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ABSTRACT 

 

 

MARK ANDREWS RUBEO. Time domain simulation with applications in compliant 

workpiece milling.  (Under the direction of DR. TONY L. SCHMITZ) 

 

 

High performance application fields, such as the defense, power, and aerospace 

industries, benefit from the enhanced product quality and reduced cost associated with 

machining thin-walled, metallic structures over traditional fabrication and assembly 

methods (e.g., sheet metal buildups).  The mechanical properties of difficult-to-machine 

materials, such as titanium and nickel alloys, make them ideal candidates for compliant, 

thin-walled structures.  Near net shape techniques have been used to manufacture 

compliant structures composed of hard-to-machine materials, but these techniques are 

often unable to achieve the required dimensional tolerances and surface finishes.  Due to 

the inherent compliance of the preforms, stable machining is difficult to achieve.  

Prediction of stable machining parameters is therefore critical for the finish machining of 

such compliant workpieces. 

In this research, a time domain simulation is presented for predicting stable and 

unstable milling conditions with application to finish milling of compliant workpieces.  

Traditional lobe diagrams provide global stability predictions by dividing the domain of 

spindle speed and chip width into stable and unstable regions.  Time domain simulation 

provides local information (forces, displacements, etc.) for individual spindle speed-chip 

width combinations.  Stability metrics, based on the local information, are developed to 

extend the utility of the time domain simulation to provide the global stability predictions 

of traditional lobe diagrams.  The time domain simulation global stability predictions and 

“local” information are validated experimentally.  
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CHAPTER 1: INTRODUCTION 

 

 

In machining, a rotating cutting tool with defined edges (or teeth) is positioned 

relative to a workpiece for the purpose of material removal and, therefore, it constitutes a 

subtractive manufacturing process.  One of the limiting factors in machining productivity, 

which can be described in terms of material removal rate (MMR), is the occurrence of self-

excited vibrations between the cutting tool and workpiece.  These self-excited vibrations, 

which yield unstable machining processes, are commonly referred to as chatter.  Chatter in 

machining has been extensively researched over the past 75 years due to its complex nature, 

which makes its study nontrivial, and its detrimental effects on part quality, which include: 

 poor surface quality 

 unacceptable dimensional deviations 

 excessive noise 

 increased tool wear 

 potential machine tool damage 

 increased production costs. 

 

1.1 Project Motivation and Scope 

 

 

High performance application fields, such as the defense, power, and aerospace 

industries, benefit from the enhanced product quality and reduced cost associated with 

machining thin-walled, metallic structures over traditional fabrication and assembly 

methods (e.g., sheet metal buildups).  A methodology for machining compliant aluminum 
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workpieces described in [1-3] has been widely adopted in the aerospace industry.  The 

manufacturing strategy for these components consists of selectively removing material, via 

high-speed machining, from a solid billet to yield a monolithic component [4]. 

The mechanical properties of difficult-to-machine materials, such as titanium and 

nickel alloys, make them ideal candidates for compliant, thin-walled structures.  However, 

the same machining methodology that has been applied to aluminum is often not 

appropriate for these materials due to the high material costs and removal rate limitations 

imposed by tool wear [5].  Near net shape techniques have been used to manufacture 

compliant structures composed of hard-to-machine materials, but these techniques are 

often unable to achieve the required dimensional tolerances and surface finishes.  Due to 

the inherent compliance of the preforms, stable machining is difficult to achieve.  

Prediction of stable machining parameters is critical for the finish machining of such 

compliant workpieces.  Additional complexity is introduced by the nonlinear behavior 

which can occur during low radial immersion milling when contact between the milling 

cutter’s teeth and the workpiece is highly interrupted [6-9]. 

The purpose of this project is to evaluate the stability of milling operations where 

the workpiece is considerably more compliant than the machine-tool system.  The 

evaluation is performed by implementing peak-to-peak (PTP) force diagrams as described 

in [10] and new amplitude ratio (AR) diagrams.  These diagrams result from multiple time 

domain simulations (TDS) completed over a range of spindle speeds and axial depths of 

cut.  The outcome of an individual time domain simulation contains information specific 

to the spindle speed-axial depth of cut combination (i.e., cutting force, tool/workpiece 

deflection), while the PTP force and AR diagrams contain the global information provided 
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by a stability lobe diagram.  By proper choice of spindle speed and axial depth of cut 

according to the PTP force and AR diagrams, stable machining parameters may be selected. 

In keeping with the experimental nature of manufacturing research, the predictions 

obtained via the time domain simulation were validated through the comparison of 

simulated and measured process output signals such as cutting forces, deflections, 

velocities, and accelerations.  To avoid the complicating effects of tool wear, initial 

validation testing was performed using 6061 aluminum as the workpiece material.  

Subsequent validation testing shifted to the material of primary interest: Ti6Al4V.  For this 

material, which is categorized as difficult-to-machine, the high spindle speed ranges are 

typically inaccessible due to prohibitive tool wear.  Because of this effect, the stabilizing 

phenomenon which occurs at low spindle speeds, referred to as process damping, is utilized 

to achieve increased material removal rates (MRR).  The goal of the project is to validate 

the time domain simulation and determine efficient machining strategies for finish milling 

near net shape preforms (in a compliant state) composed of Ti6Al4V.



CHAPTER 2: LITERATURE REVIEW 

 

 

2.1 Machining Stability 

 

 

The study of machining vibrations can be traced back to the early 1900s.  In work 

published by Taylor [11] the challenges presented by chatter are noted as the “most obscure 

and delicate of all problems facing the machinist.”  However, it wasn’t until the 1950s and 

1960s that the primary mechanism of chatter was revealed by Tobias, Tlusty, and Merritt 

[12-14].  Their innovative research, which laid the groundwork for all future research in 

machining dynamics, showed that the stability of machining operations depends on the 

relative stiffness and damping of the machine-toolholder-cutting tool system and the 

workpiece.  They realized that the phase between undulations left on the workpiece surface 

after each pass of the cutting tool dictated the stability. 

Because the machine-toolholder-cutting tool system and workpiece are not 

infinitely rigid, forces that occur during machining result in dynamic deflections which are 

imprinted on the workpiece surface as a wavy profile.  The surface waviness generated by 

the previous pass of the cutting tool, 𝑦(𝑡 − 𝜏), is removed by the current pass of the cutting 

tool, 𝑦(𝑡), at the commanded chip thickness, ℎ𝑚, where 𝜏 is a time delay term which 

captures this “regeneration of waviness”; see Figure 2.1.  In turning, the surface waviness 

is removed by subsequent rotations of the workpiece and, therefore, the time delay is 

related to the rotational speed of the workpiece.  In milling, the surface waviness is 

removed by the subsequent cutting tooth, so the time delay is related to the tool’s rotational 
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speed and number of cutting teeth.  

Tobias, Tlusty, and Merritt [12-14] noted that the phase relationship between the 

wavy surfaces left behind by successive passes of a cutting tool dictated the stability of the 

machining operation.  In a stable machining operation, the instantaneous, uncut chip 

thickness variation is negligible resulting in cutting forces with no appreciable variations 

and dynamic deflections that exhibit diminishing periodic fluctuations.  This case, shown 

in Figure 2.1, occurs when the successive passes of the cutting tool are in-phase.  Dynamic 

deflections still occur for this condition, but the favorable in-phase condition results in 

(nearly) constant chip thickness.  Since the cutting tool and/or workpiece vibrate at their 

natural frequency, which is characteristic of self-excited vibration, it is apparent that the 

forcing frequency should be matched to the system’s natural frequency. 

In an unstable machining operation, the instantaneous, uncut chip thickness 

variation is large resulting in correspondingly large variations in cutting forces and, 

subsequently, dynamic deflections.  These large fluctuations in chip thickness, cutting 

forces, and dynamic deflections result in a feedback system that exacerbates the unstable 

condition.  This mechanical vibration regime is referred to as self-excited vibration.  This 

case, shown in Figure 2.2, occurs when successive passes of the cutting tool are out-of-

phase. 
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Figure 2.1:  Constant chip thickness when the relative vibrations between the cutting tool 
and workpiece between two successive passes of the cutting tool are in-phase. 

 

 

 

Figure 2.2:  Variation in chip thickness when the relative vibrations between the cutting 

tool and workpiece between two successive passes of the cutting tool are out-of-phase. 
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Research by Tobias, Tlusty, and Merritt [12-14] revealed regeneration of surface 

waviness (or the regenerative effect) as a primary chatter mechanism.  This discovery led 

to the development of an analytical model for predicting the occurrence of chatter based 

on the stability lobe diagram (SLD).  The stability lobe diagram distinguishes regions of 

stable and unstable cutting conditions with respect to chip width (feedback system gain), 

𝑏𝑙𝑖𝑚, and spindle speed (forcing frequency), Ω.  Generation of these diagrams requires pre-

process knowledge of the system dynamics (mass, stiffness, and damping) as well as a 

number of process parameters including radial immersion, cutting force coefficients, and 

tool geometry.  A representative example of a SLD with designated stable and unstable 

regions is given in Figure 2.3. 
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Figure 2.3:  Representative stability lobe diagram detailing stable and unstable chip 

width-spindle speed combinations. 

 

 

As the stability lobe diagram illustrates, stable machining conditions at increased 

allowable chip widths may be obtained by selecting from the high spindle speed range 

where the stable zones are wider.  These stable regions are shown to diminish at the low 

spindle speed range where the stability lobes are closely spaced.  However, in early 

research efforts [15-18] it was noticed that at low cutting speeds stable machining 

conditions could be obtained at significantly higher chip widths than the stability lobe 

diagram predicted.  This low cutting speed phenomenon, which was termed “process 

damping”, is of particular interest for difficult-to-machine materials due to the prohibitive 
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tool wear which occurs at high cutting speeds.  The process damping effect is described as 

an energy dissipation mechanism which is theorized to occur due to interference between 

the cutting tool clearance face and machined surface during relative vibrations of the tool 

and workpiece.  For a system with fixed dynamics, process damping increases as cutting 

speed (spindle speed) decreases because undulations left on the machined surface are more 

closely spaced resulting in larger slopes.  This, in turn, leads to larger interference and 

increased energy dissipation.  An iterative, analytical machining stability model which 

includes process damping has been detailed in [19] allowing for the generation of stability 

lobe diagrams that capture the increased allowed chip width at low cutting speeds.  As an 

illustrative example, a stability lobe diagram which includes the analytical process 

damping model is given in Figure 2.4. 
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Figure 2.4:  Representative stability lobe diagram including analytical process damping 
model. 

 

 

For interrupted cutting processes, such as milling and interrupted turning, the 

stability analysis is complicated by the periodic nature of the cutting force and the time 

dependence of its direction.  Strictly speaking, the stability boundary cannot be expressed 

in closed form.  However, a number of quasi-analytical stability analyses have been 

proposed in the literature.  Tlusty proposed a solution which assumes an average tooth 

angle, and therefore, an average force direction [20-22].  Another approach by Altintas and 

Budak uses a Fourier series expansion of the periodic cutting forces [23].  Typically, only 

the first term of the Fourier series is used to represent the cutting force, and for this reason, 
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it is commonly referred to in the literature as the zero order approximation (ZOA).  It has 

been demonstrated that inclusion of additional terms in the Fourier series expansion 

enhances the accuracy of the predicted stability boundary [24].  In [25] Insperger et al. 

propose two solution methods: (1) a combination of an exact solution of the tool’s free 

vibration response when the cutting edge is not engaged in the cut and an approximate 

solution for the vibration of the tool while engaged in the cut using time finite element 

analysis (TFEA) and (2) a method referred to as semi-discretization which transforms the 

time delayed differential milling equations into a series of autonomous ordinary differential 

equations (ODEs) for which the solutions are known. 

 

2.2  Compliant Workpiece Machining 

 

 

Early work to develop tool path strategies for machining parts with thin, flexible 

geometric features relied primarily on the inherent stiffness of bulk workpiece material.  

Upwards of 80% of this bulk material may be removed to achieve the final workpiece 

geometry.  Through the use of relieved shank tooling and the concept of “machine where 

the part is stiffest”, efficient methods for manufacturing thin, aluminum parts via high 

speed machining were developed by Smith et al. [1-3]. 

The mechanical properties of difficult-to-machine materials, such as titanium and 

nickel alloys, make them ideal candidates for compliant, thin-walled structures.  However, 

the same machining methodology that has been applied to aluminum is often not 

appropriate for these materials due to the high material costs and cutting speed (spindle 

speed) limitations imposed by tool wear [5].  Near net shape techniques have been used to 

manufacture compliant structures composed of hard-to-machine materials, but these 
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techniques are often unable to achieve the required dimensional tolerances.  Due to the 

inherent compliance of the preforms, stable machining is difficult to achieve.  Chatter 

avoidance, through prediction of stable machining parameters, and chatter reduction, 

through mechanical manipulation of the structure’s dynamics, is critical for the finish 

machining of such compliant workpieces. 

Achieving stable machining of compliant workpieces is complicated by four 

factors: (1) low structural damping (i.e., in some cases ≪ 1%), (2) nonlinear behavior at 

low radial immersion, (3) continuous variation of workpiece dynamic response as material 

is removed, and (4) spatially dependent workpiece dynamics. 

In [26] Smith et al. demonstrated a strategy where sacrificial stiffening elements 

were added to a structural preform to increase the minimum stiffness such that stable finish 

machining was achievable while minimizing the volume of material to be removed.  

Aoyama et al. [27] presents a fixturing method, which utilizes low melting temperature 

alloy and support pins, to suppress workpiece deformation during machining.  The method 

of dynamic absorption is demonstrated in [28] by applying a viscoelastic material 

(neoprene) and tuned masses to a thin-walled structure to dampen the vibration response 

across a wide bandwidth of frequencies. 

Others have used techniques that may be categorized as chatter suppression (i.e., 

active modulation of critical stability parameters in situ).  In [29] Ismail et al. used a 

combination of pre-process feed rate scheduling and in situ spindle speed variation to 

suppress chatter during five-axis machining of turbine blades.  Shamoto et al. [30] 

implemented opposing milling spindles to machine thin plates on both sides 

simultaneously at different spindle speeds.  Using a finite element approach, the dynamic 
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interaction of the spindle-tool and workpiece were analyzed in [31], and it was determined 

that it is necessary to regulate spindle speed to achieve optimal chatter free machining 

conditions when milling thin-walled structures. 

Many of the chatter avoidance techniques focus on predicting the continuous 

change of the thin workpiece dynamics as material is removed.  The predicted dynamics 

are then used in conjunction with typical stability analyses to generate stability lobe 

diagrams that are material removal dependent.  In studies such as those reported in [32-

34], the three-dimensional stability lobe diagram is proposed where the third dimension is 

either the steps of the machining process or the tool position.  The flexible workpiece 

dynamics are predicted using finite element analysis (FEA) or the structural modification 

technique [35, 36] that uses the frequency response functions (FRF) of the original system 

and the dynamic structural matrix of the modifying system to predict the FRFs of the 

modified system. 

 

2.3 Low Radial Immersion Milling 

 

 

Near net shape preforms must undergo finish milling operations to achieve the 

required dimensional accuracy and surface finish.  Because finish milling operations 

inherently present low radial immersion conditions, it is necessary to discuss the stability 

of such operations for full coverage on the topic of milling stability.  The traditional 

stability theory [23] presented in 2.1, which divides the domain of spindle speed and chip 

width into stable and unstable regions, provides accurate predictions of locally optimal 

spindle speeds for high radial immersion milling cuts.  However, the assumptions of the 

traditional stability analysis become invalid at low radial immersion [37].  Davies et al. 
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asserted that at low radial immersion the highly interrupted tool-workpiece engagement 

causes periodic driving terms (i.e. impact dynamics) and that the tool-workpiece 

engagement time is strongly influenced by tool and/or workpiece deflections. 

