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ABSTRACT 

 

 

YANG LI.  The use of machine learning method for modeling and analyzing pedestrian 

crash data and comparisons with traditional discrete choice modeling methods.   

(Under the direction of DR. WEI FAN) 

 

 

As one of the most vulnerable entity within the transportation system, pedestrians 

might face more dangers and sustain severer injuries in the traffic crashes than others. The 

safety of pedestrians is particularly critical within the context of continuous traffic safety 

improvements in US. Moreover, traffic crash data are inherently heterogeneous, and such 

data heterogeneity can cause one to draw incorrect conclusions in many ways. Therefore, 

developments and applications of proper modeling approaches are needed to identify 

causes of pedestrian-vehicle crashes to better ensure the safety of pedestrians.  

On the other hand, with the development of artificial intelligence techniques, a 

variety of novel machine learning methods have been established. Compared to 

conventional discrete choice models (DCMs), machine learning models are more flexible 

with no or few prior assumptions about input variables and have higher adaptability to 

process outliers, missing and noisy data. Furthermore, the crash data has inherent patterns 

related to both space and time, crashes happened in locations with highly aggregated 

uptrend patterns should be worth exploring to examine the most recently deteriorative 

factors affecting the pedestrian injury severities in crashes.   

The major goal of this dissertation is intended to build a framework for modeling 

and analyzing pedestrian injury severities in single-pedestrian-single-vehicle crashes with 

providing a higher resolution on identification of contributing factors and their associating 

effects on the injury severities of pedestrians, particularly on those most recently 
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deteriorative factors. Developments of both conventional DCMs and the selected machine 

learning model, i.e., XGBoost model, are established. Detailed comparisons among all 

developed models are conducted with a result showing that XGBoost model outperforms 

all other conventional DCMs in all selected measurements. In addition, an emerging 

hotspot analysis is further utilized to identify the most targeted hotspots, followed by a 

proposed XGBoost model that analyzes the most recently deteriorative factors affecting 

the pedestrian injury severities. By completions of all abovementioned tasks, the gaps 

between theory and practice could be bridged. Summary and conclusions of the whole 

research are provided, and further research directions are given at the end. 
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CHAPTER 1:  INTRODUCTION 

1.1. Problem Statement and Motivation 

Compared to other entities in the transportation system, pedestrians are among the 

most vulnerable ones. The injuries and deaths of pedestrians in traffic crashes causes huge 

impacts both socially and economically. Such issue is particularly critical within the 

context of continuous traffic safety improvements in US. According to the National 

Highway Traffic Safety Administration (NHTSA), compared to other entities, pedestrians 

are the most vulnerable on American roadways, and on average, a pedestrian was killed 

every 88 minutes in traffic crashes in 2017 (NHTSA, 2017). In recent reports from 

Governors Highway Safety Association (Retting and Schwartz 2019, 2020), there is a 53% 

increase in pedestrian fatalities in 2018 compared to 2009. Figure 1.1 shows the number of 

pedestrian fatalities from 2007 to 2018 along with its percentages in the total traffic 

fatalities in US (NHTSA, 2018).  

Figure 1.1 shows an increasing trend of the pedestrian death in US after the Great 

Recession of 2009 not only in the number but also the percentage compared to other traffic 

fatalities (NHTSA, 2018). On the other hand, based on the available data from North 

Carolina Department of Transportation (NCDOT), there are more than 2000 pedestrians 

that are involved in crashes with vehicles each year during the past decades in North 

Carolina (NC). On average, a total of 150–200 pedestrians are annually killed on NC roads, 

and additional 200–300 pedestrians are severely injured (Thomas and Levitt, 2018). With 

that being said, the safety and risk issues of pedestrians within the transportation system 

cannot be neglected. As a result, a myriad of researches have been done to explore the 

factors to the abovementioned issues, such as the alcohol involvement, demographic 
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features, at-fault operations, collision types, environmental characteristics, roadway and 

locality features, time-of-day (Kim et al., 2008a, 2010; Kim et al., 2008b; Dai, 2012; Chen 

and Fan, 2019a,b; Li and Fan, 2019a,b; Mokhtarimousavi, 2019). 

 

 

FIGURE 1.1: Number of pedestrian fatalities and its percentages in the total traffic 

fatalities in US (NHTSA, 2018) 

 

Moreover, due to the heterogeneity inherent in the traffic crash data, which arises 

from unobservable factors that are not reported by law enforcement agencies and cannot 

be collected from state crash records, it is not easy to identify and evaluate factors that 

significantly affect injury severity of pedestrians in such crashes. Such heterogeneity might 

result in biased estimation of parameters and thus drawing potentially incorrect conclusions 

(Mannering and Bhat, 2014; Shaheed and Gkritza, 2014). 
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Generally speaking, conventional widely used discrete choice modeling (DCM) 

methods such as multinomial logit models (MNL), ordered logit/probit models, mixed logit 

models (ML), and partial proportional odds logit models (PPO) have been applied to 

analyze the crash data. However, almost all the beforementioned methods highly rely on 

prior assumptions. Compared with those statistical models, machine learning models (Tang 

et al., 2018) are more flexible with no or few prior assumptions for input variables and 

have higher adaptability to process outliers, missing and noisy data. Furthermore, machine 

learning techniques are also good examples of data driven methods which aim to increase 

efficiency and accuracy of the analysis and prediction of crash data. Recently, different 

machine learning approaches such as neural network, ensemble learning, and support 

machines have been employed by the researchers and their results indicate that such 

approaches are highly adaptable and can give better performances than traditional models. 

Therefore, the machine learning-based approach is selected for the analysis of pedestrian 

involved crash data in this study. 

Furthermore, the crash data inherent has patterns in both space and time, and 

crashes happened in locations with highly aggregated uptrend patterns should be worth 

exploring to examine the most recently deteriorative factors that contribute to severer 

injuries (i.e., fatalities and incapacitating injuries) of pedestrian in the pedestrian-vehicle 

crashes. With such consideration, the emerging hotspot analysis tool developed by the 

ArcGIS could provide solid references to help identify the spatiotemporal patterns of the 

crash related data. Hence, by taking advantages of both the emerging hotspot analysis and 

the selected machine learning technique, a more targeted model is further developed to 

analyze the pedestrian injury severity in this study.  
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1.2. Study Objectives 

 The proposed work in this research is intended to fulfill the following objectives: 

1. To select and develop traditional DCMs for modeling pedestrian-injury severities 

based on previous studies falling into the field of transportation crash data analysis, 

particularly those focusing on pedestrian involved crashes; 

2. To model pedestrian-injury severities in pedestrian-vehicle crashes using advanced, 

appropriate and accuracy machine learning-based approach; 

3. To use real-world police-reported pedestrian crash data to examine and validate the 

developed models so that the gaps between the theoretical research and the 

application of the developed pedestrian injury severity model can be bridged; 

4. To compare the results between traditional DCMs and advanced machine learning-

based approach and provide conclusions and recommendations; 

5. To provide a framework for modeling pedestrian injury severities by combining 

emerging hotspots analysis and the selected machine learning method. 

 

1.3. Expected Contributions 

 In order to better improve the environment for pedestrians, many research studies 

have been conducted; however, efforts are still needed to establish proper and accurate 

methods in data analysis and modeling to identify contributing factors affecting injury 

severities of pedestrian in pedestrian-vehicle crashes. This would highly guide traffic and 

safety engineers to make appropriate measures for creating a safer environment for 

pedestrians. Expected contributions of this research work to the state-of-the-art and state-

of-the-practice include the following: 
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1. Ability to select and develop traditional DCMs for modeling pedestrian-injury 

severities and analyzing the data for improving the safety of pedestrians;  

2. Ability to develop more advanced, appropriate and accurate pedestrian injury 

severity models; 

3. Ability to accurately analyze real world police-reported crash data and identify key 

contributing factors to pedestrian injury severity by using the developed prediction 

models. 

4. Ability to conduct comparisons between different modeling methods and provide 

recommendations on selecting appropriate approach to modeling pedestrian-injury 

severity and on countermeasures for improving pedestrian safety; 

5. Ability to analyze the spatiotemporal patterns of pedestrian crashes and apply the 

corresponding machine learning technique to develop the best model to provide up-

to-date analysis of pedestrian injury severities in pedestrian-vehicle crashes. 

 

1.4. Research Overview 

 The research will be structured as shown in Figure 1.2. In Chapter 1, the 

significance and motivation of modeling pedestrian-injury severity in pedestrian-vehicle 

crashes has been discussed, followed by the description of study objectives and expected 

contributions. 

 Chapter 2 presents a comprehensive literature review of the current state-of-the-art 

and state-of-the-practice of modeling pedestrian injury severities in pedestrian-vehicle 

crashes, including both conventional DCMs and novel machine learning models. Then 

methodologies of the selected widely used conventional DCMs to model and analyze 
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pedestrian-injury severity in pedestrian-vehicle crashes are recognized in the dissertation 

as: (1) basic DCMs (i.e., MNL model); (2) advanced DCMs (i.e., ML model and PPO 

model). In addition, the selected machine learning-based methodology (i.e., XGBoost 

model) is introduced and summarized in this chapter as well.  

 Chapter 3 describes the basic information on police-reported pedestrian crash data 

collected between 2007 and 2018 in North Carolina utilized in this study. A wide range 

categorical factors with motorist, pedestrian, environmental, and roadway features of the 

dataset are inspected. The data processing steps are also described in this chapter. 

Chapter 4 presents the applications of the selected widely used conventional DCMs 

(i.e., MNL, PPO, and ML models) for modeling pedestrian-injury severity in pedestrian-

vehicle crashes. Firstly, the developments of each model are explained in detail, followed 

by the exhibits of results on both parameter estimations and marginal effects on each 

developed model. Then, the general guidance of interpreting the model results (i.e., mainly 

based on the results of marginal effects) of conventional DCMs is provided in this chapter.  

 Chapter 5 introduces the development of the selected advanced machine learning 

method, which is the XGBoost model for modeling pedestrian-injury severity in 

pedestrian-vehicle crashes. The detailed process of the selected method is described with 

parameter tuning and model training. Additionally, partial dependence of the contributing 

factor in machine learning methods introduced in Chapter 2 is calculated with the similar 

utility as the marginal effect of conventional DCMs. A general guidance on the 

interpretation of partial dependence is also presented for the purpose of demonstration of 

the result analysis for the developed machine learning model. 
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Chapter 6 provides an analysis of comparison between selected conventional 

DCMs and advanced machine learning method on modeling and analyzing pedestrian-

injury severity in pedestrian-vehicle crashes. Evaluations on all models in this study are 

also provided with several most widely used criteria such as accuracy, precision (i.e., 

positive predictive value), recall (i.e., sensitivity), and F1 score. The discussions on the 

comparison results are provided for finding the most appropriate, advanced and accurate 

model on modeling and analyzing pedestrian-injury severity in pedestrian-vehicle crashes. 

Chapter 7 illustrates a framework for modeling pedestrian injury severities in 

pedestrian-vehicle crashes by combining the emerging hotspot analysis and machine 

learning method. Associated results are also presented for exploring the contributing 

factors affecting the pedestrian injury severities with uptrend in the hotspots in North 

Carolina to further provide recommendation references to policymakers for improving the 

safety of pedestrian.  

Chapter 8 concludes the whole study with a summary of the developed models, 

solution approaches, and research results. Suggestions for future research are provided. 
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FIGURE 1.2: Research Structure 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

This chapter provides a comprehensive review of various aspects related to traffic 

crash data analysis, particularly those majorly focusing on pedestrian involved crashes. 

Contents include literatures on each approach and the associated introduction of 

methodology. This should give a clear picture of existing current efforts made towards the 

modeling of pedestrian injury severities in pedestrian-vehicle crashes. 

The following sections are organized as follows. Section 2.2 presents the literatures 

on basic DCMs, followed by the presentation of methodology for the MNL model, which 

is the most popular DCM model used in modeling pedestrian-injury severity in pedestrian-

vehicle crashes. Section 2.3 gives a comprehensive review of existing methods of advanced 

DCMs, and also the introduction of two widely used models, which are the ML model and 

the PPO model. Section 2.4 will show the literatures with the use of machine learning 

methods in crash data analysis and the associated methodology of the selected method (i.e., 

XGBoost method). Finally, section 2.5 concludes this chapter with a summary. 

 

2.2. Basic Discrete Choice Models  

 

2.2.1. Introduction of Basic Discrete Choice Models 

Among all traditional DCMs, multinomial logit (MNL) models have been widely 

and popularly used for analyzing the crash injury severity relevant data. Many researchers 

had demonstrated that MNL models could be successfully applied to identify contributing 

factors for most traffic crash types, including pedestrian-vehicle crashes (Himanen and 
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Kulmala 1988; Shankar and Mannering 1996; Quddus et al., 2009; Zhou et al., 2013). 

However, MNL model is highly dependent on the assumption of independence of irrelevant 

alternatives (IIA) property. IIA considers the same effects of the independent variables 

across individual cases, which would be invalid when there are unobserved data 

heterogeneities. It is true because of the incompleteness of the data and it also implies 

various effects of the estimators across different observations. In addition to the MNL 

model, several other discrete choice models were also used by many scholars to model the 

severity of pedestrian-injury in pedestrian-vehicle crashes, including the binary logit model 

(Sze and Wong, 2007; Moudon et al., 2011; Sasidharan et al., 2015) and ordered 

logit/probit model (Zajac and Ivan, 2003; Yasmin et al., 2014; Chen et al., 2016).  

However, most of the beforementioned models ignored the unobserved 

heterogeneity across individual injury observations, especially when the police-reported 

data were utilized in which only a limited number of the explanatory variables were 

included and analyzed. According to some studies (McFadden and Train, 2000; Train, 2009; 

Mannering et al., 2016), such ignorance may lead to biased analysis results. 

 

2.2.2. Literature Review on Using Basic Discrete Choice Models to Model Pedestrian 

Crashes 

 

2.2.2.1. Work of Zajac and John (2003) 

Zajac and John (2003) applied an ordered probit model to investigated factors that 

have impacts on injury severities of motor vehicle-crossing pedestrian crashes in rural area 

of Connecticut. Key factors, such as clear roadway width, vehicle type, alcohol 
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involvement on both driver and pedestrian, and elder pedestrian (age ≥65), increase the 

chance of fatal injury for pedestrians. Based on the results of such key factors, policy 

related suggestions were also made for practical purpose. 

2.2.2.2. Work of Rifaat and Chin (2007) 

To better understand the relationship between injury severities and risk factors for 

mitigating severity of pedestrian injury in Singapore, Rifaat and Chin (2007) applied an 

ordered probit model to examine the factors affecting crash severities with broad 

considerations of driver characteristics, roadway features, vehicle types, pedestrian 

characteristics and crash characteristics and also explored how the interaction of these 

factors affect the injury severities. Data used in this study were divided into three groups, 

of which one portion with only pedestrian involved crashes was dedicated for modeling 

pedestrian injury severity. Factors of elder pedestrian and nighttime were identified to raise 

the risk of pedestrians being severely injured.  

2.2.2.3. Work of Sze and Wong (2007) 

Sze and Wong (2007) used historical crash data in Hong Kong to determine the risk 

of pedestrian being injured and killed in traffic crashes and to investigate the contributing 

factors to injury severity. The authors proposed a binary logit model and found that elder 

pedestrians (age ≥65), head injury, crash at crossing or within 15m of crosswalk, speed 

limit (≥50 mph), a signalized intersection, and number of lanes (≥2) obviously resulted in 

a higher risk of being killed and severely injured for pedestrians. 

 

 

2.2.2.4. Work of Kim et al. (2008a) 
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Kim et al. (2008a) utilized police-reported crash data between 1997 and 2000 of 

North Carolina to explore the pedestrian injury severities in pedestrian-vehicle crashes. 

Two models including MNL and a heteroskedastic model were used. Factors, such as PM 

traffic peak, traffic signal control, driver age, curved roadways, inclement weather, 

crosswalk, and walking along roadway were identified to raise the chance of a fatal crash. 

Other than MNL model, the results showed that the heteroskedastic model performs better 

than the MNL model.  

2.2.2.5. Work of Ulfarsson et al. (2010) 

Ulfarsson et al. (2010) developed an MNL model to explore the assignment of fault 

in pedestrian-vehicle crashes for the purpose of improving the safety of pedestrians in the 

transportation system. In this study, different scenarios were selected, where observed 

factors are associated with pedestrian at fault, driver at fault, or both at fault. Results of this 

study showed the followings: 1) Pedestrian-at-fault factors: pedestrian crossing streets, 

pedestrian dash/dart, pedestrian (age ≤12), drunk pedestrian; 2) Driver-at-fault factors: 

turning/merging/backing up movement, speeding, driver backing up, drunk driver, and 

multiple pedestrians; and 3) Other important factor: darkness. 

2.2.2.6. Work of Tay et al. (2011) 

A study by Tay et al. (2011) was conducted to explored factors that have impacts 

on the injury severity of pedestrian in pedestrian-vehicle crashes in South Korea. The 

authors applied an MNL model, and several contributing factors were found to have 

impacts on pedestrian injury severity, which belong to traffic control methods, roadway 

characteristics, weathers, pedestrian characteristics, driver characteristics, and vehicle 

types. Several key factors, such as heavy vehicles, drunk drivers, male drivers, drivers with 
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age ≤65, elder pedestrians (age ≤65) or female pedestrians, midblock, high speed limit, 

inclement weather conditions, night, etc., were found to severely increase the risk of each 

severity level of injury to pedestrians. Related recommendations were also made to hold 

campaigns targeted at male drivers, drivers under the age of 65, female pedestrians and 

very old pedestrians for improving the safety of pedestrians.  

2.2.2.7. Work of Kwigizile et al. (2013) 

Kwigizile et al. (2013) examined the inconsistencies between ordered and 

unordered probability models for pedestrian injury severity. Two models (i.e., ordered 

probit model and MNL model) were developed using data on crashes between a single 

vehicle and a pedestrian recorded in Florida from 2004 to 2008. The results of the 

comparison analysis indicated that the effects of contributing factors are consistent on 

levels of the lowest and highest injury, but inconsistent for some factors on intermediate 

injury levels. Thus, cautions should be given when conducting the model selections. 

2.2.2.8. Work of Obeng and Rokonuzzaman (2013) 

Obeng and Rokonuzzaman (2013) deployed an ordered logit model to model injury 

severity for pedestrians injured from the pedestrian-vehicle crashes at signalized 

intersections in Greensboro, North Carolina. Through the results, the study showed that 

female drivers and presence of a sidewalk were identified as the contributing factors to 

increase the risk of pedestrian being severely injured. On the other hand, passenger cars, 

sport utility vehicles and pickups were found to contribute to minor injuries of pedestrians. 

 

 

2.2.2.9. Work of Zhou et al. (2013) 



14 

 

 

 

Zhou et al. (2013) conducted a study on pedestrian crossing behaviors at signalized 

intersections in Nanjing, China. An MNL model with latent variables was developed to 

examine the impacts of contributing factors on pedestrians’ behavior. The results showed 

that 1) arrival time, oncoming cars, and crosswalk length have the most effects on late 

starters; 2) for pedestrians with sneaking behavior, gender has the greatest impact; and 3) 

when pedestrians with partial sneaking behavior, age is the most significant contributing 

factor. The authors also provided recommendations on several aspects to improve the 

safety of pedestrians, including facility designs and safety educations. 

2.2.2.10. Work of Yasmin et al. (2014) 

An ordered logit model was proposed by Yasmin et al. (2014) to examine 

pedestrian injury severity in New York City. Two other enhanced ordered logit models (i.e., 

generalized ordered logit model and latent segmentation based ordered logit model) were 

also developed for an in-depth analysis. The key contributing factors affecting pedestrian 

injury severity levels were identified as weathers, lighting conditions, vehicle 

characteristics, pedestrian ages, and seasons. Elder pedestrian (age ≥ 65) was identified to 

raise the risk of pedestrian being killed in crash. 

2.2.2.11. Work of Chen and Fan (2019a) 

Chen and Fan (2019a) developed an MNL model to investigate the pedestrian-

vehicle crash in North Carolina, by using the data obtained from Highway Safety 

Information System (HSIS) database from 2005 to 2012. From the results, factors that 

significantly increase the chance of severer injuries (i.e., fatal and incapacitating injuries) 

include: bad condition of driver, motorcycle and heavy truck, young and elder pedestrians 

(age between 26-65; ≥65), weekends, light condition (dawn, dusk and dark), curved 
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roadways, roadway surface with water, NC route, speed limit (35-50 mph; ≥50 mph). 

Relevant suggestions on improving the safety of pedestrian within the transportation 

system were also provided in this study. 

Table 2.1 provides a summary of existing studies that utilized the basic DCM 

methods (i.e., binary logit model, ordered logit/probit model and MNL model) that majorly 

focus on pedestrian crash data analysis within transportation safety research in 

chronological order.  

 

TABLE 2.1: Summary of Existing Studies Utilized the Basic DCM Methods Focusing on 

Pedestrian Crash Data Analysis 

Authors Year 
Case study 

location 
Methodology Key findings 

Zajac and John  2003 

Rural 

Connecticut 

USA 

Ordered 

probit model 

Factors contributing to fatality of 

pedestrians: clear roadway width, vehicle 

type, alcohol involvement on both driver 

and pedestrian, and elder pedestrian (≥65).  

Rifaat and 

Chin 
2007 Singapore 

Ordered 

probit model 

Factors contributing to severe injury of 

pedestrians: elder pedestrian and 

nighttime. 

Sze and Wong  2007 
Hong Kong 

China 

Binary logit 

model  

Factors contributing to severe injury such 

as pedestrian age (≥65), head injury, 

pedestrian crossing, speed limit (≥31 mph), 

signalized intersection, and number of 

lanes (≥2). 

Kim et al. 2008 
North Carolina 

USA 
MNL model 

Factors contributing to fatality of 

pedestrians: PM traffic peak, traffic signal 

control, curved roadways, inclement 

weather, crosswalk, and walking along 

roadway. 
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Authors Year 
Case study 

location 
Methodology Key findings 

Ulfarsson et al. 2010 
North Carolina 

USA 
MNL model 

1) Pedestrian-at-fault factors: pedestrian 

crossing streets, pedestrian dash/dart, 

pedestrian age (≤12), drunk pedestrian;  

2) Driver-at-fault factors: 

turning/merging/backing up movement, 

speeding, driver backing up, drunk driver, 

and multiple pedestrians. 3) Other 

important factor(s): darkness. 

Tay et al. 2011 South Korea MNL model 

Factors contributing to severe injury of 

pedestrians: heavy vehicles, drunk drivers, 

driver gender (male), driver age (≤65), 

pedestrian age (≥65), pedestrian gender 

(female), pedestrians in roadway, high 

speed limit, inclement weather conditions, 

night, on road links, in tunnels, on bridges, 

on wider roads. 

Obeng and 

Rokonuzzaman 
2013 

Greensboro, 

NC 

USA 

Ordered logit 

model 

Factors contributing to severe injury of 

crashes in signalized intersection: female 

drivers and presence of a sidewalk. 

Kwigizile et al. 2011 
Florida 

USA 

Ordered 

probit model, 

MNL model 

Comparisons on two model structures 

(ordered probit model vs. MNL model): 

effects of contributing factors are 

consistent on levels of lowest and highest 

injury levels, but inconsistent for some 

factors on intermediate injury levels. 

Zhou et al. 2013 
Nanjing 

China 
MNL model 

Crossing behaviors of pedestrian at 

signalized intersections were investigated 

and contributing factors for different 

behavior groups are identified: 1) late 

starters (arrival time, oncoming cars, and 

crosswalk length);  

2) pedestrian with sneaking behavior 

(gender); and 3) pedestrian with partial 

sneaking behavior (age). 
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Authors Year 
Case study 

location 
Methodology Key findings 

Yasmin et al. 2014 
New York City 

USA 

Ordered logit 

model 

Factor contributing to fatality: elder 

pedestrian (≥65). 

