
EKF ACCELEROMETER BASED WHEEL ODOMETRY

by

Jacob Morgan

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2021

Approved by:

Dr. James Conrad

Dr. Robert Cox

Dr. Andrew Willis

ii

©2021
Jacob Morgan

ALL RIGHTS RESERVED

iii

ABSTRACT

JACOB MORGAN. EKF Accelerometer Based Wheel Odometry. (Under the
direction of DR. JAMES CONRAD)

Gathering information on robot motion is critical in determining how a mobile robot

has interacted in its environment. The information about a robot’s motion, called

odometry is generally collected by tracking wheel behavior for ground based robots.

Wheel encoders are a typical means for collecting this information. Wheel encoders

generally split the circumference of the wheel into equally discrete distances to track

the distance traveled along the wheel’s circumference. The proposal of this research is

to dismiss the use of the above discrete based wheel encoders and use an accelerometer

as a wheel encoder for a more continuous reading of the wheel’s position. Accelerom-

eters are typically difficult to use for precise data collection because of noisy outputs

causing inaccurate odometry information. This can be overcome by building a model

to predict how the output of the accelerometer on the wheel should behave. With the

accelerometer mounted on the wheel of a ground based robot, an expected output of

the accelerometer should oscillate between positive and negative values of the grav-

ity vector. This allows for a system that can be modelled as a sinusoid. Using the

sinusoidal model, the raw data can then be filtered with an Extended Kalman Filter

(EKF). The Extended Kalman Filter weights the measurement from the sensor along

with the predicted value from the model to give a low noise, high precision output.

The results from the newly filtered data proved to give acceptable accuracy that was

desired for estimating position of the wheel. Based on the filtered data, the calculated

distance proved to remain within %2.2 of the expected distance traveled. This error

was seen to be the maximum error at start up and dropped well below %1 in each of

the experiments.

iv

ACKNOWLEDGEMENTS

The work completed in this research was supported by my academic advisor Dr.

James Conrad and the other two board members for this thesis, Dr. Andrew Willis

and Dr. Robert Cox. Dr. James Conrad provided the direction of what educational

skill would be needed for a successful Masters focused on the robotics field. The

basis of the Masters education was also taught by Dr. Conrad. I would like to also

specifically thank Dr. Robert Cox for the insight in modeling provided in his lectures.

It added the ability for me to analyze systems into mathematical models in order to

provide proper control techniques as well as later be used for filtering. Dr. Andrew

Willis must be noted for teaching in great detail the Kalman filtering techniques

ultimately needed to make this thesis a success.

v

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF ABBREVIATIONS viii

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 1

1.2. Motivation 2

1.2.1. Cost Analysis 2

1.2.2. Sensor Resolution 3

1.2.3. Sensor Mounting 4

1.3. Previous Work 5

1.4. Contribution 6

1.5. Topic Organization 7

CHAPTER 2: BACKGROUND 8

2.1. Pose and Coordinate Systems 8

2.2. Wheel Encoders 9

2.3. Accelerometers 11

2.4. Extended Kalman Filter 11

CHAPTER 3: CONFIGURATION 17

CHAPTER 4: MODELING THE EXPECTED SINUSOIDAL OUTPUT 18

4.1. Determining the Wheel Period 18

4.2. Adding Outside Acceleration Forces 20

4.3. Calibrating Zero Offset 21

vi

4.4. Determining Where on the Sinusoid to Start 24

CHAPTER 5: BUILDING THE EXTENDED KALMAN FILTER 26

5.1. Noise 26

5.2. Transition Model 27

5.3. Observation Model 28

5.4. Jacobians 29

5.5. Co-Variance 30

5.6. Determining Distance Traveled 31

5.7. Putting it all together 33

5.7.1. Prediction 33

5.7.2. Update 33

CHAPTER 6: RESULTS 36

CHAPTER 7: CONCLUSION 43

7.1. Future Work 44

REFERENCES 45

vii

LIST OF FIGURES

FIGURE 1.1: Sensor Cost 3

FIGURE 1.2: Sensor Resolution 4

FIGURE 1.3: Mounted Sensor and Slip Ring 5

FIGURE 2.1: Robot Frame 9

FIGURE 2.2: Gaussian Curve 12

FIGURE 3.1: Test Robot 17

FIGURE 4.1: Reflector tape on wheel for frequency measurements 19

FIGURE 4.2: Wheel Speed Transfer Curve 19

FIGURE 4.3: Accelerations Diagram 21

FIGURE 4.4: Raw Sensor Data 22

FIGURE 4.5: Model Data Comparison 25

FIGURE 5.1: Normal Distributions 27

FIGURE 6.1: Filtered Data 36

FIGURE 6.2: Measured Error 37

FIGURE 6.3: Smooth Surface Environment 38

FIGURE 6.4: Smooth Surface Environment 39

FIGURE 6.5: Semi-Smooth Surface Environment 40

FIGURE 6.6: Semi-Smooth Surface Environment 40

FIGURE 6.7: Rough Surface Environment 41

FIGURE 6.8: Error 41

FIGURE 6.9: Rough Surface Environment 42

viii

LIST OF ABBREVIATIONS

AMR An acronym for Autonomous Moving Robot.

EKF An acronym for Extended Kalman Filter.

I2C An acronym for Inter-Integrated Circuit

IMU An acronym for Inertial Measurement Unit

LED An acronym for Light Emitting Diode

M An acronym for Meters

MPS An acronym for Meters Per Second

MPSS An acronym for Meters Per Second Squared

POSE An acronym for Position Orientation System Estimate.

PPR An acronym for Pulses Per Rotation

RPM An acronym for Rotations Per Minute

1

CHAPTER 1: INTRODUCTION

1.1 Problem Statement

Information about the motion of a mobile robot is important for determining the

location of the robot in its environment. The use of this information to determine

the robot state is called odometry. For ground based mobile robotics, observing

the actual movement of the robot is commonly achieved by monitoring the wheel

movement. Knowing the diameter and wheel circumference, the distance traveled by

the wheel is determined by recording the change in the wheel’s position and recording

how much of the wheel’s circumference was traveled. This information is then used to

determine the position and orientation of the mobile robot in its environment, known

as the pose. Wheel encoders are typically used to collect the odometry information.

This can include using magnetic, mechanical, or light based wheel encoders. These

classic wheel encoders use a method of creating a set number of divisions of equal

distance around the circumference of the wheel. The number of divisions represents

the resolution of the encoder. Each change in division is tracked to determine the

change in wheel position. The disadvantage to creating physical divisions is that

regardless of the speed of the wheel, the resolution of the encoder is set to a given

divisions per rotation. Therefore at slower wheel velocities, less changes in division

can be recorded. This is overcome by placing an accelerometer directly on the wheels

of a ground based mobile robot for a more continuous sensor reading. The sensing

information from this method would be similar with that of the information coming

from a typical wheel encoder except that the resolution would be variable with speed.

This is because the limitations in the amount of information collected about the wheel

is now due to how quickly the sensor can be sampled vs. physical limitation imposed

on current wheel encoding methods.

2

1.2 Motivation

It may be noted that if the wheel encoder can already provide the information

that the proposed solution with the accelerometer is offering, then there should be

advantages to using the accelerometer instead of the traditional wheel encoder. These

reasons can be analyzed by looking at cost, resolution, and the mounting of the

accelerometer as an encoder verses other standard methods.

