
BLOCKCHAIN BASED DISTRIBUTED KEY PROVISIONING SYSTEM

by

Spandana Etikala

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2019

Approved by:

Dr. Fareena Saqib

Dr. Jim Conrad

Dr. Ronald Sass

ii

©2019
Spandana Etikala

ALL RIGHTS RESERVED

iii

ABSTRACT

SPANDANA ETIKALA. Blockchain Based Distributed Key Provisioning System.
(Under the direction of DR. FAREENA SAQIB)

In recent days, smart electronics have evolved into ubiquitous computing with con-

nected interfaces such as self-driving automobiles with evolution in sensor network

technology and artificial intelligence. Due to these advancements, new features are

added into control area network in automobiles but the security and trust in these

systems are still questionable because the improvement in automation is paving way

for many potential cyber attacks. The closed systems such as in intra-vehicle config-

uration, the control and command communication between electronic control units

require custom architectures to support real time responses that integrate security

and safety protocols. The centralized PKI depends on trusted third parties or a cen-

tralized server as certification authority to share the public keys and generate digital

certificates for asymmetric keys to provide authentication. The centralize CA can

be a single point failure in the closed system. To address this problem, we propose

a distributed key provisioning system using blockchain technology. We demonstrate

the key provisioning scheme using Ethereum blockchain and smart contract for key

storage and validation of the public key pair. The key storage and validation process

involves all the nodes in the closed system and authenticates by traversing through

their copy of blockchain and vote accordingly.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Fareena Saqib for

the continuous motivation and distribution of her immense knowledge towards my

master's study and thesis research. Her guidance has assisted me throughout my

studies, research and writing this dissertation. I wouldn't have imagined my master's

thesis research being better without her support.

In addition to my advisor, I would like to thank rest of my thesis committee:

Dr. Jim Conrad and Dr. Ronald Sass for their encouragement, valuable inputs and

comments. Finally, I would like to thank and respect my family and our team for

uplifting me and standing by me through good and bad times.

v

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF ABBREVIATIONS viii

CHAPTER 1: INTRODUCTION 1

1.1. Key Contributions 3

1.2. Organization Of Report 4

CHAPTER 2: BACKGROUND 5

2.1. PUF Based Authentication 6

2.2. TPM Based Authentication 6

2.3. Certificate Authorities And Its Vulnerabilities 7

2.4. Distributed/Decentralized Key Management Approaches 8

2.5. An Overview Of Technologies Used 9

2.5.1. Blockchain Technology 9

2.5.2. Ethereum and Smart Contract 12

CHAPTER 3: THE PROPOSED SCHEME 16

CHAPTER 4: IMPLEMENTATION AND RESULTS 23

4.1. System Specifications And Hardware Used 23

4.2. Setting Up Of Blockchain 24

4.3. Key Storage Into The Blockchain 26

4.4. Validation Request 27

4.5. Validation 28

4.6. Security Analysis 30

vi

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 33

REFERENCES 34

APPENDIX A: VALIDATION VOTING SMART CONTRACT 37

APPENDIX B: AUTHENTICATION 40

APPENDIX C: DEPLOYING OF SMART CONTRACT 54

vii

LIST OF FIGURES

FIGURE 2.1: Key Provisioning 5

FIGURE 2.2: Blockchain [1] 9

FIGURE 2.3: Decentralized Mechanism 10

FIGURE 2.4: Blockchain Mechanism [2] 12

FIGURE 2.5: Various Components of Ethereum 14

FIGURE 2.6: Ethereum Transaction Receipt 15

FIGURE 3.1: Block diagram of proposed scheme 18

FIGURE 3.2: Authentication 20

FIGURE 4.1: Hardware Setup 23

FIGURE 4.2: genesis file 26

FIGURE 4.3: Storing of keys into blockchain 27

FIGURE 4.4: Requesting For Validation 28

FIGURE 4.5: Validation(Authentication) Results 29

FIGURE 4.6: Keys Of Node 4 and Node 5 Stored In The Blockchain 30

FIGURE 4.7: Double voting comparison 1 32

FIGURE 4.8: Double voting comparison 2 32

viii

LIST OF ABBREVATIONS

AES Advanced Encryption Standard

CA Certificate Authorities

CAN Control Area Network

CAN FD CAN With Flexible Data Rate

DES Data Encryption Standard

ECC Elliptic Curve Cryptography

ECDSA Eliptic Curve Digital Signature Algorithm

EOA Externally Owned Account

ECU Electronic Control Units

PKI Public Key Infrastructure

ECC Elliptic Curve Cryptography

PCR Platform Configuration Regidters

PUF Physical Unclonable Functions

RSA Rivest-Shamir-Adleman

TPM Trusted Platform Module

CHAPTER 1: INTRODUCTION

In recent days, smart electronics have evolved into ubiquitous computing with con-

nected interfaces such as selfdriving automobiles with evolution in sensor network

technology and artificial intelligence. Due to these advancements, new features are

added into control area network in automobiles but the security and trust in these

systems are still questionable because the improvement in automation is paving way

for many potential cyber attacks. Security integration requires policies and security

mechanism implementation custom to the system interfaces, resources and perfor-

mance requirements. A system implements various security policies for access control,

accountability and privacy of data and other system resources. The pillars of a se-

curity model are confidentiality, integrity and availability. Cryptographic algorithms

are used for encryption to preserve data confidentiality. Keys play a major role in

cryptography for achieving secrecy, where the whole system can be compromised with

the leakage of keys. Keys must be safely protected, distributed and authenticated to

ensure security. Certificate authorities (CA) are used to maintain these keys distribu-

tion and key update processes. CA issue digital certificates to store and authenticate

the identity of the user. Certificate authorities could be a trusted third party or a

centralized server that are the single point of failure if the server or the third party is

compromised. In this work, we propose a secure distributed key provisioning method

using blockchain technology and smart contracts to store and validate the keys. In-

stead of giving authority to single user for validation we are using all the nodes in

the network to participate in validation.

Cryptography plays a crucial role in security systems.“Crypto” refers to secret and

“graph” refers to writing. It is a study of mathematical methods used to protect

2

the information to ensure confidentiality and data integrity. There are three main

branches in cryptography [3]. They are a) Symmetric cryptography b)Asymmetric

cryptography (public key cryptography) c) Cryptographic Protocols. Cryptographic

protocols address the cryptographic algorithms related applications. Symmetric and

asymmetric algorithms are the basis for secure systems. They use keys to encrypt the

messages while sending and decrypted only on the receiver side so that a malicious

node sitting in between these two nodes cannot understand the message. The keys

must be protected from the hacker and shouldn't be weak and predictable.

In symmetric cryptography, two parties share same secret key known as private

key for encryption and decryption. Advanced Encryption Standard (AES), Data

encryption standard (DES), etc., are the examples of symmetric encryption. The

security relies on the secrecy of the shared key [4]. The problem in these systems is

the distribution of keys. The traditional communication protocol cannot guarantee

the secure provision of these keys. The secure way to distribute these keys is to

program it at the time of manufacturing or installation.

