sign in parentheses 

The PCCs between the local average temperature anomalies and the monthly 

deviation from normal water usage range from -0.123 to 0.265, and the average is 0.049. 

The mean temperature anomalies on average explain only 0.24% of the variance in the 

monthly deviation of normal water usage. The majority (four fifth) of the block groups 
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have a positive correlation coefficient, and the largest variance explained by temperature 

is 7%. We also calculate the coefficients between the monthly maximum temperature 

anomalies and the monthly deviation of water consumption and find that the maximum 

temperature variable explains water usage a little bit better than mean temperature, and 

the direction of the correlation for most of the block groups is positive. 

Compared to temperature, monthly total precipitation better explains water 

consumption. Most of the block groups show the negative correlation, and the average 

PCCs is -0.16. The maximum variance accounted for by the local precipitation anomalies 

is approximately 18.1%. 

The coefficients between the consumption values and PHDI range from -0.399 to 

0.113, and the average is -0.175. Although a few block groups have positive PCCs, the 

water usage of most block groups is negatively correlated to drought condition as 

expected, meaning that more severe drought conditions stimulate higher water usage 

across space. 

In summary, the PCCs between either of the climate anomalies and water 

consumption shows the expected sign, although the variances explained are not large. 

However, the mixed signs of the correlations between temperature (mean or maximum), 

precipitation or PHDI and water usage implies that different block groups did not respond 

to these variables in the same way. For some block groups with a sign different from the 

majority, there are other determinants that may better explain the monthly deviation from 

normal water usage than a single weather variable. For example, water use restrictions 

could be enacted during the persistent hot and dry time period, and the residents from 

some neighborhoods could choose to follow the policy and reduce their water 
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consumption rather than responding to weather conditions, thus those neighborhoods may 

exhibit opposite associations with weather factors. Another possible reason is that 

different households may be sensitive to different weather variables (temperature vs. 

precipitation) since each weather factor is separately examined. Considering that the 

responses of block groups may be more heterogeneous than of census tracts, the same 

analyses were applied to monthly deviation of tract-level water consumption, and similar 

results were obtained. 

Comparing to the results reported for the census tracts in Phoenix, the mean PCCs 

for all the climate variables for Charlotte are smaller (-0.05, -0.16 and -0.175) than the 

ones for Phoenix (0.32, -0.2, -0.26) as we anticipated. Unlike Charlotte, the water 

consumption in all the census tracts in Phoenix is correlated with each of the weather 

measures in the same way in terms of the sign of the PCCs. The range of the absolute 

values of PCCs is wider for Phoenix than for Charlotte, indicating the variation in the 

neighborhoods’ climatic sensitivity in the arid-climate city is larger. 

A multivariate regression analysis is employed to determine, for each block group, 

the portion of variance in monthly deviation to normal water consumption that can be 

explained by the temperature (mean or maximum), precipitation and PHDI. 3  The 

estimated model is: 

Y = a + b*X1 + c*X2 + d*X3                                                                      (Eq. 3.3) 

Where Y refers to the monthly deviation of normal water consumption, X1 is the 

mean or maximum temperature, X2 is precipitation, and X3 refers to PHDI. Each block 

                                                 
3 Multivariate regression analysis is also applied to the USHCN data and the results are 
similar. 
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group has a different set of values representing its monthly water usage over the time 

period 2000-2010 (132 observations in total), while the values of the independent 

variables are the same for all the block groups.  From each regression model calculated 

for each neighborhood, we obtained the coefficient of determination (R2) as a proxy to 

measure climatic sensitivity of the corresponding neighborhood. We report here the 

results from the models using mean temperature, though the results based on the monthly 

maximum temperature anomalies are not much different.  

Summarizing the 355 R-squared values, the average value is 0.06. These R2 values 

range from near zero to 0.227. This indicates that some block groups have relatively 

substantial sensitivity to variations in weather conditions, while others are not sensitive to 

climatic dynamics at all. Given the 0.05 confidence level, only half of the block groups 

showed statistically significant association between water consumption and one of the 

weather variables. However, no block group has significant p-values for the temperature, 

precipitation and PHDI variables at the same time.  

The LISA-based cluster map showing the R-squared values of all the block groups 

reveals a clustering pattern (Figure 26). The neighborhoods with higher sensitivity to 

weather conditions are mainly concentrated in the southern and northern portions of the 

county where higher water consumption is also observed. The block groups (in blue) that 

are not sensitive to the weather fluctuations are located just to the north of the Uptown 

area and along Independence Boulevard. Based on the Moran’s I index (0.29), the global 

pattern is clustered, and the spatial autocorrelation of the block-group-level climate 

sensitivity is significant at p < 0.001 level of confidence. When only the block groups 

with R2 more than 0.05 are considered, the neighborhoods in the furthest south of the 
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county are still identified as the clusters with higher sensitivity, although there are less 

significant low-low clusters identified.  

                       

Figure  26:  The cluster maps and Moran’s I plots of the R-squared values as a measure of 
climate sensitivity from the regressions for block groups 

(Left: based on all block groups; Right: the blocks groups with a R2 larger than 0.05) 

4.5 Spatial Analysis on Block Group Level Climate Sensitivity in Charlotte 

The purpose of this analysis is to explain the variation in the R-squared values 

reported above (as the response variable) using sociodemographic and housing factors 

that could potentially determine water consumption (as the explanatory variables). 

Considering that some of the explanatory variables do not follow a normal distribution 

and there is no need to assume a linear association between the dependent and 

independent variables, spearman rank-order correlation coefficient (or called spearman 

rho) is employed to describe the relationship between the derived climatic sensitivity 

index and the selected factors using a monotonic function. We first test the spearman 

rank-order correlation on all the sociodemographic variables in 2000 or 2010 and the 



94 
 

 
 

housing variables derived from 2008 parcel data. The correlation coefficients between the 

explanatory variables and the climatic sensitivity index (measured by R2 from the last 

step) are listed in Table 7. The second and third columns show the spearman correlation 

coefficients and the p-values for the 2000 census variables and the housing variables in 

2008, and the last two columns are for the 2010 census variables.  

Table 7:  Nonparametric Spearman rank-order correlation coefficients between water 
consumption and the explanatory variables representing sociodemographic and housing 

characteristics of neighborhoods 

Category Variables 
Spearman 
correlation 
(2000/2008) 

p-value 
(2000/2008) 

Spearman 
correlation 

(2010) 

p-value 
(2010) 

Housing 

Number of single-family 
houses built after 1992 0.334 0.000   

Livable area 0.589 0.000   

Area of lot 0.340 0.000   

Assessed property value 0.613 0.000   
Number of bathrooms and 
bedrooms 0.537 0.000   
Average percent of 
households with a pool 0.351 0.000   

Socio-
economic 

Percent of population 19 
years and under -0.185 0.000 -0.132 0.013 
Percent of population 65 
years old and over 0.108 0.042 0.126 0.017 

Household size -0.115 0.030 -0.121 0.022 
Percent of population 
whose ethnicity is 
Hispanic -0.365 0.000 -0.332 0.000 
Percent of owner-
occupied housing units 0.304 0.000 0.343 0.000 

Median number of rooms 0.372 0.000 0.423 0.000 

Per capita income 0.567 0.000 0.524 0.000 
Median annual household 
income  0.504 0.000 0.507 0.000 
Percent of population 25 
years old and over 
obtaining a college degree 0.499 0.000   

Population density -0.232 0.000   
Ratio of own children 
under 18 years old over 
the number of households -0.028 0.595   
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All the housing factors have a significant correlation with the variation in the 

climatic sensitivity of water consumption across the county. A negative correlation for a 

variable implies that climatic sensitivity is higher for lower values of the variable. Thus, 

water consumption in block groups with larger and newer SFR houses, larger lot, higher 

house value, or more bathrooms and bedrooms is more sensitive to weather conditions. 

Most the sociodemographic variables from 2000 are significantly related to the dependent 

variable at the 0.05 level, except for the ratio of own children under 18 years old over the 

number of households.  Weather sensitivity is higher for a lower percentage of population 

younger than 19, smaller family, a lower percentage of Hispanic population, and less 

dense neighborhood (in terms of population). When the percentage of owner-occupied 

housing units, the median number of rooms, the per capita income, or the median 

household income are larger, water consumption is more sensitive to weather conditions. 

With the added variable representing the percentage of parcels with swimming pool 

within a block group, weather sensitivity has a positive relationship. This means that 

block groups with a higher percentage of households with pool are susceptible to climate 

variation. The Spearman correlation coefficients calculated for 2010 sociodemographic 

variables are similar in terms of the magnitude, direction and significance as those 

obtained with 2000 variables.  

Comparing with the correlation test results for Phoenix, we found that the 

correlation coefficients are generally higher for the case of Charlotte, and the household 

size variable is also a significant predictor to the index of sensitivity of water 

consumption to weather conditions. As we hypothesized, the household and housing 

factors that are closely linked to outdoor water usage such as area of lot, percent of 
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households with a pool and household income are significantly correlated with the 

sensitivity being investigated, although the magnitude of their correlation coefficients are 

not highest. 

As a nonparametric statistical method, Spearman rank-order correlation test cannot 

assess the associations between the dependent variable and multiple independent 

variables at the same time. One solution to this limitation is to generate components (or 

composite indices) from a group of factors and then evaluate the association between 

each component and the response variable of interest. We chose a few variables that are 

representative of water usage determinants (especially influential to outdoor usage), have 

a statistically significant Spearman correlation coefficient, and are comparable to the 

variable selection in the case study of Phoenix. These variables include area of lot, 

household size, percent of Hispanic population, median household income, and percent of 

parcels with a pool.  

We apply principal components analysis4 on these variables and obtained three 

factors with eigenvalues greater than 0.95.  Together the three components explained 

78.5% of the variation in the data (Table 8). The first component (mainly loading on 

income and percent of parcels with pool) represents the wealth of households, the second 

one is for household size (consisting of household size and percent of Hispanic 

population), and the variable area of lot alone is the third component. The results in Table 

9 show that water consumption of affluent households (component 1) in 2000 or 2010 is 

more sensitive to weather conditions. The relatively strong relationship between climatic 

                                                 
4 The principal components analysis method we applied does an eigen value decomposition, based on the 
correlation matrix of the variables involved. It is implemented using the “principal” package in R (Jolliffe, 
I. (2002) Principal Component Analysis (2nd ed,). Springer). 



97 
 

 
 

sensitivity and component 1 reinforces the associations individually observed with 

income and percent of parcels with pool. However, component 3 (area of lot) has a 

negative Spearman correlation coefficient, indicating the neighborhoods with smaller lot 

are more sensitive to weather conditions. This is opposite to the results when the single 

variable (area of lot) was investigated. The association of the household size component 

(component 2) with the R-squared values is negative but insignificant for the data in both 

years. Note the signs of the estimates of the component scores are different (positive in 

2000 and negative in 2010), thus the interpretations are opposite as well - larger family in 

2000 is less sensitive, while larger family in 2010 is more sensitive. This may be due to 

the change in household composition in terms of number of occupants within the last 

decade (households are becoming smaller). 

Table 8:  Unrotated principal component loadings and communalities 

Variable 
2000/2008 2010/2008 

Comp-
onent 1 

Comp-
onent 2 

Comp-
onent 3 

Comm-
unality 

Comp-
onent 1 

Comp-
onent 2 

Comp-
onent 3 

Comm-
unality 

Area of lot 0.227 0.067 0.965 0.988 -0.188 -0.323 0.928 0.999 

Household Size -0.017 0.796 -0.118 0.648 0.248 -0.708 -0.197 0.601 

Percent of 
Hispanic 

population 
-0.38 0.554 0.134 0.462 0.491 -0.458 -0.06 0.455 

Median annual 
household 

income 
0.654 0.177 -0.148 0.481 -0.609 -0.246 -0.214 0.477 

Average 
percent of 

households with 
a pool 

0.613 0.153 -0.119 0.414 -0.540 -0.352 -0.227 0.467 

Eigenvalue 1.786 1.178 0.96 3.924 1.784 1.219 0.941 3.944 

Percent 
Variance 

0.357 0.236 0.192 0.785 0.357 0.244 0.188 0.789 
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Table 9:  Nonparametric Spearman rank-order correlation coefficients between water 
consumption and the principal components 

Variables 
Spearman 
correlation 
(2000/2008) 

p-value 
(2000/2008) 

Spearman 
correlation 

(2010) 

p-value 
(2010) 

component 1 0.523 0.000 -0.525 0.000 

component 2 -0.067 0.210 -0.061 0.255 

component 3 -0.225 0.000 -0.150 0.005 

 
4.6 Conclusions and Future Work 

In this chapter, we first analyzed the temporal trend and spatial patterns of water 

consumption during 2000-2010 and found that average annual SFR water consumption 

per household is not evenly distributed across the study area and the temporal variations 

of water consumption are consistent with the weather dynamics in terms of mean 

temperature, total precipitation and the drought index PHDI. A closer look at the average 

summer and water usage at the block group level reveals that certain neighborhoods 

(especially in southern Charlotte) consumed much more water in summer than winter, 

possibly due to their households’ desire for lush lawn and/or outdoor activities.  Although 

these neighborhoods would be more vulnerable to the drought conditions, they have 

greatest potentials in terms of water consumption reduction and could be targets for 

discovering the underlying behavioral processes, and for experimenting policy 

interventions and conservation strategies.  

