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ABSTRACT

SOURAV ROY CHOUDHURY. Deep Natural Language Generation using BERT
for summarization. (Under the direction of DR. SAMIRA SHAIKH)

Summarization is one of the core facets of Natural Language Processing. Text summa-

rization is the task of producing a concise and fluent summary while holding the most

essential or salient part of the content and preserving the original meaning. The main

aim of abstractive summarization is to generate concise version of original text while

keeping intact the meaning. Since manual text summarization is a time expensive

and generally a laborious task, the automatization of the task has gained immense

popularity and therefore constitutes a strong motivation for academic research.

There has been some prime application of text summarization in current day such as

news summarization, opinion summarization and headline generation to name a few.

We will be looking into two main summarization techniques used in current day NLP

tasks; extractive and abstractive. Extractive summarization generates summary by

selecting salient sentences or phrases from the source text, while abstractive methods

paraphrase and restructure sentences to compose the summary.Our main focus here

would be on abstractive summarization as it is more flexible and can generate more

diverse summaries. BERT (Bidirectional Encoder Representation from Transformers)

is primarily a transformer based architecture which has been able to overcome the

limitations of Recurrent Neural Networks (RNN) as long term dependencies. In this

work we use a unique document level encoder-decoder based on BERT which works on

a two stage process. For the first stage we use encoders to encode the input sequence

into context-rich representations, for the decoder we use a transformer based decoder

to generate a output sequence. must have an abstract.
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CHAPTER 1: INTRODUCTION

In this present era of big data, retrieval of relevant information from humongous

amount of text documents has posed out to be a challenging task.The unprecedented

growth and rise of blogs, news articles and other documents has had a major impact

to it’s explosive growth. Automatic text summarization provides an effective solution

to this problem using varied approaches.

The sole aim of summarization is to produce shortened and condensed summaries

of large text documents. Short summaries enable the text to be retrieved, processed

and digested effectively and efficiently.

1.1 Motivation

Text Summarization is considered to be a complex task in modern day Natural

Language Processing. It has to produce a concise version of text while preserving the

meaning and key ideas of the original source. Summarization involves several aspects

of semantic and cognitive processing. The motive behind extractive summarization

to construct summaries is by extracting the most vital or crucial points from orig-

inal text. If one has to summarize legal documents it is advised to use extractive

approach and not abstractive to avoid any interpretation. Abstractive summariza-

tion on the other hand is used for multi-document summarization of news articles

as extraction might give summaries which are overly verbose or biased for certain

sources. Traditional NLP techniques for summarization were heavily dependent on

TF (term frequency), IDF (inverse document frequency) or cosine similarity which

are frequency based approaches which try measure the importance of each sentence

and their relationships with each other rather than utilising the context.
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Abstractive summarization on the other hand is understanding the context of the

text and generating summaries on the basis of the context. There has been much

progress in this since the arrival of modern NLP methods such as neural word em-

bedding, word2vec, glove and with the rise of Deep Learning these modern approaches

have been the state of the art. There has been much success using Deep Learning

approaches such as RNN(Recurrent Neural Networks) and LSTM(Long short term

memory) and then with the use of Transformer based architectures [3] [4] [5].

1.2 Objective

There has been work on neural sequence to sequence framework [6] for generating

abstractive summaries. Neutral networks based on sequence to sequence encoder-

decoder models used attention mechanism to generate robust summaries that had

high ROUGE scores but these models have been most successful in summarizing

short sentences to generate even shorter summaries. Apart from this most of the ap-

proaches use a left context only decoder thus they do not have the entire context when

predicting words. There has been prior work on applying abstractive summarization

model on the CNN/daily mail dataset but most of the results generate unnatural

summaries consisting of repetitive phrases. We found a two stage decoding process

along with the use of BERT (Pretrained language models) to generate significantly

better results.