In asymmetric cryptography (public key cryptography) [5] two different keys known

as public and private keys are used in encryption and decryption. The public key is

derived from the private key, but the reverse process is not possible. In this scheme,

the message is encoded with the sender's private key and the receiver's public key

using a cryptographic algorithm and sent to receiver. Only the receiver with the

private key can decode the encoded message. Thus, eliminating the need to transmit

the private key. The public key is shared among everyone to encrypt the data, so

that the only user with the private key can decrypt the data. The private key is kept

in secret. Some of the examples of asymmetric cryptography are: Rivest-Shamir-

Adleman (RSA), Elliptical Curve Cryptography (ECC), etc. RSA is the most widely

used scheme but requires huge resources and memory, whereas ECC is best suitable

for lightweight embedded nodes. In this work, the Ethereum addresses are generated

3

using Elliptic curve digital signature algorithm (ECDSA).

In public key cryptography, the public key provided by the user must be authen-

ticated to ensure it belongs to the user and not a malicious node which tampered

the system and replaced the key. Public Key Infrastructures (PKI) are used for user

identification. PKIs [6] are the set of policies and procedures used to generate, authen-

ticate, store and distribute public keys through trusted third parties and issue digital

certificates. These certificates are used to identify the user public key. It contains

information about the public key, the owner of public key and the digital signature

of verifier. Different components of PKI are a) Certificate authorities b) Registra-

tion Authorities c) Certificate Repositories. Certificate authorities are trusted third

parties used for validating the public key. Registration authorities are used to accept

the request for the issuance of digital certificates. Certificate repositories are used to

store these keys safely.

We propose a decentralized key provisioning scheme using private Ethereum blockchain

with a smart contract for secure key-provisioning, authentication of nodes for systems

such as intracommunication between electronic control units (ECUs) of an automo-

tive. The scheme provides a secure key exchange and authentication process using

private Ethereum Blockchain and Smart contract for the network with limited num-

ber of nodes such as CAN FD. The scheme is implemented on 4 nodes, where 2 nodes

are miner nodes.

1.1 Key Contributions

1. Secure key storage in the blockchain.

2. Key provisioning and validation by traversing through the blockchain.

3. Demonstrate the scheme to prevent the attacker from malicious key updates

and voting mechanism for key validation.

4. Experimental test bed using Raspberry Pis, Ethereum blockchain and smart

4

contracts to evaluate the security framework.

1.2 Organization Of Report

The report is organized in the following chapters. Chapter 2 discusses the back-

ground of cryptography and public key infrastructure components, threat model and

limitations of existing key provisioning schemes and newer technologies that can im-

prove the security and resilience of the infrastructures. Chapter 3 discusses the pro-

posed scheme of Distributed Key Provisioning. Chapter 4 includes details on hardware

setup, implementation, results and security analysis of the proposed scheme. Chapter

5 includes conclusion and future work.

CHAPTER 2: BACKGROUND

Key provisioning is the key generation, storage and renewal of cryptographic keys

for secured governance [7] as shown in Figure 2.1. Cryptographic systems use one

or more keys for encryption and decryption. For example, symmetric cryptography

uses a single shared key for both encryption and decryption processes, where as

in asymmetric cryptogrpahy public and private key pair is used for encryption and

decryption respectively. The security of cryptography schemes relies on the secrecy

of keys, hence the keys require a secure key provisioning methodology for new keys

enrollment. Cryptographic implmentations are vulnerable to poor key provisioning.

Key management must provide two aspects a) Secrecy of keys b) Guarantee that

key is assigned to a specific node, such as digital certificates. Assurance of public

keys in public key cryptography is provided by authentication from Public Key In-

frastructures. Key provisioning may generate new keys for every session to facilitate

forward secrecy that is, the compromise of one message should not affect others.

Figure 2.1: Key Provisioning

Security aspects in key provisioning include authentication of legitimate nodes,

access control and authorization. Authentication is a mechanism to guarantee the

identity of the communicating nodes and mutually agreeing to send or receive the

6

information. Authentication process can be described in two different stages. a)

Identification, that is security systems are provided with user's identity in the form

of an ID. Then security systems will validate this ID. b) Mutual authentication,

that is the user must provide evidence that the ID actually belongs to him. For

example, Public Key infrastructures (PKI) provide digital certificates as the user ID

and associated key to authenticate the user. These are issued by certificate authorities

(CA). Different types of Authentication schemes are:

2.1 PUF Based Authentication

Two identical ICs have intrinsic variations due to imperfections in manufacturing

processes. Physical Unclonable Functions (PUF) utilize the inter and intra chip vari-

ations to generate unique Challenge-Response Pairs (CRP) which can be used for

authentication[8]. [9] describe the authentication based on hardwarebased embedded

delay PUF for privacy and mutual authentication by storing path timing information

at the verifier.

PUF based authentication contains enrollment phase and verification phase [10].

In the enrollment phase the keys are generated and stored. In verification phase, the

keys are validated. The reliability of PUF based authentication depends on reporod-

ucability of CRPs. If there a bit flip due to environmental changes then CRPs cannot

be reproduced. PUF based authentication still have to depend on third parties for

validation of keys.

2.2 TPM Based Authentication

Trusted Platform Module (TPM) is a specialized on chip core used to generate and

store the keys on a tamperresistant nonvolatile memory. [11] TPM supports platform

hierarchy, storage hierarchy and endrosment hierarchy. TPM features include true

random number generator,symmetric and asymmetric encryption, hmax signatures,

digital attestation and verification. Individual keys and data in hierarchies have their

7

own authorization and policy values.

[12] describes TPM for secure key generation and storage over CAN Protocol. TPM

supports secure boot and measured boot using PCR registers to compute cumulative

hash of the boot file such as device tree and boot image [13].

Hardware security modules are expensive resources for security integration on the

closed network or system such as automotive .

2.3 Certificate Authorities And Its Vulnerabilities

Certificate authorities (CA) are responsible for issuing, publishing, verification and

revocation of digital certificates [6]. CA implements process for the identification of

client and guarantees that the information present in certificate is valid and signs

it digitally. If an electronic node needs to verify the public key belongs to a client

node, it sends a request to certificate authority using CA's public key. The CA

responds to the requesting node with the digital certificate signed its own private key.

The requesting node verifies the response and initiate communication with the client

node.

The certificate authorities are hierarchical and centralized trusted third parties

which can be single point of failure [14]. [15] the attack on ”DigiNotar” a certificate

authority in 2011 resulted in a man in the middle attack on Google services [16].

