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ABSTRACT 

 

 

JONATHAN BABAK BABAIE.  The Fractional BiSpectrum  

Noise Reduction Technique and Applications in Interferometry.  

(Under the direction of DR. FARAMARZ FARAHI) 

 

 

In the field of optical metrology, there are many existing techniques for 

measurement of the surface profile or film thickness of a sample of interest.  However, 

many of these common techniques break down when there exists a high level of noise in 

the output optical signal due to the nature of certain types of samples.  Sources of noise 

that can suppress the signal information can come from highly rough surfaces and 

turbulence within the medium if there is necessity for light to transmit through.  This 

dissertation presents the results of a research effort to develop a technique to suppress the 

noise content in order to distinguish the signal.  In particular, a noise-reduction technique, 

Fractional BiSpectrum, was developed for the purpose of properly identifying signal 

frequencies within the measurement data when these frequencies have a known 

relationship with each other.   It is also shown how this technique can be implemented 

within common interferometry setups such as those measuring the thickness of films with 

turbid material as well as the surface profile and/or roughness of a sample and still make 

the proper measurement, i.e. identify the proper temporal or spatial frequency within a 

noisy signal.  It is demonstrated that using this noise-reduction technique enables to 

produce a confident measurement – i.e. enhance SNR greater than 3dB.  In some of the 

demonstrated cases, enhancement will lead to the detection of the correct measurement 

parameter – i.e. thickness or height value - where the existing techniques fail. 
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CHAPTER 1: INTRODUCTION 

 

 Measurement of surface profile and film thickness of a sample which contains a 

high degree of roughness, i.e. greater than 300 nm, or high turbidity within the medium, 

can be very challenging using optical methods.  Due to the roughness of the surface, the 

light used for measurement scatters and therefore a lot of information is lost to the detector.  

In the case of a measurement using laser light, a speckle pattern is generated. This speckle 

pattern produces localized high and low intensity points that tend to dominate an 

interferometry signal as shown in Figure 1-1  [1,2]. 

 

Figure 1-1: This demonstrates a typical speckle pattern generated from laser light scattered off of a 

rough surface and / or transmitted through a turbid medium. 

 

When this speckle noise becomes comparable to the signal, i.e. the noise power it 

produces is within 3dB of the signal power, it becomes difficult to extract the phase or 

amplitude information from the sample under measurement.  While techniques such as the 

Fourier transform (FT) statistically spread random noise based on the frequency content of 

the data, if the noise threshold is too great with respect to the signal frequency information, 

this technique will reach to its limit of applicability.  Thus, it can be necessary to further 
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enhance the signal with respect to the noise power to provide a measurement with higher 

confidence, or in some cases, provide a correct measurement where use of the FT would 

commonly fail.  Thus, a signal-enhancement technique was developed for this purpose.  

Hence, the goal of this research is not to outperform the typical metrology tools used in 

industry where the tool is already capable of measuring; the goal is instead to provide the 

ability of extending the measurement region or confidence where previously noise 

embedded within the signal made it too difficult to obtain a reliable measurement.  This is 

achieved by enhancement of the SNR. 

 

1.1 Literature Review 

 

Since the scope of this research includes the measurement of thickness of film and 

surface profile by implementation of the newly introduced noise-enhancement technique, 

a discussion on the current metrology techniques will be explored for both genres.  A brief 

discussion on some of the limitations of each technique will be demonstrated at the end of 

each respective section.  A table will summarize some of the limitations specific to surface 

roughness and or medium turbidity in Section 1.1.3.  

 

1.1.1 Film Thickness Measurement 

 

There are many types of techniques to measure the thickness of a film or coating.  

Thus, only the most popular metrology techniques that are applicable for semi-transparent 

materials (with respect to visible and near-infrared wavelengths) will be analyzed.  Based 

on the measurement thickness range of the demonstrated interferometry technique in 

Chapter 2 (10 µm to 5 mm), some of metrology techniques explored will be more viable 
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than others.  Thus, the metrology techniques included in this section are Confocal 

Microscopy, Ellipsometry, Reflectometry, and Coherence Scanning Interferometry.  [3,4] 

 

Confocal Microscopy 

Confocal Microscopy is performed by moving the sample under test in the Z 

direction until it comes into focus.  However, the sample is illuminated such that only a 

small area of the sample is detected.  Thus, the measurement is only performed over that 

area.  The typical method for detecting the focus is by adding a pinhole in front of the 

detector as shown in Figure 1-2. 

 

Figure 1-2: This demonstrates a schematic for a typical confocal microscopy measurement. 

 

As is seen in Figure 1-2, if the point on the sample is in focus, it will correspond to 

the maximum amount of light being reflected back to the detector.  In this way for a typical 

profile measurement, it is necessary to provide a lateral scan over the surface of the sample 

to find the heights at each location.  For thickness measurement, the light must penetrate 

through the sample and reflect from the bottom surface.  Each point on the surface must 

scan in Z to ensure all focus points have been discovered. 
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Some of the advantages of this technique are the accuracy in X, Y, and Z for 

samples which may be normally difficult to measure optically due to under or over 

saturated spots.  Identification of the focal plane requires very little computational effort as 

only a one-dimensional signal comparing height with intensity is analyzed.  Lateral 

resolution can go as low as 0.2 micrometers, while height resolution as low as 0.4 

micrometers which relates to a pinhole diameter of 1 mm.   

This measurement, however, is quite time consuming if one is interested in high 

spatial resolution across the sample as compared to its field of view.  The height resolution 

can also be superfluous as scanning a thick film – i.e. greater than a mm -  will require a 

high number of steps in Z direction.  It should be mentioned that other confocal techniques 

exist that do not scan in Z such as ‘Chromatic Confocal,’ but this will not be covered in 

this dissertation.  This type of measurement is also susceptible to errors due to drift of stage.  

For thickness measurement, it should be mentioned that discontinuities within the sample 

can lead to extra detected heights within the layer, or can blur the result on the bottom 

surface and lead to errors in height or no detection.  An important consideration - since a 

confocal system already limits the power of light received by the detector due to the use of 

a pinhole - for turbid mediums is the necessity for a very high-power source, as much of 

light is lost to scatter.  The theoretical limit of a typical confocal thickness measurement is 

on the order of a micrometer due to how close two “airy disks” or point-spread functions 

can be in the Z direction and still be detected in addition to spherical aberration that is 

present due to the lens system.   [5–7] 
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Ellipsometry 

Ellipsometry is a technique which uses the principle of light polarization to detect 

the thickness of the sample.  Thus, the ellipsometry setup is required to be at a non-

perpendicular angle with sample under measurement, since polarization information is 

somewhat identical at normal incidence.  A typical setup for ellipsometry is shown in 

Figure 1-3. 

 

Figure 1-3: This demonstrates a schematic for an Ellipsometry measurement with a tunable light 

source. 

As can be seen in Figure 1-3, there are two polarizers – one altering the incoming 

beam and one the outgoing beam.  The first polarizer is used for creating a linear 

polarization from the source.  For calculation simplification, this polarizer is usually set at 

a 45° angle with respect to TE or S polarization and TM or P polarization.  This gives equal 

amplitudes in each respective polarization.  If the index of reflection is known, then the 

angle of incidence is usually set to the Brewster’s angle for further simplification; however, 

in the general sense of ellipsometry, this is not necessary.  Based on the simplification of 

setting the polarizer at a 45° angle, the following ratio can be determined for the outgoing 

light. 

𝑟𝑃
𝑟𝑆
= 𝑡𝑎𝑛(𝜓)𝑒𝑗𝛥 (1-1) 
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where 𝑟𝑃 is the ratio of incoming and outgoing P polarized electric fields, 𝑟𝑆 is the ratio of 

incoming and outgoing S polarized electric fields, tan(ψ) is the ratio of outgoing 

polarization electric field amplitudes, and Δ is the phase difference between the respective 

polarizations of the outgoing electric field. 

To experimentally determine the polarization exiting the sample, the analyzer is 

used.  This is typically elliptically polarized as there are different components of each 

polarization as well as a phase difference between polarizations.  To find the elliptical 

polarization of the outgoing light, the analyzer is rotated.  While only three angles are 

needed for defining the elliptical polarization - 0°, 45°, and 90° respectively – additional 

measurements are usually taken for increasing precision. 

Once the ellipticity of the polarization is determined, the amplitude parameter, ψ, 

and phase lag parameter, Δ, can be determined as shown in Eqn. 1-2 and 1-3. 

𝑐𝑜𝑠( 2𝜓) =
𝐼0(90°) − 𝐼0(0°)

𝐼0(90°) + 𝐼0(0°)
 (1-2) 

𝑠𝑖𝑛( 2𝜓) 𝑐𝑜𝑠( 𝛥) =
2𝐼0(45°)

𝐼0(90°) + 𝐼0(0°)
 (1-3) 

 

where I0 is the intensity of light detected by the detector at particular angles of the analyzer.  

It should be noted that in the case Δ is determined to be most nearly 0° or 180° which 

corresponds to cos(Δ) approximately equal to a magnitude of one, there can be a large 

inaccuracy in the resultant calculation.  To avoid cases such as these, one can introduce a 

retarder in the setup to change the phase lag and thus reduce the error. 

Once ψ and Δ have been determined, different physical parameters of the surface 

can be identified, such as index of refraction and film thickness.  If one is interested in 

solving for index of refraction, using standard Fresnel equations for a boundary will give 

P and S polarization ratios as a function of angle and complex index.  Since the relation 
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between P and S polarizations is already known based on ψ and Δ, these equations can be 

combined to solve for the complex index of the sample.  This is shown in Eqn. 1-4. 

�̃�1 =
�̃�0 𝑠𝑖𝑛( 𝜃0)√1 − 4 𝑠𝑖𝑛

2( 𝜃0) 𝑡𝑎𝑛(𝜓)𝑒
𝑗𝛥 + 2 𝑡𝑎𝑛(𝜓)𝑒𝑗𝛥 + 𝑡𝑎𝑛2(𝜓)𝑒𝑗𝛥

𝑐𝑜𝑠( 𝜃0)[1 + 𝑡𝑎𝑛(𝜓)𝑒
𝑗𝛥]

 (1-4) 

 

where ñ1 is the complex index of refraction of the sample of interest, ñ0 is the complex 

index of refraction of the external medium, and θ0 is the incident angle with respect to the 

normal of the sample.  Thus, the physical parameter, index of refraction can be obtained 

from the ellipsometry setup. 

It is also possible to determine film thickness based on the ellipsometry setup 

assuming index of refraction is known for all three mediums – ambient, film, and substrate.  

In this case, since there are many internal reflections, the polarization of the outgoing beam 

must take into account all of them.  Thus, the overall ratio of output electric fields 

polarizations is changed to the following based on the limit of infinite reflections. 

𝑅𝑃
𝑅𝑆
=
𝑟𝑃1𝑟𝑆0𝑟𝑆1𝑒

−𝑗4𝛽 + (𝑟𝑃0𝑟𝑆0𝑟𝑆1 + 𝑟𝑃1)𝑒
−𝑗2𝛽 + 𝑟𝑃0

𝑟𝑃0𝑟𝑃1𝑟𝑆1𝑒
−𝑗4𝛽 + (𝑟𝑃0𝑟𝑃1𝑟𝑆0 + 𝑟𝑆1)𝑒

−𝑗2𝛽 + 𝑟𝑆0
 , 𝛽 = 2𝜋

𝑑

𝜆
�̃�1 𝑐𝑜𝑠( 𝜃1) (1-5) 

 

where r is the ratio of incoming to outgoing electric fields for respective polarization and 

boundary, d is the thickness of the film, λ is wavelength of source, and RP/RS is the overall 

ratio of outgoing electric fields with respect to polarization. This equation can then be set 

equal to Eqn.1-1 above and be used to solve for d.  It should be noted that since the equation 

is quadratic in nature, there will be two complex solutions for thickness.  One should 

choose the value with the lower imaginary component since thickness should be a 

completely real value. 

The last item to note with respect to thickness measurement is that for thicker films, 

the phase difference between the respective polarizations can become greater than 2 
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radians.  If this is the case, there is an ambiguous thickness associated with film unless a 

thickness range is known prior to measurement.  To determine an accurate thickness for 

this case, one should use a spectrometer as the tunable source and vary the input 

wavelength.  For each wavelength across the scan, one should calculate the thickness 

independently and compare the results to find the unique result with a consistent thickness.  

Using a spectrometer is the standard technique in ellipsometry because it allows for 

averaging thickness results and verification of a unique thickness. 

To characterize ellipsometry relating to thickness measurement, there are many 

benefits to the system.  Firstly, the measurement can be very fast, since the only data 

acquired is from different angles of the analyzer and the detector only needs one intensity 

value per angle.  The resolution is very good (< 0.01 nm), especially for very thin films on 

the order of tens of nanometers with the ability to measure thicknesses below 1 nm.  Since 

a scanning source can be fast and used for robustness of the measurement – as mentioned 

above, the measured thickness will be reliable as there are redundant thicknesses calculated 

for each respective wavelength which can also be used to determine if a measurement is 

not conclusive.  

One of the major limitations of this technique includes whether the sample itself 

alters the polarization of the of light which would not allow for the correct measurement.  

Additionally, there is only a single thickness data point over the surface as opposed to a 

thickness profile.  Another limitation relates to the level of turbidity within the medium – 

as a turbid layer would induce a dominant scattering component as compared to the signal, 

which would not allow for proper polarization determination.  Lastly, with respect to the 

developed system used in Chapters 2 and 3, this technique has an upper limit in thickness 
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measurement on the order of 1 to 5 micron due to the high number of cycles in the delay 

between the different polarizations.  Thickness samples greater than this create a high error 

in Δ even with use of a scanning wavelength source.  [8–10] 

Reflectometry 

Reflectometry is another technique that uses the optical parameters of the sample 

to detect thickness.  It contrasts from ellipsometry in that the incident light is usually 

directed normal to the surface as shown in Figure 1-4.  This is to simplify the complexity 

of the Fresnel equations and thus reduce the computation for calculating the correct 

thickness. 

 

Figure 1-4: This demonstrates a schematic for a typical reflectometry measurement with a 

spectrometer as a source. 

 

In general, reflectometry looks for the overall reflectance coming back from the 

surface at a set number of wavelengths.  The first component considered in reflectometry 

is the variation of index of refraction with wavelength.  For this, typically the Cauchy 

approximation is used.  This approximation is shown in Eqn. 1-6. 

𝑛(𝜆) = 𝐴 +
𝐵

𝜆2
+
𝐶

𝜆4
 (1-6) 
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where A, B, and C are constants that must be determined through the measurement.  This 

approximation, while not a correct assessment of index over a wide range of wavelengths, 

usually holds valid in the visible spectrum for dielectrics.  For semiconductors, amorphous 

materials, and other more complex mediums, other approximations must be used with more 

terms.  After defining the approximation for the material, it should be determined whether 

the index has an imaginary component or is absorptive. In the case where the material is 

absorptive, a similar approximation can be made for k(λ).  However, for simple materials, 

the absorption component can be assumed to be zero with respect to the real component of 

index. 

Next, for finding thickness, reflectivity must be related to index of refraction for a 

thin film.  Using Fresnel equations for an incident angle perpendicular to the sample, the 

following equation to determine thin film reflection can be shown [11]: 

𝑟𝑡𝑓 =
𝑟1 + 𝑟2𝑒

−2𝑗𝛽

1 + 𝑟1𝑟2𝑒
−2𝑗𝛽

 , 𝛽 = 2𝜋
𝑑

𝜆
𝑛1 (1-7) 

 

where rtf is the thin film reflection, r1 is the reflectance of the first interface, and r2 is the 

reflectance of the second interface.  It should be noted the similarity of Eqns. 1-5 and 1-7 

with the difference due to the angle of incidence as well as the complex index reduced to 

the real component.  Below shows the relationship between reflectance at a boundary and 

index assuming no absorption and perpendicular incidence: 

𝑟 =
𝑛0 − 𝑛1
𝑛0 + 𝑛1

 (1-8) 

 

Thus, r1 and r2 can be calculated for each boundary as a function of the three 

indexes.  With respect to the detected reflectance of the sensor, the final form can be shown: 

𝑅𝑡𝑓 = |𝑟𝑡𝑓|
2
=
𝑟1
2 + 2𝑟1𝑟2 𝑐𝑜𝑠( 2𝛽) + 𝑟2

2

1 + 2𝑟1𝑟2 𝑐𝑜𝑠( 2𝛽) + 𝑟1
2𝑟2

2
 (1-9) 



11 

 

 

where Rtf is the observable reflectance.  Since there are six unknowns in this particular case 

– A, B, C, n0, n1, and n2 – data will need to be taken for at least six wavelengths.  For 

improvement of accuracy – similar to Ellipsometry – data is usually swept over a broad 

range of wavelengths in the visible spectrum. 

This technique is very accurate (< 1 nm) with the assumption that the material is 

well defined – i.e. index of refraction and absorption coefficient are well known and 

material is homogeneous.  Based on current tools in industry, this technique can measure 

on the order of tens of nanometers up to approximately 150 microns.  For very thin films 

(under 15 nm), since the incidence angle is perpendicular to the surface, it is difficult to 

measure with reflectometry since there is not much variation in the reflection and thus the 

fitting function is not accurate.  This technique does very well if there are well-defined 

equations – i.e. Eqn. 1-6 - with not too many coefficients.  However, with the more 

complicated materials, defining them properly based on the many coefficients becomes 

complicated and multiple solutions can arise from a measurement.  If this becomes the 

case, incorrect thicknesses are determined.  Thus, for non-crystalline materials or for 

materials with internal inconsistencies, this technique is normally not used. 

There are also techniques that combine ellipsometry with reflectometry for 

furthering range or redundancy, but this will not be explored in this document.  [10,12,13] 

Coherence Scanning 

Coherence scanning is a widely used technique in profile measurement, but can 

also apply to thickness measurement.  Coherence scanning is an interferometry technique 

which looks at the contrast of the fringes in each location as the stage is scanning in the Z 

direction.  Figure 1-5 depicts a typical coherence scanning setup. 
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Figure 1-5: This demonstrates a schematic for a typical coherence interferometry measurement 

setup. 

 

As can be seen in the Figure 1-5, for this technique it is important to have a wide-

band source.  Typical systems use a standard white light source which gives rise to the 

commonly used name, ‘White Light Interferometry.’ Since the source has a broad 

spectrum, interference fringes will only be detected on the interferogram if the optical 

pathlengths of the sample path and reference path are most nearly matched.  This means 

that if the sample has a profile variation, certain locations on the sample will have a 

minimal optical path length difference while other locations will not, resulting in a low 

contrast fringe pattern.  An example interferogram of a spherical surface is shown in the 

Figure 1-6. 

As can be seen in Figure 1-7, when varying the sample path with respect to the 

reference path, high contrast fringes will appear at location of minimal optical path 

difference.  Thus, if one analyzes the pixel performance over a scan, for each pixel there 

will be a maximum contrast associated with a perfect balance between paths. To determine 

the maximum contrast, the pixel data over the scan is reduced to its envelope.   



13 

 

 

Figure 1-6: This demonstrates the variation in coherence scanning interferograms for multiple distances 

from a spherical sample. 

 

 

Figure 1-7: This demonstrates the typical envelope for a single pixel’s intensity over a coherence scan. 

 

As can be seen from both Figures 1-6 and 1-7, for the particular coherence of the 

light source, there is a small range where fringe contrast is seen and a peak location can be 

determined by the envelope for maximum contrast.  Many algorithms have been developed 

for correctly identifying the envelope and thus obtaining a very accurate maximum which 

relates directly to the profile information.  Since the scan is performed over the whole area 

of the image, identifying each pixel peak will lead to a profile measurement over the 

surface. 

With regards to thickness measurement, the scan must cover both the top and 

bottom surface to ensure two peaks in pixels measurement and thus a thickness profile.  

For example, a point measurement for a 20-micron thickness is shown below in Figure 1-

8. 
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Figure 1-8: This demonstrates the coherence scan envelope seen for a single pixel’s intensity on a thick 

film. 

 

It should be noted that coherence scanning techniques for measuring film thickness 

requires knowledge of index of refraction for properly identifying the actual thickness.  

This technique is very accurate (<0.1 nm) for providing a thickness profile for a surface 

regardless of the material and geometry and can produce repeatable results down to tens of 

nanometers.  There are a few constraints however.   

Firstly, the scan itself must take enough data points in Z to correctly identify the 

envelope.  This becomes problematic when the thickness gets larger and a very big scan is 

required.  Thus, more data points require more computation and thus more time.  This is 

why typical coherence scan tools usually restrict the user to less than 100-micron scans 

unless operator knows approximate thickness of sample.   

A second constraint is that of the field of view.  The surface area corresponding to 

a pixel on the camera is assumed to be flat with respect to the reference itself.  However, 

if the area increases and there is variation in the slope of the sample, the contrast in pixel 

intensity will be adversely affected due to the fact that over one pixel, the intensity is 

averaged.  Thus, depending on the flatness of the sample, the overall field of view is 

restricted and typically a high-power optic is required to restrict the field of view.  Thus, if 
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one were to desire thickness measurement over a large field of view, one would need to 

stitch multiple measurements which leads to a timely and less accurate process. 

A third constraint is that if the material is rough or has internal discontinuities, the 

light that must transmit through the sample to the bottom surface gets scattered and thus 

eliminates the desired fringes.   

The last constraint is that the thickness of the film must not be too thin where the 

two envelopes overlap.  In this case, most envelope determining algorithms will breakdown 

and no longer accurately identify the two peaks. Thus, this leads to the thickness range of 

this technique from greater than one micrometer to a few millimeters approximately.  [14–

16] 

 

1.1.2 Surface Measurement 

 

With regards to surface measurement, the techniques that will be explored will only 

include those applicable for rough surfaces – i.e. hundreds of nanometers and greater.  

There will be two categories of surface metrology to discuss.  The first is the ability to 

measure roughness of the surface without measuring the surface profile.   Methods included 

in this category are Specular Reflection Method, Diffuse Reflection Method, and Speckle 

Pattern Technique. The second category will include those that have the ability to measure 

the surface profile of rough surfaces.  The important difference between the two categories 

is that while the first only has the ability to provide roughness information, the second can 

compute roughness information from the raw profile that is generated.  Therefore, the 

second type of metrology is more extensive and thus desired.  Techniques in this category 
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that will be discussed include Mechanical Stylus Method, Scanning Tunneling Microscopy 

(STM), and Coherence Scanning.   [17,18] 

Specular Reflection Method 

This technique is used for finding the roughness of the surface of a sample without 

finding the profile.  In particular, this technique detects is the amount of light reflected 

from a sample as compared to that of an ideally flat sample with the same properties.  A 

depiction of the setup is shown in Figure 1-9. 

 

Figure 1-9: This depicts the specular reflection technique for measuring roughness. 

 

 As one can see from Figure 1-9, some of the scattered light due to surface 

roughness do not reach the detector.  The degree of roughness can be characterized by Eqn. 

1-10. 

𝑅𝑆𝑃
𝑅0

= 𝑒
−[
4𝜋𝜎𝑐𝑜𝑠 𝜃𝑖

𝜆
]
2

≈ 1 − [
4𝜋𝜎 𝑐𝑜𝑠 𝜃𝑖

𝜆
]
2

 (1-10) 

 

where σ is the surface roughness, RSP is the detected specular reflection, R0 is best-case 

specular reflection, θi is the incident angle of light, and λ is the wavelength of the light.  To 

calculate what R0 should be, one can use the Fresnel equations for a boundary as was 

discussed in the ellipsometry section where for a non-perpendicular angle, absorptive 
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medium, and multiple polarizations of light, the calculation can be quite complex and 

approximations may need to be made.  However, if incident light is perpendicular to the 

surface and the sample is assumed to have negligible absorption, specular reflection can be 

estimated to be  𝑅0 = (
𝑛0−𝑛1

𝑛0+𝑛1
)
2

, where n0 could be reduced to one if in a normal 

environment.  Once this reflection has been defined for the particular setup, the roughness 

calculation can be deduced directly based on the detected reflection.  

There are a few concerns with this particular measurement technique however.  

Firstly, the technique is sensitive to errors in the assumed index of refraction.  One would 

need to have a relatively accurate estimate of this parameter.  Secondly, there is no 

verification of the detected result as there is only one data point for reflectance.  This setup 

could become more robust if the incident angle could be varied and multiple reflectance 

values were measured, however this would demand for a complex geometric setup as both 

source and detector must be simultaneously adjusted.  Lastly, the derivation of Eqn. 1-10 

requires that the sample roughness be less than one-tenth of the wavelength used.  Thus, if 

a rougher surface were to be analyzed, this technique would not work due to a break-down 

in the initial assumption or a more complex equation would need to be used to properly 

characterize the surface.  [19–22] 

Diffuse Reflection Method 

The Diffuse Reflection Method takes the previous method one step further by 

measuring the lost scattered light in addition to the specular light, as shown in Figure 1-10.  

This can drive a more robust result than the previous method because roughness can be 

determined from both reflections respectively.  The difficulty with this method is capturing 
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all the stray light and detecting it.  For this, a diffuse, highly reflective sphere is used as 

shown in Figure 1-10.   

 

Figure 1-10: This depicts the diffuse reflection technique for measuring roughness. 