Using once-per-revolution sampling (i.e. Poincarè sectioning) techniques, Davies 

et al. observed two different types of chatter behavior at low radial immersion [37].  The 

first type was the traditional quasi-periodic chatter behavior which is associated with 

secondary Hopf bifurcations occurring in systems governed by time-delayed differential 

equations.  This expected result manifested as an elliptical arrangement of once-per-

revolution sampled points in the tool’s x-y deflection (i.e., Poincarè section) which was 

measured perpendicular to the tool’s axis of rotation using a spindle-mounted capacitance 

probe array; see Figure 2.5(a).  The second type of chatter behavior (flip bifurcation) was 

observed as a cluster of three distinct points in the Poincarè section indicating that the tool 

motion repeats every three revolutions; see Figure 2.5(b). 
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Figure 2.5:  Poincarè sectioning (i.e., once-per-revolution sampling) of tool motion 

manifesting as both (a) secondary Hopf instability and (b) period-3 instability [38]. 

 

 

In [7] an approximate time domain solution is presented wherein the stability of 

low radial immersion milling is calculated using a “two-stage map.” During the first stage 

the non-cutting tool motions are governed by the analytical solution for damped, free 

vibration.  In the second stage the cutting tool motions are approximated by modifying the 

tool momentum using an impulsive force.  Later, in [8], Davies et al. present the first 

analytical stability boundary for low radial immersion (i.e., highly interrupted) milling by 

modeling the system as a “kicked harmonic oscillator” with a time delay.  The practical 

takeaway from this theory is the prediction of additional stable spindle speeds when the 

spindle period is an odd integer multiple of one-half the period of the tool. 

As an alternative to the analytical stability analysis, time domain simulation has 

been applied to low radial immersion milling.  In [39] Campomanes et al. uses the actual 

trochoidal tooth path to improve the simulation of low radial immersion milling.  Chatter 
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detection is facilitated by calculating a “nondimensional chatter coefficient” which is the 

ratio of the maximum uncut chip thickness during a time domain simulation with flexible 

dynamics and the maximum uncut chip thickness during a time domain simulation with 

rigid dynamics.  They noted that their time domain simulation confirmed the additional 

stable spindle speeds presented by Davies et al. and that the inclusion of edge forces in the 

model resulted in both an increase and decrease in the stability limit.  In [40] Zhao et al. 

use time domain simulation to verify secondary Hopf bifurcations and period-2 (i.e., period 

doubling) bifurcations using bifurcations diagrams which plot tool deflections in a single 

independent coordinate versus chip width. 

The semi-discretization, time finite element analysis, and multi-frequency methods 

were also developed to produce milling stability charts that predicted the two types of 

instability [24, 25, 41, 42].  In [43] , Govekar et al. use the semi-discretization method to 

predict both quasi-periodic and periodic chatter during low radial immersion milling.  They 

show that secondary Hopf lobes are open curves distributed along the spindle speed axis 

while flip bifurcations are closed curves within the secondary Hopf lobes as shown in 

Figure 2.6.  More experimental results showing period-2, period-3, period-4, and combined 

Hopf and period-2 chatter are shown in [9] for a two degree of freedom system. 
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Figure 2.6:  Stability lobe diagram with secondary Hopf (dashed) and period-2 (solid) 

stability boundary redrawn from [43]. 

 

 

The nonlinear aspects of milling behavior at low radial immersion have been 

investigated extensively in [44-46].  In [47], Zatarain et al. show that the closed period-2 

curves vary in shape and size depending upon the helix angle of the cutting tool.  

Additionally, islands of period-2 instability appear that are detached from the secondary 

Hopf lobes when tool helix angle is considered.  This work was extended in [48] to show 

that horizontal boundary lines along the chip width axis of the stability chart, which are 

spaced by the axial pitch of the cutter, separate the unstable islands.  From the mathematical 

perspective, these values of chip width (equal to integer multiples of the axis pitch of the 

cutter) make the equations of motion autonomous, delayed differential equations for which 

period-2 instability cannot occur.  The helix angle effect has also been investigated using 

time finite element analysis [49].



CHAPTER 3: CUTTING FORCE MODELING 

 

 

The modeling of machining processes, which has been an important research topic 

for nearly a century, is motivated by the requirements of machine tool users and builders 

alike.  The machine tool user aims to reliably predict key process outputs, such as cutting 

forces, which affect workpiece surface quality, geometrical accuracy, and process stability.  

From the builder’s perspective, the cutting forces represent a critical design metric because 

they dictate the required spindle power and torque as well as the required rigidity of the 

machine tool’s structural loop.  In machining process simulations and optimizations, 

cutting force modeling occurs at an early stage and thereby strongly affects the accuracy 

of the results. 

There are three approaches to cutting force modeling which are prevalent 

throughout the literature: analytical, numerical, and mechanistic [50, 51].  The analytical 

models relate cutting forces to a number of process variables (i.e., chip load, cutting speed, 

and cut geometry) and mechanical aspects such as shear angle, material properties, and 

friction.  Early work using this approach was detailed by Merchant in [52] and by Amarego 

and Brown in [53].  Increasing computational power has led to advancements in the field 

of research in numerical modeling where much focus is placed on determination of 

undeformed chip thickness and tool geometry to study their interaction [54]. 

The mechanistic force models assume that the instantaneous cutting forces are 

proportional to the uncut chip area through an empirically-derived coefficient [50].  Early 
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works in mechanistic force modeling for milling operations was reported by Martellotti 

[55], Koenigsberger et al. [56], and Sabberwal [57].  To date the literature highlights two 

mechanistic force models.  The first relates instantaneous cutting forces and uncut chip 

areas to a single lumped, empirical coefficient which is commonly referred to as the 

specific force coefficient and often denoted as 𝐾𝑠.  This single coefficient aims to capture 

the effect of both cutting (i.e. shearing) and ploughing (i.e. friction at the cutting edge) 

which occurs during chip formation.  The ease of implementation and useful predictive 

capabilities provided by this simple model has resulted in its widespread application in 

industry and research.  The second, published in later works by Budak et al. [58], extends 

the mechanistic cutting force model to include separate empirical coefficients to capture 

the chip formation mechanics of shearing and ploughing. 

In [59] and [60] a method for the identification of the empirical coefficients, 

commonly referred to as specific force coefficients, is presented.  The procedure proposes 

that a linear regression of measured cutting forces be performed over a range of feed per 

tooth values while holding other process parameters such as cutting speed and cut geometry 

constant.  This method, which requires numerous cutting tests to perform the linear 

regression analysis, has proven to provide accurate results which are specific to the cutting 

tool geometry and workpiece material combination.  However, the regression analysis 

assumes that cutting forces are linearly dependent upon feed per tooth and independent of 

other machining parameters such as cutting speed and feed, cut geometry, and cut direction 

(i.e., up milling/down milling).  Other methods, such as those presented in [61, 62], use 

nonlinear optimization methods to perform a least squares fit of simulated cutting forces to 

measured cutting forces.  This approach requires measurements from a single cutting test 
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and results in specific force coefficients which are specific to the chosen machining 

parameters.  As such, the specific force coefficients may be considered as a function of not 

only the cutting tool geometry and workpiece material, but machining parameters such as 

cutting speed and feed, cut geometry, and cut direction (i.e., up milling/down milling).  The 

nonlinear optimization method provides a tool for studying the effects of these machining 

parameters on dynamic cutting forces. 

 

3.1 The Mechanistic Approach 

 

 

The mechanistic force models are based on the assumption that the instantaneous 

cutting force is proportional to the cross sectional area of the uncut chip through a number 

of empirically determined specific force coefficients.  This method of cutting force 

modeling assumes that the instantaneous cutting forces are independent of other machining 

parameters such as cutting speed and feed, cut geometry, and cut direction (i.e., up 

milling/down milling).  Although this assumption provides a reasonable degree of accuracy 

for milling stability prediction through lobe diagrams [59], it has been shown in a number 

of studies [62] that cutting forces are dependent upon cutting speed and feed.  The 

mechanistic force model used in this study includes six empirically determined specific 

force coefficients, and the instantaneous cutting forces in the tangential, 𝐹𝑡, normal, 𝐹𝑛, and 

axial, 𝐹𝑎, directions are given in equations (3.1) - (3.3)  as: 

 

 

 𝐹𝑡 = 𝑘𝑡𝑐𝑏ℎ + 𝑘𝑡𝑒𝑏 (3.1) 
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 𝐹𝑛 = 𝑘𝑛𝑐𝑏ℎ + 𝑘𝑛𝑒𝑏 (3.2) 

 

 

 

 𝐹𝑎 = 𝑘𝑎𝑐𝑏ℎ + 𝑘𝑎𝑒𝑏 (3.3) 

 

 

 

where 𝑏 is the chip width (i.e., axial depth of cut) and ℎ is the instantaneous chip thickness, 

which is based on the circular tooth path approximation; see equation (3.4). It is dependent 

on the feed per tooth, 𝑓𝑡, as given by: 

 

 

 ℎ = 𝑓𝑡 sin(𝜙) (3.4) 

 

 

 

where 𝜙 is the cutter rotation angle.  Each component of the instantaneous cutting force 

includes two specific force coefficients, each of which is associated with separate aspects 

of chip formation.  The coefficients 𝑘𝑡𝑐, 𝑘𝑛𝑐, and 𝑘𝑎𝑐 are correlated with cutting or 

shearing, and the edge coefficients 𝑘𝑡𝑒, 𝑘𝑛𝑒, and 𝑘𝑎𝑒 are correlated with rubbing or 

ploughing.  The edge coefficients affect the instantaneous cutting force proportionally 

through the chip width, but are independent of the instantaneous chip thickness. They 

provide a non-zero force value even as the chip thickness approaches zero. 

 

3.2 Dynamic Compensation of Measured Cutting Forces 

 

 

Accurate measurement of cutting forces is crucial for machining process simulation 

and for evaluation of cutting tool geometries and concepts [63].  The most common method 
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of cutting force measurement found in the literature utilizes commercial piezoelectric 

dynamometers.  Because these dynamometers are not infinitely rigid, they may be 

considered as a dynamic system with a characteristic frequency response which defines the 

measurement bandwidth of the instrument.  As the tooth passing frequency and harmonics 

(integer multiples) begin to approach the resonance frequencies of the dynamometer, 

unwanted frequency content is superimposed on the cutting force signal.  The resulting 

measured forces suffer from poor accuracy, and, therefore, the process of cutting force 

coefficient determination at high tooth passing frequencies (i.e., high spindle speeds) is 

complicated. 

In this study a compensation technique based on inverse FRF filtering was utilized 

to truncate the unwanted frequency content in the measured cutting forces.  The filter is 

constructed by inverting the measured force-to-force FRF of the dynamometer [63], also 

commonly referred to as the transmissibility. 

 

 

 𝐻(𝜔) =
𝐹𝑜𝑢𝑡(𝜔)

𝐹𝑖𝑛(𝜔)
 (3.5) 

 

 

 

The dynamometer force-to-force FRF is a complex-valued ratio of the input force, 

𝐹𝑖𝑛(𝜔), and the output force from the dynamometer, 𝐹𝑜𝑢𝑡(𝜔), in the frequency domain.  

Ideally, there would be no unwanted frequency content added to the measured forces.  In 

this case the magnitude of the dynamometer FRF would be equal to unity and the phase 

would be equal to zero for all frequencies.  Because the dynamometer/workpiece system 

has finite mass, stiffness, and damping, the magnitude and phase of the measured cutting 

forces depart from their ideal values. 
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In [64], Castro et al. use a three by three FRF matrix, referred to as the 

dynamometer’s transmissibility matrix, which contains three direct FRFs (i.e., the 

dynamometer force output is in the same 𝑥𝑦𝑧 component direction as the applied force) 

and six cross FRFs (i.e., the dynamometer force output is in the 𝑥𝑦𝑧 component directions 

orthogonal to the applied force).  The inclusion of the cross FRFs in the inverse filtering 

technique serves to truncate frequency content from the measured cutting forces due to 

crosstalk in the dynamometer’s 𝑥𝑦𝑧 component directions.  In this study the effect of 

crosstalk (i.e., cross FRFs) was considered to be negligible. 

The success of the inverse filtering method is primarily limited by the accuracy and 

bandwidth of the measured dynamometer/workpiece system FRF and by the fitting of the 

measured FRF to compute modal parameters which are used to mathematically reconstruct 

the compensation filter.  Typically, the measurement accuracy is assessed by computing 

the coherence, which serves as a quality index, between the input force and the 

dynamometer output.  Aside from the cases where coherence is poor in close proximity to 

anti-resonance frequencies, a coherence value of 0.90 was selected as the threshold value 

for fitting the measured FRF; see Figure 3.1. 
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Figure 3.1:  Example measurement results of a dynamometer force-to-force FRF in the 

𝑥𝑦𝑧 directions including the coherence and magnitude. 

 

 

Fitting of the measured FRF, which is used to compute the system’s modal 

parameters, is completed using a two-stage process which includes: (1) the peaking picking 

method and (2) a nonlinear optimization.  The peak picking method, detailed by Schmitz 

in [59], is used to perform a preliminary fit to the FRF.  Because of modal truncation, where 

modes are present outside of the measurement bandwidth and contribute to the dynamic 

response of the dynamometer but cannot be included in the fit, the accuracy of the FRF fit 

suffers.  To limit this effect and improve the accuracy of the fit, a nonlinear optimization 

of the FRF’s magnitude is performed.  Example results from the FRF fitting process are 

shown in Figure 3.2.  A detailed description of the two-stage fitting process is provided in 
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section 4.2. 

 

 

 

Figure 3.2:  Example results from the two-stage modal fit of a measured dynamometer 

FRF. 

 

 

The magnitude of the inverted, dynamometer FRF decays to near-zero at high 

frequencies; see Figure 3.1.  Applying a filter that is simply the inversion of the 

dynamometer FRF will lead to amplification of high frequency measurement noise as 

shown in Figure 3.3(a).  This is avoided by convolving the inverted dynamometer FRF 

with a fourth-order lowpass filter; see Figure 3.3b.  The cutoff frequency of the lowpass 

filter is selected such that the magnitude response of the final, inverse FRF filter is near 

unity at high frequencies.  The resulting inverse FRF filter, shown in Figure 3.3c, 
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simultaneously amplifies and truncates the relevant frequency components, which are 

distorted by the dynamic response of the dynamometer, while preserving the high 

frequency components of the measured cutting forces.  Preservation of the high frequency 

components of the measured cutting forces is crucial for evaluating the stability of milling 

operations.  

 

 

 

Figure 3.3:  Magnitude response of (a) the inverted, measured dynamometer FRF, (b) 

second order lowpass filter, and (c) inverse FRF filter. 

 

 

Typical results from the dynamic compensation technique are shown in Figure 3.4.  

The measured cutting forces contain significant dynamic distortion as evidenced by the 

amplification of the frequency content in the measured cutting forces near 1866 𝐻𝑧.  This 
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frequency corresponds to the largest magnitude of the 𝑥-direction dynamometer force-to-

force FRF as shown in Figure 3.1.  The compensated cutting forces exhibit frequency 

content at the tooth passing frequency, 𝑓𝑡, which occurs at 266.5 𝐻𝑧 for the milling 

operation using a 2 flute endmill with a spindle speed of 8 𝑘𝑟𝑝𝑚.  Frequency content is 

also observed at harmonics of the tooth passing frequency as well as the runout frequency 

which occurs at one-half of the tooth passing frequency. 

 

 

 

Figure 3.4:  Example results of the dynamic compensation on the time domain (top) and 

frequency domain (bottom) cutting forces. 

 

 

Because the instantaneous force, nonlinear optimization method simulates cutting 

forces in the time domain as a function of cutter rotation angle, the 𝑥, 𝑦, and 𝑧 component 
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forces have a phase relationship.  Introduction of a relative phase shift, due to the response 

of the inverted dynamometer FRF, to the measured 𝑥, 𝑦, and 𝑧 component forces is 

undesirable as it will lead to errors in the instantaneous force, nonlinear optimization 

method results.  Typical results from the dynamic compensation technique are shown in 

Figure 3.5 for the 𝑥, 𝑦, and 𝑧 component forces in the time domain.  No phase shift of the 

component forces relative to one another is observed. 

 

 

 

Figure 3.5:  Example results of the dynamic compensation on the 𝑥,𝑦, and 𝑧 components 

of the measured cutting forces. 

 

 

3.3 Cutting Force Coefficient Determination 
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The following sections detail the two methods whereby the cutting force 

coefficients of the mechanistic force model were determined. 