1.2.1 Cost Analysis

Wheel encoders generally fall in a price category based on the type. As mentioned

previously, magnetic encoders are considered to be some of the most reliable encoders,

as well as provide great resolution, but at a cost to price. In order to have an unbiased

comparison, an encoder is picked based on similar performance as the accelerometer

used in this research, regardless of type. Therefore a magnetic encoder will be used

for comparison. The accelerometer being used in this research is the MMA8451 from

Freescale Semiconductor[1]. It has a high end sampling rate of 800Hz. This means

it has the potential to give feedback information 800 times a second. The traditional

encoder used in comparison that can provide at minimum 800ppr is the Magnetic

Encoder AEAT-6010-A06 from Broadcom[2].

The Broadcom encoder can give 1024 counts for every revolution of the wheel it

is mounted on. This comes at heavy price with the new cost for getting comparable

resolution at $29.32 per wheel. The MMA8451 already populated on a circuit board

is priced on Adafruit at $7.95, with one being needed per wheel. Along with the

MMA8451 sensor module, a slip ring must be used in order to allow the wheel to turn

while keeping connection from the micro controller to the sensor and not twist the

wires on themselves until tension causes a malfunction. For this research a Comidox,

6-wire slip ring is used and is priced at $4.83 at https://www.ufontsa.com/index.

php?main_page=product_info&products_id=216596. This would bring the total

https://www.ufontsa.com/index.php?main_page=product_info&products_id=216596
https://www.ufontsa.com/index.php?main_page=product_info&products_id=216596

3

for monitoring 2 wheels with the suggested approach to $25.56 vs. $58.64 using the

comparable Broadcom wheel encoder. Price comparison can be seen below in figure

1.1.

(a) Sensor Hardware Pricing

Figure 1.1: Above shows cost benefit of MMA8451 for wheel odometery vs. the
similar performing Broadcom encoder.

It should also be noted that this does not include any other mounting cost for the

magnetic encoder that may be incurred.

1.2.2 Sensor Resolution

Now that a more comparable wheel encoder has been selected, the resolution can

be analyzed between the two sensors. The MMA8451 as stated previously can sample

at a rate of 800 times per second. For our wheel period of 1.565s (38.339rpm), this

means getting up to 1,252 samples within one revolution. It can be seen that the

slower the wheel speed, the more samples that will be collected per revolution and

means increased resolution of the wheel position. The wheel encoder is set to be

1024 pulses for every revolution no matter how slow the system. The resolution

4

of the wheel encoder only becomes better for wheel speeds faster than 46.875rpm.

Therefore for applications with slow speeds, the accelerometer could be a preferred

alternative. This can be seen in the following figure 1.2 that shows the number of

revolutions per second vs. the number of counts from each sensor.

(a) Sensor Resolutions

Figure 1.2: Resolutions of MMA8451 (blue) sensor and Broadcom (orange) over dif-
ferent wheel speeds in rotations per second.

The intersection of the lines shows how one would appropriately decide which sensor

would be better for a project based on resolution. Given this research has a relative

long wheel period, the MMA8451 is the best choice in the research scenario.

1.2.3 Sensor Mounting

Mounting is another consideration when choosing the correct sensor for the appli-

cation. Without proper analysis of how to incorporate the sensor into the system,

the mounting can become quite difficult and costly. For the magnetic wheel encoder,

there are two parts. There is the polarized disk that mounts on the wheel, and the

actual sensor for sensing the poles on the disk that is mounted on the wheel. The

sensor generally has a sensitivity rating to tell how close it needs to be to the polarized

5

disk and also must be aligned properly. If this is not placed correctly, the sensor may

give false information. For the accelerometer module, it just needs mounted to the

center of the wheel using a preferred adhesive or mechanical insert method. Then the

slip ring needs mounted parallel to the sensor so that as the wheel turns, the slip ring

can move with it. This can mean having mounting hardware coming off the wheel

itself to hold the slip ring in place. This removes any worry of the sensor information

being lost. This setup is seen in figure 1.3 below.

(a) Mounting the Sensor

Figure 1.3: Sensor mounted on wheel with slip ring attached. Also shows x-axis,
gravity vector, and centripetal acceleration

1.3 Previous Work

The Field of odometry based robot state estimation is a well explored field and

the usage of accelerometers used to provide information on wheel movement has been

previously studied as well. Accelerometers on wheels typically exploit the effect of

the gravity vector on the accelerometer and orient the sensor so that 2 of the axis can

measure the vector components of gravity. A simple usage is seen in the application

6

of an accelerometer to measure movement and direction of the wheel on a wheel

chair [3]. This is done by measuring the accelerations on a radial and tangential (x

and y) axis of the accelerometer and taking the inverse tangent of the two to get

an approximate wheel position. Distances traveled were determined by the change

in each sample taken of the wheel movement while the sign of the change would

indicate the direction of movement. Speed of movement could then be calculated

using the distances traveled over each time interval. Other experiments have been

done to filter the information coming from the accelerometer on the wheel through a

low pass filter for a more accurate position of the wheel [4]. The filter simply consists

of a moving average for the sensor information read on the x-axis and y-axis. The

direction of the wheel was determined by a magnometer also attached to the wheel.

This allows the information from the accelerometer to be viewed as absolute values

while the magnometer determines the sign for the change in position. Further work

has improved the usage of accelerometer-based wheel odometry by using an inertial

measurement unit (IMU) to get the angular velocity, from an on-board gyrosocpe

combined with acceleration data from an accelerometer [5]. The data in this work

is smoothed by using an Extended Kalman Filter. This means using the kinematic

motion model of the wheel itself and comparing an expected output to the data

received by the IMU.

1.4 Contribution

The work presented in this document aims to provide a method for using an ac-

celerometer without the aid of other sensors to provide accurate position information

for a wheel. It is desired to exploit the continuous sensor information of the accelerom-

eter to always have feed back about the wheel. The model created for filtering will not

have the benefit of gyroscopic angular velocity information or directional information

from any other sensor sources. Therefore, the model must rely on command inputs

sent to the motor to determine a state estimate. This command information will be

7

used to determine the expected influence of acceleration sources outside of gravity and

how to predict the effects on the expected output of the sensor measurement. The

previous works described in section 1.3 do not provide an effective way to calibrate

the sensor distance from the center of the wheel that would be needed for determin-

ing centripetal acceleration. Some methods to overcome this were to place the sensor

further from the center of the wheel in order for the effect of centripetal acceleration

to be small. However, in this work, a robot with a small wheel is used, limiting the

distance from the center of the wheel that is achievable. Also, to prove the accuracy

of determining the centripetal acceleration, the accelerometer is placed as close to the

center of the wheel as possible which will make the centripetal acceleration have more

effect on the sensor. Therefore, it is desired to provide a procedure for determining

this offset from the center of the wheel. By using command velocities to the wheel

being analyzed and the found calibrated radius, accurate sensor expected outputs can

be determined by the wheel motion model.

1.5 Topic Organization

In the following research, chapter 2 starts with the background information needed

to understand how to implement the study. Chapter 3 covers the experimental set up

and the hardware used to perform the study. Afterwards, chapter 4 explains in detail

how to build the motion model needed to implement the Extended Kalman Filter

and chapter 5 explains the implementation and build up of the filter itself. Lastly the

results from the experiment are explained in chapter 6 along with the conclusion of

the experiment in chapter 7.