Furthermore, when the year-to-year changes in water usage are examined, we 

observed the heterogeneous responses at the neighborhood level to weather variations. 
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The analyses that followed specifically focus on the evaluation of the sensitivity of water 

consumption to atmospheric conditions. The major findings are: (1) despite the general 

low level of sensitivity compared to Phoenix, certain neighborhoods still exhibited mild 

but statistically significant sensitivity; (2) the temporal variations in water consumption 

explained by the three meteorological variables tend to cluster across geographical units; 

(3) high climatic sensitivity occurred in the neighborhoods with larger lots, more parcels 

with pools, larger and newer SFR houses, higher house value, or more number of 

bathrooms and bedrooms. Higher income neighborhoods or more owner-occupied areas 

are associated with larger sensitivity. Climatic sensitivity decreases with a high 

proportion of population younger than 19 years old, larger family, more percent of 

Hispanic population, or denser neighborhood. 

This study has several limitations.  First, correlation analysis (no matter Pearson or 

Spearman) cannot examine the relationship between dependent variable and multiple 

explanatory variables (no matter raw variables or principal components). Even if a 

multivariate statistical model is considered, we cannot avoid the issues such as 

distributional assumption and multicollinearity. Many machine learning techniques are 

largely free of these issues, and can be used to explore the complexity in the relationships 

between climatic sensitivity and household and housing characteristics in future. Second, 

the relatively low climatic sensitivity of the neighborhoods in Charlotte indicates that 

there could be other factors contributing the heterogeneous responses of neighborhoods 

to weather variations, such as water use restrictions or conservation campaigns taking 

effect during the droughts. We may need to capture the interaction of the weather 

variables and these factors when evaluating the sensitivity being investigated. Third, 
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monthly accumulative precipitation has a sporadic nature - a rain event could occur late 

in the month and produce a positive monthly anomaly, when in reality, the bulk of the 

month was actually dry and a large amount of water had been consumed before the 

rainfall came (Balling et al. 2008). So we can substitute monthly precipitation with other 

rainfall-related variables to be derived from daily weather datasets. Other weather 

variables such as evapotranspiration can be tested as well. Fourth, few of the 

socioeconomic and housing factors we used to explain climatic sensitivity are relevant to 

indoor water consumption. If we can collect the household level data regarding water 

consumption habit and water-saving fixtures or appliances for a long time period, we 

could conduct sensitivity analysis at the household level thereby better understand the 

heterogeneity of climatic sensitivity. 

 



 
 

CHAPTER 5:  UNDERSTANDING SFR WATER USE IN CHARLOTTE FROM A 
SOCIO-ECOLOGICAL PERSPECTIVE  

 
 

5.1 Introduction 

Urban water usage or demand has been a subject of interest of scholars and 

professionals from various domains, across which the meaning of urban water usage or 

demand varies. It is a technical term for hydrological engineers, or an economic concept 

(demand), given that water is a commodity. It could be referred to as a quantity, an 

outcome from individuals or households’ behavior, or a behavioral process per se. We 

acknowledge the systematic view on urban water usage/demand as a coupled human and 

natural system (also known as social-ecological system). In this system, individuals or 

households dominate the internal processes, including the actions of consuming and 

conserving water and making decisions for what purposes, when and how much water is 

used. Nevertheless, the external processes that are going on in the biophysical, social and 

economic environment can interfere with water usage behaviors, thereby influencing 

demand for water. Outdoor water usage can be greatly affected by the interactions 

between the household preferences for lush lawns and healthy vegetation and the natural 

processes related to water cycle (Figure 27), such as soil types, rates of 

evapotranspiration, precipitation, and types of vegetation. The social processes such as 

the implementation of price, non-price water policies and conservation campaigns at the 

municipal or regional level, and neighborhood-level rules and regulations (for example 
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 homeowner association’s (HOA) mandatory lawn maintenance policies (Harlan et al. 

2009) could constrain or facilitate water consumption. The complex interactions between 

human and natural system variables at multiple spatial and temporal scales make it 

complicated to predict and manage urban water demand (House-Peters and Chang 2011). 

 

Figure  27:  Water cycle 

Source: Environmental Education for Kids by Dept. of Natural Resources, Wisconsin, US 

dnr.wi.gov/org/caer/ce/eek/earth/groundwater/watercycle.htm 

A pertinent framework has recently been suggested to examine the complexity 

involved in socio-ecological systems. Integrating different perspectives of system 

structure from hierarchy theory (Allen and Starr 1982), landscape ecology (Forman 1995; 

Pickett and Cadenasso 1995; Wiens 2000), and patch dynamics (Pickett and White 1985), 

Cadenasso et al. (2006) posited the existence of three dimensions of complexity, 

including spatial heterogeneity, organizational connectivity, and historical contingency. 

Spatial heterogeneity is often described as patches (discrete areas that differ in structure, 

composition, or function) in the ecology domain. In addition to land cover and land use 

patches, we can rely on various human and natural variables to construct patches, such as 
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soil permeability, zoning and census geographic units (Cadenasso et al. 2006). From the 

regional science perspective, spatial heterogeneity refers to the uneven distribution of a 

trait, event, process, or relationship across a region (Anselin 2010). Organizational 

connectivity is about the processes, interactions and organizational structures related to 

the spatially arrayed components like patches. Historical contingency refers to 

relationships that extend beyond direct, contemporary ones. Indirect effects, lagged 

effects, and the impacts of past states of the system all are identified as historical 

contingency with higher complexity (Grove et al. 2012). As you can see, this complexity 

framework essentially emphasizes space, organization/structure, and time as necessary 

components for modeling and understanding socio-ecological systems (Cadenasso et al. 

2006). These dimensions are also important for exploring urban water usage as a socio-

ecological system. 

Although being stored in water pipes lying underground, the water used by urban 

residents is essentially a kind of resource that is processed and ready-to-use. Consuming 

water is essentially the process of exploiting the processed natural resource, similar to the 

development of natural land into different uses (the difference is that water use does not 

physically exist as land use does). Since water consumption can be spatially attached to 

parcels, census geographies or other spatial units, we can conceptualize the distribution of 

urban water use as a virtual ‘waterscape’, and the basic components of waterscape would 

be water patches represented by the geometric shape of parcels or census geographies. In 

this way, we can easily apply the framework described above to study the complexity in 

urban water use along the three dimensions, that is spatial heterogeneity, organizational 

connectivity, and historical contingencies. 
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Research on water use started paying attention to spatial heterogeneity of 

residential water use only in the recent years. When the spatial distribution of residential 

water consumption was examined at either the census tract or block group scale, an 

evident clustering pattern was observed across all of the case studies (Guhathakurta and 

Gober 2007; Wentz and Gober 2007; Balling et al. 2008; Lee and Wentz 2008; Chang et 

al. 2010; House-Peters et al. 2010; Polebitski and Palmer 2010; Breyer et al. 2012; 

Ouyang et al. 2014). Advanced statistical models were employed in a few studies to 

reveal the role of spatial autocorrelation and spatial dependence (a spatial form of 

connectivity) in explaining the variation in water consumption. Using a geographically 

weighted regression (GWR) model, Wentz and Gober (2007) found there is spatial 

variation in the relationships between SFR water usage and four factors including 

household size, the presence of swimming pools, lot size, and the prevalence of 

landscaping; also neighboring census tracts in Phoenix respond similarly to changes in 

the significant independent variables. Chang et al. (2010) compared the results from the 

traditional OLS regression model for SFR water consumption per household and the 

spatial error model and concluded that the influence of building size and age was 

overestimated by the model without accounting for spatial dependence among residuals.  

In terms of time dimension in the water use literature, three ways are commonly 

seen. One is to conduct analyses for multiple time points (usually yearly) separately then 

make comparison (of pattern or estimation) (House-Peters et al. 2010; Aggarwal et al. 

2012) or calculate the mean estimates (Polebitski and Palmer 2010). Time series models 

are often developed at a coarser spatial scale (municipality or community) (Maidment 

and Parzen 1984; Gutzler and Nims 2005) and/or smaller temporal scale (daily and 
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monthly) (Billings and Agthe 1980; Rhoades and Walski 1991). Moreover, several 

studies have used panel data approaches to incorporate temporal and subject-based 

variability for better estimates (Nieswiadomy and Molina 1989; Schneider and Whitlatch 

1991; Höglund 1999; Kenney et al. 2008; Polebitski and Palmer 2010, to list a few). 

However, the exclusively time series analyses are limited by the (un)availability of 

longitudinal data for explanatory variables (House-Peters and Chang 2011), not to say the 

spatially explicit time series analyses of demand. 

Most of the studies on water demand model have examined the effects of its 

determinants measured at the same time point as the dependent variable – water use. 

However, given the social processes involved in water consumption behavior (for 

example the desire of a community/neighborhood for a lush green landscape) and the 

slow changing process of land uses and housing development, the water usage 

phenomenon may exhibit some form of contingency, meaning that the current 

neighborhood-level water use is possibly dependent on the historical state of water usage 

(path dependence theory). Although adding a time lagged water consumption variable 

could directly capture such a historical contingency, this does not best serve the purpose 

of explaining the phenomenon and supporting policy-oriented decision-making. Instead, 

to examine separately the effects of the historical condition of associated factors and the 

effects of their changes on water use in a statistical model enables the question “whether 

or not the historical state of a factor is more important than its temporal change, or the 

two are equivalently important” to be answered, thus different policy implications could 

be provided accordingly.  
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This point is emphasized in Ouyang’s research (2013). Using Phoenix as the case 

study, he studied the historically contingent effects of selected determinants on residential 

water consumption and found housing, household, and climate factors in the earlier year 

exhibit more important effects than their temporal change (between 2000 and 2009) on 

the SFR water usage. They argued that the studies quantifying spatial patterns did not 

consider how spatial dependence at one time manifests into future patterns of water usage. 

Thus they further quantified spatial heterogeneity and connections in the historically 

contingent effects they identified. This research represents an interesting application of 

the complexity framework of socio-ecological systems suggested by Cadenasso et al. 

(2006) in understanding the spatio-structural and temporal dimensions of urban water 

usage (Ouyang 2013), although the heterogeneity, connectivity, and contingency three 

dimensions are not investigated in parallel but in a nested way.  

Following the same path, we propose to examine the complexity in SFR water 

usage in Charlotte, NC under this complexity framework. To approach this goal, we set 

three objectives: (1) Examine whether the socio-economic factors (household and 

housing) in history (the year 2000) and their changes between 2000 and 2008 are 

associated with SFR water usage, (2) Determine whether the associations between SFR 

water usage and these factors demonstrate spatial variability, (3) Explore the spatial 

dependence of the empirical relationship between SFR water usage and these factors.  

This study focuses on yearly SFR water use at the block group scale. We apply 

OLS regression to quantify the relationship between annual SFR water usage per 

household and the previous status of household and housing factors and their changes in 

quantity between 2000 and 2008. The spatial heterogeneity and connectivity in the 
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contingent effects of the determinants of water usage are then examined to help 

understand the location effects that influence the spatial variability of water consumption 

across the neighborhoods being studied. We use spatial statistical model and 

Geographically Weighted Regression (GWR) model to study these two aspects. 

5.2 Data and Variables 

Usually when the association between a dependent variable and its determinants is 

being studied, the contemporary states of the determinants are employed. However, 

considering the determinants may change over time, the effects of associated factors can 

be decomposed into two components; one is from their historical state, and another is 

their temporal change (the change between the current state and the historical state). A 

comparison of these two types of effects will result in three possible outcomes. Either the 

historical states of associated factors Xs are more (larger effects) or less (smaller effects) 

important than their temporal change (referred to as ΔXs), or the two are relatively of the 

same importance. In this way, the historically contingent effects of associated factors can 

be examined. Based on the three outcomes described above, Ouyang (2013) classified a 

system of residential water usage into three types (Types I, II, and III). In a Type I system, 

the historical states of associated factors Xs outweigh their temporal change) in 

influencing current residential water usage. The opposite condition characterizes a Type 

II system. In a Type III system, both historical state and temporal change affect water 

consumption in the similar magnitude. In order to assess what type of system the SFR 

water use in a study area belongs to, we need to compile datasets for two time points and 

calculate the temporal changes of each variable of interest.  
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Given that only parcel and building datasets in 2008 (used for deriving the factors 

related to housing characteristics) are available, we choose the annual SFR water 

consumption per household in 2008 as the dependent variable (Table 10). The earliest 

complete billing records we obtained are for the year 2000, which becomes the historical 

time point for examining the temporal contingency.  

Housing variables included in this analysis are average house age, percent of units 

with a pool, area of irrigable land, and housing density. The housing density is calculated 

by dividing the total number of residential units within a block group by the total area of 

the block group. For the other three factors, values were first calculated for the premises 

that are located on the one-unit parcel and have non-zero water consumption in all of the 

twelve months of a certain year, and then averaged to obtain the measures for block 

groups. The specific definitions of these three variables are given in chapter 2 (in section 

2.3.2). Note that the values for the two variables, percent of units with a pool and area of 

irrigable land, are estimated and errors may be non-trivial. The information about the 

impervious area of a parcel and the exact number of stories of a house is estimated, which 

are the important pieces for calculating irrigable land area. Although we are able to 

retrieve the parcel attribute about the pool from the table Special Features & Yard Items 

in the Mecklenburg County Assessor Database in 2006 and assume the existence of a 

swimming pool will not change once built, it is common in reality that the swimming 

pool of a house was removed or filled or built when or after the house was sold and re-

occupied, and unfortunately such a change is not tracked by appraisers all the time. Thus 

the information on the presence of a swimming pool may not always be accurate, and so 

would the derived percentage variable. 
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The housing variables for 2000 are calculated based on buildings constructed 

before 2001. The reference year for the calculation of the house age variable is 2009, 

which means a housing unit built in 2008 is one-year-old.  

For socioeconomic characteristics of households, we use decennial census 2000 

and 2010 datasets. Although the 2008 household characteristics at the block group level 

may be different from the ones recorded in 2010, we could not find a dataset that would 

be closer to the 2008 reality and as reliable and accurate as 2010 decennial census data. 