[17] describes compromises of certificate authorities such as Registration Authority

compromise, Root CA compromise for issuance of fraudulent certificates. There are

security vulnerabilities in hierarchical and centralized model.The centralized certifi-

cate authority server is a single point of attack and performance bottleneck for the

systems with realtime requirements. Certificate revocation or expiry for key renewals

for each node [18]. An alternative approach would be the usage of decentralized

schemes for authentication. In this thesis, we investigate blockchain technology for

decentralized Key provisioning scheme.

8

2.4 Distributed/Decentralized Key Management Approaches

Decentralized schemes improve the system security by removing centralized author-

ity of the certificate authority. Some of the decentralized approaches are: a) Pretty

Good privacy (PGP) [19]: In this approach user relies on its peers for validation

but the main issue with this scheme is key distribution and addition of new nodes

into network. b) Certificate transparency [20] is one of the decentralized trust model

proposed by Google. In these scheme the certificates are stored and monitored by

many parallel servers across the globe.Though they are distributed, they are gov-

erned by a single organization. The usage of blockchain technology in distributed key

provisioning would overcome the vulnerabilities of PGP and Certificate Transparency.

Some of the blockchain based key provisioning systems are Ceocoin, Certocoin,

Keychain and Authcoin. [21] Proposed “Ceocoin” where certificates are stored into

blockchain using distributed certificate scheme. [22] Fromknecht et al., introduces dis-

tributed PKI using blockchain technology called as “Certocoin” on top of Namecoin

blockchain but it is not suitable for lightweight applications. [23] describes blockchain

based PKI for lightweight applications using both Emercoin Name Value Services and

smart contracts by Ethereum then compared both of them with centralized certificate

authorities. [24] proposed blockchain based key distribution system known as “Key-

chain”, where they used ProofOfStake consensus algorithm instead of ProofOfwork

algorithm to reduce the usage of resources. They implemented voting scheme to select

the users who can write keys into blockchain. [25] introduces blockchain based PKI

known as “Authcoin” for validation and authentication. All these schemes have used

blockchain for key provisioning and storage of keys.They are used for authentication.

Our proposed decentralized Key provisioning scheme is also based on blockchain but

compared to other works we are targeting the application of this scheme for closed

systems such as intra-vehicle communication such as CANFD. We are using a pri-

vate blockchain to restrict accessibility by an unauthorized user. Validation of keys

9

involved all the nodes instead of only miners in the network by traversing through

blockchain and voting smart contract to improve the security for closed systems.

2.5 An Overview Of Technologies Used

2.5.1 Blockchain Technology

Blockchain is a decentralized and distributed database.[2]. It is a P2P network

where all the transactions between computers (nodes) are stored in the form of blocks

and linked together with cryptographic hashing. All the hashes of the blocks are

encoded into a Merkel Tree as shown in the 2.2. Each node in the chain can have a

copy of the whole chain allowing the transparency. It was first introduced by Satoshi

Nakamoto in 2008 as a public distributed ledger for Bitcoin cryptocurrency[1]. Later,

due to its features, it was extended to many other applications such as Public Key

Infrastructure, IOT, etc. Usage of blockhain for key provision would prevent single

point failure and make it much more straightforward[21]. Blockchain is immutable,

that is any data written into the chain cannot be modified because if one block is

modified then the whole chain must be changed as they are linked with each other

through the previous hash as shown in Figure 2.2

Figure 2.2: Blockchain [1]

There are two types of blockchains a) Public blockchain c) Private blockchain. The

major difference between these two types is the accessibility. In public block chain,

anyone one with enough resources and internet can join the chain whereas in private

10

chain only a few trusted parties can participate in the network.

Blockchain provides three features[26]. They are:

1. Decentralization: Unlike centralized systems the information is not stored in a

single system. In blockchain all the information is shared among the nodes in

the network. There is no need for a third party to validate the transactions as

shown in 2.3.

Figure 2.3: Decentralized Mechanism

2. Immutability: Blockchain is immutable, that is any data written into the chain

cannot be modified easily because each block is connected with each other using

previous hash and each node can have their own copy of the chain. If we try to

tamper with one block,the hash value changes resulting in a different value of

previous hash that is linked with the next block.

3. Transparency: As blockchain is a record keeping ledger. The whole transactions

made by an entity can be seen if we have the public address of that entity.

The crucial part of blockchain is the mining process and it depends upon the

hashing algorithms. For example, bitcoin uses SHA256 algorithm. For a given same

input to the hashing algorithm results the same output every time. The input can

11

be anything such as integers, strings, time, etc and the output resulted is called

“hash” and would always be same length. Miners solve a cryptogrpahic puzzles such

as “Proof-Of-Work” to verify the transaction add blocks into the chain. During the

resolving of cryptogrpahic puzzle the miner determines a number known as nonce

which generates a cryptogrpahic hash less than a threshold value known as difficulty

[27]. This is known as consensus. The consensus in the blockchain is used to maintain

synchronization of blocks and ensure the block added into the blockchain is true.

Working Of Blockchain:

Following simple example demonstrates how blockchain works using a Bitcoin trans-

action [28]. Consider two persons, Alice and Bob. Alice wants to send 2 bitcoins to

Bob. Then Alice sends the broadcasts message along with the transaction to the

network with Bob's public key, amount and signed transaction with Alice's private

key.

The miners sitting in the network listens to the message and then validate Alice

using its signature to check if the bitcoin sent belongs to Alice or not. After the

validation, the miner keep this transaction in a block along with other transactions,

previous block output hash and add try to add it to the chain of blocks by solving

a cryptographic puzzle known as Proof-Of-work (POW) to generate a valid output

hash. Once the block is mined the miner broadcast the newly mined block to the

full nodes to update their copy of the chain. The entire process flow of blockchain in

shown in Figure 2.4.

Every miner in the block chain contains full copy of the blockchain and everyone

in the network trusts the miner with longest chain. In this project, we are using the

Ethereum blockchain with a smart contract.

12

Figure 2.4: Blockchain Mechanism [2]

2.5.2 Ethereum and Smart Contract

Ethereum is an open source public blockchain that features smart contracts. It was

first introduced by Vitalik Buterin [29]. Compared to Bitcoin Ethereum is faster and

uses different ProofOfWork algorithm known as Ethash. It is an improved version of

Bitcoin. Ethereum is a “Turing complete machine”, unlike bitcoin which supports only

electronic cash system application, we can program any decentralized application on

Ethereum. It also provides the state of transactions. In Ethereum, we require either

“Ether” or “gas” for sending transactions to other nodes and contract. It provides all

the features of a blockchain with extra features such as DApps also known as smart

contracts that run on top of Ethereum and stored within the blockchain.

Ethereum facilitates two types of accounts. They are: a) Externally owned ac-

count (EOA) b) Contract accounts. EOA has ether balance and controlled by public

and private keys. The last 20 bytes of the public key are used as an EOA address

13

to send and receive the transactions. They don't have any code associated with

them.Contract address also has ether balance, but it is controlled by the code associ-

ated with them and can make changes to its memory and state. Contract address can

only be activated by an EOA. Each Ethereum full node contains Ethereum virtual

machine (EVM) used to execute the smart contracts. As described in [29] each ac-

count has four fields: a) nonce to describe number of transactions from the account.

b) Current balance in ether. c) Contract code of account if present. d)storage of the

account.