8

CHAPTER 2: BACKGROUND

In order to implement this work, it is necessary to know the background information

and will be described in this chapter. This includes knowledge of pose and coordinate

systems in order to be able to understand how using odometry is used to determine

robot state information. It will also be important to understand how traditional wheel

encoders work to provide this odometry information. Then the output information

of accelerometers will be explained. The final piece of information will be putting

together a basic understanding of how the extended Kalman Filter works.

2.1 Pose and Coordinate Systems

To know the location of a mobile robot, it is important to know how the pose is

treated and the coordinate frame of the world that the robot travels in. The pose of

a ground based robot operating in only 2 dimensions includes a x and y Cartesian

coordinates value, and the robot orientation in the environment [6]. This state can

be illustrated as:

X =


x

y

θ

 (2.1)

The environment that the robot is in can be represented as a frame with a Cartesian

coordinate system that has an origin that would give a pose of [0, 0 , 0]. The origin is

typically at the center of the map, starts at one of the corners, or can be the starting

position of the robot. The robot will also have its own coordinate frame and is shown

below from a top view perspective of the robot:

9

(a) Robot Frame

Figure 2.1: Robot Cartesian coordinate frame with the origin at the robot center.

In figure 2.1, the positive x-axis is seen a pointing in front of and away from the

robot. The positive x-axis also marks an orientation of zero degrees. The positive y-

axis points to the left and away from the robot and marks an orientation of 90 degrees.

The environment, denoted as the world frame will also use this same coordinate

system layout.

2.2 Wheel Encoders

Wheel encoders are widely used for odometry information of a robot. Research

has shown that position tracking of a robot based solely on odometry data can be

reliable with little error in the actual physical position of the robot in an environment

[7], [8]. Wheel encoding can be implemented in various methods. Encoders can be

categorized as linear or rotary, and these two categories can also be subdivided into

incremental or absolute[9]. The linear encoder is used to measure linear motion, while

the rotary encoder is used to measure rotational motion. A rotary encoder would be

used to monitor positional changes of a wheel. An incremental encoder receives a

regular interrupt to its normal condition dependent on the type of encoder. Each

10

interrupt represents an even distribution along the wheel. These interrupts must be

tracked to determine the wheel position. An absolute encoder uses a method that

makes positions on the wheel unique. Therefore, the actual position of the wheel can

be known.

Some rotary encoder categories would be mechanical, optical, and magnetic. These

can be incremental or absolute as mentioned previously for rotary encoders. A com-

monly used incremental, mechanical encoder would be a potentiomter, commonly

found in rotary switches, such as on thermostats [10]. A potentiomter translates ro-

tational, mechanical motion into an electric signal that can then be used to determine

how much the stator, or knob, has turned. These types of encoders have great res-

olution, but can become unreliable over time as parts wear out. This would mean

having to replace the entire encoder on the wheel, which can be a difficult task.

A light based absolute encoder would use a disk of varying opaqueness. The dif-

fering opaqueness would be evenly spaced around the disk. A LED is would produce

light onto the disk and on the other side, a photo-sensor sensitive to the level of

light being received through the disk would be used to produce an electrical signal

determining absolute position traveled [11]. These encoders are susceptible to dirt

and dust. If the disk becomes contaminated with outside particulates, false readings

of the photo-sensor can become inaccurate.

Magnetic encoders are reliable and they can offer high resolution [12]. These are

typically deployed using a disk with alternating magnetic poles along each quadrant.

These therefore sometimes referred to as quadrature encoders. A Hall effect sensor is

then used to read the varying magnetic field changes as the disk is rotated. This get

converted into an electrical signal for determining differentiation in wheel position.

More poles can be added to the disk evenly spaced to give greater resolution. The

downside to these types of encoders are that they are typically the most expensive

and increase in price with the more precision that is desired.

11

The proposed method of placing an accelerometer on the wheel as encoder would

be classified as an absolute, rotary encoder. The accelerometer can measure linear

changes, but its use for this application is to measure rotational changes. It is abso-

lute because of the sinusoidal output of the sensor. Each point on the sinusoid will

correspond to a precise position on the wheel.

2.3 Accelerometers

Accelerometers are used to convert motion into electrical signals for determining

the rate at which an object moved over a period of time. They consist of small

membranes sensitive to accelerating forces on the 3 axis of x, y, and z [13]. As the

membrane is moved due to accelerations, the membrane distance to its node differs.

This creates a capacitance that can be measured and then translated to how much

acceleration was acting on the axis.

Accelerometers have been used in robotics as input for tracking robotic motion. For

ground based robots, they are typically placed near the center of the robot base and

studies have shown reliable methods for using accelerometers to get accurate distance

measurements [14]. The downside to accelerometers are that they are noisy because

of their sensitivity and the measurements tend to drift from the true measurement.

The research in this paper will use an Extended Kalman filter on the output of the

accelerometer to overcome the drift and the noise of the measurement.

2.4 Extended Kalman Filter

A Kalman Filter is a belief based prediction and filtering algorithm for continuous

systems [6]. This filter bases the predictions from a model of the system that is being

observed and the prior belief of the state of the system. The noise of the system is

assumed to be Gaussian, also known as a normal distribution. This means it will

have a mean value representing the most likely state of our system with a variance

that represents the noise in the system. The Kalman filter assumes that with a given

12

samples set of date observed from measuring a metric of a system, the output could

be represented by the following equation:

f(x) =
1

σ
√
2π
e−

1
2
(x−u
σ

)2 (2.2)

The above equation states that the system is able to be represented as having a

mean u as the most likely value, and variance represented as the symbol sigma. The

shorthand equation for representing this type of system is:

N(u, σ2) (2.3)

The shape of this system can be seen below in figure 2.2:

(a) Gaussian Curve [15]

Figure 2.2: This figure shows the general shape of a system that has noise that can
be represented as having a normal distribution

Inputs from sensors that monitor the system are used as feedback to keep the

prediction model from over confidently giving incorrect. The incorrect information

in the system model is typically due to unforeseeable disturbances that a sensor can

correct for. The algorithm for the Kalman filter can be written as [16]:

13

Algorithm 1 Kalman Filter algorithm for linear system
1: Prediction Step:

2: xk = a ∗ xk−1

3: pk = a ∗ pk−1 ∗ a + q

4: Update Step:

5: gk =
pk

(pk+r)

6: xk = xk + gk ∗ (zk − xk)

7: pk = (1− gk) ∗ pk

The Kalman Filter can broken down into two steps. These are the predict and

update steps. During the prediction step, the current state is calculated from the

previous state using a linear mathematical model. This is shown in line 2 of algorithm

1. Line 3 shows the prediction update for systematic error that exists from our

prediction. The variable q, represents the noise that is part of the system being

observed. The prediction state is usually calculated at regular time intervals and

before each update step.

The update step occurs once a sensor observing the system has a value available.