1.3 Contribution

To address the problem we use a computationally efficient Pre-trained Natural

Language Generation model. Using a Supervised approach for Abstractive Text Sum-

marization using a neural attentive sequence to sequence framework. There are two

parts of this framework, a neural network for the encoder and another neural network

for the decoder. The aim of the model being maximizing the probability of generating

correct target sequences. Precisely the main contributions of the thesis are:
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1. We generate a natural language generation model based on BERT. BERT [7]

has not been an immediate choice for most language generation models since

it is primarily successful in text classification, question answering and Named

Entity Recognition. We make use of the BERT model in the encoder and

decoder process and the model can be trained end to end without any custom

feature extraction.

2. We use a two stage decoder process where the model uses both left-right context

for the decoder and thus has complete context while predicting the word.

3. We conduct experiments on CNN/Daily Mail dataset, where the model is eval-

uated using ROGUE-1, ROGUE-2 and ROGUE-L metrics.

1.4 Real World use of Automatic Text Summarization

In present day I believe automatic summarization finds place in most enterprise

domains. There has been an ever going problem of information overload and auto-

matic summarization can help by condensing large informative texts to smaller pieces

of information. Another major impact sector can be using it for search queries for

search engine optimization, multi document summarization can be a great way of

understanding and analyzing dozens of search results and shared themes to evaluate

the most important points.

Another major domain can financial research, investment banking companies where

large chunks of informative texts are analysed on daily basis to make efficient decision

making. It is always more beneficial to condense the financial reports to just the most

salient points to save up on time.

With the rise of more and more online content like blogs, white-papers, e-books

and etc summarization can lead to efficiently reuse the old content as reference in

newer contents. Tele-health supply chains across the world have already started

using summarization as a means of managing medical cases in a better way sine most
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medical documents have turned digital in recent past.

Academic papers have always used a human constructed summary as the introduc-

tion and abstract. It is however overwhelming to read through all the papers during

researching and literature survey, models that are able to compress the academic pa-

pers will be of major help. The same issue persists in technology where skimming

through large chunks of documentation leads to major time kill to debug or under-

stand the larger picture, summarised text can help in this regards and give users a

well rounded understanding of the context.



CHAPTER 2: BACKGROUND

2.1 Deep Learning

Deep learning is a method of machine learning, which teaches algorithms how to do

what naturally comes to humans. They can be very roughly and broadly be segregated

into supervised,semi supervised and unsupervised learning based on annotated data.In

the process of a fundamental education, a computer model discovers how to recognize

pictures, text or sound explicitly. Deep learning models may attain cutting-edge

precision and sometimes surpass human performance. Models are equipped by a large

array of marked and multi-layered information and neural network architectures. The

word "Deep" in Deep Learning comes from the use of multiple neural network layers

in the network architecture. Deep Learning neural networks are interpreted in terms

of universal approximation theorem or probabilistic inference.

2.2 Neural Network

Neural artificial networks can better be seen as weighted maps. In layman’s terms

a neural network is composed of layers of node and each node is designed to behave

similarly to the neurons in our brain. The first layer of a neural net is called the input

layer, which is followed by the hidden layers and the end layer of the network is called

the output layer. Each node or neurons in the network perform some calculation

which is passed onto the next or previous nodes in the network.
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Figure 2.1: Basic Neural Network Architecture

As seen in the above figure the neurons in the network are capable of having

connections to multiple preceding neurons, the weight of the synapse is the multiplying

factor which imparts importance of that specific neuron in the model. Adjusting

weights is one of primary ways in which neural networks are trained. On receiving

the input to a neuron, it adds up each signal multiplied by it’s corresponding weight to

pass them through a mathematical function called activation function. It is through

the activation function that the output value of the neuron is determined, which is

then carried forward to the next layer and so on. It is through the activation functions

that the neurons in the network talk or communicate to one another.

The process through which neurons determine which input values to be taken

forward is called training. All neural nets are trained using something called as the

cost function, which calculates the error in the network prediction as compared to it’s

true value.

• Input Layer: The Initial layers include the synthetic neurons that transmit
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feedback from the outside environment (called units). This is where the real

network training takes place, for otherwise it will be recalled.

• Output Layer: The output layers include units that react to the data fed into

the process and also to know whether or not a function has been completed.

• Hidden Layer: The hidden layers between input layers and output layers are

described. The only task of a secret layer is to transform the data into something

useful that can be used by the output layer / unit.