Chen and Fan 
2019

a 

North Carolina 

USA 
MNL model 

Factors contributing to fatalities and 

disabling injuries: impaired driver, 

motorcycle and heavy truck, pedestrians 

age (26-65; ≥65), weekends, light 

condition (dawn, dusk and dark), curved 

roadways, roadway surface with water, NC 

route, speed limit (35-50 mph; ≥50 mph). 

 

Compared to all other basic DCMs, the MNL model is the most popular one and 

widely used by the majority of scholars whose interest is in safety research, due to the ease 

of its use in both model development and interpretation. Thus, the following subsection 

gives a brief introduction to the methodology on constructing the MNL model. 

 

2.2.3. Multinomial Logit Model 

 The utility function Uij of MNL model is a linear function, which denotes the 

relationship between injury severities (j = 0, 1, 2,…, J) and contributing factors, as 

presented in Equation 2.2.3.1: 

 ��� = ����� + ��� (2.2.3.1) 

where Xij represents the vector of observable factors (variables) for ith individual with jth 

injury severity level, βj denotes the vector of estimated coefficients, and εij is the error 

component, which captures the unobserved factors and is assumed to be independently and 

identically distributed (i.e., independence of irrelevant alternatives, IIA property). If the 

error component follows the generalized extreme-value distribution, the MNL model could 



18 

 

 

 

be presented in Equation 2.2.3.2 (Manski and McFadden, 1981): 

 	�� = 
��(������′ ��)∑ 
��(������′ ��)�∈�  (2.2.3.2) 

where Pij is the probability of ith pedestrian-vehicle crash with jth pedestrian injury severity 

level outcome. 

 The marginal effect analysis could help evaluate how the significant variables 

estimated in the MNL model impact the pedestrian injury outcome probabilities (Scott-

Long, 1997). Since binary indicator variables (with the value of 0 or 1) are used in this 

study, the marginal effect can be computed as: 

 
��������� = 	�������  ���" = 1$ − 	�������  ���" = 0$ (2.2.3.3) 

 Combined the direct interpretation of the coefficients with the marginal effects of 

the MNL model, marginal effect is more appropriate for use to explain the results to provide 

proper recommendations on improving the safety of pedestrians in the transportation 

system. 

 

2.3. Advanced Discrete Choice Models 

 

2.3.1. Introduction of Advanced Discrete Choice Models 

As mentioned in Subsection 2.2.1, MNL model has the assumption of the same 

effects of independent variables across individual cases which could be violated if there 

are inherent unobserved data heterogeneities. It is true due to the incompleteness of the 

traffic accidents data, which implies that effects could vary across different cases. 

Therefore, in order to overcome the limitation caused by such IIA property, the ML model 
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is developed by setting the parameters to be randomly distributed across individual 

observations. In the transportation safety research domain, many researchers had applied 

the ML model for crash injury severity relevant data analysis (Milton et al., 2008; 

Malyshkina and Mannering 2010; Chen and Chen 2011; Yasmin and Eluru, 2013; Gong 

and Fan, 2017; Chen and Fan 2019a, b). By comparing results with the MNL model, they 

also found that ML model is more appropriate for dealing data with unobserved 

heterogeneities.  

However, in crash injury severity analyses, despite the improvement of ML model 

that overcomes the limitation of MNL model, both models consider all injury severities as 

non-ordered. Hence, both models ignore the inherent hierarchical nature of injury severities. 

Meanwhile, data utilized in ordered logit/probit models needs to be strictly subjected to the 

proportional odds (PO)/parallel lines assumption. With that being said, ordered logit/probit 

models treats the parameter estimates the same and constant across severity levels 

(Savolainen et al., 2011). Such assumption would be unreasonable, which requires 

relaxation in the modeling of crash injury severity. 

By considering those limitations of conventional discrete choice models, there is 

an emerging need for establishing and utilizing more elaborate models. Basically, such 

models need to consider the inherent ordered nature of the crash injury severity. Then, they 

should allow some of the parameter estimates to have different effects on different injury 

severity levels. Peterson and Harrell (1990) firstly proposed the partial proportional odds 

(PPO) model by relaxing the PO assumption. And by applying the model to several well-

examined datasets, the model by allowing non-proportional odds for a subset of the 

independent variables has been proved its effectiveness. Since then, the PPO model has 
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shown its attractiveness to scholars and been successfully deployed to handle a variety of 

research problems (Wang and Abdel-Aty, 2008; Rifaat et al., 2012; Gong et al., 2016; Pour-

Rouholamin and Jalayer, 2016; Pour et al., 2016; Li and Fan, 2019a,b, 2020). Sasidharan 

and Menéndez (2014) had done a literature review on applications and utilized PPO model 

to model the pedestrian crash injury severities using a dataset of national pedestrian safety 

from 2008 to 2012 in Switzerland. Compared with results from MNL model and ordered 

logit/probit model, the authors found PPO model performs better in modeling crash injury 

severity. 

Therefore, with the consideration of the unobserved heterogeneities, the inherent 

hierarchical nature of crash data, and the popularity of models within the field of traffic 

crash data analysis, the ML model and the PPO model are selected in this study to represent 

the advanced DCMs and the their methodologies are also included in the following 

subsections. 

 

2.3.2. Literature Review on Using Advanced Discrete Choice Models to Model 

Pedestrian Crashes 

 

2.3.2.1. Work of Kim et al. (2010) 

In order to address the unobserved heterogeneity within the crash data, Kim et al. 

(2010) applied an ML model to analyze pedestrian-injury severity in pedestrian-vehicle 

crashes in North Carolina. Several contributing factors were identified as significant factors 

with raising the risk of being killed for pedestrians in crashes, which are light condition of 

darkness without streetlights, truck freeway, speeding involvement, and drunk driver. It 
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was also found that heterogeneity for factors of freeway and pedestrian-at-fault collisions 

in the mean of the random parameters was highly associated with the gender of pedestrians, 

and heterogeneity for traffic control (sign) and backing vehicle in the mean of the random 

parameters was associated with the age of pedestrians. 

2.3.2.2. Work of Aziz et al. (2013) 

Aziz et al. (2013) developed an ML model to investigate pedestrian injury severity 

levels in New York City by accounting for unobserved heterogeneity in the population and 

across the boroughs. Several key factors, such as number of lanes, grade, light condition, 

road surface, presence of signal control, type of vehicle, parking facilities, commercial land 

use, and industrial land use were identified as significant factors in the developed model. 

Besides, the results of the loglikelihood ratio test indicated the necessity of developing 

segmented models for each borough. 

2.3.2.3. Work of Islam and Jones (2014) 

Islam and Jones (2014) deployed an ML model to examine the contributing factors 

affecting the injury severities of pedestrians at-fault crashes in both rural and urban 

locations in Alabama by considering unobserved heterogeneity across individuals. 

Through the results, obvious differences exist between the impacts of a set of variables on 

the injury severities of pedestrian of urban versus rural pedestrian at-fault crashes. Different 

statistically significant variable sets were identified in both locations (i.e., urban and rural). 

In addition, several variables with random effects were also detected by allowing 

unobserved heterogeneity across individuals. 

2.3.2.4. Work of Haleem et al. (2015) 
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A study focused on analyzing pedestrian crash injury severity at signalized and non-

signalized intersections in Florida was conducted by Haleem et al. (2015), in which an ML 

model was employed. The results showed that for signalized intersections, factors towards 

severe injury of pedestrian were identified, which are higher AADT, higher speed limit, 

and higher percentage of trucks, elder pedestrians, pedestrian-at-fault, rain, and darkness. 

And for unsignalized intersections, factors contributing to severe injury of pedestrian were 

also detected including higher speed limits, pedestrian walking along roadway, mid-age 

and elder pedestrians, pedestrian-at-fault, vans, and darkness. 

2.3.2.5. Work of Tulu et al. (2017) 

Tulu et al. (2017) used police-reported pedestrian crashes in Addis Ababa, Canada 

from 2009 to 2012 and applied an ML model with accounting for the unobserved 

heterogeneity in the crash data that were potentially not reported by law enforcement 

agencies and/or could not be collected from crash records to explore contributing factors 

affecting the pedestrian injury severities in pedestrian-vehicle crashes. Results revealed 

several factors having negative impacts towards severe and fatal injuries of pedestrians, 

including high speed limit, intersections, darkness, and heavy vehicle. Moreover, drivers 

with less education were more likely contributing to fatal injury to pedestrians in the 

crashes. 

2.3.2.6. Work of Kim and Ulfarsson (2019) 

Kim and Ulfarsson (2018) used an ML model to examine a wide range of variables 

of driver, vehicle type, vehicle movement, location, and environment for pedestrian crashes. 

A comparison study was also conducted to explore differences between older adult 

pedestrians (age ≥65) and younger adult pedestrians (age between18-59) by using the 
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2012-2013 crash data retrieved from U.S. National Automotive Sampling System (NASS) 

General Estimate Systems (GES) database. The study identified several factors 

contributing to severe injury of elder pedestrians, such as pedestrian crossing roadway, 

left/right turning movement of driver in parking areas, minivans, and SUVs. 

2.3.2.7. Work of Chen and Fan (2019b) 

Build upon the previous study (Chen and Fan, 2019a), Chen and Fan (2019b) 

deployed an ML model to investigate and identify significant contributing factors affecting 

the pedestrian injury severities in pedestrian-vehicle crashes by segmenting data into rural 

and urban areas in North Carolina, United States. The results show that impaired driver, 

heavy trucks, darkness, speed limit (35-50 mph; ≥50 mph) were detected as statistically 

significant factors towards severe and fatal injury severities in both rural and urban areas. 

Differences were also identified for some variables with different effects in urban and rural 

areas. The findings indicate that in order to better understand the pedestrian crashes, it is 

necessary to model separate models with segmentation of data as urban and rural areas. 

Unlike ML model, only few research works have applied PPO models to analyze 

crash injury severity and it is also true for those studies mainly focusing on pedestrian 

injury severity analysis. 

2.3.2.8. Work of Rifaat et al. (2012) 

A study by Rifaat et al. (2012) was conducted to explore the effects of different 

urban street patterns on pedestrian injury severity in pedestrian-vehicle crashes. Police-

reported pedestrian crash data collected by the City of Calgary from 2003-2005 were 

utilized to develop the PPO model. The results of the model implied that compared to the 
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traditional gridiron pattern, loops and lollipops design were identified to be related to 

severe pedestrian crash injury. 

 

2.3.2.9. Work of Sasidharan and Menéndez (2014) 

Sasidharan and Menéndez (2014) developed a PPO model as an alternative to 

model the pedestrian injury severity in crashes. A national pedestrian safety data ranging 

from 2008 to 2012 of Switzerland was collected and used. Variables found to be 

statistically significant in the model were identified, such as peak hour, familiarity of route, 

traffic signals and signs. In addition, factors contributing to severe injury of pedestrians in 

the crashes were also detected as elder pedestrians (≥75), male pedestrians, dark unlighted 

roadways, and midblock of pedestrians. 

2.3.2.10. Work of Pour et al. (2016) 

Pour et al. (2016) deployed a PPO model to analyze pedestrian crashes with 

midblocks behavior in Melbourne metropolitan area, Australia. And for the first time, 

factors such as distance of crashes to public transport stops, average road slope and some 

social characteristics were taken into consideration on developing the PPO model. The 

results of the study identified several statistically significant factors affecting the injury 

severities of pedestrians in pedestrian-vehicle crashes with midblock behavior, such as 

speed limit, light condition, pedestrian age and gender, and vehicle type. 

2.3.2.11. Work of Li and Fan (2019a) 

Li and Fan (2019a) used a PPO model associated with a segmentation of data based 

on pedestrian ages to examine the contributing factors affecting the injury severities of 

pedestrians in pedestrian-vehicle crashes in North Carolina. Results indicated the necessity 
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with accounting for different age groups when modeling the pedestrian injury severity. And 

differences were found among all three age groups (i.e., young [age ≤24], middle-aged [age 

25-55], and older pedestrians [age ≥55]).  

2.3.2.12. Work of Li and Fan (2019b) 

In this study, authors applied a sequential analysis framework by combining latent 

class clustering and PPO model to explore potential unobserved heterogeneity across 

observations in the crash data. Six sub-models with different representing variables were 

developed and heterogeneities did exist among different classes. Some general major 

factors contributing to severe injury were identified as: heavy vehicle, pedestrian crossing 

and dash/dart-out, and pedestrian age (≥55). 

Table 2.2 displays a summary of existing studies that utilized the advanced DCM 

methods (i.e., ML model and PPO model) focusing on pedestrian crash data analysis within 

transportation safety research in chronological order. 
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TABLE 2.2: Summary of Existing Studies Utilized the Advanced DCM Methods  

Focusing on Pedestrian Crash Data Analysis 

Authors Year 
Case study 

location 
Methodology Key findings 

Kim et al. 2010 

North 

Carolina 

USA 

ML model 

1) Factors contributing to fatality of 

pedestrians: dark unlighted roadway, truck, 

freeway, speeding, and drunk driver;  

2) Heterogeneity in the mean of the random 

parameters: pedestrian gender (freeway and 

pedestrian-at-fault collision), and 

pedestrian age (traffic control [sign] and 

backing vehicle). 

Aziz et al.  2013 

New York 

City 

USA 

ML model 

1) Significant factors: number of lanes, 

grade, light condition, road surface, 

presence of signal control, type of vehicle, 

and parking facilities, commercial and 

industrial land use;  

2) LR test indicated necessity of separate 

models for different areas (i.e., boroughs). 

Rifaat et al.  2012 

City of 

Calgary 

Canada 

PPO model 

Compared to the traditional gridiron 

pattern, currently popular urban street 

patterns, such as loops and lollipops design, 

were identified to relate to severe pedestrian 

crash injury. 

Sasidharan and 

Menéndez  
2014 South Korea PPO model 

Factor contributing to fatality: elder 

pedestrian (≥75), pedestrian gender (male), 

dark unlighted roadways, and mid-block 

crossing behavior of pedestrians. 

Islam and 

Jones 
2014 

Alabama 

USA 
ML model  

Pedestrian-at-fault accidents were analyzed 

and obvious different effects on some 

variables were identified between urban and 

rural areas. 

Haleem et al.  2015 
Florida 

USA 
ML model Factors contributing to severe injury: 
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Authors Year 
Case study 

location 
Methodology Key findings 

1) At signalized intersections: higher 

AADT, higher speed limit, percentage of 

trucks, elder pedestrians, at-fault 

pedestrians, rain, and darkness;  

2) At unsignalized intersections: pedestrian 

walking along roadway, mid-age and elder 

pedestrians, at-fault pedestrians, vans, 

darkness, and higher speed limit. 

Pour et al.  2016 

Melbourne 

metropolitan 

area 

Australia 

PPO model 

Mid-block crashes of pedestrian were 

investigated, and factors contributing to 

severe injury of pedestrian were identified: 

higher speed limit, darkness, male 

pedestrian. 

Tulu et al.  2017 
Addis Ababa 

Ethiopia 
ML model 

Factor contributing to fatality: higher speed 

limit, intersections, heavy vehicle, and less 

educated drivers. 

Kim and 

Ulfarsson 
2019 USA ML model 

Factors contributing to severe injury of 

elder pedestrian: crossing street, left/right 

turning movement, parking lot, minivan, 

and SUV. 

Chen and Fan 2019b 

North 

Carolina 

USA 

ML model  

Factors contributing to severe injuries of 

pedestrian (on both urban and rural areas): 

impaired driver, heavy trucks, darkness, 

speed limit (35-50 mph; ≥50 mph). 

Differences were also identified for some 

variables. 

Li and Fan 2019a 

North 

Carolina 

USA 

PPO model 

Three sub-models with consideration of age 

differences (i.e., young [age ≤24], middle-

aged [age 25-55], and older pedestrians [age 

≥55] ) were developed and obvious 

differences of effects of variables were 

identified to denote the necessity of 

accounting for different age segmentations. 
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Authors Year 
Case study 

location 
Methodology Key findings 

Li and Fan 2019b 

North 

Carolina 

USA 

LCC and PPO 

model 

Six sub-models with different representing 

variables were developed and 

heterogeneities did exist among different 

classes. Some general major factors 

contributing to severe injury were 

identified: heavy vehicle, pedestrian 

crossing and dash/dart-out, and pedestrian 

age (≥55). 

 

Based on the ML model and PPO model introduced in this subsection, there are 

also some variant models that have been derived from these two models, such as 

generalized ordered logit model, mixed generalized ordered logit model and mixed PPO 

model. However, most of these variants have the difficulty of computation when handling 

the large dataset in the real world. Thus, the following subsection gives a brief introduction 

to the methodologies on constructing both the ML model and the PPO model. 

 

2.3.3. Mixed Logit Model 

This subsection gives a brief introduction to the mixed logit (ML) model that has 

been used to model pedestrian crash severity data in this dissertation. According to the 

previous section, unobserved heterogeneities could exist in the dataset and such 

unobserved factors can highly affect the crash outcome. Thus, considering only fixed 

effects of the variables (e.g., in the MNL model) may underestimate the unobserved 

heterogeneities. Compared to MNL models, the ML models use a similar linear utility 

function Uij to represent the relationship between injury severity levels (j = 0, 1, 2… J) and 

explanatory variables, as shown below in Equation 2.3.2.1: 
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 ��� = ����� + ��� (2.3.2.1) 

where Xij represents the vector of independent variables for ith individual with jth injury 

severity level, βj is the vector of estimated coefficients for Xij, and εij denotes the error term 

representing the unobserved factors. Different from the MNL models, βj is a vector of 

estimated coefficients with probabilistic distributions, and some elements within it could 

be different across cases of each pedestrian-vehicle crash with the consideration of 

unobserved data heterogeneities. If εij follows a Gumbel type I distribution, then the 

probability of individual i suffering injury severity j can be expressed in Equation 2.2.3.2: 

 	��'�� = 
��(���′ ��)∑ 
��(���′ ��)�∈�  (2.3.2.2) 

By taking account of the randomly distributed parameters across individual 

observations, a mixing distribution can be further written in Equation 2.3.2.3: 

 	�� = (�	��'��$)���'*$+�� (2.3.2.3) 

where f(βj |φ) is the probability density function (PDF) of random vector βj and φ denotes 

a vector of parameters that describe the PDF, which are the mean and variance of the 

normal distribution, correspondingly.  

This study follows Gong and Fan (2017)’s work. Prior to developing the ML model, 

a standard MNL model is developed for preselecting the significant variables with a 

backward stepwise process by eliminating variable(s) that at each step has(have) p-value(s) 

less than 0.05. Since there is no initial knowledge of implying the randomly distributed 

parameters (Moore et al. 2011), all effects of variables are set to be randomly distributed 

initially. Then a backward stepwise process is applied to determine which parameters 

should remain fixed or be treated as randomized. After all steps, parameters that are found 
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significantly different across observations are set to be randomly distributed and if not, 

they are constrained to be equal.  

According to (Milton et al. 2008; Gkritza and Mannering 2008; Train 2009; Gong 

et al. 2016), normal distribution has been found to be the more suitable one for the ML 

models, which therefore is also used in this study for the model parameters. Normally, 200 

to 1000 Halton draws are deployed to compute the approximation of the integral in 

Equation 3. Based on the research of (Koppelman et al., 2003; Behnood and Mannering, 

2016), 500 Halton draws are enough to obtain a relatively accurate maximum likelihood 

estimate. Thus, in this study, 500 Halton draws is employed in the simulation.  

After the ML model is fitted, marginal effects of all variables are also calculated to 

evaluate the impacts of the associated variables on the probabilities of injury severity levels. 

The formulation for calculating the marginal effect is the same as what was presented in 

Subsection 2.3.2. Since the ML model is developed by using a simulation-based method, 

the marginal effects are calculated via average simulation-based marginal effects over all 

observations. More details regarding this evaluation can be referred to (Moore et al. 2011; 

Kim et al. 2013; Gong and Fan 2017). 

 

2.3.4. Partial Proportional Odds Logit Model 

As mentioned previously, parallel-lines assumption could be invalid in many cases 

if there are unobserved inherent data heterogeneities. Based on the ordered logit/probit 

models, the generalized ordered logit model with a full relaxation of the PO assumption to 

all variables could overcome such issue, as shown below in Equation 2.3.3.1: 

 	(,� ≥ .) = 
��(�����′��)/0
��(�����′��) (2.3.3.1) 
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where Yi is the recorded crash injury for crash i, Xi presents a p×1 vector including the 

values of crash i on the full set of p independent variables, βj denotes a p×1 vector of 

estimated coefficients, and αj is the cut-point for jth cumulative logit. The only difference 

between the ordered logit model and this model is that β is not fixed across equations. 

However, in most cases, not all the variables violate the PO assumption. Hence, the PPO 

might be more realistic than the generalized ordered logit model. PPO model relaxes the 

PO assumption by having particular variables to violate the PO assumption, when the PO 

assumption can be applied to the rest variables. By partitioning the variables related to 

crash i into two groups associated with/without violating the PO assumption: Xi and Ti, the 

partial proportional odds model with logit function can be shown as (Peterson and Harrell, 

1990), as presented below in Equation 2.3.3.2: 

 	(,� ≥ .) = 
��[���(��′��02�′3�)]/0
��[���(��′��02�′3�)] (2.3.3.2) 

Variables in either vector Xi or Ti could be decided by deploying a series of Wald 

Chi-square tests. The test can help decide whether the PO assumption is violated or not for 

each independent variable in the generalized ordered logit model (Wang and Abdel-Aty, 

2008; Sasidharan and Menéndez 2014).  

It should be cautious when examining the results of the PPO model. The sign of � 

does not always denotes the direction of the effect of the intermediate outcomes 

(Wooldridge, 2002; Washington et al., 2020). Thus, this dissertation further uses the 

marginal effects to conduct the analysis. In this study, all variables are dummy variables. 

Therefore, a difference of probability changes rather than the derivative is computed as the 

marginal effect for each variable. 
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2.4. Machine Learning Approaches 

 

2.4.1. Introduction  

Sections 2.2 and 2.3 summarize the selected conventional statistical DCMs, which 

have been widely applied to model pedestrian injury severities. However, by accounting 

for effectiveness and accuracy, these models might become substitutable and outdated. In 

addition, most of the conventional DCMs are regression-based models, which have 

limitations with pre-assuming linear or nonlinear relationships between the exploratory 

variables and the response variable. When violating such conditions, the models might 

inevitably result in improper inferences (Chang and Chen, 2005). With the rapid 

development of machine learning (or artificial intelligent) techniques and the increase of 

data accumulations, though few efforts have been made, it becomes popular with applying 

machine learning to handle transportation related problems. And compared to conventional 

statistical and econometric DCMs, fewer requirements on the pre-defined assumptions 

about the relationships between outcomes of injury severity and contributing factors is an 

important advantage of machine learning methods as a non-parametric method (Gong et 

al., 2019; Rahman et al., 2019). 

The machine learning methods contain a set of techniques, such as support vector 

machine regression, neural network approaches (e.g., deep neural network, convolutional 

neural network), random forest, and gradient boosting (e.g., CatBoost, LightGBM, 

AdaBoost, XGBoost), etc. It should be pointed out that the traffic safety related studies 

with the identifications of contributing factors in traffic accidents are essentially multiclass 

classification problems. And according to existing literatures in the field of transportation 
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safety research, among all the machine learning methods, decision/binary tree-based 

models would be the most popular and appropriate techniques (Pande et al., 2010; Chang 

and Chien, 2013; Rahman et al., 2019). On the other hand, despite the popularity of 

machine learning methods, there are really few applications focusing on applying machine 

learning methods in exploring the issues of pedestrian safety within the transportation 

system. 