 

The specular light can pass through the sphere without getting altered, and thus the 

theory from the previous section holds valid for the detected specular reflectance.  The 

scattered light trapped in the diffuse sphere is detected in the “scatter detector.”  Using 

intuition based on Eqn. 1-10, it can be deduced that the total internal scatter detected with 

relation to roughness, σ, is as follows: 

𝑅𝑆𝐶
𝑅0

= [
4𝜋𝜎 𝑐𝑜𝑠 𝜃𝑖

𝜆
]
2

 (1-11) 

 

where RSC is the total reflection due to all scattered light.  While this technique is a 

more robust technique for calculating roughness, the limitations still remain the same from 

the previous technique with respect to the degree of roughness that can be measured.  This 

technique can also be used for defect detection, as scattered light reflectance with respect 

to the specular reflectance as the sample is scanned in one direction can give a lot of 

information for the surface of the sample.  [20,22–24] 
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Speckle Pattern Technique 

A speckle pattern is a pattern generated from a scattering surface which causes local 

bright and dark spots for a coherent source.  While speckle mostly destroys an optical 

measurement, the speckle can be characterized to determine the degree of roughness of the 

sample of interest.  Figure 1-11 shows a typical speckle pattern due to a relatively rough 

surface. 

 

Figure 1-11: This shows the typical pattern generated from laser light on a rough surface. 

 

As can be seen in Figure 1-11, the image consists of a random intensity pattern with 

very bright and dark spots.  The spots can be analyzed for spatial frequency, contrast, and 

spot size.  The overall spot size of the pattern is also a function of wavelength as well as 

incident angle, which directly effects speckle spots sizes and other parameters.  Using these 

relationships, a model can be developed for predicting the roughness.  If the setup is 

properly characterized, this technique can measure surfaces with a roughness well over 

tens of microns.  This allows for characterization of rougher samples than the methods 

discussed above, which were restricted to roughness measurement of hundreds of 

nanometers with the use of light in the visible spectrum.  [25–27] 
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Mechanical Stylus Method 

This mechanical technique is a very common technique in metrology.  A stylus or 

sharp tip is laterally scanned over the sample of interest.  Depending on the necessity of 

the precision of measurement, stylus tips may include a capacitive or optical sensor, or if 

high precision is not necessary, Linear Variable Differential Transformers (LVDT) are 

used.  While scanned, a constant pressure to the surface is generated and one such method 

is by using a magnet and a force coil.  It is vital to the performance of this technique that a 

constant force be applied to the stylus during measurement.  When using an LVDT for 

example, the system follows the absolute movement past a null point by evaluating the 

induced voltage from a primary coil to two secondaries.  Using a linear stage, the stylus is 

transferred across the sample to get a line of data points.   This process can be iterated in 

the Y direction (if X direction is scanned) to obtain data for a complete surface profile. 

 

Figure 1-12: This shows the exaggerated error due to the mechanical stylus measurement 

technique. 

 

While this technique is very accurate in Z (< 1 nm for smooth surfaces), it has a 

few restrictions.  Firstly, the best resolution in X and Y is limited to 1 to 2 microns due to 

the optical encoders used for measuring displacement.   Secondly, based on the cone angle 

and radius of tip of the stylus, limitations occur related to the inherent spatial frequencies 
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present on the sample surface. For example, if the surface is very smooth, a resolution of 

0.1 nm can be achieved while a resolution above 1nm can be achieved for rougher surfaces.  

The error due to this phenomenon is shown in the Figure 1-12.  A third restriction is that 

of time.  Initial setup of location of scan for a sample can be time consuming and even 

more so is the scan time of measurement as compared acquisition time of an optical 

measurement which captures the whole field of view in one shot – i.e. a 100px by 100px 

measurement dataset at a sample rate of 100Hz would take on the order of 100s.  For 

measurements of higher density, scan time can take on the order of hours to days.  A final 

restriction is due to the fact that this measurement requires direct contact with the surface 

of the sample under measurement.  Thus, this technique is not used for highly sensitive 

objects as the measurement is considered destructive.  Thus, if a measurement is required 

to be non-contact, this measurement technique cannot be used.  [28–30] 

Scanning Tunneling Microscopy (STM) 

Scanning Tunneling Microscopy uses the same technique by scanning the sample 

in one direction to detect the height changes, but it uses a phenomenon known as tunneling 

current.  When two metals come within nanometers of each other, a tunneling current is 

generated due to the proximity of the electrons.  The current detected by this technique is 

exponential with respect to the distance between the conductors. This variation in current 

provides a signal that is very sensitive to the location of the object without direct contact 

of the sample’s surface.  Also, since the variation in current is exponential, this gives very 

good detail for identifying the actual location.  For atomically flat surfaces it is observed 

that the variation on the surface due to individual atoms can be identified.   
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There are two variations for measurement with this method.  The first technique is 

to keep a constant height over the surface and identify the variation in current.  While this 

technique seems to be good due to less motion, it is only practical if the surface analyzed 

is very smooth since the tip must be on the order of 10nm from the surface to detect current.  

The second technique is more applicable for rougher surfaces.  The tool will move the 

stylus to keep the current constant (distance from surface) as it scans the surface laterally. 

This technique claims better than 0.1 nm vertical resolution and lateral resolution 

of 1 nm when operating in a vacuum.  The STM probes can have a tip radius of less than 

50nm.  While this technique is extremely accurate, it is slow similar to the previous 

technique.  A typical field of view for an STM system is on the order of 100 by 100 microns.  

The tool also requires enough conductivity in the sample to generate a few nA of current.  

With this restriction, it should be mentioned that the sample must be either a metal or have 

a degree of conductivity.  [31–33] 

It should be noted that Atomic Force Microscopy (AFM) uses a similar 

measurement method but instead measures the force generated from the overlapping of 

electron clouds of the stylus tip and the sample.  Force generated must be at least greater 

than 0.2nN.  With this technique, there is no requirement for the sample material.  [34] 

Coherence Scanning 

Although Coherence Scanning Interferometry was already covered in the thickness 

measurement section, it needs to be stated that coherence scanning is also a widely used 

technique for the measurement of roughness.  For profile measurement, the sample only 

needs to contain one null fringe envelope over the entire Z scan.  Since each pixel in the 

field of view is analyzed independently, this technique avoids the restrictions other laser 
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interferometric techniques would have due phase-unwrapping requirements.  The only 

limitation in this technique is when variation in height within one pixel is on the order of 

the coherence length of the source, the fringe contrast diminishes and thus adversely affect 

the signal to noise.  For example, if the coherence length of the source used is 

approximately 1 µm, depending on the physical area of one pixel, as roughnesses approach 

this threshold, the visibility of the coherence envelope will decrease.  To resolve this 

problem one of three implementations would need to take place - using a better X, Y 

resolution in the measurement while sacrificing the overall field of view and cost of optics, 

increasing the overall resolution of the sensor while sacrificing time of measurement and 

cost of sensor, or stitching multiple measurements with risk of lateral inaccuracies as well 

as time of measurement.  [35–37] 

Optical Techniques not Suitable for Roughness Measurement 

It should be mentioned that standard highly coherent interferometers configured in 

Michelson, Twyman-Green, Mach-Zehnder, and Fizeau configurations are typically not 

used for roughness measurements as the strength of these techniques is the precision of 

measurement.  A moderate roughness (> λ/4) would generate phase jumps in the raw 

information which would lead to an ambiguity in the actual profile of the object.  This is 

also the case for phase-shifting interferometry, which while providing extremely high 

precision (hundreds of picometers) for very flat surfaces, cannot provide any reliable height 

data greater than hundreds of nanometers.  Any technique such as this requiring the use of 

a phase unwrapping technique to generate a height map is typically not used for roughness 

measurements due to the restriction of allowable slopes present within the sample.  [38–

42] 
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1.1.3 Summary of Limitations for Rough Surface and Turbid Film Measurement 

 

This section summarizes the limitations of each of the previous respective sections.  

Limitations presented are specific to measurement of a high level of surface roughness and 

/ or a highly turbid medium. 

 

Table 1-1: Limitations in film thickness measurement due to rough top surface and / or turbid layer. 

Film Thickness Measurement 

Technique Resolution Measurement Range 
Rough Surface / Turbid Medium 

Limitations or Challenges 

Confocal 
Microscopy 

0.4 µm 5 µm - 2 mm 

Laser power must be high due to 
use of pinhole. With turbid layers, 

due to scattering, little optical 
power comes back to sensor.  

Could potentially detect incorrect 
peaks in middle of turbid layer due 

fluctuations intensity observed. 

Ellipsometry < 0.01 nm < 1 nm - 5 µm 

Polarization modelling for fitting 
breaks down due to speckle.  

Upper limit for thickness 
measurement limited to a few 

microns. Material cannot affect 
polarization. 

Reflectometry < 1 nm 15 nm - 150 µm 

Modelling for fitting index of 
refraction breaks down due to 

speckle.  Limited materials can be 
used as index variation with 

wavelength must be predictable. 

Coherence 
Scanning 

< 0.1 nm 5 µm - 5 mm 

Inner surface contrast fringes 
blurred due to top surface 
roughness and or medium 

turbidity.  Technique cannot handle 
much scatter.  Slopes present 

within sample limit FOV for rough 
surfaces. 
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Table 1-2: Upper limit limitations in roughness measurement due to rough surfaces. 

Roughness Measurement 

Technique Resolution 
Roughness Upper 

Limit 
Rough Surface Limitation 

Mechanical 
Stylus Method 

0.1 nm to 1 nm 
 

 (dependent on 
surface) 

Microns 

Contact method is destructive.  
Limit dependent on stylus probe 
radius and slopes present within 

sample.  Time consuming for 
larger FOV. 

STM and AFM < 0.1 nm 250 nm 
Due to precision, limit in axial 
range of hundreds of nm. Very 
time consuming for larger FOV. 

Confocal 
Microscopy 

0.4 μm Tens of microns 

Laser power must be high due to 
the little optical power that comes 
back to sensor.  This is due to the 

dual issue of use of pinhole in 
combination with a high-level of 
scattering. Lower magnification 
objectives desired to properly 
characterize rougher surfaces.  

Specular / 
Diffuse 

Reflection 
Technique 

Nanometers 
Hundreds of 
nanometers 

Simple statistical approximation 
for specular and diffuse reflection 

breaks down for roughness 
greater than 300 nm.  Cannot give 

information on surface profile. 

Speckle Pattern 
Technique 

10 to 100 nm  
 

(dependent on 
technique - i.e. 
laser or white 

light) 

Tens of microns 

With proper calibration and 
characterization of surface, is 

capable of measuring very rough 
surfaces, however, it cannot give 

information on surface profile. 

Coherence 
Scanning 

< 0.1 nm 1-10 microns 

Limited FOV due to presence of 
steep slopes in surface.  Would 
require stitching for larger FOV.  

Coherence length of source 
restricts upper roughness limit. 

Standard Laser / 
Phase-Shifting 
Interferometry 

< 1 nm λ / 4 

Speckle dominates phase map.  
Change in phase is not 

distinguishable over scan in 
reference. 

Laser 
Triangulation 

and Structured 
Light 

> 2 μm 
Hundreds of 

microns 

Resolution not sufficient for 
characterizing less than 10-micron 
roughness. Both experience HDR 

problems. 
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1.2 BiSpectrum Technique 

As can be seen in the previous section for thickness measurement of films with a 

high degree of inhomogeneity and with many scattering centers, and profile measurement 

of rough surfaces, optical techniques, generally, suffer from common problems of 

scattering and speckle noise.  If the noise component cannot be easily separated from the 

wanted information, failure in the measurement will occur.  Thus, a signal-to-noise ratio, 

or SNR, enhancement technique was devised for the purpose of extending the confidence 

level of the measurement.  The developed signal enhancement technique was given the 

term ‘Fractional BiSpectrum’ technique, or FBS  [43,44].  This algorithm was 

conceptualized due to some of the limitations that exist in the BiSpectrum technique. 

The BiSpectrum technique was developed to enhance the signal to noise ratio for 

data which had an inherent double frequency within the signal.  As can be seen in 

astronomy and cosmology, when analyzing optical data from a distant source, there is both 

a natural frequency coupled with an additional inherent frequency which in turn creates a 

frequency at the sum of the two frequencies  [45].  Since the information was greatly lost 

to a high threshold of noise, the BiSpectrum was developed using this relation embedded 

within the signal.  The noise-reduction technique has since been applied to other fields such 

as radar, telecommunication, geophysics, biomedicine, and digital image processing  [46–

50].  Furthermore, extensive research has been done to properly reconstruct the phase and 

amplitude information directly from the data within the BiSpecrtum domain  [50–59]. 

The BiSpectrum can be defined as the Fourier Transform, or FT, of the third order 

cumulant  [46].  The third order cumulant is a term used in statistics when dealing with a 

probability density function, or PDF.  If it were to be assumed that there is a zero-mean 
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process, meaning the expectation value for the sample set goes to zero, the third order 

cumulant is the same as the third order moment or skewness and thus equivalent to a triple 

autocorrelation function or TAF.  This function is defined as follows for a one-dimensional, 

discrete signal: 

𝑐𝑥
(3) = 𝑚𝑥

(3) = ⟨𝑥(𝑖)𝑥(𝑖 + 𝑘)𝑥(𝑖 + 𝑙)⟩   (1-12) 

 

where x is the value at the index of i, and k and l are shift indices.  The BiSpectrum is then 

defined as the FT of this function or: 

𝐵(𝑝, 𝑞) = ∑ ∑ 𝑐𝑥
(3)(𝑙, 𝑘) 𝑒𝑥𝑝[−𝑗2𝜋(𝑝𝑙 + 𝑞𝑘)] = 𝐹

𝑁−1

𝑘=0

𝑁−1

𝑙=0

{𝑐𝑥
(3)(𝑙, 𝑘)} (1-13) 

 

where F{.} is the FT and N is the length of the signal.  It should be noted before further 

derivation that the major benefit of the BiSpectrum over the power spectrum or other 

algorithms is the ability to perform a spectral component correlation as well as maintaining 

phase relationships between multiple Fourier spectrum components.  For the computational 

simplicity of a real discrete signal it can be shown that: 

𝐵(𝑝, 𝑞) = 𝑋(𝑝) ⋅ 𝑋(𝑞) ⋅ 𝑋(−𝑝 − 𝑞)   (1-14) 

 

where 𝐵(𝑝, 𝑞) is the complex BiSpetrum which can be separated into its magnitude 

component and phase component, p and q are the indices in BiSpectrum space that range 

from −𝑁/2 + 1 to 𝑁/2 − 1, and X(.) is the FT of x(.).  Some of the properties of the 

BiSpectrum that come about due to the TAF are as follows: 

1) For a stationary Gaussian process with zero mean, 𝐵(𝑝, 𝑞) = 0. 

2) For a single simple harmonic function, i.e. 𝑥(𝑖) = 𝐴0 𝑐𝑜𝑠( 2𝜋𝑓𝑖 + 𝜙),𝐵(𝑝, 𝑞) = 0. 

3) The BiSpectrum is a periodic function where 𝐵(𝑝, 𝑞) = 𝐵(𝑝 + 2𝜋, 𝑞 + 2𝜋). 

4) The BiSpectrum has hexagonal symmetry where 𝐵(𝑝, 𝑞) = 𝐵(𝑞, 𝑝) = 𝐵(−𝑝 − 𝑞, 𝑞) 

=𝐵(𝑝,−𝑝 − 𝑞) =𝐵(−𝑝 − 𝑞, 𝑝) =𝐵(𝑞,−𝑝 − 𝑞). Thus, the only limits needed for full 
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definition of BiSpectrum space is for 𝑞 ≥ 0, 𝑝 ≥ 𝑞, 𝑝 + 𝑞 ≤ 𝑁/2 − 1.  This can 

dramatically lessen computation time. 

5) The BiSpectrum information has the ability to recover the phase and amplitude 

information of the Fourier spectrum. 

6) There exists an invariance property where a spatial or temporal shift in the initial signal 

has no impact on the BiSpectrum space. 

7) Maybe the most important property for the purposes of this research, if there exists 

three inherent frequencies within a signal where the sum of two of the frequencies 

results in the third, a non-zero result will occur in the BiSpectrum. 

 

Based on the properties of the BiSpectrum, for an additive Gaussian noise 

introduced to the system, the BiSpectrum trends to zero, but does not trend to zero if two 

frequencies have an additive relation containing a third.  Thus, using the BiSpectrum, one 

can identify signal frequencies where a much higher noise power exists as compared to 

Fourier space.  Since in astronomy applications, there exists a coupled third frequency 

relation based on the 7th property above within the detected signal, it was possible to extract 

the signal using the BiSpectrum.  

To demonstrate the advantage of the BiSpectrum, a simulation was developed.  The 

simplest relationship where three frequencies, 𝑓1, 𝑓2, 𝑓3, hold the 7th property the 

BiSpectrum above occurs when 𝑓1 = 𝑓2, and 𝑓3 = 2𝑓1.  Thus, let us assume there are two 

signal frequencies present within the spatial-domain as shown in Figure 1-13.  For the use 

of the BiSpectrum, we will set one signal frequency to be twice of the other. 

The inherent frequencies of 15 cycles per sample length and 30 cycles per sample 

length are shown in Figure 1-13.  Both sinusoids in the simulation have an amplitude of 

one.  These embedded frequencies are summed up together and combined with white 
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Gaussian noise containing a noise power of nine times that of each respective signal 

frequency power.  The combined raw signal is shown in Figure 1-14. 

 

Figure 1-13: This shows an example of frequencies embedded within the signal for the purpose of 

demonstrating the advantage of the BiSpectrum. 

 

 

Figure 1-14: This shows the raw time-domain signal data of the combination of two inherent 

frequencies with white Gaussian noise for demonstration of the BiSpectrum. 

 

As is seen in Figure 1-14, the frequency content cannot be distinguished without 

the use of a further noise reduction technique such as using the FT for determining whether 

any inherent frequencies are indeed present within the data.  Thus, the FT is performed on 

the spatial signal to discover whether the frequencies of 15 or 30 can be distinguished. 
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Figure 1-15: This shows the Fourier transform of the noisy data presented in Figure 1-18.  The 

inherent signal frequencies are not the most dominant frequencies in Fourier space. 

 

Figure 1-15 shows the Fourier transform of the noisy data and while frequencies of 

15 and 30 have strong amplitudes, they are not the highest amplitude frequency 

components detected.  Thus, the FT would fail to correctly identify the correct frequency 

component present within the data.  However, if there were knowledge that the double 

frequency was present (or the sum of two inherent frequencies were present), the 

BiSpectrum could be performed for further enhancement of the inherent signal frequencies.   

 

Figure 1-16: This shows two-dimensional BiSpectrum space of the noisy signal data.  The 

BiSpectrum is two-dimensional because the signal is one-dimensional. 
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The magnitude of the BiSpectrum for one of the identical six BiSpectrum regions 

is shown in the Figure 1-16.  As is seen, the peak magnitude in the BiSpectrum space occurs 

when indices q and p are equal to 15.  This occurs due to Property 7 for the BiSpectrum 

which states that when the sum of each index frequency is equal to that of another signal 

frequency present within the signal, the BiSpectrum will not trend to zero.  Since both 

frequencies 15 and 30 are present, this will give rise to a spike occurring at this particular 

pixel in BiSpectrum space.  If there is additional knowledge that a double frequency is 

present in the signal, a further filtering can be performed in BiSpectrum space where an 

analysis on the p = q line could be performed for the reasoning that p and q must be identical 

for the double frequency presence to be detected.  Data on this line for the BiSpectrum 

space is shown in Figure 1-17. 

 

 

Figure 1-17: This shows the BiSpectrum data on the line p = q.  The inherent signal frequency of 

15 is easily distinguishable. 

 

As is seen in Figure 1-17, while the initial signal to noise ratio, or SNR, of the noisy 

spatial content was closer to 1:1 in the full BiSpectrum space, a great increase in SNR can 
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be seen in the selected line of the BiSpectrum.  This gives great confidence that the inherent 

frequency has been properly identified as compared to the FT of the same data.  This 

process demonstrates the strength of the BiSpectrum with respect to enhancing the SNR 

for a noisy measurement. 

 

1.2.1 BiSpectrum Restriction 

While the BiSpectrum analysis has many applications in science and is a good 

technique for recovering phase and frequency information for a noisy time/spatial-domain 

signal, it can only enhance the SNR for the specific scenarios mentioned above.  For 

example, if two inherent frequencies are not coupled together or a double frequency is not 

also present in the time/spatial domain, there is no filtering that can be performed in 

BiSpectrum space that can help to extract the present signal frequencies.  Therefore, if 

another known relation exists between multiple frequencies in the time/spatial domain, the 

BiSpectrum would not provide any advantages over other techniques with respect to 

enhancing signal frequencies as compared to those related to the noise. 

 

1.3 Outline of the study 

 

In Chapter 2, we introduce the Fractional BiSpectrum technique, which is the 

innovative algorithm used for enhancing the SNR of a noisy measurement.  This technique 

provides flexibility in inherent frequency relationships as compared to that of the 

BiSpectrum. We implement the FBS technique on a common interferometry setup to 

determine the film-thickness of thick films.  We first characterize the system and measure 
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films that generate a very low amount of optical noise, followed by the measurement of 

rough/turbid films. 

In Chapter 3, we introduce a subsequent noise reduction technique similar to that 

of the FBS, but where the multiple frequency content is separated in respective images.  

We apply this technique to the same film-thickness measurement system and compare 

results from the normal FBS technique with the newly introduced technique. 

In Chapter 4, we implement our FBS signal-enhancing algorithm using a highly 

explored interferometry technique, Wavelength Scanning Interferometry, and apply it to 

profilometry measurement.  After introducing the background theory for the interferometry 

technique, we provide some profilometry results on roughness standards. 

In Chapter 5, we discuss some addition noise-reduction techniques and strategies 

based off of the FBS. 

Chapter 6 will conclude the contents of this dissertation. 

 



CHAPTER 2: OPTICAL FILM THICKNESS MEASUREMENT OF TURBID 

MATERIALS USING THE FRACTIONAL BISPECTRUM NOISE-REDUCTION 

TECHNIQUE1 
 

 

Abstract 

A novel approach for deriving the thickness information from a rough and/or turbid 

thick film or coating is demonstrated.  For the application where the roughness or 

inhomogeneity of the thickness layer produces a dominant speckle pattern, laser 

interferometry is often not a suitable technique for reliable thickness measurements.  The 

implementation of a signal-to-noise ratio (SNR) enhancement algorithm, which can relate 

the spatial frequency information produced by the sample when illuminated by multiple 

lasers is demonstrated.  Development of a metrology system using a specific laser 

interferometry setup to incorporate the noise-reduction technique is also presented. With 

respect to the detected information of the measurement system, this SNR enhancement 

technique allowed for the reliable identification of the proper frequency and thus the 

thickness of the sample. 

2.1 Introduction 

Thickness measurement of films made from turbid mediums and/or having rough 

surfaces have many applications in improving the manufacturing process in the 

automotive, aerospace, defense, metal packaging, flexible packaging, industrial 

electronics, paper, and medical industries, to name a few.  Types of layers or coatings of 

interest include primers, base coats, top coats such as paints, anodized layers, and 

adhesives.  In each respective industry, however, there is a lack of fast, non-contact 

 
1 This paper is published in the Optics Communications journal. 
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measurement systems able to provide a reliable thickness measurement of the rough and 

turbid layers common to the industry.  In such industries, having quick feedback on 

thickness measurement would allow for reduction of material used – saving in waste and 

money, ensure reliability and quality of manufactured layer – reducing issues that would 

arise after products are in households, and in some cases can alert the manufacturer of 

potential issues in manufacturing where they were previously not aware.  The system 

developed in this manuscript would allow for the thickness measurement to be performed 

from one side of the layer – does not need access to both sides – which does not require 

any alteration of the sample and could be used for internal layer measurement.  The speed 

of the measurement is very fast and can potentially be used for live samples in production.   

The difficulty of the measurement lies in the rough surface or turbidity of the material and 

when measuring these types of films using a laser light source, a speckle pattern is 

generated [1]. 

 

Figure 2-1: This shows the Fractional BiSpectrum data on the line p = q.  The inherent frequency 

of 16 cycles per sample length is easily distinguishable. 

 

When a surface or turbid medium generates a high enough noise due to scattering 

or speckle, it may produce a Signal-to-Noise ratio less than 3dB in the power spectrum.  

That is, if the Fourier Transform (FT) is taken for the purpose of filtering out the noise, the 
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average amplitude of the noise must not be comparable to that of the signal amplitude or it 

becomes unclear how to separate the signal information from the noise.  Thus, for these 

types of interference patterns, using the FT for the purpose of deriving thickness 

information becomes unreliable.  There are other non-Fourier related techniques that are 

currently used for thickness measurement [2-9], but these techniques also break down due 

to the high level of optical scatter. 

Film thickness measurement has been subject to extensive research for many 

decades [2,3]. A very popular technique is ellipsometry that uses the ratio and lag of 

respective incoming and outgoing S and P polarizations of light to determine characteristics 

of the sample medium such as index of refraction and thickness [4,5]. While this technique 

can be very precise and robust when used with a spectrometer, it also breaks down under 

optically noisy conditions.  This type of measurement requires the medium’s physical 

parameters to be well characterized.  If there is a high level of turbidity or top surface 

roughness, the medium is not well characterized and a high level of fluctuation in the 

outgoing polarization will occur.  Thus, the analyzer will pick up incorrect amplitudes at 

respective angles and the proper ratio will be incorrectly determined.  It should also be 

noted that due to the precision related to the lag term in the measurement, this technique is 

typically not used for thicknesses greater than 1µm to 5µm.  Since the focus of this research 

is to measure thicker samples – tens of microns to millimeters - this technique would not 

be applicable. 