Geth and Parity are the two client software for Ethereum. Geth is the official

software produced by Ethereum. They are used to interact with the blockchian to

add the nodes into the chain, implementing the transactions, mining and to copy

the blockchain data. Geth provides remote procedure call APIs [30]. Web3.js is the

library used to provide functions to interact with local or remote Ethereum node by

using HTTP or IPC.

A smart contact is a special protocol supposed to digitally verify and facilitate the

transaction. It is a short reusable code written in a solidity programming language for

Ethereum blockchain. Smart contracts help us to avoid the services of the third party.

They not only define rules and regulations but also implement them automatically.

Smart contracts provide trust as all the documents are encrypted and stored in the

shared ledger. Each smart contract is given a contract address when deployed. Users

use that address to communicate with thesmart contract. The Figure 2.5 shows

various components of Ethereum.

14

Figure 2.5: Various Components of Ethereum

Transaction Mechanism in Ethereum:

Ethereum transactions contains [31]:

a)from : Account address from which transactions are sent

b) to : Account address to which transaction is sent

c) value : Amount of ether to be sent

d)input/data : It is mainly used for contracts but can also be used to send some data

in hex format to other nodes.

e)gas limit : It gives the information about the amount of gas required to execute a

particular transaction.

All the transaction in a blockchain are signed with the keys of sender and receiver

for validation. For signing the transactions in Ethereum, there are two types of func-

tions provided by Geth client software. They are: 1) eth.sendTransaction() and 2)

eth.sendRawtransaction() [32]. eth.sendTransaction() automatically signs the trans-

action and performs the serialization required before sending into network. Whereas,

eth.sendRawTransaction() is used to send signed transaction if the keys are not han-

dled locally by Geth.

15

Figure 2.6 shows an example of a transaction receipt in Ethereum using eth.getTransaction():

Figure 2.6: Ethereum Transaction Receipt

Ethereum transactions mainly serve three purposes: a) To Transfer funds, b) de-

ploying of contract using bytecode, c) Interacting with smart contract.

CHAPTER 3: BLOCKCHAIN BASED DISTRIBUTED KEY PROVISIONING

Distributed key provisioning scheme is composed of secure key storage, key update

and secure key communication to other legitimate nodes. This scheme of decen-

tralized key management provides much more transparency, security and addresses

vulnerabilities of the centralized certification authority in the process of allocation and

management of keys. The scheme integrates blockchain based decentralized public

key infrastructure for

1. Secure storage of Public keys.

2. Authentication of Public keys.

3. Preventing spoofing and masquerading attacks using private Ethereum blockchain

and Externally Owned Address (EOA) of Ethereum.

The proposed distributed key provisioning implements following steps:

1. Enrollment process: The keys generated by each node are added to the blockchain

as a new block. The blocks are immutable and each new block is added at the

end of the blockchain. The block number is updated and shared with all the

peers in the blockchain which are initially set by using static-nodes file. During

secure processing and communication, the peer nodes require to validate the

public keys from the blockchain to encrypt the payload before transmission.

2. Validation: we propose a voting mechanism using smart contracts to confirm

that the validation responses have not been tampered or spoofed.

The scheme works in the following way:

17

(a) A request for validation is made using the smart contract that implements

voting scheme and integrates it with the blockchain. The requested node

key is referenced using the EOA address of the other node.

(b) The other nodes in the network are notified by the smart contract event

which is triggered when a proposal request is called for the validation.

(c) Other nodes in the network respond to the request by first traversing

through the copy of their blockchain to check whether the public key sent

by the node for the verification is present in the chain and then validate it

by voting. Then an event is triggered to notify the completion of valida-

tion. Before traversing through the blockchain the EOA address of nodes

which are trying to vote are checked if they are valid or not.

(d) At the completion of the validation process, the requesting node receives

the votes and makes the decision of using the public key for secure com-

munication or blacklisting in case of key compromise.

The malicious node cannot change the votes directly because the voting scheme

is in the form smart contract and it is stored in the blockchain which is immutable.

Voting smart contract also takes care if malicious node is trying to vote in place of

other nodes by voting again in order to change the votes.

Our scheme focuses on key provisioning for a closed network such as CAN FD. The

blockchain network with the fewer number of nodes will have less miners compared

to other blockchain networks. If the whole validation depends only on the few miners

may result in failure if the miner is compromised. To overcome this problem We have

involved all the nodes instead of only using miners during the validation. The entire

scheme is represented in Figure 3.1:

18

Figure 3.1: Blockchain Based Distributed Key provisioning

We developed two algorithms for voting smart contract and authentication respec-

tively.

Algorithm 1 describes the smart contract that is used for sending requests for

validation, key validation and storing of results. The “proposal”is a structure datatype

which gives the information about the requests and results of the authentication.

Proposal() function is used for sending the request for validation. Voting_Start()

function call first checks whether the proposal is completed or not, then checks if the

voter has already voted and then caste the votes for validation. The complete code

is given in Appendix A.

19

Algorithm 1 Voting Smart contract
1: struct proposal:

prop_id //proposal id for keeping track of proposal
completed //to check if the proposal has competed or not
toverify // Public key to be verified
recv // EOA address of node to be verifies
send // EOA address of the node which send the proposal
totalnovotes // total number of votes casted
insupport //incerements if vote is valid
notsupport // increments if vote is not valid

2: function proposal(public key of B, EOA of node B, number of voters)
3: update the proposal struct
4: trigger the request voting event
5: end function
6: function voting_start(proposal number, public key of nodeB from

blockchain, EOA of nodeB, Number of nodes in the network)
7: if proposal is completed or voter has already voted then
8: revert()
9: else

10: if public key sent through proposal == public key derived from blockchain
then

11: insupport++
12: else
13: notsupport++
14: end if ;
15: Total++;
16: end if
17: if total == number of nodes in the network then
18: proposal completed = true;
19: trigger voting_completed event;
20: end if
21: end function

Algorithm 2 describes the proposed authentication scheme. The authentication

application is used to traverse through the blockchain, call the smart contract methods

using contract instances and respond to events. Gettransactions() function is used

to traverse through the blockchain and check if the public key is present or not.

Contract_Instance() function is used to call the instance of the smart contract. To

request the validation, nodes call Req_Proposal() function, which in turn calls a

smart contract function called Proposal() as shown in algorithm 1. A requesting

20

voting event is triggered to notify the other nodes in the network about the proposal

request for validation.