 

3.3.1 Average Force, Linear Regression Method 

 

 

The six specific force coefficients were determined through linear regression 

analysis using the average cutting forces measured during a series of cutting tests which 

were performed over a range of feed per tooth values while holding other milling 

parameters (i.e., axial depth of cut, spindle speed, and radial immersion) constant.  

Projecting the tangential, normal, and axial cutting force components into a fixed reference 

frame (i.e., 𝑥, 𝑦, and 𝑧), shown in Figure 3.6, and averaging over one cutter revolution 

yields the following expressions for mean cutting force per revolution. 

 

 

 
𝐹̅𝑥 = {

𝑁𝑡𝑏𝑓𝑡
8𝜋

 [−𝑘𝑡𝑐 cos(2𝜙) + 𝑘𝑛𝑐(2𝜙 − sin(2𝜙))] +
𝑁𝑡𝑏

2𝜋
[𝑘𝑡𝑒 sin(𝜙) − 𝑘𝑛𝑒 cos(𝜙)]}

𝜙𝑠

𝜙𝑒

 (3.6) 

 

 

 

 
𝐹̅𝑦 = {

𝑁𝑡𝑏𝑓𝑡
8𝜋

[𝑘𝑡𝑐(2𝜙 − sin(2𝜙)) + 𝑘𝑛𝑐 cos(2𝜙)] −
𝑁𝑡𝑏

2𝜋
[𝑘𝑡𝑒 cos(𝜙) + 𝑘𝑛𝑒 sin(𝜙)]}

𝜙𝑠

𝜙𝑒

 (3.7) 

 

 

 

 
𝐹̅𝑧 = {

𝑁𝑡𝑏

2𝜋
[𝑘𝑎𝑐𝑓𝑡 cos(𝜙) − 𝑘𝑎𝑒𝜙]}

𝜙𝑠

𝜙𝑒

 (3.8) 

 

 

 

where 𝑁𝑡is the number of teeth on the cutter, and 𝜙𝑠and 𝜙𝑒are the start and exit angles of 

the cutter teeth, respectively. 
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Figure 3.6:  Force components and fixed reference frame for the average force, linear 

regression method.  A down milling configuration is shown with a helical endmill. 

 

 

In most cases, 100% radial immersion (i.e., slotting) cutting tests are selected, 

where 𝜙𝑠 = 0° and 𝜙𝑒 = 180°,  so that the mean cutting force per revolution expressions 

reduce to: 

 

 

 𝐹̅𝑥 =
𝑁𝑡𝑏𝑘𝑛𝑐
4

𝑓𝑡 +
𝑁𝑡𝑏𝑘𝑛𝑒
𝜋

 (3.9) 

 

 

 

 𝐹̅𝑦 =
𝑁𝑡𝑏𝑘𝑡𝑐
4

𝑓𝑡 +
𝑁𝑡𝑏𝑘𝑡𝑒
𝜋

 (3.10) 

 

 

 

 𝐹̅𝑧 = −
𝑁𝑡𝑏𝑘𝑎𝑐
𝜋

𝑓𝑡 −
𝑁𝑡𝑏𝑘𝑎𝑒
2

 (3.11) 

 

 

 

These expressions are given in slope-intercept form, and a linear regression over 

x 

y 
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feed per tooth may be performed to determine the cutting force coefficients.  The slope, 

𝑎1𝑗, and intercept, 𝑎0𝑗, of the linear regression are given as: 

 

 

 𝑎1𝑗 =
𝑛∑ 𝑓𝑡,𝑖𝐹̅𝑗,𝑖 − ∑ 𝑓𝑡,𝑖 ∑ 𝐹̅𝑗,𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛 ∑ 𝑓𝑡,𝑖
2 − (∑ 𝑓𝑡,𝑖

𝑛
𝑖=1 )

2𝑛
𝑖=1

 (3.12) 

 

 

 

 𝑎0𝑗 =
1

𝑛
∑𝐹̅𝑗,𝑖 − 𝑎1𝑗

1

𝑛
∑𝑓𝑡,𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 (3.13) 

 

 

 

where 𝑗 indicates the force component direction (i.e., 𝑥, 𝑦, or 𝑧) and 𝑛 is the number of 

(𝑓𝑡,𝑖 , 𝐹̅𝑗,𝑖) data pairs.  Once the slope and intercept are determined the specific coefficients 

can be calculated using equations (3.14) - (3.16).  Finally, the specific force coefficients 

are given as: 

 

 

 

 𝑘𝑡𝑐 =
4𝑎1𝑦

𝑁𝑡𝑏
     𝑘𝑡𝑒 =

𝜋 ∙ 𝑎0𝑦

𝑁𝑡𝑏
 (3.14) 

 

 
 

 𝑘𝑛𝑐 =
4𝑎1𝑥
𝑁𝑡𝑏

     𝑘𝑛𝑒 =
𝜋 ∙ 𝑎0𝑥
𝑁𝑡𝑏

 (3.15) 

 

 

 

 𝑘𝑎𝑐 = −
𝜋 ∙ 𝑎1𝑧
𝑁𝑡𝑏

     𝑘𝑎𝑒 = −
2𝑎0𝑦

𝑁𝑡𝑏
 (3.16) 

 

 

 

It may be observed that the specific force coefficients are functions of the slope and 
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y-intercept of the linear regression over feed per tooth.  The derivation of the specific 

cutting force coefficients for the general case of arbitrary radial immersion is given in 

APPENDIX A:. 

This method of determining the specific cutting force coefficients assumes that the 

instantaneous cutting forces are linearly related to feed per tooth and independent of other 

milling parameters such as radial immersion and spindle speed. 

 

3.3.2 Instantaneous Force, Nonlinear Optimization Method 

 

 

Alternatively, the cutting force coefficients were determined using an instantaneous 

force, nonlinear optimization method which solves a nonlinear, least squares curve fitting 

problem and takes into account the user-defined lower and upper bounds on the decision 

variables (i.e., specific force coefficients and flute-to-flute runout).  The optimization 

routine, which uses a trust-region-reflective least squares algorithm, equates cutting forces 

simulated in the time domain with experimentally measured cutting forces at each discrete 

time step. 

The time domain simulation calculates the cutting forces at each small time step, 

𝑑𝑡, which is defined in the simulation as: 

 

 

 𝑑𝑡 =
1

𝑓𝑠
 (3.17) 

 

 

 

where 𝑓𝑠 is the sampling frequency of the cutting force measurement.  At each incremental 

time step the instantaneous chip thickness is computed, the cutting force is calculated, the 

tooth angle, 𝜙, is incremented by a small angle, 𝑑𝜙, which is a function of spindle speed 
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and the incremental time step, and the process is repeated for one complete revolution of 

the cutting tool.  The instantaneous chip thickness is determined using the circular tooth 

path approximation and assuming a rigid tool and workpiece.  Additionally, flute-to-flute 

runout of the cutting tool is incorporated into the instantaneous chip thickness calculation.  

For a more thorough and robust model, the actual trochoidal tooth path [65, 66], which 

more accurately models the instantaneous chip thickness at the start and exit of the cut, 

may be employed.  However, in this study the circular tooth path approximation provided 

adequate accuracy at significantly lower computational cost. Because the instantaneous 

force, nonlinear optimization method is capable of solving nonlinear curve fitting 

problems, the mechanistic force model may be modified to include a nonlinear dependence 

on chip thickness which was presented by Feng et al. [67] for ball endmilling processes. 

  The tangential, 𝐹𝑡, normal, 𝐹𝑛, and axial, 𝐹𝑎, cutting forces were calculated 

according to the mechanistic force model defined in section 3.1.  In order to represent the 

simulated forces in the fixed reference frame of the measured cutting forces, a coordinate 

transformation is performed. 

 

 

 
{

𝐹𝑥
𝐹𝑦
𝐹𝑧

}

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

= [
cos(𝜙) sin(𝜙) 0

sin(𝜙) − cos(𝜙) 0
0 0 1

] {
𝐹𝑡
𝐹𝑛
𝐹𝑎

}

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

 (3.18) 

 

 

 

where 𝜙 is the instantaneous cutter rotation angle.  Finally, the objective function is given 

as: 
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𝑓𝑖(𝑘) =  {

𝐹𝑥
𝐹𝑦
𝐹𝑧

}

𝑖

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

− {

𝐹𝑥
𝐹𝑦
𝐹𝑧

}

𝑖

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 (3.19) 

 

 

 

where 𝑘 is the vector of decision variables, which includes the six specific force 

coefficients and the flute-to-flute runout of the cutting tool, and 𝑓𝑖(𝑘) is the difference 

between the 𝑥, 𝑦, and 𝑧 components of the instantaneous simulated and measured cutting 

forces at the 𝑖th time step. 

Because the time step between each simulated instantaneous cutting force must 

coincide with the measured cutting forces, the size of the resulting system of equations 

depends upon the sampling frequency of the measurement and the number of cutting tool 

revolutions (i.e., number of time steps) included in the optimization.  The nonlinear, least 

squares curve fitting problem is of the form: 

 

 

 min
𝑘
‖𝑓(𝑘)‖2

2 = min
𝑘
(𝑓1(𝑘)

2 + 𝑓2(𝑘)
2 +⋯+ 𝑓𝑛(𝑘)

2) (3.20) 

 

 

 

where 𝑛 is the number of time steps.  The curve fitting problem is solved via a trust region 

reflective algorithm which is based on an interior-reflective Newton approach that is well 

suited for solving nonlinear optimization problems where the decision variables are 

bounded by upper and/or lower limits [68]. 

For the study presented herein, the measured cutting forces were partitioned into 

100 individual revolutions of the cutting tool and averaged; see Figure 3.7.  It is notable 

that measured cutting forces exhibit a high degree of repeatability from one revolution of 

the cutting tool to the next.  The measured cutting forces, averaged over 100 revolutions of 
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the cutting tool, were then supplied to the nonlinear optimization function along with a 

number of relevant process parameters such as number of teeth on the cutting tool, 

sampling frequency of the measured cutting forces, and initial conditions for the decision 

variables (i.e., specific force coefficients and flute-to-flute runout). 

 

 

 

Figure 3.7:  Measured cutting forces over 100 revolutions of the cutting tool (dotted line) 

and their average (solid line) shown for a milling operation using a 2-flute cutting tool. 

 

 

The optimization function simulates the instantaneous cutting forces in the 𝑥, 𝑦, 

and 𝑧 directions based on the input process parameters.  The difference between the 

simulated and measured cutting forces were then calculated by the objective function given 

in equation (3.19), and the sum of squares of the differences are evaluated.  The evaluation 
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is then scrutinized against an arbitrary, user-defined set of convergence criteria, such as the 

change in the sum of the squares from one iteration to the next.  If it is determined that the 

convergence criterion are met, the optimization routine ceases; otherwise the decision 

variables are updated and the process iterates until convergence.  Example results of the 

optimized, simulated cutting forces are shown in Figure 3.8. 

 

 

 

Figure 3.8:  Example results from the nonlinear, optimization method including the 

measured cutting forces and optimized, simulated cutting forces. 

 

 

3.4 Milling Process Dependent Cutting Force Coefficients 

 

 

The process parameter dependence of the specific force coefficients was 
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investigated using both the average force, linear regression and instantaneous force, 

nonlinear optimization methodologies.  A series of cutting tests were performed, and the 

cutting forces were measured.  Because the tooth passing frequency was sufficiently high 

that the measured cutting forces suffered dynamic distortions due to the limited 

measurement bandwidth of the dynamometer, the measured cutting forces were 

compensated to truncate the spurious frequency content.  The compensated cutting forces 

were then analyzed using the aforementioned methods and the resulting specific force 

coefficients were used to make stability predictions based on time domain simulations.  A 

pictorial illustration of the experimental method used in the study is given in Figure 3.9. 

 

 

 

Figure 3.9:  Flow diagram detailing the experimental method used in this study. 

 

3.4.1 Experimental Setup 

 

 

Cutting tests were performed on a LeBlond Makino A55 Plus horizontal milling 

machine with a maximum spindle speed of 20 𝑘𝑟𝑝𝑚.  The workpiece material, aluminum 

6061-T6511 extruded barstock with approximate dimensions of 170 𝑚𝑚 ×  100𝑚𝑚 ×
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38𝑚𝑚, was rigidly fixed to the three-component cutting force dynamometer (Kistler 

9257B) via two M8 socket head cap screws; see Figure 3.10.  The dynamometer/workpiece 

combination was bolted to the machine tool’s tombstone via a surface ground steel plate 

approximately 25 𝑚𝑚 in thickness and was carefully aligned to the machine axes using a 

test indicator.  A charge amplifier (Kistler Type 5010), signal analyzer (Data Translation 

DT9837B), and Spinscope software from Manufacturing Laboratories Incorporated was 

using for data acquisition. 

 

 

 

Figure 3.10:  Setup for cutting force measurements using a three-axis dynamometer. 

 

 

The cutting tool used in this study was a 12.7 mm diameter solid carbide endmill 

(SGS 39363) with a 30° helix angle.  It was clamped in a Schunk SINO-R tool holder with 

approximately 40 mm of overhang.  Cutting tests were performed with the aforementioned 
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tool with both two flute and single flute (i.e., one flute removed) geometries. 

Cutting tests were performed under stable milling conditions with an axial depth of 

cut of 3 mm.  Other process parameters, such as radial depth of cut (i.e., radial immersion), 

spindle speed, feed per tooth, and milling configuration (i.e., up/down milling), were 

varied.  Details of the cutting force tests are given in Table 3.1.  Each cutting force 

measurement was repeated three times to allow for a statistical analysis while minimizing 

the effect of tool wear on the measured cutting forces. 

 

Table 3.1:  Milling process parameters selected for cutting force measurements. 

Cut Direction Radial Immersion (%) Spindle Speed (krpm) Feed (mm tooth⁄ ) 

Up Milling 10 8 

(0.025, 0.05, 0.10, 

0.15, 0.20, 0.25) 

Down Milling 10 8 

(0.025, 0.05, 0.10, 

0.15, 0.20, 0.25) 

Down Milling 10 

(1, 2, 3, 4, 6, 8, 10, 

12.5, 15, 17.5, 20 ) 
0.10 

Down Milling (10, 30, 50) 8 0.10 

 

 

3.4.2 Feed per Tooth Dependence 

 

 

The following experimental results compare the specific force coefficients 
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calculated using the average force, linear regression and instantaneous force, nonlinear 

optimization methods over a range of feed per tooth values.  The cutting force 

measurements were repeated three times for each of the selected feed per tooth values, 

which are given in Table 3.1. 

Figure 3.11 shows the result of the average force, linear regression analysis of the 

measured cutting forces over the range of feed per tooth values.  A satisfactory fit was 

achieved as indicated by the coefficients of determination, 𝑟2.  The reported, measured 

cutting forces reflect the average forces calculated over the three repeated measurements.  

The calculated specific force coefficients are given in Table 3.2. 

 

 

 

Figure 3.11:  Average force, linear regression results from the 10% radial immersion up 

milling cut conducted at a spindle speed of 8 krpm. 
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Table 3.2:  Specific force coefficients calculated using the average force, linear 

regression method for the 10% radial immersion up milling cut conducted at a spindle 

speed of 8 krpm. 

Cutting Force Coefficients (N mm2⁄ ) Edge Force Coefficients (N mm⁄ ) 

𝑘𝑡𝑐 805 𝑘𝑡𝑒 6 

𝑘𝑛𝑐 418 𝑘𝑛𝑒 6 

𝑘𝑎𝑐 227 𝑘𝑎𝑒 1 

 

 

 

The cutting force coefficients, determined using the instantaneous force, nonlinear 

optimization method, over the range of selected feed per tooth values are given in Figure 

3.12.  The mean value of the three repeat measurements are reported along with the 95% 

confidence interval which was calculated using the t-distribution.  It is observed that the 

tangential and normal cutting force coefficients vary nonlinearly with feed per tooth as was 

reported by other researchers in [62].  No observable trend was noted in the edge force 

coefficients. 
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Figure 3.12:  Cutting force coefficients calculated using the instantaneous force, 

nonlinear optimization method for a 10% radial immersion up milling cut conducted at a 

spindle speed of 8 krpm. 