Reflectometry is another technique for measuring film thickness, but instead of 

using polarization states of light it only uses the intensity from the interference of beams 

[4,6,7].  The beam is projected at a normal incidence to the sample and scanned over a set 
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of wavelengths.  If the sample index is well defined by a model such as the Cauchy equation 

or another more complex equation, the combination of this equation and the standard 

Fresnel reflection equations can be used to solve for thickness.  Since there are typically 6 

to 15 unknown coefficients depending on the approximation equation used, the source must 

scan at least that number of wavelengths, but usually will scan a much higher number for 

robustness purposes. This technique will breakdown if the model used is not a proper 

approximation of the medium which is normally the case for these highly rough or turbid 

mediums.  Also, interference intensity data used for best determining the coefficients will 

be skewed due to the high level of noise occurring from scattering. 

Confocal Microscopy is another technique where the focused light is projected on 

to the sample and is scanned in the perpendicular direction [8,9]. When the sensor detects 

a maximum brightness, the position of the scanning stage is known, and a height is 

determined. For thickness measurement, the sample must be scanned such that the top and 

bottom surfaces pass the optimum focus point. The thickness of the sample can be 

calculated by its refractive index and the height difference between two recorded stage 

positions. When the top surface of the sample has a relatively high degree of roughness, 

the data from the bottom surface will be undeterminable since the path that light takes is 

no longer well defined.  If the sample medium has a high level of turbidity, there will be 

other source of reflections within the sample creating unwanted peaks. These unwanted 

peaks will generate false heights which makes this technique unreliable for such samples. 

As another technique, Coherence Scanning Interferometry is a precise 

measurement technique that can be used for the purposes of thickness measurement 

[10,11].  This technique scans the sample in the perpendicular direction and looks at the 
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interference data between a reference arm and the sample.  Since a non-coherent source is 

used, which only gives distinct fringes at a small offset between sample surface and 

reference arm, identifying when the fringe has the highest contrast determines the absolute 

height of the sample. Similar to confocal microscopy, for the purpose of thickness 

measurement, this technique must scan vertically to pass through both the top and bottom 

surfaces of the sample.  While this technique is precise (sub nm), for the purposes of 

thickness measurement, the contrast fringes get blurred if there is a high degree of 

roughness on the top surface. This is in addition to reading false heights within highly 

turbid mediums instead of identifying the actual bottom surface – similar to confocal 

microscopy.  Lastly, if the slopes due to roughness on the bottom or top surfaces are too 

steep compared to the pixel area or coherence length of the source, no coherence fringe 

will be present, and thus no measurement can be made.   

Optical Coherence Tomography, or OCT, is an extension of Coherence Scanning 

Interferometry that uses low coherence light and scans laterally and perpendicular to 

observe the sub-surface structural data and is typically used in the medical field [12-14]. 

There are two main techniques used within the field of OCT, time-domain and spectral-

domain [13].  While this technique is very robust and can handle speckle data, there are 

three items of interest.  Scanning depths of greater than 100µm can be time consuming 

while achieving a decent accuracy and this technique also breaks down at a few millimeters 

below the surface due to the low-level signal returning.  Since the signal is captured 

incrementally in depth and intensities are assigned, it needs post-processing to identify 

each layer thickness. Lastly, relative to the setup proposed in this paper, this technique is 

much more complex due to either the laser scanning or motion required.   
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Non-optical techniques can be used, but will suffer from either alteration or 

destruction of the sample – in the case of step height measurement – or the need for a very 

well-defined chemistry composition of the medium – in the case of Ion Beam thickness 

measurement techniques [15]. Thus, using a novel noise-reduction technique based on the 

BiSpectrum, we have investigated the ability to extract the information from a signal 

contaminated with a higher noise level than discernable in the Fourier domain such that 

confident measurement results could still be obtained for the scenario in which the speckle 

and scattering components are significant. 

In this paper, we will briefly discuss this noise-reduction algorithm in section 2.2.  

Section 2.3 will demonstrate the experimental setup including the physical configuration 

as well as the automated software used in measuring film thickness of rough samples.  In 

section 2.4, measurement tool accuracy will be demonstrated followed by section 2.5 which 

will discuss the measurement of rough and turbid mediums.  Section 2.6 will summarize 

the results of this work.    

2.2 Fractional BiSpectrum Technique 

The BiSpectrum has been used in the field of astrophysics for noise reduction [16-

19]. The BiSpectrum can be defined as the Fourier Transform (FT) of the third order 

cumulant [20].  The third order cumulant is a term used in statistics pertaining to the 

probability density function, or PDF. Based on the properties of the BiSpectrum, for a 

Gaussian process, the BiSpectrum is zero; that is, the BiSpectrum statistically eliminates 

the data related to an additive Gaussian noise.  Furthermore, the BiSpectrum does not trend 

to zero if two frequencies have an additive relation containing a third [20]. Thus, in using 

the BiSpectrum, we can identify specific frequencies present within the signal where a 
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higher variance in additive Gaussian noise is present as compared to the Fourier Transform.  

However, these specific frequencies are identifiable solely based on a specific relationship 

with other frequencies within the signal. For example, for the application of identifying a 

binary star, this property can be exploited as the two masses are moving in harmony.  

However, there is high level of noise within the signal due to the turbulent atmospheric 

conditions in addition to trying to resolve information up to the diffraction limit of the 

telescope [16,17]. Thus, the BiSpectrum is an ideal technique to derive the signal from the 

noise in the acquired data.  The definition of the discrete BiSpectrum for a finite, real-

valued, discrete dataset is shown in Eqn. 2-1 [20].  A ‘discrete dataset’ is defined as a time-

domain or spatial-domain set of datapoints, i.e., x[i], for i=0,1,2,…,N-1.  

𝐵[𝑝, 𝑞] ≡ 𝑋[𝑝] ⋅ 𝑋[𝑞] ⋅ 𝑋[−𝑝 − 𝑞]  (2-1) 

B[p,q] is the complex BiSpectrum which can be separated into its magnitude 

component and phase component, p and q are the frequency indices in BiSpectrum space 

that range from −𝑁 2⁄  to 𝑁 2⁄ − 1 where N is the finite data length of the discrete dataset, 

and X[.] is the discrete FT of x[.] [20].  After properties of the BiSpectrum became well 

established, there was great interest in many other disciplines such as radar, 

telecommunication, geophysics, biomedicine, and digital image processing [20-24]. 

The Fractional BiSpectrum was then developed to provide more flexibility than the 

BiSpectrum when signal frequencies inherent within a discrete dataset have a specific 

relationship with other signal frequencies.  The discrete Fractional BiSpectrum or FBS for 

a finite, real-valued, discrete dataset is defined as [25]  

𝐹𝐵𝑆[𝑝, 𝑞; 𝑘] ≡ 𝑋[𝑝] ⋅ 𝑋[𝑞] ⋅ 𝑋[−𝑝 − 𝑘 ⋅ 𝑞]  (2-2) 
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where the variable k is a fractional number, and is used to relate inherent signal frequencies 

that may exist within the discrete dataset. If signal frequencies are related properly, k in 

effect enhances these frequencies with respect to the additive Gaussian noise present.  

There are a few key properties that should be identified [25]. 

1) For a stationary Gaussian process with zero mean, 𝐹𝐵𝑆[𝑝, 𝑞; 𝑘] = 0. 

2) For a single simple harmonic function, i.e. 𝑥[𝑖] = 𝐴0 cos(2𝜋𝑓𝑖 + 𝜑), 𝐹𝐵𝑆[𝑝, 𝑞; 𝑘] =

0.  

3) The FBS of a real-valued, discrete dataset has dual symmetry where 𝐹𝐵𝑆[𝑝, 𝑞; 𝑘] =

𝐹𝐵𝑆∗[−𝑝,−𝑞; 𝑘]. 

4) If there exist two signal frequencies within the discrete dataset and the relationship 

between the two is known, a single k value can be chosen such that a non-zero result 

will occur in the FBS. 

 

The important properties for the FBS with respect to enhancing the SNR are 

properties 1 and 4, where a Gaussian process trends to zero and a non-zero result will occur 

for a discrete dataset with two inherent signal frequencies with a relationship related to k.  

Suppose there is a known relationship between the first frequency, f1, and the second 

frequency, f2, such that 𝑓1 = 𝜇𝑓2 and f1 and f2 are both integer frequencies.  It is known that 

𝑋[𝑓1] and 𝑋[𝑓2] should result in peak amplitudes in Fourier space.  If it was the case that 

for a particular set of indices in FBS space that p = f1, q = f1, and −𝑓1 − 𝑘𝑓1 = −𝑓2, then 

all three Fourier terms in the FBS would result in non-zero amplitudes assuming the 

discrete dataset is composed of real values.  Thus, a k value chosen where 𝑘 = 𝑓2 𝑓1⁄ − 1 

will lead to a non-zero result in the FBS space at 𝐹𝐵𝑆(𝑓1, 𝑓1; 𝑘).  It should be noted that in 

the case where 𝑓2 = 2𝑓1, the result is the same as that of the BiSpectrum where k = 1.   

For the purposes of the thickness measurement system specifically, it is designed 

such that there will be only two inherent signal frequencies in the same spatial direction 



42 

 

within the image.  From that standpoint, all data within discrete dataset that is unrelated to 

these frequencies will be ‘noise.’  Each respective inherent signal frequency will be 

referred to as ‘inherent frequency’ or ‘signal,’ which is a single simple harmonic function.  

The amplitude of these inherent frequencies within each respective frequency domain – 

Fourier and FBS – will be compared with the maximum amplitude of the noise which will 

be defined as SNRI, or the signal-to-noise ratio of interest.  If SNRI, or the ratio between 

the signal amplitude and the maximum noise amplitude, is greater than √2 in the respective 

domains, there is considered to be a high enough confidence in the measurement.  While 

this does not relate power of noise present to the signal, this comparison gives better clarity 

to how well the technique has determined the thickness.  For simplicity, ‘dataset’ will be 

used when discussing the discrete spatial-domain or time-domain data.  For thickness 

measurement, these two inherent frequencies are used to enhance exactly one frequency 

magnitude which we will relate to the thickness detected.  Since the criterion for k creates 

a peak value in the FBS domain only on the line p = q, and only the magnitude component 

of the Fourier domain is needed to determine the single peak frequency, the FBS can be 

reduced to a more basic equation, Eqn. 2-3, for thickness measurement.   

|𝐹𝐵𝑆[𝑝;𝐾]| = |𝑋[𝑝]|2 ∙ |𝑋[𝐾 ∙ 𝑝]|  (2-3) 

K is similar to k in that it is relating the two inherent frequencies.  Since symmetry 

can be assumed for the magnitude about f = 0 for a real-valued dataset, analysis of only the 

positive frequencies are adequate for both respective domains, FT and FBS.  If we have 

the condition that f1 is less than f2, in this case, 𝐾 = 𝑓2 𝑓1⁄ , which is a value between 1 

and ∞ since f must be positive.  Thus, the SNR will be enhanced with respect to the lower 

inherent frequency magnitude by using the FBS.  It should be noted that if it was desired 
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to alter the FBS domain using a different K value, the higher frequency magnitude could 

in-fact be enhanced.  This corresponding factor would be exactly 1/K.  A simulation was 

performed to show the comparison between the standard FT and FBS techniques where the 

initial dataset contained two inherent frequencies.  For the simulation, the following signal 

was generated. 

𝑥[𝑖] =  𝑎 sin(2𝜋𝑓1𝑖 + 𝜑1) + 𝑎 sin(2𝜋𝑓2𝑖 + 𝜑2) + 𝛼[𝑖] (2-4) 

where a = 1, φ1 and φ2 are random initial phases, and α[i] is one realization of 

random values with a normal distribution, Ν(0, σ2), where σ2 was set to 5.  The process for 

properly comparing the FT and FBS is shown in Figure 2-2. 

 

 

Figure 2-2: (a) Initial sensor dataset has two inherent frequencies of 16 and 24 combined with 

additive Gaussian noise with a noise power of ten time that of the sinusoidal signals.  The remaining plots 

show the comparison of FT result (b) with FBS result for enhancing lower frequency (c) and higher 

frequency (d). 

 

Figure 2-2a represents the dataset with two inherent frequencies – in this case 16 

and 24 cycles per sensor length respectively – with an additive Gaussian noise applied to 

the dataset with a noise power of ten times that of the two sinusoidal functions in the 
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dataset.  As is seen, there is no discernable sinusoidal variation related to the inherent 

frequencies, as the additive Gaussian noise component is too high.  In order to clarify the 

signal frequencies within the dataset, the FT is taken as shown in Figure 2-2b.  What is 

seen, however, is that the proper frequency content – 16 and 24 cycles per sensor length - 

are still at a level less than that of the noise.  In this situation, the proper frequency could 

not be identified and thus either no result or an incorrect result would be produced from 

the data.  

In Figures 2-2c and 2-2d, it is seen with reasonable certainty that frequencies of 16 

and 24 cycles per sensor length are identified using the FBS technique.  As expected, using 

the proper K values, the amplitude of one of the two frequencies was enhanced as compared 

to the noise threshold.  Thus, using this technique, the proper frequency would be identified 

which relates to the proper thickness identification as described in Appendix A.  If the 

result for the FBS is still unclear (SNRI < √2)– as is seen in Figure 2-2d - it should be 

mentioned that both FBS datasets can be combined by performing a correlation 

computation.  Since this cross-correlation result uses both the FBS datasets, it naturally 

will give a result with a higher confidence.  Thus, for all the measurements in our film-

thickness system, we provide only this final cross-correlation result of the two FBS outputs.  

To have a comprehensible comparison of the FT and FBS techniques, an additive 

Gaussian noise was applied to the two sinusoidal functions as referenced in Eqn. 2-4 where 

the power of noise was varied from 1 to 18 as compared to the signal.  A Monte-Carlo 

simulation was used to create 10000 random datasets for each respective Gaussian noise 

power and compare how well the FBS and FT can identify the proper signal frequency.  

This is shown in Figure 2-3. 
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Figure 2-3: Comparison between FBS and FT based on percentage of correct frequencies 

predicted.  10,000 randomized datasets were generated for each respective noise power. 

 

As is seen in Figure 2-3, the performance of the FBS technique outperforms that of 

the FT especially at a higher noise power.  When the additive Gaussian noise power was 

in the range of 5 to 9 times that of the sinusoidal signal power in the dataset, there was seen 

to be a drastic improvement in the correct frequency identification of the FBS technique as 

compared to that of the FT.  It is at this relative level of noise power that we will see the 

most significant enhancement for this technique. 

In the next section we describe a thickness measurement system which implements 

the FBS as a technique to measure the thickness of films. 

2.3 Film Thickness Measurement 

For measuring the thickness of a film, there are many techniques to choose from 

[2-11]. Here we describe a system that uses the noise-reduction technique provided in the 

previous section in a simple and standard multiple reflection interferometry technique [26].  

This system is depicted in Figure 2-4. 
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Figure 2-4: Depiction of film thickness setup used.  Laser light of a specific wavelength is incident 

on the thickness sample.  Based on the two major reflections from front and back surface of film, an 

interference pattern is created at the intersection of the two beams. 

 

As can be seen, an optical fiber is used to guide an incident laser beam at a particular 

wavelength, λ, and angle, θ (with respect to the normal to film surface), onto a thick film.  

If the film allows for partial transmission of the particular wavelength, there will be two 

major reflections - one from the top surface and one from the bottom surface of the film.  

Based on the thickness, t, and index, n, of the sample, there will be a spatial separation 

between the centers of the beams as well as the diameters and curvatures of the beams.  

Since the two beams are mutually coherent, where they overlap will create an interference 

based on this shift in beam centers and curvatures.  Due to the lateral shift of the beam 

centers, this interference pattern will be dominated by a spatial frequency in one direction.  

Using Gaussian beam analysis, Eqn. 2-5 can be formulated relating this spatial frequency 

with the physical parameters shown in the Figure 2-4.  A derivation of this equation is 

shown in Appendix A.  An approximation was made assuming that the propagation of the 

beam to the sample is much larger than the Rayleigh length and the assumption that the 

linear phase component is dominant if the displacement of beam centers is much less than 

the width of the respective beams.  
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𝑃 ≈
𝜆 ∙ 𝑙√𝑛2 − sin2 𝜃𝑖
2𝑡 ∙ sin 𝜃𝑖 cos 𝜃𝑖

 (2-5) 

  

In Eqn. 2-5, P is the spatial period or the inverse of the spatial frequency and l is 

the total distance traveled by the beam.  As can be seen in the equation, there is a direct 

relation between the spatial period of the observable interference pattern and the 

wavelength of the laser used.  This will be used for the determination of K in the FBS.  A 

simulation of the interference pattern for 532nm and 633nm wavelengths incident on a film 

of 100µm at a 50º angle was generated and is shown in Figure 2-5.  The size of the 

interference pattern at the image plane is 11mm, the sample is placed at 2cm from the fiber 

output tip, and the interference pattern is captured 4cm away from the sample.  Both 

respective beams have an NA of 0.12. 

 

Figure 2-5: Simulated interference pattern generated from a 100µm thick film for 532nm (a) and 

633nm (b) source wavelengths respectively. (a) shows much denser fringes than that of (b) due to the 

relationship related to wavelength as defined in Eqn. 2-5. 

 

As can be seen, there is a dominant spatial frequency in the x-direction of both 

patterns.  It is seen that this spatial frequency is directly proportional to wavelength of the 

lasers used as predicted by Eqn. 2-5.  Since multiple lasers produce fringe patterns each 

with a dominant frequency, if multiple lasers are used, all frequencies will be present within 
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the dataset and the K value can be readily calculated from the respective laser wavelengths.  

Thus, the FBS noise-reduction technique can be used to obtain the thickness. In this case, 

a film with relatively rough surfaces or that of turbidity within the layer would create a 

noisy spatial dataset.  A schematic for the experimental setup is shown in Figure 2-6. 

 

Figure 2-6: Schematic of setup used for thickness measurement. Outputs of three lasers with 

wavelengths λ1, λ2, and λ3 are combined using single mode fiber directional couplers, which all can be 

delivered, at the same time, onto the target film with a single fiber. 

 

As can be seen, a computer is used both for setting up and triggering the laser diodes 

as well as receiving the information from the camera for the measurement.  There are three 

laser diodes each with a respective current driver such that noise-reduction technique can 

be applied.  The three lasers used have respective center wavelengths of 520nm, 642nm, 

and 847nm.  We used three lasers because different thickness materials have different 

spectral reflectivity and with three lasers, we can choose up to three different two-laser 

combinations which will extend the capability of the thickness measurement system.  Two 

50:50 optical couplers are used to combine all three lasers into one output which is 

projected from the optical fiber tip to the film or coating under measurement.  The optical 

fiber used was rated to be single mode for 633nm wavelength with a 125µm cladding 
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diameter and a 4µm core diameter.  The NA given based on the respective indices of the 

cladding and the core was 0.12.  To determine the proper placement of the fiber-tip, sample, 

and camera, firstly the optimum angle of incidence needed to be determined.   

For our setup, it was determined that maximizing the number of fringes within the 

FOV was of the highest importance since it limits the minimum thickness detectable. Thus, 

the angle optimization is to maximize the number of fringes within the FOV. We isolated 

Eqn. 2-5 with respect to θ and swept it for determining which angle corresponds to a 

minimum period.  Since n could not be removed in the calculation, we first set n = 1.5, 

which is a typical index for the mediums we expect to measure.  This is shown in Figure 

2-7a.  For completeness, this process was done over a range of indices – from 1.1 to 3.0 – 

to see how index affected the optimum angle of the setup - as shown in Figure 2-7b. 

 

Figure 2-7: (a) depicts how the angle of incidence affects the number of fringes in measurement 

for n = 1.5 and (b) shows the optimum angle for a range of indices. 

 

As is seen in Figure 2-7, a 49.2-degree angle of incidence will produce the highest 

density of fringes in the measurement.  Although the index was varied drastically, a tight 

range of 46 to 57 degrees was observed.  Since sample indices typically used for 

measurement are closer to 1.5, an angle of 50 degrees was chosen for the setup. 
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The next point to consider for the setup was how closely to position each 

component – sample and camera sensor – with respect to the fiber tip.  Since it is assumed 

the distance to the sample and camera is much greater than the Rayleigh distance of the 

beam, a constant beam divergence angle of 6.9 degrees related to the NA of 0.12 can be 

assumed.  Since the alignment for a lens in the direct path of a Gaussian beam must have a 

very tight tolerance with respect to perpendicular alignment and lens center position in 

order to have minimal aberrations, it was decided not to use a lens.  Thus, the width of the 

camera sensor (11mm) limited the total light path length to 6cm.  At this distance, the 

sensor would be able to acquire 75 percent of the beam spot - recovering most of the 

fringes.  The location of the sample was chosen to be at 2cm based on geometry limitations 

giving a laser spot size of 5mm diameter on the sample and an observable FOV of 3.7mm 

by 3.7mm. 

Lastly, an anti-Gaussian optical filter was used for the purpose of producing 

uniform intensity distribution across the beam such that the dynamic range of the camera 

would be sufficient for measurement.  Based on the geometry of the setup, wavelengths of 

lasers, and limitation regarding the approximation of Eqn. 2-5, a thickness range of 17µm 

to 1300µm was determined for this setup.  The details for this determination are described 

in the Appendix B.  Figure 2-8a shows the physical experimental setup. 

As is seen in Figure 2-8, the fiber tip, thickness sample, and camera were placed in 

the proper locations and angles as described above with a custom-made fixture.  The 

software used for the development of this metrology setup was Labview that has the ability 

to directly communicate through RS232 to a custom developed board for controlling the 

lasers. It also allowed for communication with the monochromatic (Prosilica GT) camera  
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Figure 2-8: (a) shows the lab setup of film thickness measurement system and (b) shows the 

software interface of captured interference patterns and calculated thickness.  The zoomed in window in (a) 

depicts the fixture developed for setting proper angles and lengths while patterns in (b) shows source 1 

(520nm), source 2 (642 nm), and source 3 (847nm) have spatial periods in the x-direction related to their 

respective wavelengths. 

 

 used through GigE protocol.  Lastly, the Labview software allowed for processing of the 

images in the measurement for calculation of thickness of sample using techniques 

described in section 2.2.  Figure 2-8b depicts the final interface for viewing the result of 

the measurement, including the interference patterns and the measured thickness. 

2.4 Measurement Tool Accuracy 

Firstly, it was important to determine whether the developed film thickness setup 

could make an accurate measurement.  To determine this, quartz wafer standards of 75µm, 

125µm, 250µm, 325µm, and 500µm were used with a given index of 1.55.  Each of the 
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samples were given an uncertainty of 25µm within their rated thickness from the 

manufacturer.  Since the limits of the developed system range is up to over 1mm thickness, 

additional samples including a cell-phone cover and glass wafer with unknown thickness 

were also used.  A refractive index of 1.5 was used for these samples.   

It should be mentioned that since multiple wavelengths are used throughout the 

visible spectrum and into the near-infrared, the absolute index of refraction of the material 

will vary depending on the source which will introduce a slight shift in the absolute 

thickness measured.  For example, for plastics the maximum variation in index, Δn, over 

the wavelength range used is approximately ±0.025 [27].  If compared to the absolute 

index of refraction of approximately 1.5, this will introduce a shift in the measurement of 

±1.7%.  Since the layers of interest are highly rough and/or turbid, this amount of shift is 

usually acceptable considering the measurement tolerance for such layers.  If it were 

desired to reduce this shift and the material index dispersion with wavelength is well 

known, calculating a more exact relation between the spatial periods can be accomplished 

by using the exact index of refraction for each respective wavelength in Eqn. 2-5. 

For each sample, independent measurements were taken using other metrology 

tools such as white-light interferometry for thin samples, confocal for intermediate 

thickness, and for thick samples, a micrometer was used.  The results from these techniques 

were compared with the measured results from the developed system in Figure 2-9. 
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Figure 2-9:  Comparison of developed system with metrology tools in industry.  Shows confidence 

range for each measurement.  Samples 1- 5 were quartz wafer standards, sample 6 was a cell phone cover, 

and sample 7 was a glass wafer with unknown thickness. (a) shows measurements for each respective 

metrology tool and (b) shows correlation coefficient closely equal to one for comparison of other systems 

as compared to the developed system. 

 

As is seen in Figure 2-9, measurement made by the developed system on each 

quartz wafer fell within the specified uncertainty by the manufacturer.  The developed 

system’s measurements were very accurate with respect to the commonly used tools in the 

industry as shown in Figure 2-9b.  The correlation coefficient between developed system 

and other tools was nearly equal to one using the entire measurement range of the system.  

Some of the discrepancies between the measurements can be related to the specific location 

of measurement on the sample - as thickness could vary, in addition to the refractive index 
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value used for samples 6 and 7, which may lead to a difference in result as compared to the 

absolute measurement of the caliber. 

Lastly, to qualify the measurement system, each sample was measured 30 times.  

The maximum deviation in the respective measurements were +/- 2µm of the average 

thickness.  This can be perceived as the repeatability of the measurement system. 