CHAPTER 3: LANGUAGE MODELS

3.1 Why Language Models ?

Language is the most powerful medium of communication. In an archaic sense of

the model language models learn to predict the probability of a sequence of words.

In a machine translation example a bunch of words are taken from a source language

and then these words are converted into a target language. There can be multiple

potential translations that a system can give and one would like to compute the

probability of each one of these translations to understand which one is the most

accurate.

In the above example we know that the probability of the first sentence being a

correct translation is much higher than that of the second one and it is this ability to

model the laws and directives of a language as a measure of probability allows NLP

to automate a series of tasks such as text summarization, part-of speech tagging,

information retrieval, machine translation etc.

3.2 Statistical Language Models

Statistical Language Models is the development of probabilistic models that are

able to predict the next word in the sequence given the words that precede it. It is

simple a probability distribution P(s) over all possible sentences. N-gram models are

the most widely used Statistical Language models today. The goal is to compute the
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probability of an upcoming word i.e

P (Wn|W1,W2,W3...Wn−1)

The chain rule is applied to compute the joint probability of a sentence but since

there are too many possible outcomes so we will never see enough data to estimate

these. Thus the hypothesis is simplified using Markov Assumption so now we can

approximate each component in the product as

P (Wn|W1,W2,W3...Wn−1) = P (Wn|Wn−i....Wn−1)

In an n-gram model the probability of P (w1, ..., wn) of observing the sentence

w1, .....wn is approximated as

P (w1, ..., wn) =
n∏

i−1
P (wi|w1, ..., wi−1) ≈

n∏
i−1

P (wi|wi−(n−1), ..., wi−1) (3.1)

It is assumed that the probability of observing the ith word wi in the context history

of preceding i-1 words and it can be approximated by the probability of observing it

in context history of preceding n-1 words.

n∏
i−1

P (wi|wi−(n−1), ..., wi−1) =
count(wi−(n−1), ..., wi−1, wi)

count(wi−(n−1), ..., wi−1)
(3.2)

The terms unigram, bigram and trigram language models are used to denote n-gram

modesl of n=1 or n=2 or n=3 respectively.

3.3 Neural Language Models

In recent times the use of Neural Networks in developing language models has

been the most preferred approach. In the context of learning algorithms the curse

of dimensionality is the need of huge training data to map or learn highly complex
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functions.In language models the problem arises from the huge number of possible

sequences of words, for example a sequence of 5 words taken from a vocabulary of

10000 words gives rise to 540 possible outcome of sequences. As the number of in-

put variables increases the number of required examples grows exponentially. Neural

Networks mitigate the effect of curse of dimensionality by thir ability to learn dis-

tributed representations. The core idea is to learn to link each word in the dictionary

with a continuous valued vector representation. Words are now learned feature vector

representations.

It can be visualized as each word pointing to a position in feature space and each

dimension of the space representing a semantic or grammatical characteristic of the

given word. The aim is to cluster functionally similar meaning words closer at least

along some dimension or more. The task of the network is to map the sequence of

feature vectors to a prediction of interest. The advantage of this distributed represen-

tation is that it helps the language model to generalize well to sequences that are not

in the training set but are similar in terms of their feature vectors. As many different

combinations of feature values are possible so a huge number of possible meanings

can be represented compactly. If is infact quite similar to how a human chooses fea-

tures of word i.e he might pick grammatical features like number(singular/plural),

person(1st, 2nd, 3rd) and semantic features such as visible or invisible or animate or

inanimate or features like shape, size and material. One of the task of the learning

algorithm in neural network is to locate these features in feature space correctly and

accurately.

Back in early days of Deep Learning Recurrent Neural Networks (RNN) were suc-

cessful as powerful sequence models. Later come on other variations such as LSTM

usually called Long Short Term Memory networks which were nothing but a special

class of RNN capable of learning long term dependencies. LSTM’s were followed by

GRU commonly called Gated Recurrent Units which had to gates , a reset gate and
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a update gate. In present day Language models the most successful architecture is

however Transformers which is something we will delve in detail.



CHAPTER 4: RECURRENT NEURAL NETWORK

RNNs [8] are a popular model that have shown much promise in many NLP tasks.