The time step can be chosen so that a sensor reading is available so that both a

prediction and update are done on every interval. During the update step, a scalar

called the Kalman gain is calculated and is shown in line 5 of algorithm 1. This

gain is calculated from the systematic error of our prediction variable p_k and the

sensor noise r. The next line is the state update that uses the new sensor value,

current state estimate, and the newly calculated Kalman gain. It can be noted that

for systems with sensor noise much greater than the systematic noise, the closer to

zero the Kalman gain will be. This would mean in the state update step, the state

would remain approximately what was calculated for the prediction. For scenario of

the systematic error much greater than the sensor noise r, the Kalman gain is near one

and the state update step will be approximately the sensor value that was observed.

14

The last line of algorithm 1, updates the systematic noise.

The Kalman Filter is reliable for linear systems. However, most systems cannot be

observed in a linear way and limits the use of the regular Kalman filter. For systems

with non-linear behavior, such as systems with sinusoidal motions, it has been shown

that the Extended Kalman Filter (EKF) is a sufficient technique to estimate the

state [17], [18]. In this version of the Kalman filter, the state variable, x_k can be

represented as a matrix such as with the pose matrix from equation 2.1. The state

transition equation from algorithm 1 is now represented as:

Xk = f(xk−1, uk)

The above equation states that like in the original linear Kalman filter, the next

state is based on the previous and any inputs that can represented with u. The

variable q, is now represented as Q to indicate that it is a matrix. This matrix is

called the Co-variance matrix of the system. This matrix places the uncertainty of

our non-linear system on the diagonal of the matrix. The below matrix shows the

general layout of the co-variance matrix.



σ0,0 0 ... 0

0 σ1,1 ... 0

. . . .

. . . .

. . . .

0 0 ... σm,n


(2.4)

The matrix is always a square matrix, meaning that the variable m and n above

will be equal. The The sensor noise variable r, is also now represented as R since it

can be providing multiple observations about our system, that will have their own

uncertainties that need included. The matrix R will also follow the same outline as

15

the matrix from equation 2.4. This covers the multiple inputs for the EKF algorithm,

but one of the most important parts of to the EKF is how non-linearity is dealt with.

Any non-linear function can be estimated linearly by differentiating over small time

intervals. The smaller the time interval, the better the differentiated approximation

is going to be. The EKF accomplishes this by taking the partial derivative of the

state transition matrix with respect to each of its inputs. Inputs can include motion

control, noise, and time. The partial derivative with respect to the inputs is stored

in a matrix and represented as F. The Jacobian of the state transition matrix is then

used to update the noise from our estimate P_k. With these improvements to the

linear Kalman filter, the prediction step now looks as follows:

xk = f(xk−1, uk) (2.5)

Pk = Fk−1 ∗ Pk ∗ F 2
k−1 +Qk−1 (2.6)

Next, the Jacobian of the observation equation representing the sensor reading is

also taken. All the partial derivative of the observation equation with respect to each

of its inputs are all stored in a matrix H. The Kalman gain in line 5 of algorithm 1

was updated using the state estimation uncertainty variable p_k and the sensor noise

variable r. These are now both matrices and therefore the Kalman gain will also be

represented as a matrix labeled G. The Jacobian of the state observation equation

will also be used to update the Kalman gain. The Kalman gain now looks as follows:

Gk = PkH
T
k (HkPkH

T
k +R) (2.7)

With the newly updated Kalman Gain, the state can be updated using the sensor

observation. The Equation with, Z_k being the sensor inputs, is written as:

16

Xk = Xk +Gk ∗ (Zk −Xk) (2.8)

As before with the uncertainties in the linear Kalman filter, the more trust on

either the model or sensor reading, meaning the uncertainty is smaller, the more the

values of the state variable is going to be towards either the predicted value or sensor

readings respectfully. The last step of the update is the update for the uncertainty

of our EKF. With I as the identity matrix, this is:

Pk = (I −GkHk)Pk (2.9)

17

CHAPTER 3: CONFIGURATION

For this research, a Parallax BOEBot Robotics kit is used as the platform for

testing and is intelligently powered by an Arduino Uno 3. A MMA8451 accelerometer

Adafruit module is placed on one of the wheels of the kit. The wheel is driven by

constant pulse width modulation (PWM) to keep as close to a relatively constant

speed as possible. The connection from the accelerometer module to the Arduino is

achieved by using a 6 wire slip ring. Only 4 need to be used with the I2C connection

between the accelerometer and Arduino. The wheel is driven to have a full rotation

about every 1.565s. The figure below shows the completed setup for the Parallax

robot.

(a) Hardware Setup

Figure 3.1: The Parallax robot that was used for this research. Extra modifications
can be seen for attaching the accelerometer to the wheel and using a slip ring for
transferring data from the sensor to the Arduino Uno.

18

CHAPTER 4: MODELING THE EXPECTED SINUSOIDAL OUTPUT

In order to use the accelerometer for reliable data output that is filtered using an

EKF, a model must be created for estimating an expected output. For a perfectly

placed sensor on the center of the wheel, an oscillating wave between a positive and

negative average nominal value of the gravity vector would be expected. This would

be between -9.80665 and +9.80665. This would mean that the model would look like:

9.80665sin(2πfwt) (4.1)

, where t is the system time and f_w is the wheel frequency. This is the most simple

model and will need to be expanded upon in order to capture all acting accelerations

in the system as well as for any inaccuracies of user placement of the sensor itself.

4.1 Determining the Wheel Period

In order for the model to predict the expected position of the wheel over time, the

wheel period needs to be known. Typically, this can be made obvious by knowing the

expected velocity of the wheel. This was done by creating a look up table for wheel

speeds given different motor driving PWM inputs. For the BOEBot robotics kit, the

motor is driven using PWM inputs that range from 1300us to 1700us. According

to the Parallax guide document [19], 1300us input is the fastest speed for clockwise

rotation and 1700us input is the fastest speed for counter clockwise rotation. The

closer to to the input of 1500us, reduces the speed of the wheel in either direction. In

order to verify wheel speeds, the speed of the wheels at different input was measured

and graphed. The measurements were done by placing reflective tape on the wheel

being inspected as seen in figure 4.1 below.

19

(a) Reflector Tape Position

Figure 4.1: Light sensor is used to determine loop periods by differentiating between
the black wheel color and reflective tape.

A light sensitive sensor is placed near the wheel. As the wheel moves, the sensor

will read consistent values due to the uniformly black wheel color until the reflective

tape intersects the sensing path. Many samples of the timing between each pass of the

reflective tape were taken and averaged over 10us intervals over the range of 1300us

to 1700us. The transfer curve looks as follows:

(a) Transfer Curve for PWM input to wheel speeds in rotations per second

Figure 4.2: Graph maps the PWM input to the wheel speed in rotations per second

The graph from figure 4.2 shows that 0 rotations per second is closer to an input of

20

1520us PWM input. also it can be seen that wheel speeds begin to not respond with

much change once in the last 100us of each end of the curve. The velocity is just the

multiplication of the frequency of the wheel by the circumference of the wheel.

Vwheel = fw ∗ C

The above variable C is the circumference of the wheel. A PWM input of 1650us

was used for the testing to give an approximate output of 0.639 rotations per second.

With

Tw =
1

fw

where f _w is the frequency of the wheel just found in rotations per second, the

wheel period is approximately 1.565s. For other velocity inputs, the period will be

calculated by dividing the velocity by the wheel circumference, and then using the

reciprocal of the result.