Thus, Subsection 2.4.2 focuses on reviewing and summarizing the existing 

researches in the field of transportation safety with a focus on pedestrian safety related 

studies by applying machine learning methods. Research studies that used machine 

learning methods to model and analyze pedestrian injury severities in pedestrian-vehicle 

crashes are reviewed and summarized in this section.  

2.4.2. Literature Review on Using Machine Learning Methods to Model Pedestrian 

Crashes 

 

2.4.2.1. Work of Ding et al. (2018) 

By adopting the Multiple Additive Poisson Regression Trees (MAPRT), Ding et al. 

(2018) examined non-linear effects of the built environment on pedestrian injury severities 

in pedestrian-vehicle crashes. Factors of density and the mixed land level were identified 

to have the most impacts on pedestrian injury severity with a 66% of the total effects. 

Results indicated some strong non-linear relationships between the contributing factors and 

the responded injury severities of pedestrians in the crashes, which disagreed with the 

widely applied conventional statistical models with linearity assumptions.  

2.4.2.2. Work of Mokhtarimousavi (2019) 
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By utilizing the HSIS data of pedestrian crash in Los Angeles, Mokhtarimousavi 

(2019) applied MNL models and support vector machine (SVM) models to analyze the 

pedestrian injury severity respectively. Segmentation on the data based on time-of-day was 

also considered. Different contributing factor sets were identified between day and night, 

and comparisons between MNL and SVM models were also conducted. It was found that 

SVM models outperformed MNL models in terms of the prediction performance. However, 

despite the prediction performance, this study only provided result interpretations of the 

contributing factors’ effects on pedestrian injury severities using MNL and no explanations 

about the results of SVM models were elaborated. 

 

 

2.4.2.3. Work of Mokhtarimousavi (2020) 

In this study, authors applied an Artificial Neural Network (ANN) model and a 

random parameter ordered response model to examine the factors affecting pedestrian 

injury severities in vehicle-pedestrian crashes while accounting for possible day-of-week 

effects. A variety of variables were explored by two models with a further comparison of 

two proposed models. Results showed superiority of the optimized ANN model to the 

conventional statistical model in terms of the prediction performance. Additional impacts 

analysis of the significant variables was also derived in order to examine the effects of the 

variables on pedestrian injury severities in pedestrian-vehicle crashes. Strong instabilities 

between weekdays and weekends of the factors’ effects were also found. 
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2.4.3. Selected Machine Learning Method (XGBoost) 

This subsection provides a brief introduction to the selected machine learning 

method, which is the XGBoost approach. Associated inherent analysis methods for 

analyzing results by XGBoost are also presented as: 1) variable importance; and 2) partial 

dependence of variables used in the XGBoost model.  

 

2.4.3.1. XGBoost Method 

XGboost, also known as “eXtreme Gradient Boosting”, is an improved gradient 

boosting algorithm developed by Chen and Guestrin (2016). It is one of the most popular 

machine learning algorithms that has been successfully and widely used by many winners 

in many machine learning competitions and various domains with a significant popularity.  

And compared to other regular machine learning approaches, it is well recognized 

by its parallel capability of processing large amount of data in a much faster speed. In 

addition, due to its tree-based characteristics, the XGBoost algorithm has its own way to 

handle missing values, which provides a relatively low sensitivity to the missing value. 

Furthermore, as mentioned by its creators, XGBoost could produce better performance by 

applying a more regularized model formalization to deal with the issue of data over-fitting 

(Chen and Guestrin, 2016). Tests on other machine learning approaches were also 

conducted with algorithms such as AdaBoost, CatBoost, Light Gradient Boosting method, 

and Deep Neural Network, but XGBoost does provide a much better results in terms of the 

accuracy. Thus, XGBoost is selected to model and analyze pedestrian injury severities in 

pedestrian-vehicle crashes in this study. The information on this algorithm is briefly 

introduced in the rest of this subsection. 
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As mentioned previously, one of the particular improvements made by Chen and 

Guestrin to the basic gradient boosting method with XGBoost is the regularized objective 

to the loss function, which is shown as below in Equation 2.4.3.1 for the kth iteration: 

 5" = ∑ 6�7�, 79"� $:�;/ + ∑ Ω�)�$"�;/  (2.4.3.1) 

where m is the number of samples, 7� represents the actual value of sample i, which is the 

observed injury severity of individual i in this study, 79"�  is the prediction of the sample i at 

iteration k, l(·) denotes the original loss function without regularized term. Ω  is the 

regularization term, which can be calculated in Equation 2.4.3.2 as follows: 

 Ω()) =  >? + /@ A ∑ B�@"�;/  (2.4.3.2) 

where T is the number of leaf nodes. > and A are the penalty coefficient of the number of 

leaves, and the penalty coefficient of regularization, respectively, which are used to control 

the degree of regularization in the algorithm. wj is the score of the leaf j. 

Additionally, rather than using the stochastic gradient descent method, XGBoost 

applies an additive learning strategy to complement the associating optimization process 

by adding the best tree model into the current model to provide prediction result for 

subsequent iteration. Thus, when a new tree is added, the Equation 2.4.3.1 could be 

rewritten as: 

 5" = ∑ 6(7�, 79"�/� + )"(C�):�;/ + Ω()") + ∑ Ω�)�$"�/�;/  (2.4.3.3) 

By adopting the Taylor Expansion to the objective function, Equation 2.4.3.3 could 

be further rewritten as in Equation 2.4.3.4: 

5" = ∑ [6�7�, 79"�/� $ + �� · )"�C�$ + /@ ℎ� ·:�;/ )"�C�$] + Ω()") + F (2.4.3.4) 
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where �� = GH9�IJ� 6�7� , 79"�/� $  is the first order derivative of the loss function, ℎ� =
GH9�IJ�@ 6�7�, 79"�/� $ is the second order derivative of the loss function, and C is a constant. 

The objective can be condensed as: 

 5" = ∑ KL�B� + /@ �M� + A$B�@N"�;/ + >? (2.4.3.5) 

where L� = ∑ ��O�  and M� = ∑ ℎ�O� . P� is the set of instance to the jth leaf. Then the best B� 

can be obtained for the objective function is: 

 B�∗ = − R�S�0T (2.4.3.6) 

which transforms the final objective function to be: 

 5" = − /@ ∑ R�S�0T + >?"�;/  (2.4.3.7) 

After splitting the data across all regression trees, the loss reduction could be 

illustrated as: 

 LU� = /@ [ RV�WXYZ
SV�WXY0T + R[\]YZ

S[\]Y0T + (RV�WXY0R[\]Y)Z
SV�WXY0S[\]Y0T] − > (2.4.3.8) 

where 
RV�WXYZ

SV�WXY0T and 
R[\]YZ

S[\]Y0T are the scores of right and left nodes after the cuts respectively, 

and 
(RV�WXY0R[\]Y)Z
SV�WXY0S[\]Y0T denote the score of combination without the cut. By minimizing the 

objective with the enumeration of various tree structures (or maximizing the total gains for 

the trees generated in the model), the best model structure could be ultimately retrieved. 

 

2.4.3.2. Variable Importance and Partial Dependence 

After obtaining the best model structure from the XGBoost, the algorithm also has 

the capability of ranking the important variables by using total leaf gains in the path of the 
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branch for each feature (i.e., contributing factors in this study), which denotes the 

importance for an input feature. The interpretation of gain of an input feature could be 

expressed as the relative contribution of the associating feature to the model computed by 

having contribution of each feature for each tree generated in the model. A feature with 

higher value of this metric means that it is more important in generating a prediction in the 

model than another. The feature importance is used to see the most influencing factor 

contributing to the outcomes. However, other than this functionality, it is truly helpless to 

interpret and analyze the results, and particularly it has little to do with examining how a 

factor impacts the injury severities.  

Despite the feature importance, this study also utilizes the partial dependence to 

show the marginal effect of features affecting the predicted outcome of a machine learning 

model (Friedman 2001). Since all input variables in this study are dummy coded with 0 

and 1 values with meaning of presence or not of the corresponding contributing factor, the 

partial dependence of each factor has the same meaning to the marginal effect used in the 

conventional DCMs. This could further help and provide convenience for comparing 

models between both groups. 

The partial dependence function for XGBoost is defined as: 

 )̂�_(C`) = a�bc)̂(C`, Cd)e = ( )̂(C`, Cd)+	(Cd) (2.4.3.9) 

where xS is(are) the input variable(s) for which the partial dependence function with 

corresponding set of S, xC are the other variables used in the machine learning model f̂ with 

corresponding set of C. In another word, the variable(s) in S is(are) the variable(s) that one 

wants to examine associated effects towards predicted outcomes. Partial dependence is 
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computed by marginalizing the machine learning model output over the distribution of the 

variables in set C with result of the function showing the relationship between the xS and 

the predicted outcome of the model.  

By utilizing the Monte Carlo method, the partial dependence can be estimated by 

calculating averages in the fitted dataset, which is shown as: 

 )̂�_(C`) = /f ∑ )̂�_�C`, Cd� $f�;/  (2.4.3.10) 

Therefore, the partial dependence of the selected important contributing factors 

identified in the XGBoost model will be used for the purpose of interpretation and 

comparison with conventional statistical models. Furthermore, the average change of the 

partial dependence, which is also the probability change (or marginal effect) of a specific 

factor from 0 to 1 (i.e., from the status of “not presented in the crash” to “presented in the 

crash”) is used and main focuses are given to those factors whose changes show impacts 

to the severer injury levels (i.e., “K” of fatality and “A” of incapacitating injury). 

2.5. Summary 

 A comprehensive review and synthesis of the current and historical research efforts 

related to modeling and analyzing pedestrian injury severities in pedestrian-vehicle crashes 

have been presented, associating with the introductions to methodologies of all selected 

approaches. This is intended to provide a solid reference and assistance in developing 

models for future tasks. 
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CHAPTER 3: DATA DESCRIPTION AND PROCESSING 

3.1. Introduction 

 This chapter provides the basic information about the data used to analyze 

pedestrian-injury severities in pedestrian-vehicle crashes, which is the police-reported 

crash data obtained from the Division of Bicycle and Pedestrian Transportation in North 

Carolina Department of Transportation (NCDOT) from 2007-2018. The following sections 

are organized as follows. Section 3.2 presents detailed descriptive analysis of the data and 

section 3.3 concludes this chapter with a summary. 

 

3.2. Descriptive Analysis of the Collected Data 

 In this research, police-reported pedestrian crash data of North Carolina between 

2007-2018 are were acquired from the Division of Bicycle and Pedestrian Transportation 

of North Carolina Department of Transportation (NCDOT). The data consist of much 

categorical information about pedestrian characteristics, driver characteristics, crash 

characteristics, locality and roadway characteristics, time and environment characteristics, 

and traffic control characteristics and work zone. During the data cleaning process, 

incomplete and clearly improper observations are excluded. Additionally, only cases 

involving single pedestrian and single vehicle are kept. A total of 17,480 observations of 

pedestrian-vehicle crashes are eventually selected and used. The percentages at each injury 

severity level are: K: Killed: 1,154 (6.6%), A: Incapacitating Injury: 1,292 (7.39%), B: - 

Non-incapacitating Injury: 6,571 (37.59%), C: Possible Injury: 7,553 (43.21%), and O: No 

Injury: 910 (5.21%). Figure 3.1 show the distributions of each injury severity level of 
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pedestrians in pedestrian-vehicle crashes of the collected data, and Figure 3.2 displays the 

crash frequency of the five categories in each year. 

  

FIGURE 3.1: Distributions of Each Injury Severity Level of Pedestrians in Pedestrian-

Vehicle Crashes of the Collected Data 

 

 
FIGURE 3.2: Crash Frequency Distribution of Injury Severity Category by Year 
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The data used in this research for various pedestrian injury severity levels in the 

pedestrian-vehicle crashes are summarized and displayed in Table 3.1. Categories of the 

variable and descriptions, as well as the percentages of observed crash frequency at each 

severity level are also included for each individual crash. Dummy variables are coded for 

each variable and reference variables in each category are marked with asterisks in the 

table.  

 

TABLE 3.1: Descriptive Statistics of Explanatory Variable 

Variable Total Ka Ab Bc Cd Oe 

Pedestrian–vehicle Crashes 17480 

(100%) 

1154 

(6.60%) 

1292 

(7.39%) 

6571 

(37.59%) 

7553 

(43.21%) 

910 

(5.21%) 

Pedestrian Characteristics 
      

Pedestrian age: 25 - 44 (1 if pedestrian is 

younger than 45 years old and older than 

24 years old; 0 otherwise) * 

5183 

(29.65%) 

355 

(2.03%) 

366 

(2.09%) 

1842 

(10.54%) 

2326 

(13.31%) 

294 

(1.68%) 

Pedestrian age: ≤ 24 (1 if pedestrian is 

younger than 25 years; 0 otherwise) 

5574 

(31.89%) 

238 

(1.36%) 

418 

(2.39%) 

2369 

(13.55%) 

2263 

(12.95%) 

286 

(1.64%) 

Pedestrian age: 45 - 64 (1 if pedestrian is 

younger than 65 years old and older than 

44 years old; 0 otherwise) 

4928 

(28.19%) 

400 

(2.29%) 

391 

(2.24%) 

1642 

(9.39%) 

2257 

(12.91%) 

238 

(1.36%) 

Pedestrian age: ≥ 65 (1 if pedestrian is older 

than 64 years old; 0 otherwise) 

1795 

(10.27%) 

161 

(0.92%) 

117 

(0.67%) 

718 

(4.11%) 

707 

(4.04%) 

92 

(0.53%) 

Alcohol-impaired pedestrian (1 if pedestrian 

is alcohol-impaired; 0 otherwise) 

2364 

(13.52%) 

468 

(2.68%) 

332 

(1.90%) 

945 

(5.41%) 

536 

(3.07%) 

83 

(0.47%) 

Male pedestrian (1 if pedestrian is male; 0 

otherwise) 

10150 

(58.07%) 

820 

(4.69%) 

866 

(4.95%) 

3946 

(22.57%) 

3966 

(22.69%) 

552 

(3.16%) 

Driver Characteristics 
      

Driver age: 25 - 44 (1 if driver is younger 

than 45 years old and older than 24 years 

old; 0 otherwise) * 

6413 

(36.69%) 

462 

(2.64%) 

512 

(2.93%) 

2459 

(14.07%) 

2654 

(15.18%) 

326 

(1.86%) 

Driver age: ≤ 24 (1 if driver is younger than 

25 years; 0 otherwise) 

3276 

(18.74%) 

232 

(1.33%) 

256 

(1.46%) 

1292 

(7.39%) 

1317 

(7.53%) 

179 

(1.02%) 

Driver age: 45 - 64 (1 if driver is younger 

than 65 years old and older than 44 years 

old; 0 otherwise) 

5337 

(30.53%) 

325 

(1.86%) 

371 

(2.12%) 

1916 

(10.96%) 

2440 

(13.96%) 

285 

(1.63%) 
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Variable Total Ka Ab Bc Cd Oe 

Driver age: ≥ 65 (1 if driver is older than 64 

years old; 0 otherwise) 

2454 

(14.04%) 

135 

(0.77%) 

153 

(0.88%) 

904 

(5.17%) 

1142 

(6.53%) 

120 

(0.69%) 

Alcohol-impaired driver (1 if driver is 

alcohol-impaired; 0 otherwise) 

460 

(2.63%) 

80 

(0.46%) 

60 

(0.34%) 

185 

(1.06%) 

117 

(0.67%) 

18 

(0.10%) 

Male driver (1 if driver is male; 0 otherwise) 9662 

(55.27%) 

776 

(4.44%) 

790 

(4.52%) 

3637 

(20.81%) 

3990 

(22.83%) 

469 

(2.68%) 

Crash characteristics 
      

Ambulance rescue (1 if service presents; 0 

otherwise) 

13367 

(76.47%) 

1040 

(5.95%) 

1212 

(6.93%) 

5607 

(32.08%) 

5219 

(29.86%) 

289 

(1.65%) 

Hit and run (1 if crash is hit-and-run; 0 

otherwise)  

344 

(1.97%) 

39 

(0.22%) 

36 

(0.21%) 

103 

(0.59%) 

140 

(0.80%) 

26 

(0.15%) 

Backing Vehicle (1 if crash occurred when 

driver is backing vehicle; 0 otherwise) 

2049 

(11.72%) 

28 

(0.16%) 

76 

(0.43%) 

610 

(3.49%) 

1189 

(6.80%) 

146 

(0.84%) 

Crossing roadway (1 if crash happened when 

pedestrian is crossing roadway; 0 

otherwise) 

6702 

(38.34%) 

517 

(2.96%) 

533 

(3.05%) 

2550 

(14.59%) 

2792 

(15.97%) 

310 

(1.77%) 

Dash/dart out (1 if pedestrian movement 

preceding crash is dashing/darting out; 0 

otherwise) 

2054 

(11.75%) 

124 

(0.71%) 

219 

(1.25%) 

1058 

(6.05%) 

585 

(3.35%) 

68 

(0.39%) 

Midblock (1 if crash happened when 

pedestrian is crossing at mid-block 

location; 0 otherwise) 

134 

(.77%) 

15 

(0.09%) 

11 

(0.06%) 

55 

(0.31%) 

46 

(0.26%) 

7 

(0.04%) 

Multiple-threat (1 if crash is a multiple-threat 

crash; 0 otherwise) 

271 

(1.55%) 

5 

(0.03%) 

16 

(0.09%) 

132 

(0.76%) 

102 

(0.58%) 

16 

(0.09%) 

Off roadway (1 if pedestrian move off the 

roadway when vehicle approach; 0 

otherwise) 

2769 

(15.84%) 

32 

(0.18%) 

97 

(0.55%) 

878 

(5.02%) 

1571 

(8.99%) 

191 

(1.09%) 

Pedestrian in roadway (1 if pedestrian is in 

the roadway; 0 otherwise) 

1488 

(8.51%) 

244 

(1.40%) 

164 

(0.94%) 

505 

(2.89%) 

493 

(2.82%) 

82 

(0.47%) 

Waiting to cross (1 if crash occurred when 

pedestrian is waiting to cross the 

roadway; 0 otherwise) * 

15 

(.09%) 

1 

(0.01%) 

1 

(0.01%) 

6 

(0.03%) 

6 

(0.03%) 

1 

(0.01%) 

Walking along roadway (1 if crash occurred 

when pedestrian is walking along 

roadway; 0 otherwise) 

1998 

(11.43%) 

188 

(1.08%) 

175 

(1.00%) 

777 

(4.45%) 

769 

(4.40%) 

89 

(0.51%) 

Locality and roadway Characteristics 
      

Mixed (1 if crash occurs in mixed roadway; 0 

otherwise) * 

2470 

(14.13%) 

240 

(1.37%) 

221 

(1.26%) 

928 

(5.31%) 

946 

(5.41%) 

135 

(0.77%) 

Rural (1 if crash occurs in rural roadway; 0 

otherwise) 

2205 

(12.61%) 

386 

(2.21%) 

262 

(1.50%) 

814 

(4.66%) 

658 

(3.76%) 

85 

(0.49%) 
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Variable Total Ka Ab Bc Cd Oe 

Urban (1 if crash occurs in urban roadway; 0 

otherwise) 

12805 

(73.26%) 

528 

(3.02%) 

809 

(4.63%) 

4829 

(27.63%) 

5949 

(34.03%) 

690 

(3.95%) 

Curved roadway (1 if road geometry is 

curved roadway; 0 otherwise) 

824 

(4.71%) 

112 

(0.64%) 

107 

(0.61%) 

304 

(1.74%) 

264 

(1.51%) 

37 

(0.21%) 

One-way, not divided (1 if the road 

configuration is one-way not divided; 0 

otherwise) * 

1452 

(8.31%) 

30 

(0.17%) 

59 

(0.34%) 

492 

(2.81%) 

767 

(4.39%) 

104 

(0.59%) 

Two-way, divided (1 if the road 

configuration is two-way divided; 0 

otherwise) 

3322 

(19.00%) 

377 

(2.16%) 

305 

(1.74%) 

1365 

(7.81%) 

1136 

(6.50%) 

139 

(0.80%) 

Two-way, not divided (1 if the road 

configuration is two-way not divided; 0 

otherwise) 

12706 

(72.69%) 

747 

(4.27%) 

928 

(5.31%) 

4714 

(26.97%) 

5650 

(32.32%) 

667 

(3.82%) 

Commercial (1 if crash occurred in 

commercial area; 0 otherwise) 

9475 

(54.2%) 

452 

(2.59%) 

606 

(3.47%) 

3375 

(19.31%) 

4500 

(25.74%) 

542 

(3.10%) 

Farms, Woods, Pastures (1 if crash occurred 

in areas of farms, woods, or pastures; 0 

otherwise) 

1641 

(9.39%) 

334 

(1.91%) 

211 

(1.21%) 

595 

(3.40%) 

440 

(2.52%) 

61 

(0.35%) 

Industrial (1 if crash occurred in industrial 

area; 0 otherwise) 

98 

(.56%) 

4 

(0.02%) 

8 

(0.05%) 

42 

(0.24%) 

41 

(0.23%) 

3 

(0.02%) 

Institutional (1 if crash occurred in 

Institutional area; 0 otherwise) 

670 

(3.83%) 

13 

(0.07%) 

21 

(0.12%) 

244 

(1.40%) 

334 

(1.91%) 

58 

(0.33%) 

Residential (1 if crash occurred in 

Residential area; 0 otherwise) * 

5596 

(32.01%) 

351 

(2.01%) 

446 

(2.55%) 

2315 

(13.24%) 

2238 

(12.80%) 

246 

(1.41%) 

Bottom-road (1 if crash occurred at the 

bottom of the roadway; 0 otherwise) 

122 

(.7%) 

14 

(0.08%) 

9 

(0.05%) 

63 

(0.36%) 

32 

(0.18%) 

4 

(0.02%) 

Grade-road (1 if crash occurred on grade-

road; 0 otherwise) 

2263 

(12.95%) 

218 

(1.25%) 

216 

(1.24%) 

859 

(4.91%) 

867 

(4.96%) 

103 

(0.59%) 

Hillcrest (1 if crash occurred at the hillcrest 

of the roadway; 0 otherwise) 

619 

(3.54%) 

44 

(0.25%) 

58 

(0.33%) 

234 

(1.34%) 

248 

(1.42%) 

35 

(0.20%) 

Level (1 if crash occurred at level roadway; 0 

otherwise) * 

14476 

(82.81%) 

878 

(5.02%) 

1009 

(5.77%) 

5415 

(30.98%) 

6406 

(36.65%) 

768 

(4.39%) 

Interstate (1 if crash occurred on interstate; 0 

otherwise) 

194 

(1.11%) 

73 

(0.42%) 

27 

(0.15%) 

58 

(0.33%) 

33 

(0.19%) 

3 

(0.02%) 

Local street (1 if crash occurred on local 

street; 0 otherwise) 

9005 

(51.52%) 

379 

(2.17%) 

632 

(3.62%) 

3701 

(21.17%) 

3840 

(21.97%) 

453 

(2.59%) 

NC route (1 if crash occurred on NC route; 0 

otherwise) 

956 

(5.47%) 

149 

(0.85%) 

142 

(0.81%) 

344 

(1.97%) 

286 

(1.64%) 

35 

(0.20%) 
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Variable Total Ka Ab Bc Cd Oe 

Private road, driveway (1 if crash occurred 

on driveway of private road; 0 

otherwise) 

348 

(1.99%) 