The main idea behind RNNs is use sequential information for prediction. The as-

sumption in traditional neural networks are that the inputs and the outputs are

independent of each other. It might be beneficial in some cases but in most others it

is not the best idea to go forward it. Let’s say you are predicting the next work in a

sentence it is essential to know the preceding words. RNNs recurrently perform the

same task for every element of a sequence, where the current output is dependent on

previous input and previous computations. One intuition is to think about RNNs as

having a memory which captures information about the previous calculations.

Figure 4.1: A recurrent neural network and the unfolding in time of the computation
involved in its forward computation.

The above diagram is of a RNN which has been unfolded into a full network. By

unfolding we write out the network for a complete sequence. To simplify this, let us

assume we want to predict a sentence with sequence of 7 words, the network then

would be unfolded into a 7 layer neural networks where each layer outputs one word.
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To explain the diagram:

1. xt is the input at time step t i.e. the first input is the first word. (x0) is the one

hot vector representation corresponding to the first word of the sentence and so

on.

2. st is the hidden state at time step t.

3. st is the memory of the network which is calculated using previous hidden state

and input of the current step.

st = f(Uxt +Wst−1) (4.1)

The function f here is non-linearity such as tanh or ReLU.

4. ot is the output at step t. Let’s say we are predicting the next word in a sentence,

so it will be a vector of probabilities across the vocabulary ot = softmax(V st).

5. The output at step ot is calculated solely based on the memory at time t.

6. RNNs share the same set of parameters at each time step (U,W, V ) as diagram.

So as mentioned RNNs perform the same specific task at every time step with

just change in the inputs resulting in reduced number of learn able parameters.

7. RNNs might not have output at every time step, i.e incase of classification or

sentiment analysis we need the final sentiment and not the sentiment of each

input word.

8. Training a Recurrent Neural Network or RNN is similar to other Neural Net-

works.

4.1 Training RNN - Forwardpropagation

The input x to the model will be a sequnce of words as shown in Fig 4.1. Each

input we feed into the RNN is a single word. A network does not identify words as
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words, but as numbers so we need to put a word at index 20 as a one word vector

which is of the size of vocabulary i.e the word at index 20 would be a vector which is

filled with 0’s at every position and 1 at just position 20. Thus x is represented as a

matrix which is a combination of all the vectors ranging from x0 to xt+1 (each row of

the matrix is a word represented as vector). The output of the neural network is of a

similar format where ot is a vector of the vocabulary size elements and each element

represents the probability measure of that word being the next word in sentence.

To work with examples, let’s consider the vocabulary size to be C = 5000 and the

size of the hidden layer to be H = 200. We can go forward with the intuition that

the hidden layer is the memory of the network, a bigger memory is more efficient in

learning complex patterns but it results in higher computational cost.

st ∈ R200 (4.2)

xt ∈ R5000 (4.3)

Ot ∈ R5000 (4.4)

U ∈ R200×5000 (4.5)

V ∈ R5000×200 (4.6)

W ∈ R200×200 (4.7)

We want to learn the parameters U,V and W from the data. The total number of

parameters we meed to learn are 2HC +H2. Here since C = 5000 and H = 200 so

we need to learn a total of 20,40,000 parameters. The first task is to initialize the

parameters, in short weight initialization comprises setting up the weights vector for

all the neurons for the first time just before the neural network training process starts.

Initializing the parameters U,W,V is tricky; initializing every weight vector to zero is
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one approach but is not preferred because that results in symmetric calculations in all

layers and the neurons start off being dead. So when the weight vector becomes 0 the

output becomes 0 as well. The input vector x no longer plays a role in computing the

output of the neuron. Another popular approach is initializing the weights randomly

where one can use either standard or normal distribution. As the numbers are more

than zero this time so the neurons would not be dead, the performance for the initial

epochs might be low as the random values do not correspond to the actual distribution

of the underlying data. It has been seen that initialization depends on the activation

function that is being used in the network. Let’s say tanh is the activation used so

one recommended approach is to initialize the weights randomly in the interval of

[−1√
n
, 1√

n
] where n is the number of connecting from the previous layer.