4.2 Adding Outside Acceleration Forces

The only issue with equation 4.1 is that it represents a perfect system. Any system

will likely have offset error in the placement of the accelerometer module. Since the

sensor is likely not perfectly centered, this will introduce a centrifugal acceleration

that will need captured by the amplitude of the equation 4.1 and will increase the

accuracy of the model as seen in other experiments [20]. The below image shows an

outline of the sensor on the wheel and the acceleration vectors that would be seen

during turning.

21

(a) Acceleration Vectors acting On Sensor

Figure 4.3: Gravity acceleration is constant from above. Centripetal acceleration is
measured from any point on the edge of the wheel to the sensor in the center.

Figure 4.3 shows the two forces that must be accounted for when modeling our

system. Gravity is taken as constant from above towards the ground. The centripetal

force will be seen at any edge point of the wheel to the center where the sensor is

located. This will be accounted for after looking at the effect of the offset in the

sinusoidal model due to sensor offset from the center of the wheel.

4.3 Calibrating Zero Offset

There will likely be a offset in the oscillating amplitude, meaning it will not be

centered around zero for a non-shifted sinusoid. This can be captured and adjusted

for with some calibration. First the output of the sensor in place must be captured

and graphed without any filtering.

22

(a) Accelerometer output over time

Figure 4.4: Accelerometer output from driving wheel with period 1.565s with mea-
sured amplitudes +10.299857 and -10.433932

From figure 4.4, it can be seen that the sinusoid is oscillation is measured between

+10.299857mpss and -10.433932mpss. Using this information, the offset needed to

center around zero can be found by

offset =
abs(−Amp)− (+Amp)

2
(4.2)

With the given values from figure 4.4, this offset is -0.06708375mpss. This offsets

now accounts for the sinusoid not centered around zero and will become part of

our model equation. The centered Amplitude would be between positive and minus

10.3668945mpss and represented as CA. Using this new amplitude, the centrifugal

acceleration can be computed by

Ac = CA−G = 0.5602445mpss

Given that the wheel diameter of the wheel is 66mm, the circumference is computed

as

C = d ∗ π = 0.207345115m

23

With the circumference and known wheel period, velocity is calculated as

V = C ∗ fw = 0.132489mps

The Sensor offset from center, r, can now be calculated from the following equation

for the centrifugal acceleration.

Ac =
V 2

r
(4.3)

r =
V 2

Ac

= 0.031332m

It is recommended multiple iterations of gathering sinusoidal amplitude data, de-

termining the centripetal acceleration once gravity is removed, and then calculating

the radius r be done. Then with a preferred averaging method, an accurate measure-

ment for r will be acquired. Equation 4.3 shows that the placement of the sensor will

affect how much centrifugal acceleration will need to be accounted for in the ampli-

tude part of the model. The closer to the center of the wheel, {0, 0}, the sensor is, but

not actually quite at zero, the more centrifugal acceleration that will be experienced.

With a method to determine the centripetal acceleration available and the offset from

zero available, equation 4.1 now becomes

(9.80665 + Ac) sin(2πfwt) + offset (4.4)

Now that an estimate for the sensor distance from the center of the wheel is avail-

able, A_c can be recalculated using equation 4.3. This will account for the Velocity

command sent to the wheel.

24

4.4 Determining Where on the Sinusoid to Start

There is still one more part of the model to account for. It cannot be guaranteed

that the sensor will always begin at zero mpss as is expected by sine at system time

zero. Therefore a method for determining a time offset must be accomplished. A

model time can be calculated by

TMi = arcsin((X − offset)/(9.80665 + Ac)) ∗
1

2πfw

The inverse of sine will always return a value that tells which half of the sinsuoid

to start in, as in the positive or negative part of the sinusoid. To overcome this, an

average value for both the x and y axis are taken on start up of the system. Along

with the calculated model start time, the x and y values helps to determine what

quadrant of the sinusoid we are starting in and how to adjust our model time to

match the desired quadrant. To analyze the x axis, it would look as such

Algorithm 2 Algorithm to get start time for model
1: if X > 0 then
2: if Y > 0 then
3: q = 1;
4: else
5: q = 2
6: TMi = 1/(2fw)− TMi

7: else
8: if Y > 0 then
9: q = 4;
10: TMi+ = (1/fw);
11: else
12: q = 3;
13: TMi = fabs(TMi) + 1/(2fw);

This analysis will initialize the model start to appropriately reflect the starting

position of the sinusoid by initializing our first value to the averaged x value. Equation

4.4 now becomes

25

(9.80665 + Ac) sin(2πfw(t+ TMi)) + offset (4.5)

Using the new model, the comparison to the sampled data from figure 4.4 can be

compared to expected outputs of the model from equation 4.5 at each sampled time

period of the raw sensor data by overlaying the two sinusoidal outputs.

(a) Modeled Output Data

Figure 4.5: Sample data (blue) graphed with model data (orange) for comparison

Figure 4.5 shows that the pure mathematical model follows very closely to the

sinusoidal output of the sensor. This means that the sensor can have a predictable

output. This is advantageous when building the Kalman filter in the next section for

the sensor system.

26

CHAPTER 5: BUILDING THE EXTENDED KALMAN FILTER

The Extended Kalman Filter is used to filter a signal with Gaussian noise using a

weighted value from the model and the sensor. The weights on these values determine

how much trust to place on each value when fusing them together for the best final

estimate. They represent the variance in the expected error of the measurement or

prediction. As an example, an even weight would be to place weights of 0.5 and 0.5 for

both the sensor measured value and the predicted value from the model. This would

just give an average of the two for the filtered value. These weight can be moved

up and down to determine how to get the best output empirically or an attempt to

measure the expected error can be used.

5.1 Noise

As stated in the Arduino manual at pp. 260, table 28-1, the Arduino Uno can have

a system clock error of %2 [21]. Therefore the system noise variance was first set as

σn = 0.02

and empirically changed to narrow down desired filtered outputs. When analyzing

figure 4.5, for each sample at time, t, the measured data, was compared to the model

data. The model data is the ideal waveform data and therefore error was calculated

at each point using

Error =ModelPoint−MeasuredPoint

From the list of errors, a standard deviation can be calculated in the error. This was

determined to be

σg = 1.004

27

and was further empirically changed to get a desired output of the EKF. The normal

distribution of both the sensor and the system can be seen in the following figure:

(a) Normal Distribution Curves

Figure 5.1: Sensor Distribution (blue) and System Distribution data (orange) for
comparison

This shows that the error distribution of our system is much tighter than our sensor

and will therefore be more reliable. Being more reliable means having a lower noise

value as determined above. Likewise, changes to the measurement noise are higher

to place more trust on the model and ultimately smooth the filtered output more.

When analyzing figure 4.4, the output from the sensor is a noisy signal that seems

to represent a sinusoidal figure. The data is not a constant decreasing or increasing

output that would allow for easy determination of where on the sinusoidal output the

model really should lie.