We prepare a list of census variables that have been found to be empirically associated 

with water consumption, but only include median household income, the size of 

household, and the percentage of owner occupied housing units in the final analyses, each 

of which shows a strong and significant association (at the 0.05 level) with the dependent 

variable when being tested individually and does not cause multicollinearity when being 

added to the multivariate regression model.  

To calculate the value change of census variables from 2000 and 2010, we have to 

resolve the issue of spatial mismatch since the boundary of some block groups may have 

changed. For this purpose, we modify the block relationship file provided by the Census 

Bureau, based on which the 2010 block group data (continuous variables) are adjusted to 

the 2000 block group boundaries.   

Once the datasets for 2000 and 2008/2010 are created, the difference between the 

two values for each independent variable can be computed to represent the temporal 

change. We adjust the average age of buildings in 2000 to the year of 2008 by adding 8 

years for each block group so that its temporal change reflects actual new housing 

development.  
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We cannot include climate factors because the entire county only has one 

observation station; thus temperature and precipitation for a certain year are constant 

across block groups. There are fourteen block groups that have less than 20 parcels with 

non-zero water consumption either in 2000 and 2008. We exclude them from the analyses 

to reduce the bias of the measures that may be introduced by small samples. 

Table 10:  Descriptive statistics of the dependent and independent variables 

Variables Units Mean Std. dev. Min Max 
SFR Water Use per Household CCF 104.442 26.554 64.452 237.92 

Household Size in 2000 
person 

2.509 0.393 1.29 3.63 

Change in Household Size -0.027 0.242 -1.417 0.799 

Median Household Income in 2000 
1999 $ 

53950.44 28652.33 7717 200000 

Change in Median Household Income -19130.2 16182.95 -127849 20894 

Housing Density in 2000 unit per 
square 

km2 

245.764 152.506 2.659 735.691 

Change in Housing Density 27.708 35.595 0 242.953 

Average Age of Buildings 
year 

32.78 17.391 2.141 82.3 

Change in Average Age of Buildings -3.733 5.866 -43.606 5.937 
Percent of Households with Pools in 
2000 

% 
2.454 3.134 0 21.74 

Change in Percent of Households with 
Pools 

-0.009 1.133 -10.462 4.731 

Area of Irrigable Land in 2000 square 
feet 

15689.25 8604.025 3095 92484.16 

Change in Area of Irrigable Land -630.94 4793.878 -67618.1 14867.16 
Percent of Owner-Occupied Housing 
Units in 2000 

% 
62.985 25.205 4.829 99.327 

Change in Percent of Owner Occupied 
Housing Units 

-3.537 10.817 -64.3412 42.664 

 

5.3 Methods 

Ordinary least squares (OLS) regression, spatial regression, and geographically 

weighted regression (GWR) are used to determine the relationship between SFR water 

consumption per household in 2008 and the explanatory variables (see Table 10). Both 

OLS and spatial regression models assume a global relationship across spatial units 

(spatial stationarity), while GWR assumes spatial non-stationarity in the relationship.  
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An OLS regression model is defined as:  

௜ܻ ൌ ଴ߚ	 ൅	ߚ ௜ܺ ൅	ߝ௜                                                                     (Eq. 4.1) 

where ௜ܻ is the SFR water consumption per household in block group ݅	ሺ݅ ൌ

1,… ,ܰሻ, ௜ܺ is a vector of observations on the explanatory variables in block group ݅, ߚ଴is 

the intercept, ߚ is a vector of coefficients for the explanatory variables, and  ε୧ is the error 

term. ε୧	 is assumed independently and identically distributed for all i ఌଶߪ ,௜~ N(0ߝ)  ). 

However, spatial autocorrelation that possibly exist in the data will violate the 

independence assumption of OLS regression. Spatial regression models can explicitly 

account for spatial autocorrelation in the form of lag or error dependence (Ward and 

Gleditsch 2008).  

There are two basic types of spatial regression models, spatial lag and spatial error 

models. In spatial lag models the dependent variable is affected by the dependent 

variables in adjacent places, while in spatial error models, the error terms across different 

spatial units are correlated. The spatial lag model is expressed as: 

௜ܻ ൌ ଴ߚ	 ൅ ܹߩ ௝ܻ ൅	ߚ ௜ܺ ൅	ߝ௜                                                   (Eq. 4.2) 

where ߩ is the spatial autoregressive coefficient, ܹ refers to a spatial weight matrix, 

and the other notation is as before. The spatial error model is specified as: 

൜ ௜ܻ ൌ ଴ߚ	 ൅	ߚ ௜ܺ ൅	ݑ௜
௜ݑ ൌ 	λܹݑ௝ ൅	ߝ௜							

                                                       (Eq. 4.3) 

where ݑ௜  is a vector of the spatially correlated error terms, λ  is the spatial 

autocorrelation coefficient. 

Two test statistics—Lagrange Multiplier (LM) statistic and Robust LM statistic can 

be used to test whether the spatial lag or spatial error model should be used instead of 
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OLS. The LM statistic from our analysis suggests that the spatial lag model is a better 

option to incorporate spatial dependence. A queen contiguity spatial weight matrix is 

constructed for the spatial lag model. 

In both spatial lag and error models, the parameter estimates of the independent 

variables (ߚ) and the intercept ߚ଴ are the same for all spatial units (block group). GWR 

differs from spatial regression models in that it calculates a unique set of parameters for 

each spatial unit, defined by geographic coordinates (ݑ,  A GWR model for spatial unit .(ݒ

݅ is defined as: 

௜ܻ ൌ ,௜ݑ଴ሺߚ	 ௜ሻݒ ൅ ,௜ݑሺߚ ௜ሻݒ ௜ܺ ൅  ௜                                           (Eq. 4.4)ߝ	

As seen from the Equation 4.4, the coefficients ߚ଴ሺݑ௜, ,௜ݑሺߚ ௜ሻ andݒ  ௜ሻ of blockݒ

group ݅	are dependent on its location. GWR runs a local regression model for each spatial 

unit from the values of the dependent and independent variables at that location and 

weighted values (typically weighted by an inverse distance) of neighboring units. Nearby 

values either can be sampled from a fixed distance from the observation (called a fixed 

kernel) or a varying distance (called an adaptive kernel). The optimal distance (for a fixed 

kernel) or optimal number of neighbors (for an adaptive kernel) is determined using an 

(minimize) Akaike Information Criterion (AIC) or a (leave-one-out) cross-validation 

approach.  

GWR generates coefficients, standard errors, t-scores, and r2 values for each spatial 

unit. We can map these results to show the heterogeneous effect of each independent 

variable on water use in 2008 varying by location. Thus GWR is a useful tool in 

depicting spatial heterogeneity in the relationships between block-level SFR water usage 

per household and the determinants of water consumption. 
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5.4 Regression Analysis 

The average water usage per household in 2008 ranges from 64.45 to 237.92 CCF 

(1 CCF is equivalent to 748.05 gallons, thus 48,211.8 to 177,976.1 gallons), but 90% of 

the values fall below 139 CCF (103,979 gallons). The global Moran’s I scores (in GeoDa) 

for 2000 and 2008 water usage are 0.617 and 0.584 respectively (p <0.001), which 

indicates that water consumption is spatially autocorrelated across the block groups and 

this spatial dependence persists over time. The block groups with higher water usage in 

2008 are mostly located in southern Mecklenburg where the neighborhoods are relatively 

more affluent (Figure 28). In contrast, the low or lower water consumption 

neighborhoods concentrate in the eastern periphery of Uptown as well as the areas near 

and surrounding the urban core. These areas are also associated with lower household 

income.  

 

Figure  28: Spatial distribution of SFR water usage per household in 2008 
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We start with OLS regression. The basic assumptions of OLS models (such as 

multicollinearity, homoscedasticity and spatial independence of errors) are tested in 

GeoDa. A spatial autocorrelation is found in the residuals of the OLS model (the Moran’s 

I score is 0.185, p ≤ 0.0001). Therefore, we tested for the spatial dependence using the 

queen-contiguity-based spatial weight matrix. The diagnostics for spatial dependence 

showed that both simple tests (Lagrange Multiplier (LM)) of the lag and error models are 

significant, indicating the presence of spatial dependence. The robust measure for the 

lagged dependent variable is also significant, while the robust LM test for the lagged 

error is not. Comparing the Akaike Info Criterion (AIC), Schwarz Criterion (SC) (also 

called Bayesian Information Criterion) and Log Likelihood (LL) values of the spatial lag 

and spatial error models, the spatial lag model (AIC=2822, SC = 2876, LL=-1397) has a 

slightly better fit than the spatial error model (AIC=2833, SC = 2883, LL=-1404). 

Therefore, only the results of the spatial lag model are reported. The OLS and SLM 

results are summarized in Table 11. The variables of age of housing units in 2000 and its 

change did not have significant associations with water usage in 2008 and are thus not 

reported.  

All the explanatory variables together explain 67.6% of the variance in the 2008 

average water usage in the OLS regression model. Most of the variables in the model 

have statistically significant effects at the 95% significance level, except for the area of 

irrigable land in 2000 and the temporal change in housing density. The variables median 

household income, household size, percent of households with pools and percent of 

owner-occupied housing units in 2000 have higher standardized coefficients than their 
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temporal changes between 2000 and 2008/2010. This indicates that the historical states of 

the variables included have more important influences on water consumption in 2008.  

Compared to the OLS regression model, the spatial lag model yields a better fit 

since it has higher log-likelihood and lower AIC and BIC (Table 11). The housing 

density in 2000 is not significant any more at the 95% confidence level in the spatial lag 

model.  The changes in the magnitudes of the significant variables present no systematic 

trend. The coefficient of the lagged water consumption in 2008 (0.371) is highly 

significant (p < 0.001), and the likelihood ratio test also shows significant result (16.926, 

p ~= 0.000). In addition, the Moran’s I score (0.0046, p = 0.413) indicates no significant 

spatial autocorrelation in the residuals. These results confirm the effectiveness of the 

spatial lag. However, the Heteroscedasticity Test remains significant. So the addition of 

the lagged dependent variable to incorporate spatial autocorrelation in the model 

improves the model fit, but it does not make the spatial effects go away. The GWR model 

on average explains about 69.1% of the variance in water use in 2008. The AIC score of 

the GWR model (2865) is slightly lower than those of the OLS regression and slightly 

higher than of spatial lag model (2869 and 2822, respectively), indicating that the GWR 

model is a better fit to the data than the OLS regression, but not as good as the spatial lag 

model. The Moran’s I score (0.192, p ~= 0.000) indicates there is still significant spatial 

autocorrelation in the residuals of the GWR model. It seems that the GWR model does 

not account for the spatial dependence effects. 

 

 

 



116 
 

 
 

Table 11:  Results of ordinary least squares model and spatial lag model 

Variables Coefficient                   
(Standard Error) t/z-value Standardized 

coefficient 

 OLS SLM OLS SLM OLS 

Median household 
income in 2000 

0.00082*** 
(0.000006) 

0.00065*** 
(0.000006) 

13.827 11.180 0.885 

Change in Median 
household income 

0.00054*** 
(0.000008) 

0.00044*** 
(0.000008) 

6.434 5.805 0.330 

Household Size in 
2000 

8.263**       
(2.547) 

9.257***  
(2.304) 

3.245 4.018 0.122 

Change in Household 
Size 

10.682**    
(4.052) 

10.161** 
(3.652) 

2.636 2.783 0.097 

Percent of Households 
with Pools in 2000 

2.565***     
(0.399) 

1.756***  
(0.374) 

6.437 4.697 0.303 

Change in Percent of 
Households with Pools 

2.572**       
(0.810) 

2.121**   
(0.732) 

3.175 2.897 0.110 

Area of Irrigable Land 
in 2000 

0.00026 
(0.00016) 

0.00027 
(0.00015) 

1.639 1.843 0.086 

Change in Area of 
Irrigable Land 

0.00066** 
(0.00024) 

0.00056** 
(0.00022) 

2.767 2.597 0.120 

Housing Density in 
2000 

-0.0163*   
(0.0064) 

-0.0111 
(0.0058) 

2.536 -1.912 -0.0936 

Change in Housing 
Density 

0.00045     
(0.028) 

-0.0116  
(0.026) 

0.016 -0.455 0.0006 

Percent of Owner 
Occupied Housing 

Units in 2000 

-0.268***     
(0.052) 

-0.260*** 
(0.047) 

-2.465 -5.526 -0.254 

Change in Percent of 
Owner Occupied 
Housing Units 

-0.233*          
(0.094) 

-0.226**  
(0.085) 

-5.122 -2.654 -0.0947 

Lagged Water Usage 
in 2008 

-- 
0.371***  
(0.051) 

-- 7.228 -- 

*: p<0.05; **: p<0.01; ***: p<0.001.  

R2: R2(OLS) = 0.676; R2(SLM) = 0.727 (not directly comparable) 
Log-likelihood (LL): LL(OLS) = -1422; LL(SLM) = -1397 
Akaike information criterion (AIC): AIC(OLS) = 2869; AIC(SLM) = 2822 
Schwarz criterion (SC): SC(OLS) = 2919; SC(SLM) = 2876 

Figure 29 shows the spatial distribution of the local R2 for each block group, with 

values ranging from 0.672 to 0.703. Overall, the local models do not explain much better 
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than the OLS regression model the variance in water consumption in 2008, but the local 

R2 shows a clear trend of southern low values and northern high values.  

 

Figure  29:  Spatial distribution of the local R-squared values from the GWR model 

The essence of GWR model is to construct local relationship of dependent variable 

and independent variables for each spatial feature to understand the individual underlying 

process under a local context. Thus regression coefficients for each geographic unit 

(block group in this case) are calculated, and examining the spatial variations in the local 

coefficients will help reveal spatial non-stationarity in the relationship (e.g. SFR water 

consumption in 2008 and the household and housing variables). The spatial patterns of all 

the estimated local coefficients (no matter significant or not) for all the explanatory 

variables present gradual changes (decreasing or increasing coefficients from south to 

north or from east to west).  
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In terms of statistical significance, most of the variables have significant local 

coefficients in all or part of the block groups, except the temporal change in housing 

density. For the variable percent of owner occupied housing units, less than 10% of the 

block groups have insignificant coefficients.  Only a quarter of the local coefficients of 

the area of irrigable land in 2000 are significant, while less than 5% of the block groups 

have insignificant coefficients for the temporal change in this variable. Next we describe 

the spatial variations in the significant local coefficients for all the variables (Table 12). 