The forward propagation here is just predicting word probabilities defined by the

equations stated above. We return both the calculated output and the hidden states.

Each ot is a vector of probabilities representing the words in our vocabulary. So for

each word in sentence, the model makes 5000 predictions representing the probabilities

of the next word. The goal of a neural network is to minimize the loss function L,

here our goal is to find parameters U,V and W that minimize the loss function of our

training data. A very common choice is cross-entropy loss while a few others being

Mean Squared Error Loss, Huber Loss, KL Divergence Loss to name a few. For crosss

entrophy if we have N training examples or words in our data set and C classes i. the

size of the vocabulary the loss wrt to o is given by:

L(y, o) = − 1

N

∑
n∈N

yn log on (4.8)

It is simply doing a sum over the training examples and is adding to the loss based

on how off the predictions are from the ground truth. The further away y and o are

from each other the greater is the loss. We know we have C words in our vocabulary
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so each word should be predicted with a probability of 1/C which makes the loss as

L(y, o) = − 1
N
N log 1

C
= logC. Minimizing the loss by optimizing U,V and W is done

through Stochastic Gradient Descent or SGD, the idea behind SGD is however quite

simple and intuitive. During each epoch we iterate over all the training examples

and during iteration it pushes the parameters to a direction that reduces the error.

These directions are given by gradients on the loss: ∂L
∂U

, ∂L
∂V

, ∂L
∂W

. Gradient descent uses

something called as learning rate which can be defined as how big of a step we want

to make in each iteration towards the correct parameter. Now the questions arises as

to how one can calculate the gradients are calculated, in traditional neural networks

it is done through back propagation. But for RNNs Back propagation through time

is used.

4.2 Backpropagation Through Time (BPTT)

The goal of the network is to calculate the gradient of the error with respect to

U,V,W and learn efficient parameters using SGD. So just as we add the errors we

also add the gradients at each step for all training examples ( ∂E
∂W

=
∑
t

∂Et

∂W
). This is

calculated using the chain rule of calculas (We have used E1 as an example to show

the calculations instead of E):

∂E1

∂V
=
∂E1

∂ŷ1

∂ŷ1
∂V

=
∂E1

∂ŷ1

∂ŷ1
∂z1

∂z1
∂V

= (ŷ1 − y1)⊗ s1 (4.9)

So ∂E1

∂V
depends on the values of the current time step ŷ1, y, s3. For ∂E1

∂W
the equation

stands as:
∂E1

∂W
=
∂E1

∂ŷ1

∂ŷ1
∂s1

∂s1
∂W

(4.10)

S1 = tanh(Uxt+Ws0) so we can see that s1 depends on s0 and all the previous steps.

We need to to take the derivative of W but we cannot treat s0 as a constant, so the
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chain rules is applied again and the equation stands as:

∂E1

∂W
=

1∑
k=0

∂E1

∂ŷ1

∂ŷ1
∂s1

∂s1
∂sk

∂sk
∂W

(4.11)

We sum up the contributions of each step to the gradient so we need to backpropagate

[9] from t = n to t = 0

Figure 4.2: BPTT by summing up the gradients at each time step

Te key difference is that we sum up the gradients for W at each time step. This is

one major reason why RNNs are hard to train.



CHAPTER 5: LSTM

Recurrent neural networks suffer from short term memory, so if a sequence is long

they suffer carrying information from earlier steps to later ones. LSTM’s and GRU’s

solved the short term memory problem. The core of a LSTM unit is the cell which is

a bot of memory so that it can remember the past. Lets take an example:

The dog which already ate......... was full.

The dogs which already ate......... were full.

Here the dots represent the presence of another sentence in between. In the first

sentence the cat is signular so LSTM uses ’was’ while in the second sentence as dogs

were used so it signified a plural quantity and ’were’ was used. This shows the use of

memory in language models.