 

 

For comparison purposes, a series of cutting tests were performed with identical 

milling parameters (i.e., spindle speed, axial depth of cut, radial immersion).  However, 

rather than an up milling configuration, a down milling configuration was employed.  The 

resulting specific force coefficients calculated using the average force, linear regression 

and instantaneous force, nonlinear optimization methods are shown in Table 3.3 and Figure 

3.13, respectively.  It is observed that the specific force coefficients for the different milling 

configurations are in good agreement. 
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Figure 3.13:  Cutting force coefficients calculated using the instantaneous force, 

nonlinear optimization method for a 10% radial immersion down milling cut conducted at 

a spindle speed of 8 krpm. 

 

 

 

Table 3.3.  Specific force coefficients calculated using the average force, linear 

regression method for the 10% radial immersion down milling cut conducted at a spindle 

speed of 8 krpm. 

Cutting Force Coefficients (N mm2⁄ ) Edge Force Coefficients (N mm⁄ ) 

𝑘𝑡𝑐 786 𝑘𝑡𝑒 11 

𝑘𝑛𝑐 417 𝑘𝑛𝑒 11 

𝑘𝑎𝑐 158 𝑘𝑎𝑒 1 
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The instantaneous, uncut chip thickness as seen by the cutting tool as each flute 

engages in the cut is influenced by both the commanded feed per tooth and percent radial 

immersion.  For example, if the commanded feed per tooth is held fixed and percent radial 

immersion is decreased, the instantaneous, uncut chip thickness also decreases.  To study 

the effects of radial immersion on the specific force coefficients, a series of cutting tests 

were performed at 10%, 30%, and 50% radial immersion while holding other milling 

parameters fixed.  The resulting tangential cutting force coefficients, calculated using the 

instantaneous force, nonlinear optimization method, are reported in Figure 3.14 along with 

the 95% confidence intervals.  A statistically significant variation in the tangential cutting 

force coefficient as a function of radial immersion may be observed.  A similar trend in the 

normal direction coefficient was observed.  However, an overlap of the 95% confidence 

interval precluded a statistically significant result. 
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Figure 3.14:  The tangential cutting force coefficient, calculated by the instantaneous 

force, nonlinear optimization method, as a function of radial immersion. 

 

3.4.3 Cutting Speed Dependence 

 

 

A series of cutting tests were performed over a range of spindle speeds and the force 

coefficients were calculated using the instantaneous force, nonlinear optimization method. 

The averaged results and 95% confidence intervals are displayed in Figure 3.15.  The 

resulting trend is in good agreement with results published by Grossi et al. [69, 70].  It is 

noteworthy that there is a general downward trend in the force coefficients until the critical 

spindle speed of approximately 12500 rpm.  Beyond this critical spindle speed, there is a 

general upward trend.  Typically the downward trend is attributed to thermal softening of 

the workpiece material due to the increased temperature at the tool/chip interface at high 
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cutting speeds. 

 

 

 

Figure 3.15:  Cutting force coefficients calculated using the instantaneous force, 

nonlinear optimization method over the range of selected spindle speeds for the 10% 

radial immersion down milling operation. 

 

3.4.4 Validation Testing 

 

 

Stability testing was conducted at two feed per tooth values, 0.05 mm tooth⁄  and 

0.25 mm tooth⁄ , for a 10% radial immersion down milling cut.  The cutting force 

coefficients were calculated using the instantaneous force, nonlinear optimization method.  

The results are provided in Figure 3.16 and Table 3.4 for a range of feeds.  It was 

determined that the endmill exhibited approximately 30 μm of flute-to-flute runout. 
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Figure 3.16:  Cutting force coefficients calculated using the instantaneous force, 

nonlinear optimization method for a 10% radial immersion down milling cut conducted at 

a spindle speed of 8000 rpm.  
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Table 3.4:  Cutting force coefficients used for milling stability predictions using the PTP 

force diagram. 

Feed per tooth 

(𝑚𝑚 𝑡𝑜𝑜𝑡ℎ⁄ ) 

Cutting force coefficients 

(𝑁 𝑚𝑚2⁄ ) 

Edge force coefficients 

(𝑁 𝑚𝑚⁄ ) 

0.05 

𝑘𝑡𝑐 1422 𝑘𝑡𝑒 16 

𝑘𝑛𝑐 967 𝑘𝑛𝑒 13 

𝑘𝑎𝑐 421 𝑘𝑎𝑒 0 

Feed per tooth 

(𝑚𝑚 𝑡𝑜𝑜𝑡ℎ⁄ ) 

Cutting force coefficients 

(𝑁 𝑚𝑚2⁄ ) 

Edge force coefficients 

(𝑁 𝑚𝑚⁄ ) 

0.25 

𝑘𝑡𝑐 620 𝑘𝑡𝑒 34 

𝑘𝑛𝑐 337 𝑘𝑛𝑒 20 

𝑘𝑎𝑐 239 𝑘𝑎𝑒 0 

 

 

 

The PTP force diagram is conceptually similar to the traditional stability lobe 

diagram in the sense that it provides a map of stable and unstable axial depth of cut-spindle 

speed combinations.  It conveys this information as a contour map of PTP cutting forces 

generated from numerous time domain simulations.  Because the time domain simulations 

do not make the simplifying assumptions used to generate analytical stability lobe diagrams 

for milling and they capture nonlinearities in the milling process, they are particularly well 

suited for predicting stable milling conditions at low radial immersion.  The time domain 

simulation takes into account the tool and workpiece dynamics in three orthogonal 

directions as well as various parameters such as flute-to-flute runout and helix angle.  The 

PTP force diagram generated using the specific force coefficients for a feed rate of 

0.05 mm tooth⁄  is shown in Figure 3.17.  The results of the validation test cuts are 

included. 
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Figure 3.17:  PTP force diagram generated using the specific force coefficients calculated 

for a feed rate of 0.05 mm tooth⁄ .  Stable (circle) and unstable (cross) validation test 

results are shown. 

 

 

The resulting PTP force diagram generated using the specific force coefficients for 

a feed rate of 0.25 mm tooth⁄  is shown in Figure 3.18.  The results of the validation test 

cuts are included.  It was observed that in both cases the PTP force diagram accurately 

predicted stable and unstable axial depth of cut-spindle speed combinations.  Furthermore, 

it is observed that the validation tests conducted at a 4 mm axial depth of cut yielded 

different results.  The lower feed rate cut produced unstable results while the higher feed 

rate cut was stable. 
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Figure 3.18:  PTP force diagram generated using the specific force coefficients calculated 

for a feed rate of 0.25 mm tooth⁄ .  Stable (circle) and unstable (cross) validation test 

results are shown. 

 

3.4.5 Discussion 

 

 

It was determined that low feed rates, which are often recommended for hard-to-

machine materials, produce disproportionately larger cutting forces per uncut chip area 

than high feed rates, particularly for low radial immersion milling.  From a practical 

standpoint, this becomes relevant for the finish milling of titanium preforms, which are 

often encountered in the aerospace industry.  The results reported here suggest that high 

feed rates increase the critical axial depth of cut below which all spindle speeds yield stable 

milling operations. 
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With respect to chip formation, the rake angle (i.e., inclination of the cutting edge 

relative to the surface normal) depends on both the commanded feed per tooth and the 

radius of the milling tool’s cutting edge radius.  Although the cutting tool may have a 

positive rake angle at the macroscopic scale, as the commanded feed per tooth approaches 

the same order of magnitude as the cutting edge radius of the milling tool, shown in Figure 

3.19, the effective rake angle becomes negative.  This change in rake angle is accompanied 

by a change in the mechanism by which the chip is formed.  Additionally, the negative rake 

angle serves to impose compressive stresses on the workpiece surface.  These factors 

contribute to the increase in the cutting force coefficients at low values of feed per tooth.  

In Figure 3.19, where the cutting tool’s rake face is to the right of the cutting edge, it is 

observed that although the cutting edge radius is on the order of approximately 30 μm, the 

length of the negative rake angle may be several time larger. 
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Figure 3.19:  A milling tool (a) cut into axial disks (b) to facilitate cutting edge radius 
measurements with an SEM (c). In (c) the flank face is on the left and the rake race is on 

the right. 



CHAPTER 4: COMPLIANT WORKPIECE MILLING SIMULATION 

 

 

4.1 Time Domain Model 

 

 

Based on the “Regenerative Force, Dynamic Deflection Model” described in [10, 

22, 71, 72], the time domain simulation determines the instantaneous chip thickness, 

calculates cutting forces, and uses Euler (fixed time step) numerical integration of the 

equations of motion to determine tool/workpiece deflections at each incremental time step.  

It is able to account for the nonlinearity which occurs during the milling process when the 

deflection of the tool/workpiece become large enough that contact is lost [73].  The 

underlying assumptions built into the model include the circular tooth path approximation 

and a mechanistic force model [74]. 

The instantaneous chip thickness depends on the feed per tooth, the relative 

vibration of the tool/workpiece in the surface normal direction for the current and previous 

cutting teeth, and cutter runout.  Therefore, instantaneous chip thickness is expressed as: 

 

 

ℎ(𝑡) =  𝑓𝑡 sin(𝜑) + 𝑛(𝑡 − 𝜏) − 𝑛(𝑡) + 𝑟 (4.1) 

 

 

 

where 𝑓𝑡sin (𝜑) is the nominal, tooth angle dependent chip thickness, 𝑛(𝑡 − 𝜏) is the 

relative vibration of the tool/workpiece in the direction of the surface normal of the 

previous tooth, 𝑛(𝑡) is the current, relative vibration of the tool/workpiece in the surface 

normal direction, and 𝑟 is the tooth specific cutter runout.  In these expressions, 𝑓𝑡 is the 



54 

feed per tooth, 𝜑 is the cutter rotation angle, 𝑡 is the current time, and 𝜏 is the tooth passing 

period.  The vibrations in the direction of the surface normal depend on the relative 

vibration between the tool and workpiece in the x and y directions as well as the cutter 

rotation angle and may be expressed as: 

 

 

𝑛(𝑡) =  −(𝑥𝑡 − 𝑥𝑤) sin(𝜑) − (𝑦𝑡 − 𝑦𝑤) cos(𝜑) (4.2) 

 

 

 

where 𝑥𝑡 and 𝑦𝑡 are the vibrations of the tool in the x and y directions, respectively, and 𝑥𝑤 

and 𝑦𝑤 are the vibration of the workpiece in the x and y directions, respectively.  

Cutting force calculations are based on the mechanistic force model presented by 

Budak et al. [74] and augmented with a process damping force [19].  At each incremental 

time step, the chip thickness is evaluated and, in the case where the tool has vibrated out 

of the cut (i.e., chip thickness is found to be less than or equal to zero), the instantaneous 

tangential, radial, and axial cutting forces are set to zero. For the case where the 

instantaneous chip thickness is non-zero, the instantaneous tangential, radial, and axial 

cutting forces can be expressed, respectively, as: 

 

 

𝐹𝑡
𝑖+1 = 𝐾𝑡𝑐𝑏ℎ

𝑖+1 + 𝐾𝑡𝑒𝑏 − 𝐶𝑡𝑏
𝑟̇𝑖

𝑉
 (4.3) 

 

 

 

𝐹𝑟
𝑖+1 = 𝐾𝑟𝑐𝑏ℎ

𝑖+1 + 𝐾𝑟𝑒𝑏 − 𝐶𝑟𝑏
𝑟̇𝑖

𝑉
 (4.4) 

 

 

 

𝐹𝑎
𝑖+1 = 𝐾𝑎𝑐𝑏ℎ

𝑖+1 + 𝐾𝑎𝑒𝑏 (4.5) 
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where 𝑏 is the axial depth of cut and ℎ𝑖+1 is the instantaneous chip thickness for the current 

time step.  𝐾𝑡𝑐, 𝐾𝑟𝑐, and 𝐾𝑎𝑐 are the tangential, radial, and axial specific cutting force 

coefficients, respectively, which are associated with “cutting” or shearing.  The tangential, 

radial, and axial edge force coefficients, 𝐾𝑡𝑒, 𝐾𝑟𝑒, and 𝐾𝑎𝑒, capture the ploughing effect 

which occurs at small chip thicknesses.  The expressions 𝐶𝑡𝑏 𝑟̇
𝑖 𝑉⁄  and 𝐶𝑟𝑏 𝑟̇

𝑖 𝑉⁄  are the 

process damping forces in the tangential and radial directions, respectively, where 𝐶𝑡 and 

𝐶𝑟 are the tangential and radial process damping coefficients, 𝑟̇𝑖 is the velocity in the radial 

direction calculated in the previous time step, and 𝑉 is the cutting speed.  These 

instantaneous cutting forces are then transformed into the coordinate system shown in 

Figure 4.1. 

 

 

 

Figure 4.1:  Coordinate system definition for the time domain simulation model.  A down 

milling configuration is shown. 

 

 

The equations of motion are solved in modal coordinates using Euler integration.  
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The dynamics of the tool and workpiece are represented using modal parameters for an 

arbitrary number of degrees of freedom.  The tool dynamics are considered in two 

orthogonal directions in the plane of the cut and the workpiece dynamics are considered in 

all three orthogonal directions.  In modal coordinates the dynamic equations of motion may 

be expressed as: 

 

 

 𝐹𝑞
𝑖 = 𝑚𝑞𝑞̈

𝑖 + 𝑐𝑞𝑞̇
𝑖 + 𝑘𝑞𝑞

𝑖 (4.6) 

 

 

 

Then, as an approximated solution for velocity, 𝑞̇𝑖+1, and displacement, 𝑞𝑖+1, via 

Euler integration: 

 

 

 𝑞̈𝑖+1 =
(𝐹𝑞

𝑖 − 𝑐𝑞𝑞̇
𝑖 − 𝑘𝑞𝑞

𝑖)

𝑚𝑞
 (4.7) 

 

 

 

 𝑞̇𝑖+1 = 𝑞̇𝑖 + 𝑞̈
𝑖+1∆𝑡 (4.8) 

 

 

 

 𝑞𝑖+1 = 𝑞𝑖 + 𝑞̇𝑖+1∆𝑡 (4.9) 

 

 

 

where 𝑚𝑞, 𝑐𝑞, and 𝑘𝑞 are the mass, damping, and stiffness values, respectively, expressed 

in modal coordinates, and t is the time step. 

Additionally, the simulation model allows for a variety of tool geometries including 

an arbitrary number of cutting teeth, variable teeth spacing, different helix angles for each 

tooth, and cutter teeth runout.  As a practical consideration it is important to select a time 
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step which is sufficiently small that the Euler integration method provides a numerically 

stable solution.  A rule of thumb is that the time step should be at least ten times smaller 

than the period associated with the highest oscillation frequency present in the system being 

modeled.  Also, the number of time steps (i.e., cutting tool revolutions) should be 

sufficiently high for the initial transient behavior to decay. 

 

4.1.1 Peak-to-Peak Force Diagram 

 

 

As previously mentioned, the outcome of individual time domain simulations 

contains information specific to the individual spindle speed-axial depth of cut 

combinations.  This includes the instantaneous cutting forces and tool/workpiece 

deflections, velocities, and accelerations.  The PTP force diagrams represent numerous 

time domain simulations performed over a range of spindle speed-axial depth of cut 

combinations.  The range and step size of the spindle speed and axial depth of cut is 

specified, and the time domain simulation is performed for each combination.  At the 

conclusion of each simulation the steady state portion of the time domain cutting forces are 

examined for the maximum peak-to-peak (PTP) force difference.  Figure 4.2 illustrates the 

process of truncating the initial transients of the cutting force signal and extracting the PTP 

force for a single combination of spindle speed and axial depth of cut.  The PTP force for 

each combination of spindle speed and axial depth of cut is used to generate a contour map 

over the range of spindle speeds and axial depth of cuts.  The result is analogous to the 

traditional stability lobe diagram in the sense that it conveys a global representation of 

stable and unstable spindle speed and axial depth of cut combinations while retaining the 

specific, local information of the individual combinations; see Figure 4.3. 
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Figure 4.2:  Time domain cutting force signal resulting from a simulation conducted at a 

single spindle speed-axial depth of cut combination with the initial transients and PTP 

forces denoted. 