17 

(0.10%) 

47 

(0.27%) 

154 

(0.88%) 

121 

(0.69%) 

9 

(0.05%) 

Public vehicular area (1 if crash occurred on 

public vehicular area; 0 otherwise) 

4104 

(23.48%) 

34 

(0.19%) 

113 

(0.65%) 

1185 

(6.78%) 

2476 

(14.16%) 

296 

(1.69%) 

State secondary route (1 if crash occurred on 

State secondary route; 0 otherwise) 

1803 

(10.31%) 

259 

(1.48%) 

200 

(1.14%) 

739 

(4.23%) 

533 

(3.05%) 

72 

(0.41%) 

US route (1 if crash occurred on US route; 0 

otherwise) * 

1070 

(6.12%) 

243 

(1.39%) 

131 

(0.75%) 

390 

(2.23%) 

264 

(1.51%) 

42 

(0.24%) 

Time and Environment characteristics 
      

Weekday (1 if crash occurred during 

weekday; 0 otherwise) 

13517 

(77.33%) 

803 

(4.59%) 

963 

(5.51%) 

5039 

(28.83%) 

6001 

(34.33%) 

711 

(4.07%) 

Morning (1 if crash occurred during 

morning; 0 otherwise) 

10380 

(59.38%) 

370 

(2.12%) 

595 

(3.40%) 

3781 

(21.63%) 

5064 

(28.97%) 

570 

(3.26%) 

Dark - lighted roadway (1 if light condition is 

lighted roadway; 0 otherwise) 

3561 

(20.37%) 

264 

(1.51%) 

315 

(1.80%) 

1426 

(8.16%) 

1383 

(7.91%) 

173 

(0.99%) 

Dark - roadway not lighted (1 if light 

condition is dark - roadway not lighted; 

0 otherwise) 

3053 

(17.47%) 

588 

(3.36%) 

399 

(2.28%) 

1122 

(6.42%) 

827 

(4.73%) 

117 

(0.67%) 

Dawn/dusk light (1 if light condition is 

dawn/dusk light; 0 otherwise) 

747 

(4.27%) 

44 

(0.25%) 

50 

(0.29%) 

271 

(1.55%) 

348 

(1.99%) 

34 

(0.19%) 

Daylight (1 if light condition is daylight; 0 

otherwise) * 

10119 

(57.89%) 

258 

(1.48%) 

528 

(3.02%) 

3752 

(21.46%) 

4995 

(28.58%) 

586 

(3.35%) 

Clear (1 if the weather is clear; 0 otherwise) 

* 

13433 

(76.85%) 

888 

(5.08%) 

990 

(5.66%) 

5079 

(29.06%) 

5736 

(32.81%) 

740 

(4.23%) 

Cloudy (1 if the weather is cloudy; 0 

otherwise) 

2445 

(13.99%) 

176 

(1.01%) 

186 

(1.06%) 

894 

(5.11%) 

1090 

(6.24%) 

99 

(0.57%) 

Fog, Smog, Smoke (1 if the weather is fog, 

smog, or smoke; 0 otherwise) 

79 

(.45%) 

17 

(0.10%) 

4 

(0.02%) 

27 

(0.15%) 

28 

(0.16%) 

3 

(0.02%) 

Rain (1 if the weather is raining; 0 otherwise) 1457 

(8.34%) 

71 

(0.41%) 

111 

(0.64%) 

544 

(3.11%) 

664 

(3.80%) 

67 

(0.38%) 

Snow, Sleet, Hail, Freezing Rain/Drizzle (1 if 

the weather is snow, sleet, hail, freezing 

rain, or drizzle; 0 otherwise) 

66 

(.38%) 

2 

(0.01%) 

1 

(0.01%) 

27 

(0.15%) 

35 

(0.20%) 

1 

(0.01%) 

Traffic control characteristics and 

workzone 

      

Double yellow line, no passing zone (1 if 

crash occurs within no passing zone with 

double yellow line; 0 otherwise) 

1809 

(10.35%) 

272 

(1.56%) 

234 

(1.34%) 

707 

(4.04%) 

539 

(3.08%) 

57 

(0.33%) 
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Variable Total Ka Ab Bc Cd Oe 

Workzone (1 if crash on work-zone related 

road segment; 0 otherwise) 

172 

(.98%) 

11 

(0.06%) 

14 

(0.08%) 

73 

(0.42%) 

68 

(0.39%) 

6 

(0.03%) 

Human control (1 if the type of traffic control 

is human control; 0 otherwise) 

220 

(1.26%) 

4 

(0.02%) 

8 

(0.05%) 

62 

(0.35%) 

126 

(0.72%) 

20 

(0.11%) 

No control present (1 if there is no control 

present; 0 otherwise) * 

11267 

(64.46%) 

737 

(4.22%) 

823 

(4.71%) 

4208 

(24.07%) 

4891 

(27.98%) 

608 

(3.48%) 

Traffic sign (1 if the type of traffic control is 

traffic sign; 0 otherwise) 

1305 

(7.47%) 

44 

(0.25%) 

52 

(0.30%) 

451 

(2.58%) 

672 

(3.84%) 

86 

(0.49%) 

Traffic signal (1 if the type of traffic control 

is traffic sign; 0 otherwise) 

2879 

(16.47%) 

97 

(0.55%) 

175 

(1.00%) 

1143 

(6.54%) 

1325 

(7.58%) 

139 

(0.80%) 

Ka - Fatal Injury 
      

Ab - Incapacitating Injury 
      

Bc - Non-incapacitating Injury 
      

Cd - Possible Injury 
      

Oe - No Injury 
      

 

Figure 3.2-3.8 display examples of several distributions of some important features 

in the dataset associating with the number of crashes under each injury severity level. Such 

features include the “alcohol-impaired pedestrians”, “alcohol-impaired drivers”, 

“pedestrian age groups”, “driver age groups”, “pedestrian gender”, “driver gender”, “rural, 

mixed, or urban area”, and “roadway geometry”. This gives some examples on how to 

statistically interpret the data via descriptive analysis and provides a clear picture on what 

kind of the contributing factors are included when developing the model. Moreover, this 

gives a more intuitive and visual impression of each feature in the dataset. For instance, in 

Figure 3.4, even though the total number of crashes involving alcohol-impaired pedestrians 

is much larger than the ones without alcohol-impaired pedestrians being involved, the 

difference in the number of fatalities happened under both situations is relatively small.  
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FIGURE 3.3: Distributions of Crashes with Alcohol-impaired Drivers under Each Injury 

Severity Level 

 

 
FIGURE 3.4: Distributions of Crashes with Alcohol-impaired Pedestrians under Each 

Injury Severity Level 
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FIGURE 3.5: Distributions of Crashes on Each Age Group of Pedestrians under Each 

Injury Severity Level 

 

 

FIGURE 3.6: Distributions of Crashes on Each Age Group of Drivers under Each Injury 

Severity Level 
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FIGURE 3.7: Distributions of Crashes on Each Gender of Pedestrians under Each Injury 

Severity Level 

 

 

FIGURE: 3.8 Distributions of Crashes on Each Gender of Drivers under Each Injury 

Severity Level 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

K A B C O

Crash on Gender Group of Pedestrians

Male Female

0

500

1000

1500

2000

2500

3000

3500

4000

4500

K A B C O

Crash on Gender Group of Drivers

Male Female



50 

 

 

 

 

FIGURE 3.9: Distributions of Crashes on Curved or Straight Roadways under Each 

Injury Severity Level 

 

 

Figure 3.10: Distributions of Crashes in Rural or Urban Areas under Each Injury Severity 

Level 
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3.3. Summary 

This chapter presents the detailed information on the data source, data structure, 

and processing methodology. This is intended to provide a solid reference and assistance 

for future tasks.  
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CHAPTER 4: DEVELOPMENTS OF DISCRETE CHOICE MODELS 

4.1. Introduction 

 The chapter presents the model developments of conventional DCMs for analyzing 

and modeling pedestrian injury severities in pedestrian-vehicle crashes. The following 

sections are organized as follows. Section 4.2 shows development of basic DCM (i.e., 

MNL), including the model results and the associating interpretation of the results. Section 

4.3 presents model developments of the selected advanced DCMs (i.e., ML model and PPO 

model), and the model results and associating result explanations are also provided. Section 

4.4 shows some simple comparisons between basic DCM and the advanced DCMs. Finally, 

section 4.5 concludes this chapter with a summary. 

 

4.2. Development of Basic Discrete Choice Model (MNL Model) 

This section describes the results of the selected basic DCM for analyzing and 

modeling pedestrian-injury severity in pedestrian-vehicle crashes, which is the MNL 

model. Then the interpretations of the model results are briefly given as a general guide in 

the Subsection 4.2.2 to demonstrate the use of MNL model in analyzing and modeling 

pedestrian injury severities in pedestrian-vehicle crashes, especially its use in identifying 

the key contributors to the injury severity levels of pedestrians. The associated marginal 

effects of all individual contributing factors that remain significant in the final MNL model 

are also computed for the purpose of using them as supplements to the results from the 

direct interpretations of the developed MNL model in this study. 
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4.2.1. Multinomial Logit Model Results  

Table 4.1 represents the model results of MNL model for modeling the pedestrian 

injury severity in pedestrian-vehicle crashes. It shows the coefficients and standard errors 

of each contributing factor in the developed MNL model.  

Table 4.2 displays the results of the marginal effects for each contributing factor in 

the developed MNL model. And as mentioned in Section 2.2, the marginal effect analysis 

could help evaluate how the significant variables estimated in the MNL model impact the 

pedestrian injury outcome probabilities. 

 

TABLE 4.1: MNL Model Results for Modeling the Pedestrian Injury Severity in 

Pedestrian-Vehicle Crashes 

Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Intercept -3.7295 0.2621 -3.9766 0.2209 -0.6062 0.0703 -1.0775 0.1317 

Pedestrian Characteristics 
        

Pedestrian age: ≤ 24 (1 if pedestrian is 

younger than 25 years; 0 

otherwise) 

- - 0.2049 0.0827 0.1869 0.0397 - - 

Pedestrian age: 45 - 64 (1 if pedestrian 

is younger than 65 years old and 

older than 44 years old; 0 

otherwise) 

0.5320 0.0773 0.2935 0.0794 - - - - 

Pedestrian age: ≥ 65 (1 if pedestrian is 

older than 64 years old; 0 

otherwise) 

1.7530 0.1175 0.7824 0.1229 0.5618 0.0609 0.2985 0.1224 

Alcohol-impaired pedestrian (1 if 

pedestrian is alcohol-impaired; 0 

otherwise) 

1.0846 0.0878 0.7643 0.0898 0.5094 0.0628 0.2935 0.1338 

Male pedestrian (1 if pedestrian is 

male; 0 otherwise) 

- - 0.2092 0.0667 0.1433 0.0352 0.2657 0.0747 

Driver Characteristics - - - - - - - - 

Driver age: 45 - 64 (1 if driver is 

younger than 65 years old and 

-0.2734 0.0780 -0.1906 0.0693 -0.1426 0.0377 - - 
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Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

older than 44 years old; 0 

otherwise) 

Alcohol-impaired driver (1 if driver is 

alcohol-impaired; 0 otherwise) 

1.1525 0.1700 0.7721 0.1727 0.4633 0.1213 - - 

Male driver (1 if driver is male; 0 

otherwise) 

0.3176 0.0717 0.1594 0.0617 - - - - 

Crash characteristics - - - - - - - - 

Ambulance rescue (1 if service 

presents; 0 otherwise) 

1.0512 0.1110 1.6819 0.1202 0.8386 0.0441 -1.6003 0.0764 

Hit and run (1 if crash is hit-and-run; 

0 otherwise)  

0.9921 0.2122 0.7267 0.1940 - - - - 

Backing Vehicle (1 if crash occurred 

when driver is backing vehicle; 0 

otherwise) 

-0.4461 0.2196 - - - - - - 

Crossing roadway (1 if crash 

happened when pedestrian is 

crossing roadway; 0 otherwise) 

0.8344 0.1047 0.6201 0.0964 0.1904 0.0508 - - 

Dash/dart out (1 if pedestrian 

movement preceding crash is 

dashing/darting out; 0 otherwise) 

1.1227 0.1380 1.1466 0.1177 0.6982 0.0658 - - 

Midblock (1 if crash happened when 

pedestrian is crossing at mid-

block location; 0 otherwise) 

0.9581 0.3131 - - - - - - 

Multiple-threat (1 if crash is a 

multiple-threat crash; 0 

otherwise) 

- - 0.5942 0.2873 0.4889 0.1374 - - 

Off roadway (1 if pedestrian move off 

the roadway when vehicle 

approach; 0 otherwise) 

- - - - 0.2069 0.0627 - - 

Pedestrian in roadway (1 if pedestrian 

is in the roadway; 0 otherwise) 

0.9115 0.1122 0.5243 0.1138 - - - - 

Locality and roadway 

Characteristics 

- - - - - - - - 

Urban (1 if crash occurs in urban 

roadway; 0 otherwise) 

-0.4697 0.0898 -0.1912 0.0805 - - - - 

Curved roadway (1 if road geometry 

is curved roadway; 0 otherwise) 

0.4763 0.1258 0.5397 0.1169 - - - - 

One-way, not divided (1 if the road 

configuration is one-way not 

divided; 0 otherwise) 

- - - - - - - - 

Two-way, divided (1 if the road 

configuration is two-way 

divided; 0 otherwise) 

1.0373 0.2136 0.6390 0.1616 0.2210 0.0477 - - 
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Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Two-way, not divided (1 if the road 

configuration is two-way not 

divided; 0 otherwise) 

0.4351 0.2087 0.3547 0.1481 - - - - 

Commercial (1 if crash occurred in 

commercial area; 0 otherwise) 

- - - - -0.1195 0.0378 - - 

Institutional (1 if crash occurred in 

Institutional area; 0 otherwise) 

- - - - - - 0.3610 0.1498 

Bottom-road (1 if crash occurred at 

the bottom of the roadway; 0 

otherwise) 

0.7963 0.3466 - - 0.7033 0.2040 - - 

Grade-road (1 if crash occurred on 

grade-road; 0 otherwise) 

0.3432 0.0903 0.1895 0.0827 - - - - 

Interstate (1 if crash occurred on 

interstate; 0 otherwise) 

0.5603 0.1860 - - - - - - 

Local street (1 if crash occurred on 

local street; 0 otherwise) 

-1.4281 0.1103 -0.6721 0.0885 -0.3599 0.0524 -0.2676 0.1157 

NC route (1 if crash occurred on NC 

route; 0 otherwise) 

-0.4099 0.1304 - - -0.2364 0.0823 - - 

Private road, driveway (1 if crash 

occurred on driveway of private 

road; 0 otherwise) 

- - 0.8013 0.1887 - - -0.7935 0.3607 

Public vehicular area (1 if crash 

occurred on public vehicular 

area; 0 otherwise) 

-2.4229 0.2118 -1.2418 0.1396 -0.8460 0.0704 -0.3690 0.1261 

State secondary route (1 if crash 

occurred on State secondary 

route; 0 otherwise) 

-0.3165 0.1144 - - - - - - 

Time and Environment 

characteristics 

- - - - - - - - 

Morning (1 if crash occurred during 

morning; 0 otherwise) 

- - - - -0.1632 0.0373 -0.2025 0.0790 

Dark - lighted roadway (1 if light 

condition is lighted roadway; 0 

otherwise) 

0.9339 0.1043 0.4299 0.0824 - - - - 

Dark - roadway not lighted (1 if light 

condition is dark - roadway not 

lighted; 0 otherwise) 

1.1793 0.0996 0.5925 0.0875 - - - - 

Dawn/dusk light (1 if light condition 

is dawn/dusk light; 0 otherwise) 

0.6919 0.1786 - - - - - - 

Cloudy (1 if the weather is cloudy; 0 

otherwise) 

- - - - - - -0.2688 0.1120 

Rain (1 if the weather is raining; 0 

otherwise) 

-0.4227 0.1359 - - - - - - 
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Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Traffic control characteristics and 

workzone 

- - - - - - - - 

Double yellow line, no passing zone 

(1 if crash occurs within no 

passing zone with double yellow 

line; 0 otherwise) 

- - - - - - -0.3575 0.1652 

Human control (1 if the type of traffic 

control is human control; 0 

otherwise) 

-1.5304 0.5297 -0.8822 0.3820 -0.3714 0.1609 - - 

Traffic sign (1 if the type of traffic 

control is traffic sign; 0 

otherwise) 

-0.7215 0.1733 -0.8445 0.1544 -0.3254 0.0685 - - 

Traffic signal (1 if the type of traffic 

control is traffic sign; 0 

otherwise) 

-0.8302 0.1256 -0.5103 0.0997 -0.1857 0.0539 - - 

Ka - Fatal Injury No. of observations: 17,480. 

Ab - Incapacitating Injury -2×Log-likelihood at convergence: 38,652. 

Bc - Non-incapacitating Injury -2×Log-likelihood (constant only): 56,266. 

Cd - Possible Injury AIC: 38,839. 

Oe - No Injury BIC: 39,658. 

 

TABLE 4.2: Average Marginal Effects for Each Contributing Factors in the MNL Model  

Variables Ka Ab Bc Cd Oe 

Pedestrian Characteristics 
     

Pedestrian age: ≤ 24 (1 if pedestrian is younger than 25 

years; 0 otherwise) 

-0.0063 0.0077 0.0353 -0.0334 -0.0032 

Pedestrian age: 45 - 64 (1 if pedestrian is younger than 65 

years old and older than 44 years old; 0 otherwise) 

0.0263 0.0149 -0.0229 -0.0167 -0.0016 

Pedestrian age: ≥ 65 (1 if pedestrian is older than 64 years 

old; 0 otherwise) 

0.0951 0.0132 0.0325 -0.1391 -0.0016 

Alcohol-impaired pedestrian (1 if pedestrian is alcohol-

impaired; 0 otherwise) 

0.0408 0.0260 0.0527 -0.1206 0.0012 

Male pedestrian (1 if pedestrian is male; 0 otherwise) -0.0058 0.0087 0.0215 -0.0341 0.0096 

Driver Characteristics 
     

Driver age: 45 - 64 (1 if driver is younger than 65 years old 

and older than 44 years old; 0 otherwise) 

-0.0087 -0.0057 -0.0193 0.0307 0.0030 
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Variables Ka Ab Bc Cd Oe 

Alcohol-impaired driver (1 if driver is alcohol-impaired; 0 

otherwise) 

0.0506 0.0272 0.0397 -0.1067 -0.0108 

Male driver (1 if driver is male; 0 otherwise) 0.0146 0.0077 -0.0124 -0.0090 -0.0009 

Crash characteristics 
     

Ambulance rescue (1 if service presents; 0 otherwise) 0.0269 0.0611 0.1611 -0.1247 -0.1245 

Hit and run (1 if crash is hit-and-run; 0 otherwise)  0.0559 0.0452 -0.0547 -0.0423 -0.0040 

Backing Vehicle (1 if crash occurred when driver is backing 

vehicle; 0 otherwise) 

-0.0201 0.0035 0.0095 0.0064 0.0007 

Crossing roadway (1 if crash happened when pedestrian is 

crossing roadway; 0 otherwise) 

0.0337 0.0280 0.0016 -0.0577 -0.0056 

Dash/dart out (1 if pedestrian movement preceding crash is 

dashing/darting out; 0 otherwise) 

0.0324 0.0496 0.0822 -0.1492 -0.0151 

Midblock (1 if crash happened when pedestrian is crossing 

at mid-block location; 0 otherwise) 

0.0652 -0.0102 -0.0306 -0.0219 -0.0024 

Multiple-threat (1 if crash is a multiple-threat crash; 0 

otherwise) 

-0.0165 0.0252 0.0889 -0.0888 -0.0088 

Off roadway (1 if pedestrian move off the roadway when 

vehicle approach; 0 otherwise) 

-0.0051 -0.0064 0.0462 -0.0316 -0.0032 

Pedestrian in roadway (1 if pedestrian is in the roadway; 0 

otherwise) 

0.0511 0.0284 -0.0435 -0.0328 -0.0032 

Locality and roadway Characteristics 
     

Urban (1 if crash occurs in urban roadway; 0 otherwise) -0.0233 -0.0087 0.0178 0.0129 0.0013 

Curved roadway (1 if road geometry is curved roadway; 0 

otherwise) 

0.0211 0.0362 -0.0312 -0.0239 -0.0022 

Two-way, divided (1 if the road configuration is two-way 

divided; 0 otherwise) 

0.0488 0.0272 -0.0011 -0.0681 -0.0067 

Two-way, not divided (1 if the road configuration is two-

way not divided; 0 otherwise) 

0.0183 0.0185 -0.0205 -0.0149 -0.0014 

Commercial (1 if crash occurred in commercial area; 0 

otherwise) 

0.0029 0.0036 -0.0265 0.0182 0.0018 

Institutional (1 if crash occurred in Institutional area; 0 

otherwise) 

-0.0008 -0.0008 -0.0062 -0.0111 0.0189 

Bottom-road (1 if crash occurred at the bottom of the 

roadway; 0 otherwise) 

0.0237 -0.0264 0.1361 -0.1209 -0.0126 

Grade-road (1 if crash occurred on grade-road; 0 otherwise) 0.0170 0.0096 -0.0147 -0.0108 -0.0010 

Interstate (1 if crash occurred on interstate; 0 otherwise) 0.0340 -0.0056 -0.0160 -0.0112 -0.0012 

Local street (1 if crash occurred on local street; 0 otherwise) -0.0619 -0.0205 -0.0166 0.1017 -0.0027 

NC route (1 if crash occurred on NC route; 0 otherwise) -0.0144 0.0109 -0.0423 0.0417 0.0042 

Private road, driveway (1 if crash occurred on driveway of 

private road; 0 otherwise) 

-0.0081 0.0719 -0.0245 -0.0110 -0.0283 
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Variables Ka Ab Bc Cd Oe 

Public vehicular area (1 if crash occurred on public vehicular 

area; 0 otherwise) 

-0.0614 -0.0365 -0.1120 0.2097 0.0002 

State secondary route (1 if crash occurred on State secondary 

route; 0 otherwise) 

-0.0153 0.0027 0.0072 0.0049 0.0005 

Time and Environment characteristics 
     

Morning (1 if crash occurred during morning; 0 otherwise) 0.0043 0.0054 -0.0331 0.0304 -0.0070 

Dark - lighted roadway (1 if light condition is lighted 

roadway; 0 otherwise) 

0.0507 0.0197 -0.0386 -0.0290 -0.0028 

Dark - roadway not lighted (1 if light condition is dark - 

roadway not lighted; 0 otherwise) 

0.0653 0.0314 -0.0528 -0.0401 -0.0039 

Dawn/dusk light (1 if light condition is dawn/dusk light; 0 

otherwise) 

0.0430 -0.0070 -0.0202 -0.0143 -0.0015 

Cloudy (1 if the weather is cloudy; 0 otherwise) 0.0004 0.0005 0.0037 0.0068 -0.0115 

Rain (1 if the weather is raining; 0 otherwise) -0.0193 0.0034 0.0091 0.0062 0.0007 

Traffic control characteristics and workzone 
     

Double yellow line, no passing zone (1 if crash occurs 

within no passing zone with double yellow line; 0 

otherwise) 

0.0006 0.0006 0.0048 0.0087 -0.0147 

Human control (1 if the type of traffic control is human 

control; 0 otherwise) 

-0.0426 -0.0296 -0.0341 0.0970 0.0092 

Traffic sign (1 if the type of traffic control is traffic sign; 0 

otherwise) 

-0.0202 -0.0325 -0.0351 0.0802 0.0076 

Traffic signal (1 if the type of traffic control is traffic sign; 0 

otherwise) 

-0.0293 -0.0198 -0.0091 0.0530 0.0051 

Ka - Fatal Injury           

Ab - Incapacitating Injury 
     

Bc - Non-incapacitating Injury 
     

Cd - Possible Injury 
     

Oe - No Injury 
     

 

4.2.2. Results Interpretations of Multinomial Logit Model 

Since “Possible injury” is set to be the reference injury severity level, there is no 

model for this group. Positive (negative) sign of the coefficient indicates that the 

corresponding variable will increase (decrease) the probability of occurrence of crashes 

with the injury severity level versus the base level and the base variable within the same 
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group. For instance, variable “male driver” has the positive coefficient (i.e., 0. 3176) for 

the “Fatal Injury” level, which indicates that male driver involved pedestrian-vehicle 

crashes will increase the probability of fatal level of pedestrian injury severity compared 

to “Possible injury” and “female drivers”. On the contrary, crashes under the condition of 

traffic control with human control (i.e., variable “Human control”) will result in a lower 

chance of being fatally injured than possible injured for pedestrians.  