5.5 Discussion 

5.5.1 Historical Contingency 

The results of OLS regression and spatial lag models suggest that socioeconomic 

and housing variables in 2000, except for the area of irrigable land, have more important 

impacts than their temporal change during 2000-2008 in predicting SFR water usage per 

household in 2008. Although Charlotte and Phoenix are located within different climate 

zones, SFR water consumption in Charlotte belongs to the same Type I system (defined 

by Ouyang (2013)) as the one in Phoenix.  This implies the persistent lifestyles of 

households largely determine water consumption assuming no behavioral change and 

water conservation policy take effects (these factors are not included in the analyses).  

Moreover, the time span of this study is relatively short (less than a decade), and the built 

environments and the household structure and characteristics changed relatively slowly. 

Thus to observe a dramatic response of life-style-determined water consumption to 

temporal changes in housing and household factors given a relatively conservative 

political environment in Charlotte is not easy or expected. 
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After incorporating spatial autocorrelation, the spatial lag model shows that the 

temporal changes in household size and pool ownership have slightly larger effects than 

their historical status. The historical contingency of water use on the area of irrigable land 

is not observed; instead, the increase in the size of irrigable areas exerts stronger and 

significant effect on water usage in 2008.  

Among the housing and socioeconomic factors, the historical state of and temporal 

change in median household income have the largest positive associations with water 

usage. The effects of pool ownership rank second. The effects of temporal change in 

household size and area of irrigable land indicate that the decreasing household size and 

the development of single-family homes with smaller yards would decrease water usage. 

Similar to the Phoenix case, neither of the factors of historical housing density or its 

temporal change is statistically significant in the spatial lag model. Be aware that the 

density is derived based on the total area of block groups, not the areas of land uses that 

were developed with or zoned for SFR houses.   

5.5.2 Spatial Connectivity and Spatial Heterogeneity 

We have the following observations in terms of spatial connectivity in SFR water 

usage and its relationship with associated factors. First, SFR water consumption shows a 

significant spatial dependence between neighboring block groups in Charlotte. Higher 

water usage neighborhoods cluster in the south of the county, while some blocks groups 

with lower water consumption form significant clusters in the eastern areas close to urban 

core. Second, for most of the household and housing factors, the local coefficients in the 

GWR model are significant, but their magnitudes vary in space and demonstrate 

gradients patterns. Third, beyond the effects of those factors and spatial autocorrelation of 
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the dependent variable we have considered in the spatial lag model, the significant 

Heteroscedasticity Test suggests that SFR water consumption in 2008 is also affected by 

some other omitted factors locally and between neighboring block groups. 

Spatial heterogeneity is also evident in terms of the relationship between SFR water 

usage and the explanatory factors. The spatial distribution of the local R2 from the GWR 

model indicates that the household and housing factors better explain the variability of 

SFR water usage in the northern neighborhoods than in the southern neighborhoods. All 

the historical and temporal variables exhibit significant spatial variations if all the block 

groups with significant or insignificant local coefficients are included. The strong 

clustering patterns of statistically significant local coefficients also provide evidence of 

the spatial heterogeneity in the relationship between SFR water use and most of the 

factors except area of irrigable land in 2000 and the temporal change in housing density. 

5.6 Conclusions 

We applied a framework originally proposed for socio-ecological systems to study 

the complexity in SFR water use in Charlotte along the three dimensions - spatial 

heterogeneity, spatial connectivity, and historical contingency. The spatial pattern of the 

“waterscape”, no matter it is for a single year (annual water use in 2008 in this chapter) or 

for multiple-year average (average annual water use as in chapter 4), reveals evident 

spatial heterogeneity and significant spatial dependence. This is consistent with the 

existing literature with a focus on the spatial dimension of water usage. To explore the 

role of historical contingency in modeling residential water usage, we separately estimate 

the effects of a factor at a historical time point and its temporal change from the past to 

the present on SFR water usage per household in Charlotte. Similar to the findings from 
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the case study of Phoenix, most of the historical household and housing variables (in 

2000) have larger significant influences than their temporal change during 2000-2008 

when an OLS regression model is estimated. As Ouyang indicated (2013), although 

average water usage generally declined in the past decade, the behaviors that tend to use 

more water (more likely for outdoor activity) may not experience a radical change 

probably due to a long-established lifestyle. For those factors, it would be more useful to 

promote behavioral change than the reconfiguration of physical or social structure (the 

latter one is less controllable or changeable through governance). 

The effect of the area of irrigable land in 2000 is not significant. In contrast, the 

temporal change in area of irrigable land between 2008 and 2000 is significantly 

positively associated with the SFR water usage in 2008. The possible implication is that 

the new houses with larger or smaller than historically average irrigable lot size in a 

neighborhood may induce a larger increase or decrease in water use, assuming the 

household preference to watering lawn or other vegetation does not change over time. 

The temporal change in housing density has a positive sign, though it is not significant. 

Considering the assumption that increased housing density would lead to less water usage, 

the positive sign may reflect the nonlinearity in the relationship between housing density 

and SFR water consumption, meaning that when housing density become higher and 

higher, its effects on inducing water usage reduction may become smaller or disappear. 

The incorporation of the spatial dependence in the dependent variable to the model 

improves the model fit and manifests a decrease in the coefficient estimates in majority of 

the explanatory factors.  
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The historical contingency in terms of housing density became insignificant. The 

results from the GWR model show obvious spatial heterogeneity and connections in the 

relationship between SFR water usage per household and the factors being examined. 

The spatial variabilities exhibited in the local associations in terms of the historical 

variables and the change variables differ for most factors except median household 

income. The possible policy implications from the GWR analyses are, for the factors with 

which history contingency dominates over temporal change, it is better to establish 

different policies or programs for the neighborhoods in the south vs the north of the 

Charlotte region, while for the factors whose temporal change exerted better effects, it 

would be useful to differentiate the intervention strategies for the east vs. the west of the 

Charlotte region.  

There are a number of limitations preventing us drawing definite conclusions from 

this study. First, the spatial lag model did not eliminate the spatial autocorrelation in the 

residuals, indicating the possibility of model misspecification. To some extent, the spatial 

heterogeneity observed in the GWR results itself also implies this problem, and GWR 

models can be vulnerable to misspecification issue. Although we have tested all the 

possible determinants we have data for, we did not resolve the issue. We may try to add 

spatial lag variable to GWR model, or include the lag of the explanatory factors in OLS 

and spatial statistical models. Second, the idea of decomposing a variable into historical 

and temporal change component would introduce multicollinearity. Although 

multicollinearity issue is not manifested in the OLS and SLM models we estimated, the 

decomposition may potentially increase the likelihood of inducing local collinearity in 

GWR applications (Wheeler and Tiefelsdorf 2005). The imperfection existing in the 
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dataset (due to temporal mismatch of parcel/building and census data, spatial mismatch 

of census boundary, and the incomplete or un-updated information about lawn and pool) 

would add concerns to the coefficient estimates. Thus, this study is more exploratory in 

nature, and we are more cautious with offering policy implications, although the general 

conclusions such as the presence of the complexity in SFR water use in terms of spatial 

heterogeneity, spatial connectivity, and historical contingency should hold. The study 

serving the first but important step will motivate us to make greatest endeavor to improve 

the model, including identifying more valuable factors, seeking or generating data for 

them, resolving spatial/temporal mismatch issues, getting better estimates for the current 

variables, exploring seasonal water use instead of yearly with different sets of factors, 

experimenting water use data from a different year, etc. 



 
 

CHAPTER 6:  A SPATIAL ECONOMETRIC ANALYSIS OF URBAN WATER 
DEMAND: EVIDENCE FROM CHARLOTTE, NORTH CAROLINA 

 
 

6.1 Introduction 

Research on urban water usage has mainly focused on identifying determinants and 

quantifying their effects in order to understand the processes underlying the phenomenon 

(of water usage). For this purpose, panel data is preferred (if available) because of their 

advantages over cross-sectional and time-series data. In a panel dataset, there are multiple 

subjects with repeated observations over multiple time periods. Using panel data, we can 

incorporate both temporal- and subject-based variability into the model specification and 

control for the effects of omitted or unobserved variables, and thus obtain more efficient 

and consistent parameter estimates (Arbués et al. 2003; Polebitski and Palmer 2010; 

Ouyang 2013). A number of empirical studies exist that use panel data to estimate and 

predict water usage (for a list of literature, refer to Arbués et al. 2003, Worthington and 

Hoffman 2008, Polebitski and Palmer 2010, Ouyang 2013). A majority of them 

employed the household or city/town as the unit of subject, and the temporal scale of 

observations in the panel data varies from daily, monthly to seasonal and yearly. Few 

researches have applied panel data models to investigate water usage at the multihouse, 

or neighborhood (typically census tract or block group) level, which could be appropriate 

spatial scales for planning and policy-making purposes (Polebitski and Palmer 2010).  
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 In contrast, there is no lack of water demand models based on cross-sectional data 

at the census tract or block group level. Some of them have paid attention to the spatial 

pattern of residential water consumption. The research groups who have been 

continuously focusing on residential water consumption in Phoenix, Arizona 

(Guhathakurta and Gober 2007; Wentz and Gober 2007; Balling et al. 2008; Lee and 

Wentz 2008; Ouyang et al. 2014) and Oregon, Portland (Chang et al. 2010; House-Peters 

et al. 2010; Breyer et al. 2012) have reported clustering patterns of low and high water 

users at the census tract or block group level. To address the impacts of spatial 

autocorrelation or dependence on model estimation, various spatially explicit methods 

have been adopted for better modeling practices. This includes Spatial Lag Model (SLM) 

(House-Peters and Chang 2011), Spatial Error Model (SEM) (Chang et al. 2010), and 

Bayesian Maximum Entropy (BME) mapping method (Lee and Wentz 2008). 

The presence of spatial autocorrelation and spatial dependence in water 

consumption needs to be accounted for when using neighborhood-level panel data since it 

may invalidate the independence assumption of panel data models. Failure to do so may 

produce inconsistent and biased parameter estimates (LeSage and Pace 2009). The recent 

development of spatial panel data models (Anselin et al. 2008; Elhorst 2010) offers a 

great solution to this issue.  

Scant literature exists on panel data modeling to explain the associations between 

water consumption and its determinants, accounting for spatial effects in panel data 

model, except for a recent study by Ouyang and his collaborators (2013). In their 

empirical study of Phoenix, several traditional (also referred to non-spatial) and spatial 
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panel data models were applied to examine which model is more appropriate in the 

context of residential water usage research using tract-level panel data.  

Our previous analysis (in chapter 4) on the spatial pattern of SFR water 

consumption in Charlotte has provided evidence on spatial heterogeneity and spatial 

dependence and we have monthly and yearly panel data to model the relationship of SFR 

water usage and various factors.  Therefore, we are interested in quantifying the effects of 

determinants of water consumption by means of spatial panel models. The benefits of 

using spatial panel models are that we not only could get more reliable estimates, but also 

understand how spatial effects contribute to modeling SFR water usage in the fast-

growing southeastern city – Charlotte – and furthermore gain some insights on demand-

management policy from such understanding. Additionally, this will add a new empirical 

application of spatial panel models in the context of water research.  

In this research, we propose two objectives: (1) Examine the empirical needs for 

incorporating spatial dependence and heterogeneity into panel data models of water 

consumption; (2) Identify the observable factors and quantify their associations with SFR 

water consumption in Charlotte by the integration of panel data and the spatial 

econometric modeling framework. 

At variance with the case study in Phoenix, we look at a finer geographical scale 

(block group) and water consumption in the recent years. The price and water usage 

restriction variables are included in our empirical models.  

Based on the findings in the literature (summarized in chapter 2) and preliminary 

analyses (the associations between water usage and weather factors in chapter 4 and the 

analysis about the historical contingency in chapter 5), we have the following hypotheses 
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about the effects of determinants: (1) weather factors would make a great contribution to 

local water usage on a monthly basis in Charlotte, (2) some household and housing 

characteristics such as household size, income, and lot size better explain monthly water 

consumption than the others (for example age factors and housing density), (3) price 

effect would be inelastic, and become smaller with the intervention of water usage 

restrictions which supposedly show negative effects. 

6.2 Data and Variables 

The observations for the dependent variable are monthly SFR water usage per 

household at the block group level. We choose this temporal scale for two reasons. First, 

the effects of weather factors on monthly water usage are expected to be more significant 

than on annual water use. Second, we attempt to evaluate the effects of the price and 

water usage restrictions variables during the 2007-2008 droughts. The month-based 

temporal scale is more appropriate than the temporal scale based on years for measuring 

water usage restrictions since they were enacted during the time period between October 

2007 and September 2008. Each block group has 36 observations (for the months from 

2007 to 2009), which were derived from the water billing records. Although we tested all 

of the variables described in the data collection and processing section of chapter 2, only 

a selection of them are included in the final models due to multicollinearity concerns. The 

variables in the final list (Table 13) represent the factors from different categories 

including price, non-price policy, weather, sociodemographic characteristics of 

household, and housing factors.   
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Table 13:  Descriptive statistics of the dependent and independent variables 

Variable Unit Mean Std. dev. Min Max 
Logged Monthly Water Usage 
Per Household 

CCF 2.062 0.379 1.059 4.102 

Logged Average Price 1999 $ 1.465 0.116 0.710 1.680 
Monthly Cumulative 
Precipitation 

tenth of 
millimeter  

839.86 484.52 105 2385 

Monthly Average Maximum 
Temperature 

tenths of degrees 
Celsius 

221.68 76.54 97.74 358.29 

Household Size person 2.47 0.388 1.27 3.5 
Logged Median Household 
Income 

1999 $ 10.744 0.512 8.966 12.217 

Percentage of houses built after 
1992 

% 0.259 0.302 0 1 

Area Of Lot square feet 16656 7478.722 5312.552 63764.42 

Percentage Of Irrigable Land % 79.164 2.64 67.554 85.935 

Housing Units Density 
housing units per 
square kilometers 

273.82 148.914 17.042 738.52 

Water Usage Restrictions 
Dummy 

NA 0.361 0.480 0 1 

Logged Average Price * Water 
Usage Restrictions Dummy 

1999 $ 0.518 0.691 0 1.622 

 
6.3 Spatial Effects and Underlying Processes 

Before stepping into the specification and estimation details of spatial panel data 

approach, we will first elucidate the connection between spatial patterns and spatial 

effects.  