Votingstart() function is called by the remaining nodes in the network to start

the validation. This function is used to: a) read the the values to be verified from

the request event occurred. b) Then validate the EOA addresses of node which is

trying to vote.c) Checks number of peers and then calls GetTransactions() function

to find the public key associated with the node by traversing through the blockchain.

d) Then calls the Voting_Start() smart contract function to vote accordingly. The

Get_User() function is used to read the values of proposal structure. The process

can be depicted in the Figure 3.2. The complete code is given in Appendix B.

Figure 3.2: Authentication

21

Algorithm 2 Authentication
function getTransactions(Fromaccount, datatocheck, Startblock, endblock)
var valid = false;

2: for i = startblock, i <= endblock ; i++ do
block = eth.getblock(i, true);

4: if (block.from == fromaccount) then
print the block;

6: if block.input == datatocheck then
var valid == true;

8: else
var valid == false; return valid;

10: end if
end if

12: end for
end function

14: function contract_ instance
var contract = web3.eth.contract(contract.abi)

16: contractinstance = contract.at("contract address")
return contractinstance

18: end function
function req_proposal(Public key to be verified, EOA of public key to be
verified)

20: contract_ instance();
call the smart contract’s proposal() function;

22: end function
function votingstart

24: contract_instance();
Watch the req_ voting() event and take the following values :

26: propnum;
Public key(pk) to be verified

28: EOA of pk to be verified
if address of voter valid then

30: var valid = getTransactions(EOA of PK, PK, start block number, end
block number)

if valid = true then
32: call voting_start() smart contract function with support

else
34: call voting_start with not support;

end if
36: end if

end function

22

38: function voting_completed

if voting_completed event == true then

40: to read voting results:

call smart contract function get_user1();

42: call smart contract get_user2();

end if

44: end function

CHAPTER 4: IMPLEMENTATION AND RESULTS

4.1 System Specifications And Hardware Used

Hardware setup includes a Raspberry Pi based CAN test bed that has been con-

figured with blockchain [33]. The Raspberry Pis are running Raspbian OS and pri-

vate Ethereum blockchain on each node. Two of the nodes are designated as miner

nodes for this testbed that are used to add the new blocks into blockchain. Fig-

ure 4.1 shows the hardware setup that includes Raspberry Pi nodes configured with

Ethereum blockchain.

Figure 4.1: Hardware setup for Distributed Key Provisioning

24

4.2 Setting Up Of Blockchain

The private mode Ethereum blockchain is configured using the following steps:

1. Genesis is the first node in the blockchain. Each blockchain is assigned an id,

where the id is stored on all the peer nodes which are participating in that

blockchain. In case of Ethereum private blockchain it is stored in a Genesis file

including the features of Genesis node, that resides on each node. A snapshot

of Genesis file is shown in 4.2, that contains a nonce, which is a random num-

ber that is combined with mix hash during the mining using Proof-Of-Work

algorithm. Other information includes network id, that is assigned at the time

of network initialization. Nodes in Ethereum network use the combination of

chain id and network id to stay connected and sign the transactions along with

EOA.

Difficulty for mining is a threshold value which determines the degree of diffi-

culty for the miners to evaluate a qualified hash in terms of hashing power [1].

This value used to determine the time required for the block generation in the

blockchain. Higher the difficulty, more time is required for adding the blocks

into blockchain. For private networks with fewer nodes this value is kept low

to avoid waiting. In our scheme, we have set our difficulty value as “0x400”.

Gaslimit is the amount of gas provided by a node to execute a particular opera-

tion or a transaction. It is best if assigned high value to execute the operation.

Timestamp gives information time at which blocks are added. This value would

be the output of a UNIX time().

The ‘alloc’ is used to store the wallet addresses if present.The homestead value

‘0’ represents the usage of homested version of Ethereum. The eip155block

eip158Block are only used by the developers to suggest the enchancements in

the Ethereum. Its value is kept 0 for regular usage.

25

2. Each node is shared with the Genesis file which is kept up to date and consistent

across all the nodes. The new accounts in Ethereum blockchain are created using

“accounts new” command at all the nodes. This command create a new EOA

account. The nodes are then connected permanently to each other using enode

of the node, that is a node id or the public key encoded with URL portion of

the node and hostname separated by and stored in datadir folder in a JSON

format.

3. The smart contract is a mechanism through which we can combine the secu-

rity functions such as validation of the block within the blockchain. This ca-

pability makes the implementation of smart contract immutable and confirms

the authenticity of the security process and make it trusted. The smart con-

tract is a custom process that can be called using function call to the smart

contract methods as postprocessing of insertion or retrieval of the blocks in

the blockchain. In Ethereum blockchain, the smart contract is compiled to

get a bytecode and Application Binary Interface (ABI) and deployed onto the

blockchain. A node in the blockchain integrates the smart contract implementa-

tion onto the blockchain. The code snippet for deployment is shown in Appendix

C.

4. The authentication application is developed to perform validation of keys by

traversing through the blockchain and calling smart contract methods. This

application is loaded on all the nodes.

26

Figure 4.2: genesis file

4.3 Key Storage Into The Blockchain

All the keys are stored in the form of transaction in the blockchain. During the

validation process, all nodes go through their copy of the blockchain and validate

them. Figure4.3 shows the storage of public keys into blockchain of node1 and the

highlighted section is the public key of node1. All other nodes are store their public

keys as blocks in the blockchain in the similar way.

27

Figure 4.3: Storing of keys into blockchain

4.4 Validation Request

During the key retrieval from blockchain, the validation process of keys is processed

by the node using Req_Proposal() function call. This function in turn, calls a smart

contract function called Proposal() with details of the public key to be verified and

also Ethereum address of the node. An event is occurred to notify and give details

about the proposal number of the request along with the public key to be verified and

Ethereum address of node whose public key is to be verified to the other nodes. Figure

4.4 shows request proposals for validation event occurred at nodes when requested.

Each request is given a proposal number.

28

Figure 4.4: Requesting For Validation

4.5 Validation

During the validation process, all the nodes traverse through blockchain when the

request for validation is made. Each node responds to the vote either in support or

not support based on the search results. In the private Ethereum implementation,

function call voting_completed() triggers the event to notify the requested node af-

ter the search is complete and results are updated in the smart contract. Figure 4.5

shows the result of voting validation of a corresponding proposal number. The result

has the following format:

Validation Result = (Validation proposal number, Proposal completed or

not, Public key requested for validation, Ethereum address of node of pub-

lic key to be verified, Ethereum address of the node which requests the

validation, Total number of votes, Support votes, Not in support votes).

29

Figure 4.5: Validation(Authentication) Results

Figure 4.5 shows the response of the validation from all the nodes for proposal 20

depicting that all the given votes are not supporting because the key is not valid. It

can be seen that the key stored in the blockchain and requested key for validation

are different and hence the spoofing in the communication is captured. The correct

key stored in the blockchain is shown in Figure4.3. Whereas votes for the other two

proposals are in support because the requested key for validation is the same as the

key stored in the blockchain when traversed as shown in Figure 4.6. In this way,

we can authenticate the public keys sent by the nodes are malicious or not. If all

the votes are in support, then the public key is valid else it blacklists the node and

requests again for the correct public key and this scheme does not allow a node to

vote twice for the same proposal.