On the other hand, as a supplement to the direct interpretation of the estimated 

parameter, the marginal effects are also very useful and could help extend the interpretation 

to the reference injury severity level (i.e., “Possible Injury” in this study) as well. And as 

presented in Subsection 2.3.2, the marginal effect denotes the probability change when the 

corresponding variable changes one unit (i.e., from 0 to 1). Since all variables are dummy 

coded in the crash data, the associated marginal effect of a variable indicates the impacts 

of the presence of the variable in the crash on the injury severities of pedestrians in the 

pedestrian-vehicle crashes. For instance, the marginal effect of “alcohol-impaired driver” 

for “Possible Injury” is -0.1067, which means that when crash occurred involves a drunk 

driver, the probability of pedestrian sustaining possible injury decreases by 10.67%. Due 

to the ease of such straightforward interpretations, explanations of other variables and their 

associated parameters are not repeated here. 

 

4.3. Development of Advanced Discrete Choice Models 

This section presents the results of the selected advanced DCMs for analyzing and 

modeling pedestrian injury severities in pedestrian-vehicle crashes, which are the ML 

model and the PPO model. The interpretations of the model results are briefly given in the 

Subsections 4.2.4  and 4.2.5 to demonstrate the uses of ML model and PPO model, 
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respectively in analyzing and modeling pedestrian injury severities in pedestrian-vehicle 

crashes, especially its use in identifying the key contributors to the injury severity levels of 

pedestrians. Unlike the MNL model, in ML model, due to allowance of the random 

distributed setting of some variables, and in the PPO model, due to the ordered property of 

the injury severity levels, the signs of the estimated parameters could not always denote 

the directions of the associated effect changes of contributing factors, which do require the 

computations of the marginal effects for both models. Therefore, the marginal effects of 

all individual contributing factors that remain statistically significant in the final ML model 

and PPO model are computed for the purpose of interpretations. 

 

4.3.1. Mixed Logit Model 

 

4.3.1.1. Model Results of Mixed Logit Model 

Table 4.3 represents the model results of ML model for modeling the pedestrian 

injury severity in pedestrian-vehicle crashes. It shows the coefficients and standard errors 

of each contributing factor in the developed ML model. 

Table 4.4 displays the results of the marginal effects for each contributing factor in 

the developed ML model. And as mentioned in Section 2.3, the marginal effect analysis 

could help evaluate how the significant variables estimated in the ML model impact the 

pedestrian injury outcome probabilities. 
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TABLE 4.3: ML Model Results for Modeling the Pedestrian Injury Severity in 

Pedestrian-Vehicle Crashes 

Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Intercept -4.3381 0.3443 -4.3167 0.3018 -0.6887 0.0800 -1.0845 0.1335 

Pedestrian Characteristics 
        

Pedestrian age: ≤ 24 (1 if pedestrian is 

younger than 25 years; 0 

otherwise) 

- - 0.2243 0.0953 0.1915 0.0439 - - 

Pedestrian age: 45 - 64 (1 if pedestrian 

is younger than 65 years old and 

older than 44 years old; 0 

otherwise) 

0.7028 0.1157 0.3411 0.0926 - - - - 

Pedestrian age: ≥ 65 (1 if pedestrian is 

older than 64 years old; 0 

otherwise) 

2.1832 0.2192 0.8229 0.1463 0.3678 0.1457 0.3235 0.1243 

Standard deviation of "Pedestrian 

age: ≥ 65" 

- - - - - - 2.1140 0.6255 

Alcohol-impaired pedestrian (1 if 

pedestrian is alcohol-impaired; 0 

otherwise) 

1.3267 0.1429 0.8020 0.1036 0.4087 0.1002 0.3160 0.1377 

Standard deviation of "Alcohol-

impaired pedestrian" 

- - - - - - 1.3724 0.4913 

Male pedestrian (1 if pedestrian is 

male; 0 otherwise) 

- - 0.2458 0.0772 0.1650 0.0402 0.2639 0.0755 

Driver Characteristics 
        

Driver age: 45 - 64 (1 if driver is 

younger than 65 years old and 

older than 44 years old; 0 

otherwise) 

-0.3453 0.1026 -0.2097 0.0793 -0.1528 0.0426 - - 

Alcohol-impaired driver (1 if driver is 

alcohol-impaired; 0 otherwise) 

1.4109 0.2355 0.8476 0.1937 0.5241 0.1364 - - 

Male driver (1 if driver is male; 0 

otherwise) 

0.3890 0.0985 -0.2991 0.2924 - - - - 

Standard deviation of "Male driver" - - -1.2280 0.4062 - - - - 

Crash characteristics 
        

Ambulance rescue (1 if service 

presents; 0 otherwise) 

0.9253 0.2275 1.8366 0.1581 0.9408 0.0539 -1.6040 0.0767 

Standard deviation of "Ambulance 

rescue" 

1.0628 0.4036 - - - - - - 

Hit and run (1 if crash is hit-and-run; 

0 otherwise)  

1.2023 0.3140 0.7935 0.2365 - - - - 
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Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Backing Vehicle (1 if crash occurred 

when driver is backing vehicle; 0 

otherwise) 

-0.5673 0.2809 - - - - - - 

Crossing roadway (1 if crash 

happened when pedestrian is 

crossing roadway; 0 otherwise) 

1.0630 0.1479 0.7222 0.1126 0.2085 0.0561 - - 

Dash/dart out (1 if pedestrian 

movement preceding crash is 

dashing/darting out; 0 otherwise) 

1.3852 0.1902 1.2665 0.1400 0.7667 0.0870 - - 

Standard deviation of "Dash/dart out" - - - - -1.5212 0.5708 - - 

Midblock (1 if crash happened when 

pedestrian is crossing at mid-

block location; 0 otherwise) 

1.2834 0.3982 - - - - - - 

Multiple-threat (1 if crash is a 

multiple-threat crash; 0 

otherwise) 

- - 0.6799 0.3080 0.5592 0.1400 - - 

Off roadway (1 if pedestrian move off 

the roadway when vehicle 

approach; 0 otherwise) 

- - - - 0.0769 0.1256 - - 

Standard deviation of "Off roadway" - - - - -1.2309 0.3575 - - 

Pedestrian in roadway (1 if pedestrian 

is in the roadway; 0 otherwise) 

0.9911 0.2487 0.5974 0.1331 - - - - 

Standard deviation of "Pedestrian in 

roadway" 

1.0666 0.5460 - - - - - - 

Locality and roadway 

Characteristics 

        

Urban (1 if crash occurs in urban 

roadway; 0 otherwise) 

-1.0127 0.2610 -0.2277 0.0942 - - - - 

Standard deviation of "Urban" 1.3273 0.3427 - - - - - - 

Curved roadway (1 if road geometry 

is curved roadway; 0 otherwise) 

0.6664 0.1747 0.6092 0.1365 - - - - 

Two-way, divided (1 if the road 

configuration is two-way 

divided; 0 otherwise) 

1.2091 0.2609 0.7015 0.1935 0.2193 0.0527 - - 

Two-way, not divided (1 if the road 

configuration is two-way not 

divided; 0 otherwise) 

0.4703 0.2503 0.4289 0.1782 - - - - 

Commercial (1 if crash occurred in 

commercial area; 0 otherwise) 

- - - - -0.1575 0.0435 - - 

Institutional (1 if crash occurred in 

Institutional area; 0 otherwise) 

- - - - - - 0.3619 0.1509 

Bottom-road (1 if crash occurred at 

the bottom of the roadway; 0 

otherwise) 

0.8790 0.3987 - - 0.8191 0.2309 - - 
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Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Grade-road (1 if crash occurred on 

grade-road; 0 otherwise) 

-0.3896 0.3164 0.2064 0.0944 - - - - 

Standard deviation of "Grade-road" 2.0681 0.3978 - - - - - - 

Interstate (1 if crash occurred on 

interstate; 0 otherwise) 

0.8206 0.2650 - - - - - - 

Local street (1 if crash occurred on 

local street; 0 otherwise) 

-1.8356 0.1995 -0.7113 0.1011 -0.3515 0.0582 -0.2614 0.1160 

NC route (1 if crash occurred on NC 

route; 0 otherwise) 

-0.5594 0.1759 - - -0.2778 0.0932 - - 

Private road, driveway (1 if crash 

occurred on driveway of private 

road; 0 otherwise) 

- - 0.9424 0.2226 - - -0.8047 0.3676 

Public vehicular area (1 if crash 

occurred on public vehicular 

area; 0 otherwise) 

-2.8319 0.2874 -3.0266 1.0631 -0.9051 0.0806 -0.3517 0.1262 

Standard deviation of "Public 

vehicular area" 

- - -2.2511 0.7803 - - - - 

State secondary route (1 if crash 

occurred on State secondary 

route; 0 otherwise) 

-0.4382 0.1548 - - - - - - 

Time and Environment 

characteristics 

        

Morning (1 if crash occurred during 

morning; 0 otherwise) 

- - - - -0.1774 0.0419 -0.2073 0.0798 

Dark - lighted roadway (1 if light 

condition is lighted roadway; 0 

otherwise) 

1.1656 0.1649 0.4826 0.0976 - - - - 

Dark - roadway not lighted (1 if light 

condition is dark - roadway not 

lighted; 0 otherwise) 

1.4778 0.1654 0.6590 0.0980 - - - - 

Dawn/dusk light (1 if light condition 

is dawn/dusk light; 0 otherwise) 

0.9110 0.2271 - - - - - - 

Cloudy (1 if the weather is cloudy; 0 

otherwise) 

- - - - - - -0.2707 0.1135 

Rain (1 if the weather is raining; 0 

otherwise) 

-0.5744 0.1910 - - - - - - 

Traffic control characteristics and 

workzone 

        

Double yellow line, no passing zone 

(1 if crash occurs within no 

passing zone with double yellow 

line; 0 otherwise) 

- - - - - - -0.3527 0.1668 
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Variables Ka   Ab   Bc   Oe   

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Human control (1 if the type of traffic 

control is human control; 0 

otherwise) 

-1.8655 0.6432 -0.9143 0.4172 -0.4403 0.1817 - - 

Traffic sign (1 if the type of traffic 

control is traffic sign; 0 

otherwise) 

-0.8935 0.2325 -0.8885 0.1682 -0.3434 0.0754 - - 

Traffic signal (1 if the type of traffic 

control is traffic sign; 0 

otherwise) 

-1.0337 0.1754 -0.5628 0.1107 -0.1660 0.0593 - - 

Ka - Fatal Injury No. of observations: 17,480. 

Ab - Incapacitating Injury -2×Log-likelihood at convergence: 38,596. 

Bc - Non-incapacitating Injury -2×Log-likelihood (constant only): 56,266. 

Cd - Possible Injury AIC: 38,803. 

Oe - No Injury BIC: 39,602. 

 

TABLE 4.4: Average Marginal Effects for Each Contributing Factors in the ML Model  

Variables Ka Ab Bc Cd Oe 

Pedestrian Characteristics 
     

Pedestrian age: ≤ 24 (1 if pedestrian is younger than 25 

years; 0 otherwise) 

-0.0043 0.0066 0.0361 -0.0351 -0.0033 

Pedestrian age: 45 - 64 (1 if pedestrian is younger than 65 

years old and older than 44 years old; 0 otherwise) 

0.0229 0.0140 -0.0211 -0.0143 -0.0015 

Pedestrian age: ≥ 65 (1 if pedestrian is older than 64 years 

old; 0 otherwise) 

0.0935 0.0162 -0.0026 -0.1112 0.0041 

Alcohol-impaired pedestrian (1 if pedestrian is alcohol-

impaired; 0 otherwise) 

0.0374 0.0251 0.0368 -0.1048 0.0055 

Male pedestrian (1 if pedestrian is male; 0 otherwise) -0.0043 0.0078 0.0258 -0.0392 0.0098 

Driver Characteristics 
     

Driver age: 45 - 64 (1 if driver is younger than 65 years old 

and older than 44 years old; 0 otherwise) 

-0.0076 -0.0049 -0.0226 0.0319 0.0031 

Alcohol-impaired driver (1 if driver is alcohol-impaired; 0 

otherwise) 

0.0427 0.0227 0.0595 -0.1135 -0.0114 

Male driver (1 if driver is male; 0 otherwise) 0.0141 -0.0177 0.0019 0.0018 0.0000 

Crash characteristics 
     

Ambulance rescue (1 if service presents; 0 otherwise) 0.0129 0.0496 0.1925 -0.1237 -0.1313 

Hit and run (1 if crash is hit-and-run; 0 otherwise) 0.0459 0.0406 -0.0483 -0.0347 -0.0035 
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Variables Ka Ab Bc Cd Oe 

Backing Vehicle (1 if crash occurred when driver is backing 

vehicle; 0 otherwise) 

-0.0160 0.0027 0.0077 0.0049 0.0006 

Crossing roadway (1 if crash happened when pedestrian is 

crossing roadway; 0 otherwise) 

0.0292 0.0257 0.0085 -0.0577 -0.0056 

Dash/dart out (1 if pedestrian movement preceding crash is 

dashing/darting out; 0 otherwise) 

0.0294 0.0420 0.1038 -0.1592 -0.0159 

Midblock (1 if crash happened when pedestrian is crossing 

at mid-block location; 0 otherwise) 

0.0598 -0.0089 -0.0288 -0.0197 -0.0023 

Multiple-threat (1 if crash is a multiple-threat crash; 0 

otherwise) 

-0.0123 0.0214 0.1036 -0.1027 -0.0100 

Off roadway (1 if pedestrian move off the roadway when 

vehicle approach; 0 otherwise) 

-0.0012 -0.0020 0.0168 -0.0124 -0.0012 

Pedestrian in roadway (1 if pedestrian is in the roadway; 0 

otherwise) 

0.0352 0.0283 -0.0358 -0.0251 -0.0025 

Locality and roadway Characteristics 
     

Urban (1 if crash occurs in urban roadway; 0 otherwise) -0.0331 -0.0065 0.0227 0.0153 0.0017 

Curved roadway (1 if road geometry is curved roadway; 0 

otherwise) 

0.0208 0.0324 -0.0299 -0.0212 -0.0020 

Two-way, divided (1 if the road configuration is two-way 

divided; 0 otherwise) 

0.0381 0.0249 0.0058 -0.0625 -0.0062 

Two-way, not divided (1 if the road configuration is two-

way not divided; 0 otherwise) 

0.0125 0.0182 -0.0176 -0.0120 -0.0012 

Commercial (1 if crash occurred in commercial area; 0 

otherwise) 

0.0025 0.0040 -0.0344 0.0254 0.0024 

Institutional (1 if crash occurred in Institutional area; 0 

otherwise) 

-0.0005 -0.0006 -0.0063 -0.0124 0.0199 

Bottom-road (1 if crash occurred at the bottom of the 

roadway; 0 otherwise) 

0.0150 -0.0234 0.1655 -0.1425 -0.0145 

Grade-road (1 if crash occurred on grade-road; 0 otherwise) -0.0129 0.0133 -0.0001 -0.0005 0.0001 

Interstate (1 if crash occurred on interstate; 0 otherwise) 0.0339 -0.0053 -0.0163 -0.0109 -0.0013 

Local street (1 if crash occurred on local street; 0 otherwise) -0.0514 -0.0187 -0.0224 0.0961 -0.0036 

NC route (1 if crash occurred on NC route; 0 otherwise) -0.0129 0.0102 -0.0512 0.0491 0.0048 

Private road, driveway (1 if crash occurred on driveway of 

private road; 0 otherwise) 

-0.0063 0.0690 -0.0254 -0.0073 -0.0300 

Public vehicular area (1 if crash occurred on public vehicular 

area; 0 otherwise) 

-0.0428 -0.0610 -0.1255 0.2283 0.0009 

State secondary route (1 if crash occurred on State secondary 

route; 0 otherwise) 

-0.0136 0.0023 0.0066 0.0042 0.0005 

Time and Environment characteristics 
     

Morning (1 if crash occurred during morning; 0 otherwise) 0.0030 0.0048 -0.0355 0.0350 -0.0074 
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Variables Ka Ab Bc Cd Oe 

Dark - lighted roadway (1 if light condition is lighted 

roadway; 0 otherwise) 

0.0423 0.0179 -0.0339 -0.0238 -0.0025 

Dark - roadway not lighted (1 if light condition is dark - 

roadway not lighted; 0 otherwise) 

0.0521 0.0290 -0.0456 -0.0322 -0.0033 

Dawn/dusk light (1 if light condition is dawn/dusk light; 0 

otherwise) 

0.0380 -0.0059 -0.0183 -0.0123 -0.0015 

Cloudy (1 if the weather is cloudy; 0 otherwise) 0.0003 0.0004 0.0038 0.0076 -0.0121 

Rain (1 if the weather is raining; 0 otherwise) -0.0164 0.0028 0.0079 0.0050 0.0006 

Traffic control characteristics and workzone 
     

Double yellow line, no passing zone (1 if crash occurs 

within no passing zone with double yellow line; 0 

otherwise) 

0.0004 0.0005 0.0048 0.0095 -0.0152 

Human control (1 if the type of traffic control is human 

control; 0 otherwise) 

-0.0320 -0.0230 -0.0559 0.1013 0.0096 

Traffic sign (1 if the type of traffic control is traffic sign; 0 

otherwise) 

-0.0169 -0.0262 -0.0435 0.0792 0.0074 

Traffic signal (1 if the type of traffic control is traffic sign; 0 

otherwise) 

-0.0234 -0.0180 -0.0091 0.0461 0.0045 

Ka - Fatal Injury 
     

Ab - Incapacitating Injury 
     

Bc - Non-incapacitating Injury 
     

Cd - Possible Injury 
     

Oe - No Injury 
     

 

4.3.1.2. Results Interpretations of Mixed Logit Model 

As defined in Section 2.3.3, there are two subsets in the coefficient vector β, which 

consist of fixed ones and randomly distributed ones respectively. For fixed coefficients, 

they follow the same explanation as that for the MNL model. For demonstration purpose, 

the explanatory variable “ambulance rescue” specific to “Fatal Injury (K)” is selected to 

show the interpretations for variables with random effects in the ML model. The fitted 

normal distribution of the coefficient of “ambulance rescue” specific to “Killed (K)” has a 

mean and standard deviation of 0.9253 and 1.0628 respectively. Thus, the probability of 

such distribution to be below zero is 25.70% and 74.30% to be above zero. Such 
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phenomenon indicates that the likelihood of being killed increases for 74.3% of pedestrians 

involved in pedestrian-vehicle crashes when they walk along the roadway, while for the 

minority (25.70%) of pedestrians, this likelihood decreases. Thus, this results in a more 

severe outcome of pedestrian injury severity level under such condition in most cases. 

Meanwhile, there are still a certain proportion of pedestrians not being killed. This kind of 

interpretation would be more plausible than the result from the MNL model in which the 

constant positive effect of “ambulance rescue” in MNL is assumed, which implies that the 

presence of the ambulance rescue service would always be a positive contributing factor to 

severer injury levels in pedestrian-vehicle crashes for pedestrians. Thus, the ML model can 

reveal heterogeneities across individual observations. 

Additionally, the average marginal effects across individuals of all statistically 

significant contributing factors have been computed as well. Like MNL model, the 

marginal effects can be explained in the same manner and therefore are not repeated. 

However, there are some interesting differences between the MNL and ML models due to 

the consideration of unobserved heterogeneity or without. For example, the average 

marginal effect of “grade-road” under level “K” are with opposite signs in MNL and ML 

models (i.e., 0.0170 in MNL, and -0.0129 in ML), which implies that this factor would 

increase the risk of pedestrian being killed in pedestrian-vehicle crashes in MNL model but 

decrease such probability in ML model, on average. Other than such difference, most 

effects of the other contributing factors in ML model tend to have smaller absolute average 

marginal effects towards “K” level than they are in the MNL model.  
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4.3.2. Partial Proportional Odds Model 

 

4.3.2.1. Model Results of Partial Proportional Odds Model 

Table 4.5 represents the model results of PPO model for modeling the pedestrian 

injury severity in pedestrian-vehicle crashes. It shows the coefficients and standard errors 

of each contributing factor in the developed PPO model. 

Table 4.6 displays the results of the marginal effects for each contributing factor in 

the developed PPO model. And as mentioned in Section 2.3, the marginal effect analysis 

could help evaluate how the significant variables estimated in the PPO model impact the 

pedestrian injury outcome probabilities. 

 

TABLE 4.5: PPO Model Results for Modeling the Pedestrian Injury Severity in 

Pedestrian-Vehicle Crashes 

Variable All Level Kd 

 

Ac 

 

Bb 

 

Cd 

 

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Pedestrian 

Characteristics 

          

Pedestrian age: ≤ 24  - - -0.3692 0.0815 -0.1102 0.0579 0.211 0.0424 0.1291 0.0805 

Pedestrian age: 45 - 64  0.1687 0.0384 - - - - - - - - 

Pedestrian age: ≥ 65  0.7003 0.055 - - - - - - - - 

Alcohol-impaired 

pedestrian  

0.5972 0.0474 - - - - - - - - 

Male pedestrian  0.0766 0.0306 - - - - - - - - 

Driver Characteristics - - - - - - - - - - 

Driver age: 45 - 64  -0.149 0.0317 - - - - - - - - 

Alcohol-impaired driver  0.6294 0.0922 - - - - - - - - 

Male driver  - - 0.2725 0.0668 0.2161 0.0482 0.0823 0.0332 0.0844 0.0705 

Crash characteristics - - - - - - - - - - 

Ambulance rescue  - - 0.5336 0.1008 1.0418 0.0795 1.0979 0.0408 1.9644 0.0749 

Hit and run  - - 0.8367 0.1896 0.8364 0.1464 0.1924 0.1195 -0.2469 0.2148 

Backing Vehicle  - - -1.0992 0.2153 -0.7388 0.1289 -0.4029 0.0741 -0.184 0.1408 

Dash/dart out  - - -0.1284 0.1045 0.1186 0.0719 0.5032 0.0574 0.1945 0.1403 
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Variable All Level Kd 

 

Ac 

 

Bb 

 

Cd 

 

  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Off roadway  - - -0.8279 0.2427 -0.4592 0.1427 -0.1296 0.078 -0.0911 0.1464 

Walking along roadway  - - -0.676 0.0923 -0.6567 0.073 -0.4094 0.0598 -0.0277 0.1348 

Locality and roadway 

Characteristics 

- - - - - - - - - - 

Urban  - - -0.5349 0.0775 -0.3417 0.0604 -0.0777 0.0466 0.1866 0.0913 

Curved roadway  - - 0.4433 0.1145 0.5031 0.0904 0.2483 0.0814 -0.0473 0.1779 

Two-way, divided  0.378 0.0649 - - - - - - - - 

Two-way, not divided  0.1198 0.0566 - - - - - - - - 

Commercial  -0.0947 0.0354 - - - - - - - - 

Farms, Woods, Pastures  0.1578 0.0621 - - - - - - - - 

Bottom-road  0.4923 0.1698 - - - - - - - - 

Grade-road  0.1305 0.0439 - - - - - - - - 

Interstate  0.4832 0.1495 - - - - - - - - 

Local street  -0.6718 0.0605 - - - - - - - - 

NC route  -0.2036 0.0812 - - - - - - - - 

Public vehicular area  - - -1.548 0.2428 -1.3172 0.1421 -1.1049 0.0827 -0.5981 0.14 

State secondary route  -0.2613 0.0719 - - - - - - - - 

Time and Environment 

characteristics 

- - - - - - - - - - 

Dark - lighted roadway  - - 0.6796 0.0915 0.5024 0.0631 0.2504 0.0434 -0.0767 0.0918 

Dark - roadway not 

lighted  

- - 1.003 0.084 0.7773 0.0634 0.2998 0.0548 -0.3125 0.1215 

Traffic control 

characteristics and 

workzone 

- - - - - - - - - - 

Human control  -0.5537 0.132 - - - - - - - - 

Traffic sign  -0.4276 0.0585 - - - - - - - - 

Traffic signal  - - -0.679 0.1123 -0.4904 0.0752 -0.2652 0.0501 -0.0906 0.1094 

Ka - Fatal Injury No. of observations: 17,480. 