5.2 Transition Model

Building the EKF for the accelerometer measurements is largely similar to using

a light sensor to detect the thread’s position as it spins off a spool [22]. The current

equation for our model from equation 4.5 is a time based estimate and does not use

28

any information about the system previous. An EKF should use prior estimations

as part of the determination of the next estimate. This is difficult to do with a time

based system. Therefore the state transition equation should then be represented

similarly as

X =


xt+1 = xt +

dx
dt t
∗ T

dx
dt t+1

= dx
dt t

+ σn

ht+1 = sin(xt)

 (5.1)

The first row of the transition matrix will represent the change in radians in each

transition over time period, "T". The second row will be the change in radians for

each transition. The last row will represent the new predicted estimated position of

the accelerometer measurement. Equation 5.1 now becomes

X =


xt = xt +

dx
dt t
∗ T

dx
dt t

= 2π fw + σn

ht = (9.80665 + Ac) sin(xt) + offset

 (5.2)

It should be noted that the velocity is constant in the transition model. The update

part of the EKF will correct the velocity to the value it currently is running.

5.3 Observation Model

The observation model represents the expected sensor output given the the variance

of the sensor, also known as the noise. The model can be represented as

gt =


xt + σa

dx
dt

+ σv

ht + σg

 (5.3)

Each row of the observation has its own uncertainty associated with it. They

are the uncertainty of the observed angle, velocity, and sinusoidal output. Since all

observations from the measurement will be derived from the output of the sinusoid,

29

the uncertainties above will be

σa = σv = σg

The actual sensor input will be represented by

Yt =


arcsin(M−offset

9.80665+Ac
)

(arcsin(M−offset
9.80665+Ac

− xt−1) ∗ 1
T

M

 (5.4)

Row 1 correlates to the angular position of the sinusoid. The correct quadrant can

be determined by observing the sign of the other axis of the acceleromter. Row 2 is

the change in velocity from the last state of the system and row 3 is the observed

measurement, M, from the accelerometer.

5.4 Jacobians

Now that the transition model is set, the Jacobian Matrices must be found. These

are used to linearize our non-linear system, taking many tangents across small time

steps on our sinusoid. The first Jacobian is calculated taking the partial derivative of

the state transition matrix, equation 5.2, with respect to the state variables x, dxdt,

and h.

∂X

∂x
=


1 T 0

0 1 0

(9.80665 + Ac) cos(xt) 0 0

 (5.5)

Next, the partial derivative of the state transition equation with respect to the

dynamic noises is taken as

30

∂X

∂σn
=


0 0 0

0 1 0

0 0 0

 (5.6)

The partial derivative of the observation equation with respect to the state transi-

tion variables x_t, dx/dt, h is

∂g

∂x
=


1 0 0

0 1 0

0 0 1

 (5.7)

Then lastly the partial derivative of the observation equation with respect to sensor

noises are in the following Jacobian matrix

∂g

∂σ
=


1 0 0

0 1 0

0 0 1

 (5.8)

5.5 Co-Variance

The co-variance of they system noise will be represented by

Q =


0 0 0

0 σn 0

0 0 0

 (5.9)

The co-variance of the sensor noise will be represented by

R =


σa 0 0

0 σv 0

0 0 σg

 (5.10)

31

5.6 Determining Distance Traveled

The distance traveled can be determined by measuring the change in wheel position

over the circumference of the wheel for each time interval, T, and summing up all the

values as the experiment is running. The method for determining the distance is to

find the position in radians of the wheel based on the filtered output. This is similar

to the first row of equation 5.4 and outlined below

θrad = arcsin(
X[2]− offset
9.80665 + Ac

) (5.11)

As with finding the starting model time, sine will only return the positive or neg-

ative half of the sinusoid. Therefore the output must be adjusted similarly. The

starting quadrant was already found using the code in algorithm 1. Now with each

update of the model, the quadrant needs tracked and will therefore allow for the dis-

tance to be tracked as well. The new determined quadrant of each iteration will be

compared to the last quadrant to help determine distance traveled. Also, before every

prediction/update step of the EKF, the current state needs saved into a variable to

help determine when to change quadrants. The distance over the travel interval, T,

is calculated as:

δdm = θrad ∗
C

2π
(5.12)

Determining the quadrant can be based on checking the other axis of the accelerom-

eter or by using the following algorithm for tracking code for quadrants and distance,

based on equation above.

32

Algorithm 3 Algorithm to get change in angle in radians
1: lastQ = q;

2: if q == 1 then

3: if X[2] < lastPrediction then

4: q = 2;

5: else if q == 2 then

6: if X[2] > 0 then

7: q = 3;

8: else if q == 3 then

9: if X[2] > lastPrediction then

10: q = 4;

11: else

12: if X[2] > 0 then

13: q = 1;

14: // update calculated angle based on new quadrant

15: if quadrant == 1 then

16: θrad = fabs(θrad);

17: else if quadrant == 2 then

18: θrad = PI − θrad;

19: else if quadrant == 3 then

20: θrad = fabs(θrad) + PI;

21: else

22: θrad+ = 2 ∗ PI;

23: // Sum change in distance

24: if lastQ == 4 AND q == 1 then

25: dM+ = θrad ∗ C/(2 ∗ PI);

26: else

27: dm+ = (θrad − θPrevrad)(C/(2 ∗ PI);

33

5.7 Putting it all together

As stated before, the EKF is broken up into two steps. This would be the prediction

and update steps.

5.7.1 Prediction

For the prediction part of the EKF, the state transition matrix will be updated

every sample interval of time, T, using equation 5.2. Then the co-variance matrix, S,

of the system must be updated. For the experiment, the co-variance is a 3x3 matrix

that is initialized with ones on the diagonal to start. The prediction step of the

co-variance will be as such

S = (
∂X

∂x
)S(

∂X

∂x
)T + (

∂X

∂σn
)Q(

∂X

∂σn
)T (5.13)

Since the partial derivative of the transition equation 5.2 with respect to the system

noise is all zero except for the 1 on the diagonal, the transpose of this matrix will be

the same matrix.
∂X

∂σn

T

=
∂X

∂σn

Also since Q is all zero except for the systemNoise value on the diagonal, we have

Q ∗ ∂X
∂σn

= Q

Therefore equation 5.13 becomes

S = (
∂X

∂x
)S(

∂X

∂x
)T +Q (5.14)

5.7.2 Update

The first step to determine the update to the estimated output is to determine the

Kalman gain. The Kalman gain uses the system noise and sensor noise to weight the

34

tendency of the output more towards the sensor value or the predicted value from the

model dependent on how much noise for the sensor measurement and noise for the

model prediction that were set previously. The Kalman gain is found by

K = S(
∂g

∂x
)T ∗ [(∂g

∂x
)S(

∂g

∂x
)T + (

∂g

∂σ
)R(

∂g

∂σ
)T] (5.15)

The Jacobian of the observation equation dg/dx is the identity matrix. The trans-

pose of the identity matrix is the identity. Therefore

(
∂g

∂x
)S(

∂g

∂x
)T = S

Also since dg/dsigma is the identity matrix, the transpose is also the identity

matrix. This means that

(
∂g

∂σ
)R(

∂g

∂σ
)T = R

Therefore equation 5.15 can be reduced to

K = S ∗ (S +R) (5.16)

Next, the state prediction is updated using the newly found Kalman gain. This is

done by

X = X +K[Y − g] (5.17)

Equation 5.16 shows that the smaller the variance in the system noise compared to

the variance in the sensor noise, the smaller K will be. This shows that more trust is

placed into the system model prediction rather than the sensor measurement. K will

be larger if more trust is placed into the sensor measurement. It can then be shown

that in equation 5.17, the larger K is, the more the new state estimate is going to lean

towards the measured sensor value. For smaller value of K, the new state estimate

35

will lean more towards the model prediction. The last piece of the EKF is to update

the system co-variance. This is done with

S = [I −K ∗ (∂g
∂x

)]S (5.18)

36

CHAPTER 6: RESULTS

Using the EKF model decribed in the previous chapter, the following results were

obtained:

(a) EKF Results over 5.75s

(b) EKF Results over first 1.69s

(c) EKF Results over last 1.74s

Figure 6.1: Comparison of measured output (blue) and filtered output (orange)

Figure 6.1 shows a full filtered output over 5.75s. The following two sub-graphs

give a closer look of the filter at the start of the experiment as well as at the end.