30

Figure 4.6: Keys Of Node 4 and Node 5 Stored In The Blockchain

4.6 Security Analysis

The proposed scheme on distributed key provisioning integrates blockchain tech-

nology and builds on the assumption that the Ethereum model of smart contract

and blockchain is secure. This section analyses the security of our proposed scheme.

The attack model includes key spoofing, key update vulnerabilities, false identity by

adding public keys into the blockchain with other Ethereum address, and unautho-

rized access, where malicious node tries to masquerade a legitimate node to read the

keys. The attacks on the voting scheme such as double voting, where the malicious

node can change votes by voting again.

To prevent the Unauthorized accessibility into blockchain we are using private

31

blockchain where nodes are added in a trusted environment and have a limited number

of nodes involved in the system such as in automotive there are a few electronic control

units integrated. To further restrict the authority, IBM hyper ledger can be integrated

to provide permissioned blockchain so that unknown identities cannot participate in

the network. The nodes are enrolled into the fabric using a trusted membership

service provider.

The transaction mechanism in Ethereum prevents the False Identity attack using

a nonce. whenever a transaction occurs the nonce attached with Ethereum address is

incremented. Even if the malicious node is successful in generating the same address

as a victim node it cannot have the same nonce value. During the validation of

transaction, the miner checks the nonce value and reject the malicious node.

The blocks in the blockchain are linked with each other with their previous hash. If

a malicious node tries to change a single block then the whole chain must be changed

and by then other nodes rejects this node. In this way, we can prevent Spoofing

Attacks.

Figure 4.7 and 4.8, shows the transaction receipt of calling smart contract function

called Voting_Start() of a proposal number from Ethereum address of node 1. Each

transaction to the smart contract is sent with certain of amount gas. The function

uses required gas and sends back the remaining gas to the account. The gas limit set

for the sending transaction to Voting_Start() smart function is 6000000. Initially,

when the node1 tried to vote once the gas spent value is less that gas limit as shown

in Figure 4.7, but when it tried to vote again for the same proposal the gas limit

is same as gas spent as shown in Figure 4.8. This means that all the gas send via

transaction is spent but not sufficient to execute the transaction where the actual gas

required is shown in 4.7. This show that the voting is not executed second time. This

feature helps if a malicious node is trying to change the votes. Thus we can prevent

Double voting.

32

Figure 4.7: Transaction Receipt of node1 trying to vote first time some proposal

Figure 4.8: Transaction receipt of node1 trying to vote again for the same proposal

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

We propose a decentralized key provisioning scheme for Elliptic Curve Cryptogra-

phy (ECC) based secure key storage, update and key sharing mechanism that pro-

vides identity and authentication of communicating nodes. This scheme integrates

private blockchain and smart contracts to validate the keys. The proposed scheme

implements voting mechanism to identify key spoofing and compromise during the

sharing process. Unauthorized access and false identity issues are also resolved in the

proposed scheme using private blockchain and transaction mechanism of Ethereum

respectively. The double voting problem and modification of votes is prevented using

smart contract, code snippets are integrated into the blockchain.

For future work, we will investigate permissioned blockchain schemes to restrict the

access of blockchain by malicious nodes and improve the performance by using Proof-

of-stake algorithm instead of Proof-Of-Work consensus algorithm for lightweight nodes.

The scheme will be demonstrated on the CAN FD network with the ECC based en-

cryption and key provisioning applications on the reconfigurable ECU's that have

other security mechanisms such as Physical unclonable function responses to gener-

ate keys in order to develop a secure key generation.

34

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
https://bitcoin.org/bitcoin.pdf, Mar 2009.

[2] “What is blockchain technology?.” https://www.cbinsights.com/research/what-
is-blockchain-technology/, Sep 2018.

[3] C. Paar, “Understanding cryptography.”

[4] S. LANDER, “Advantages & disadvantages of symmetric key encryption.”
https://itstillworks.com/advantages-disadvantages-symmetric-key-encryption-
2609.html.

[5] M. Rouse, “Assymetric cryptography.” https://searchsecurity.techtarget.com/defi
nition/asymmetric-cryptography.

[6] R. Hunt, “Pki and digital certification infrastructure.” Proceedings. Ninth IEEE
International Conference on Networks, ICON 2001., Oct 2001.

[7] C AdamsSLloyd, “Understanding pki: Concepts, standards and deployement..”

[8] W. Che, F. Saqib, and J. Plusquellic, “Puf-based authentication,” 2015.

[9] W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri, F. Saqib, and J. Plusquellic,
“A privacy-preserving, mutual puf-based authentication protocol.” Cryptography,
2016.

[10] B. Halak, M. Zwolinski, and M. S. Mispan, “Overview of puf-based hardware
security solutions for the internet of things,” 10 2016.

[11] “Information technology – trusted platform module library.”
https://www.iso.org/standard/66510.html, Jan 2018.

[12] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “A secure communication
framework for ecus.” Advances in Science, Technology and Engineering Systems
Journal, 08 2017.

[13] A. Hoeller and R. Toegl, “Trusted platform modules in cyber-physical systems:
On the interference between security and dependability.” 2018 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), April 2018.

[14] J. Margulies and M. Berg, “That certificate you bought could get you hacked.”
IEEE Security Privacy, Sep. 2016.

[15] K. Zetter, “Diginotar files for bankruptcy in wake of devastating hack.” Wired
magazine, Sep 2011.

[16] H. Adkins, “An update on attempted man-in-the-middle attacks.” Google Online
Security Blog, 2011.

35

[17] A. Niemann and J. Brendel, “A survey on ca compromises.”
https://docplayer.net/55405696-A-survey-on-ca-compromises.html.

[18] R. Oppliger, “Certification authorities under attack: A plea for certificate legiti-
mation.” IEEE Internet Computing journal, Jan 2014.

[19] A.Abdul-Rahman, “The pgp trust model.” EDI-
Forum:TheJournalofElectronicCommerce, 10 1997.

[20] E. K. B. Laurie, A. Langley, “Certificate transparency.” Technical Report, 10
2013.

[21] b. Qin, J. Huang, Q. Wang, X. Luo, B. Liang, and W. Shi, “Cecoin: A decen-
tralized pki mitigating mitm attacks.” Future Generation Computer Systems, 10
2017.

[22] C. Fromknecht and D. Velicanu, “A decentralized public key infrastructure with
identity retention.” IACR Cryptology ePrint Archive, vol. 2014, pp. 803, 2014.,
2014.

[23] A. Singla and E. Bertino, “Blockchain-based pki solutions for iot.” 2018 IEEE
4th International Conference on Collaboration and Internet Computing (CIC),
Oct 2018.