2.5 Rough Surface Thickness Measurement 

To realize the advantage of our system related to the novel SNR enhancement 

technique used, it was necessary to use relatively rough and inhomogeneous films to 

compare the results with the standard FT technique.  For this, two samples were used.  The 

first sample analyzed was the coating present on a Blu-ray disk.  For protective purposes, 

all Blu-ray disks have an approximate coating or cover layer of 98µm above the substrate 

with and index of refraction of 1.55 [28,29] .  In order to add noise to the measurement, 

simply adding dust, scratches, and smudges drastically skewed the interference pattern. 

Prior to performing a measurement with high optical disturbance, it was first 

desired to measure at a clean location of the sample for comparison.  Thus, the 

measurement data for a clean location is shown in Figure 10a.  It should be noted that 

although there is an underlying Gaussian component in the frequency domain result due to 

the intensity variation across the beam, this was readily removed. 

As is seen from the measurement of the clean Blu-ray disk sample, the raw image 

shows a predictable interference pattern in the x-direction with both green and red 

interference fringes present. There are two obvious peaks in the frequency domain which 

correspond to spatial frequencies produced by the film for two wavelengths of 520nm and 

642nm. The horizontal axes in Figures 2-10 b and c are scaled to directly represent the film 
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thickness.  Since the frequency range is referencing the red wavelength, the lower 

thickness, 97µm, corresponds to the red source and the actual thickness of the Blu-ray disk, 

and the higher thickness, 117µm, corresponds to the green source which is a scaled 

thickness related to the ratio between the wavelengths of the sources.  For a clean sample, 

the signals in the FT are easily observable.  Taking the FBS of the raw image for both the 

low and high frequencies, and then applying a cross-correlation of the datasets, it is seen 

that only one peak of 96µm exists which is related to both sources simultaneously.  Thus, 

the thickness of the Blu-ray disk is close to that of the expected rated thickness. 

 

Figure 2-10: Thickness results of clean Blu-ray disk sample for FT (b) and FBS (c) based on the 

interference image (a) using green and red lasers with respective wavelengths of 520nm and 642nm.  The 

frequency domain has been scaled in terms of film thickness. 

 

A comparable measurement was then performed at an altered location on the 

sample of interest.  The raw image for the two-laser combination is shown in Figure 2-11a. 

As can be seen in the raw image, there seems to be scratches and smudges in the 

field of view.  Since the fringes should appear in the x-direction on the image, there is very 

little discernable interference fringes such as is seen in Figure 10a due to the high noise 

level.   The various techniques – FT and FBS - were then used to determine the thickness 

of the sample.  Figures 2-11 b and c show the results for each respective technique. 
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Figure 2-11: (a) shows raw interference image for combination of green (520nm) and red (642nm) 

lasers for Blu-ray disk measurement.  (b) shows the Fourier Transform thickness result of the acquired 

image while (c) shows the Fractional BiSpectrum thickness result.  The frequency domain has been scaled 

in terms of film thickness. 

 

In the Fourier data, the thickness axis is again referencing the red laser. Thus, the 

two thicknesses related to signal information are 99µm and 121µm respectively.  While 

there is a strong amplitude in the FT at 98µm, there is a relatively strong amplitude at 

approximately 411µm as well.  If there were no prior information on the thickness of the 

sample, this would leave an uncertainty in the measurement result based on the SNRI 

criteria.  The FBS technique, however, is able to measure the correct thickness based on 

the two datasets with proper K values (in this case 642/520 and 520/642) and produce a 

result at 98µm.  It is observed that the noise present within the resultant dataset is drastically 

reduced and the SNR has been enhanced when comparing to the FT data.  Thus, one can 

state the layer having a thickness of 98µm with the FBS measurement with a higher 

confidence than the 98µm claim in the FT measurement.  This thickness is very similar to 

the value measured at a clean location on the same Blu-ray disk. 

This process was carried out as well for a transparency sheet sample.  Due to the 

application of a typical transparency sheet, the sheet has an opaqueness that introduces 

inhomogeneity within the paper creating noise when observing the sample with laser light.  
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The transparency film used was rated at a thickness of 4 mil (or 102µm) without any 

specifications for index of refraction or tolerance range.  Since transparency paper is 

composed of the material cellulose acetate which has an index of refraction of 1.46 – 1.5, 

1.5 was used for the index [30].  It should be mentioned that absolute thickness accuracy 

of the measurement was not the main focus of this experiment, but that a confident 

measurement could be made.  If accuracy is also of high importance, then explicitly 

calculating the refractive index of the material could be achieved by acquiring a slab of the 

material with a known thickness.  Thus, this calculated refractive index would be used in 

all subsequent thickness measurements.  The raw image for the transparency film is 

depicted in Figure 12a.  For this measurement, the red (642nm) and infrared (847nm) lasers 

were used. 

As is seen in the Figure 12a, this image shows a dominant speckle pattern. The 

frequency-based noise-reduction techniques were again applied to this image.  Figures 12 

b and c show the results of each respective technique. 

 

Figure 2-12: (a) shows raw interference image for combination of red (642nm) and infrared 

(847nm) lasers for transparency sheet measurement.  (b) shows the Fourier Transform thickness result of 

the acquired image while (c) shows the Fractional BiSpectrum thickness result.  The frequency domain has 

been scaled in terms of film thickness. 
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As can be seen in Figures 12 b and c, the thicknesses related to the signal 

frequencies (127µm for red and 98µm for infrared) did not correspond to the thickness with 

the greatest amplitude – in this case approximately 162µm.  Thus, based on the FT alone, 

this measurement would in-fact predict the wrong thickness.  Applying the FBS cross-

correlation technique, however, leads to the proper measurement of 97µm.  This thickness 

is most nearly the rated value of the transparency paper.  Thus, in this case, not only did 

the FBS technique enhance the SNR of the data, but it was able to extract the proper result 

where the FT did not.  It should be noted that in only applying the FBS for low or high 

frequency, there were other thicknesses above the SNRI threshold amplitude other than that 

of the correct thickness, but applying the cross-correlation suppressed these other 

frequencies.  Thus, utilizing both datasets helped to gain confidence in the measurement as 

predicted in the simulation section. 

2.6 Conclusions 

In this paper, a novel technique, Fractional BiSpectrum was introduced for 

enhancing the signal information in a noisy dataset if multiple inherent frequencies are 

present that have a known relationship with each other.  This technique used the theory 

from the BiSpectrum as a starting point.  The FBS technique can be used for the analysis 

of two inherent frequencies within a noisy dataset as long as the relationship between these 

two frequencies are known. Multiple simulations were performed to directly compare the 

FT to the FBS.  The Monte-Carlo simulation showed that there was a strong SNR 

enhancement when the additive Gaussian noise power was five to nine times (-7dB to -

9.5dB) that of the signal power. 
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It was then determined that a standard thickness measurement interference 

technique could be used to test the simulation results due to the dominant spatial frequency 

produced in one direction.  A fully automated thickness measurement setup was 

constructed.  The physical parameters of the system such as angle and spacing were 

identified and optimized.  A fixture was developed for holding camera, sample, and fiber 

properly as well as a communication board for proper management of lasers from computer 

to drivers.  The theoretical limits of the system were determined.  Lasers with wavelengths 

of 520nm, 642nm, and 847nm were used for producing different combinations of two 

spatial frequencies to be analyzed. 

The system’s accuracy was verified using clean samples and comparing the 

thickness measurement to that of other metrology tools.  For measurements over the whole 

theoretical range of the system, a five percent difference or less of inaccuracy was seen.  

The system was then used to make a measurement of layers with highly rough surfaces and 

turbid mediums. 

Firstly, a clean location of the Blu-ray disk was measured and a thickness of 96µm 

was determined.  The disk location was altered such that a noisy interference pattern would 

be generated.  Both the FT and the FBS were able to calculate the proper coating thickness 

of the sample, however, while the uncertainty of the measurement using the FT was high, 

a confident measurement was taken with the FBS at 98µm. 

Secondly, a transparency sheet was used as a sample under test.  The rated thickness 

given by the manufacturer was 102µm. As was seen, a speckle-like pattern resulted from 

the transparency sheet.  The FT of the measurement could not properly determine the 

thickness of the transparency sheet while the FBS could at 97µm. 
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It was shown that while this system may not outperform other thickness 

measurement systems in precision, the system would allow for higher certainty of 

measurement results as well as producing measurements where other systems would 

commonly break-down.  The SNR enhancing technique illustrated in this article has shown 

value in extending the limitations in a standard measurement system and when applicable, 

can extend the measurement capability of other systems. 
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2.7 Appendix A 

For estimation of the period of the generated fringes, one must use Gaussian beam 

theory.  Figure 2-13 shows the geometry of the system along with all the variables of 

interest. 

 

Figure 2-13: This shows the variables associated with geometry of developed system. 

 

In Figure 2-13, θi is the incident angle, θT is the transmission angle, n is the 

refractive index of the sample, t is the thickness, 2d is the distance traveled by the beam 

internally, ∆C is the distance between beam centers, and Pts. 1 and 2 on respective beam 

paths interfere with each other.  l1 will represent the optical path length of light reflected 

from the top surface, starting from the tip of the fiber to Pt. 1, and l2 will correspond to the 

optical path length of light reflected from the bottom surface, starting from the tip to Pt. 2.   

∆l will be defined as the optical path difference between the two beams. Calculating for ∆l 

and ∆C can be done directly and is shown in Eqn. 2-6 and Eqn. 2-7.   

∆𝑙 =
2𝑡

cos 𝜃𝑇
(𝑛 − sin𝜃𝑇 sin 𝜃𝑖) (2-6) 

∆𝐶 = 2𝑡 tan𝜃𝑇 cos 𝜃𝑖  (2-7) 

 

From Gaussian beam theory [28], Eqn. 2-8 can be derived which determines the 

phase variation at the cross-section of a Gaussian beam at a particular distance from the 

waist of the beam. 
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𝜑1(𝑟, 𝑙) = 𝑘𝑙 + 𝑘
𝑟2

2𝑅(𝑙)
  (2-8) 

where r is the radial distance from the center of the beam at a propagation length l 

from the waist of the beam.  The waist of the beam, W0 is defined as the smallest width of 

the beam.  For the purposes of this experiment, the waist of the beam coincides with the 

fiber tip.  The width of the beam at any particular propagation length l is defined as W, 

while curvature of the beam at a particular length is termed R.  Finally, when the width of 

the beam becomes √2W0, this specific propagation length is known as z0.  The basic 

Gaussian beam equations detailing the relationship of these parameters are shown in Eqn. 

2-9, Eqn. 2-10, and Eqn. 2-11 [31]. 

𝑅(𝑙) = 𝑙 [1 + (
𝑧0
𝑙
)
2

]  (2-9) 

𝑊(𝑙) = 𝑊0√1+ (
𝑙

𝑧0
)
2

  (2-10) 

𝑧0 =
𝜋𝑊0

2

𝜆
 (2-11) 

where Eqn. 2-11 relates all the equations to the wavelength of the beam.  As can be 

seen in Figure 2-13, Eqn. 2-8 can be related to each beam at l1 and l2.  If one takes the 

difference between the two respective phases, this will deduce the expected interference 

pattern.  Considering that z0 is on the order of tens of microns for the wavelengths used in 

our application, for any reasonable propagation distance, l, of the beam, it can be assumed 

that 
𝑍0

𝑙
≪ 1.  This will allow for Eqn. 2-9 and Eqn. 2-10 to reduce considerably giving rise 

to a simplification in Eqn. 2-8.  Thus, the difference in phase giving rise to the interference 

pattern at l1 and 12 is stated in Eqn. 2-12. 

∆𝜑 = 𝑘 ∙ ∆𝑙 + 
𝑘

2
[
𝑙1𝑟2

2 − 𝑙2𝑟1
2

𝑙1𝑙2
] (2-12) 
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Since r1 and r2 are a function of radial spatial parameters, both will be characterized 

in terms of x and y with respect to r1.  To relate the two, ∆C must be used.  If x is set to the 

axis from pt.1 to pt. 2 as depicted in Figure 2-13, Eqn. 2-12 can be restructured to Eqn. 2-

13. 

∆𝜑 = 𝑘 [∆𝑙 +
∆𝐶2

2𝑙2
] − 

𝑘∆𝐶

𝑙2
𝑥 −

𝑘∆𝑙

𝑙1𝑙2
(𝑥2 + 𝑦2) (2-13) 

 

The first term of the Eqn. 2-13 relates to the initial phase of the spatial frequency 

and is not important for the purposes of our application.  The second term relates to the 

dominant spatial frequency of interest that should be further analyzed.  The third term gives 

rise to a wide bandwidth of frequencies that should be reduced as much as possible.  To 

reduce this third term, it can be shown that the width of the beam at l1, W(l1), should be 

much greater than the displacement in center of the two beams, ∆C. 

Furthermore, to determine the period of the spatial frequency from the second term, 

one should find a phase difference equal to 2π.  This is shown in Eqn. 2-14. 

2𝜋 =
𝑘∆𝐶

𝑙2
𝑃 (2-14) 

 

where P is the spatial period in x-direction.  Replacing ∆C with the terms in Eqn. 

2-7 and replacing k with 2𝜋 𝜆⁄ , we can arrive at the final form for the spatial period. 

𝑃 ≈
𝜆 ∙ 𝑙2√𝑛

2 − sin2 𝜃𝑖
2𝑡 ∙ sin 𝜃𝑖 cos𝜃𝑖

  (2-15) 

  

2.8 Appendix B 

With respect to determination of the thickness measurement range limits, the 

following procedure was used. 
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1) Maximum Thickness 

As a constraint in our equations for minimizing the second order effects in our 

optical interference pattern, we have: 

𝑊(𝑙1)

Δ𝐶
≫ 1 (2-16) 

 

Using Eqn. 2-9 and Eqn. 2-10 and assuming l1 far from z0, we can represent the 

numerator of Eqn. 2-16 as: 

𝑊(𝑙1) =
𝜆 ⋅ 𝑙1
𝜋𝑊0

  (2-17) 

 

and based on the geometry of our setup, the denominator can be replaced as: 

Δ𝐶 =
2𝑡 ⋅ 𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖

√𝑛2 − 𝑠𝑖𝑛2 𝜃𝑖
  (2-18) 

 

where t is the thickness of the sample, θi is the incident angle of the beam with 

respect to the sample, n is the index of refraction of the sample, λ is the wavelength of the 

source, and W0 is the radius of the beam at the tip of the fiber.  Substituting these terms 

into Eqn. 2-18, we have: 

𝜆 ⋅ 𝑙1√𝑛
2 − 𝑠𝑖𝑛2 𝜃𝑖

2𝜋 ⋅ 𝑡 ⋅ 𝑊0 𝑠𝑖𝑛 𝜃𝑖 𝑐𝑜𝑠 𝜃𝑖
≫ 1 (2-19) 

 

Using simulation with no approximations, it was determined that the minimum 

allowable value for Eqn. 2-16 was 3 where the linear phase component still dominated the 

second-order term in Fourier space by a factor of 5.  Rearranging this constraint to solve 

for t and setting the ratio equal to 3 for the absolute maximum allowable thickness, we 

have: 

𝑡𝑚𝑎𝑥 ≈
𝜆 ⋅ 𝑙1√𝑛2 − 𝑠𝑖𝑛

2 𝜃𝑖

6𝜋 ⋅ 𝑊0 𝑠𝑖𝑛 𝜃𝑖 𝑐𝑜𝑠 𝜃𝑖
 (2-20) 
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Using our previously determined optimum parameters for the setup, θi = 50°, n = 

1.5, W0 = 1.37μm (from NA= 0.12), λ = 650nm, and l1 = 2cm, we can solve for the 

maximum thickness to be approximately 1318μm.  Thus, we set the upper limit of our 

thickness measurement to 1300μm. 

2) Minimum Thickness 

It was determined in simulation that a minimum of 6 fringes within the FOV are 

needed to produce a reasonable resolution in thickness - which is directly related to the 

resolution limitations in the frequency domain.  This limitation restricts the minimum 

thickness that can be measured and thus, we need to estimate the number of fringes.  Since 

this period is occurring at the surface of the sample under measurement, we need to 

determine the number of fringes based on the spot size occurring at that location.  This is 

shown below: 

𝐹𝑇 =
2𝑊(𝑙1)

𝑃
 (2-21) 

where FT is the estimated total fringes in the interference pattern.  Substituting the 

terms from Eqn. 2-17 and Eqn. 2-15, we get: 

𝐹𝑇 ≈
4𝑡 𝑠𝑖𝑛 𝜃𝑖 𝑐𝑜𝑠 𝜃𝑖

𝜋𝑊0√𝑛
2 − 𝑠𝑖𝑛2 𝜃𝑖

 (2-22) 

Setting the fringe value to 6 for the minimum detectable thickness and rearranging 

in terms of t, we will get: 

𝑡𝑚𝑖𝑛 ≈
6𝜋𝑊0√𝑛2 − 𝑠𝑖𝑛

2 𝜃𝑖

4 𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠 𝜃𝑖
  (2-23) 
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Again, substituting the optimum parameters of θi = 50°, n = 1.5, and W0 = 1.37μm, 

we get a minimum thickness of approximately 16.9μm.  Thus, we will set the lower limit 

of the thickness range to 17μm. 

3) Summary 

It was determined that the upper limit of the thickness measurement was based on 

the beam spot size at the surface of the sample being much greater than the distance 

between the two interference beams.  This is necessary to reduce the second order effects 

on the interference pattern.  The lower limit in contrast was determined based on the lowest 

number of fringes that would give a reasonable resolution in thickness data.  After applying 

the Gaussian optics theory and using the optimum parameters previously determined, an 

acceptable thickness range of 17μm to 1300μm was determined. 

 
 



CHAPTER 3: SNR ENHANCEMENT TECHNIQUE: A NEW APPROACH TO 

FRACTIONAL BISPECTRUM2 
 

 

Abstract 

When the power of noise within the time-domain or spatial domain signal is 

comparable to that of the power of the signal information itself, it is difficult to extract the 

desired information.  Typically, the Fourier transform can be used that localizes the signal 

in the frequency domain and distributes the noise; however, the limit is always defined by 

the Signal-to-Noise Ratio (SNR). The Fractional BiSpectrum was developed to enhance 

the signal information to a higher degree than that of the Fourier transform if there exist 

multiple frequencies within the signal that has a well-known relationship.  This technique 

has been demonstrated on a typical interferometry setup with two inherent frequencies. The 

previously demonstrated Fractional BiSpectrum technique used one image for capturing 

both sets of frequency content within the image.  In this letter, we introduce a modified 

Fractional BiSpectrum technique using the same setup configuration but where these two 

spatial frequencies are separated into two respective images. We will show that this method 

further improves the SNR relative to earlier reported results. 

3.1 Introduction 

The Fourier Transform (FT) can be used for the purpose of identifying, and filtering 

out frequencies from a time-domain or spatial-domain signal.  For the purpose of extracting 

a specific frequency or frequency content from a very noisy signal, the FT may be used, 

but will eventually break down if the power of the noise within the signal bandwidth (in 

 
2 This paper is submitted to the IET Electronics Letters journal. 
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Fourier domain) is comparable to that of the signal power contained within the respective 

bandwidth.  For such scenarios, the BiSpectrum was developed, which would naturally 

suppress the Gaussian noise within the signal if a specific relationship existed between 

frequencies inherent within the signal [1,2].  This technique was used in many different 

areas of research, such as astronomy, radar, telecommunication, geophysics, biomedicine, 

and digital image processing to name a few [2].  This technique however, requires that 

inherent signal frequencies have a specific relationship with each other. 

Thus, the Fractional BiSpectrum (FBS) technique was developed to enhance the 

Signal-to-Noise Ratio (SNR) if there are multiple signal frequencies present within the 

signal which have a known relationship but do not have the specific relationship 

requirement of the BiSpectrum [3,4].  For the purposes of this manuscript, we will consider 

only two inherent frequencies within the signal, f1 and f2.  While the general form of the 

FBS contains a magnitude and phase component for a two-dimensional frequency space, 

for this manuscript, only the magnitude of the diagonal frequencies within the FBS are 

analysed as formulated in (1) [3]. 

|𝐹𝐵𝑆[𝑝; 𝐾]| = |𝑋[𝑝]|2 ∙ |𝑋[𝐾 ∙ 𝑝]|  (3-1) 

 

where X[.] is the FT of x[n] - which is the discrete signal over n = 0,1,…,N-1 and 

N is the signal length, p is the frequency index ranging from −𝑁 2⁄  to 𝑁 2⁄ − 1, and K = 

𝑓2 𝑓1⁄ .  As f1 and f2 are not known directly, K only requires the relationship between the 

two frequencies to be known.  It was shown that when an additive Gaussian noise was 

introduced, the FBS was able to suppress the noise to a higher degree than that of the 

Fourier transform analysis [3]. 
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For the purpose of demonstrating this SNR enhancement technique, we used a 

standard interferometry technique for measuring film thickness.  Figure 3-1 depicts the 

geometry of the film thickness measurement technique. 

 

Figure 3-1: Depiction of interferometry setup used to measure film thickness 

 

As is seen in Figure 3-1 for this interferometer, laser light reflected from the top 

and bottom surface of the thick-film will interfere where the two beams intersect.  For a 

specific θ, incident laser angle with respect to the normal of the film, λ, wavelength of the 

laser light, and t, thickness of the thick-film, this interference will generate a fringe pattern 

with a dominant spatial period related to (2) [3], 

𝑃 ≈
𝜆 ∙ 𝑙√𝑛2 − sin2 𝜃𝑖
2𝑡 ∙ sin 𝜃𝑖 cos 𝜃𝑖

 (3-2) 

where l is the length of the light path from the fiber tip to the surface of the sensor 

plane.  As can be seen, the spatial period is directly proportional to λ.  Thus, if multiple 

lasers were used with different wavelengths, the ratio between spatial frequencies can be 

readily determined assuming all other variables remain fixed.  Therefore, the FBS 

technique can be used in such a thickness measurement system for enhancing the SNR. 
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It should be noted that there are many other techniques for the purpose of measuring 

the thickness of films [5-9], but these techniques will commonly break down if the 

boundary surface is too rough or the film material is too turbid. 

3.2 Fractional BiSpectrum Separated Technique 

It was theorized that since two sources are used for film-thickness measurement 

simultaneously, both sources introduce a respective noise component related to scattering 

as seen in the image of the measurement.  Thus, while the signal amplitude from each 

individual inherent frequency in the Fourier-domain is not being increased, the underlying 

noise power which is statistically spread throughout the spectrum is increased due to the 

presence of two sources.  Therefore, there was a desire to separate the fringe patterns into 

separate images where the average noise power in each respective Fourier domain would 

remain lower while each inherent frequency amplitude would be the same.  Separating 

inherent frequencies could be accomplished by cycling through each respective laser 

source.  Thus, the magnitude of the discrete Fractional BiSpectrum Separated (FBSS) 

technique was formulated, shown in Eqn. 3-3. 

|𝐹𝐵𝑆𝑆[𝑝; 𝐾]| = |𝑋1[𝑝]|
2 ∙ |𝑋2[𝐾 ∙ 𝑝]|   (3-3) 

 

where X1 and X2 are the discrete Fourier transforms of each respective signal x1 

and x2, where x1 and x2 each contain one respective inherent frequency. In this case, K is 

determined based on which signal is defined as X1 and X2.  As these two signals can easily 

be interchanged, this can be used to increase the robustness in the measurement taken. 
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3.3 Experimental Results 

In this section a thick-film measurement of an optically turbid Blu-ray disk coating 

was then performed.  The thickness of this coating is used for protective purposes and has 

a nominal thickness of 98µm and refractive index of 1.55 [10].  

 

Figure 3-2: Blu-ray disk interference pattern with both green and infrared laser light illuminating 

sample. 

 

While three sources were used for measurement – 520nm, 642nm, and 847nm – for 

robustness, a relatively high noise power was observed within the interferogram image 

when a combination of green and infrared lasers are used.  Figure 3-2 depicts the raw image 

from the measurement. Figure 3-3 depicts the results from the FT and FBS for 

determination of thickness. 

Figure 3-3a shows thicknesses related to signal frequencies, 96.3µm and 159µm 

are much lower in amplitude than other peaks resulted from the noise. In particular, the 

noise related to the frequency of 347µm is dominant.  Using the FBS technique in Figure 

3-3b, we see that since the initial SNR was very poor, the amplitude related to the actual 

thickness, 97.7µm is dominated by the noise. 
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Figure 3-3: Thickness results of Blu-ray disk sample for FT and FBS based on the interference 

image using 520nm and 847nm lasers simultaneously.  The frequency domain has been scaled in terms of 

film thickness. (a)  FT of image in the x-direction, and (b) FBS of image in the x-direction. 

 

We then alternated the green and infrared sources and took an image for each 

respective wavelength.  These images are shown in Figure 3-4. 

 

 

Figure 3-4: Separated interference patterns for 520nm and 847nm wavelengths. (a) Interference 

pattern for the green source, and (b) Interference pattern for the near infrared source 

 

Figure 3-4a and 3-4b are the interference patterns – each containing an individual 

spatial-frequency component in the x-direction.  Using the FBSS technique introduced in 

a) 

b) 

a)              b) 
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section 3.2, we then attempted to measure the thickness of the turbid film.  The results are 

depicted in Figure 3-5. 