37

It can be seen that the filtered output is a continuous wave with the noise vastly

reduced. The filter deviates slightly at the top of the sinusoid, but the EKF corrects

the estimate as designed. This deviation means that the error will oscillate. The

difference of the filtered output to the sensor measurement can be affected by any

number of disturbances in the system. These disturbances can cause the assumed

constant velocity of the wheel to deviate. This could be overcome by placing more

trust into the sensor measurement, but could add more of the inherent sensor noise

back into the estimate. The new value does produce a wave with a smooth, continuous

oscillation that is lacking the original noise. This allows for a good estimate of the

wheel position in relation to the starting position. A noisy wave can cause false

assumptions at discrete measurements about the position on the sine wave giving the

wrong position of the wheel in turn.

The experimental results of the amount of travel for the test wheel was 0.759m. The

expected amount of travel over 5.75s given the velocity from chapter 3 as 0.13133151mps,

was 0.755m. The error is ultimately

%error = 100 ∗ abs[(exp−meas)/exp] = %0.53 (6.1)

The expected distance is compared to the filtered output and graphed.

Figure 6.2: Error of filtered Output compared to Expected value

38

The error starts out high for the expected vs. the filtered output. This potentially

means that the original starting estimate was a off, but the more the filter runs, the

smaller the error becomes. The final second of error oscillates between %.007269 and

%2.20. The small peaks are due to the slight overshoot of the filter from the measured

sinusoid. Figure 6.2 also shows that the error appears to decrease the longer the filter

is run. This shows that error is not inclined to rise. So for any error, E, at a time, t,

error at time, 2t, will not correlate to an error of 2*E. The expected error will continue

to decrease while oscillating between a set range. The recovery in error shows that

the measurement over full revolutions are highly accurate and little information is

lost.

Further testing was done to test the robustness of the EKF for further determining

the viability of using the sensing method in practice. The first test done was to drive

the robot straight on a flat surface to verify the distance measured by the previously

described algorithm vs. a hand measured distance. The results are shown in the

following figure as well as an image of the environment that the robot was operated

in.

(a) EKF Results on hard surface

Figure 6.3: Very little disturbances other than some floor friction

39

(a) Floor type = vinyl

Figure 6.4: Hard floor vinyl

The results of this experiment output a measured distance of 1.485m after running

for nearly 12 seconds. With a constant velocity of 0.132m/s, the expected distance

traveled by the left wheel would have been 1.584m. However, the measured distance

came out to 1.4986m. The distance from the algorithm ended up being within 0.91% of

the hand measured value. This shows that there is likely a slight mismatch in previous

assumption or measurements. This could include mismatches in actual velocity given

it was measured without any load, but using the EKF to fuse expected values and

sensor values still produce accurate results.

The next experiment was done on some tile floor. The tile floor was mostly a

smooth surface, but did have some disturbance events that would be introduced at

the grout line. The results and picture environment can be seen in the next two

figures.

40

(a) EKF Results on tile surface

Figure 6.5: Disturbances introduced by grout lines

(a) Floor type = tile

Figure 6.6: Hard floor tile

When looking at the results with some disturbances, the raw data (blue) shows

where the sensor data is completely off. An example can be seen around 10.59s where

the data should be approaching zero on the rising sinusoid, but spikes can be seen on

the rise. The EKF (orange) appears to continue rising smoothly to help keep giving

accurate results. The measured distance from the algorithm was 1.74m and the hand

measured value was 1.759m. This is an error of 0.99%. The total time of the run was

41

14.11s. This would mean an expected travel distance of 1.870m. This again shows

the importance of the EKF and the importance for sensor feedback.

The last experiment was done on a system intended to introduce disturbances at

a much higher rate than the tile floor. The experiment was done on a brick pattern

entryway with multiple grout lines at about every 0.0889m vs. the tile introducing

grout lines every 0.4445m. The results, measured error, and environment images are

seen below.

(a) EKF Results on brick patio surface

Figure 6.7: Disturbances introduced by grout lines

(a) EKF Error on brick patio surface

Figure 6.8: Error over time

42

(a) Floor type = brick

Figure 6.9: Brick Patio

The initial estimate for the EKF appeared to be very wrong and was even moving

in the wrong quadrant. This is seen in the beginning as the filters starts out well

above the initial sensor reading and tries to move towards zero as if in the second

quadrant of the sinusoid where it should have started in the first quadrant and move

towards the peak of the sinusoid. It is not until a very under confident estimate is

brought back in line of the sensor measurements around 0.54s that the filter begins

to accurately measure the wheel position. Spikes in sensor measurements are seen

periodically in the raw measurements due to the grout in the brick surface and is most

notable around 5.31s. Even in this environment, the filter still produces usable results.

The measured distance from the algorithm after 12.9s was 1.57413m where the hand

measured results were 1.5748m. The is an error of 0.04%. The expected distance

based on perfect assumptions was 1.71m. These results help to verify the usability

of the accelerometer as a valid wheel odometer when used with an appropriate EKF

and modeled well.

43

CHAPTER 7: CONCLUSION

The desire of this study was to use a standalone accelerometer and provide high

accuracy position information about the wheel while exploiting the continuous sensor

input of the accelerometer. The work done also was attempting to satisfy finding

a method for determining an accurate description of the sensor’s offset from the

wheel center in order to accurately predict centripetal acceleration. This information

was placed in a system model that was based on the expected sinusoidal reading

of the gravity vector on one axis with the centripetal acceleration added as well.

This was successfully implemented and the result of the model using the calibrated

found radius could be seen in figure 4.5. It could be seen from figure 4.4 that the

original accelerometer data for tracking the wheel position based on gravity, was too

noisy for comprehensive analysis if accurate position was desired. The sinusoidal

model was placed into an EKF and used to estimate wheel position. The model is

not expected to be accurate in systems with disturbances. The Extended Kalman

Filter is used so that if the estimate begins to drift from the actual sensor data

due to these disturbances, the estimate will then be brought back to the proper

tracking position. This is seen in figure 6.1. As the motion model drifts away from

the sensor data, the sensor data forces the model back into a proper range of the

sensor data. With the new accuracy provided by the estimate, this allows for the

accelerometer to be a suitable choice for tracking wheel odometry. The method

of using the accelerometer along with a well designed EKF was tested in multiple

environments and was proven successful while the final result never went above 1% in

error. This proposed method is shown to provide more continuous measurements at

lower frequencies in contrast to the the typical wheel encoding methods. Using this

continuous and accurate wheel position information and knowing the circumference of

the wheel, distance information traveled by the wheel can used to determine a robot’s

pose. Also, by using the change in the position of the wheel, the velocity of the wheel

44

can be fed back into the robot system. Using this wheel velocity information and

the kinematic model of the robot, a pose can be determined containing the robot

coordinates in the world as well as heading.