Ab - Incapacitating Injury -2×Log-likelihood at convergence: 38,920. 

Bc - Non-incapacitating Injury -2×Log-likelihood (constant only): 43,916. 

Cd - Possible Injury AIC: 39,076. 

Oe - No Injury BIC: 39,682. 
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TABLE 4.6: Average Marginal Effects for Each Contributing Factors in the PPO Model  

Variables Ka Ab Bc Cd Oe 

Pedestrian Characteristics 
     

Pedestrian age: ≤ 24 (1 if pedestrian is younger than 25 

years; 0 otherwise) 

-0.0187 0.0076 0.0554 -0.0385 -0.0058 

Pedestrian age: 45 - 64 (1 if pedestrian is younger than 65 

years old and older than 44 years old; 0 otherwise) 

0.0092 0.0083 0.0178 -0.0278 -0.0075 

Pedestrian age: ≥ 65 (1 if pedestrian is older than 64 years 

old; 0 otherwise) 

0.0451 0.0370 0.0607 -0.1172 -0.0257 

Alcohol-impaired pedestrian (1 if pedestrian is alcohol-

impaired; 0 otherwise) 

0.0356 0.0328 0.0571 -0.1029 -0.0225 

Male pedestrian (1 if pedestrian is male; 0 otherwise) 0.0040 0.0037 0.0084 -0.0126 -0.0035 

Driver Characteristics 
     

Driver age: 45 - 64 (1 if driver is younger than 65 years old 

and older than 44 years old; 0 otherwise) 

-0.0078 -0.0071 -0.0165 0.0244 0.0069 

Alcohol-impaired driver (1 if driver is alcohol-impaired; 0 

otherwise) 

0.0406 0.0339 0.0544 -0.1062 -0.0227 

Male driver (1 if driver is male; 0 otherwise) 0.0142 0.0075 -0.0045 -0.0135 -0.0039 

Crash characteristics 
     

Ambulance rescue (1 if service presents; 0 otherwise) 0.0252 0.0623 0.1507 -0.1228 -0.1154 

Hit and run (1 if crash is hit-and-run; 0 otherwise)  0.0578 0.0461 -0.0637 -0.0526 0.0123 

Backing Vehicle (1 if crash occurred when driver is backing 

vehicle; 0 otherwise) 

-0.0423 -0.0209 -0.0222 0.0765 0.0088 

Dash/dart out (1 if pedestrian movement preceding crash is 

dashing/darting out; 0 otherwise) 

-0.0066 0.0189 0.0931 -0.0970 -0.0083 

Off roadway (1 if pedestrian move off the roadway when 

vehicle approach; 0 otherwise) 

-0.0346 -0.0077 0.0148 0.0231 0.0042 

Walking along roadway (1 if crash occurred when pedestrian 

is walking along roadway; 0 otherwise) 

-0.0316 -0.0271 -0.0266 0.0840 0.0013 

Locality and roadway Characteristics 
     

Urban (1 if crash occurs in urban roadway; 0 otherwise) -0.0299 -0.0064 0.0199 0.0252 -0.0088 

Curved roadway (1 if road geometry is curved roadway; 0 

otherwise) 

0.0268 0.0307 -0.0057 -0.0541 0.0022 

Two-way, divided (1 if the road configuration is two-way 

divided; 0 otherwise) 

0.0216 0.0192 0.0386 -0.0638 -0.0156 

Two-way, not divided (1 if the road configuration is two-

way not divided; 0 otherwise) 

0.0063 0.0057 0.0131 -0.0195 -0.0056 

Commercial (1 if crash occurred in commercial area; 0 

otherwise) 

-0.0050 -0.0046 -0.0103 0.0157 0.0043 
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Variables Ka Ab Bc Cd Oe 

Farms, Woods, Pastures (1 if crash occurred in areas of 

farms, woods, or pastures; 0 otherwise) 

0.0087 0.0079 0.0166 -0.0263 -0.0068 

Bottom-road (1 if crash occurred at the bottom of the 

roadway; 0 otherwise) 

0.0307 0.0259 0.0448 -0.0828 -0.0186 

Grade-road (1 if crash occurred on grade-road; 0 otherwise) 0.0072 0.0064 0.0138 -0.0217 -0.0057 

Interstate (1 if crash occurred on interstate; 0 otherwise) 0.0301 0.0255 0.0441 -0.0814 -0.0183 

Local street (1 if crash occurred on local street; 0 otherwise) -0.0369 -0.0344 -0.0659 0.1061 0.0312 

NC route (1 if crash occurred on NC route; 0 otherwise) -0.0103 -0.0094 -0.0230 0.0327 0.0100 

Public vehicular area (1 if crash occurred on public vehicular 

area; 0 otherwise) 

-0.0546 -0.0503 -0.1319 0.2064 0.0304 

State secondary route (1 if crash occurred on State secondary 

route; 0 otherwise) 

-0.0132 -0.0120 -0.0294 0.0416 0.0130 

Time and Environment characteristics 
     

Dark - lighted roadway (1 if light condition is lighted 

roadway; 0 otherwise) 

0.0408 0.0139 -0.0021 -0.0561 0.0036 

Dark - roadway not lighted (1 if light condition is dark - 

roadway not lighted; 0 otherwise) 

0.0625 0.0283 -0.0274 -0.0789 0.0156 

Traffic control characteristics and workzone 
     

Human control (1 if the type of traffic control is human 

control; 0 otherwise) 

-0.0246 -0.0238 -0.0673 0.0847 0.0310 

Traffic sign (1 if the type of traffic control is traffic sign; 0 

otherwise) 

-0.0201 -0.0192 -0.0507 0.0676 0.0223 

Traffic signal (1 if the type of traffic control is traffic sign; 0 

otherwise) 

-0.0309 -0.0149 -0.0100 0.0515 0.0042 

Ka - Fatal Injury           

Ab - Incapacitating Injury 
     

Bc - Non-incapacitating Injury 
     

Cd - Possible Injury 
     

Oe - No Injury 
     

 

4.3.2.2. Results Interpretations of Partial Proportional Odds Model 

As mentioned in Subsection 2.3.4, the sign(s) of the estimation(s) does (do) not 

always represent the direction(s) of the effect(s) on the intermediate outcomes. Hence 

marginal effects of each variable are computed for further interpretation and used to show 

how key factors affect the injury severity levels in pedestrian–vehicle crashes. With 
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categorical independent variables, marginal effects measure discrete change. It should be 

pointed out that the interpretations of the marginal effects are the same due to the same 

calculation process compared with both MNL and ML models. Thus, the interpretation of 

the corresponding factors with their effects could refer to MNL and ML models. 

By examining all results from three models, some inconsistencies could be 

observed in term of the contributing factors identified by each model and also the 

associated marginal effects towards each injury severity level. Subsection 4.4.2 provides 

more detailed comparisons in these two phenomena. 

 

4.4. Brief Comparisons Between Basic and Advanced Discrete Choice Models 

 

4.4.1.  Model Comparison Criteria of Discrete Choice Models 

Since model structures of the three conventional DCMs in this dissertatiom are 

different, the Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) 

values of each model are also computed for comparisons. Both AIC and BIC take goodness 

of fit, prediction accuracy, and the number of significant variables into consideration. Many 

researches have shown that both AIC and BIC work well as a measure of goodness of fit 

(Abdel-Aty and Radwan, 2000; Sasidharan and Menendez, 2014; Cafiso et al., 2010; Ma 

et al., 2016). The AIC is computed as shown in Equation 4.4.1.1: 

 gPF = 2i − 2 6 ( 5) (4.4.1.1) 

where k is the number of parameters in the model, and L means the maximum 

likelihood value of the fitted model. The BIC differs from the AIC in the penalty term, as 

presented below in Equation 4.4.1.2: 
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 jPF = i 6 ( k) − 2 6 ( 5) (4.4.1.2) 

where O is the number of the observations. A model with smaller AIC and BIC 

values performs better than others. 

 

4.4.2. Comparison Results 

TABLE 4.7: Indicator for Model Comparison 

Model No. of Obs (O) No. of Vars (k) -2ln(L) AIC BIC 

MNL 17,480 93 38,652 38,839 39,658 

ML 17,480 103 38,596 38,803 39,602 

PPO 17,480 55 38,983 39,093 39,520 

 

Table 4.7 provides the summaries of indicators (-2×log-likelihood, AIC and BIC,) 

for all three models. Though the likelihood value might not be good to compare different 

model structures, this value of ML is still the largest. Additionally, the AIC value of the 

ML model is the smallest among all models. The result of BIC values is different in which 

PPO ranks the first, followed by the ML model and then the MNL model. These three 

measures indicate that, given the same data set, the ML model yields the highest likelihood, 

and the smallest AIC value, when PPO model has the smallest BIC value. In summary, the 

ML model performs better than the PPO and MNL models for modeling the pedestrian 

injury severity in pedestrian-vehicle crashes in this dissertation. 

Since the ML model has been built based on the MNL model, the number of 

statistically significant contributing factors identified in both models might be the same in 

most cases. However, as mentioned in Subsection 4.3.2, inconsistencies in terms of the 

identified contributing factors do exist while comparing PPO model with both MNL and 

ML models. For examples, the factors of “pedestrian walking along roadway” and “land 
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development: farms, woods, pastures” are found to be significant in PPO model, but not in 

MNL and ML models. Table 4.8 provides a summary of different significant contributing 

factors sets with associating marginal effects towards levels “K” and “A” in each model. 

 

TABLE 4.8 Different Factors and Marginal Effects to K and A Levels 

Variables MNL Model ML Model PPO Model 

  Ka Ab Ka Ab Ka Ab 

Pedestrian Characteristics 
      

Pedestrian age: ≤ 24 (1 if pedestrian is 

younger than 25 years; 0 otherwise) 

-0.0063 0.0077 -0.0043 0.0066 -0.0187 0.0076 

Pedestrian age: 45 - 64 (1 if pedestrian is 

younger than 65 years old and older than 

44 years old; 0 otherwise) 

0.0263 0.0149 0.0229 0.0140 0.0092 0.0083 

Pedestrian age: ≥ 65 (1 if pedestrian is older 

than 64 years old; 0 otherwise) 

0.0951 0.0132 0.0935 0.0162 0.0451 0.0370 

Alcohol-impaired pedestrian (1 if pedestrian 

is alcohol-impaired; 0 otherwise) 

0.0408 0.0260 0.0374 0.0251 0.0356 0.0328 

Male pedestrian (1 if pedestrian is male; 0 

otherwise) 

-0.0058 0.0087 -0.0043 0.0078 0.0040 0.0037 

Driver Characteristics 
      

Driver age: 45 - 64 (1 if driver is younger 

than 65 years old and older than 44 years 

old; 0 otherwise) 

-0.0087 -0.0057 -0.0076 -0.0049 -0.0078 -0.0071 

Alcohol-impaired driver (1 if driver is 

alcohol-impaired; 0 otherwise) 

0.0506 0.0272 0.0427 0.0227 0.0406 0.0339 

Male driver (1 if driver is male; 0 otherwise) 0.0146 0.0077 0.0141 -0.0177 0.0142 0.0075 

Crash characteristics 
      

Ambulance rescue (1 if service presents; 0 

otherwise) 

0.0269 0.0611 0.0129 0.0496 0.0252 0.0623 

Hit and run (1 if crash is hit-and-run; 0 

otherwise) 

0.0559 0.0452 0.0459 0.0406 0.0578 0.0461 

Backing Vehicle (1 if crash occurred when 

driver is backing vehicle; 0 otherwise) 

-0.0201 0.0035 -0.0160 0.0027 -0.0423 -0.0209 

Crossing roadway (1 if crash happened when 

pedestrian is crossing roadway; 0 

otherwise) 

0.0337 0.0280 0.0292 0.0257 - - 
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Variables MNL Model ML Model PPO Model 

  Ka Ab Ka Ab Ka Ab 

Dash/dart out (1 if pedestrian movement 

preceding crash is dashing/darting out; 0 

otherwise) 

0.0324 0.0496 0.0294 0.0420 -0.0066 0.0189 

Midblock (1 if crash happened when 

pedestrian is crossing at mid-block 

location; 0 otherwise) 

0.0652 -0.0102 0.0598 -0.0089 - - 

Multiple-threat (1 if crash is a multiple-threat 

crash; 0 otherwise) 

-0.0165 0.0252 -0.0123 0.0214 - - 

Off roadway (1 if pedestrian move off the 

roadway when vehicle approach; 0 

otherwise) 

-0.0051 -0.0064 -0.0012 -0.0020 -0.0346 -0.0077 

Pedestrian in roadway (1 if pedestrian is in 

the roadway; 0 otherwise) 

0.0511 0.0284 0.0352 0.0283 - - 

Walking along roadway (1 if crash occurred 

when pedestrian is walking along 

roadway; 0 otherwise) 

- - - - -0.0316 -0.0271 

Locality and roadway Characteristics 
      

Urban (1 if crash occurs in urban roadway; 0 

otherwise) 

-0.0233 -0.0087 -0.0331 -0.0065 -0.0299 -0.0064 

Curved roadway (1 if road geometry is 

curved roadway; 0 otherwise) 

0.0211 0.0362 0.0208 0.0324 0.0268 0.0307 

Two-way, divided (1 if the road 

configuration is two-way divided; 0 

otherwise) 

0.0488 0.0272 0.0381 0.0249 0.0216 0.0192 

Two-way, not divided (1 if the road 

configuration is two-way not divided; 0 

otherwise) 

0.0183 0.0185 0.0125 0.0182 0.0063 0.0057 

Commercial (1 if crash occurred in 

commercial area; 0 otherwise) 

0.0029 0.0036 0.0025 0.0040 -0.0050 -0.0046 

Farms, Woods, Pastures (1 if crash occurred 

in areas of farms, woods, or pastures; 0 

otherwise) 

- - - - 0.0087 0.0079 

Institutional (1 if crash occurred in 

Institutional area; 0 otherwise) 

-0.0008 -0.0008 -0.0005 -0.0006 
  

Bottom-road (1 if crash occurred at the 

bottom of the roadway; 0 otherwise) 

0.0237 -0.0264 0.0150 -0.0234 0.0307 0.0259 

Grade-road (1 if crash occurred on grade-

road; 0 otherwise) 

0.0170 0.0096 -0.0129 0.0133 0.0072 0.0064 
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Variables MNL Model ML Model PPO Model 

  Ka Ab Ka Ab Ka Ab 

Interstate (1 if crash occurred on interstate; 0 

otherwise) 

0.0340 -0.0056 0.0339 -0.0053 0.0301 0.0255 

Local street (1 if crash occurred on local 

street; 0 otherwise) 

-0.0619 -0.0205 -0.0514 -0.0187 -0.0369 -0.0344 

NC route (1 if crash occurred on NC route; 0 

otherwise) 

-0.0144 0.0109 -0.0129 0.0102 -0.0103 -0.0094 

Private road, driveway (1 if crash occurred 

on driveway of private road; 0 otherwise) 

-0.0081 0.0719 -0.0063 0.0690 - - 

Public vehicular area (1 if crash occurred on 

public vehicular area; 0 otherwise) 

-0.0614 -0.0365 -0.0428 -0.0610 -0.0546 -0.0503 

State secondary route (1 if crash occurred on 

State secondary route; 0 otherwise) 

-0.0153 0.0027 -0.0136 0.0023 -0.0132 -0.0120 

Time and Environment characteristics 
      

Morning (1 if crash occurred during 

morning; 0 otherwise) 

0.0043 0.0054 0.0030 0.0048 - - 

Dark - lighted roadway (1 if light condition 

is lighted roadway; 0 otherwise) 

0.0507 0.0197 0.0423 0.0179 0.0408 0.0139 

Dark - roadway not lighted (1 if light 

condition is dark - roadway not lighted; 0 

otherwise) 

0.0653 0.0314 0.0521 0.0290 0.0625 0.0283 

Dawn/dusk light (1 if light condition is 

dawn/dusk light; 0 otherwise) 

0.0430 -0.0070 0.0380 -0.0059 - - 

Cloudy (1 if the weather is cloudy; 0 

otherwise) 

0.0004 0.0005 0.0003 0.0004 - - 

Rain (1 if the weather is raining; 0 

otherwise) 

-0.0193 0.0034 -0.0164 0.0028 - - 

Traffic control characteristics and 

workzone 

      

Double yellow line, no passing zone (1 if 

crash occurs within no passing zone with 

double yellow line; 0 otherwise) 

0.0006 0.0006 0.0004 0.0005 - - 

Human control (1 if the type of traffic 

control is human control; 0 otherwise) 

-0.0426 -0.0296 -0.0320 -0.0230 -0.0246 -0.0238 

Traffic sign (1 if the type of traffic control is 

traffic sign; 0 otherwise) 

-0.0202 -0.0325 -0.0169 -0.0262 -0.0201 -0.0192 

Traffic signal (1 if the type of traffic control 

is traffic sign; 0 otherwise) 

-0.0293 -0.0198 -0.0234 -0.0180 -0.0309 -0.0149 

Ka - Fatal Injury             

Ab - Incapacitating Injury 
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Variables MNL Model ML Model PPO Model 

  Ka Ab Ka Ab Ka Ab 

Bc - Non-incapacitating Injury 
      

Cd - Possible Injury 
      

Oe - No Injury 
      

 

Despite the goodness-of-fit and the identified contributing factors, from Table 4.8 

one can see that there are also some similarities and differences in the effects of the 

contributing factors, particularly towards fatality and incapacitating injuries of pedestrians 

in the pedestrian-vehicle crashes according to Tables 4.2, 4.4, and 4.6. For instances, the 

effects of “alcohol-impaired driver” towards fatality in all three models are quite closed to 

each other (marginal effects: 0.0506 in MNL, 0.427 in ML, and 0.406 in PPO), which 

denotes that about 5% of the probability increase for pedestrians being killed in the crashes. 

On the other hand, the factor of “male pedestrian” tends to mitigate the risk of pedestrians 

being killed in the MNL and ML models (marginal effects of -0.0058 and -0.0043, 

respectively), but tends to increase such risk in the PPO model (marginal effect of 0.0040). 

In other words, such differences might result from the ignorance of the unobserved 

heterogeneity in the crash data by the PPO model, when compared to ML model which 

allows further random effects of some factors to capture the unobserved heterogeneity. 

All abovementioned comparisons tend to provide a brief view on the conventional 

DCMs. Chapter 7 will further provide a detailed comparison between all developed models 

in this study, including XGBoost model, with several other more interpretable, widely used 

and accepted measures in the field of multiclass classification problems, which are 

accuracy, precision (i.e., positive predictive value), recall (i.e., sensitivity), and F1 score. 
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4.5. Summary 

In summary, this chapter provides the developments of one basic discrete choice 

model (i.e., MNL model) and two advanced discrete choice models (i.e., ML model and 

PPO model). Detailed estimation results with the corresponding marginal effects are also 

computed. Typical interpretations of the model results are illustrated to examine the effects 

of the identified contributing factors to pedestrian injury severity in the pedestrian-vehicle 

crashes. This tends to provide a general guidance on interpreting the results produced by 

conventional DCMs. Regarding comparisons between discrete choice models, a set of 

criteria have been introduced and the results show that ML outperforms PPO and MNL 

models in short. This is intended to provide a solid reference for future tasks in comparisons 

with developed machine learning approach. 
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CHAPTER 5: DEVELOPMENTS OF MACHINE LEARNING MODEL(S) 

5.1. Introduction 

Chapter 5 provides the developments of the selected advanced machine learning 

method (i.e., XGBoost method) for modeling the pedestrian injury severities in pedestrian-

vehicle crashes based on the literatures presented in Section 2.4 by using the collected data. 

Detailed modeling results in the developed machine learning model and detailed analysis 

of results from the selected model is also presented in this chapter. 

 

5.2. Modeling and Parameter Tuning 

Basically, to model pedestrian injury severities in pedestrian-vehicle crashes is a 

multiclass classification problem in this study with much categorical information (variables) 

and multiple discrete outcomes (injury severities). Thus, the objective in the XGBoost 

model used in this study is “multi:softmax” or “multi:softprob”, which is designed to 

accomplish the multiclass classification problem.  