Spatial patterns could be explained by spatial effects, which may take two general 

forms, spatial dependence and spatial heterogeneity (Anselin 1988). Spatial dependence 

is regarded as the most commonly conceptualized form of spatial effects; in the context 

of water consumption, it implies that water usage in one location is affected by or 

functionally related to the water usage in neighboring locations (Anselin and Griffith 

1988). The inclusion of spatial dependence in applied econometric models is typically 

driven by theoretical economic models of interacting agents and social interaction, which 

are labelled differently in various subfields such as social norms, neighborhood effects, 
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peer group effects, social capital, etc. (Anselin 2002). Subjective norm and perceived 

behavior controls as direct/indirect factors of water consumption behaviors reviewed in 

chapter 2 are in line with these theoretical grounds. For example, the neighborhoods with 

a consensus on keeping lush lawns to maintain their property values may consume more 

water (Askew and McGuirk 2004; Domene et al. 2005); even without consensus, 

households may mimic their neighbors’ behaviors they perceived regarding when and 

how (much) to water lawn. Similarly, households may exhibit similar responses to water 

usage restrictions due to neighborhood effects or social interaction (Aitken et al. 1991; 

Ramachandran and Johnston 2011; Breyer 2014).  

Moreover, the spatial pattern emerging from interactions between adjacent 

neighborhoods can be attributed to the spillover effect of factors in the neighboring 

environment. Take the outdoor water usage as an example again. The rate of 

evapotranspiration or temperature in a neighborhood can be lowered by the existence of a 

park or trees in the surrounding areas, resulting in less demand of water usage outdoor. 

Households who live close to a public swimming pool or water body may not build their 

own pools or frequently fill the pools.  

Linking the spatial dependence to spatial econometric models, the spatial lag 

operators of various types are introduced. A spatially lagged dependent variable (lagged 

Y) such as water consumption can capture the effect of spatial interaction of neighboring 

units (e.g. household). The spillover effects of local factors could be expressed by their 

lags (lagged Xs). If model misspecification (due to missing variables) is assumed related 

to spatial dependence, we can utilize a spatial autoregressive process for the error term to 

address such implicit spatial dependence. No matter how spatial interactions/spillovers 
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are formulated, a structure for spatial correlation is needed to define the interacting 

process; in empirical practice we construct a spatial weight matrix to quantify the range 

and strength of the relations between the neighboring units (locations).  

As another form of spatial effect, spatial heterogeneity could explain spatial 

patterns in water consumption. Spatial heterogeneity reflects structural instability. In 

other words, the stability of relationship varies from one location to another (Fornango 

2010). The capability and context factors (e.g. weather, household income and size, 

housing density, to name a few) can be viewed as the potential source of spatial 

heterogeneity of water consumption as well as the behavioral factors, since they 

collectively contribute to the spatial process or structure in an observational unit. 

According to Anselin (Anselin 2003), structural instability can be expressed in the form 

of variable regression coefficients or in the form of non-constant error variances in a 

regression model (heteroscedasticity). The incorporation of fixed or random effects into 

the model will help generate variable coefficients, thus a heterogeneous structure, while 

spatial heteroscedasticity following from missing spatially-correlated variables or other 

forms of misspecification related to the variation to location, area, or differential spatial 

structure (Anselin 1988) could make use of spatially lagged error term. 

The incorporation of spatial effects into a model can be complicated by several 

situations. First, the two forms of spatial effects are not mutually exclusive, thus the joint 

presence of heterogeneity and spatial dependence necessitates specialized tests and 

estimation techniques (Anselin 1990). Second, spatial dependence is likely to be present 

in the error terms when aggregated cross-sectional data is being used and the scale and 
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location of the data does not match the one of the process under study (Anselin 1990, 

2002). 

Since both spatial dependence and spatial heterogeneity may violate the 

assumptions of OLS regression, it is important to account for them in order to get 

accurate estimated models. This applies to panel data model as well. 

6.4 Methods - Spatial Panel Data Models 

In this research, we first conduct a spatial clustering analysis to assess the spatial 

patterns of the panel data. The spatial clustering analysis approach has been described in 

the methods section of chapter 4. Therefore, we mainly focus on the introduction of 

spatial panel data models here. 

Various model specifications for spatial processes have been proposed in the spatial 

econometrics literature (e.g. (LeSage and Pace 2009; Elhorst 2010). Similar to spatial 

statistical models, we can construct the spatial lag and error versions of panel data model 

(Anselin et al. 2008), and they are referred to as Spatial Autoregressive Model (SAR) and 

Spatial Error Model (SEM). A spatial autoregressive model with auto regressive 

disturbances model (SAC) is a combination of spatial lag and error models.  When a 

spatial lag of an explanatory variable matrix is included into SAR, the model is called 

Spatial Durbin Model (SDM) (LeSage and Pace 2009). Consider the following general 

specification for static spatial panel data models: 

൜ ௜ܻ௧ ൌ ߙ ൅ ݕܹߩ	 ௝ܻ௧ ൅ ߚ	 ௜ܺ௧ ൅ ܦߠ	 ௝ܼ௧ ൅	ݑ௜ ൅	ߛ௧ ൅	ݒ௜௧
௜௧ݒ ൌ 	 λݒܧ௝௧ ൅ ௜௧ߝ

                    (Eq. 5.1) 

 
where  ௜ܻ௧	is the dependent variable for observational unit ݅	at time 1 = ݐ ;ܰ ,… ,1 = ݅) ݐ, 
…, ܶ);  

௜ܺ௧  is a 1*k row vector of independent variables for observational unit ݅ at time ݐ 
(k is the number of the independent variables); 
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௝ܼ௧  is a 1*m row vector of spatially lagged independent variables for observational 
unit ݅ at time t (m is the number of the spatially lagged independent variables, j is the 
index of neighboring units); sometimes ௝ܼ௧ and ௜ܺ௧ can refer to the same set of 
independent variables; 

 ;ݐ ௜௧ is the spatially correlated error terms for all ݅ andݒ
 ݅ ௜௧ is the disturbance term that is independently and identically distributed for allߝ

and ߝ) ݐ௜௧~ܰሺ0,  ;(ఌଶሻߪ
ܹ is the ܰ ൈ ܰspatial weight matrix for the autoregressive component (or 

spatially lagged dependent variable), and for each observational unit ݅, ܹ =	∑ ௜௝ݓ
ே
௝ୀଵ  ;  

ܰ is the ܦ ൈ ܰ spatial weight matrix for the spatially lagged independent 
variables, for each observational unit ݅, ܦ =	∑ ݀௜௝

ே
௝ୀଵ ; 

ܰ is the ܧ ൈ ܰspatial weight matrix for the idiosyncratic error component, for 
each observational unit ݅, ܧ =	∑ ݁௜௝

ே
௝ୀଵ ; 

,௜~ܰሺ0ݑ ௜ is the individual fixed or random effect, for random effectݑ  ;ఓଶሻߪ
 ;௧ is the time effect (fixed or random)ߛ
 ;is the intercept ߙ
 ;is the vector of coefficients ߚ
 ;is the spatial autoregressive coefficient ߩ
 ;is the coefficients for the spatially lagged independent variables ߠ
 .is the spatial error autocorrelation coefficient ߣ

 
When ߠ ,ߩ, and ߣ are zero, the model specification becomes the specification for 

traditional (or non-spatial) panel data models with both individual and time effects (Table 

14). If the optional terms (ݑ௜ and ߛ௧) are removed, we get a (pooled) OLS model. If either 

 ௧ terms are specified in a traditional model, they correspond to individual effectߛ ௜ orݑ

model or time model. The effect could be fixed or random depending on the purpose and 

the assumption on the underlying processes (or the relations between the dependent 

variable and the observed and unobservable independent variables). In this study, we 

estimated all the panel data models listed in Table 14 except the one with only individual 

effects. 
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Table 14:  Various types of panel data models 

Panel data models Parameters Specification 

Pooled OLS model ߩ ൌ ߠ ൌ ߣ ൌ ௜ݑ ൌ ௧ݒ ൌ 0 ௜ܻ௧ ൌ ߙ ൅ ߚ ௜ܺ௧ ൅  ௜௧ߝ

Panel data model with time 
effects 

ߩ ൌ ߠ ൌ ߣ ൌ ௜ݑ ൌ 0 ௜ܻ௧ ൌ ߙ ൅ ߚ ௜ܺ௧ ൅ ௧ߛ ൅  ௜௧ߝ

Panel data model with 
individual effects 

ߩ ൌ ߠ ൌ ߣ ൌ ௧ݒ ൌ 0 ௜ܻ௧ ൌ ߙ ൅ ߚ ௜ܺ௧ ൅ ௜ݑ ൅  ௜௧ߝ

Panel data model with both 
individual and time effects 

ߩ ൌ ߠ ൌ ߣ ൌ 0, ௜ݑ ൌ ௧ݒ ് 0 ௜ܻ௧ ൌ ߙ ൅ ߚ ௜ܺ௧ ൅ ௜ݑ ൅ ௧ߛ ൅  ௜௧ߝ

 
If the parameters ρ, θ, or λ in the generalized specification are not zero, different 

combinations of these three parameters yield a variety of static spatial panel data models 

as listed in Table 15. 

Table 15:  Various types of spatial panel data models 

Spatial panel data models Parameters Specification 
Spatial Autoregressive 
Model (SAR) 

ߠ ൌ ߣ ൌ 0 ௜ܻ௧ ൌ ߙ ൅ ܹߩ ௝ܻ௧ ൅ ߚ ௜ܺ௧ ൅ ௜ݑ ൅ ௧ߛ ൅  ௜௧ߝ

Spatial Error Model (SEM) 
ߠ ൌ ߩ ൌ 0 ௜ܻ௧ ൌ ߙ ൅ ߚ ௜ܺ௧ ൅ ௜ݑ ൅ ௧ߛ ൅ ௜௧ݒ

௜௧ݒ ൌ λݒܧ௝௧ ൅ ௜௧ߝ
 

Spatial Durbin Model 
(SDM) 

ߣ ൌ 0 ௜ܻ௧ ൌ ߙ ൅ ܹߩ ௝ܻ௧ ൅ ߚ ௜ܺ௧ ൅ ܦߠ ௝ܼ௧ ൅ ௜ݑ ൅ ௧ߛ ൅ ௜௧ߝ

Spatial Autoregressive 
Model with Autoregressive 
Disturbances Model (SAC) 

ߠ ൌ 0 ௜ܻ௧ ൌ ߙ ൅ ܹߩ ௝ܻ௧ ൅ ߚ ௜ܺ௧ ൅ ௜ݑ ൅	ߛ௧ ൅ ௜௧ݒ
௜௧ݒ ൌ λݒܧ௝௧ ൅ ௜௧ߝ

 

Note: The spatial Durbin model is simplified to the spatial lag model if 0 = ߠ, and to the 
spatial error model if ߣ + ߠ	0 = ߚ.  
 

Linking the mathematical specification back to the underlying processes discussed 

above, spatial weight matrices (ܹ, ܦ and ܧ) define the structure of spatial correlation 

among observational units. ܹ ௝ܻ௧ denotes the spatial effect that the dependent variable of 

neighboring units have on ௜ܻ௧ ܦ ; ௝ܼ௧  captures the spillover effects of the explanatory 

variables of neighboring units; similarly, ݒܧ௝௧ represents the spatial correlations of errors 

among observational units, which may result from unobservable factors shared by units. 

 represents one way of constructing the variable regression coefficients of the structural	௜ݑ



136 
 

 
 

relationship for each unit, and ߛ௧ denotes time heterogeneity. Both individual effects and 

time effects are also the important components in traditional panel model.  

In this study, we estimate three specifications of spatial panel data models: spatial 

autoregressive model (or spatial lag model), spatial error model and spatial Durbin model. 

The Maximum likelihood (ML) method is commonly used to estimate the parameters of 

spatial panel data models specified above, although there are other estimation methods 

such as instrumental variables and generalized method of moments. The software 

package (xsmle, a user-written STATA program (Belotti et al. 2013)) which takes the 

ML approach is used here. 

In all these models, we include the fixed or random effect for the spatial unit (ui) 

and the fixed time effect (ߛ௧). The random effect estimator is appropriate only if ui are 

uncorrelated with the included explanatory variables. If this assumption is violated, the 

model will produce biased and inconsistent parameter estimates (Elhorst 2010). In 

contrast, the fixed effect estimator allows for the correlation between time-invariant 

heterogeneity at the spatial unit level (block group) and included predictors. The 

disadvantage of the fixed effect in a panel data model specification is that no time-

invariant variables can be included in the specification and there is concern that fixed 

effects may bias the estimates if variables are changing slowly over time (Plümper and 

Troeger 2004). A Hausman test can assist in deciding between fixed or random effects, 

which basically tests whether the unique errors (ݑ௜) are correlated with the regressors. 