 

 

Example results, given in Figure 4.3, illustrate the stability regions and the 

stabilizing effects of process damping which occurs at low spindle speeds.  The magnitude 

of the PTP force for an individual combination of spindle speed and axial depth of cut is 

inconsequential as stable milling conditions may generate large cutting forces.  In 

determining milling stability based on the PTP force diagram, the primary metric is the rate 

of change of the PTP cutting forces as a function of spindle speed and axial depth of cut.  

In terms of finishing milling of compliant workpieces, cutting forces may be low due to 

the restricted radial and axial depths of cut (i.e. due to constraints imposed by chatter).  
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However, rapidly changing PTP forces over a range of spindle speeds and axial depths of 

cut are still indicative of instability. 

 

 

 

Figure 4.3:  Example PTP force diagram with process damping region. 

 

4.1.2 Amplitude Ratio Diagrams 

 

 

Although the PTP force diagram is a powerful tool that provides a prediction of 

global stability behavior over a range of spindle speeds and axial depths of cut, it does not 

provide a distinct boundary between stable and unstable behavior as with traditional 

stability lobe diagrams.  This lack of distinction between stable and unstable behavior 

implies that the interpretation of these diagrams is largely qualitative.  In an effort to 

eliminate qualitative interpretation and establish a distinct boundary between stable and 
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unstable machining behavior a new stability metric has been developed.  The new metric, 

which will be referred to as the “amplitude ratio”, provides a quantitative measure of the 

existence and severity of chatter. 

As previously mentioned, the outcome of individual time domain simulations 

contains information specific to the individual spindle speed-axial depth of cut 

combinations.  This includes the instantaneous cutting forces and tool/workpiece 

deflections, velocities, and accelerations which can be represented in the frequency 

domain.  For an individual time domain simulation of a stable machining operation, the 

frequency content of the milling signals contains the tooth passing frequency, runout 

frequency, and multiples (harmonics) of these.  Because of this fact, stable cuts are 

typically described as having a “clean” sound.  Unstable cuts also contain these frequency 

components, however, they also emit a chatter frequency which results in a “harsh, 

unappealing” sound on the shop floor.  Since chatter can be recognized by the manifestation 

of a chatter frequency, the severity of chatter can be established by the amplitude of the 

chatter frequency component relative to the tooth passing frequency amplitude. 

Amplitude ratio diagrams are generated through multiple iterations of a time 

domain simulation over a range of spindle speed and axial depth of cut combinations.  At 

the conclusion of each simulation the steady state portion of a frequency domain milling 

signal is examined for the maximum amplitude of the tooth passing frequency (and 

harmonics) component and, if present, the chatter frequency component.  Figure 4.4 

provides an illustrative example where the selected milling signal is the relative 

displacement between the tool and workpiece.  For the purposes of experimental validation, 

a measurable quantity, such as workpiece velocity (laser vibrometer) or acceleration 
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(accelerometer), may be selected. 

 

 

 

Figure 4.4:  The relative displacement of the tool and workpiece given in the time and 

frequency domains.  The tooth passing frequency component and chatter frequency 

component are indicated, and the amplitude ratio is calculated as 1.56. 

 

 

Finally the amplitude ratios for each combination of spindle speed and axial depth 

of cut are plotted as a contour map.  The amplitude ratio, 𝑟𝑎𝑚𝑝, is calculated as: 

 

 

 𝑟𝑎𝑚𝑝 =
𝐴𝑐𝑓

𝐴𝑡𝑝𝑓
 (4.10) 

 

 

 

where 𝐴𝑐𝑓 is the amplitude of the chatter frequency component and 𝐴𝑡𝑝𝑓 is the maximum 
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amplitude of the tooth passing frequency (and harmonics) component in a given milling 

signal.  An illustrative example, which was generated for the same machining operation as 

the PTP force diagram given in Figure 4.3, is shown in Figure 4.5.  These diagrams provide 

similar global stability information.  Large stable regions (white) are evident that are 

predicted to contain no chatter frequency component.  Further, the severity of chatter is 

evident by value of the amplitude ratio.  It may be the case that a small chatter frequency 

component (𝑟𝑎𝑚𝑝 ≪ 1) is acceptable for most machine shop applications.  However, as the 

amplitude ratio becomes larger chatter becomes increasingly severe. 

 

 

 

Figure 4.5:  Example amplitude ratio diagram. 
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4.1.3 Spatially Dependent Workpiece Dynamics 

 

 

Two of the factors that complicate stable machining of near net shape preforms are: 

1) the spatial dependence of workpiece dynamics 

2) the continuous variation of workpiece dynamics as material is removed 

For machining stability analyses, using both analytical and numerical techniques, the 

dynamic response of the tool and/or workpiece dictate the stability limit for each machining 

process.  Typically the tool and/or workpiece dynamics are measured or modeled at their 

most flexible location because it represents a critical limitation in terms of stability.  This 

method is well-suited for machining processes where the cutting tool flexibility (rather than 

the workpiece flexibility) limits the stable axial depth of cut because the tool point 

dynamics remain constant throughout the cut (i.e., assuming that spindle dynamics are 

unaffected by centrifugal, thermal, or gyroscopic effects and/or changes in preload [75, 

76]).  This scenario presents in cases where the machine-toolholder-tool system is 

considerably more flexible than the quasi-rigid workpiece.  However, in cases where the 

workpiece flexibility limits the stable axial depth of cut, the material removal rate can be 

increased by using sophisticated toolpath strategies to leverage the spatial dependence of 

the workpiece dynamics. 

 A methodology to incorporate the spatial variation of workpiece dynamics into the 

time domain simulation is presented.  The dynamics, represented by the frequency response 

function, over a grid of discrete positions on the workpiece are modeled and predicted 

using the finite element method following the analysis outlined in [77].  Modal parameters 

were extracted using the peak picking technique, and the simulated modal stiffnesses were 

normalized to the minimum stiffness value thereby constituting a lookup table of 
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multiplication factors.  The FRF of the workpiece was experimentally measured at the 

location of minimum stiffness, and the lookup table of multiplication factors is used to 

extrapolate the measured stiffness to the simulation locations.  Linear interpolation was 

used to calculate the unknown modal stiffnesses at coordinates adjacent to the simulation 

coordinates.  In the time domain simulation, the tool position at each discrete time step is 

monitored, and the modal parameters for that position are used to solve the dynamic 

equations of motion in modal coordinates. 

 In this research the workpiece dynamics were modeled and predicted using the 

commercial finite element package Abaqus®.  The two-stage analysis procedure consists 

of: (1) eigenvalue extraction to determine the workpiece natural frequencies and mode 

shapes and (2) a steady-state dynamic analysis to calculate the linearized system response 

(i.e., frequency response function).  To provide an example of the dynamic analysis 

procedure, a representative flexible workpiece with clamped-clamped-clamped-free 

boundary conditions was chosen; see Figure 4.6(a). 

 After modeling and/or importing the workpiece geometry into Abaqus® CAE, the 

material properties were defined.  In this representative case the workpiece material was 

Ti6Al4V (i.e., titanium alloyed with aluminum and vanadium) for which the relevant 

material properties are given in Table 4.1.  The refined mesh, shown in Figure 4.6(b), has 

a fine density in regions of interest (i.e., the flexible, thin wall) and a coarse density 

otherwise.  Using the Abaqus® vernacular, an encastrè boundary condition (i.e., all 

translations and rotations are set equal to zero) was defined at the workpiece base.  This 

boundary condition does not perfectly model the true, bolted connection, but the resulting 

analysis provides sufficiently accurate results. 
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Table 4.1:  Material properties for Ti6Al4V 

Density 4430 𝑘𝑔 𝑚3⁄  

Young’s modulus 113.8 𝐺𝑃𝑎 

Poisson’s ratio 0.342 

 

 

 

 Eiegenvalues (i.e., natural frequencies) and eigenvectors (i.e., mode shapes) were 

extracted using the default method (i.e., Lanczos) by solving the characteristic equation for 

undamped, free vibration which is given by: 

 

 

 (−𝜔2𝑀𝑚𝑛 + 𝐾𝑚𝑛)𝜙𝑛 = 0 (4.11) 

 

 

 

where 𝑀 is the mass matrix, 𝐾 is the stiffness matrix, 𝜙 is the eigenvector, and 𝑚𝑛 are the 

degrees of freedom. 

 

 

 

Figure 4.6:  Representative flexible workpiece with clamped-clamped-clamped-free 

boundary conditions (a) with refined mesh (b). 

 

(a) (b) Fixed base 
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 The eigenvalue extraction was performed over a frequency range of 0 − 20 𝑘𝐻𝑧, 

and the first three mode shapes of the flexible, thin wall, which occur at 6596 𝐻𝑧, 

10293 𝐻𝑧, and 16305 𝐻𝑧 are shown in Figure 4.7.  As expected, for each mode of 

vibration (𝑛 = 1, 2, 3) there are 𝑛 − 1 nodes with zero theoretical displacement. 

 

 

 

Figure 4.7:  First three bending mode shapes for the flexible, thin wall. 

 

 

 Once the eigenvalues (i.e., natural frequencies) and eigenvectors (i.e., mode shapes) 

were determined, the second stage of the procedure determines the linearized system 

response (i.e., frequency response function) subject to a continuous harmonic excitation 

using a steady-state dynamic analysis.  Abaqus® uses the eigenvalues extraction in the first 

stage to calculate the steady state solution of the equations of motion as a function of the 

(c) Mode 3 (16305 Hz) 

(a) Mode 1 (6596 Hz) (b) Mode 2 (10293 Hz) 
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applied frequency.  In practice, the user defines a frequency range of interest over which 

to perform the dynamic analysis.  The range is discretized into frequency steps.  Because 

the information of interest in the system response is localized to bandwidths in the vicinity 

of the system’s natural frequency, frequency step size in these regions should be small 

enough to provide adequate resolution.  This is particularly important for systems with low 

damping because the frequency response function is defined by sharp peaks over narrow 

bandwidths. 

 In order to determine the coordinate dependent stiffness of the flexible, thin wall, 

the steady-state dynamic analysis was completed over a grid of discrete points as shown in 

Figure 4.8.  The workpiece geometry was subdivided into five 4.8 𝑚𝑚 “elements” in the 

vertical direction and ten 10 𝑚𝑚 elements in the horizontal directions. 

 

 

 

Figure 4.8:  Grid of discrete points (green circles) where steady-state dynamic analysis 

were completed. 

10 mm 

4.8 mm 
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 A concentrated nodal force is applied to the displacement degree of freedom at the 

location of interest in the structure’s response (i.e., the grid of discrete points).  These loads 

vary sinusoidally with time over the user-defined frequency range.  The user-defined, 

viscous damping ratios for all modes of vibration were defined as 0.0015.  Once the steady-

state dynamic analysis was completed, the frequency response function for the coordinate 

of interest was calculated.  As shown in Figure 4.9, the FRF, which contains information 

about the stiffness of the workpiece, varies as a function of workpiece position.  It is 

noteworthy that the FRF at the center, free edge of the workpiece does not contain vibration 

mode two because it is a node location.  The modal parameters (i.e., mass, stiffness, and 

damping) were extracted from the simulated FRF at each simulation point using the peak 

picking method. 
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Figure 4.9:  Representative frequency response function for two locations at the free edge 
of the flexible, thin wall. 

 

 

For each mode of vibration, the modal stiffnesses calculated from the simulated 

FRFs were normalized to the minimum stiffness value thereby constituting a lookup table 

of multiplication values.  The FRF of the workpiece was experimentally measured at the 

Mode 1 Mode 1 Mode 2 
Mode 3 Mode 3 
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center of the free edge of the flexible, thin wall which is the location of minimum stiffness 

for vibration modes one and three.  Figure 4.10 shows the measured and simulated FRFs 

at the center of the free edge.  Because of differences in the boundary conditions and 

damping ratio, the simulated and measured FRFs are frequency shifted and vary in dynamic 

stiffness.  The lookup table of multiplication factors (i.e., from the simulated FRFs) was 

used to extrapolate the measured modal stiffness to the simulation coordinates. 

 

 

 

Figure 4.10:  Measured and simulated workpiece FRF at the location of minimum 

stiffness for vibration mode one and three (i.e., center of the free edge). 

 

 

A linear interpolation of the measured, extrapolated modal stiffnesses was 

performed to calculate the unknown stiffness values between adjacent coordinates.  The 
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interpolated modal stiffness for vibration mode one is shown as a continuous surface in 

Figure 4.11(b) and at the free edge in Figure 4.11(c).  As expected, the maximum stiffness 

occurs near the fixed edges, and the minimum stiffness occurs at the center of the free edge. 

 

 

 

Figure 4.11:  Linearly interpolated mode one stiffness for the flexible, thin wall (a) over 

the entire xy surface (b) and at the free edge (c). 

 

 

The spatially dependent stiffness is incorporated into the time domain simulation 

by tracking the position of the cutting tool relative to the flexible workpiece and evaluating 

x 
y 

free edge 

(a) 

(c) 

(b) 
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the workpiece dynamics at that position.  The position of the cutting tool relative to the 

workpiece is a function of the spindle speed, feed per tooth (i.e., chip load), the simulation 

time step, and the start/end position of the tool relative to the flexible workpiece.  The 

dynamic equation of motion for the workpiece in the y direction (i.e., the direction of 

principal flexibility) is solved in modal coordinates and includes spatially dependent mass, 

stiffness, and damping.  The equation of motion for the workpiece in the y direction can be 

given as: 

 

 

 𝐹𝑞
𝑖 = 𝑚𝑞(𝑝𝑡𝑤 ,

𝑏
2⁄ )𝑞̈

𝑖 + 𝑐𝑞(𝑝𝑡𝑤 ,
𝑏
2⁄ )𝑞̇

𝑖 + 𝑘𝑞(𝑝𝑡𝑤,
𝑏
2⁄ )𝑞

𝑖  (4.12) 

 

 

 

where 𝑝𝑡𝑤 is the position of the cutting tool relative to the workpiece in the x direction, 𝑏 

is the axial depth of cut.  The spatially dependent modal mass, damping, and stiffness are 

𝑚𝑞(𝑝𝑡𝑤 ,
𝑏
2⁄ ), 𝑐𝑞(𝑝𝑡𝑤 ,

𝑏
2⁄ ), and  𝑘𝑞(𝑝𝑡𝑤 ,

𝑏
2⁄ ).  At each incremental time step the modal 

parameters are evaluated at the tool position relative to the workpiece in the x direction and 

half the axial depth of cut in the y direction as defined in Figure 4.11(a). 

 As an illustrative example, Figure 4.12 shows a solid model representation of a 

peripheral, down milling cut of a flexible, thin wall where the tool enters the cut near a 

fixed edge (1), feeds continuously along the workpiece past the point of minimum stiffness 

(2), and exits the cut near the other fixed edge (3).  Figure 4.13 shows the simulated cutting 

forces in the xyz directions and workpiece velocity in the y direction.  In the simulation the 

cutting tool enters the cut near a fixed edge (1) where the workpiece stiffness is at a 

maximum, and subsequently, the cutting forces are at a maximum and workpiece velocity 

is at a minimum.  As the cutting tool feeds along the workpiece, the stiffness decreases to 
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a minimum (2), and similarly, the cutting forces reach a minimum and workpiece velocity 

reaches a maximum.  Finally, the cutting tools exits the cut near a fixed edge (3). 

 

 

 

Figure 4.12:  Solid model representation of a peripheral, down milling cut of a flexible, 

thin wall. 
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Figure 4.13:  Representative example of time domain simulation outputs including 

spatially dependent workpiece dynamics. 

 

4.2 Modal Parameter Identification 

 

 

For modeling purposes, modal parameters must be identified to describe the 

dynamic response of the system (i.e., tool/workpiece).  An automated modal parameter 

identification method has been developed that utilizes a two-stage process including: (1) 

individual mode identification using the peaking picking method and (2) a nonlinear 

optimization for all modes.  The peak picking method, detailed in [59], is used to perform 

a preliminary fit to the FRF.  Because of modal truncation, where modes are present outside 

1 2 3 1 2 3 

1 2 3 1 2 3 
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of the measurement bandwidth and contribute to the dynamic response of the dynamometer 

but cannot be included in the fit, the accuracy of the FRF fit suffers.  To reduce this effect 

and improve the accuracy of the fit, a nonlinear optimization of the FRFs real and 

imaginary components is performed. 