As mentioned in Section 2.4, parameter optimization (also known as parameter 

tuning) of the XGBoost method is applied by adjusting the algorithm parameters to achieve 

better results in the pedestrian injury severity modeling. By reviewing several literatures 

(Cheng and Ma, 2015; Jun and Cheng, 2017; Zhang and Cheng, 2017), the following 

hyperparameters in the XGBoost model have been selected to be tuned to optimize the 

performance, associated with the searching ranges: 

� Learning rate: a parameter relates to the learning steps at which the model 

learns the patterns of input data. Smaller value of this parameter leads to 
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slower calculation, while larger value results in non-convergence. [0.1, 0.2, 

0.3] 

� Max_depth: it denotes the maximum depth of a generated tree. Higher value 

of this parameter means more complexity of the model but more likely to 

overfit. [6, 10, 14, 18] 

� N_estimators: this parameter presents the number of boosting trees, or the 

number of training iterations on the data. Too few trees result in under 

fitting, while too many trees lead to overfitting. [1, 50, 200, 500] 

� Reg_lambda: this parameter could help to deal with the regularization part 

in the XGBoost model. [0.1, 0.2, 0.3, 0.4]  

� Colsample_bytree: it is the percentage of features that are used per tree. [0.6, 

0.7, 0.8, 0.9] 

Though fully tuning of all hyperparameter works in theory, it might be impossible 

in practices. The selected parameters and their associated searching ranges have been pre-

tested to be narrowed down in which the performance of the model is most sensitive to. In 

addition, by considering both time-efficiency and accuracy of the model performance, the 

randomized search method is utilized in this study with ten sets of random selected 

parameters by the algorithm. 5-fold cross-validation is used in the optimization process for 

a more stable result. Table 5.1 shows the tuning results by randomized search and the best 

set is ranked first in the table.  
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TABLE 5.1: Randomized Search Results for Hyperparameter Tuning in XGBoost Model 

Reg_lambda N_estimators Max_depth Learning_rate Colsample_bytree Mean accuracy Rank 

0.2 200 18 0.1 0.7 0.7444 1 

0.4 200 10 0.3 0.9 0.7336 2 

0.3 500 6 0.3 0.7 0.7210 3 

0.4 500 6 0.3 0.7 0.7208 4 

0.2 500 6 0.2 0.9 0.7126 5 

0.4 50 10 0.2 0.7 0.6994 6 

0.3 200 6 0.1 0.7 0.6393 7 

0.3 1 14 0.3 0.9 0.6077 8 

0.4 1 10 0.3 0.7 0.5004 9 

0.4 1 6 0.2 0.8 0.4760 10 

 

It should be noted that the accuracy is applied here to examine the performance of 

the model, which can be calculated as follows: 

 gllmnUl7 = op:q
r st usrr
uv �r
w�uv�sfx2svyz fp:q
r st �r
w�uv�sfx  (5.2.1) 

Accuracy gives an overall measurement of the model. Despite this straight forward 

measure, there are also other three measures at each outcome level (i.e., injury severity in 

this study) computed to examine the performance of the developed models (they are also 

applied to conventional DCMs and introduced in Chapter 6 with model comparisons), 

which are precisions, recall, and the F1 score and they can be computed as follows: 

 	n�l�{�| � = op:q
r st usrr
uv �r
w�uv�sfx pfw
r �f�prH x
}
r�vH �2svyz fp:q
r st �r
w�uv�sfx pfw
r �f�prH x
}
r�vH �  (5.2.2) 

 ~�lU66� = op:q
r st usrr
uv �r
w�uv�sfx pfw
r �f�prH x
}
r�vH �2svyz fp:q
r st yuvpyz uyx
x �f�prH x
}
r�vH �  (5.3.3) 

 �1� = 2 × �r
u�x�sf�×�
uyzz��r
u�x�sf�0 �
uyzz� (5.2.3) 

After the tuning process, the best selected parameter set is identified as: 

Reg_lambda = 0.2; N_estimators = 200; Max_depth = 18; Learning_rate = 0.1; 

Colsample_bytree = 0.7. In addition, the associated test accuracy is 74.44%. With the best 
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model by utilizing the parameters randomized search, the whole dataset is refitted. The 

overall accuracy of the best model on the whole dataset is 93.23%, which shows a relatively 

high performance. The associated precisions, recalls, and F1 scores are further presented 

in Chapter 6 for comparison with the conventional DCMs.  

 

5.3. Variable Importance and Partial Dependence of Top 15 Contributing Factors 

As stated in Subsection 2.4.3, the total gains of each contributing factor are 

calculated as the variable importance. Figure 5.1 shows the importance of all the 

contributing factors in the final XGBoost model. This provides an intuitive image to the 

important factors impacting the model structure and their contributions to the predicted 

outcomes of the model. 

Additionally, as described in Section 2.4, the importance of a factor does not have 

the direct interpretation on its effect towards pedestrian injury severities and partial 

dependences should be used to examine how factors affect the pedestrian injury severities. 

Figure 5.2 shows the average partial dependence changes of top 15 contributing factors. 

Despite the top 15 factors, the changes of the partial dependences of factors which 

show their impacts on increasing the risk of pedestrian sustaining severer injuries (i.e., “K” 

of fatality and “A” of incapacitating injury) are further computed for more in-depth analysis. 

Nine factors with such effects are identified and their associated average partial 

dependence changes are illustrated in the Figure 5.3. Factors such as alcohol involvements 

for both drivers and pedestrians are in line with results from most of the existing studies 

by applying the conventional DCMs. Similar to the interpretation of marginal effect 
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utilized in the conventional DCMs, the average partial dependence change of a factor has 

the same way to be examined.   
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FIGURE 5.1: Importance of All Contributing Factors 
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FIGURE 5.2: Average Partial Dependence Changes of Top 15 Contributing Factors 
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FIGURE 5.3: Average Partial Dependence Changes of Contributing Factors Increasing 

the Risk of Pedestrians Sustaining Severer Injuries (i.e., Fatality and Incapacitating 

Injury) 
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5.4. Summary 

In summary, this chapter provides the developments of the selected machine 

learning method, which is the XGBoost model. Designed optimization process with 

hyperparameter tuning to the XGBoost model is provided to obtain the best model structure 

in order to achieve a relatively high performance of the proposed XGBoost model. Detailed 

numerical results with the corresponding feature importance and partial dependences of the 

contributing factors are also computed. Typical interpretations of the model results are 

presented to examine the effects of the identified contributing factors to pedestrian injury 

severities in pedestrian-vehicle crashes.  
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CHAPTER 6: MODEL COMPARISONS 

6.1. Introduction 

Chapter 6 provides the comprehensive evolutions and comparison of all proposed 

models. Section 6.2 presents the performance comparison between conventional DCMs 

and the XGBoost model based on several performance measures (i.e., accuracy, precision, 

recall, and F1 score). Section 6.3 concludes this chapter with a summary 

 

6.2. Model Comparisons 

Despite the traditional model statistics used in the conventional DCMs, the 

comparisons with machine learning models could be very different. As introduced in 

Section 5.2, overall model accuracy, model precision, model recall, and model F1 score on 

each predicted outcome with more straightforward and interpretable meaning in showing 

the performance of a proposed model are utilized in this study. 

 

TABLE 6.1: Predicted Results of XGBoost Model with Accuracy, Precisions, Recalls, 

and F1 Scores 

  Fatalit

y 

Incapacitatin

g Injury 

Non-

incapacitatin

g Injury 

Possibl

e 

Injury 

No 

Injury 

Actua

l Total 

Recall F1 

Fatality 1113 3 20 16 2 1154 96.45

% 

96.36

% 

Incapacitatin

g Injury 

7 1196 33 52 4 1292 92.57

% 

92.14

% 

Non-

incapacitating 

Injury 

21 41 6090 375 44 6571 92.68

% 

93.33

% 

Possible 

Injury 

15 61 310 7070 97 7553 93.61

% 

93.52

% 

No Injury 0 3 26 53 828 910 90.99

% 

87.85

% 
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  Fatalit

y 

Incapacitatin

g Injury 

Non-

incapacitatin

g Injury 

Possibl

e 

Injury 

No 

Injury 

Actua

l Total 

Recall F1 

Predicted 

Total 

1156 1304 6479 7566 975 17480 
Accuracy 

Precision 96.28% 91.72% 94.00% 93.44% 84.92

% 

 
93.23% 

 

TABLE 6.2: Predicted Results of MNL Model with Accuracy, Precisions, Recalls, and 

F1 Scores 

  Fatality Incapacitating 

Injury 

Non-

incapacitating 

Injury 

Possible 

Injury 

No 

Injury 

Actual 

Total 

Recall F1 

Fatality 306 1 669 178 0 1154 26.52% 32.83% 

Incapacitating 

Injury 

106 1 846 339 0 1292 0.08% 0.15% 

Non-

incapacitating 

Injury 

196 3 3471 2901 0 6571 52.82% 49.84% 

Possible 

Injury 

85 1 2216 5251 0 7553 69.52% 61.93% 

No Injury 17 0 156 737 0 910 0.00% 0.00% 

Predicted 

Total 

710 6 7358 9406 0 17480 
Accuracy 

Precision 43.10% 16.67% 47.17% 55.83% 0.00% 
 

51.65% 

 

TABLE 6.3: Predicted Results of ML Model with Accuracy, Precisions, Recalls, and F1 

Scores 

  Fatality Incapacitating 

Injury 

Non-

incapacitating 

Injury 

Possible 

Injury 

No 

Injury 

Actual 

Total 

Recall F1 

Fatality 268 4 676 206 0 1154 23.22% 30.77% 

Incapacitating 

Injury 

84 5 838 365 0 1292 0.39% 0.76% 

Non-

incapacitating 

Injury 

149 6 3362 3054 0 6571 51.16% 49.24% 
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  Fatality Incapacitating 

Injury 

Non-

incapacitating 

Injury 

Possible 

Injury 

No 

Injury 

Actual 

Total 

Recall F1 

Possible 

Injury 

71 3 2075 5404 0 7553 71.55% 62.32% 

No Injury 16 0 134 760 0 910 0.00% 0.00% 

Predicted 

Total 

588 18 7085 9789 0 17480 
Accuracy 

Precision 45.58% 27.78% 47.45% 55.20% 0.00% 
 

51.71% 

 

TABLE 6.4: Predicted Results of PPO Model with Accuracy, Precisions, Recalls, and F1 

Scores 

  Fatality Incapacitating 

Injury 

Non-

incapacitating 

Injury 

Possible 

Injury 

No 

Injury 

Actual 

Total 

Recall F1 

Fatality 262 0 747 145 0 1154 22.70% 30.27% 

Incapacitating 

Injury 

84 0 897 311 0 1292 0.00% 0.00% 

Non-

incapacitating 

Injury 

151 0 3522 2898 0 6571 53.60% 49.63% 

Possible 

Injury 

66 0 2299 5188 0 7553 68.69% 61.64% 

No Injury 14 0 158 738 0 910 0.00% 0.00% 

Predicted 

Total 

577 0 7623 9280 0 17480 
Accuracy 

Precision 45.41% 0.00% 46.20% 55.91% 0.00%  51.33% 

 

Tables 6.1-6.4 present the predicted results for all proposed models in this study. It 

is obvious that the XGBoost model outperforms the other three conventional DCMs with 

more than 40% higher in the overall accuracy. It should be noted that the overall accuracy 

denotes total actual cases divided by the total correctly predicted cases and this value being 

about 50% in all three conventional DCMs means that these models fit the data with 

randomly predicted outcomes. Recalls and F1 scores of incapacitating injury and no injury 
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in all three conventional DCMs almost equal to 0.00%, implying that the conventional 

DCMs can hardly identify the corresponding patterns in these two injury levels. Such 

results show extremely bad fitting and predicting capabilities of the conventional DCMs 

with tasks of modeling and analyzing the pedestrian injury severities. From the other hand, 

results of all three measurements (i.e., precisions, recalls, and F1 scores) in XGBoost model 

do provide a much better performance in fitting the pedestrian-vehicle crash data. 

Furthermore, unlike conventional DCMs, since no variables have been excluded in 

the model development, with the best XGBoost model structure (more than 90% accuracy), 

one is able to examine the effects of all existing contributing factors towards each injury 

severity level for pedestrians in the pedestrian-vehicle crashes. More information could be 

extracted from the results to further support policymakers with more accurate and targeted 

safety improvement plans to help pedestrians in the transportation system. 

 

6.3. Summary 

This chapter illustrates detailed comparisons between conventional DCMs and the 

proposed XGBoost model with several interpretable, widely used and accepted measures 

in the field of multiclass classification problems, which are accuracy, precision (i.e., 

positive predictive value), recall (i.e., sensitivity), and F1 score. Results show that the 

XGBoost model outperforms the developed conventional DCMs in all measurements. And 

with more comprehensive results in terms of the coverage on the contributing factors, 

XGBoost model would be able to provide more information in guiding the plans of safety 

improvements to pedestrians in the transportation system. 
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CHAPTER 7: EMERGING HOTSPOTS ANALYSIS AND XGBOOST FOR 

MODELING PEDESTRIAN INJURY 

7.1. Introduction 

Chapter 6 has already proved the superiority of the proposed XGBoost model in 

modeling and analyzing the pedestrian injury severities in pedestrian-vehicle crashes. In 

order to better understand the spatiotemporal distributions of the pedestrian-vehicle crashes, 

this chapter provides a framework to combine the emerging hotspot analysis with XGBoost 

model for more explorations. Section 7.2 briefly introduces the emerging hotspot analysis 

technique and presents the associated results of the used crash data in this study. Then 

Section 7.3 provides the development and numerical results of XGBoost model by using 

the data retrieved from the emerging hotspot analysis. Section 7.4 discusses the 

corresponding model results in a manner similar to what has been presented in Chapter 5. 

Finally, Section 7.5 summarizes the whole chapter. 

 

7.2. Emerging Hotspot Analysis 

This study utilizes the emerging hotspot analysis tool in ArcGIS Pro to examine the 

spatiotemporal distribution patterns of single-pedestrian-single-vehicle crashes across the 

whole State of North Carolina based on aggregated crash data with grid size of 

5000ft×5000ft. Figure 7.1 shows such aggregated crash density spatial distribution with a 

grid size of 5000ft×5000ft. In emerging hotspot analysis, a three-dimensional analysis 

integrating both temporal and spatial clusters could be achieved.  
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FIGURE 7.1: Crash Density Spatial Distribution 

 

The first step is to create a space-time cube from the defined location. As seen in 

Figure 7.2, the tool generates a three-dimensional cube as the 12-year (2007–2018) 

temporal trend of the crash frequency is determined when the location of each grid is of 

fixed size.  

 

 

FIGURE 7.2: Space-Time Cube Used in This Study (Revised from Esri, ArcGIS.com) 
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With the cube generated, the Getis-Ord Gi* statistic (Getis and Ord, 2010) is then 

calculated to categorize those values (i.e., z-scores and p-values) in high or low values 

based on the given bin relative to its neighbor bins within the clustered cubes (Betty et al., 

2020). The equation of Getis-Ord Gi* index can be expressed as: 

 L�∗ = ∑ ��������J ��� ∑ ������J
`�∑ ���Z I(∑ ������J )Z���J �IJ

 (7.2.1) 

 where xj is the attribute value for jth bin, Wij is the spatial weight between bins i 

and j (equals to 1 if jth bin is within the spatiotemporal neighborhood distance of the ith bin; 

equals to 0 otherwise); n is the number of total bins; and L�∗ is a z-score. It should be 

pointed out that both the z-scores and p-values indicate the time-series trends of each cube. 

After obtaining those values, the Mann–Kendall trend test has been utilized to identify the 

spatial and temporal patterns of each grid with the associating evaluation results of the 

trends. 

Figure 7.3 displays the result of the emerging hotspot analysis and a zoom-in of the 

Mecklenburg County areas. Table 7.1 displays the descriptions and statistics for the 

spatiotemporal patterns of the associated single-pedestrian-single-vehicle crashes 

identified by the emerging hotspot analysis technique. 
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FIGURE 7.3: Spatiotemporal Patterns of Single-pedestrian-single Vehicle Crash 

Locations in North Carolina 

 

TABLE 7.1: Descriptions and Statistics for Spatiotemporal Patterns of Single-pedestrian-

single vehicle Crash Locations in North Carolina 

Spatiotemporal 

patterns 

Description Total 

bins 

Total 

crashes 

Ka Ab Bc Cd Oe 

New Hot Spot A location that is identified as a statistically 

significant hot spot only for the final year. 

66 287 12 16 113 131 15 

Intensifying Hot Spot A location that has been identified as a 

statistically significant hot spot for 90% of 

all years, including the final year, with a 

statistically significant increase in the 

intensity of clustering of high counts over 

time. 

301 4728 14

2 

25

3 

175

9 

235

0 

22

4 

Persistent Hot Spot A location that has been identified as a 

statistically significant hot spot for 90% of 

all years with no recognizable tendency 

showing an increase or decrease in the 

intensity of clustering over time. 

95 900 34 55 347 414 50 

Consecutive Hot Spot A location with a single uninterrupted run 

of statistically significant hot spot bins in 

the final year. The location has never been 

a statistically significant hot spot prior to 

the final hot spot run and less than 90% of 

154 854 32 57 353 375 37 
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Spatiotemporal 

patterns 

Description Total 

bins 

Total 

crashes 

Ka Ab Bc Cd Oe 

all bins are statistically significant hot 

spots. 

Diminishing Hot Spot A location that has been identified as a 

statistically significant hot spot for 90% of 

all years, including the final year with a 

statistically significant decrease in the 

intensity of clustering over time. 

5 39 1 6 16 14 2 

Sporadic Hot Spot A location that is an on-again then off-

again hot spot. Less than 90% of the years 

have been statistically significant hot spots 

and none of the years have been statistically 

significant cold spots. 

208 1139 66 80 423 513 57 

No Pattern Detected Does not fall into any of the hot defined 

above 

4490 9533 86

7 

82

5 

356

0 

375

6 

52

5 

Ka - Fatal Injury; Ab - Incapacitating Injury; Bc - Non-incapacitating Injury; Cd - Possible Injury; Oe - No Injury 

 

 

From the descriptions of Table 7.1, locations (or bins) within categories of “New 

Hot Spot”, “Intensifying Hot Spot”, “Persistent Hot Spot”, and “Consecutive Hot Spot” 

are the most targeted hotspots that need to be further focused and explored. Then the cases 

within these targeted hotspot areas have been filtered out and aggregated for modeling and 

analyzing. Table 7.2 shows the descriptive statistics of the explanatory variables used for 

the hotspot analysis. 

 

TABLE 7.2: Descriptive Statistics of Explanatory Variable for Hotspots Dataset 

Variable Total Ka Ab Bc Cd Oe 

Pedestrian–vehicle Crashes 6769 

(100%) 

220 

(3.25%) 

381 

(5.63%) 

2572 

(38.00%) 

3270 

(48.31%) 

326 

(4.82%) 

Pedestrian Characteristics 
      

Pedestrian age: 25 - 44 (1 if pedestrian is 

younger than 45 years old and older 

than 24 years old; 0 otherwise) * 

2076 

(30.67%) 

56 

(0.83%) 

110 

(1.63%) 

758 

(11.20%) 

1053 

(15.56%) 

99 

(1.46%) 

Pedestrian age: ≤ 24 (1 if pedestrian is 

younger than 25 years; 0 otherwise) 

2127 

(31.42%) 

47 

(0.69%) 

117 

(1.73%) 

916 

(13.53%) 

942 

(13.92%) 

105 

(1.55%) 
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Variable Total Ka Ab Bc Cd Oe 

Pedestrian age: 45 - 64 (1 if pedestrian is 

younger than 65 years old and older 

than 44 years old; 0 otherwise) 

2008 

(29.66%) 

95 

(1.40%) 

120 

(1.77%) 

672 

(9.93%) 

1024 

(15.13%) 

97 

(1.43%) 

Pedestrian age: ≥ 65 (1 if pedestrian is 

older than 64 years old; 0 otherwise) 

558 

(8.24%) 

22 

(0.33%) 

34 

(0.50%) 

226 

(3.34%) 

251 

(3.71%) 

25 

(0.37%) 

Alcohol-impaired pedestrian (1 if 

pedestrian is alcohol-impaired; 0 

otherwise) 

751 

(11.09%) 

94 

(1.39%) 

97 

(1.43%) 

353 

(5.21%) 

179 

(2.64%) 

28 

(0.41%) 

Male pedestrian (1 if pedestrian is male; 0 

otherwise) 

3746 

(55.34%) 

155 

(2.29%) 

255 

(3.77%) 

1485 

(21.94%) 

1673 

(24.72%) 

178 

(2.63%) 

Driver Characteristics 
      

Driver age: 25 - 44 (1 if driver is younger 

than 45 years old and older than 24 

years old; 0 otherwise) * 

2632 

(38.88%) 

95 

(1.40%) 

161 

(2.38%) 

991 

(14.64%) 

1267 

(18.72%) 

118 

(1.74%) 

Driver age: ≤ 24 (1 if driver is younger 

than 25 years; 0 otherwise) 

1247 

(18.42%) 

37 

(0.55%) 

81 

(1.20%) 

514 

(7.59%) 

550 

(8.13%) 

65 

(0.96%) 

Driver age: 45 - 64 (1 if driver is younger 

than 65 years old and older than 44 

years old; 0 otherwise) 

2078 

(30.70%) 

69 

(1.02%) 

103 

(1.52%) 

747 

(11.04%) 

1053 

(15.56%) 

106 

(1.57%) 

Driver age: ≥ 65 (1 if driver is older than 

64 years old; 0 otherwise) 

812 

(12.00%) 

19 

(0.28%) 

36 

(0.53%) 

320 

(4.73%) 

400 

(5.91%) 

37 

(0.55%) 

Alcohol-impaired driver (1 if driver is 

alcohol-impaired; 0 otherwise) 

144 

(2.13%) 

22 

(0.33%) 

19 

(0.28%) 

54 

(0.80%) 

44 

(0.65%) 

5 

(0.07%) 

Male driver (1 if driver is male; 0 

otherwise) 

3684 

(54.42%) 

150 

(2.22%) 

224 

(3.31%) 

1392 

(20.56%) 

1750 

(25.85%) 

168 

(2.48%) 

Crash characteristics 
      

Ambulance rescue (1 if service presents; 0 

otherwise) 

5158 

(76.20%) 

187 

(2.76%) 

353 

(5.21%) 

2197 

(32.46%) 

2317 

(34.23%) 

104 

(1.54%) 

Hit and run (1 if crash is hit-and-run; 0 

otherwise)  

145 

(2.14%) 

10 

(0.15%) 

16 

(0.24%) 

40 

(0.59%) 

67 

(0.99%) 

12 

(0.18%) 

Backing Vehicle (1 if crash occurred when 

driver is backing vehicle; 0 otherwise) 

715 

(10.56%) 

4 

(0.06%) 

19 

(0.28%) 

185 

(2.73%) 

455 

(6.72%) 

52 

(0.77%) 

Crossing roadway (1 if crash happened 

when pedestrian is crossing roadway; 0 

otherwise) 

3451 

(50.98%) 

134 

(1.98%) 

209 

(3.09%) 

1326 

(19.59%) 

1634 

(24.14%) 

148 

(2.19%) 

Dash/dart out (1 if pedestrian movement 

preceding crash is dashing/darting out; 

0 otherwise) 

892 

(13.18%) 

33 

(0.49%) 

85 

(1.26%) 

477 

(7.05%) 

274 

(4.05%) 

23 

(0.34%) 
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Variable Total Ka Ab Bc Cd Oe 

Midblock (1 if crash happened when 

pedestrian is crossing at mid-block 

location; 0 otherwise) 

42 

(0.62%) 

0 

(0.00%) 

0 

(0.00%) 

14 

(0.21%) 

26 

(0.38%) 

2 

(0.03%) 

Multiple-threat (1 if crash is a multiple-

threat crash; 0 otherwise) 

174 

(2.57%) 

2 

(0.03%) 

9 

(0.13%) 

89 

(1.31%) 

65 

(0.96%) 

9 

(0.13%) 

Off roadway (1 if pedestrian move off the 

roadway when vehicle approach; 0 

otherwise) 

915 

(13.52%) 

5 

(0.07%) 

25 

(0.37%) 

249 

(3.68%) 

569 

(8.41%) 

67 

(0.99%) 

Pedestrian in roadway (1 if pedestrian is in 

the roadway; 0 otherwise) 

332 

(4.90%) 

31 

(0.46%) 

22 

(0.33%) 

122 

(1.80%) 

141 

(2.08%) 

16 

(0.24%) 

Waiting to cross (1 if crash occurred when 

pedestrian is waiting to cross the 

roadway; 0 otherwise) * 

6 

(0.09%) 

1 

(0.01%) 

1 

(0.01%) 

3 

(0.04%) 

1 

(0.01%) 

0 

(0.00%) 

Walking along roadway (1 if crash 

occurred when pedestrian is walking 

along roadway; 0 otherwise) 

242 

(3.58%) 

10 

(0.15%) 

11 

(0.16%) 

107 

(1.58%) 

105 

(1.55%) 

9 

(0.13%) 

Locality and roadway Characteristics 
      

Mixed (1 if crash occurs in mixed roadway; 

0 otherwise) * 

431 

(6.37%) 

9 

(0.13%) 

24 

(0.35%) 

179 

(2.64%) 

195 

(2.88%) 

24 

(0.35%) 

Rural (1 if crash occurs in rural roadway; 0 

otherwise) 

128 

(1.89%) 

12 

(0.18%) 

3 

(0.04%) 

59 

(0.87%) 

48 

(0.71%) 

6 

(0.09%) 

Urban (1 if crash occurs in urban roadway; 