 

 

 

Figure 3-5: Thickness results of Blu-ray disk sample based on the separation of signals into 

multiple images. The frequency domain has been scaled in terms of film thickness. (a)  FT result for 520nm 

of Blu-ray disk sample, (b) FT result for 847nm of Blu-ray disk sample, and (c) FBSS result combining 

images with each wavelength 

 

As is seen in Figure 3-5a and 3-5b, the FT performed on each respective 

interference pattern again failed to identify the proper thickness as the relative power of 

noise (resulting from the surface scattering) was too high.  However, when the FBSS 

technique was used, Figure 3-5c, the SNR was enhanced and thus the maximum amplitude 

observed in the respective domain occurred at a thickness of 97.7µm.  This closely 

corresponds to the thickness of the Blu-ray disk coating of 98µm as specified in the 

industry. 

Furthermore, while the FBS was not able to identify the proper thickness as the 

power of noise related to scattering was too high, the FBSS was in fact able to.  Thus, if 

a) 

b) 

c) 
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there is the ability to separate the source frequencies into individual signals, this should be 

implemented due to the inherent nature of the noise, as confirmed from the experimental 

results. 

3.4 Conclusions 

We introduced an SNR enhancement technique, Fractional BiSpectrum Separated, 

that would enable proper thickness measurement from the separation of respective 

frequencies.  As was observed, for a particularly high level of noise power relative to the 

signal, the FT and FBS techniques failed to identify the proper thickness.  When separating 

the interference patterns into respective images however, we were able to observe the 

proper thickness using the FBSS technique.  Thus, our hypothesis was confirmed for the 

purpose of providing an SNR enhancement technique which relates inherent frequencies 

within separate signals.  
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CHAPTER 4: PROFILOMETRY MEASUREMENT USING FRACTIONAL 

BISPECTRUM ON ROUGH SURFACES3 

 

Abstract 

In practice, the measurement of rough surfaces using laser interferometry is very 

difficult as the reflected light from the surface scatters and tends to dominant to the 

interference fringes.  Using Wavelength Scanning Interferometry, phase unwrapping as a 

technique to determine the surface profile is not necessary as each pixel can independently 

extract the height information.  Thus, the measurement is more resistant to spatial noise in 

the interference pattern generated from sources such as scattered light.  Furthermore, with 

the use of the Fractional BiSpectrum, the signal corresponding to the temporal frequency 

inherent within each pixel intensity variation can be enhanced with respect to speckle noise. 

4.1 Introduction 

Laser Interferometry is a common technique in optical metrology for the 

measurement of physical characteristics of a sample such as refractive index, surface 

profile, etc. with very high resolution [1-4].  An example of such interferometer is a 

Michelson configuration where an incoming beam from a light source is divided to travel 

into two different paths, Figure 4-1 [5,6].  One is used as a reference and the second beam 

will travel toward a sample of interest.  The reflection of the beam from the sample will 

form the optical path length of the cross-section of the beam point by point.  The two beams 

will then be recombined, and a spatially varying interference pattern is then detected by the 

camera based on the differences in the phase of the beams from the two paths. There are 

 
3 This paper is submitted to the Applied Optics, OSA journal. 
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well known methods that can be used to measure the phase difference of the two beams 

from recorded intensity pattern [7]. 

 

Figure 4-1: This shows the Michelson interferometer configuration to be used for measurement of a surface 

profile. 

 

Since the map of the phase difference corresponds to surface height variation with 

respect to an optically flat surface, this interference pattern can be used to directly find the 

profile of the sample of interest.  The equation defining the relation between the phase in 

the interference pattern and the respective height is formulated in Eqn. 4-1. 

𝜙(𝑥, 𝑦) =
4𝜋

𝜆
ℎ(𝑥, 𝑦) (4-1) 

where 𝜙 is the phase over the area of the interference pattern, 𝜆 is the wavelength 

of the laser source and ℎ is the corresponding height over the illuminated area of the 

sample.  While solving for the phase between 0 and 2π radians may be trivial, since the 

corresponding height is not necessarily restricted to this range, a phase-unwrapping 

technique must be used. To use a phase-unwrapping technique properly, however, there 
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must be minimal noise in the phase map as well as a continuity in phase from pixel to pixel, 

i.e. no phase jumps greater than 𝜋, to avoid ambiguity [7-9]. 

One of the advantages of a laser interferometer over other measurement techniques 

is the precision in resolution.  Using the interferometry technique described above will give 

a resolution in height of 𝜆/500 assuming 8-bit resolution in the intensity detection and 

minimal other noise sources [10].  In practice this is not achievable however, as detectors 

are not perfectly linear, they have an inherent noise level, and pixel bleeding exists 

[7,10,11]. Also, any presence of turbulence in the physical setup will affect the overall 

resolution.  Thus, to enhance the resolution, techniques such as Phase-Scanning/Shifting 

Interferometry, or PSI, have been developed [12,13].  This uses a single wavelength source 

and shifts the sample offset to achieve exact phase steps for each pixel.  Doing so up to 5 

times or more dramatically reduces noise effects and can allow for sub-nm resolution 

[4,13]. 

The other major advantage – in particular over Coordinate Measuring Machines 

(CMMs) – is the ability to measure a surface area in a relatively short time without any 

contact.  As there is no mechanical scanning involved, there are no errors related to 

mechanical drift and a high-density surface map can be generated within one image capture 

with minor processing. 

Laser interferometry also has some disadvantages. Unwrapping techniques 

introduce a limitation as there should be no phase jumps between pixels in the interference 

pattern greater than π as unwrapping would not correctly predict the absolute phase [8].  

This will limit the maximum slopes that may be present within the sample of interest which 

would also inherently limit the total measurement height range based on the pixel width of 
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the camera.  Furthermore, since the spatial resolution is determined by the pixel size of the 

camera in combination with any optics placed in-front of the camera, sample features 

smaller than this resolution will get washed out due to pixelization of sensor [4].  Since this 

pixelization also impacts the phase-map, it could lead to height errors in neighboring pixels 

as well.  Hence, while this technique works well for finding the form on optically smooth 

components, it is not recommended to use this interferometry technique for samples having 

a roughness, or Sa, greater than the order of λ/4.  This is due to the fact that λ/4 corresponds 

to phase differences of π by Eqn. 4-1, and the roughness parameter, Sa is not defined as the 

maximum height variation present in the sample.  Thus, there is potential for phase jumps 

between pixels greater than π especially where roughness features may be very dense as 

compared to the area of a pixel. 

One laser interferometry technique developed to overcome some of these 

limitations is known as Wavelength Scanning Interferometry, or WSI [14-16].  Instead of 

using a singular wavelength source, a tunable laser is used which can scan over a large 

wavelength range.  This technique does not use spatial information to determine the phase, 

but instead uses how each individual pixel intensity varies as a function of wavelength. 

However, all laser interferometry techniques, including WSI, will suffer 

significantly from another phenomena.  When a surface has a high level of roughness, due 

to the randomness of the surface structure, there will be many instances where rays of light 

propagating from different locations on the sample will interfere.  When the phases from 

these scattered reflections are completely in phase or out of phase at the detector plane, 

they will be observed as localized high and low intensity points – known as a speckle 
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pattern - that tend to dominate the desired interference signal [17].    A typical speckle 

pattern is shown in Figure 4-2. 

 

Figure 4-2: This shows the typical laser speckle pattern produced by rough surface. 

 

When roughness of a surface reaches a particular roughness threshold, i.e. greater 

than λ/4 (see Appendix A), the power of the noise directly related to the speckle content 

will not be negligible as compared to the power related to the signal of the measurement.  

Furthermore, we can reason that when a sample containing a high degree of roughness 

produces a noise power within 3dB of the signal power or greater, a confident measurement 

can no longer be made.  If the signal detection (or measurement analysis) can be performed 

in the Fourier domain, this has the advantage of tolerating a higher level of noise power.  

However, Fourier analysis, has its own limits as well.  To extend this roughness threshold 

where a confident measurement can still be made, we apply Fractional BiSpectrum (FBS) 

to Wavelength Scanning Interferometry for the purpose of measuring the profile of a rough 

surface [18]. 

We have previously introduced Fractional BiSpectrum as a noise reduction 

technique and used this technique for film thickness measurement [18,19].  In this paper, 

we will briefly re-introduce this noise-reduction technique in section 4-2.  Section 4-3 will 
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discuss the interferometry technique used for profile measurement and how the FBS 

algorithm can be applied.  The experimental setup including the physical configuration as 

well as the automated software developed will be presented as well in section 4-3.  In 

section 4-4, measurement of smooth and rough surfaces will be analyzed and Section 4-5 

will summarize the results of this work. 

4.2 Fractional BiSpectrum 

In our previous work, we introduced the Fractional BiSpectrum, or FBS, which 

allows for enhancing the SNR as compared to that of the FT by using inherent relationships 

between frequencies present within the signal [18,19].  The FBS was developed as an 

extension of the BiSpectrum and maintains the property of suppressing the Gaussian noise 

inherent within the signal [20].  The magnitude component of the diagonal cross-section of 

the discrete FBS for a finite, real-valued discrete spatial or time-domain signal is shown in 

Eqn. 4-2. 

|𝐹𝐵𝑆[𝑝;𝐾]| = |𝑋[𝑝]|2 ∙ |𝑋[𝐾 ∙ 𝑝]|  
(4-2) 

where p is the frequency indices in FBS space that range from −𝑁 2⁄  to 𝑁 2⁄ − 1, 

N is the finite data length of the discrete spatial or time-domain data, x[.], X[.] is the discrete 

FT of x[.], and K is a constant value which relates the inherent frequencies present within 

x[.].  It is important to know the expected relationship between the inherent frequencies for 

determination of the proper K value to use this signal enhancement technique properly.  For 

example, if there were two frequencies present within the spatial-domain data f1 and f2, the 

relationship 𝑓2 𝑓1⁄ = 𝐾 should be known such that |𝑋[𝑓1]|
2 ∙ |𝑋[𝐾 ∙ 𝑓1]| would result in an 

enhanced magnitude where p = f1. 
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While this theory was experimentally verified in a film thickness measurement 

setup to produce better results than that of the FT, it was then demonstrated that if the two 

frequencies of interest were separated into separate signals, the relative noise level would 

be lower than if the two were combined within one signal [19].  This was due to the 

principle that each source producing each respective frequency also produced a noise 

power related to the amplitude of this frequency.  When both inherent frequencies were 

present within the same signal, while inherent frequency powers are separated into 

respective frequencies, the combination of the noise powers were spread over all 

frequencies and thus creating a higher relative noise threshold in the frequency domain.  

Therefore, the Fractional BiSpectrum Separated, or FBSS, technique was developed to 

achieve the same Gaussian noise suppression qualities as the FBS while maintaining the 

natural advantage of the separated signals [19].  The magnitude component of the discrete 

FBSS of a set of real-valued discrete spatial or time-domain data is shown in Eqn. 4-3. 

|𝐹𝐵𝑆𝑆[𝑝; 𝐾]| = |𝑋1[𝑝]|
2 ∙ |𝑋2[𝐾 ∙ 𝑝]|   (4-3) 

 

where X1 and X2 are the discrete Fourier transforms of each respective signal x1 and 

x2, where x1 and x2 each contain one respective simple harmonic function. In this case, K 

is determined based on which signal is defined as X1 and X2. 

Next, we apply this technique to a highly explored interferometry technique, 

Wavelength Scanning Interferometry.  

4.3 Wavelength Scanning Interferometry 

4.3.1 Wavelength Scanning Interferometry Theory 

Wavelength Scanning Interferometry (WSI) is a technique that varies the input 

wavelength, λ, by shifting in precise steps, Δλ, over a range of wavelengths to create a 
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variation in the interference pattern [14-16,21-23].  WSI differs from Phase-Shifting 

Interferometry (PSI) as it does not use a set number or bucket of wavelengths that will alter 

the phase of the interference pattern spatially and use a ‘phase-unwrapping’ technique to 

recover the absolute height.  Instead, WSI uses wavelength-dependent variation in intensity 

of each pixel to determine the height since the frequency of each pixel in the detector is 

directly related to the path imbalance associated with that pixel.  In practice this 

wavelength-dependent frequency is a temporal frequency since the wavelength is scanned 

in time. The common WSI setup is shown in Figure 4-3. 

 

Figure 4-3: This shows the Wavelength Scanning Interferometry setup used in Michelson configuration. 

 

As is seen, light from a tunable laser is incident onto a beam-splitter.  The light 

travels down the two paths - to the sample of interest and a reference mirror - and is 

recollected by the beam-splitter.  The interfered light is then detected by a camera with a 

lens used for setting the proper FOV on the sample.  The phase with respect to each path 

are as follows in Eqn. 4-4. 
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𝜑
𝑠
(𝑥, 𝑦) = 2

2𝜋

𝜆𝑖
𝑙𝑠(𝑥, 𝑦), 𝜑

𝑅
= 2

2𝜋

𝜆𝑖
𝑙𝑅  (4-4) 

where 𝜑𝑠 and 𝜑𝑅 are the phase of each respective path, 𝑙𝑠 and 𝑙𝑅 are the path lengths 

from the beam-splitter to the test surface and the mirror surface, 𝜆𝑖 is the ith wavelength 

where i = 0,1,2,...,N-1 and there are N wavelengths in the scan, and x and y are the spatial 

parameters related to the sample of interest.  As can be seen, the reference mirror is 

assumed to be optically flat and is perpendicular to the light path and thus, the phase 

associated with it should not vary in x and y.  It can then be shown that based on the phase 

of each respective beam, the phase of the interference pattern is as follows, 

𝜙
𝑖
(𝑥, 𝑦) =

4𝜋

𝜆𝑖
ℎ(𝑥, 𝑦)  (4-5) 

where 𝜙𝑖 is the interference phase at the ith wavelength, and ℎ is the difference in 

respective beam paths, which corresponds to the surface height.  As can be noted from this 

equation, there should be a substantial offset between reference and sample to create an 

observable variation in phase as the wavelength is varied.  The variation in the interference 

phase with step in wavelength, ∆𝜆, is as follows, 

∆𝜙𝑘𝑗(𝑥, 𝑦) = 𝜙𝑘(𝑥, 𝑦) − 𝜙𝑗(𝑥, 𝑦) =
4𝜋ℎ(𝑥, 𝑦)∆𝜆𝑘𝑗

𝜆𝑘𝜆𝑗
, (4-6) 

where ∆𝜙𝑘𝑗 is the step in phase related to the step in wavelength, ∆𝜆𝑘𝑗 = 𝜆𝑘−𝜆𝑗.  

For 𝑘 = 𝑖 + 1 and 𝑗 = 𝑖, it can be shown 

∆𝜙𝑖(𝑖+1)(𝑥, 𝑦) =
4𝜋ℎ(𝑥, 𝑦)∆𝜆𝑖(𝑖+1)

𝜆𝑖(𝜆𝑖 + ∆𝜆𝑖(𝑖+1))
.  (4-7) 

where ∆𝜙𝑖(𝑖+1) is the step in phase related to the step in wavelength, ∆𝜆𝑖(𝑖+1), and both are 

in terms of the ith wavelength in the scan.  It is noted that the number of phase steps and 

wavelength steps has a length of one less than the total number of wavelengths as expected.  
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As can be seen from Eqn. 4-7, ∆𝜙𝑖(𝑖+1) could be approximated to a constant shift in phase 

if ∆𝜆𝑖(𝑖+1) was also constant, 𝜆𝑖(𝑖+1) was set to the average wavelength over the scan, and 

the scanning range was much less than that of the average wavelength. However, for the 

purpose of our measurement and to achieve an adequate resolution in profile, this 

approximation breaks down as the wavelength scan range is not negligible as compared to 

the average wavelength.  Since there is a desire to have uniform sampling with respect to 

the phase of the temporal signal of interest, ∆𝜙𝑖(𝑖+1) must be constant over the entire scan.  

Failure to do so would spread the power of the signal to a wider bandwidth of frequencies 

in the FT and FBSS domains or create additional complications when performing the 

respective transforms of the non-linear sampling in the temporal domain.  Thus, to achieve 

constant phase steps, the wavelength must be stepped in a non-linear fashion.  It can be 

shown that Eqn. 4-8 can be used for determination of all respective scan wavelengths.  The 

derivation of this equation is shown in Appendix B.   

𝜆𝑖 =
𝜆𝑖−1 ⋅ 𝜆𝑖−2

2 ∙ 𝜆𝑖−2 − 𝜆𝑖−1
, 𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑁 − 1 (4-8) 

To use Eqn. 4-8, λ0 and λ1 must be known, so initial wavelength of scan and initial 

step of scan must be known.  Thus, stepping in this non-linear way will allow the 

simplification of Eqn. 4-7 and the constant phase will be in relation to the initial wavelength 

and initial step as shown in Eqn. 4-9. 

∆𝜙(𝑥, 𝑦) ≅
4𝜋ℎ(𝑥, 𝑦)∆𝜆01

𝜆0
2  (4-9) 

 

For a variation in phase, ∆𝜙𝑝 of 2π, we can say the detected pixel intensity has 

completed one period.  While this period is with respect to the change in wavelength of the 
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source, since the wavelength domain is not sampled uniformly, we will demonstrate the 

period as p samples in the index domain, i.  This is depicted in Figure 4-4.  

 

Figure 4-4: This shows the variation in pixel intensity with wavelength scanning indices.  The 

number of sampling per period is denoted as p within the graph. 

 

As can be seen, a width of p samples will generate one period of pixel intensity 

variation as corresponding to the wavelength scan.  Thus, we can set ∆𝜙𝑝 equal 𝑝 times 

∆𝜙, or the phase step corresponding to a sampling width of 1.  Substituting 2π in for ∆𝜙𝑝 

and using Eqn. 4-9, we can solve for the height profile, ℎ as follows. 

ℎ(𝑥, 𝑦) =
𝜆0
2

2𝑝(𝑥, 𝑦)𝛥𝜆01
 (4-10) 

 

Using properties of the discrete Fourier transform, it is known that the 

corresponding temporal frequency index, 𝑘𝑓, must be equal to 𝑁/𝑝, where the frequency 

indices range from 𝑘 = −𝑁/2 to 𝑁/2 − 1 [24]. Thus, the height profile can be found with 

respect to the frequency index 𝑘𝑓, as follows. 

ℎ(𝑥, 𝑦) =
𝜆0
2𝑘𝑓(𝑥, 𝑦)

2𝑁𝛥𝜆01
  (4-11) 

Thus, since the index 𝑘𝑓 can be found by using the magnitude of the Fourier 

transform and finding the index associated with the maximum amplitude, we can determine 

the height at each pixel location and hence the surface profile of the sample of interest.  It 
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should be noted that for convenience, the Fourier domain can be mapped in terms of height 

by use of Eqn. 4-11.  Thus, using discrete Fourier properties, all criteria such as minimum 

and maximum heights as well as resolution in height can be determined [24]. 

4.3.2 Applying Fractional BiSpectrum 

While scanning through the set of wavelengths can achieve a height measurement, 

when the level of roughness on the surface is high, it could skew the interference images 

and produce pixel intensity patterns that contain a high level of noise.  If the noise power 

level becomes too significant relative to the signal, the Fourier transform will break-down 

and the proper height determined will either be incorrect or there will be a high level of 

uncertainty in the result. 

However, since we have control of how the tunable laser cycles through the 

wavelengths, we can adjust the initial wavelength step, 𝛥𝜆01 and thus the sampling over 

the wavelength range due to Eqn. 4-8.  Hence, if we take two scans - each with different 

initial wavelength steps while holding all other scan parameters the same - we will in effect 

receive two scans with one sampling more densely over the wavelengths and one sampling 

more dispersed.  As can be seen in Figure 4-4, this will impact the pixel temporal period. 

Furthermore, since the index 𝑘𝑓 is directly proportional to 𝛥𝜆01 – as can be seen by 

rearranging terms in Eqn. 4-11 - if the initial wavelength step is altered, the frequency 

produced will be altered by the same factor.  Thus, using the ratio between two scans with 

two initial steps, i.e. 𝐾 =  𝛥𝜆01,1 𝛥𝜆01,0⁄ , it will be known that the ratio in output 

frequencies should be the same, i.e.  𝑘𝑓,1 𝑘𝑓,0⁄ = 𝐾.  Since these are two separate signals 

with two respective inherent frequencies, this is the condition for the FBSS technique to be 

used as formulated in Eqn. 4-3.  Thus, for a surface with a high level of roughness, this 
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technique can be used for enhancing the SNR in the FBSS domain and thus producing a 

height map with a higher degree of confidence in the measurement. 

A simulation was performed to demonstrate how the FBSS can be implemented 

within WSI and to visually see the advantage of using this technique versus just using the 

Fourier transform.  The simulation parameters included 𝜆0= 1470nm, ∆𝜆01,0 = 0.2nm, 

∆𝜆01,1 = 0.17nm, K = 0.85, N = 500, spatial parameters cover -1.8mm to 1.8mm in a 

100x100 grid of uniform spacing, 𝑙𝑠 = 150.3mm, and 𝑙𝑅 = 150.0mm giving an offset 

between the two arms equal to 300μm.  A sample profile was randomly generated at the 

given offset location with a variation in height of ±10μm.  Random speckle patterns were 

embedded into each set of interferograms for the initial wavelength with speckle diameters 

randomized from 3 to 9 pixels wide, speckle intensity amplitudes randomized with respect 

to the signal intensity from ±20, and speckle pixel locations randomized over the whole 

space of image.  The respective speckle locations were then randomized for each discrete 

wavelength of the first scan.  Since the speckle patterns generated in the second scan should 

be predictable based on the first scan speckles, an interpolation technique was used to 

determine what the second scan speckle patterns should look like.  The roughness profile 

used and the second wavelength speckle patterns generated for each respective scan are 

shown in Figure 4-5. 

As is seen, a typical roughness profile is generated that has a total variation of 

approximately 20μm.  Figures 4-5b and 4-5c demonstrate typical randomized speckle 

patterns that contain speckles varying in size, amplitude, and location.  It should be 

mentioned that as the first wavelength in each scan is the same, the speckle will look 
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Figure 4-5: This shows the randomly generated functions from simulated MATLAB code over 

100x100 grid. (a) depicts the surface profile to be used in the WSI simulation. (b) and (c) depict the 

randomly generated speckle patterns to introduce noise in the intensity of the interference patterns for the 

second wavelengths of each respective scan. 

 

identical, thus the second wavelength speckles in each respective scan are displayed so 

speckle variation with wavelength can be visualized.  Applying the scans defined above, 

we calculated three respective profiles – one using only the first scan and applying the 

Fourier transform to each pixel, one using only the second scan and applying the Fourier 

transform to each pixel, and the final profile was calculated by applying the FBSS 

technique between each respective pixel and both scans.  These sample profiles are 

depicted in Figure 4-6. 
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Figure 4-6: This shows the calculated profiles using Fourier and FBSS techniques. (a) and (b) 

depict calculated profiles for respective scans using the typical Fourier technique, while (c) depicts 

applying the FBSS technique to the combination of both scans. 

 

As is seen, each calculated profile has been restricted to the expected range of the 

actual profile in Figure 4-5a, with the offset of 300μm removed from absolute height.  As 

a lot of the data from Figures 4-6a and 4-6b is out of this range, it is shown as missing data 

on the profile plot.  The data missing in each respective scan using the Fourier technique 

was 32% and 35% out of the 10,000 total pixels.  For the FBSS technique, as is seen in 

Figure 4-6c, the profile more closely resembles that of the actual profile and only 12% of 

the respective pixels were missing from the spatial grid.   

For the purpose of providing a comparison metric to be used when evaluating the 

actual roughness sample, it was desired to determine the average difference in SNR (in dB) 
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for each scan using the Fourier technique over all the pixels as compared to the FBSS 

results over all the pixels.    The calculated average SNR difference was 0.96dB and 1.17dB 

for each respective individual scan as compared to the FBSS technique.  An in-depth 

discussion on how these SNR differences were calculated are discussed in Appendix C. 

4.3.3 Experimental Setup 

A tunable laser source, Agilent 81680A, that could scan from 1460nm to 1580nm 

with 5pm accuracy in wavelength was used.  The source was outputted through a single 

mode optical fiber to a collimator producing a beam with diameter of 3.6mm and rated for 

a 1550nm source.  The collimated laser light was then projected to a 50:50 non-polarizing 

beam-splitter and output to both a reference flat and a sample of interest.  The reference 

flat was the perpendicular side of an 18-degree wedge prism with a surface flatness of λ/10 

rated for 633nm.  The wedge prism was used to verify that only light reflected from the 

front surface would reflect back to the beam-splitter.  Both the sample and reference were 

attached to a two-knob optical mount to adjust tilt in both x-z and y-z directions to align 

each respective plane proper with respect to the axis of the beam.  The reference flat was 

also attached to a micrometer that could be varied in the direction of the beam to create the 

proper offset between sample and reference.  After the beams were re-combined, light 

propagated to a double-concave lens with an effective focal length of -12mm which was 

placed 90mm in front of the camera to adjust for the proper FOV on the sample.  A negative 

lens was used because the camera, SU320-1.7RT, had a sensor size of 12.8mm by 9.6mm 

which was much bigger than the beam size.  The camera used was in the SWIR range with 

a light sensitivity of 900nm to 1700nm and a quantum efficiency greater than 70% from 

1000nm to 1600nm.  The schematic of the setup is the same as the depiction in Figure 4-3. 
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As seen in Figure 4-3, the computer has two-way communication as it receives the 

camera images, but also controls the camera settings, such as integration time.  The 

computer also has control of the wavelength scanner with commands to vary the set 

wavelength as well as the power of the source.  Using LabVIEW, we developed an interface 

for setting up the two sets of scans, running the scans, and processing the images from the 

scans similar to that of the simulation above to determine the height values for each 

respective pixel. 