 

4.2.1 Individual Mode Identification 

 

 

In this step, the individual modes within the frequency bandwidth of interest are 

identified.  For example, at high frequencies the measurement coherence, which serves as 

quality index for determining measurement accuracy, may be poor.  Therefore, these 

frequency ranges are truncated.  Because the imaginary part of a direct FRF is purely 

negative, the individual modes of the response can be identified by scanning for the 

negative peaks.  The mode identification algorithm compares each element within a vector 

with its neighboring elements and recognizes those which are less than both its neighboring 

elements.  For this reason, the method is susceptible to noisy measurement data.  A number 

of strategies are used to minimize this effect.  A symmetric moving average filter, whose 

filtering properties are defined by weighting coefficients and windowing length, is applied 

to smooth the (potentially) noisy data.  The weighting coefficients and windowing length 

are user-defined variables.  It is of practical note that the output of the moving average 

filter is frequency shifted.  The magnitude of the frequency shift is dependent upon the user 

defined windowing length. 

Figure 4.14 shows the real and imaginary parts of a measured force-to-force FRF 

(dynamometer FRF) where the individual modes within the selected frequency range have 

been identified (red circles) and numbered.  By examination of Figure 4.14, it is shown that 
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18 modes have been identified.  To further downselect the number of identified modes, the 

user is prompted to select the individual modes to be included in the fitting algorithm.  For 

the example provided here a total of 11 modes have been designated. 

 

 

 

Figure 4.14:  An illustrative force-to-force FRF with individual modes identified (red 

circles) and numbered. 

 

 

Before optimizing for the combined response of all the modes together, the peak 

picking method was executed over small frequency ranges to identify the modal mass, 

damping ratio, and natural frequency for each mode independently.  These parameters were 

used to provide an initial estimate of the solution before optimizing for the combined 

response of all the modes together.  This ensured faster convergence towards the solution 
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when optimizing for the combined FRF. 

To identify the modal parameters for each selected mode, the imaginary part of the 

FRF is scanned for the most negative peak (most flexible).  Once the peak has been 

identified, a frequency range is defined within which the peak picking method is applied.  

The defined frequency range depends on the location of the individual mode within the 

total response, and its proximity to the neighboring modes.  Within this range the peak 

picking method is employed and the modal parameters for that individual mode are 

identified.  The identified mode is then deleted from the overall response and the process 

is repeated for the next most negative peak.  Figure 4.15 shows the measured FRF from 

Figure 4.14 with mode 13 deleted and the removed mode which was fit using the peak 

picking method.  This process is completed iteratively until all of the selected modes have 

been fit using the peak picking method.  The measured FRF and corresponding individual 

modes identified using the peak picking method are shown in Figure 4.16. 

 

 



78 

 

Figure 4.15:  The measured force-to-force FRF with the most flexible mode deleted from 

the response and the removed mode identified by the peak picking method. 
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Figure 4.16:  The measured FRF and corresponding individual modes identified using the 

peak picking method. 

 

4.2.2 Optimization for All Modes 

 

 

Once the modal mass, damping ratio, and natural frequency were identified for all 

the individual modes as described in the previous step, these values were used to provide 

an initial estimate for optimizing for the combined effects of all modes simultaneously.  

The measured and fit FRFs are passed into a nonlinear optimization function.  The function 

builds the combined FRF using the individual modes (which were fit using the peak picking 

method) and compares it to the measured FRF.  An objective function quantifies the 

difference in the two nonlinear functions and the optimization routine iteratively updates 

the decision variables (modal parameters) until a set of user-defined convergence criteria 
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are met.  The objective function to be minimized is given as: 

 

 

 𝑓𝑖(𝑥) =  {
𝑟𝑒𝑎𝑙(𝐹𝑅𝐹)

𝑖𝑚𝑎𝑔(𝐹𝑅𝐹)
}
𝑖

𝑓𝑖𝑡

− {
𝑟𝑒𝑎𝑙(𝐹𝑅𝐹)

𝑖𝑚𝑎𝑔(𝐹𝑅𝐹)
}
𝑖

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 (4.13) 

 

 

 

where 𝑥 is the vector of decision variables (modal parameters), and 𝑓𝑖(𝑥) is the difference 

between the real and imaginary components of the fit and measured FRFs at the 𝑖th 

frequency step.  Figure 4.17 shows a comparison between the measured FRF and the fits 

resulting from the peak picking method and nonlinear optimization. 

 

 

 

Figure 4.17:  A comparison of the measured FRF to the fits resulting from the peak 

picking method and nonlinear optimization.



CHAPTER 5: NUMERICAL MILLING SIMULATION COMPARISON 

 

 

To evaluate the amplitude ratio diagrams, comparison to results found in the 

literature were performed.  Two cases of interest in milling have been selected for the study: 

(1) period-n flip instability and (2) helix angle induced islands of instability.  Both cases 

occur during low radial immersion milling. 

 

5.1 Low Radial Immersion Milling 

 

 

In [43] Govekar et al. use the numerical semi-discretization method to identify 

Hopf and period-2 instabilities during low radial immersion milling.  The stability diagram, 

shown in Figure 5.1, was experimentally verified.  A single flute, 8 𝑚𝑚 diameter endmill 

mounted in an HSK40E shrink fit holder with a 96 𝑚𝑚 overhang and 45 ° helix angle was 

used for the up milling tests.  The 5 % radial immersion (i.e., 0.4 𝑚𝑚 radial depth of cut) 

provided highly interrupted (i.e., low radial immersion) cutting conditions.  The specific 

cutting force and force angle for the aluminum workpiece-tool combination was 

determined mechanistically to be 644 𝑀𝑃𝑎 and 69.7°, respectively. 

The large length-to-diameter ratio of the cutting tool resulted in a single, dominant 

vibration mode for which the modal parameters in the x (feed) and y directions are given 

in Table 5.1.  The stability diagram obtained using the semi-discretization method is given 

in Figure 5.1.  It shows that the Hopf instabilities are open curves distributed along the 

spindle speed axis and period-2 flip instabilities manifest as close curves. 
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Table 5.1:  Cutting tool modal parameters obtained from impact testing. 

x (feed) direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

721 4.1 × 105 0.009 

y direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

721 4.1 × 105 0.009 

 

 

 

 

Figure 5.1:  Stability lobe diagram with secondary Hopf (dashed) and period-2 (solid) 

stability boundary redrawn from [43] obtained using the semi-discretization method. 

 

 

The stability diagram obtained using the amplitude ratio stability metric is given in 

Figure 5.2.  The agreement between the stability diagrams is evident.  It is observed that 

the amplitude ratio diagrams predicts a similar stability boundary between stable and 

unstable spindle speed-axial depth of cut combinations.  Additionally, the regions of 

period-2 instability are visible. 
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Figure 5.2:  Stability lobe diagram with secondary Hopf and period-2 stability boundary 
using the amplitude ratio method. 

 

5.2 Helix Angle Induced Islands of Instability 

 

 

In [48] Insperger et al. uses the numerical semi-discretization method to show that 

unstable flip (i.e., period doubling) islands manifest on the milling stability diagram due to 

the helix angle of the cutting tool.  In this numerical study a four flute, 20 𝑚𝑚 endmill 

with various helix angles was used in a down milling configuration.  Flexibility in the 

milling system occurs on the workpiece side in the y direction using a flexure for which 

modal parameters are given in Table 5.2.  The tool is considered quasi-rigid, relative to the 

flexure, in both the x (feed) and y directions.  The radial immersion is 5 % (i.e., 1 𝑚𝑚) and 

the cutting force coefficients in the tangential and radial directions are 804.3 𝑁 𝑚𝑚2⁄  and 

331 𝑁 𝑚𝑚2⁄ , respectively. 
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Table 5.2:  Modal parameters for the workpiece (flexure) measured using impact testing. 

y (feed) direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

319.375 2.16 × 107 0.0196 

 

 

 

Milling stability diagrams are generated using the semi-discretization method for 

tools of different helix angle.  Insperger et al. define the helical pitch, 𝑝, as: 

 

 

 𝑝 =
𝐷π

𝑁 tan 𝜂
 (5.1) 

 

 

 

where 𝐷 is the tool diameter, 𝑁 is the number of cutting teeth, and 𝜂 is the helix angle.  

Milling stability diagrams, generated using the semi-discretization method, for helical 

pitches of 100 𝑚𝑚, 50 𝑚𝑚, and 25 𝑚𝑚 are given in Figure 5.3.  Rather than spindle 

speed, the horizontal axis is expressed as the ratio of the tooth passing frequency to the 

natural frequency of the system providing a “normalized spindle speed.”  As noted by 

Insperger et al. the stability islands are separated by lines where the axial depth of cut is 

equal to the multiples of the helical pitch. 

 Figure 5.4 shows the amplitude ratio diagram obtained using the time domain 

simulation.  The agreement of the stability diagrams is evident.  The amplitude ratio 

diagram predicts a similar stability limit between stable and unstable combinations of 

spindle speed and axial depth of cut.  Additionally, the unstable islands of instability due 

to cutting tool helix angle are apparent. 
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Figure 5.3:  Milling stability diagrams for different helical pitches using the semi-

discretization method. 
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Figure 5.4:  Amplitude ratio diagram for different helical pitches using time domain 
simulation.
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CHAPTER 6: EXPERIMENTAL MILLING SIMULATION VALIDATION 

 

 

The following sections provide a representative example from the experimental 

validation of the time domain simulation. Predictions and measurements are presented. 

 

6.1 Aluminum Milling Stability Validation 

 

 

To validate the time domain simulation model, experiments were conducted. The 

cutting tests were performed on compliant workpieces, shown in Figure 6.1, which 

simulate near net shape preforms.  These compliant workpieces were machined from 6061-

T651 aluminum and are composed of two thin-walled structures (ribs) with clamped-

clamped-clamped-free (CCCF) boundary conditions.  The nominal geometric dimensions 

of the thin-walled structures, or ribs, are given in Table 6.1. 

 

 

 

Figure 6.1:  Solid model of the flexible workpiece (simulated preform) used for 

validation testing. 

 

 

Validation tests were performed on a LeBlond Makino A55 horizontal machining 

center with a maximum spindle speed of 20 krpm.  Cutting forces, measured by a 
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dynamometer (Kistler 9257B), were the primary metric for validating the simulation 

outputs.  The cutting tool used for the validation experiments was a 12.7 mm carbide end 

mill with two flutes, evenly spaced, and a 30º helix angle.  Modal parameters for the tool 

were obtained via impact testing using an instrumented hammer (PCB 086C04) to provide 

the excitation force and a low mass accelerometer (PCB 352C23) to record the response. 

Table 6.2 lists the natural frequency, 𝑓𝑛, modal stiffness, 𝑘, and damping ratio, 𝜁, for the 

dominant modes in the plane of the cut (i.e., x-y). 

 

 

Table 6.1:  Nominal geometric dimensions of the flexible ribs. 

Length Height Thickness 

130 mm 15 mm 1.5 mm 

 

 

 

Since cutting forces were used as the primary metric by which the simulation model 

was validated, the workpiece was bolted to a cutting force dynamometer (Kistler 9257B) 

during impact testing, as shown in Figure 6.2, to properly represent the workpiece 

dynamics during the validation tests.  An instrumented hammer (PCB 084A17) was used 

to provide the excitation force and the workpiece response was measured using a non-

contact laser vibrometer (Polytec OFV-534).  Table 6.3 lists the natural frequency, 𝑓𝑛, 

modal stiffness, 𝑘, and damping ratio, 𝜁, for the two modes in the direction of greatest 

compliance (i.e., y direction). 
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Figure 6.2:  Impact testing setup for the compliant workpiece. 

 

Table 6.2:  Modal parameters for the cutting tool. 

x direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

2265 3.11 × 107 0.034 

y direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

2254 3.09 × 107 0.027 

 

 

 

The specific force coefficients used to calibrate the mechanistic force model applied 

in the time domain simulation were calculated using a nonlinear optimization method 

similar to the technique described in [78].  This method fits a set of simulated, 

instantaneous cutting forces to a set of measured, instantaneous cutting forces by iteratively 

updating the specific force coefficients until the convergence criteria is met.  The cutting 

force coefficients may be considered to be a function of not only the cutting tool geometry 

and workpiece material, but also machining parameters.   Cutting tests, for determining the 
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specific force coefficients, were performed at 8% radial immersion, 3 mm axial depth of 

cut, 8000 rpm spindle speed, and a commanded feed rate of 0.1 mm tooth⁄ .  Table 6.4 

lists the six specific force coefficients used in the simulation. 

 

Table 6.3:  Modal parameters for ribs 1 and 2. 

Rib1 

Mode 𝑓𝑛 (𝐻𝑧) 𝑘 (𝑁 𝑚⁄ ) 𝜁 

1 5837 1.59 × 106 0.0007 

2 7787 4.17 × 106 0.0008 

Rib 2 

Mode 𝑓𝑛 (𝐻𝑧) 𝑘 (𝑁 𝑚⁄ ) 𝜁 

1 5832 1.39 × 106 0.0007 

2 7789 2.12 × 106 0.0024 

 

 

Table 6.4:  Cutting force coefficients used in the time domain simulation. 

Cutting force coefficients 

𝑘𝑡𝑐 (𝑁 𝑚𝑚2⁄ ) 𝑘𝑟𝑐 (𝑁 𝑚𝑚2⁄ ) 𝑘𝑎𝑐(𝑁 𝑚𝑚2⁄ ) 

1119 322 305 

Edge force coefficients 

𝑘𝑡𝑒 (𝑁 𝑚𝑚⁄ ) 𝑘𝑟𝑒 (𝑁 𝑚𝑚⁄ ) 𝑘𝑎𝑒 (𝑁 𝑚𝑚⁄ ) 

2 0 0 

 

 

 

The simulations were performed at 2% radial immersion in a down milling 

configuration with a commanded feed rate of 0.1 mm tooth⁄ .  Flute-to-flute runout was 

specified as 3 μm. 

The PTP force diagrams for validation testing were generated over a spindle speed 

range from 7000 rpm to 9000 rpm at increments of 50 rpm and the axial depth of cut 

ranged from 0 mm to 0.6 mm in increments of 0.1 mm.  Computation time was 
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approximately 5 minutes for each simulation.  The PTP force diagram for rib 1, shown in 

Figure 6.3, was used to select a spindle speed-axial depth of cut combination at which to 

perform a validation test.  A stable cut, as predicted by the simulation, was chosen.  

Similarly, an unstable test cut was chosen for rib 2; see Figure 6.4.  A comparison of the 

simulated and measured, instantaneous cutting forces are provided in the following section. 

 

 

 

Figure 6.3:  PTP force diagram indicating the selected stable test point for rib 1. 
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Figure 6.4.  PTP force diagram indicating the selected unstable test point for rib 2. 

 

6.1.1 Experiment Results 

 

 

In this section, the simulated and measured cutting forces (x and y directions) for 

the stable and unstable validation tests are presented. The experimental results are shown 

in both the time and frequency domains. A restatement of the coordinate system definition 

is provided in Figure 6.5. 
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Figure 6.5:  Coordinate system definition. 

 

 

The simulated and measured x-direction cutting forces for the stable validation test, 

which was performed at a spindle speed of 8275 rpm and an axial depth of cut of 0.4 mm, 

are shown in Figure 6.6.  It is observed that the measured and simulated cutting forces are 

in good agreement and that the variation in the cutting force from one tooth engagement to 

the next, due to flute-to-flute runout, is also captured by the time domain simulation. 

 

 

 

Figure 6.6:  Measured and simulated x-direction cutting forces for the rib 1 test point 

(stable case) shown for two cutter revolutions. 

 

 

The frequency content of the x-direction cutting force, computed using the fast 

Fourier transform (FFT) of the data in Figure 6.6, is displayed in Figure 6.7.  It is observed 
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that the dominant frequencies are the tooth passing frequency, 276 Hz, and the runout 

frequency, 138 Hz, as well as their integer multiples (i.e., harmonics).  Some amplification 

of the frequency content near the rib’s natural frequencies is also evident. 