[24] Y. Hu, Y. Xiong, W. Huang, and X. Bao, “Keychain: Blockchain-based key
distribution.” 2018 4th International Conference on Big Data Computing and
Communications (BIGCOM), Aug 2018.

[25] B. Leiding, C. Cap, T. Mundt, and S. Rashidibajgan, “Authcoin: Validation and
authentication in decentralized networks.” MCIS 2016, Sep 2016.

[26] A.Rosic, “What is blockchain technology? a step-by-step guide for beginners,”
2016.

[27] A Rosic, “Proof of work vs proof of stake: Basic mining guide.” Blockgeeks, 2017.

[28] R. King, “Blockchain explained: The ultimate guide to understanding how
blockchain works.” Bitdegree, May 2019.

[29] V. Buterin, “A next-generation smart contract and decentralized application plat-
form.” weusecoins.com white paper, 2014.

[30] S. Sil, “Understanding how ethereum functions and its various components.”
https://www.hcltech.com/blogs/understanding-how-ethereum-functions-and-
its-various-components, Sep 2017.

[31] C. Chainfund, “Blockchain basics 02: A complete view on ethereum blockchain,”
Jul 2018.

36

[32] Ethereum, “Geth json rpc.” https://github.com/ethereum/wiki/wiki/JSON-
RPC.

[33] “Can transreceivers.” http://skpang.co.uk/catalog/pican2-duo-canbus-board-
for-raspberry-pi-23-p-1480.html.

[34] Ethereum, “Web3 java script api,.” https://github.com/ethereum/wiki/wiki/
JavaScript-API.

37

APPENDIX A: VALIDATION VOTING SMART CONTRACT

pragma solidity ∧0.5.1; contract mine_contract{

//string memory comparision

function equal(string memory _a, string memory _b) internal pure returns (bool) {

string memory a = _a;

string memory b = _b;

return(keccak256(abi.encode(a)) ==keccak256(abi.encode(b)));

} uint256 public people_count = 0;

//This event is used to notify the request for for validation.

event req_voting(

string tocheck,

uint prop_num1,

address tocheckaddress

);

//This event is used to notify that the validation is completed.

event voting_finished(

uint proposalnumber,

bool donevoting

);

//This structure defines validation requests,public key to be verified and results in

the form of proposal.

struct proposals{

uint prop_id;

bool completed;

//uint256 toverify;

string toverify;

38

address recv;

address send;

uint256 total;

address id;

uint256 insupport;

uint256 notsupport;

}

uint prop_num = 0;

mapping (uint=>proposals) public proposalcheck;

function proposal(string memory _toverify1, address _recv) public{

prop_num++;

proposalcheck[prop_num] = proposals(prop_num, false, _toverify1, _recv, msg.sender,

0, _recv, 0, 0);

emit req_voting(_toverify1, prop_num, _recv);

}

//function is used to cast votes for validation.

function voting_start(uint256 _propnum, string memory _data3, address _tocheck1,

uint no_nodes) public returns(bool){

if (proposalcheck[_propnum].completed == true) revert();

else{ if (msg.sender == proposalcheck[_propnum].id) revert();

else{

if (_tocheck1 == proposalcheck[_propnum].recv){

if (equal(_data3, proposalcheck[_propnum].toverify)) {

proposalcheck[_propnum].insupport++;}

else {

proposalcheck[_propnum].notsupport++;}

39

}

proposalcheck[_propnum].id = msg.sender;

proposalcheck[_propnum].total = proposalcheck[_propnum].total+1;

if (proposalcheck[_propnum].total == no_nodes){

proposalcheck[_propnum].completed = true;

}

if(proposalcheck[_propnum].completed == true){

emit voting_finished(_propnum, proposalcheck[_propnum].completed);

}}}}

//used to read propsoal struct value.

function getUser(uint256 _index) public view returns(uint, bool) {

uint _a =0;

_a++;

return(proposalcheck[_index].prop_id, proposalcheck[_index].completed);

}

//used to read propsal struct values.

function getuser2(uint _index2)public view

returns(string memory, address, address, uint256, uint256, uint256){

return(proposalcheck[_index2].toverify, proposalcheck[_index2].recv, proposalcheck[_index2].send,

proposalcheck[_index2].total, proposalcheck[_index2].insupport,

proposalcheck[_index2].notsupport);

}

}

}

}

40

APPENDIX B: AUTHENTICATION

The following javascript code is used for traversing through block chain, Calling

the smart contract instance and execution of contract functions.

// This function is used to traverse through the blocks of blockchain and checks if

the public key to be verified is present in it.

function get_transactions(myaccount, pub_key, startingblock, lastblocknumber) {

if (lastblocknumber == null) {

lastblocknumber = eth.blockNumber;

console.log(”Using lastblocknumber: ” + lastblocknumber);

}

if (startingblock == null) {

startingblock = lastblocknumber - 1000;

console.log(” Using startingblock: ”+ startingblock);

}

console.log(” Searching for transactions to/from account ’́ ” + myaccount + ” ” within

blocks + startingblock + ” and ” + lastblocknumber + ”’́”);

var valid = false;

for (var i = startingblock;

i <= lastblocknumber;

i++) {

if (i % 1000 == 0) {

console.log(“Searching for the blocks ” + i);

} var block_details = eth.getBlock(i, true);

if (block_details != null && block_details.transactions != null) {

block_details.transactions.forEach(function(s) {

if (my_account == “ ?” || my_account == s.from) {

41

console.log(“ transaction hash : ” + s.hash + ”\n”

+ “ nonce value : ” + s.nonce + ”\n”

+ “ blockhash value : ” + s.blockHash + ”\n”

+ “ blockNum : ”+ s.blockNumber + ”\n”

+ “ txIndex: ” + s.transactionIndex + ”\n”

+ “ sender : ” + s.from + ”\n”

+ “ receiver : ” + s.to + ”\n”

+ “ Value : ”+ s.value + ”\n”

+ “ gasPrice : ”+ s.gasPrice + ”\n”

+ “ gas : ”+ s.gas + ”\n”

+ “ data : ” +s.v+”\n”

+ “ input/Key stored : ” + s.input);

data1 = s.input;

if(pub_key == s.input){

var data2 = s.input;

valid = true;

return data2;

} } }) } }

return valid;

}

var propnum = 9;

var propnum1 =13 ; //for new chain or for new contract address make this value 0.

var tocheck;

var tocheckaddress;

//This function is used to call the smart contract function proposal() for requesting

the validation.

function req_proposal(pub_key1, verif_addr){

42

var votinginstance1=contractaccess();

var rrr2 =votinginstance1.proposal.sendTransaction(pub_key1, verif_addr,

{from:eth.accounts[0], gas:3000000},function(err,result){console.log(result);

});

}

//This function is used to cast the votes for validation.