4.4 Experimental Results 

For the purpose of testing the performance of the setup, the system was used to first 

measure a relatively smooth surface, then shift to surfaces with a greater roughness content.  

A GAR electroforming roughness set ranging from 2µin to 500µin was used to test the 

measured profile as seen in Figure 4-7. 

 

Figure 4-7: This shows the roughness sample set used for verifying roughness profile detected 

from WSI system.  Sample set varies from an Sa of 2µin to 500µin. 

4.4.1 Smooth Measurement 

In order to characterize the system, a measurement on a smooth surface was taken 

to verify the resolution in height.  For this the 2µin (0.051µm) sample was used.  The 

resultant profile of the measurement is shown in Figure 4-8.  For this measurement and all 

subsequent measurements, the scan parameters used were 𝜆0= 1475nm, ∆𝜆01,0 = 0.2nm, 
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∆𝜆01,1 = 0.16nm, K = 0.80, N = 463, spatial parameters cover -1.2mm to 1.2mm in the x 

direction and -0.9mm to 0.9mm in the y direction on a 320x240 grid of uniform spacing, 

and an offset between the two arms of approximately 500μm. 

 

 

Figure 4-8: This shows the calculated profile for 2µin (~51nm) roughness sample using the 

common scan parameters. (a) shows the raw profile as detected directly from the frequency domain while 

(b) depicts the histogram of the heights presented in (a).  Similarly (c) shows the profile after the low-order 

form has been removed while (d) depicts its respective histogram. 

 

As is seen in Figure 4-8b, the histogram shows only 10 discrete heights within a 

0.5µm window and thus gives a calculation resolution of approximately 50nm for these 

particular scan parameters.  Since the roughness is on the order of this resolution, there 

would be no way to accurately obtain the roughness for this sample.   

Furthermore, it is seen from Figure 4-8a there was an offset of approximately 

513µm with a slight tilt.  For the purpose of calculating the actual variation in height, this 

was readily removed as demonstrated in Figure 4-8c giving an expected Gaussian 
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distribution in height (Figure 4-8d).  In this case, since the surface is relatively flat, the 

Gaussian distribution in height is characterizing how much error is present in the 

measurement.  Calculating the standard deviation of this variation roughly characterizes 

the resolution in height of this setup - using the respective scan parameters.  Thus, it can 

be stated that the height resolution of the system is approximately 0.164µm.  Hence, as 

long as the roughness is much greater than this threshold, it should provide an adequate 

roughness measurement. 

4.4.2 Rough Surface Measurement 

For the purpose of measuring rough surfaces, the same process as above would be 

carried out – i.e. using the same scan parameters, removing the offset and form from the 

absolute height measured, and finding the variation in height of the sample.  However, for 

the purpose of measuring roughness, since the variation in height should be well above the 

resolution in height of the system, this distribution can be used to measure the roughness 

of the sample.  To characterize the roughness of the sample based of the roughness standard 

used, we will be calculating the parameter, Sa.  To determine Sa from a discrete area of 

roughness data, Eqn. 4-12 can be used [25]. 

𝑆𝑎 =
1

𝐴
∑|𝑍(𝑥, 𝑦)|

𝐴

   (4-12) 

where Sa is the surface roughness, 𝐴 is the area of the measurement, and Z is the 

measured height after the offset, tilt, and form have been removed from the absolute height.  

For each of the rough samples, a measurement was taken in 4 locations over the sample to 

verify consistency in the roughness measurement.  The first roughness sample measured 
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was 125P, or rated for a roughness of 3.2µm.  The measured profile and histogram for one 

of the 4 measurements are shown in Figure 4-9. 

 

Figure 4-9: This shows the calculated profile for 3.2µm roughness sample using the common scan 

parameters. (a) shows the profile after the low-order form has been removed and (b) depicts its respective 

histogram. 

 

As is seen in Figure 4-9, as expected, the relative measured roughness was much 

greater than that of the smooth sample.  For the four measurements taken over different 

locations of the sample of interest, an average Sa of 3.59µm was observed with a standard 

deviation of 80nm.  Thus, the roughness calculated was approximately 400nm off of the 

expected result.  For all respective techniques (Fourier and FBSS), the roughness calculated 

was approximately the same with a minimal number of pixels (<5%) out of the expected 

measurement range.  Thus, the absolute SNR for the measurement was relatively high.  

However, when using the criteria for finding the SNR differences for Fourier and FBSS 

techniques – as referenced in Section 4-3.2 - it was observed that for the first scan, the 

average SNR for the Fourier technique was 2.56dB as compared to the average FBSS SNR 

and for the second scan the average SNR for the Fourier technique was 1.83dB 

respectively.  Thus, if the noise level in the measurement were increased to be comparable 

to that of the simulation, it can be reasoned that the Fourier measurements would break 

down to a much greater extent than that of the simulation. 
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Again, for roughness samples of 250ST and 500ST (6.35µm and 12.7µm roughness 

respectively), four measurements were taken over different locations on the samples. The 

following table contains the respective data for the measurements. 

Again, for roughness samples of 250ST and 500ST (6.35µm and 12.7µm roughness 

respectively), four measurements were taken over different locations on the samples. The 

following table contains the respective data for the measurements. 

Table 4-1: Roughness data from measurements on 250ST and 500ST roughness samples. 

Sample 250ST (6.35µm) 500ST (12.7µm) 

 Average Standard Dev. Average Standard Dev. 

FBSS 
Sa (microns) 7.30 0.105 13.40 0.934 

Pixels Missing 1.30% 0.13% 2.49% 0.71% 

Scan 1 FT 

Sa (microns) 7.31 0.087 13.50 0.427 

Pixels Missing 1.44% 0.24% 3.82% 2.29% 

SNR Diff (dB) 1.55 0.25 2.18 0.58 

Scan 2 FT 

Sa (microns) 7.58 0.294 14.71 1.16 

Pixels Missing 1.76% 0.84% 4.68% 4.26% 

SNR Diff (dB) 2.45 0.54 2.60 0.49 

 

As is seen in Table 4-1, for the subsequent measurements, the average calculated 

roughness for each respective sample was 7.30µm and 13.40µm respectively.  Both of these 

measurements were within one micron of the rated roughness.  Thus, it can be concluded 

that this system can adequately measure surface roughness up to approximately 13µm.  

Using the raw data from each measurement, the standard deviation of each sample was 

calculated to be 105nm and 934nm respectively.  It was also seen that the SNR must be 

relatively high as both Fourier calculated measurements over each scan were able to 

approximately measure the proper roughness without many pixel heights lost.  However, 

although the SNR was high, it is seen that the number of pixels missing from the profile 

using the FT technique was always greater than the FBSS technique.  Furthermore, if we 
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set a performance criterion as the comparison of missing pixels, we see that for the 6.35µm 

roughness sample, the FBSS has 11% less missing pixels as compared to scan 1 and 35% 

less for scan 2.  For the 12.7µm roughness sample, the FBSS has 53% less missing pixels 

as compared to scan 1 and 88% less than the FT for scan 2.  Thus, it is seen that the FBSS 

is providing a much more reliable measurement than the FT. 

Observing the SNR difference criteria, it is seen that the FBSS technique maintains 

approximately a 2.2dB enhancement in SNR as compared to that of the FT technique.  This 

is consistent with the measurements taken on the 125P sample.  Thus, for measurements 

taken with this system, it can be concluded that using the FBSS technique provides a major 

advantage in suppressing the speckle noise that arises in the interference patterns of rough 

surfaces.  If the surface roughness was more densely populated over the sample of interest, 

or a sample of greater roughness were measured, the FBSS technique would still be able 

to provide a proper height measurement on pixels where the typical Fourier technique 

would not. 

4.5 Conclusion 

The Fractional BiSpectrum technique was briefly reintroduced.  It was shown that 

for multiple time-domain data containing inherent frequencies with a known relationship, 

this technique could be used to enhance the signal with respect to the inherent noise in the 

frequency domain.  It was then demonstrated how this technique could be applied to a WSI 

system, as multiple scans would generate respective inherent frequencies across each of 

the pixels.  The relationship between the inherent frequencies within these pixels could be 

directly determined by the initial step of the wavelength scan.  A simulation was provided 

demonstrating the advantage of using the FBSS technique in this system. 



100 

 

An experimental setup was then developed for the purpose of testing this method.  

To verify the roughness calculated, a rated roughness standard with various roughness 

samples was used.  After determining the resolution of the measurement system on a 

relatively smooth sample, we measured three of the roughest samples on the standard.  The 

average of the measurement results for the three respective samples were all within one 

micron of the rated roughness.  Furthermore, all the measurements demonstrated 

approximately a 2.2dB enhancement in the SNR for the FBSS technique as compared to 

that of the Fourier transform.  Thus, it can be concluded that for samples with a higher level 

of roughness - which would produce more speckle and thus a greater level in noise power 

in the interference pattern – this FBSS technique would be able to recover the proper height 

information for many pixels over the measurement area where the common Fourier 

transform technique would not. 
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4.6 Appendix A 

The total reflected light from a rough surface can be broken down into light from 

specular reflection and light from scatter.  The following equations show the percentage of 

light from each respective reflection as a function of root-mean-square (rms) surface 

roughness, 𝑆𝑟𝑚𝑠 [26,27]. 

𝑅𝑆𝑃
𝑅𝑇

= 𝑒
−(
4𝜋𝑆𝑟𝑚𝑠

𝜆
)
   (4-13) 

𝑅𝑆𝐶
𝑅𝑇

= 1 − 𝑒
−(
4𝜋𝑆𝑟𝑚𝑠

𝜆
)
 (4-14) 

where 𝑅𝑆𝑃 is the specular reflectance coefficient, 𝑅𝑆𝐶  is the scattered reflectance 

coefficient, 𝑅𝑇 is the total reflectance, and λ is the wavelength of propagated laser light.  

Assuming the surface mimics that of a Lambertian surface, the detectable scattered light 

by the aperture is as follows, 

𝑅𝑆𝐶𝐷
𝑅𝑇

=
𝑅𝑆𝐶
𝑅𝑇

(
𝜋𝑑2

2𝑧0
2) = 2𝜋(𝑁𝐴)

2 (
𝑅𝑆𝐶
𝑅𝑇
). (4-15) 

Where 𝑅𝑆𝐶𝐷 is the reflectance corresponding to the scattered light detected by the 

aperture, d is the diameter of the aperture, 𝑧0 is the distance from the rough surface to the 

aperture and 𝑁𝐴 is the numerical aperture.  To determine when the power of scattered 

incoming light detected is comparable to that of the specularly reflected light, the following 

equation can be derived. 

[1 − 𝑒
−(
4𝜋𝑆𝑟𝑚𝑠

𝜆
)
] 2𝜋(𝑁𝐴)2 ≥ 𝑒

−(
4𝜋𝑆𝑟𝑚𝑠

𝜆
)
  (4-16) 

Thus, it can be shown that 

𝑆𝑟𝑚𝑠 ≥
𝜆

4𝜋
√ln (

1

2𝜋
) − 2 ln(𝑁𝐴).  (4-17) 
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To better conceptualize this, an NA of 10-1 corresponds to 𝑆𝑟𝑚𝑠 ≥  𝜆/7.5, an NA of 

10-2 corresponds to 𝑆𝑟𝑚𝑠 ≥  𝜆/5, an NA of 10-3 corresponds to 𝑆𝑟𝑚𝑠 ≥  𝜆/4, and an NA of 

10-6 corresponds to 𝑆𝑟𝑚𝑠 ≥ (4/10)𝜆 approximately.  For Michelson interferometry, the 

numerical aperture of the setup is typically on the order of 10-3 for a laboratory setup, and 

thus a surface roughness of approximately 𝜆/4 will induce a significant amount of speckle 

– of equal power or greater than the specular light related to the signal – that arises from 

the scattered light.  It should be noted that although 𝑆𝑟𝑚𝑠 is used for this derivation, the 

value is on the same order as that of 𝑆𝑎 provided in the text. 

4.6 Appendix B 

When the range of the wavelength scan starts to become comparable to that of the 

initial wavelength, the non-linear effect in phase with the wavelength steps cannot be 

ignored if a singular temporal frequency is to be expected in the pixel intensity.  Thus, non-

consistent wavelength steps are used to compensate for this effect and keep the change in 

phase over the whole scan consistent.  Using Eqn. 4-7 as a starting point, the first 

consideration for determination of the proper step is to set the first two phase steps equal 

to each other as shown in Eqn. 4-18. 

4𝜋ℎ∆𝜆01
𝜆0(𝜆0 + ∆𝜆01)

=
4𝜋ℎ∆𝜆12

𝜆1(𝜆1 + ∆𝜆12)
 (4-18) 

Simplifying as necessary and utilizing 𝜆𝑖+1 = 𝜆𝑖 + ∆𝜆𝑖(𝑖+1), we get the following. 

𝜆1 − 𝜆0
𝜆0𝜆1

=
𝜆2 − 𝜆1
𝜆1𝜆2

 (4-19) 

Finally, we can solve for the next wavelength in the scan, 𝜆2. 

𝜆2 =
𝜆0𝜆1

2𝜆0 − 𝜆1
 (4-20) 
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With the next wavelength in the scan solved, we can reiterate this process to 

generate the rest of the wavelengths in the scan.  Based on the first two wavelengths in the 

scan – which should be known based on initial wavelength and wavelength step – we can 

define the rest of the wavelengths in the scan as follows. 

𝜆𝑖 =
𝜆𝑖−1 ⋅ 𝜆𝑖−2

2 ∙ 𝜆𝑖−2 − 𝜆𝑖−1
, 𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑁 − 1 (4-21) 

4.6 Appendix C 

The calculation for the average difference in SNR (in dB) of respective Fourier 

results as compared to the FBSS is demonstrated here.  To determine the respective power 

for the signal and noise for each of the pixel data, Parseval’s theorem was used.  The 

equation for finding the total energy in the discrete frequency domain is as follows [28]. 

𝐸𝑥 =
1

𝑁𝑓
∑ |𝑋[𝑘]|2

𝑁𝑓−1

𝑘=0

  (4-22) 

where Ex is the total energy over Nf samples in the frequency domain, k is the 

frequency index, and X[.] is the discrete Fourier data.  To find average power based on the 

sampling in the time domain, the following expression can be used. 

𝑃𝑥 =
1

𝑁𝑡

1

𝑁𝑓
∑ |𝑋[𝑘]|2

𝑁𝐹−1

𝑘=0

  (4-23) 

where Nt is the total number of samples in the time domain.  It can be noted that 

when analyzing the entire Fourier domain, Nt = Nf = N and thus the first term would become 

1 𝑁2⁄ .  It is then assumed that the discrete time domain signal, 𝑥[𝑛] can be broken down 

into the sum of signal (or harmonic function) and noise as shown below. 

𝑥[𝑛] = 𝑠[𝑛] + 𝑝[𝑛]  (4-24) 
 



106 

 

where 𝑠[𝑛] is the signal, 𝑝[𝑛] is the noise, and n is the index in the time domain.  

Furthermore, since the Fourier transform is a linear system, Eqn. 4-25 can be stated. 

𝑋[𝑘] = 𝑆[𝑘] + 𝑃[𝑘]  (4-25) 
 

where 𝑆[𝑘] and 𝑃[𝑘] are the respective discrete Fourier transforms of the time 

domain functions.  We then predict 𝑆[𝑘] to be centered at a particular frequency, 𝑓𝑠 in the 

Fourier domain with a bandwidth, 𝑤𝑠 in discrete Fourier index units.  A critical assumption 

is made that the Fourier content within this bandwidth is mainly due to the signal and not 

the noise.  Thus, for a more accurate calculation, the absolute SNR should be much greater 

than 1. Finally, we can find the power of the signal by analyzing only these frequency 

indices as shown in Eqn. 4-26. 

𝑃𝑆 ≈
1

𝑁𝑡

1

𝑤𝑠
∑ |𝑋[𝑘]|2

𝑓𝑠+
𝑤𝑠
2

𝑘=𝑓𝑠−
𝑤𝑠
2

  (4-26) 

 

where 𝑃𝑆 is the power of the signal.  Using the same assumption, we can formulate 

an expression for power of noise with respect to the Fourier domain. 

𝑃𝑃 ≈
1

𝑁𝑡

1

𝑁𝑓 −𝑤𝑠
[
 
 
 
∑ |𝑋[𝑘]|2

𝑓𝑠−
𝑤𝑠
2

𝑘=0

 + ∑ |𝑋[𝑘]|2

𝑁𝐹−1

𝑘=𝑓𝑠+
𝑤𝑠
2 ]

 
 
 
   (4-27) 

 

where 𝑃𝑃 is the power of the noise.  Using this assumption, the SNR can be 

calculated for each pixel in the interference pattern as follows. 

𝑆𝑁𝑅𝑥,𝑦 = 10 log(
𝑃𝑆𝑥,𝑦

𝑃𝑃𝑥,𝑦
) (4-28) 

 

To find the average SNR over the whole interferogram, all pixel SNRs are summed 

up and divided by the total number of pixels.  Furthermore, to obtain the differences 
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between each respective scan Fourier and the combination of scans using the FBSS, the 

following was used. 

∆𝑆𝑁𝑅𝑖 = 𝑆𝑁𝑅𝐹𝐵𝑆𝑆 − 𝑆𝑁𝑅𝑖  (4-29) 
 

where ∆𝑆𝑁𝑅𝑖 is the difference in SNR for the ith scan, 𝑆𝑁𝑅𝑖 is the average SNR 

over all the pixels using the ith scan and applying the Fourier technique, and 𝑆𝑁𝑅𝐹𝐵𝑆𝑆 is 

the average SNR over all the pixels using both scans and applying the FBSS technique.  It 

should be mentioned that to directly compare the SNRs of the FBSS and Fourier 

techniques, the FBSS data must be normalized properly such that magnitudes are directly 

comparable. 



108 

 

CHAPTER 5: ADDITIONAL CONSIDERATIONS WHEN USING THE 

FRACTIONAL BISPECTRUM 
 

 

5.1 Applying FBS to more than 2 inherent frequencies  

As was discussed in the previous chapters, the relationship between two inherent 

frequencies within the signal were used in order to enhance the SNR.  It should be explored 

how this technique can be used to incorporate more inherent frequencies to extend the SNR 

further.  Thus, as a starting point, we use the FBSS as formulated in Chapter 3 (See Eqn. 

3-3, Pg. 72). 

|𝐹𝐵𝑆𝑆[𝑝; 𝐾]| = |𝑋1[𝑝]|
2 ∙ |𝑋2[𝐾 ∙ 𝑝]|   (5-1) 

where again 𝑋1[. ] and 𝑋2[. ] are the respective Fourier transforms of 𝑥1[. ] and 𝑥2[. ], p is 

the frequency index, and K is the variable relating inherent frequencies.  It is seen that the 

first signal FT magnitude is squared as compared to the other.  To simplify this a bit for 

the purpose of additional signals/inherent frequencies, we set each signal to the same order 

such that it takes on the feel of a ‘scaled cross-spectrum.’  Thus, for incorporating more 

inherent frequencies, the following form can be used. 

|𝐹𝑆𝑆[𝑝;𝑲,𝑁]| =∏|𝑋𝑖[𝐾𝑖 ∙ 𝑝]|

𝑁

𝑖=1

 (5-2) 

where FSS is the Fractional Spectrum Separated which is incorporating N number of 

signals and inherent frequencies.  𝐾𝑖 is the ratio between the ith inherent frequency and the 

first inherent frequency – i.e. 𝑓𝑖/𝑓1.  Thus K1 is equal to 1.  For the purpose of comparison, 

we will explore how using three and four signals and inherent frequencies can extend the 

SNR in Section 5.2.2. 
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5.2 Applying the SNR enhancement techniques 

When applying the FBS to a setup for the purpose of enhancing the SNR of the 

signal, it is important to note if and how this technique can be implemented. The 

methodology for using the FBS as described by the contents of the previous four chapters 

is to determine if a harmonic function, i.e. sin(𝑎 ∙ 𝑥), is present within the time-domain or 

spatial-domain measurement signal and whether the frequency content is the principle 

information used to find the characteristic of interest.  If this is the case, and only a single 

harmonic function is present, it is then necessary to understand how the underlying physics 

produces this harmonic function and thus what variable can be used to alter the frequency.  

If another harmonic function is already present within the same signal, it is instead 

necessary to know the relationship between the frequency of the first and the second.  If 

one of these two scenarios exist based on the setup, the FBS may be used to enhance the 

signal as compared to the noise present. 

5.2.1 Conditions of experiment 

As mentioned previously, there are different situations where using the FBS may 

be practical.  The conditions for use of the FBS are laid out more explicitly below. 

1) No control over signal/source (i.e. astronomy) 

In this situation, one detects the information based on an assumption that multiple 

frequency data is inherent in the observable information and there is some intuition of the 

relationship between the multiple frequency data.  There is no control over the source of 

the data.  For this condition, the FBS technique can be used for a single time-domain / 

spatial domain signal.  Also, the common Fourier transform can be used to detect one of 

the two inherent frequencies present. 
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2) Control over signal/source (i.e. metrology) 

In this situation, some experimental parameters may be controlled.  Thus, different 

potential setups and noise reduction techniques should be considered. 

a. Single Data Set with Two or More Inherent Frequencies 

In this situation, the experiment can be designed to include multiple sources 

to generate multiple frequency signal information.  In the physics of this 

experiment, the amplitude of the noise generated from experiment is a function of 

each source amplitude as described in Chapter 2.  This scenario is similar to that of 

condition 1 and thus the FBS technique and Fourier transform can be used. 

b. Separate Data Sets each with One Associated Inherent Frequency 

In this situation, the experiment can be designed such that two separate 

signals are analyzed each with a respective inherent frequency and similar to 2a, 

the noise is associated with the amplitude of the source.  This scenario is described 

in Chapters 3 and 4.  Thus the FBSS technique must be used since there are multiple 

separate signals.  Furthermore, if more inherent frequencies can be incorporated, 

Eqn. 5-2 can be used. 

5.2.2 Comparison of SNR enhancement techniques 

Table 5-1 shows the results of a 3000-iteration Monte-Carlo simulation of each 

noise reduction technique.  White Gaussian noise was used where the noise power was 

varied with respect to the signal power of the respective inherent frequencies.  The ratio of 

these powers is shown in the first row and is defined as R.  The predicted frequency of each 

method was compared with the expected frequency in the time-domain signal to determine 



111 

 

the percentage of times each algorithm was correct.  The results for each respective 

technique are depicted below. 

Table 5-1: This shows the direct comparison of SNR enhancement techniques.  The colored values shown 

are the percentage of correct frequencies predicted for each respective technique.  

SNR 
Technique 

Number of 
Frequencies 

Number 
of Signals 

R = 1 R = 5 R = 7 R = 9 R = 12 R = 15 R = 18 

FT 2 1 100 83.13 70.17 53.37 22.33 9.67 4.03 

FBS 2 1 100 100 98.97 88.77 45 19.83 7.4 

FBSS 2 2 100 100 100 99.97 93.5 67.4 39.63 

FSS3 3 3 100 100 100 100 99.9 96.3 82.07 

FSS4 4 4 100 100 100 100 100 99.17 93.4 

 

As can be seen in the Table 5-1, there is quite a variation in the performance of the 

different noise reduction techniques.  When the technique predicted every result in the 

Monte-Carlo correctly, it is denoted with a green background, while greater than 90% 

correct is denoted with a yellow background. Anything worse is denoted with a red 

background symbolizing a break-down of the respective technique.   To better characterize 

each respective technique, they will be compared based on the conditions of Section 5.2.1. 

Condition 1 Analysis: 

The first two rows in Table 5-1 show results for multiple inherent frequencies 

within one signal.  As can be seen for this condition, as the noise power related to the 

additive Gaussian noise increases compared to the inherent frequency power, each 

technique starts to fail in correctly identifying the inherent frequency within the initial 

signal.  However, it is obvious that the FBS technique outperforms that of a standard 

Fourier technique with two inherent frequencies as the percentage of failed predictions is 

much less than that of the Fourier technique.  Thus, if there is no control of the source 
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signal – as condition one suggests, the FBS technique should be used to enhance the SNR 

as compared to the FT. 

Condition 2a Analysis: 

While Condition 2a uses the same SNR enhancement techniques as Condition 1, 

the distinction is that there is control of the signal information for Condition 2a.  It is 

obvious, however, to note that the first two techniques in Table 5-1 underperform compared 

to that of the latter techniques in the table where the inherent frequencies are separated into 

multiple signals.  This can easily be identified within the comparison of the FBSS for two 

separate signals as compared to that of the FBS which contains both inherent frequencies 

within one signal.  This result is due to the fact that each inherent frequency introduces a 

respective noise power into the signal.  Thus, it would not be advantageous if one had 

control over the source information to implement a system with multiple inherent 

frequencies within one signal.  Therefore, Condition 2a is not preferred and should be 

avoided all-together if possible.  This was demonstrated in the results of Chapter 3. 