 

 

 

Figure 6.7.  Frequency content of the measured (top) and simulated (bottom) x-direction 

cutting forces for the rib 1 test point (stable case). 

 

 

The measured and simulated y-direction cutting forces, shown in Figure 6.8, also 

exhibit good agreement.  The frequency content matches as well; see Figure 6.9.  A 

magnified image of the stable milling cut is provided in Figure 6.10.  The tool feed marks 

are clearly visible and chatter is not observed. 

Discrepancies between the measured and simulated cutting forces are primarily due 

to the limited bandwidth of the dynamometer.  Because the dynamometer is a dynamic 
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system with its own characteristic frequency response, the measured cutting forces become 

distorted as the frequency content of the signal approaches the dynamometer’s natural 

frequency.  Higher frequency content is attenuated due to the limited bandwidth and as a 

result the dynamometer is unable to resolve the sharp peaks in the cutting force.  

Additionally, the non-zero forces between the individual cutting flute engagements is due 

to “ringing” or free vibration of the dynamometer-workpiece system. 

 

 

 

Figure 6.8.  Measured and simulated y-direction cutting forces for the rib 1 test point 

(stable case) shown for two cutter revolutions. 
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Figure 6.9.  Frequency content of the measured (top) and simulated (bottom) y-direction 

cutting forces for the rib 1 test point (stable case). 

 

 

 

Figure 6.10.  Surface finish of the rib 1 test point (stable case). 
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The simulated and measured y-direction cutting forces for the unstable validation 

test, which was performed at a spindle speed of 8075 rpm and an axial depth of cut of 

0.4 mm, are presented in Figure 6.11.  As with the stable case, good agreement in the peak 

force is observed.  However, the measured forces exhibit a high frequency component 

when the tool is not engaged in the cut which is not found in the simulated force signal.  

As discussed previously, the high frequency component between the individual cutting 

flute engagements is due to “ringing” or free vibration of the dynamometer-workpiece 

system. 

 

 

 

Figure 6.11.  Measured and simulated x-direction cutting forces for the rib 2 test point 

(unstable case) shown for two cutter revolutions. 
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The frequency content of the x-direction cutting forces is provided in Figure 6.12.  

Both the measured and simulated forces exhibit frequency content at the tooth passing 

frequency (269 Hz), runout frequency (134.5 Hz), and harmonics as well as a chatter 

frequency of 6935 Hz.  Larger amplitudes for the experimental content in this frequency 

range explains the difference in the time-domain signals. 

 

 

 

Figure 6.12.  Frequency content of the measured (top) and simulated (bottom) x-direction 

cutting forces for the rib 2 test point (unstable case). 

 

 

The measured and simulated y-direction cutting forces, shown in Figure 6.13 and 

Figure 6.14, present similar results.  A magnified image of the surface finish is provided in 

Figure 6.15.  Chatter marks, which have a high spatial frequency, are observed. 
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Figure 6.13.  Measured and simulated y-direction cutting forces for the rib 2 test point 

(unstable case) shown for two cutter revolutions. 

 

 

 

Figure 6.14.  Frequency content of the measured (top) and simulated (bottom) y-direction 

cutting forces for the rib 2 test point (unstable case). 
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Figure 6.15.  Surface finish of the rib 2 test point (unstable case). 

 

6.2 Titanium Milling Stability Validation 

 

 

Cutting tests were also performed on compliant titanium alloy (i.e., Ti6Al4V) 

workpieces; see Figure 6.16.  These compliant workpieces, which simulate near net shape 

preforms, are composed of two thin wall structures with clamped-clamped-clamped-free 

(CCCF) boundary conditions.  The nominal geometric dimensions of the thin-walled 

structures, or ribs, are given in Table 6.5.  During the cutting tests, the nominal rib thickness 

was reduced from 4 𝑚𝑚 to 2 𝑚𝑚 in 0.5 𝑚𝑚 increments by a series of peripheral milling 

operations. 
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Figure 6.16:  Solid model of the flexible workpiece (simulated preform) used for 
validation testing. 

 

 

Validation tests were performed on a Haas TM1 vertical machining center with a 

maximum spindle speed of 4000 rpm.  Cutting forces, measured by a dynamometer (Kistler 

9257B), and workpiece velocity, measured by a laser vibrometer (Polytec OFV-534), were 

the primary metrics for validating the simulation outputs.  Minimum quantity lubrication 

(MQL) (i.e., mist coolant) was used during the test cuts.  The cutting tool used for the 

validation experiments was a 19.05 mm carbide end mill with two flutes, evenly spaced, 

and a 30º helix angle.  Modal parameters for the tool were obtained via impact testing using 

an instrumented hammer (PCB 086C04) to provide the excitation force and a low mass 

accelerometer (PCB 352C23) to record the response.  Table 6.10 lists the natural frequency, 

𝑓𝑛, modal stiffness, 𝑘, and damping ratio, 𝜁, for the dominant modes in the plane of the cut 

(i.e., x-y). 
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Table 6.5:  Nominal geometric dimensions of the flexible ribs. 

Length Height Thickness 

100 mm 24 mm 2 - 4 mm 

 

 

 

The workpiece was bolted to a cutting force dynamometer (Kistler 9257B) during 

impact testing, as shown in Figure 6.17, to properly represent the workpiece dynamics 

during the validation tests.  An instrumented hammer (PCB 084A17) was used to provide 

the excitation force and the workpiece response was measured using a non-contact laser 

vibrometer (Polytec OFV-534).  The measurement was performed at the top, center (i.e., 

the location of minimum stiffness) of the flexible, thin wall.  Table 6.7 lists the natural 

frequency, 𝑓𝑛, modal stiffness, 𝑘, and damping ratio, 𝜁, for the first two bending modes in 

the direction of greatest compliance (i.e., y direction) for each rib thickness. 
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Figure 6.17:  Experimental setup for the compliant workpiece. 

 

Table 6.6:  Modal parameters for the cutting tool. 

x direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

1029 4.3 × 107 0.0685 

y direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

1161 6.6 × 107 0.0483 

 

 

 

The specific force coefficients used to calibrate the mechanistic force model applied 

in the time domain simulation were calculated using a nonlinear optimization method 

similar to the technique described in [78].  This method fits a set of simulated, 
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instantaneous cutting forces to a set of measured, instantaneous cutting forces by iteratively 

updating the specific force coefficients until the convergence criteria is met.  The cutting 

force coefficients may be considered to be a function of not only the cutting tool geometry 

and workpiece material, but also machining parameters.   Cutting tests, for determining the 

specific force coefficients, were performed at 2.6% radial immersion, 5 mm axial depth of 

cut, 1000 rpm spindle speed, and a commanded feed rate of 0.1 mm tooth⁄ .  Table 6.8 

lists the six specific force coefficients used in the simulation. 

 

Table 6.7:  Modal parameters of the compliant workpiece’s first bending mode for 

different rib thicknesses. 

Rib thickness (𝑚𝑚) Mode number 𝑓𝑛  (Hz) 𝑘 (N m⁄ ) 𝜁 

4.0 
1 7391 1.2 × 107 0.0010 

2 16758 8.6 × 107 0.0024 

3.5 
1 6628 7.9 × 106 0.0088 

2 14637 4.4 × 107 0.0080 

3.0 
1 5787 4.8 × 106 0.0020 

2 13002 3.0 × 107 0.0019 

2.5 
1 4956 2.8 × 106 0.0012 

2 11125 2.1 × 107 0.0012 

2.0 
1 4071 1.4 × 106 0.0011 

2 9164 9.7 × 106 0.0006 
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Table 6.8:  Cutting force coefficients used in the time domain simulation. 

Cutting force coefficients 

𝑘𝑡𝑐 (𝑁 𝑚𝑚2⁄ ) 𝑘𝑟𝑐 (𝑁 𝑚𝑚2⁄ ) 𝑘𝑎𝑐(𝑁 𝑚𝑚2⁄ ) 

2076 918 895 

Edge force coefficients 

𝑘𝑡𝑒 (𝑁 𝑚𝑚⁄ ) 𝑘𝑟𝑒 (𝑁 𝑚𝑚⁄ ) 𝑘𝑎𝑒 (𝑁 𝑚𝑚⁄ ) 

8 18 −4 

 

 

 

The time domain simulations were performed at 2.6% radial immersion (i.e., 

0.5 𝑚𝑚 radial depth of cut) in a down milling configuration with a commanded feed rate 

of 0.1 mm tooth⁄ , a spindle speed of 1000 𝑟𝑝𝑚, and an axial depth of cut of 5 𝑚𝑚.  Flute-

to-flute runout was specified as 17.5 μm. 

 

6.2.1 Experiment Results 

 

 

In this section, the simulated and measured cutting forces (x and y directions) for 

the validation tests are presented. The experimental results are shown in both the time and 

frequency domains.  For brevity, only the results (i.e., cutting forces and workpiece 

velocity) for the 4 𝑚𝑚 and 2 𝑚𝑚 thick ribs are shown.  The results for the 3.5 𝑚𝑚, 3 𝑚𝑚, 

and 2.5 𝑚𝑚 thick ribs are provided as supplementary evidence in APPENDIX B.1. 

The simulated and measured cutting forces in the x, y, and z directions are given in 

both time and frequency domains for the 4 𝑚𝑚 thick rib in Figure 6.18, Figure 6.19, and 

Figure 6.20, respectively.  The variation in cutting forces between adjacent flute 

engagements is due to flute-to-flute runout.  The maximum difference in peak cutting force 

for all three directions was approximately 7.3 %.  The tooth passing frequency (33.3 𝐻𝑧), 

runout frequency (16.7 𝐻𝑧), and their harmonics are evident in the signal.  No chatter 
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frequency is observed. 

 

 

 

Figure 6.18:  Measured and simulated x direction cutting force shown in the time and 

frequency domains for the 4 𝑚𝑚 thick rib. 
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Figure 6.19:  Measured and simulated y direction cutting force shown in the time and 

frequency domains for the 4 𝑚𝑚 thick rib. 

 

 

 

Figure 6.20: Measured and simulated z direction cutting force shown in the time and 

frequency domains for the 4 𝑚𝑚 thick rib. 
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The measured and simulated workpiece velocity in the y direction are given in 

Figure 6.21.  The time domain signal is shown for one rotation of the cutting tool.  The 

engagement of each cutting tooth is evident as well as the free vibration response occurring 

between the cutting tooth engagements.  Aside from the tooth passing frequency, runout 

frequency, and their harmonics, the frequency domain signal also reveals a quasi-chatter 

frequency of 7417 𝐻𝑧 which corresponds to the first vibration mode of the workpiece 

(7391 𝐻𝑧). 

 

 

 

Figure 6.21:  Measured and simulated y direction workpiece velocity shown in the time 

and frequency domains for the 4 𝑚𝑚 thick rib. 

 

 

The simulated and measured cutting forces in the x, y, and z directions are given in 
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both time and frequency domains for the 2 𝑚𝑚 thick rib in Figure 6.22, Figure 6.23, and 

Figure 6.24, respectively.  The variation in cutting forces between adjacent flute 

engagements is due to flute-to-flute runout.  The maximum difference in peak cutting force 

for all three directions was approximately 27.1 %.  The tooth passing frequency (33.3 𝐻𝑧), 

runout frequency (16.7 𝐻𝑧), and their harmonics are evident in the signal.  No chatter 

frequency is observed. 

 

 

 

Figure 6.22:  Measured and simulated x direction cutting force shown in the time and 

frequency domains for the 2 𝑚𝑚 thick rib. 
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Figure 6.23:  Measured and simulated y direction cutting force shown in the time and 

frequency domains for the 2 𝑚𝑚 thick rib. 

 

 

 

Figure 6.24:  Measured and simulated z direction cutting force shown in the time and 

frequency domains for the 2 𝑚𝑚 thick rib. 



111 

 

 

The measured and simulated workpiece velocity in the y direction are given in 

Figure 6.25.  The time domain signal is shown for one rotation of the cutting tool.  The 

engagement of each cutting tooth is evident as well as the free vibration response occurring 

between the cutting tooth engagements.  Aside from the tooth passing frequency, runout 

frequency, and their harmonics, the frequency domain signal also reveals quasi-chatter 

frequencies of 4083 𝐻𝑧 and 9183 𝐻𝑧 which correspond to the first two vibration modes 

of the workpiece (4071 𝐻𝑧 and 9164 𝐻𝑧). 

 

 

 

Figure 6.25:  Measured and simulated y direction workpiece velocity shown in the time 

and frequency domains for the 2 𝑚𝑚 thick rib. 

 

6.3 Spatially Dependent Workpiece Dynamics Validation 

 

 

To validate the time domain simulation including spatially dependent workpiece 
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dynamics, experiments were conducted.  The validation tests were conducted on compliant 

workpieces, shown in Figure 6.26.  The compliant workpiece was machined from titanium 

alloy Ti6Al4V (Grade 5) and includes two thin-walled structures (ribs) with clamped-

clamped-clamped-free (CCCF) boundary conditions.  The nominal geometric dimensions 

of the thin-walled structures, or ribs, are given in Table 6.9. 

 

 

 

Figure 6.26:  Solid model of the flexible workpiece (simulated preform) used for 

validation testing. 

 

 

Validation tests were performed on a Haas TM1 vertical machining center with a 

maximum spindle speed of 4000 rpm.  Cutting forces, measured by a dynamometer (Kistler 

9257B), and workpiece velocity, measured by a laser vibrometer (Polytec OFV-534), were 
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the primary metrics for validating the simulation outputs.  Minimum quantity lubrication 

(MQL) (i.e., mist coolant) was used during the test cuts.  The cutting tool used for the 

validation experiments was a 19.05 mm carbide end mill with two flutes, evenly spaced, 

and a 30º helix angle.  Modal parameters for the tool were obtained via impact testing using 

an instrumented hammer (PCB 086C04) to provide the excitation force and a low mass 

accelerometer (PCB 352C23) to record the response.  Table 6.10 lists the natural frequency, 

𝑓𝑛, modal stiffness, 𝑘, and damping ratio, 𝜁, for the dominant modes in the plane of the cut 

(i.e., x-y). 

 

Table 6.9:  Nominal geometric dimensions of the flexible ribs. 

Length Height Thickness 

100 mm 24 mm 4 mm 

 

 

 

The workpiece was bolted to a cutting force dynamometer (Kistler 9257B) during 

impact testing, as shown in Figure 6.27, to properly represent the workpiece dynamics 

during the validation tests.  An instrumented hammer (PCB 084A17) was used to provide 

the excitation force and the workpiece response was measured using a non-contact laser 

vibrometer (Polytec OFV-534).  The measurement was performed at the top, center (i.e., 

location of minimum stiffness) of the flexible, thin wall.  Table 6.11 lists the natural 

frequency, 𝑓𝑛, modal stiffness, 𝑘, and damping ratio, 𝜁, for the first modes in the direction 

of greatest compliance (i.e., y direction).  The strategy detailed in section 4.1.3 was used to 

extrapolate the measured workpiece stiffness across the entire thin wall surface. 
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Figure 6.27:  Impact testing setup for the compliant workpiece. 

 

 

Table 6.10:  Modal parameters for the cutting tool. 

x direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

1029 4.3 × 107 0.0685 

y direction 

𝑓𝑛 (Hz) 𝑘 (N m⁄ ) 𝜁 

1161 6.6 × 107 0.0483 

 

 

 

The specific force coefficients used to calibrate the mechanistic force model applied 

in the time domain simulation were calculated using a nonlinear optimization method 
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similar to the technique described in [78].  This method fits a set of simulated, 

instantaneous cutting forces to a set of measured, instantaneous cutting forces by iteratively 

updating the specific force coefficients until the convergence criteria is met.  The cutting 

force coefficients may be considered to be a function of not only the cutting tool geometry 

and workpiece material, but also machining parameters.   Cutting tests, for determining the 

specific force coefficients, were performed at 2.6% radial immersion, 5 mm axial depth of 

cut, 1000 rpm spindle speed, and a commanded feed rate of 0.1 mm tooth⁄ .  Table 6.12 

lists the six specific force coefficients used in the simulation. 