7.1 Future Work

It is noted that improvements can be made by modeling the motors driving the

wheels to have a more accurate assumption about the actual wheel speed and include

any rise times for the start up of the motor, potentially giving a lower error on start

up. The modeled motor can then be run through a controller to help account for

disturbances in the system and provide more consistent expected wheel speeds. This

will lead to more accurate assumption about the period of the wheel and provide

better estimates of the wheel position. It should be noted that this method of sensing

is restricted to ground based robotics on a level surface. Therefore, to remove this

restriction, one can add an accelerometer to the center of the robot in order to be able

to account for non-level surface environments. The connection of the accelerometer

to the micro-controller using the slip ring potentially added torque on the motor on

start up. This would cause the initial belief of the sensor value to be off as well until

reaching a steady state. Furthermore, the wires are not well centered on the wheel.

This would cause an elliptical circle pattern that the wires connecting to the sensor

would follow. This may cause loosening and tightening of the wires placing temporary

restriction on the wheel movement. This can be fixed with better alignment of the

slip ring towards the wheel center. Another solution can be to use blue tooth and

battery hardware instead of directly powering the sensor. This would add cost, but

should still be cheaper than the magnetic encoder mentioned in the paper. Further

work to validate this would be to implement this solution on different robot types

and use the kinematic models of those robots to verify accurate pose information is

able to be calculated. Long term testing should be done to determine the longevity

of the accelerometer and slip ring combination as well.

45

REFERENCES

[1] Freescale Semiconductor. Xtrinsic MMA8451Q 3-Axis, 14-bit/8-bit Digital Ac-
celerometer (2013). Accessed Oct. 20, 2020. [Online]. Available: https://cdn-
shop.adafruit.com/datasheets/MMA8451Q-1.pdf.

[2] Avago Technologies. AEAT-6010/6012 Magnetic Encoder, 10 or 12 bit An-
gular Detection Device (2011). Accessed Oct. 20, 2020. [Online]. Available:
https://docs.broadcom.com/doc/AV02-0188EN.

[3] E. Coulter, P. Dall, L. Rochester, J. Hasler, and M. Granat, “Development and
validation of a physical activity monitor for use on a wheelchair,” Spinal cord,
vol. 49, pp. 445–50, 03 2011.

[4] J.-D. Huang and T.-W. Wang, “Accelerometer based wireless wheel rotating sen-
sor for navigation usage,” in 2011 Fifth International Conference on Sensing
Technology, pp. 565–568, 2011.

[5] B. Gersdorf and U. Frese, “A kalman filter for odometry using a wheel mounted
inertial sensor,” ICINCO 2013 - Proceedings of the 10th International Conference
on Informatics in Control, Automation and Robotics, vol. 1, pp. 388–395, 01
2013.

[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.:
MIT Press, 2005.

[7] A. Jha and M. Kumar, “Two wheels differential type odometry for mobile robots,”
in Proceedings of 3rd International Conference on Reliability, Infocom Technolo-
gies and Optimization, pp. 1–5, 2014.

[8] M. A. Mahmud, M. S. Aman, H. Jiang, A. Abdelgawad, and K. Yelamarthi,
“Kalman filter based indoor mobile robot navigation,” in 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT),
pp. 1949–1953, 2016.

[9] Anaheim Automation, Anaheim, CA, USA. "Encoders: Optical and Mag-
netic, Incremental and Rotary" (2020). Accessed Oct. 20, 2020 [Online]. Avail-
able: https://www.anaheimautomation.com/manuals/forms/encoder-guide.php
unpublished.

[10] S. Paul G, A. Jason L, J. Gray, and R. Tim M, “Thermostat with mechanical
user interface,” Jan. 9 2007. Patent Number US 7,159,789 B2.

[11] U. Hideki, “Optical absolute rotary encoder,” May 11 2010. Patent Number US
7,714,272 B2.

[12] K. Miyashita, T. Takahashi, and M. Yamanaka, “Features of a magnetic rotary
encoder,” IEEE Transactions on Magnetics, vol. 23, no. 5, pp. 2182–2184, 1987.

46

[13] W. Norman F, “Accelerometer system,” July 22 1986. Patent Number US
4,601,206.

[14] C. Garcia-Saura, “Self-calibration of a differential wheeled robot using only a
gyroscope and a distance sensor,” 2015.

[15] D. Zelmer, “The normal distribution.” (2010). Accessed Oct. 20, 2020. [Online].
Available: "http://sciences.usca.edu/biology/zelmer/305/norm/" unpublished.

[16] L. Simon D, “The extended kalman filter: An interactive tutorial
for non-experts.” (2020). Accessed Oct. 20, 2020. [Online]. Available:
https://simondlevy.academic.wlu.edu/kalman-tutorial/ unpublished.

[17] B. Kaewkham-ai and K. Uthaichana, “Comparative study on friction compen-
sation using coulomb and dahl models with extended and unscented kalman
filters,” in 2012 7th IEEE Conference on Industrial Electronics and Applications
(ICIEA), pp. 191–195, 2012.

[18] M. Sun and Z. Sahinoglu, “Extended kalman filter based grid synchronization in
the presence of voltage unbalance for smart grid,” in ISGT 2011, pp. 1–4, 2011.

[19] L. Andy. Parallax Inc. Robotics with the BOE Sheild-Bot for
Arduino (2020). Accessed Oct. 20, 2020. [Online]. Available:
https://learn.parallax.com/tutorials/robot/boe-bot/robotics-boe-bot.

[20] L. Armesto, S. Chroust, M. Vincze, and J. Tornero, “Multi-rate fusion with
vision and inertial sensors,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 1, pp. 193–199 Vol.1, 2004.

[21] Atmel Corporation. ATmega328P, 8-bit AVR Microcontroller with 32K Bytes In-
System Programmable Flash Datasheet (2015). Accessed Oct. 20, 2020. [Online].
Available: http : //ww1.microchip.com/downloads/en/DeviceDoc/Atmel −
7810− Automotive−Microcontrollers− ATmega328PDatasheet.pdf .

[22] A. Hoover (2020) Lecture Notes: EKF sinusoid example [Online]. Available:
http://cecas.clemson.edu/ ahoover/ece854/lecture-notes/lecture-ekf-sine.pdf.

	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Problem Statement
	Motivation
	Cost Analysis
	Sensor Resolution
	Sensor Mounting

	Previous Work
	Contribution
	Topic Organization

	BACKGROUND
	Pose and Coordinate Systems
	Wheel Encoders
	Accelerometers
	Extended Kalman Filter

	CONFIGURATION
	MODELING THE EXPECTED SINUSOIDAL OUTPUT
	Determining the Wheel Period
	Adding Outside Acceleration Forces
	Calibrating Zero Offset
	Determining Where on the Sinusoid to Start

	BUILDING THE EXTENDED KALMAN FILTER
	Noise
	Transition Model
	Observation Model
	Jacobians
	Co-Variance
	Determining Distance Traveled
	Putting it all together
	Prediction
	Update

	RESULTS
	CONCLUSION
	Future Work

	REFERENCES