However, in empirical practices, the choice may be built upon the needs for evaluating 

time-invariant variables and the purpose of model generalization. We restrict the time 
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effect (ߛ௧) to be fixed since all the months during the three year time period are included 

in the model. 

Different tests can be applied to the traditional panel data model to decide whether 

fixed or random effects should be included in the model. An F-test or likelihood ratio (LR) 

test can be employed to investigate the null hypothesis that the fixed effects (for either 

spatial units or time) are jointly insignificant. A Lagrange multiplier (LM) test developed 

by Breusch and Pagan (Breusch and Pagan 1980) is useful for examining the null 

hypothesis of no random effects.  

To determine the most appropriate spatial panel data model, we first test whether 

the spatial version of panel data model (SAR and SEM) is better than traditional (non-

spatial) panel data model using LM tests and robust LM tests. Elhorst (2010) generalized 

for spatial panel data the LM test and robust LM test that were proposed for cross-

sectional spatial data by Burridge (1980) and Anselin et al. (1996) respectively. This is 

based on a panel data model without spatial effects (when ߩ ൌ ߠ ൌ ߣ ൌ 0). If the LM and 

robust LM tests support either spatial a lag model or a spatial error model, we estimate 

the spatial Durbin model, and test whether it can be simplified to the spatial lag or spatial 

error models using the Wald tests.  

For the spatial lag model or spatial Durbin model, which includes a spatial lag of 

the dependent/independent variable(s), caution is needed when interpreting their 

parameters in these models (LeSage and Pace 2009). The looped feedback effects among 

neighboring geographical units need to be accounted for. To explain the effect of an 

explanatory variable on the dependent variable in a correct way, one should look at the 

average direct, indirect and total effects. In the context of water demand, the direct effect 
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measures the average change in average water usage in the spatial unit ݅ (ݕ௜) caused by a 

unit change in this unit’s explanatory variable (e.g. area of lot). It includes the feedback 

effect that passing through neighboring spatial units and back to the original spatial unit 

(Ouyang 2013). The indirect effect (e.g. spatial spillover effect) refers to the average 

change in average water usage in the spatial unit ݅ (ݕ௜) caused by a unit change in the 

explanatory variable of its neighboring spatial units. The total effect is a summary 

measure of both direct and indirect effects associated with a unit change in an 

independent variable. The three types of effects were proposed by LeSage and Pace 

(2009) for a cross-section panel data model, and Elhorst (2012a) extended the idea to 

spatial panel models. All of these effects are reported in the results section. However, 

when discussing our results, we mainly focus on the total effects.  

Spatial weight matrices for the dependent variable, independent variables and 

idiosyncratic error (ܹ, ܦ and ܧ) can be the same, or constructed differently, depending 

on the spatial processes that are hypothesized or conceptualized. In this study, we employ 

two types of spatial weight matrix. One is to define neighbors of a spatial unit based on 

first-order queen contiguity of spatial relationship. This conceptual spatial arrangement 

assumes, for a block group, the water consumption of its immediate neighbors (sharing a 

common border and corner with it) affects or is functionally related to its own water 

consumption. Another way to create a spatial weight matrix is based on the k-nearest 

neighbor criterion. We assume that the six nearest neighbors of a block group contribute 

to its water usage. For our spatial panel data models, the same spatial weight matrix is 

employed because we assume that no matter its water consumption, its determinants or 

error, the spatial effects at the aggregated geographical level take place in a similar way. 
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Although we know this assumption may be too simple, this serves our purpose as an 

initial step of evaluating spatial effects in a panel data setting. 

6.5 Results and Discussion 

Before conducting multivariate statistical modeling, we performed a test of spatial 

autocorrelation using Moran’s I statistic to establish the extent of spatial effects in our 

monthly water use dataset. A positive test would provide initial justification for 

incorporating spatial effects into spatial panel data models. 

For all of the 36 monthly data series, the Moran’s I statistics have a value larger 

than 0.4, which is statistically significant at the 0.01 level (Table 16). This means that 

high water users cluster together, and there is less than 1% likelihood that the observed 

clustered pattern of residential water consumption in Charlotte area could have occurred 

by chance. This spatial dependence persists over time. 

Table 16:  Global Moran’s I statistics of monthly average SFR water usage per household 
at block group level from January in 2007 to December 2008 

month 
2007 2008 2009 

Moran's I Z score Moran's I Z score Moran's I Z score
Jan 0.574 18.071 0.497 15.658 0.551 17.345 
Feb 0.546 17.191 0.552 17.394 0.576 18.149 
Mar 0.630 19.909 0.558 17.607 0.573 18.032 
Apr 0.596 18.874 0.684 21.606 0.596 18.883 
May 0.618 19.537 0.533 16.816 0.573 18.188 
Jun 0.608 19.290 0.639 20.249 0.632 20.000 
Jul 0.526 16.633 0.467 14.778 0.563 17.859 

Aug 0.597 18.895 0.553 17.548 0.590 18.701 
Sep 0.607 19.247 0.550 17.441 0.599 19.017 
Oct 0.619 19.591 0.575 18.236 0.592 18.783 
Nov 0.519 16.424 0.550 17.433 0.603 19.074 
Dec 0.543 17.163 0.499 15.805 0.585 18.431 

             Note: the p-value for all the months is below the 0.0001 level. 
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Next, we start with the panel data models without spatial interactions (Table 17). 

The time-fixed effects (actually composed of month and year fixed effects) and the fixed 

and random effects of spatial units are first tested. The F-test (315.25, df = 13, p < 0.001) 

indicates that the time-fixed effects are jointly statistically significant, and should be 

included. The LM tests also indicate the need for adding spatial fixed or random effects. 

The result of the Hausman test rejects the null hypothesis and suggests that the fixed 

effects model is more appropriate. The results of four non-spatial models are reported as 

follows.  

Only the coefficients for logged average price and monthly average maximum 

temperature have a consistent and significant sign across all the models. The price 

variable has a negative effect on the monthly SFR water consumption per household. The 

elasticity is relatively higher than the ones seen in the literature. One possible reason is 

that the calculation of the average price in this study is based on the total charges on 

water bills instead of the charges for the water portion only.  The temperature variable 

has a positive and significant effect, meaning that more water is consumed when the 

temperature is higher. Monthly cumulative precipitation shows a negative association 

with water demand in the models with time fixed effects, but not in the OLS model. The 

dummy variable for the policy of restricting water usage during October 2007 and 

September 2008 has a positive sign in the coefficient estimate for models 1, 3 and 4, 

while the interaction term of price and non-price policy variable always shows an 

opposite sign. The total effect of the water usage restrictions variable is negative while 

holding price constant. This also indicates the price effect is greater when the water usage 

restriction policy is practiced. 
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Table 17:  Results of non-spatial models, block group level 

Independent 
Variables 

Model 1:  
Pooled OLS 
Regression 
Model 

Model 2:  
Panel data 
Model with 
Time- 
Fixed Effects 

Model 3: Panel 
Data Model with 
Spatial Fixed 
Effects and 
Time-Fixed 
effects 

Model 4: Panel 
Data Model with 
Spatial Random 
Effects and 
Time-Fixed 
effects 

Logged Average 
Price 

-1.18355*** 
(-0.0196) 

-2.43925*** 
(-0.0338) 

-1.88988*** 
(-0.0260) 

-1.90730*** 
(-0.0242) 

Monthly Precipitation 0.00006*** 
(0.0000) 

-0.00002*** 
(0.0000) 

-0.00003*** 
(0.0000) 

-0.00003*** 
(0.0000) 

Monthly Avg Max. 
Temperature 

0.00231*** 
(0.0000) 

0.00148*** 
(-0.0001) 

0.00100*** 
(0.0000) 

0.00101*** 
(-0.0001) 

Household Size 0.02639*** 
(-0.0051) 

0.04006*** 
(-0.0042) 

0.00406 
(-0.0049) 

0.00336 
(-0.0065) 

Logged Median HH 
Income 

0.24661*** 
(-0.0045) 

0.23904*** 
(-0.0038) 

0.00063 
(-0.0077) 

0.03415*** 
(-0.0079) 

Percentage of houses 
built after 1992 

-0.08058*** 
(-0.0083) 

-0.10291*** 
(-0.0068) 

1.06153 
(-0.9148) 

0.04118 
(-0.0344) 

Area Of Lot 0.00001*** 
(0.0000) 

0.00001*** 
(0.0000) 

0.00004 
(0.0000) 

0.00002*** 
(0.0000) 

Percentage Of 
Irrigable Land 

-0.00847*** 
(-0.0011) 

-0.00856*** 
(-0.0009) 

0.05449 
(-0.0766) 

-0.01327**  
(-0.0047) 

Housing Density -0.00018*** 
(0.0000) 

-0.00019*** 
(0.0000) 

0 
(.) 

0.00007 
(-0.0001) 

Water Usage 
Restrictions  

1.32023*** 
(-0.0581) 

-0.12809 
(-0.0657) 

0.0426 
(-0.0346) 

0.03746 
(-0.0456) 

Logged Price * 
Restrictions  

-0.99437*** 
(-0.0402) 

0.03667 
(-0.0455) 

-0.07085** 
(-0.0234) 

-0.06763*   
(-0.0315) 

2.month 

 

-0.12718*** 
(-0.0079) 

-0.11596*** 
(-0.0014) 

-0.11633*** 
(-0.0054) 

3.month 
-0.08961*** 
(-0.0128) 

-0.04583*** 
(-0.0032) 

-0.04727*** 
(-0.0089) 

4.month 
-0.10975*** 
(-0.0167) (-0.0068) 

-0.02755*   
(-0.0116) 

5.month 
0.03438 

(-0.0220) 
0.12914*** 
(-0.0104) 

0.12606*** 
(-0.0152) 

6.month 
0.03766 

(-0.0295) 
0.21319*** 
(-0.0125) 

0.20755*** 
(-0.0205) 

7.month 
0.11005*** 
(-0.0289) 

0.26788*** 
(-0.0123) 

0.26274*** 
(-0.0201) 

8.month 
0.12433*** 
(-0.0298) 

0.20269*** 
(-0.0131) 

0.20012*** 
(-0.0207) 

9.month 
0.12163*** 
(-0.0234) 

0.16779*** 
(-0.0119) 

0.16626*** 
(-0.0162) 

10.month 
0.12060*** 
(-0.0166) 

0.13765*** 
(-0.0075) 

0.13708*** 
(-0.0115) 

11.month 
0.10814*** 
(-0.0104) 

0.09625*** 
(-0.0036) 

0.09659*** 
(-0.0072) 
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Independent 
Variables 

Model 1:  
Pooled OLS 
Regression 
Model 

Model 2:  
Panel data 
Model with 
Time- 
Fixed Effects 

Model 3: Panel 
Data Model with 
Spatial Fixed 
Effects and 
Time-Fixed 
effects 

Model 4: Panel 
Data Model with 
Spatial Random 
Effects and 
Time-Fixed 
effects 

12.month 
0.17704*** 
(-0.0084) 

0.15133*** 
(-0.0027) 

0.15210*** 
(-0.0058) 

2008.year 
0.18524*** 
(-0.0060) 

0.13301*** 
(-0.0029) 

0.13452*** 
(-0.0042) 

2009.year 
0.36734*** 
(-0.0077) 

0.22118*** 
(-0.0046) 

0.23073*** 
(-0.0058) 

intercept 1.18010*** 
(-0.1040) 

3.11771*** 
(-0.0961) 

-0.81694 
(-5.8540) 

4.84199*** 
(-0.3723) 

Log-likelihood 2279.06889 4753.83044 9515.57515 8607.27657 
AIC -4534.13777 -9457.66089 -18985.1503 -17160.55314 
BIC -4444.97828 -9271.91195 -18814.26127 -16959.94428 

1. standard errors in parentheses; 
2. Significance level: *0.05 **0.01 ***0.001; 
3. January is the reference month for the month fixed effects, and 2007 is the reference year for the year 
fixed effects. 

 
Among the household and housing factors, household size, median household 

income, and lot area show a consistent and positive association with the dependent 

variable across all four models. In the OLS model and the time fixed effect panel data 

model, the variables percentage of houses built after 1992, percentage of irrigable land 

and housing density have negative and significant signs. However, when the 

fixed/random effects of a spatial unit are accounted for, the signs of these three variables 

show an opposite direction. 

For the fixed effects model (Model 3), all the factors related to household and 

housing characteristics fail to be significant. This implies there are unobserved factors 

having more influence than the ones being tested, and their effects are captured by the 

fixed effects component of the observational units in the model. Another possible reason 

is the change in the explanatory variables being estimated is small within the 36-month 

periods. 
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For the random effects model (Model 4), median household income, lot area and 

percentage of irrigable land show significant associations with water consumption. The 

sign of the variable average percentage of irrigable land at block group level is negative, 

although we expected the areas with higher percentage of irrigable land would demand 

more outdoor water use.  

In Models 3 and 4, the coefficient estimates for months reveal that water usage 

became less in February and were highest in the June and July months in summer. The 

fixed effect for the year 2009 is larger than the one in 2008 and 2007. This is 

counterintuitive since the overall trend of the SFR water consumption decreased.  

Based on the log-likelihood and other goodness-of-fit measures such as AIC and 

BIC, the panel data model with spatial fixed effects and time-fixed effects (Model 4) 

performs better than the other three. However, given that Models 1-4 do not consider the 

effect of spatial dependence, the parameter estimates of non-spatial panel data models 

may be biased. 