 

 

Table 6.11:  Modal parameters for the compliant workpiece. 

Mode 𝑓𝑛 (𝐻𝑧) 𝑘 (𝑁 𝑚⁄ ) 𝜁 

1 7391 1.2 × 107 0.0010 

 

 

Table 6.12:  Cutting force coefficients used in the time domain simulation. 

Cutting force coefficients 

𝑘𝑡𝑐 (𝑁 𝑚𝑚2⁄ ) 𝑘𝑟𝑐 (𝑁 𝑚𝑚2⁄ ) 𝑘𝑎𝑐(𝑁 𝑚𝑚2⁄ ) 

2076 918 895 

Edge force coefficients 

𝑘𝑡𝑒 (𝑁 𝑚𝑚⁄ ) 𝑘𝑟𝑒 (𝑁 𝑚𝑚⁄ ) 𝑘𝑎𝑒 (𝑁 𝑚𝑚⁄ ) 

8 18 −4 

 

 

 

The simulations were performed at 2.6% radial immersion in a down milling 

configuration with a commanded feed rate of 0.1 mm tooth⁄ , a spindle speed of 

1000 𝑟𝑝𝑚, and an axial depth of cut of 5 𝑚𝑚.  Flute-to-flute runout was specified as 
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17.5 μm, and the total length of the cut in the x direction was 100 𝑚𝑚.  The first vibration 

mode of the workpiece was included in the simulation.  As shown in Figure 6.28, the 

simulation predicts that as the workpiece stiffness reaches a minimum, the cutting forces 

also reach a minimum.  Similarly, the workpiece velocity reaches a maximum. 

 

 

 

Figure 6.28:  Simulated x, y, and z direction cutting forces and y direction workpiece 

velocity. 

 

6.3.1 Experiment Results 

 

 

In this section, the validation testing of the time domain simulation including 

spatially dependent workpiece dynamics is presented.  Simulated and measured workpiece 

velocity (y direction) and cutting forces (x, y, and z directions) are compared in both the 
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time and frequency domains.  Although the simulated cut was 100 𝑚𝑚 in total length, the 

validation test cut was limited to 76 𝑚𝑚 due to geometric limitations imposed by the 

workpiece and tool geometries. 

For brevity, only the y direction (i.e., the flexible direction) cutting forces and 

workpiece velocities are shown.  The x and z direction cutting forces are provided as 

supplementary evidence in APPENDIX B.2.  Figure 6.29 shows the measured and 

simulated y direction cutting forces in the time domain.  The time domain simulation 

captures the reduction in cutting forces with workpiece stiffness due to dynamic deflections 

(i.e., near the center of the cut).  A comparison of the simulated and measured cutting forces 

over one cutter revolution for two different regions of the cut (i.e., workpiece stiffnesses) 

is also provided.  The variation in cutting forces between adjacent flute engagements is due 

to flute-to-flute runout.  The maximum difference in peak cutting force was approximately 

14 %. 
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Figure 6.29:  Measured and simulated cutting forces in the y direction over the entire cut 

length (top) and over one revolution of the two flute cutting tool (bottom). 

 

 

 The frequency content of the y direction cutting forces, calculated using the fast 

Fourier transform (FFT) of the data in Figure 6.29, is given in Figure 6.30.  It is observed 

that the dominant frequencies are the tooth passing frequency, 33.3 Hz, and the runout 

frequency, 16.7 Hz, as well as their integer multiples (i.e., harmonics). 
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Figure 6.30:  Frequency content of the measured (top) and simulated (bottom) y direction 

cutting forces. 

 

 

 The agreement between the measured and simulated workpiece velocity in the y 

direction can be observed in Figure 6.31.  As expected, measurements confirm that 

workpiece velocity increases to a maximum as the cutting tool approaches the center of the 

cut (i.e., minimum workpiece stiffness). 
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Figure 6.31:  Measured and simulated workpiece velocity in the y direction over the 
entire cut length (top) and over two revolutions of the two flute cutting tool (bottom). 

 

 

 

Figure 6.32:  Frequency content of the measured (top) and simulated (bottom) y direction 

workpiece velocity.



CHAPTER 7: CONCLUSIONS 

 

 

In this research, a time domain simulation was presented for predicting stable and 

unstable milling conditions with application in finish milling of compliant workpieces.  The 

ability of the simulation to deliver the global stability predictions of traditional stability 

lobe diagrams was demonstrated, and the specific, local information provided by the 

individual time domain simulations was also validated experimentally. 

First, a comparative study was presented that examined the dependence of cutting 

force coefficients on milling process parameters, including feed per tooth, spindle speed, 

and radial immersion.  The mechanistic force model was detailed and the methods for 

calibrating the model (i.e., determining the cutting force coefficients) were presented.  

Next, the cutting force coefficients, calculated using the average force, linear regression 

and instantaneous force, nonlinear optimization methods, for a range of milling process 

parameters were reported.  Finally, the instantaneous force, nonlinear optimization method 

was validated in the framework of milling stability tests. 

Based on the “Regenerative Force, Dynamic Deflection Model”, the time domain 

simulation determines the instantaneous chip thickness, calculates cutting forces, and uses 

Euler (fixed time step) numerical integration of the equations of motion to determine 

tool/workpiece deflections at each incremental time step.  The equations of motion are 

solved in modal coordinates, and the dynamics of the tool and workpiece are represented 

using modal parameters for an arbitrary number of degrees of freedom.  An automated, 

modal parameter identification method was presented that utilizes a two-stage process 
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including: (1) individual mode identification using the peaking picking method and (2) a 

nonlinear optimization for all modes. 

The outcome of individual time domain simulations contains information specific 

to the individual spindle speed-axial depth of cut combinations.  This includes the 

instantaneous cutting forces and tool/workpiece deflections, velocities, and accelerations.  

Based on these keys process outputs, two stability metrics are presented.  The first method 

uses peak-to-peak (PTP) cutting forces [79] and the second method, developed in this 

research, uses the amplitude ratio of the chatter frequency and tooth passing frequency.  

The stability diagrams are a contour map of these stability metrics and represent numerous 

time domain simulations performed over a range of spindle speed-axial depth of cut 

combinations. 

To evaluate the amplitude ratio diagrams, comparison to results found in the 

literature were performed.  Two cases of interest in milling were selected for the study: (1) 

period-n flip instability and (2) helix angle induced islands of instability.  It was shown that 

in both cases, the amplitude ratio diagram was able to delivered similar information in 

terms of global stability behavior.  Additionally, the amplitude ratio diagram provides 

evidence about the severity of chatter at different spindle speed-axial depth of cut 

combinations. 

To validate the PTP force diagrams, experiments were conducted.  The cutting tests 

were performed on compliant workpieces which simulate near net shape preforms.  These 

compliant workpieces were machined from 6061-T651 aluminum and are composed of 

two thin-walled structures (ribs) with clamped-clamped-clamped-free (CCCF) boundary 

conditions.  Simulated and measured cutting forces for the stable and unstable validation 
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tests were presented.  The agreement of the results was demonstrated in both the time and 

frequency domains. 

A methodology to incorporate the spatial variation of workpiece dynamics into the 

time domain simulation was presented.  The dynamics, represented by the frequency 

response function, over a grid of discrete positions on the workpiece are modeled and 

predicted using the finite element method.  Modal parameters were extracted using the 

peak picking technique, and the simulated modal stiffnesses were normalized to the 

minimum stiffness value thereby constituting a lookup table of multiplication factors.  The 

FRF of the workpiece was experimentally measured at the location of minimum stiffness, 

and the lookup table of multiplication factors was used to extrapolate the measured stiffness 

to the simulation locations.  Linear interpolation was used to calculate the unknown modal 

stiffnesses at coordinates adjacent to the simulation coordinates.  In the time domain 

simulation, the tool position at each discrete time step is monitored, and the modal 

parameters for that position are used to solve the dynamic equations of motion in modal 

coordinates. 

To validate the time domain simulation including spatially dependent workpiece 

dynamics, experiments were conducted.  The validation tests were conducted on compliant 

workpieces machined from titanium alloy Ti6Al4V (Grade 5) with clamped-clamped-

clamped-free (CCCF) boundary conditions.  Simulated and measured workpiece velocity 

(y direction) and cutting forces (x, y, and z directions) are compared in both the time and 

frequency domains.  The time domain simulation captures the reduction in cutting forces 

and the increase in workpiece velocity with decreasing workpiece stiffness due to dynamic 

deflections (i.e., near the center of the cut).
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APPENDIX A: ARBITRARY RADIAL IMMERSION CUTTING FORCE 

COEFFICIENT SOLUTION 

 

 

For the general case of arbitrary radial immersion, the six cutting force coefficients 

of the mechanistic cutting force model from section 3.3.1 may be solved as follows. 

Expanding equations (3.6), (3.7), and (3.8) and arranging them in slope-intercept form 

gives: 

 

 

 

𝐹̅𝑥 =
𝑁𝑡𝑏

8𝜋
{𝑘𝑡[cos(2∅𝑠) − cos(2∅𝑒)]

+ 𝑘𝑛[(2∅𝑒 − sin(2∅𝑒)) − (2∅𝑠 − sin(2∅𝑠))]}𝑓𝑡

+
𝑁𝑡𝑏

2𝜋
{𝑘𝑡𝑒[sin(∅𝑒) − sin(∅𝑠)] + 𝑘𝑛𝑒[cos(∅𝑠) − cos(∅𝑒)]} 

(A.1) 

 

 

 

 

𝐹̅𝑦 =
𝑁𝑡𝑏

8𝜋
{𝑘𝑡[(2∅𝑒 − sin(2∅𝑒)) − (2∅𝑠 − sin(2∅𝑠))]

+ 𝑘𝑛[cos(2∅𝑒) − cos(2∅𝑠)]}𝑓𝑡

+
𝑁𝑡𝑏

2𝜋
{𝑘𝑡𝑒[cos(∅𝑠) − cos(∅𝑒)] + 𝑘𝑛𝑒[sin(∅𝑠) − sin(∅𝑒)]} 

(A.2) 

 

 

 

 𝐹̅𝑧 =
𝑁𝑡𝑏

2𝜋
{𝑘𝑎[cos(∅𝑒) − cos(∅𝑠)]}𝑓𝑡 +

𝑁𝑡𝑏

2𝜋
{𝑘𝑎𝑒[∅𝑠 − ∅𝑒]} (A.3) 

 

 

 

where the coefficient multiplying feed per tooth is the slope and the remaining term is the 

intercept. Arranging the expressions in matrix form yields: 
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 [
𝑏11 ⋯ 𝑏16
⋮ ⋱ ⋮
𝑏61 ⋯ 𝑏66

]

{
 
 

 
 
𝑘𝑡𝑐
𝑘𝑡𝑒
𝑘𝑛𝑐
𝑘𝑛𝑒
𝑘𝑎𝑐
𝑘𝑎𝑒}

 
 

 
 

=

{
 
 

 
 
𝑎1𝑥
𝑎0𝑥
𝑎1𝑦
𝑎0𝑦
𝑎1𝑧
𝑎0𝑧}

 
 

 
 

 (A.4) 

where: 

 

 

 𝑏11 =
𝑁𝑡𝑏

8𝜋
[cos(2𝜙𝑠) − cos(2𝜙𝑒)] (A.5) 

 

 

 

 
𝑏13 =

𝑁𝑡𝑏

8𝜋
[(2𝜙𝑒 − 2𝜙𝑠)

+ (sin(2𝜙𝑠) − sin(2𝜙𝑒))] 

(A.6) 

 

 

 

 𝑏22 =
𝑁𝑡𝑏

2𝜋
[sin(𝜙𝑒) − sin(𝜙𝑠)] (A.7) 

 

 

 

 𝑏24 =
𝑁𝑡𝑏

2𝜋
[cos(𝜙𝑠) − cos(𝜙𝑒)] (A.8) 

 

 

 

 
𝑏31 =

𝑁𝑡𝑏

8𝜋
[(2𝜙𝑒 − 2𝜙𝑠)

+ (sin(2𝜙𝑠) − sin(2𝜙𝑒))] 

(A.9) 
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 𝑏33 =
𝑁𝑡𝑏

8𝜋
[cos(2𝜙𝑒) − cos(2𝜙𝑠)] (A.10) 

 

 

 

 𝑏42 =
𝑁𝑡𝑏

2𝜋
[cos(𝜙𝑠) − cos(𝜙𝑒)] (A.11) 

 

 

 

 𝑏44 =
𝑁𝑡𝑏

2𝜋
[sin(𝜙𝑠) − sin(𝜙𝑒)] (A.12) 

 

 

 

 𝑏55 =
𝑁𝑡𝑏

2𝜋
[cos(𝜙𝑒) − cos(𝜙𝑠)] (A.13) 

 

 

 

 𝑏66 =
𝑁𝑡𝑏

2𝜋
(𝜙𝑠 − 𝜙𝑒) (A.14) 

 

 

 

All other elements are equal to 0. The vector of specific force coefficients can be 

determined using: 

 

 

 

{
 
 

 
 
𝑘𝑡𝑐
𝑘𝑡𝑒
𝑘𝑛𝑐
𝑘𝑛𝑒
𝑘𝑎𝑐
𝑘𝑎𝑒}

 
 

 
 

= [
𝑏11 ⋯ 𝑏16
⋮ ⋱ ⋮
𝑏61 ⋯ 𝑏66

]

−1

{
 
 

 
 
𝑎1𝑥
𝑎0𝑥
𝑎1𝑦
𝑎0𝑦
𝑎1𝑧
𝑎0𝑧}

 
 

 
 

 (A.15) 
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APPENDIX B: SUPPLEMENTARY EXPERIMENTAL MILLING SIMULATION 

VALIDATION 

 

 

B.1 Titanium Milling Stability Validation 

 

 

 

Figure B.1:  Measured and simulated x direction cutting force shown in the time and 

frequency domains for the 3.5 𝑚𝑚 thick rib. 
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Figure B.2:  Measured and simulated y direction cutting force shown in the time and 

frequency domains for the 3.5 𝑚𝑚 thick rib. 

 

 

 

Figure B.3:  Measured and simulated z direction cutting force shown in the time and 

frequency domains for the 3.5 𝑚𝑚 thick rib. 
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Figure B.4:  Measured and simulated y direction workpiece velocity shown in the time 

and frequency domains for the 3.5 𝑚𝑚 thick rib. 

 

 

 

Figure B.5:  Measured and simulated x direction cutting force shown in the time and 

frequency domains for the 3 𝑚𝑚 thick rib. 
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Figure B.6:  Measured and simulated y direction cutting force shown in the time and 

frequency domains for the 3 𝑚𝑚 thick rib. 

 

 

 

Figure B.7:  Measured and simulated z direction cutting force shown in the time and 

frequency domains for the 3 𝑚𝑚 thick rib. 
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Figure B.8: Measured and simulated y direction workpiece velocity shown in the time 

and frequency domains for the 3 𝑚𝑚 thick rib. 

 

 

 

Figure B.9:  Measured and simulated x direction cutting force shown in the time and 

frequency domains for the 2.5 𝑚𝑚 thick rib. 
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Figure B.10:  Measured and simulated y direction cutting force shown in the time and 

frequency domains for the 2.5 𝑚𝑚 thick rib. 

 

 

 

Figure B.11:  Measured and simulated z direction cutting force shown in the time and 

frequency domains for the 2.5 𝑚𝑚 thick rib. 
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Figure B.12:  Measured and simulated y direction workpiece velocity shown in the time 

and frequency domains for the 2.5 𝑚𝑚 thick rib. 

 

B.2 Spatially Dependent Workpiece Dynamics Validation 

 

 



141 

 

Figure B.13:  Measured and simulated cutting forces in the x direction over the entire cut 

length (top) and over one revolution of the two flute cutting tool (bottom). 

 

 

 

Figure B.14:  Frequency content of the measured (top) and simulated (bottom) x direction 

cutting forces. 
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Figure B.15:  Measured and simulated cutting forces in the z direction over the entire cut 

length (top) and over one revolution of the two flute cutting tool (bottom). 

 

 

 

Figure B.16:  Frequency content of the measured (top) and simulated (bottom) z direction 

cutting forces. 
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