Condition 2b Analysis: 

The remaining noise reduction techniques show interesting results.  It is clear that 

if there is the ability to generate the multiple signals with multiple inherent frequencies that 

have a relation with each other, this is preferred for the enhancing the SNR.  The FSS3 

technique seems to further enhance the SNR as well as for that of the FSS4.  Thus, 

incorporating more inherent frequencies into more respective signals is seen to be more 

advantageous.  The results are depicted into graph form for a visual representation of the 

results for further understanding.  This depiction, Figure 5-1, can be seen as an extension 

to Figure 2-3 used in Chapter 2. 
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Figure 5-1: This shows a graphical representation of Table 5-1.  Each respective technique is compared 

using a 3000 iteration Monte-Carlo simulation where the noise powers were varied as compared to the 

inherent frequencies present within the signal.   

 

5.3 Error detection techniques 

As shown in the previous section, all techniques will break down at a respective 

noise power.  It is thus important to determine when the wrong inherent frequencies are 

predicted within the technique as it will lead to an incorrect measurement.  In this section, 

we introduce a few methods for detecting incorrectly predicted inherent frequencies. 

5.3.1 1D Error detection analysis 

 In this section, we demonstrate some techniques that can be applied using one-

dimensional information present within the spatial / time domain signal. 

Method 1) Multiple Lines of Data: 

If for example a two-dimension spatial-domain signal is studied and the inherent 

frequency component within, a typical method to calculate the frequency is to look at a 

cross-section of the image.  This is demonstrated in Figure 5-2. 
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Figure 5-2: This depicts the FT of a horizontal cross-section of a 2D spatial-domain signal.   

 

As can be seen, a singular peak frequency was extracted for the line Y = 50.  For 

error detection, we can apply this several times over the image (multiple Y’s).  If for 

example 9 cross-sections are used and then our SNR enhancement technique for extracting 

the inherent frequency is used, then 9 respective frequencies will be detected.  Then for 

example, if 4 of these 9 are required to match, this creates a check to make sure the result 

is valid.  If this method for error detection is desired for a 1D time-domain or spatial-

domain signal, the signal itself can be broken up into N number of equal length sections 

assuming there is a significant number of periods contained within each section. 

Method 2) Extra Inherent Frequency and Signal: 

With this method, an extra inherent frequency and signal will be used to detect 

whether a SNR enhancement technique using one less signal is incorrect.  If for example 

the FBSS algorithm is used, with the addition of a third signal, the results of three different 

two-source methods can be compared to determine if a predicted inherent frequency is 

incorrect.  This is depicted in the Figure 5-3.   
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Figure 5-3: This depicts how Method 2 is implemented to determine if predicted inherent frequency is 

incorrect.  For example, if two of the frequencies predicted agree, then one can assume a conclusive result.   

 

In the case where f1 = f2 = f3, we can be confident the predicted frequency must be 

correct.  We can also make the assumption that if any combination of two signals match - 

i.e. f1 = f2, f1 = f3, or f2 = f3 – there is a correct result.  However, if f1 ≠ f2, f1 ≠ f3, and f2 ≠ f3, 

there is no repeating frequency and thus an ‘error’ is detected.  This can obviously be 

applied to systems with more inherent frequencies than three.   

Method 3) Combination of Methods 1 and 2: 

As seen in the two previous methods, since the two are using completely different 

techniques which do not conflict with each other, the two methods can be used together.  

One can apply Method 1 on the first two signals of Method 2, first and third signals, and 

then finally for the second and third signals.  If any one of these combinations satisfies the 

criteria for Method 1, it can be presumed that the correct inherent frequency has been 

identified.  This will allow for more data to check than Method 1 and a better error detection 

technique than the Method 2. 

Data Comparison: 

The four following figures demonstrate how each error detection technique 

performs when an incorrect frequency has been determined.  For each detection technique, 
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three 2-dimensional spatial-domain signals (100 pixels by 1000 pixels) each with inherent 

frequencies in the x direction were generated.  White additive Gaussian noise was applied 

with a varying noise power compared to the inherent frequency’s power for each signal.  A 

3000-iteration Monte-Carlo simulation was used to determine how often each method 

correctly determined errors.  Also, for the two algorithms (FT and FBSS), the general 

percentage of correct results is shown to give a reference for how much each error detection 

technique is affecting the result of the noise reduction techniques as there is more data 

analyzed.  For the first depiction, Figure 5-4, the FT technique is analyzed using error 

detection technique Method 1. 

 

Figure 5-4: This depicts how Method 1 error detection technique performed using the FT as the SNR 

enhancement technique.  It is seen that about 99% of the incorrect frequencies were detected. 

 

The axes and plotted data on Figure 5-4 should firstly be explained properly as they 

are used in all the subsequent figures in this section.  The left axis, which is used for the 

orange and blue curves, demonstrates the percentage of times - out of the 3000 random 

spatial-domain signals generated - that each technique produced the correct result or proper 

frequency.  The blue curve is used as a reference for the overlying SNR enhancement 

technique used as shown in Figure 5-1 in section 5.2.2.  The orange curve demonstrates 
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how often the error detection technique of interest identifies the proper result.  The 

comparison between these two is important because we want to correctly identify errors, 

but also do not want to reject proper measurements.  The rejection of proper measurements 

can easily be visualized.  The axis on the right – which is only used for the gray curve – 

demonstrates the percentage of incorrectly identified frequencies that were properly 

rejected.  More exactly, if the data in the orange curve was less than 100%, there must have 

been some incorrectly predicted results and thus of these, we must know what percentage 

did the error detection technique of interest tell us the result was indeed incorrect.  Hence, 

since the gray curve data must have ‘errors’ or incorrectly identified frequencies, it could 

only be plotted for noise thresholds where the orange curve was below 100%. 

Analyzing the data from this figure, the blue curve indicates the result of the 

standard FT technique.  This curve was developed based on the result of the center line 

from the first image to detect a frequency.  As can be seen from the orange curve, while 

the error detection technique is used as a method to detect incorrect frequencies identified, 

it has also increased the percentage of correct results when the noise power is relatively 

low.  This is due to the fact that it is analyzing more data, 9 sets as compared to 1.  There 

is a crossing point around thirty-three percent where the standard technique will outperform 

that of the error detection technique due the high level of noise power in the signal.  The 

most important information in Figure 5-4 is the gray curve.  As can be seen on the right Y-

axis, this technique detects on average around 99% of incorrectly found frequencies for all 

the various levels of noise power.  While not perfect, it provides a very good error 

indication as compared to 100% pass as with any standard technique.  It should be 

mentioned that if one desired a better error detection technique using the same method, the 
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criteria of 4 matching inherent frequencies out of 9 could be increased to five or more.  This 

would of course reduce the percentage of the orange curve and create a crossing with the 

blue curve at a lower noise power.  

 

Figure 5-5: This depicts how Method 1 error detection technique performed using the FBSS as the SNR 

enhancement technique.  It is seen that about 99% of the incorrect frequencies were detected.   

 

As seen in Figure 5-5, using Method 1 with the implementation of the FBSS 

technique, there are a few differences.  The main difference is that both the standard FBSS 

technique (blue line) and FBSS with Method 1 applied (orange line) have a higher 

percentage of detecting the correct frequencies as compared with the FT technique for the 

same noise power.  This should be the case as it is known that the FBSS technique enhances 

the SNR to greater extent than that of the FT.  The important information to take from this 

is that the percentage of correctly identified incorrect frequencies is again about 99% at all 

levels of noise power.  Thus, it can be stated conclusively that Method 1 provides a good 

method for detecting errors in the respective frequency domains. 

Next we apply the Method 2 error detection technique for the same spatial domain 

data in Figure 5-6. 
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Figure 5-6: This depicts how Method 2 error detection technique performed using the FBSS as the SNR 

enhancement technique.  It is seen that about 80% of the incorrect frequencies were detected.   

 

There are many take-aways from Figure 5-6.  Firstly, while the blue curve remains 

the same as the Figure 5-5 (same noise-reduction technique), the orange curve hovers 

slightly below it at all levels of noise power.  Thus, there will be a slight loss in overall 

inherent frequencies identified.  This is due to the fact that if one of the three signals provide 

noise content at a particular frequency much higher than that of the inherent frequency, it 

could impact two of the three combinations generated from the FBSS.  The more important 

information seen from this plot is that the error-detection technique hovers around 80%.  

Thus, this technique does not perform as well as that of Method 1 which rejects around 

99% of the incorrectly identified inherent frequencies.  This lower rejection rate could also 

be due to the hypothesis that one signal could impact two of the three combinations.  This 

could of course be improved if the criteria were to be that all three combinations of inherent 

frequencies must match, but it can also be assumed that the orange curve would 

dramatically drop to the point where using a noise-reduction technique is questioned. 
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There are a few points to note for Method 3 depicted in Figure 5-7.  Firstly, there 

is seen a dramatic improvement in the overall correct frequency percentage as shown in 

the orange line.  It is seen that an average of 98.5% of the incorrect frequencies are correctly 

identified.  While this value is lower by one percent than Method 1, it is much better than 

Method 2.  

 

Figure 5-7: This depicts how the Method 3 error detection technique performed using the FBSS as the SNR 

enhancement technique.  It is seen that about 98% of the incorrect frequencies were detected.   

 

Thus, Methods 1 and 3 should be considered the best methods.  There is a trade-off 

between the two error-detection techniques in that one will have less final correct inherent 

frequency identified (Method 1), while one will reject a slightly smaller number of 

incorrect frequencies (Method 3).  Depending on the application of where the techniques 

will be used, one of these two methods can be chosen. 

5.3.2 2D Error detection analysis 

It should be noted in the previous section that since data analyzed was from a two-

dimension spatial-domain signal, 2-D analysis can be used as well.  If one were instead to 
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perform a 2-D FT and only look at the results in frequency space on the horizontal axis, 

one would include the whole dataset for determining the peak horizontal frequency.  Thus, 

it could be assumed that a dramatic enhancement in SNR would occur as this would be 

analyzing all of the 2D data.  However, if one were to apply an error detection technique, 

the only method possibility would be that of Method 2 of the previous section.  Figure 5-8 

shows the results of the 2-D analysis on the same 2-D data analyzed in the previous section 

using instead a Monte-Carlo simulation with 1000 iterations due to the greater number of 

computations needed. 

 

Figure 5-8: This depicts how using the Method 2 error detection technique can be applied to the entire 2-D 

spatial domain signal.  The FBSS was used for the SNR enhancement technique with FT as a reference.  It 

is seen that about 85% of the incorrect frequencies were detected.   

 

It is important to note from Figure 5-8 that firstly the noise power axis ranges from 

50 to 300 times that of the inherent frequency power for the two-dimensional spatial-

domain signal.  Thus, all levels of noise power analyzed in Figure 5-8 are above that of the 

previous section’s highest analyzed noise power.  Therefore, it can be quickly stated that 

analyzing the whole two-dimensional signal and looking at the horizontal component for 

its spatial frequency is the ideal choice as one should incorporate as much data as possible.  
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Of course, if there is only a one-dimensional time-domain or spatial-domain signal, one 

must use the analysis from the previous section, as would be the case for the Chapter 4.  

Furthermore, as expected, the FBSS technique outperformed the FT technique as can be 

seen in the blue curve as compared to the green curve.  Similar to the previous section, it 

is seen that the Method 2 error detection technique does little to vary the overall percentage 

of correct frequencies detected, but maintains the advantage over the FT technique.  

Finally, it is seen that the Method 2 is rejecting approximately 85% of the incorrectly 

detected frequencies.  This is similar to the result of the previous section for Method 2.  

While this is of course not as good as Methods 1 or 3, it is the only applicable error 

detection technique for the 2D implementation of the noise-reduction technique.  If a 

greater reliability were desired, it is possible to use a greater number of signals and inherent 

frequencies to create more robust combinations than that of Figure 5-3. 
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CHAPTER 6: CONCLUSIONS 

 

In this dissertation we have introduced an SNR enhancement technique, Fractional 

BiSpecctrum, extensively.  We first introduced many of the metrology techniques for 

measuring film thickness of turbid mediums and surface profile of relatively rough 

surfaces.  We showed that for such samples the speckle noise may dominate the signal 

information. 

In Chapter 2 we introduced how the Fractional BiSpectrum was developed as an 

extension of the BiSpecturm, but without the frequency restriction as the relationship 

between frequencies in the FBS domain is a variable.  Furthermore, we applied the FBS 

technique to a film thickness measurement system.  This measurement technique 

propagated laser light at an incident angle to generate linearly spaced fringes in the x-

direction of the sensor.  After demonstrating the accuracy of the developed system, we 

showed how the SNR of the measurement technique was improved for rough/turbid 

samples by using the FBS which allowed us to successfully perform measurements where 

the common technique – the FT – failed. 

In Chapter 3, we demonstrated how the FBS technique can be extended to measure 

separate signals, each containing one respective inherent frequency.  This extension was 

defined as Fractional BiSpectrum Separated, or FBSS.  It was shown through experimental 

results that it was advantageous for the purpose of suppressing inherent noise to apply the 

FBSS instead of using the FBS if there is the control over the source of the signal. 

In Chapter 4, we applied the FBSS algorithm from the previous chapter to a highly 

explored laser interferometry technique, Wavelength Scanning Interferometry, or WSI.  
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We demonstrated in the theory that each pixel of information will generate two separate 

frequencies over two wavelength scans related to the different wavelength stepping 

increments.  Using a roughness standard, it was then shown how surface roughness could 

be determined from the measurement of the surface using the FBSS technique and how the 

FBSS technique was able to enhance the SNR to a greater extent than that of the FT. 

Chapter 5 explored some of the considerations for how to implement the FBS 

technique properly.  Based on different conditions – control of the source of inherent 

frequency or not – it was discussed which SNR enhancement techniques were applicable 

and preferred.  Furthermore, the implementation of more than two inherent frequencies 

was explored by expanding the FBSS technique into N inherent frequencies.  A comparison 

of all SNR-enhancement techniques was presented.  It was then discussed how the FBS 

technique could be utilized properly while detecting incorrectly predicted frequencies and 

thus incorrect measurements.  Multiple error-detection strategies were presented with a 

comparison of how well they performed.   

An additional application for the FBS noise reduction technique is in the 

measurement of sub-surface topography. If the topography of top surface is known, then 

with the method described in Chapter 4 one can measure the thickness map that is directly 

related to sub-surface structure by removing the reference top surface. If the topography of 

the top surface is not known, this method should be used in combination with a surface 

measurement technique [60,61]. 

Another future research direction would be to use the FBS technique as a general 

noise-reduction technique – similar to that of the BiSpectrum – by considering the phase 

information as well as intensity [44 – 47,52 – 57].  Using Appendix A as a starting point, 
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phase and magnitude reconstruction of the signal can be developed based on novel 

recursive algorithms based on FBS space [42].  This may be an area of study with 

significant number of applications. 
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APPENDIX A: FRACTIONAL BISPECTRUM TRANSFORM: DEFINITION AND 

PROPERTIES4 

 

Abstract 

A signal with discrete frequency components has a zero BiSpectrum if no addition 

or subtraction of any of the frequencies equals one of the frequency components. The 

authors introduce the Fractional BiSpectrum (FBS) transform in which for signals with 

zero BiSpectrum the FBS could be non-zero. It is shown that FBS has the same property 

as the Bispectrum for signals with a Gaussian probability density function (PDF). The FBS 

of a zero mean signal with a Gaussian PDF is zero.  Therefore, it can be used to significantly 

reduce the Gaussian noise. 

A.1 Introduction 

The BiSpectrum is defined as the Fourier transform (FT) of the third order 

cumulant or moment of a stationary signal and can be used as a noise reduction technique 

in some circumstances [1, 2]. The definition of BiSpectrum of a ‘stationary signal’ is 

given as both the FT of the moment [3] or the cumulant [4]. For a stationary stochastic 

signal with zero mean, the moment and the cumulant are equal. The BiSpectrum has 

found applications in various fields including astronomy and cosmology [5–9], signal and 

image processing [10–13], interferometry applications [14], and mechanical [15–20], 

electrical [21–25], medical, and biomedical engineerings [19, 26–29]. 

The BiSpectrum transform has some useful properties. One of these properties is 

that the BiSpectrum of a stationary signal with a Gaussian probability density function 

(PDF) with zero mean is zero. Therefore, if a signal is contaminated with Gaussian noise, 

 
4 This paper is published in the IET Signal Processing journal. 
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the BiSpectrum of the signal removes or reduces the effect of such noise. More precisely, 

if the signal is zero mean and is independent of zero mean Gaussian noise, then the effect 

of noise will be eliminated. Interestingly, a signal can be reconstructed uniquely from its 

BiSpectrum [30] although the BiSpectrum is insensitive to shift in the domain in which 

the signal is recorded or sampled (e.g. time or space) [30], i.e. the BiSpectrum of a signal 

is the same as the BiSpectrum of the shifted version of the same signal. 

Another property of the BiSpectrum transform is that it retains the phase 

information. The BiSpectrum can be used to extract the phase information [31, 32] which 

is lost in the power spectrum. The exception is the linear phase (shifted signal), which 

will be lost by a BiSpectrum transform [30]. In addition, the BiSpectrum can be used to 

reconstruct the amplitude of the FT of the signal [1]. Therefore, the signal can be 

reconstructed from its BiSpectrum. 

As was mentioned, the BiSpectrum is the FT of the third order cumulant or 

moment of a stationary signal. In the case of a stationary signal with zero mean, the third 

order moment and cumulant are the same and are defined as 

𝐶(𝜌, 𝜏) = 𝐸{𝐱(𝑡 + 𝜌)𝐱(𝑡 + 𝜏)𝐱(𝑡)}, (A-1) 

where E{.} represents the expectation value and x(t) is a stochastic process. The FT of 

the cumulant is defined as the BiSpectrum 

𝑆(𝜈1, 𝜈2) = ℱ{𝐶(𝜌, 𝜏)} = ℱ{𝐸{𝐱(𝑡 + 𝜌)𝐱(𝑡 + 𝜏)𝐱(𝑡)}}, (A-2) 

where ℱ{. } represents the FT. The definition of Lohmann and Wirnitzer [30] for the 

cumulant is adopted as follows 

𝑅(𝜌, 𝜏) = ∫ 𝑥
∞

−∞

(𝑡 + 𝜌)𝑥(𝑡 + 𝜏)𝑥(𝑡)𝑑𝑡, (A-3) 
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where 𝑥(𝑡) is an instance of the stochastic process 𝐱(𝑡) and 𝑅(𝜌, 𝜏) is an 

estimator of the cumulant of 𝐱(𝑡). 

The above definition is replacing an ensemble average with a time average which 

is correct when the stochastic process is triplecorrelation-ergodic. Therefore, the 

BiSpectrum can be calculated as 

𝑆(𝜈1, 𝜈2)  =  ℱ{𝑅(𝜌, 𝜏)} 

= ∫∫ 𝑅(𝜌, 𝜏)𝑒−𝑖2𝜋(𝜈1𝜌 + 𝜈2𝜏)𝑑𝜌𝑑𝜏
∞

−∞

 

= ∫∫∫ 𝑥(𝑡 +  𝜌)𝑥(𝑡 +  𝜏)𝑥(𝑡)𝑒−𝑖2𝜋(𝜈1𝜌 + 𝜈2𝜏)𝑑𝑡𝑑𝜌𝑑𝜏
∞

−∞

 

= ∫ [∫ 𝑥(𝑡 +  𝜌)𝑒−𝑖2𝜋𝜈1(𝜌+𝜏)𝑑𝜌
∞

−∞

]
∞

−∞

× [∫ 𝑥(𝑡 +  𝜏)𝑒−𝑖2𝜋𝜈2(𝜌+𝜏)𝑑𝜏
∞

−∞

] 𝑥(𝑡)𝑒−𝑖2𝜋(−𝜈1−𝜈2) 𝑑𝑡 

= 𝑋(𝜈1)𝑋(𝜈2)𝑋(−𝜈1 − 𝜈2), 

(A-4) 

 

where X(.) is the FT of the signal 𝑥(. ). 

𝑋(𝜈) = ∫ 𝑥
∞

−∞

(𝑡)𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡. (A-5) 

For a real signal, 𝑋(−𝜈) = 𝑋∗(𝜈) and thus the BiSpectrum can be written as 

𝑆(𝜈1, 𝜈2) = 𝑋(𝜈1)𝑋(𝜈2)𝑋(−𝜈1 − 𝜈2) = 𝑋(𝜈1)𝑋(𝜈2)𝑋
∗(𝜈1 + 𝜈2). (A-6) 

As it is seen in Eqn. A-6, in order for the BiSpectrum to be non-zero there should 

exist non-zero components 𝜈1, 𝜈2, and 𝜈1 + 𝜈2 for some frequency sets. Here, 𝜈1 and 𝜈2 

can be any of 𝑓1 and 𝑓2. As examples, 𝜈1 + 𝜈2 = 𝑓1 + 𝑓2 for 𝜈1 = 𝑓1 and 𝜈2 = 𝑓2 which 

needs three non-zero frequency components  (𝑓1, 𝑓2, 𝑓1 + 𝑓2) and 𝜈1 + 𝜈2 = 2𝑓1 for 𝜈1 =

𝑓1 and 𝜈2 = 𝑓1 which requires only two non- zero frequency components (𝑓1, 2𝑓1). If such 

combination does not exist, the BiSpectrum of the signal will be zero. For example, the 

BiSpectrum of a pure sinusoidal signal is zero. It is emphasised that the BiSpectrum of the 
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combination of two sinusoidal signals is zero if the frequency of one signal is not twice as 

the frequency of the other one. 

Obviously, in some cases the signals have zero BiSpectrum and the benefits of this 

noise reduction method cannot be sought. It is in fact desirable to have a non-zero 

BiSpectrum even if the frequencies do not satisfy the required relation. This happens, for 

example, where the signal is the combination of two laser sources in which the wavelength 

of one of the laser sources is not exactly twice as the other one (which is very probable). 

In this work, a technique that expands the application of this noise reduction technique is 

described. 

We introduce fractional BiSpectrum (FBS) and show that although it does not hold 

some properties of the BiSpectrum such as shift invariant, it holds the very attractive 

property of BiSpectrum; the FBS of a stationary signal with a Gaussian PDF with zero 

mean is zero. Therefore, this paper focuses on the following property of the FBS; for a zero 

mean signal with a Gaussian PDF, the FBS is zero. This is important for the initial target 

application for the FBS which is in the field of interferometry. By using the BiSpectrum 

one can improve the signal to noise ratio (SNR) of the output of an interferometer; however, 

for the BiSpectrum to be non-zero one must need at least two wavelengths (lasers) with 

one being the integer multiple of another. However, the problem is that the laser 

wavelengths with this property are not available. FBS solves this problem and allow the 

use of two arbitrary laser wavelengths while improving the SNR by removing the Gaussian 

noise. An example of interferometry system and the performance enhancement using FBS 

is given in Section A.4. The rest of the paper is organized as follows. In Section A.2, the 

FBS is defined and the above property is proven for the continuous time signal. The above 
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property for FBS of the discrete time signals is given in Section A.3. A simple example 

and an interferometry system simulation to measure film thickness are given to show how 

the FBS can be applied in Section A.4. This paper is concluded in Section A.5. 

A.2 Fractional BiSpectrum: Definition 

We define the FBS as 

𝐹(𝜈1, 𝜈2; 𝑘) ≡ 𝑋(𝜈1)𝑋(𝜈2)𝑋(−𝜈1 − 𝑘𝜈2) = 𝑋(𝜈1)𝑋(𝜈2)𝑋
∗(𝜈1 + 𝑘𝜈2), (A-7) 

where 𝑘 ∈ 𝑸+. As it is seen, the BiSpectrum transform is a special case of the FBS 

of k = 1. It is worth mentioning that in a series of papers [33–35] Ming Li et al. reviewed 

fractal time series and derived power spectrum for some fractal time series namely 

fractional Gaussian noise and generalised fractional Gaussian noise. Fractal time series can 

be described as a solution to the fractional differential equation (filter of fractional order) 

as explained in [33]. The dimension of output of such systems might be fractional and 

possess some properties such as not having an integrable autocorrelation function. On the 

other hand, FBS is derived from a signal with integer dimension and integrable power 

spectrum. Moreover, if we consider FBS transformation as a system, the system is not 

linear since it can generate frequencies that do not exist in the frequency domain of signal. 

The fractional part of FBS comes from the fact that another degree of freedom was added 

to the BiSpectrum by introducing the factor k which can be non-integer. The factor k 

enables the FBS to have flexibility to be used in scenarios that the BiSpectrum is not 

applicable (e.g. for signals with BiSpectrum equals zero) while benefiting from the 

properties of BiSpectrum. As it was discussed earlier, the BiSpectrum of a signal with a 

Gaussian PDF is zero. Therefore, if a signal has an additive Gaussian noise, the effect of 

the Gaussian noise will be removed or reduced by using the BiSpectrum. It will be shown 
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further on that this is valid for FBS as well. To show that the FBS of a zero mean signal 

with a Gaussian PDF is zero, it suffices to show that the inverse FT of the FBS is a third 

order statistics. Since the third and higher odd order statistics of a signal with a Gaussian 

PDF is zero [36], the FBS will be zero for a zero mean signal with a Gaussian PDF. 