Next, we test whether the spatial lag model or the spatial error model is more 

appropriate than a model without spatial dependence. The results of the LM test (1209.54, 

p<0.001) and of the robust LM test (3.86, p<0.001) support the inclusion of spatially 

autocorrelated error terms. The LM test (1205.68, p<0.001) and the robust LM test (3.07, 

p<0.001) for spatial lag model are significant, suggesting that the spatial lag model is a 

better option than its corresponding non-spatial panel data model. Thus, the preliminary 

tests suggest that either SEM or SAR with both spatial fixed effects and month/year fixed 

effects is an appropriate model.  



144 
 

 
 

As for the choice of the specification of spatial panel data models, we start with the 

spatial Durbin models. We do not include the spatial lags of all of the explanatory 

variables because some of them have the same value for the entire city given a specific 

time point such as weather factors and non-price policy, which would create an 

identification problem. Thus they may not exhibit spillover effects over through neighbor 

effects or spatial interaction. Only the lag variables of the household and housing factors 

are included in SDM. 

For the SDM with fixed effects (Model 6a), the Wald tests show that the null 

hypothesis that the spatial Durbin model can be simplified to the spatial lag model or 

spatial error model are not rejected. Thus either SAR with fixed effects (Model 5a) or 

SEM with fixed effects (Model 7) is a better option than the spatial Durbin model. When 

random effects are considered instead of fixed effects, the test finds that the SAR model 

(Model 5b) is the most appropriate model and SDM (Model 6b) is preferred when 

compared to SEM. For comparison purposes, we report the results from SAR and SDM 

with either fixed or random effects and from SEM with fixed effects (Table 19 and 20). 

The results are based on the spatial weight matrix from the first-order queen contiguity 

specification. Another specification of the spatial weight matrix is also tested and yields 

similar results (generally getting higher parameter estimates). 

The significant and positive coefficient (ρ) of the spatially lagged dependent 

variable in SAR and SDM models (Model 5 and 6) indicate that the monthly SFR water 

usage per household in one block group increases (decreases) in response to the increase 

(decrease) in the monthly SFR water usage per household in neighboring block groups. 
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This is consistent with our empirical finding from Moran’s I test and the findings in a 

cross-sectional setting in the literature reviewed earlier.  

Examining the results for SAR models (both fixed and random effects), the price, 

non-price policy variables, their interaction term, and two weather factors are all 

significant at the 0.01 level in terms of the estimated coefficients, their direct, indirect 

and total effects. Compared to the non-spatial version of panel data models (Models 3 

and 4), the direction of the effect of the water usage restriction variable changes from 

positive to negative, indicating that the presence of non-price policy induced a decrease 

in water consumption. The positive sign of the interaction term of the price and water 

usage restriction variable implies that the price effect would become less influential when 

the non-price policy is implemented. This conclusion is consistent with the literature that 

our third hypothesis is based on (Kenney et al. 2008). The opposite results obtained from 

the traditional panel data models may reflect the biased specifications of those models. 

Regarding the household and housing factors, the estimated coefficients have 

different sign and magnitude in SAR models, and all of them are non-significant no 

matter with fixed or random effects, except that the variable lot area is significant and 

positive in the SAR with random effects (Model 5b). The total effects of all the 

explanatory variables at least doubled the direct effect (see Table 19) or the coefficient 

(see Table 18), after the looped feedback effects from spatial dependence are counted in. 

Comparing the total effects in SAR and the estimated coefficients in the panel data 

models, the parameters for all the variables are underestimated (in terms of absolute 

values) in the non-spatial models, although they are overestimated compared to the direct 

effects of corresponding variables in SAR models. Interestingly, the two SAR models 
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(fixed effects Model 5a and random effects Model 5b) generate similar parameter 

estimates.  

The results of the spatial Durbin models show that the estimated coefficients of the 

factors (Xs) (Table 18) are similar to their corresponding direct effects (Table 20) in 

terms of signs, sizes, and statistical significance. However, the parameter estimates of the 

spatially lagged independent variables (W*Xs) are slightly different from their 

corresponding indirect effects. None of the independent variables has statistically 

significant lagged effects at the 0.05 level. Neither are their indirect effects significant, 

except that area of irrigable land has a significant positive indirect effect in the SDM with 

random effect (Model 6b). Comparing SAR and SDM, the results are very similar. This is 

possible since the difference between the two model specifications is the addition of 

lagged independent variables, and those lagged variables are not significant in our case. 

The effects of the observational units (block group) probably exerted greater influences 

on water consumption than the selected factors do. 

The spatial error panel data model with fixed effects (Model 7) has similar results 

in terms of the direction and significance of coefficient estimates as the ones in the SAR 

model with fixed effects (Model 5a). The price, precipitation, and water usage restriction 

variables have significant and negative effects on water consumption, while the 

temperature and interaction term have significant and positive effects. The household and 

housing variables are not significant. Comparing SEM and SAR with fixed effects, the 

magnitude of the coefficient estimates in SEM is much higher than their counterpart of 

SAR, but slightly lower than the total effects derived in SAR. The statistically significant 

value of λ in the SEM suggests that a spatial process generate the errors. 
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In summary, all of the models except the pooled OLS model confirm our first 

hypothesis about the effects of the weather variables. The results from the spatial panel 

models support the third hypothesis regarding the interaction effects of price and non-

price variables. Although the housing and household factors being investigated are not 

significant in the spatial panel settings, the income, lot size and percentage of irrigable 

land variables exhibit statistically significant effects compared to the other factors related 

to age of housing and density. 

6.6 Conclusions 

This study explores the role of the spatial effects in understanding of the 

relationship between monthly SFR water usage and its determinants in Charlotte. Using a 

set of panel data obtained from a variety of sources at block group level, we estimated 

and compared several non-spatial and spatial panel data models. Diagnostic tests 

suggested that the non-spatial panel data model with block-group fixed effects and time 

fixed effects is most appropriate. When incorporating the spatial lags of the dependent 

variable (water consumption) or of the errors, the spatial autoregressive coefficient or 

spatial error autocorrelation coefficient is significant, indicating the existence of spatial 

dependence and/or spatial heterogeneity. After accounting for the possible spatial effects, 

the price, temperature, precipitation and water usage restriction variables have significant 

and expected association with monthly SFR water consumption per household. For these 

variables, a large difference between the direct effects from each of the spatial panel 

models and the effects found in traditional panel data models is observed. The price 

effect becomes smaller with the intervention of water usage restrictions policy in a spatial 

panel setting, while the non-spatial panel data model suggested the opposite conclusion.  
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Although we estimated the effects of household and housing factors, the results from all 

of the spatial panel models did not find a significant association between each factor and 

water consumption.  The spatial Durbin model shows little evidence of spillover effects 

of the socioeconomic and housing variables, since the coefficient estimates of all the 

lagged explanatory variables are insignificant and the indirect effects are not statistically 

insignificant as well. This may be due to the slow change in these variables within a 

relatively short time period (three years), or because there would be no spillover effects 

from the selected variables. In conclusion, the monthly SFR water consumption at the 

block group level is better explained by price, non-price policy and weather variations 

rather than by household and housing factors, when the block-group level structural 

variations are accounted for by the fixed effects of block groups. 

There are a number of limitations in this study. First, the model specification may 

still need to be improved by including or seeking different sociodemographic and housing 

variables, and we have not explored the vulnerability of these empirical spatial panel data 

models to the modifiable areal unit problem by comparing modeling results obtained 

through analyses at different geographical scales (e.g. census tracts). The sensitivity of 

the model results to the conceptualization of spatial weight matrices requires further 

study.  Second, the temporal span or scale of the panel dataset may not be very helpful in 

uncovering the effects of the socioeconomic and housing variables on water consumption. 

We could either add more monthly data from other years or focus on yearly consumption. 

Although we discussed the possible mechanism for explaining the spatial dependence we 

observed, the results from this study did not provide any evidence. Third, we need other 

data sources to explore the influences of social connectivity, social networking, and 



149 
 

 
 

shared attitudes on water consumption behavior, based on which to develop a theoretical 

framework and then test the mechanism explicitly. Once we have better capabilities in 

interpreting the directions of the direct and spillover effects, we could pursue more 

complicated modeling frameworks such as dynamic spatial panel data models that 

include temporally lagged effects (Elhorst 2012b) and would be useful in predicting 

water consumption.  

Table 18:  Coefficient estimates of spatial panel models, block group level 

Independent 
Variables 

Model 5: Spatial Lag Panel 
Model 

Model 6: Spatial Durbin 
Model 

Model 7: 
Spatial Error 
Panel Model 

a. Fixed 
effect 

b. Random 
effect 

a. Fixed 
effect 

b. Random 
effect Fixed effect 

Logged Average 
Price 

-0.91536*** 
(-0.0423) 

-0.92817*** 
(-0.0427) 

-0.91630*** 
(-0.0422) 

-0.92819*** 
(-0.0426) 

-2.43604*** 
(-0.0761) 

Monthly 
Precipitation 

-0.00001*** 
(0.0000) 

-0.00001*** 
(0.0000) 

-0.00001*** 
(0.0000) 

-0.00001*** 
(0.0000) 

-0.00003*** 
(0.0000) 

Monthly Mean 
Maximum 
Temperature 

0.00057*** 
(0.0000) 

0.00058*** 
(0.0000) 

0.00058*** 
(0.0000) 

0.00058*** 
(0.0000) 

0.00143*** 
(-0.0001) 

Household Size -0.00073 
(-0.0046) 

0.0009 
(-0.0047) 

-0.00289 
(-0.0052) 

-0.00029 
(-0.0050) 

-0.00211 
(-0.0051) 

Logged Median 
HH Income 

-0.00081 
(-0.0078) 

0.01219 
(-0.0074) 

-0.00139 
(-0.0080) 

0.01111 
(-0.0079) 

-0.00246 
(-0.0069) 

Percent of houses 
built after 1992 

1.53351 
(-0.9699) 

0.02187 
(-0.0305) 

1.47409 
(-1.0196) 

0.07921 
(-0.0464) 

1.15162 
(-0.9081) 

Area Of Lot 0.00004 
(0.0000) 

0.00001*** 
(0.0000) 

0.00003 
(0.0000) 

0.00001*** 
(0.0000) 

0 
(0.0000) 

Percentage Of 
Irrigable Land 

0.00982 
(-0.0739) 

-0.0074 
(-0.0044) 

0.01473 
(-0.0753) 

-0.00105 
(-0.0058) 

0.07078 
(-0.0602) 

Housing Density 0 
(.) 

0.00003 
(0.0000) 

0 
(.) 

0.00001 
(-0.0001) 

0 
(.) 

Water Usage 
Restrictions  

-0.11559*** 
(-0.0302) 

-0.11702*** 
(-0.0303) 

-0.11458*** 
(-0.0302) 

-0.11572*** 
(-0.0303) 

-0.41965*** 
(-0.0769) 

Logged Price * 
Restrictions  

0.06132** 
(-0.0206) 

0.06204** 
(-0.0206) 

0.06055** 
(-0.0206) 

0.06114**  
(-0.0206) 

0.24340*** 
(-0.0515) 

2.month 
-0.04397*** 
(-0.0027) 

-0.04440*** 
(-0.0028) 

-0.04397*** 
(-0.0027) 

-0.04439*** 
(-0.0028) 

-0.12673*** 
(-0.0070) 

3.month 
-0.03721*** 
(-0.0029) 

-0.03796*** 
(-0.0029) 

-0.03730*** 
(-0.0029) 

-0.03800*** 
(-0.0029) 

-0.08330*** 
(-0.0134) 

4.month 
-0.05006*** 
(-0.0051) 

-0.05136*** 
(-0.0051) 

-0.05027*** 
(-0.0051) 

-0.05149*** 
(-0.0050) 

-0.09146*** 
(-0.0230) 
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Independent 
Variables 

Model 5: Spatial Lag Panel 
Model 

Model 6: Spatial Durbin 
Model 

Model 7: 
Spatial Error 
Panel Model 

a. Fixed 
effect 

b. Random 
effect 

a. Fixed 
effect 

b. Random 
effect Fixed effect 

5.month 
-0.00617 

(-0.0063) 
-0.00719 

(-0.0062) 
-0.00634 

(-0.0063) 
-0.00732 

(-0.0062) 
0.04309 

(-0.0354) 

6.month 
-0.01961* 
(-0.0095) 

-0.02155* 
(-0.0095) 

-0.01990* 
(-0.0096) 

-0.02176*   
(-0.0095) 

0.05172 
(-0.0401) 

7.month 
0.00688 

(-0.0096) 
0.00528 

(-0.0095) 
0.00653 

(-0.0096) 
0.00508 

(-0.0095) 
0.11967** 
(-0.0444) 

8.month 
0.02714** 
(-0.0084) 

0.02657** 
(-0.0084) 

0.02685** 
(-0.0084) 

0.02650**  
(-0.0084) 

0.12954** 
(-0.0473) 

9.month 
0.03175*** 
(-0.0072) 

0.03157*** 
(-0.0072) 

0.03170*** 
(-0.0072) 

0.03154*** 
(-0.0072) 

0.11949** 
(-0.0417) 

10.month 
0.03748*** 
(-0.0048) 

0.03764*** 
(-0.0048) 

0.03739*** 
(-0.0048) 

0.03761*** 
(-0.0048) 

0.12321*** 
(-0.0277) 

11.month 
0.03867*** 
(-0.0030) 

0.03911*** 
(-0.0031) 

0.03871*** 
(-0.0031) 

0.03911*** 
(-0.0031) 

0.10898*** 
(-0.0157) 

12.month 
0.06467*** 
(-0.0035) 

0.06544*** 
(-0.0035) 

0.06482*** 
(-0.0035) 

0.06541*** 
(-0.0035) 

0.18261*** 
(-0.0106) 

2008.year 
0.07160*** 
(-0.0034) 

0.07298*** 
(-0.0034) 

0.07200*** 
(-0.0036) 

0.07292*** 
(-0.0034) 

0.18686*** 
(-0.0110) 

2009.year 
0.12143*** 
(-0.0060) 

0.12660*** 
(-0.0061) 

0.12477*** 
(-0.0064) 

0.12957*** 
(-0.0061) 

0.31408*** 
(-0.0145) 

Spatial 
autoregressive 
coefficient (ρ) 

0.66997*** 
-0.0218 

0.66730*** 
-0.0221 

0.66979*** 
-0.0219 

0.66754*** 
-0.022  

Spatial error 
autocorrelation 
coefficient (λ)      

0.80452*** 
-0.0192 

Spatially lagged 
Household Size   

0.01226 
(-0.0108) 

0.00904 
(-0.0107)  

Spatially lagged 
Logged Median 
HH Income   

0.00788 
(-0.0121) 

0.01082 
(-0.0117)  

Spatially lagged 
Percpost1992   

-2.19961 
(-2.6827) 

-0.07999 
(-0.0629)  

Spatially lagged 
Area Of Lot   

0.00008 
(-0.0001) 

0 
(0.0000)  

Spatially lagged 
Percentage Of 
Irrigable Land   

-0.23245 
(-0.1684) 

-0.01006 
(-0.0092)  

Spatially lagged 
Housing Density   

0 
(.) 