0 otherwise) 

6210 

(91.74%) 

199 

(2.94%) 

354 

(5.23%) 

2334 

(34.48%) 

3027 

(44.72%) 

296 

(4.37%) 

Curved roadway (1 if road geometry is 

curved roadway; 0 otherwise) 

206 

(3.04%) 

12 

(0.18%) 

28 

(0.41%) 

78 

(1.15%) 

78 

(1.15%) 

10 

(0.15%) 

One-way, not divided (1 if the road 

configuration is one-way not divided; 

0 otherwise) * 

671 

(9.91%) 

7 

(0.10%) 

18 

(0.27%) 

206 

(3.04%) 

395 

(5.84%) 

45 

(0.66%) 

Two-way, divided (1 if the road 

configuration is two-way divided; 0 

otherwise) 

1753 

(25.90%) 

111 

(1.64%) 

153 

(2.26%) 

756 

(11.17%) 

669 

(9.88%) 

64 

(0.95%) 

Two-way, not divided (1 if the road 

configuration is two-way not divided; 

0 otherwise) 

4345 

(64.19%) 

102 

(1.51%) 

210 

(3.10%) 

1610 

(23.78%) 

2206 

(32.59%) 

217 

(3.21%) 

Commercial (1 if crash occurred in 

commercial area; 0 otherwise) 

4339 

(64.10%) 

142 

(2.10%) 

246 

(3.63%) 

1563 

(23.09%) 

2181 

(32.22%) 

207 

(3.06%) 

Farms, Woods, Pastures (1 if crash 

occurred in areas of farms, woods, or 

pastures; 0 otherwise) 

50 

(0.74%) 

11 

(0.16%) 

1 

(0.01%) 

25 

(0.37%) 

10 

(0.15%) 

3 

(0.04%) 
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Variable Total Ka Ab Bc Cd Oe 

Industrial (1 if crash occurred in industrial 

area; 0 otherwise) 

36 

(0.53%) 

0 

(0.00%) 

1 

(0.01%) 

15 

(0.22%) 

18 

(0.27%) 

2 

(0.03%) 

Institutional (1 if crash occurred in 

Institutional area; 0 otherwise) 

334 

(4.93%) 

2 

(0.03%) 

11 

(0.16%) 

134 

(1.98%) 

153 

(2.26%) 

34 

(0.50%) 

Residential (1 if crash occurred in 

Residential area; 0 otherwise) * 

2010 

(29.69%) 

65 

(0.96%) 

122 

(1.80%) 

835 

(12.34%) 

908 

(13.41%) 

80 

(1.18%) 

Bottom-road (1 if crash occurred at the 

bottom of the roadway; 0 otherwise) 

39 

(0.58%) 

5 

(0.07%) 

1 

(0.01%) 

23 

(0.34%) 

10 

(0.15%) 

0 

(0.00%) 

Grade-road (1 if crash occurred on grade-

road; 0 otherwise) 

728 

(10.75%) 

36 

(0.53%) 

67 

(0.99%) 

272 

(4.02%) 

316 

(4.67%) 

37 

(0.55%) 

Hillcrest (1 if crash occurred at the hillcrest 

of the roadway; 0 otherwise) 

272 

(4.02%) 

14 

(0.21%) 

17 

(0.25%) 

104 

(1.54%) 

121 

(1.79%) 

16 

(0.24%) 

Level (1 if crash occurred at level roadway; 

0 otherwise) * 

5730 

(84.65%) 

165 

(2.44%) 

296 

(4.37%) 

2173 

(32.10%) 

2823 

(41.70%) 

273 

(4.03%) 

Interstate (1 if crash occurred on interstate; 

0 otherwise) 

57 

(0.84%) 

17 

(0.25%) 

10 

(0.15%) 

14 

(0.21%) 

16 

(0.24%) 

0 

(0.00%) 

Local street (1 if crash occurred on local 

street; 0 otherwise) 

4918 

(72.65%) 

171 

(2.53%) 

308 

(4.55%) 

2047 

(30.24%) 

2181 

(32.22%) 

211 

(3.12%) 

NC route (1 if crash occurred on NC route; 

0 otherwise) 

77 

(1.14%) 

7 

(0.10%) 

10 

(0.15%) 

37 

(0.55%) 

21 

(0.31%) 

2 

(0.03%) 

Private road, driveway (1 if crash occurred 

on driveway of private road; 0 

otherwise) 

95 

(1.40%) 

3 

(0.04%) 

3 

(0.04%) 

40 

(0.59%) 

47 

(0.69%) 

2 

(0.03%) 

Public vehicular area (1 if crash occurred 

on public vehicular area; 0 otherwise) 

1477 

(21.82%) 

6 

(0.09%) 

39 

(0.58%) 

363 

(5.36%) 

961 

(14.20%) 

108 

(1.60%) 

State secondary route (1 if crash occurred 

on State secondary route; 0 otherwise) 

45 

(0.66%) 

4 

(0.06%) 

5 

(0.07%) 

20 

(0.30%) 

14 

(0.21%) 

2 

(0.03%) 

US route (1 if crash occurred on US route; 

0 otherwise) * 

100 

(1.48%) 

12 

(0.18%) 

6 

(0.09%) 

51 

(0.75%) 

30 

(0.44%) 

1 

(0.01%) 

Time and Environment characteristics 
      

Weekday (1 if crash occurred during 

weekday; 0 otherwise) 

5312 

(78.48%) 

153 

(2.26%) 

276 

(4.08%) 

1997 

(29.50%) 

2632 

(38.88%) 

254 

(3.75%) 

Morning (1 if crash occurred during 

morning; 0 otherwise) 

4880 

(72.09%) 

87 

(1.29%) 

214 

(3.16%) 

1778 

(26.27%) 

2560 

(37.82%) 

241 

(3.56%) 

Dark - lighted roadway (1 if light condition 

is lighted roadway; 0 otherwise) 

1754 

(25.91%) 

104 

(1.54%) 

154 

(2.28%) 

733 

(10.83%) 

692 

(10.22%) 

71 

(1.05%) 

Dark - roadway not lighted (1 if light 

condition is dark - roadway not 

lighted; 0 otherwise) 

442 

(6.53%) 

52 

(0.77%) 

44 

(0.65%) 

188 

(2.78%) 

140 

(2.07%) 

18 

(0.27%) 
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Variable Total Ka Ab Bc Cd Oe 

Dawn/dusk light (1 if light condition is 

dawn/dusk light; 0 otherwise) 

314 

(4.64%) 

11 

(0.16%) 

13 

(0.19%) 

107 

(1.58%) 

169 

(2.50%) 

14 

(0.21%) 

Daylight (1 if light condition is daylight; 0 

otherwise) * 

4259 

(62.92%) 

53 

(0.78%) 

170 

(2.51%) 

1544 

(22.81%) 

2269 

(33.52%) 

223 

(3.29%) 

Clear (1 if the weather is clear; 0 

otherwise) * 

5142 

(75.96%) 

167 

(2.47%) 

292 

(4.31%) 

1985 

(29.32%) 

2451 

(36.21%) 

247 

(3.65%) 

Cloudy (1 if the weather is cloudy; 0 

otherwise) 

967 

(14.29%) 

40 

(0.59%) 

50 

(0.74%) 

344 

(5.08%) 

483 

(7.14%) 

50 

(0.74%) 

Fog, Smog, Smoke (1 if the weather is fog, 

smog, or smoke; 0 otherwise) 

11 

(0.16%) 

0 

(0.00%) 

0 

(0.00%) 

1 

(0.01%) 

9 

(0.13%) 

1 

(0.01%) 

Rain (1 if the weather is raining; 0 

otherwise) 

630 

(9.31%) 

13 

(0.19%) 

38 

(0.56%) 

232 

(3.43%) 

319 

(4.71%) 

28 

(0.41%) 

Snow, Sleet, Hail, Freezing Rain/Drizzle (1 

if the weather is snow, sleet, hail, 

freezing rain, or drizzle; 0 otherwise) 

19 

(0.28%) 

0 

(0.00%) 

1 

(0.01%) 

10 

(0.15%) 

8 

(0.12%) 

0 

(0.00%) 

Traffic control characteristics and 

workzone 

      

Double yellow line, no passing zone (1 if 

crash occurs within no passing zone 

with double yellow line; 0 otherwise) 

72 

(1.06%) 

7 

(0.10%) 

6 

(0.09%) 

36 

(0.53%) 

19 

(0.28%) 

4 

(0.06%) 

Workzone (1 if crash on work-zone related 

road segment; 0 otherwise) 

60 

(0.89%) 

0 

(0.00%) 

1 

(0.01%) 

18 

(0.27%) 

34 

(0.50%) 

7 

(0.10%) 

Human control (1 if the type of traffic 

control is human control; 0 otherwise) 

4225 

(62.42%) 

159 

(2.35%) 

265 

(3.91%) 

1599 

(23.62%) 

1999 

(29.53%) 

203 

(3.00%) 

No control present (1 if there is no control 

present; 0 otherwise) * 

596 

(8.80%) 

10 

(0.15%) 

20 

(0.30%) 

183 

(2.70%) 

346 

(5.11%) 

37 

(0.55%) 

Traffic sign (1 if the type of traffic control 

is traffic sign; 0 otherwise) 

1816 

(26.83%) 

44 

(0.65%) 

89 

(1.31%) 

736 

(10.87%) 

872 

(12.88%) 

75 

(1.11%) 

Traffic signal (1 if the type of traffic 

control is traffic sign; 0 otherwise) 

71 

(1.05%) 

2 

(0.03%) 

4 

(0.06%) 

26 

(0.38%) 

37 

(0.55%) 

2 

(0.03%) 

Ka - Fatal Injury 
      

Ab - Incapacitating Injury 
      

Bc - Non-incapacitating Injury 
      

Cd - Possible Injury 
      

Oe - No Injury 
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7.3. Modeling and Parameter Tuning for Hotspot Data 

The same hyperparameter set, tuning criteria, and procedures as what has been 

presented in Section 5.2 are used in the hotspot dataset. Table 7.3 shows the tuning results 

by randomized search and the best set is ranked first in the table.  

TABLE 7.3: Randomized Search Results for Hyperparameter Tuning in XGBoost Model 

for Hotspot Data 

Reg_lambda N_estimators Max_depth Learning_rate Colsample_bytree Mean accuracy Rank 

0.2 200 18 0.1 0.7 0.7968 1 

0.4 200 10 0.3 0.9 0.7844 2 

0.3 500 6 0.3 0.7 0.7830 3 

0.4 50 10 0.2 0.7 0.7810 4 

0.2 500 6 0.2 0.9 0.7795 5 

0.4 500 6 0.3 0.7 0.7788 6 

0.3 200 6 0.1 0.7 0.7330 7 

0.3 1 14 0.3 0.9 0.6924 8 

0.4 1 10 0.3 0.7 0.5541 9 

0.4 1 6 0.2 0.8 0.4555 10 

 

The associated test accuracy is 79.68%. With the best model by utilizing the 

parameters randomized search, the hotspot dataset is refitted. The overall accuracy of the 

best model on the hotspot dataset is 94.49%, which shows a relatively high performance. 

The associated precisions, recalls, and F1 scores are presented in Table 7.4. 

 

TABLE 7.4: Predicted Results of XGBoost Model for Hotspot Data with Accuracy, 

Precisions, Recalls, and F1 Scores 

  Fatalit

y 

Incapacitatin

g Injury 

Non-

incapacitatin

g Injury 

Possibl

e 

Injury 

No 

Injury 

Actua

l Total 

Recall F1 

Fatality 209 0 6 5 0 220 95.00

% 

96.09

% 
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  Fatalit

y 

Incapacitatin

g Injury 

Non-

incapacitatin

g Injury 

Possibl

e 

Injury 

No 

Injury 

Actua

l Total 

Recall F1 

Incapacitatin

g Injury 

2 346 12 21 0 381 90.81

% 

91.29

% 

Non-

incapacitating 

Injury 

2 12 2426 127 5 2572 94.32

% 

94.32

% 

Possible 

Injury 

2 19 119 3120 10 3270 95.41

% 

95.05

% 

No Injury 0 0 9 22 295 326 90.49

% 

92.77

% 

Predicted 

Total 

215 377 2572 3295 310 6769 
Accuracy 

Precision 97.21% 91.78% 94.32% 94.69% 95.16

% 

 
94.49% 

 

7.4. Variable Importance and Partial Dependence of Top 15 Contributing Factors for 

Hotspot Data 

Same as Section 5.4, the total gains of each contributing factor are calculated as the 

variable importance. Figure 7.4 shows the relative importance of all the contributing factors 

in the final XGBoost model developed for the hotspot data. The partial dependences are 

also further used to examine how factors affect the pedestrian injury severities for the 

hotspot data. Figure 7.5 shows the average partial dependence changes of top 15 

contributing factors. It could be observed that the ranking of factor importance in the 

XGBoost model that uses the hotspot dataset is different from the one in the XGBoost 

model which utilizes the whole dataset. However, most of the contributing factors are 

relatively stable in terms of total gains and their rankings in both models with different 

datasets. 
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FIGURE 7.4: Importance of All Contributing Factors in the Hotspot Data 
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FIGURE 7.5: Average Partial Dependence Changes of Top 15 Contributing Factors in 

the Hotspot Data 
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FIGURE 7.6: Average Partial Dependence Changes of Contributing Factors Increasing 

the Risk of Pedestrians Sustaining Severer Injuries (i.e., Fatality and Incapacitating 

Injury) in the Hotspot Data 

 

Despite the top 15 factors, the changes of the partial dependences of factors which 

show their impacts on increasing the risk of pedestrians sustaining severer injuries (i.e., “K” 

of fatality and “A” of incapacitating injury) are further computed for more in-depth analysis. 

Nine factors with such effects are identified and their associated average partial 
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dependence changes are illustrated in the Figure 7.6. Again, similar to the interpretation of 

the marginal effect utilized in the conventional DCMs, the average partial dependence 

change has the same way to be examined.  

However, some factors that are found to increase the risk of pedestrians sustaining 

severer injuries in the hotspot XGBoost model which appear to have mitigating effects on 

severer injuries for pedestrians in the XGBoost model with the whole crash dataset. The 

factors are “workezon”, “US route”, and “urban area”. On the other hand, factors of “male 

driver”, “elder pedestrian”, and “ambulance: yes” are found to decrease the risk of 

pedestrians being severely injured in the hotspot XGBoost model rather than their 

deteriorative effects in the XGBoost model with the whole dataset. 

 

7.5. Summary 

In summary, this chapter conducts the emerging hotspot analysis of the single-

pedestrian-single-vehicle crashes data. Cases within the hotspot areas have been filtered 

out to be further fitted with a developed XGBoost model. Same optimization process with 

hyperparameter tuning to the XGBoost model is provided to obtain the best model structure 

in order to achieve a relatively high performance of the proposed XGBoost model on the 

hotspot dataset. Detailed numerical results with the corresponding feature importance and 

partial dependences of the contributing factors are also computed. Typical interpretations 

of the model results are presented to examine the effects of the identified contributing 

factors to pedestrian injury severities in the pedestrian-vehicle crashes.  
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CHAPTER 8: SUMMARY AND CONCLUSIONS 

8.1. Introduction 

As one of the most vulnerable entity within the transportation system, a pedestrian 

might face more dangers and sustain severer injuries in the traffic crashes than others. The 

safety of pedestrians is becoming more and more critical with an increasing trend of 

pedestrian fatality when comparing to other fatalities in traffic crashes over the past 

decades (NHTSA, 2017). The relationship between pedestrian injury severities and a 

variety of contributing factors (i.e., pedestrian characteristics, driver characteristics, crash 

characteristics, locality and roadway characteristics, time and environment 

characteristics, and traffic control characteristics and workzone) is highly complex. 

Moreover, it should be noted that in the police-reported crash data, some unobservable 

factors are not reported by law enforcement agencies and cannot be collected from state 

crash records, which may induce unobserved heterogeneity and have impacts on injury 

severities. Neglecting such unobserved heterogeneity might lead to biased estimation of 

parameters and therefore having possibly improper inferences (Mannering and Bhat, 2014; 

Shaheed and Gkritza, 2014). Therefore, applications and developments of proper modeling 

approaches are needed to identify causations in pedestrian-vehicle crashes to better ensure 

the safety of pedestrians. 

On the other hand, with the development of artificial intelligence techniques, a 

variety of novel machine learning methods have been established (Jordan and Mitchell, 

2015). And compared to conventional DCMs, machine learning models (Tang et al., 2018) 

are more flexible with no or few prior assumptions about input variables and have higher 

adaptability to process outliers, missing and noisy data. As one of the highly representative 
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among all those techniques, XGBoost algorithm has been successfully and widely used by 

many winners in many machine learning competitions and various domains with a 

significant popularity. Thus, the XGBoost algorithm has the potential to be deployed in the 

field of crash data and traffic safety related analysis to better promote safety to particularly 

vulnerable entities such as pedestrians within the transportation system. 

Furthermore, the crash data inherent has patterns related to both space and time, 

crashes happened in locations with highly aggregated uptrend patterns should be worth 

exploring to examine the most recently deteriorative factors which contribute to severer 

injuries (i.e., fatalities and incapacitating injuries) of pedestrians in the pedestrian-vehicle 

crashes. With such consideration, emerging hotspot analysis tool developed by the ArcGIS 

could provide solid references to identify the spatiotemporal patterns of the crash related 

data. Hence, the combination of both emerging hotspot analysis and XGBoost model could 

offer an opportunity to extract the most accurate and up-to-date information on 

deteriorative contributing factors affecting the pedestrian injury severities in pedestrian-

vehicle crashes to achieve a better understanding for researchers and policymakers. 

The major goal of this study is to develop a framework for modeling and analyzing 

pedestrian injury severities in single-pedestrian-single-vehicle crashes with providing a 

higher resolution on identifications of contributing factors and their associating effects 

affecting the injury severities of pedestrians, particularly on those most recently 

deteriorative factors. The pedestrian crash data in North Carolina ranging from 2007 to 

2018 is used and several different categories of variables (i.e., pedestrian characteristics, 

driver characteristics, crash characteristics, locality and roadway characteristics, time and 

environment characteristics, and traffic control characteristics and workzone) are 
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considered. Developments of both conventional DCMs and the selected machine learning 

model, i.e., XGBoost, are established. Detailed comparisons among all developed models 

are conducted with a result showing that XGBoost outperforms all other conventional 

DCMs in all selected measurements. In addition, an emerging hotspot analysis is further 

utilized to identify the most targeted hotspots (i.e., “New Hot Spot”, “Intensifying Hot 

Spot”, “Persistent Hot Spot”, and “Consecutive Hot Spot”), followed by a proposed 

XGBoost model that analyzes the most recently deteriorative factors affecting the 

pedestrian injury severities. By completions of all abovementioned tasks, the gaps between 

theory and practice could be bridged.  

The rest of this chapter is presented as: Section 8.2 provides a summary and 

conclusion of the comparisons between conventional DCMs and XGBoost model. Section 

8.3 gives a summary and conclusion of the developments of pedestrian injury severity 

modeling and contributing factors analysis by applying both emerging hotspot analysis and 

the proposed XGBoost method. Section 8.4 presents a brief discussion of the limitations of 

the current framework and approaches and gives future research directions. 

 

8.2. Summary and Conclusions of Comparisons between Conventional DCMs and 

XGBoost Model for Modeling and Analyzing Pedestrian Injury Severities 

In this study, three conventional DCMs (i.e., MNL, PPO, and ML models) and one 

XGBoost model have been developed by using the whole retrieved single-pedestrian-

single-vehicle crash dataset in North Carolina. After developments, several widely used 

measurements denoting goodness-of-fit of model, which are accuracy, precision, recall, 
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and F1 score, are utilized to evaluate and compare the performances of all proposed model 

structures. 

Results show that the proposed XGBoost model outperforms the other three 

conventional DCMs with more than 40% higher in the overall accuracy (i.e., 93.23% vs 

51.65% [MNL], 51.71% [ML], and 51.33% [PPO]). Recalls and F1 scores of incapacitating 

injury and no injury of all three conventional DCMs almost equal to zero, which means 

that the conventional DCMs can rarely correctly identify outcomes for observations with 

these two injury severity patterns. While these three measurements of the proposed 

XGBoost model for these two categories imply a far better performance, according to 

Tables 6.1-6.4.  

Referring to the power for identifying contributing factors, as mentioned in Section 

2.4, unlike conventional statistical and econometric DCMs, there are fewer or no 

requirements on the pre-defined assumptions about the relationships between outcomes of 

injury severity and contributing factors in the XGBoost model so that no variables have 

been excluded in the model development. And with the best XGBoost model structure 

(more than 90% accuracy), one would be able to examine the effects of all existing 

contributing factors towards each injury severity level for pedestrians in the pedestrian-

vehicle crashes, more information could be extracted from the results for further supporting 

policymakers with more accurate and targeted safety improvement plans to help 

pedestrians in the transportation system. 
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8.3. Summary and Conclusions of XGBoost Model on Emerging Hotspot Crash Data 

for Modeling and Analyzing Pedestrian Injury Severities 

By taking advantage of the emerging hotspot analysis, this study further develops 

a XGBoost model based on the identified emerging hotspot crash dataset in which crashes 

happened in locations with highly aggregated uptrend patterns (i.e., “New Hot Spot”, 

“Intensifying Hot Spot”, “Persistent Hot Spot”, and “Consecutive Hot Spot”). The ranking 

of factor importance in the developed hotspot XGBoost model seems to be similar as that 

in the XGBoost model with whole crash dataset. However, some factors that are found to 

increase the risk of pedestrians sustaining severer injuries in the hotspot XGBoost model 

which appear to have mitigating effects on severer injuries for pedestrian in the XGBoost 

model with whole crash dataset. The factors are “workezon”, “US route”, and “urban area”. 

On the other hand, factors of “male driver”, “elder pedestrian”, and “ambulance: yes” are 

found to decrease the risk of pedestrians being severely injured in the hotspot XGBoost 

model instead of their deteriorative effects in the XGBoost model with whole dataset. 

Additionally, different magnitudes of the effects for same factors can also be observed 

according to the calculated partial dependence changes. 

 

8.4. Future Research Directions 

The framework and results for modeling and analyzing pedestrian injury severities 

in pedestrian-vehicle crashes, at particularly most recent hotspots with uptrend of crash 

occurrences in this research could be a solid reference for the identifications of contributing 

factors affecting the pedestrian injury severities to further promote safety to pedestrians 

within the transportation system. Though relatively higher resolutions could be achieved 
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when compared to conventional statistical models, it is helpful to identify the most recently 

deteriorative factors, and limitations still exist in its current form. 

Firstly, other than the variables in the retrieved police-reported crash data, variables 

related to traffic characteristics such as traffic volumes (e.g., pedestrian volumes and 

vehicle volumes) are not considered in this study. By examining the current pedestrian 

crash data, obvious “two-peak” pattern could be observed, which is quite similar to the 

vehicle traffic during weekdays. And this should be further considered, since the pedestrian 

injury severities in pedestrian-vehicle crashes are also highly affected by such traffic 

characteristics.  

Secondly, the distance interval used in the emerging hotspot analysis is fixed as 5000ft 

× 5000ft and the distance of nearest neighbors is set as 20000ft, which is manually set. 

Theory-based methods might be deployed with a solid reference towards the achievement 

of more accurate results. Additionally, possible effects on the detailed built in environment 

factors related to roadway segments within the ranges of hotspots could be included for an 

in-depth analysis in the future. 

Finally, since differences among all patterns identified by the emerging hotspot 

analysis do exist according to the criteria used in the analysis, future research could focus 

on modeling and analyzing segmented dataset based on different spatiotemporal patterns. 
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