In general, the inverse FT of the FBS is calculated as  

𝑅𝐹(𝜌, 𝜏; 𝑘) = ℱ
−1{𝐹(𝜈1, 𝜈2; 𝑘)} 

= ∬ 𝐹
∞

−∞

(𝜈1, 𝜈2; 𝑘)𝑒
𝑖2𝜋(𝜈1𝜌+𝜈2𝜏) 𝑑𝜈1𝑑𝜈2 

=∬ 𝑋
∞

−∞

(𝜈1)𝑋(𝜈2)𝑋(−𝜈1 − 𝑘𝜈2)𝑒
𝑖2𝜋(𝜈1𝜌+𝜈2𝜏)𝑑𝜈1𝑑𝜈2 

=∬ [∫ 𝑥
∞

−∞

(𝑡1)𝑒
−𝑖2𝜋𝜈1𝑡1𝑑𝑡1]

∞

−∞

[∫ 𝑥
∞

−∞

(𝑡1)𝑒
−𝑖2𝜋𝜈2𝑡2𝑑𝑡2] 

× [∫ 𝑥
∞

−∞

(𝑡3)𝑒
−𝑖2𝜋(−𝜈1−𝑘𝜈2)𝑡3𝑑𝑡3] 𝑒

𝑖2𝜋(𝜈1𝜌+𝜈2𝜏)𝑑𝜈1𝑑𝜈2 

=∭ 𝑥
∞

−∞

(𝑡1)𝑥(𝑡2)𝑥(𝑡3) [∫ 𝑒𝑖2𝜋𝜈1(𝜌+𝑡3−𝑡1)
∞

−∞

𝑑𝜈1] 

× [∫ 𝑒𝑖2𝜋𝜈2(𝜏+𝑘𝑡3−𝑡2)
∞

−∞

𝑑𝜈2] 𝑑𝑡1𝑑𝑡2𝑑𝑡3 

=∭ 𝑥
∞

−∞

(𝑡1)𝑥(𝑡2)𝑥(𝑡3)𝛿(𝜌 + 𝑡3 − 𝑡1)𝛿(𝜏 + 𝑘𝑡3

− 𝑡2)𝑑𝑡1𝑑𝑡2𝑑𝑡3 

= ∫ 𝑥
∞

−∞

(𝜌 + 𝑡3)𝑥(𝜏 + 𝑘𝑡3)𝑥(𝑡3)𝑑𝑡3. 

(A-8) 

Therefore,  

𝑅𝐹(𝜌, 𝜏; 𝑘) = ∫ 𝑥
∞

−∞

(𝜌 + 𝑡)𝑥(𝜏 + 𝑘𝑡)𝑥(𝑡)𝑑𝑡 = �̃�{𝑥(𝜌 + 𝑡)𝑥(𝜏 + 𝑘𝑡)𝑥(𝑡)}, (A-9) 

where �̃�{.} is the estimator of the expectation value. 

Assume that x(t) is an instance of the stochastic process x with a Gaussian PDF. 

Since ρ, τ, and t are independent variables and 𝑥(𝜌 + 𝑡), 𝑥(𝜌 + 𝑡), and 𝑥(𝑡) are Gaussian, 

the expectation value of the triple correlation in Eqn. A-7 equals zero according to the 

Isserlis theorem [36], i.e. 𝑅𝐹(𝜌, 𝜏; 𝑘) = 0. As a result, it can be concluded that 

𝐹(𝜈1, 𝜈2; 𝑘) = ℱ{𝑅𝐹(𝜌, 𝜏; 𝑘)} = 0. 
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It should be noted that in practice, the signal 𝑥(𝑡)is one instance of a zero mean 

Gaussian stochastic process and 𝑅(𝜌, 𝜏) is an estimator of the cumulant. Therefore, the 

FBS of a signal 𝑥(𝑡) might not be zero (it is zero with the assumption of x(t) being 

triplecorrelation- ergodic); however, would be a small value. As a result, by using the FBS 

transform, the zero mean Gaussian noise would be reduced instead of being eliminated. 

A.3 Fractional BiSpectrum of a Discrete Time Signal 

For discrete time signals, the cumulant of a signal with zero mean is defined as 

𝐶[𝑚, 𝑛] = 𝐸{𝑥[𝑝 +𝑚]𝑥[𝑝 + 𝑛]𝑥[𝑝]}, (A-10) 

where m, n, and p are integers. Equivalent to the analogue signals, the following is 

defined as an estimator of the cumulant of a discrete time signal with zero mean 

𝑅[𝑚, 𝑛] ≡ ∑ 𝑥[𝑝 +𝑚]𝑥[𝑝 + 𝑛]𝑥[𝑝]

∞

𝑝=−∞

. (A-11) 

A.3.1 Continuous FBS of a discrete time signal 

The continuous BiSpectrum of a discrete time signal is defined as 

𝑆𝐷(𝜔, 𝑣) = ℱ{𝑅[𝑚, 𝑛]} = 𝑋⟨𝜔⟩𝑋⟨𝑣⟩𝑋⟨−𝜔 − 𝑣⟩, (A-12) 

where X⟨ω⟩ is the continuous FT of the discrete time signal x[n] [37] 

𝑋⟨𝜔⟩ = ∑ 𝑥

∞

𝑛=−∞

[𝑛]𝑒−𝑖𝜔𝑛, (A-13) 

and ℱ{. } is the continuous FT of the discrete time signal as stated above. Note the different 

notation of X⟨ω⟩ compared with [37]. 

Therefore, analogous to the definition of the FBS for a continuous time signal, we 

define the continuous FBS of a discrete time signal as 

𝐹𝐷(𝜔1, 𝜔2; 𝑘) ≡ 𝑋⟨𝜔1⟩𝑋⟨𝜔2⟩𝑋⟨−𝜔1 − 𝑘𝜔2⟩. (A-14) 
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It is assumed that k is a positive rational number, k ∈ Q+ and is represented as 𝑘 =

𝑘1/𝑘2 where 𝑘1 and 𝑘2 are relatively prime, 𝑔𝑐𝑑(𝑘1, 𝑘2) = 1. 

As it is known, the continuous FT of a discrete signal is periodic with a period of 

2π. Hence, to calculate the continuous FBS of a discrete signal, we only consider one period 

of the continuous FT and thus we assume that the FT is zero for the frequencies outside 

that period. This 2π support can be considered as the interval (− π, π) or (0, 2π) and we 

consider it to be (− π, π). 

For the proof, in this section, we consider the condition that the down-sampling of 

x[n] does not impact the spectrum content of it. This means that we apply the condition 

that for the discrete signal x[n] the bandwidth is less than or equal to π/𝑘2. Therefore, the 

down-sampled signal 𝑥𝑘2
𝑑 [𝑛] of 𝑥[𝑛] with the factor 𝑘2 and its FT are related to x[n] and 

its FT as follows 

𝑥𝑘2
𝑑 [𝑛]    =  𝑥[𝑘2𝑛], (A-15) 

𝑋𝑘2
𝑑 ⟨𝜔⟩  =  𝑋⟨𝜔/𝑘2⟩, (A-16) 

where 

𝑋⟨𝜔⟩ = {

𝑋𝑘2
𝑑 ⟨𝑘2𝜔⟩ |𝜔| ≤

𝜋

𝑘2

0
𝜋

𝑘2
< |𝜔| < 𝜋

,

𝑋𝑘2
𝑑 ⟨𝑘2𝜔⟩ = ∑ 𝑥𝑘2

𝑑

∞

𝑛=−∞

[𝑛]𝑒−𝑖𝑘2𝜔𝑛.

 (A-17) 

On the basis of the above condition, the continuous signal x(t), where x[n] 

represents its samples (𝑥[𝑛] = 𝑥(𝑛𝑇) with the sampling period 𝑇), can be recovered fully 

from both x[n] and 𝑥𝑘2
𝑑 [𝑛]. Accordingly, the PDFs of both signals have to have the same 

shape. In other words, if PDF of a signal is Gaussian, its downsampled signal would have 

a Gaussian PDF, too. 
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On the basis of the above definitions and condition, it will be shown that the 

continuous FBS of a discrete time signal with a Gaussian PDF is zero. To show this, it is 

sufficient to show that the inverse FT of the discrete FBS is a triple correlation and thus it 

is zero. 

𝑅𝐹
𝐶[𝑚, 𝑛; 𝑘] 

= ℱ−1{𝐹𝐷(𝜔1, 𝜔2; 𝑘)}

= (
1

2𝜋
)
2

∮ ∮
2𝜋
𝑋⟨𝜔1⟩𝑋⟨𝜔2⟩𝑋⟨−𝜔1 − 𝑘𝜔2⟩

× 𝑒𝑖(𝜔1𝑚+𝜔2𝑛)𝑑𝜔1𝑑𝜔2

= (
1

2𝜋
)
2

∮ ∮
2𝜋
𝑋𝑘2
𝑑 ⟨𝑘2𝜔1⟩𝑋𝑘2

𝑑 ⟨𝑘2𝜔2⟩𝑋𝑘2
𝑑 ⟨−𝑘2𝜔1 − 𝑘𝑘2𝜔2⟩

× 𝑒𝑖(𝜔1𝑚+𝜔2𝑛)𝑑𝜔1𝑑𝜔2

= (
1

2𝜋
)
2

∮ ∮
2𝜋

∑ 𝑥𝑘2
𝑑

∞

𝑝1=−∞

[𝑝1]𝑒
−𝑖𝑘2𝜔1𝑝1 ∑ 𝑥𝑘2

𝑑

∞

𝑝2=−∞

[𝑝2]𝑒
−𝑖𝑘2𝜔2𝑝2

× ∑ 𝑥𝑘2
𝑑

∞

𝑝3=−∞

[𝑝3]𝑒
−𝑖(−𝑘2𝜔1−

𝑘1
𝑘2
𝑘2𝜔2)𝑝3𝑒𝑖(𝜔1𝑚+𝜔2𝑛)𝑑𝜔1𝑑𝜔2

= ∑ 𝑥𝑘2
𝑑

∞

𝑝1,𝑝2,𝑝3=−∞

[𝑝1]𝑥𝑘2
𝑑 [𝑝2]𝑥𝑘2

𝑑 [𝑝3]

×
1

2𝜋
∮ 𝑒𝑖𝜔1(𝑚+𝑘2𝑝3−𝑘2𝑝1)

2𝜋

𝑑𝜔1
1

2𝜋
∮ 𝑒𝑖𝜔2(𝑛+𝑘1𝑝3−𝑘2𝑝2)

2𝜋

𝑑𝜔2

= ∑ 𝑥𝑘2
𝑑

∞

𝑝1,𝑝2,𝑝3=−∞

[𝑝1]𝑥𝑘2
𝑑 [𝑝2]𝑥𝑘2

𝑑 [𝑝3]

× 𝛿[𝑚 + 𝑘2𝑝3 − 𝑘2𝑝1]𝛿[𝑛 + 𝑘1𝑝3 − 𝑘2𝑝2]

= ∑ 𝑥

∞

𝑝1,𝑝2,𝑝3=−∞

[𝑘2𝑝1]𝑥[𝑘2𝑝2]𝑥[𝑘2𝑝3]

× 𝛿[𝑚 + 𝑘2𝑝3 − 𝑘2𝑝1]𝛿[𝑛 + 𝑘1𝑝3 − 𝑘2𝑝2]

= ∑ 𝑥

∞

𝑝3=−∞

[𝑚 + 𝑘2𝑝3]𝑥[𝑛 + 𝑘1𝑝3]𝑥[𝑘2𝑝3]

= �̃�{𝑥[𝑚 + 𝑘2𝑝3]𝑥[𝑛 + 𝑘1𝑝3]𝑥[𝑘2𝑝3]}

= �̃�{𝑥((𝑚 + 𝑘2𝑝3)𝑇)𝑥((𝑛 + 𝑘1𝑝3)𝑇)𝑥((𝑘2𝑝3)𝑇)}.

 
(A-18) 
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As m, n, and 𝑝3 are independent variables, 𝑅𝐹
𝐶[𝑚, 𝑛; 𝑘] is the sampled version of 

the triple correlation of joint Gaussian signals. Since the triple correlation of the joint 

Gaussian signal is zero [36], 𝑅𝐹
𝐶[𝑚, 𝑛; 𝑘] which is the samples of the triple correlation will 

be zero as well. Therefore, for a zero mean signal with a Gaussian PDF, 𝑅𝐹
𝐶[𝑚, 𝑛; 𝑘] = 0. 

As a result, it can be concluded that 𝐹𝐷(𝜔1, 𝜔2; 𝑘) = ℱ{𝑅𝐹
𝐶[𝑚, 𝑛; 𝑘]} = 0. 

A.3.2 Discrete FBS of a discrete time signal 

For a discrete signal with length N, the discrete FT (DFT) is defined as 

𝑋[𝑟] = ∑ 𝑥

⌈
𝑁
2
−1⌉

𝑛=⌈−
𝑁
2
⌉

[𝑛]𝑒−𝑖
2𝜋𝑟
𝑁
𝑛 = ∑ 𝑥

∞

𝑛=−∞

[𝑛]𝑒−𝑖
2𝜋𝑟
𝑁
𝑛

= ∑ 𝑥

∞

𝑛=−∞

[𝑛]𝑒−𝑖𝜔𝑛|
𝜔=

2𝜋𝑟
𝑁
= 𝑋⟨𝜔⟩|

𝜔=
2𝜋𝑟
𝑁
,

 (A-19) 

where ⌊.⌋ and ⌈.⌉ are floor and ceiling which map a real number to the largest 

previous integer and to the smallest following integer, respectively. 

It is assumed that the support of the signal 𝑥[𝑛] is [⌈−
𝑁

2
⌉ , ⌈

𝑁

2
− 1⌉]. Again, the 

condition that the bandwidth of the discrete signal x[n] (the support of 𝑋⟨𝜔⟩) is less than 

or equal to 𝜋/𝑘2 is applied. Therefore, the down-sampled signal 𝑥𝑘2
𝑑 [𝑛] of 𝑥[𝑛] with the 

factor 𝑘2 and its DFT are related to x[n] and its FT as follows 

𝑥𝑘2
𝑑 [𝑛] = 𝑥[𝑘2𝑛], (A-20) 

𝑋[𝑟] =

{
 

 𝑋𝑘2
𝑑 [𝑘2𝑟] |𝑟| ≤ ⌊

𝑁

2𝑘2
⌋

0 ⌊
𝑁

2𝑘2
⌋ < |𝑟|

, (A-21) 

where the down-sampled FT is 
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𝑋𝑘2
𝑑 [𝑘2𝑟] = 𝑋𝑘2

𝑑 ⟨𝜔⟩|
𝜔=

2𝜋𝑘2𝑟
𝑁

= 𝑋⟨
𝜔

𝑘2
⟩|
𝜔=

2𝜋𝑘2𝑟
𝑁

= 𝑋⟨𝜔⟩|
𝜔=

2𝜋𝑟
𝑁
= 𝑋[𝑟].

 (A-22) 

For a discrete signal, the discrete FBS is defined as  

𝐹[𝑟, 𝑠; 𝑘] ≡ 𝑋[𝑟]𝑋[𝑠]𝑋[−𝑟 − 𝑘𝑠]. (A-23) 

As it is seen for non-integer k, the index −𝑟 − 𝑘𝑠 is not always an integer. 𝑋[−𝑟 −

𝑘𝑠] in this case is undefined and thus we define the discrete FBS as 

𝐹𝐷[𝑟, 𝑠; 𝑘] ≡ 𝐹𝐷(𝜔1, 𝜔2; 𝑘)|𝜔1=
2𝜋𝑟
𝑁
,𝜔2=

2𝜋𝑠
𝑁

= 𝑋⟨𝜔1⟩𝑋⟨𝜔2⟩𝑋⟨−𝜔1 − 𝑘𝜔2⟩|𝜔1=
2𝜋𝑟
𝑁
,𝜔2=

2𝜋𝑠
𝑁
.
 (A-24) 

It is again assumed that the support for X⟨ω⟩ is (− π, π) as discussed before. The 

inverse DFT of the FBS is calculated as (see Eqn. A-25).  As it is seen, 𝑅𝐹
𝐷[𝑚, 𝑛; 𝑘] is the 

sampled version of the triple correlation of joint Gaussian signals, where m, n, and p3 are 

independent variables. According to the Isserlis theorem, the triple correlation of a joint 

Gaussian signal is zero [36]. Therefore, 𝑅𝐹
𝐷[𝑚, 𝑛; 𝑘], which is the samples of the triple 

correlation, will be zero as well. Thus, we can conclude that 𝐹𝐷[𝑟, 𝑠; 𝑘] =

ℱ{𝑅𝐹
𝐷[𝑚, 𝑛; 𝑘]} = 0. 

As mentioned in the previous section, x[n] is one instance of a zero mean Gaussian 

stochastic process and 𝑅[𝑚, 𝑛] is a cumulant estimator. Hence, in practice, the FBS of x[n] 

might not be zero; however, it would be a very small value and, as a result, by using the 

FBS transform, the zero mean Gaussian noise in x[n] would be significantly reduced. 

A.3.2.1 Determination of FBS with non-integer k values 

It should be noted that due to non-integer values of k in Eqn. A-23, a problem exists 

with the calculation of the third term of the discrete FBS of a discrete time signal. Since 

the index value is now noninteger, generating the FBS space is not as straight forward as  
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(A-25) 
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determining the FT for each integer once and re-using the calculated value through 

multiplication of the three terms such as is typically done in the calculation of the 

BiSpectrum. To demonstrate the proper way of generating the correct FBS space, the 

typical DFT of a discrete signal is shown again 

𝑋[𝑟] = ∑ 𝑥[𝑛]

𝑁
2
−1

𝑛=−
𝑁
2

𝑒−𝑖
2𝜋𝑛
𝑁
𝑟 , 𝑟 = −

𝑁

2
 𝑡𝑜 

𝑁

2
− 1, (A-26) 

where the time-domain signal is x[n], N is the number of samples, n is the index 

values of x, and r is the discrete independent values of X taken at integers. It is noted that 

choosing r to be integer values is the standard technique. From this, other techniques were 

developed such as the fast-FT to simplify the number of computations to significantly 

reduce the time of calculating the DFT. However, r does not have to be chosen to be integer 

values if there is significance to choosing the contrary. In the case of the FBS, it becomes 

necessary to compute the actual fractional values that pertain to the third term in Eqn. A-

23. If one lets t = − r − ks, one can predetermine the set of values for t necessary to calculate 

for the DFT such that the calculation of the FBS can be readily available. It is then of 

consequence that an N by N matrix of DFT values be calculated prior to the FBS (since r 

and s that make up t are both of length N). Thus, if the standard computation time to 

calculate the DFT generates a Fourier space of length N, it would take on the order of N 

times the computation time to calculate the correct Fourier space necessary for generating 

the FBS. 
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A.4 Examples 

A.4.1 Two sinusoidal signals 

For the first example, a signal with two sinusoidal components were simulated. The 

frequencies of sinusoidal components are f1 = 200 Hz and f2 = 300 Hz. The BiSpectrum of 

such signal is zero. On the other hand, by selecting a proper k based on known frequencies 

the FBS would be non-zero. Namely, by choosing k = 0.5, ν1 = f1 = 200, ν2 = f1 = 200, and 

ν1 + kν2 = 200 + 0.5 × 200 = 300 = f2 the FBS is non-zero. To compare the performance of 

Fourier analysis and FBS analysis, a Gaussian noise is added to the signal and then we tried 

to detect the frequency of sinusoidal components in the noisy signal. The frequency is 

detected if the amplitude of the signal in the Fourier or the FBS domain is at least twice as 

the amplitude of neighbouring noise components in that domain. 

The range of the signal SNR is changed from −15 to −30 dB, and for each signal 

SNR, the detection ratio (the percentage of the correct frequency detection) and the 

detected SNR (SNR in the Fourier and the FBS domain) are calculated. Figure A-1 shows 

the detection ratio versus SNRs from Fourier and FBS analyses. The detected SNR that is 

calculated as the ratio of the power of signal (main lobe and main peak) to the power of the 

noise (side lobes and side peaks) in the corresponding domain (frequency domain or FBS 

domain). So, for example, in the frequency domain the signal is shown by a peak or a main 

lobe (depending on the bandwidth of the signal) and the noise is considered as the side lobe 

or peak next to the main lobe or peak. 

As it is seen in the graphs, the FBS shows better performance both in the detection 

ratio and the detected SNR. Therefore, by using FBS analysis, one can achieve a better 

performance over the conventional Fourier analysis techniques. 
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Figure A-1: This show how the Detection Ratio varies with the SNR for FT and FBS.   

 

A.4.2 Interferometry system 

In the field of metrology, optical techniques can be used to give information 

pertaining to the properties of a sample or dimensional information such as the thickness 

or profile of a sample. One of the common techniques for measuring the thickness of a 

sample on the range of tens of microns is to project laser light at a particular angle to 

generate an interference pattern. The setup for this technique is depicted in Figure A-2. As 

Figure A-3 shows, the interference pattern generates fringes in the x-direction. These 

fringes can be approximated to a singular spatial frequency which is related to the thickness 

of the sample and the wavelength of the source.  
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Figure A-2: This show the typical setup for the thickness measurement of a thick film or 

coating using interferometry technique.   

 

 

 

Figure A-3: This show the interference pattern generated from the thickness measurement: 

(a) over 6 mm by 6 mm area, (b) in the x-direction.   
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One can derive this frequency as a function of the setup variables using Gaussian 

beam theory as shown in Eqn. A-27 below. 

𝑃 ≃ 
𝜆𝑙2√𝑛2 − sin2 𝜃𝑖
2𝑡 sin 𝜃𝑖 cos 𝜃𝑖

 (A-27) 

In the expression above, P is the constant spatial period which is a function of n, 

the index of refraction, θi, the incident angle of the beam, l2, the distance from the fibre to 

the film, t, the thickness of the film, and λ, the wavelength of the source. While all other 

components must be held fixed for the purpose of measurement, the experimenter does 

have the control over changing the wavelength for multiple measurement results. While 

this technique is good for smooth surface films/coatings, this technique suffers when the 

sample has a rough surface or fluctuations within the sample causing scatter. The effects 

of surface roughness can be further simulated to see how the fringe pattern is affected.  

 

Figure A-4: This shows interference signal cross-sections for: 

(a) 527 nm wavelength and clean surface, (b) 643 nm wavelength and rough surface, 

(c) 527 nm wavelength and rough surface, (d) 643 nm wavelength and rough surface   
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Figure A-4 shows the comparison between a clean surface interference pattern and 

a rough surface interference pattern (50 nm roughness) cross section.  As can be seen 

above, when comparing the fringe patterns of wavelengths 527 nm and 643 nm, it is 

obvious to see that the spatial period has increased for the 643 nm pattern proportional to 

the increase in wavelength when compared with the 527 nm wavelength. Since the rough 

surface simulation results do not show very clear fringe patterns, typically this optical 

technique does not allow for measuring thickness for these types of surfaces. 

However, since the relationship between these two spatial frequencies are well 

known, the proposed FBS technique can be used to determine the thickness measurement 

by enhancing the SNR as claimed above. It should be noted that the relationship between 

the two spatial frequencies is a fraction which is directly related to the wavelength of the 

sources. Thus, the standard BiSpectrum technique would be incapable of reducing the noise 

in a system such as depicted in Figure A-4. 

A.4.2.1 Interferometry system 

To demonstrate the improvement using the FBS technique, a Monte Carlo 

simulation was generated comparing the typical FT and FBS techniques. The surface 

roughness of the thickness sample was varied from zero to 150 nm in 5 nm steps. Each 

roughness was generated by using an additive ‘white Gaussian noise’ to a smooth surface. 

The simulation was randomized 1000 times per surface roughness to obtain an average 

detection. The observation of a peak at the spatial frequency which relates to the thickness 

of the sample was defined as the detection criteria measured as shown in Figure A-5. For 

a peak to be considered detected, the amplitude at the spatial frequency of interest had to 
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be at least a factor of 2 greater than the noise surrounding it. As can be seen in Figure A-5, 

the FBS technique can clearly identify the thickness at levels of higher roughness on the 

sample. If given a 90% success rate cut-off, the FBS can measure the thickness for 30% 

rougher surfaces. It should be noted that although the roughness introduced on the system 

was Gaussian in nature, since the fringe generation is due to the interference between the 

two beams, the noise in the simulated resultant pattern is not purely Gaussian. Thus, 

although the FBS technique has over-performed the FT in this setup, the degree in which 

it has reduced the noise in the system is less than if the noise was purely Gaussian. There 

are other applications not to be mentioned in this document where the noise embedded in 

the system can be better modelled as purely Gaussian. Thus, one would expect better 

performance of this technique in those situations as demonstrated in example 1 (previous 

subsection). 

 

Figure A-5: This shows the Comparison of noise reduction techniques for the thickness 

measurement setup. 
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A.5 Conclusion 

We introduced the FBS transform as a generalisation of the BiSpectrum transform. 

The FBS is useful in situations that the BiSpectrum of a signal is zero but in the frequency 

content of signal, there are some sets of non-zero frequency components of {ν1, ν2, ν1 + 

kν2} for some k ∈ Q+. This situation happens, for example, when the signal comprised of 

two sinusoidal signals where the frequency of one sinusoidal signal is not twice of the 

other. Another example is where the signal is a bandpass signal and the highest non-zero 

frequency component is smaller than the twice of the lowest non-zero frequency 

component. In both cases, the BiSpectrum of the signal is zero while the FBS would be 

non-zero by choosing the proper value for k. The FBS has the advantages offered by the 

BiSpectrum transform without the limitation related to the frequency content of the signal. 

For example, for a signal with only two non-zero frequency components in which one 

frequency component is not twice of the other one, the BiSpectrum is zero while the FBS 

would be non-zero by choosing the proper value of the parameter k. 
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