0.00003 
(-0.0001)  

Log-likelihood 12901.20093 11971.51647 12904.46011 11975.29489 14359.10395 
AIC -25614.40186 -23743.03294 -25604.92023 -23738.58978 -28668.20789 
BIC -24915.98584 -23000.03717 -24847.06454 -22951.01426 -28482.45895 

1. standard errors in parentheses; 2. significance level: *0.05 **0.01 ***0.001; 
3. January is the reference month for the month fixed effects, and 2007 is the reference year for the year 
fixed effects. 
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CHAPTER 7:  CONCLUSIONS 
 
 

7.1 Research Findings 

This dissertation consists of three pieces of empirical work that aim to collectively 

contribute to the understanding of the dynamics of single family residential (SFR) water 

usage in Charlotte at a fine temporal and spatial resolution. The studies cover various 

issues from weather sensitivity, historical contingency, and relational assessment on 

water demand’s determinants within a spatio-temporal framework. Using different 

datasets and analytical methods, a relatively complete picture of SFR water consumption 

as a coupled human and natural system is depicted in terms of its state, pattern and 

process. 

We start with the overall state of “urban waterscape”. After calculating and 

mapping the average annual and seasonal SFR water consumption per household during 

2000-2010 at the block group level, we found that SFR water consumption is not evenly 

distributed across the study area and its overall patterns in winter and summer are 

consistent with its all-year-round pattern. The temporal trend of water consumption is 

analyzed by aggregating the average annual and seasonal SFR water consumption per 

household across all block groups. Not surprisingly, the temporal variations of annual 

water consumption are consistent with the weather dynamics in terms of mean 

temperature, cumulative precipitation and the Palmer Hydrological Drought Index 

(PHDI). However, the trends of summer and winter SFR water consumption differ. 
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The summer water usage follows closely the trend of PHDI and shows large 

variations during the entire time period, while the temporal variation of the winter water 

consumption is relatively large during 2002-2003 (Charlotte’s first severe drought in the 

21st century) and becomes small during 2007-2008 (the second severe drought period). 

The similar winter usage in 2007 and 2008 implies to some extent the effectiveness of the 

water usage restriction policy implemented during that time. Furthermore, when the year-

to-year changes in water usage are examined, we observed the heterogeneous responses 

at the neighborhood level to weather variations. 

In terms of weather sensitivity, we first use the peak factor measure to analyze its 

geographic patterns. As a ratio of summer usage over winter usage, the peak factor can be 

regarded as the variable measuring the extra water usage in hot seasons versus cold 

seasons. From the spatial distribution of the peak factor, we observe that the 

neighborhoods in the eastern and western Charlotte and along the I-77 South corridor 

have the lowest values, and the south of the county contains block groups with the 

highest peak factor as well as the greatest level of average consumption. The peak factor 

values were moderately higher in northern Mecklenburg, in which areas a few block 

groups had relatively large water usage. These findings provide evidence supporting the 

hypothesis that neighborhoods in Charlotte responded differently to atmospheric 

conditions.  

Next, applying correlation and regression analysis on the monthly SFR water 

consumption data and weather datasets, we evaluated the sensitivity of water 

consumption in a statistical way. The major findings are: (1) despite the general low level 

of sensitivity compared to Phoenix, certain neighborhoods still exhibited mild but 
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statistically significant sensitivity; (2) the temporal variations in water consumption 

explained by the three meteorological variables tend to cluster across geographical units; 

(3) high climatic sensitivity occurred in the neighborhoods with larger lots, more parcels 

with pools, larger and newer SFR houses, higher house value, or more bathrooms and 

bedrooms. Neighborhoods with higher income population and more owner-occupied 

housing units are associated with larger sensitivity. Climatic sensitivity decreases where a 

high proportion of the population is under 19 years old, and in neighborhoods with larger 

family, a higher percentage of Hispanics, or higher density. 

The spatial pattern of the “urban waterscape” reveals evident spatial heterogeneity 

and significant spatial dependence. To uncover the processes underlying the patterns 

being observed, we adopt the statistical modeling approach. 

Based on path dependence theory, we explore the role of historical contingency in 

modeling annual SFR water usage in 2008. The OLS model results show that most of the 

historical household and housing variables (in 2000) have larger significant influences 

than their temporal change during 2000-2008. When the spatial dependence in water 

consumption is incorporated via a spatial lag model, the model fit is improved and the 

majority of coefficient estimates decreases. The results from the GWR model show 

obvious spatial heterogeneity in the relationship between SFR water usage per household 

and the associated factors. The spatial variabilities exhibited in the local associations in 

terms of the historical variables and the change variables differ for most factors except 

median household income. 

The concepts of spatial dependence and spatial heterogeneity are emphasized again 

in quantifying the relationship between monthly SFR water usage per household and its 
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determinants in Charlotte under a spatial panel data modeling framework. After 

accounting for the possible spatial effects, the price, temperature, precipitation and water 

use restriction variables have significant and expected association with water 

consumption. For these variables, a large difference between the direct effects from each 

of the spatial panel models and the effects found in traditional panel data models is 

observed. The price effect becomes smaller with the intervention of water use restrictions 

policy in a spatial panel setting, while the non-spatial panel data model suggested the 

opposite conclusion.   

Although we estimated the effects of household and housing factors, the results 

from all of the spatial panel models did not find a significant association between each 

factor and water consumption. The spatial Durbin model shows little evidence of 

spillover effects of the socioeconomic and housing variables.  

It is the ultimate goal of this study to derive policy implications for water demand 

management from the analyses on the state, pattern and process of SFR water 

consumption. We summarize the specific findings and their policy implications here. 

When comparing the spatial patterns of average summer water usage at the block 

group level, it is found that certain neighborhoods (especially in South Charlotte) 

consumed much more water in summer than winter, possibly due to their households’ 

desire for lush lawns and/or outdoor activities. These neighborhoods have the greatest 

potential in terms of water consumption reduction and could be targets for discovering 

the underlying behavioral processes, and for experimenting policy interventions and 

conservation strategies. 
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The findings that the effects of some factors at a historical time point are larger 

than the counterparts of their temporal changes imply that the behaviors that tend to use 

more water (more likely for outdoor activity) may not experience a radical change 

probably due to a long-established lifestyle. We suggest it would be more useful to focus 

on the change in water consumption behavior itself rather than on the reconfiguration of 

physical or social structure measured by those factors. 

The temporal change in area of irrigable land between 2008 and 2000 is 

significantly positively associated with the SFR water usage in 2008. The possible 

implication is that the new houses with larger or smaller than historically average 

irrigable lot size in a neighborhood may induce a larger increase or decrease in water 

usage, assuming the household preference to watering lawn or other vegetation does not 

change over time. The positive sign of the temporal change in housing density may 

reflect the diminishing effects of housing density (when increasing) on SFR water 

consumption. 

The possible policy implications from the GWR analyses are that, for the factors 

with which history contingency dominates over temporal change, it is better to establish 

different policies or programs for the neighborhoods in the south versus the north of the 

Charlotte region, while for the factors whose temporal change exerted better effects, it 

would be useful to differentiate the intervention strategies for the east versus the west of 

the Charlotte region.  

Although we have not been able to explain spatial dependence using an explicit 

mechanism or any theory that exists regarding water consumption behaviors, the general 

policy implication is to take a regional approach when directing water conservation 
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efforts and resources to groups of spatially clustered neighborhoods with large water 

usage.  

In summary, this study has strong social value and can help enhance the knowledge 

of local community on the history and present of SFR water consumption. The research 

findings highlight the impacts of price and water usage restrictions during and after the 

2007-2008 droughts. It also advances our understanding of spatial and temporal 

dependence in modeling the relationship between SFR water use and some of its 

determinants. 

7.2 Limitations and Future Work 

We identified a number of limitations of this study from four aspects, namely data, 

methods, theoretical framework, and policy support. 

To obtain a reliable longitudinal dataset is crucial to any study on the spatio-

temporal dynamics of a phenomenon. Although we compiled the data from 2000 to 2010 

for the socio-demographic variables, the datasets are from different sources and a 

majority of them are estimates derived from Census results, on which we have not given 

a comprehensive evaluation in terms of quality and measurement errors. The decennial 

census in 2010 are reported using the 2010 census geographies, and we have to calculate 

the variables for the 2000 census geographies based on the relations of the census 

boundaries in 2000 and 2010. The process itself is bound to introduce (random or 

systematic) errors to the data. We only have the datasets of parcels and buildings for a 

single year for calculating housing and urban structure related variables, and we make the 

assumption that housing characteristics are time-invariant, which is not true. The lack of 

variations in these variables (especially the urban structure variable) will prevent us from 



159 
 

 
 

accurately evaluating their impacts on water consumption. A few variables such as the 

area of irrigable land and the area of pool are estimated based on incomplete information 

and simple assumptions. The weather variables from the only one local weather station in 

Mecklenburg County or from the regional climate division cannot capture the nuances in 

the micro-climate of neighborhoods. Being aware of all the data limitations mentioned 

above will make us more cautious and less frustrated when interpreting the model results. 

Some of the limitations may be overcome by seeking more data (e.g. use the historical 

parcel/building datasets, use high-quality remote sensing data to estimate the area of 

impervious areas, lawn and gardens and even derive the vegetation types, recent weather 

data collected from the multiple stations located in the county). We may consider census 

tract as the analytical unit since there are more and (presumably) better data source for 

census variables. 

From the methodological perspective, there are several drawbacks in this 

dissertation. First, model misspecification issues are still relevant in our models in 

chapters 4 and 5. We can substitute the variables that have been used with different ones 

or add new variables to the models to see whether the models could be improved. Due to 

multicollinearity concerns, we dropped a number of variables that are identified as 

potential determinants of water consumption, implying that there may be omitted 

variables. One solution could be the use of principal components or factors in the models 

(although this will bring difficulties in interpreting the results and making suggestions on 

policy implications). Another alternative is to change the analytical framework from 

statistical models to machine learning approaches and structural equation models, and the 

latter is free of normality and multicollinearity concerns, and is particularly useful when 
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the purpose is to predict water consumption. Second, our analyses are based on the 

aggregated data at block group level (despite its relatively small geography). The choice 

of this scale involves several methodological problems including the modifiable areal 

unit problem (MAUP) (Openshaw and Taylor 1979), the ecology fallacies (Openshaw 

1984) and the uncertain geographic context problem (Kwan 2012). Under the current 

modeling framework, we can test the same models (such as spatial panel data models) at 

different geographical levels (e.g. census tract) to address MAUP. Our further direction is 

to employ multilevel modeling approach to understand the relationships between water 

consumption and its determinants at household level (premise or parcel as the proxies). 

Third, there exist other more complex methods to help examine the spatio-temporal 

dynamics of water consumption, for example, spatial Markov models and self-organizing 

maps. We could gain deeper insights on the patterning changes of water consumption by 

applying these methods. Fourth, as for spatial panel data models, it can be improved by 

adding temporally lagged effects that are commonly observed in panel data. Dynamic 

spatial panel data models will be useful for incorporating temporal dependence and 

spatial dependence simultaneously. 

We have acknowledged the importance of behavioral and psychological 

determinants of water consumption in the conceptual model proposed in chapter 2, but 

we cannot explore those dimensions due to data availability. Although multilevel 

modeling using household level data seems promising, without the variables that directly 

measure or are associated with water consumption behaviors, the significance of such a 

study will be limited. We definitely need a more interdisciplinary empirical research 

dedicated to household survey and qualitative analysis to discover the underlying 
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behavioral mechanisms of Charlotteans. We also call for a research agenda to explore the 

influences of social connectivity, social networking, and shared attitudes on water 

consumption behavior, and furthermore frame an explicit mechanism or even theory to 

explain spatial dependence we observed. 

Future work may also be directed to other research themes related to policy making. 

This includes special studies on evaluating the effectiveness of pricing implemented in 

Charlotte and the equity issue that prices and their changes in time have involved, and on 

exploring the spatial heterogeneity in household or neighborhood reactions to water 

usage restrictions in Charlotte. Further efforts are required to fully understand the impacts 

of urban structure and land-use planning on water consumption. More importantly, we 

need an analytical framework that can integrate the mutual impacts between land 

development and water infrastructure in order to evaluate water- or land use-related 

policy and moreover achieve the sustainability in water use, land use, and urban 

development. The development of a useful water demand model to predict households’ 

water consumption is part of the framework. 

In summary, while this dissertation has answered a number of critical questions in 

urban water research, it also sets an open-ended research agenda, and we foresee a lot of 

research potential extending this study. We hope this research will raise the attention of 

local scholars and water authorities to participate and collaborate in future research 

opportunities for disentangling the problems pertaining to water management in a 

comprehensive manner. 
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