function votingstart(){ var votinginstance1=contractaccess();

var event5=votinginstance1.req_voting({from:eth.accounts[0]},{fromBlock:0, toBlock:’latest’});

//To watch the event when request for validation occurs.

event5.watch(function(error,response) { if(response.args.prop_num1 >= (propnum1)){

propnum = response.args.prop_num1;

tocheckpublickey = response.args.tocheck;

tocheckaddress = response.args.tocheckaddress;

tocheckaddress1 = ””;

tocheckaddress1+=tocheckaddress;

} });

var pubkey1 = get_transactions(tocheckaddress, tocheck, 2500);

var no_voters = web3.net.peerCount;

var valid_addr = web3.isAddress(tocheckaddress);

if(valid_addr ==true){

if(pubkey1 ==true){

var rrr4 =votinginstance1.voting_start.sendTransaction(propnum, tocheckpublickey,

tocheckaddress, no_voters,{from:eth.accounts[0],gas:6000000}

,function(err,result){console.log(result);

}) } else{

tocheck = ”wrong”;

var rrr4 =votinginstance1.voting_start.sendTransaction(propnum, tocheckpublickey

43

,tocheckaddress,

no_voters,{from:eth.accounts[0],gas:6000000}

,function(err,result){console.log(result);

}) } }}

function voting_completed(){ var votinginstance1=contractaccess();

var completed;

var rrr2 =votinginstance1.getUser.call(propnum, {from:eth.accounts[0],gas:300000}

, function(err,result){console.log(result);

completed = result.completed;

});

if (completed == true){ var rrr5 =votinginstance1.getuser2.call(propnum,newline

{from:eth.accounts[0] gas:300000},function(err,result){console.log(result);

});

} var rrr5 =votinginstance1.getuser2.call(propnum,{from:eth.accounts[0]

,gas:300000},function(err,result){console.log(result);

});

}

//Calling the contract instance.

function contractaccess(){

var contract = web3.eth.contract([

{

“constant”: false,

“inputs”: [

{

“ name ”: “ _propnum ”,

“ type ”: “ uint256 ”

},

44

{

“name”: “_data3”,

“type”: “string”

},

{

“name”: “_tocheck1”,

“type”: “address”

}, {

“name”: “no_nodes”,

“type”: “uint256”

}

],

“name”: “voting_start”,

“outputs”: [

{

“name”: “”,

“type”: “bool”

}

],

“payable”: false,

“stateMutability”: “nonpayable”,

“type”: “function”

},

{

“constant”: true,

“inputs”: [

{

45

“name”: “”,

“type”: “uint256”

}

],

“name”: “ecu_address”,

“outputs”: [

{

“name”: ” ”,

“type”: “address”

}

],

“payable”: false,

“stateMutability”: “view”,

“type”: “function”

},

{

“constant”: true,

“inputs”: [],

“name”: “people_count”,

“outputs”: [

{

“name”: “”,

“type”: “uint256”

}

],

“payable”: false,

“stateMutability”: “view”,

46

“type”: “function”

},

{

“constant”: true,

“inputs”: [

{

“name”: “_index”,

“type”: “uint256”

}

],

“name”: “getUser”,

“outputs”: [

{

“name”: “”,

“type”: “uint256”

},

{

“name”: “”,

“type”: “bool”

}

],

“payable”: false,

“stateMutability”: “view”,

“type”: “function”

},

{

“constant”: false,

47

“inputs”: [

{

“name”: “_members”,

“type”: “address”

}

],

“name”: “addPerson”,

“outputs”: [],

“payable”: false,

“stateMutability”: “nonpayable”,

“type”: “function”

},

{

“constant”: true,

“inputs”: [

{

“name”: “_index2”,

“type”: “uint256”

}

],

“name”: “getuser2”,

“outputs”: [

{

“name”: “”,

“type”: “string”

},

{

48

“name”: “”,

“type”: “address”

},

{

“name”: “”,

“type”: “address”

},

{

“name”: “”,

“type”: “uint256”

}, {

“name”: “”,

“type”: “uint256”

},

{

“name”: “”,

“type”: “uint256”

}

],

“payable”: false,

“stateMutability”: “view”,

“type”: “function”

},

{

“constant”: true,

“inputs”: [

{

49

“name”: “”,

“type”: “uint256”

}

],

“name”: “proposalcheck”,

“outputs”: [

{

“name”: “prop_id”,

“type”: “uint256”

},

{

“name”: “completed”,

“type”: “bool”

},

{

“name”: “toverify”,

“type”: “string”

},

{

“name”: “recv”,

“type”: “address”

},

{

“name”: “send”,

“type”: “address”

},

{

50

“name”: “total”,

“type”: “uint256”

},

{

“name”: “id”,

“type”: “address”

},

{

“name”: “insupport”,

“type”: “uint256”

},

{

“name”: “notsupport”,

“type”: “uint256”

}

],

“payable”: false,

“stateMutability”: “view”,

“type”: “function”

},

{

“constant”: false,

“inputs”: [

{

“name”: “_toverify1”,

“type”: “string”

},

51

{

“name”: “_recv”,

“type”: “address”

}

],

“name”: “proposal”,

“outputs”: [],

“payable”: false,

“stateMutability”: “nonpayable”,

“type”: “function”

},

{

“inputs”: [],

“payable”: false,

“stateMutability”: “nonpayable”,

“type”: “constructor”

},

{

“anonymous”: false,

“inputs”: [

{

“indexed”: false,

“name”: “tocheck”,

“type”: “string”

},

{

“indexed”: false,

52

“name”: “prop_num1”,

“type”: “uint256”

},

{

“indexed”: false,

“name”: “tocheckaddress”,

“type”: “address”

}

],

“name”: “req_voting”,

“type”: “event”

},

{

“anonymous”: false,

“inputs”: [

{

“indexed”: false,

“name”: “proposalnumber”,

“type”: “uint256”

},

{

“indexed”: false,

“name”: “donevoting”,

“type”: “bool”

}],

“name”: “voting_finished”,

“type”: “event”

53

}]);

var votingcontract = contract.at(”0xc8f64abbe44c8141a745e36db6c505eaa663af41”);//This

should be the address of the contract after deployement.

return votingcontract;

}

54

APPENDIX C: DEPLOYING OF SMART CONTRACT

The following code snippet is used for deploying the smart contract [34]. The ABI

and byte code of the contract is obtained after compiling the smart contract.

var Contract1 = web3.eth.contract(“abi of the contract”);

var mine_contract1 = Contract1.new(

{

from: web3.eth.accounts[0],

data: ’Byte code generated after compiling’

gas: ‘4800000’

}, function (s, contract){

console.log(s, contract);

if (typeof contract.address !== ‘undefined’) {

console.log(‘Contract mined at address: ’ + contract.address + ‘ transaction hash is:

’ + contract.transaction Hash);

}

})