LSTM units are made up of three gates; Input Gate, Forget gate and the Output

Gate.The gates decide which information is relevant to and has to passed further or

can be forgotten during training. The gates use sigmoid activation functions which

are quite similar to tanh hyperbolic activation. They squish the values between 0

and 1. 0 blocks everything while 1 makes everything pass forward. These gates also

help in tackling the problem of vanishing or exploding gradients through a gating

mechanism. In a forget gate the gate decides what information is to be thrown away

or kept, so a sigmoid activation is used where an output closer to 0 means to forget

and an output closer to 1 means it has to be kept.

ft = σ(wf [ht−1, xt] + bf ) (5.1)

Here ft represents the forget gate, σ is the sigmoid function, wf is the weight of forget
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gate, ht−1 is the output of previous lstm block, xt is the input at current step and bf

is the bias for the forget gate.

The cell state is updated with the help of input gate. The previous hidden state

and the current input is passed into a sigmoid function resulting the output values

between 0 and 1. The same operation is passed through a tanh function to regulate

the network. The two outputs are then multiplied.

it = σ(wi[ht−1, xt] + bi) (5.2)

Here it represents the input gate, σ is the sigmoid function, wi is the weight of input

gate, ht−1 is the output of previous lstm block, xt is the input at current step and bi

is the bias for the input gate.

The cell state gets point-wise multiplied by the forget vector, if the values are

multiplied by 0 then they are dropped. The the output of input gate is added point-

wise with the result. This gives the new cell state.

c̃t = tanh(wc[ht−1, xt] + bc) (5.3)

Here c̃t represents candidate for cell state at timestamp (t)

ct = ft ∗ ct−1 + it ∗ c̃t (5.4)

Where ct is the cell state memory at time stamp t

The last gate is output gate which decides the next hidden state. The new cell state

and the new hidden state are carried over.

ot = σ(wo[ht−1, xt] + bo) (5.5)
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Here ot represents the output gate, σ is the sigmoid function, wo is the weight of

output gate, ht−1 is the output of previous lstm block, xt is the input at current step

and bo is the bias for the output gate.

Figure 5.1: LSTM Block



CHAPTER 6: GATED RECURRENT UNIT (GRU)

The idea of GRU originated from LSTMs primarily and thus they are also a newer

variation in the family of recurrent neural networks. GRUs got rid of three gates and

used two gates; reset gate r and an update gate z. GRUs are abit faster than LSTMs

as they have lesser tensor operations as compared to LSTMs. Also GRUs donot

have an internal memory ct and unlike LSTMs a second nonlinerity is not applied in

GRUs. The update gate is quite similar to the forget gate and input gate of LSTM,

it primarily decides which information to keep or which to be dropped.

z = σ(xtU
z + st−1W

z) (6.1)

r = σ(xtU
r + st−1W

r) (6.2)

h = tanh(xtU
h + (st−1 ◦ r)W h) (6.3)

st = (1− z) ◦ h+ z ◦ st−1 (6.4)

Here xt is the input vector, ht is the output vector, W is the weight of the respective

gates and b are the biases for the respective gates.

Figure 6.1: Gated Recurrent Units with Reset and Update Gate



CHAPTER 7: SEQUENCE TO SEQUENCE MODELS

RNNs can be used to predict the future elements of a sequence given prior elements.

However in the context of translation or generation models (summarization) two

sequences are required, one as a input sequence and one as an output sequence.

Seq2seq models [10] are built on top of language models in a two step process. The

encoder which converts an input sequence to a fixed representation. The decoder is

trained both on the output sequence and the fixed representation generated by the

encoder network. The ability of the decoder to learn from the output sequence and

the fixed representation from the encoder helps in making word predictions. Let us

consider an example where our language model sees the word "Jordan", it is not

exactly sure whether the next word should be about the city or the athlete but since

we also pass an encoder context the decoder can utilize the context to understand

whether it is speaking about the city or the person.

Figure 7.1: Sequence to Sequence Model - the encoder outputs a sequence of states.
The decoder is a language model with an additional parameter for the last state of
the encoder. [1]



CHAPTER 8: TRANSFORMER

Sequence to Sequence models have been successful and with the use of attention

the results have been even better but the issue with RNNs lies in their inability of

being able to be parallelized. Transformer has been able to handle the problem of

long term dependencies while parallelizing the task [11]. A very high level overview of

the model can be seen in the below figure: The encoding component shown here is a

Figure 8.1: Basic Transformer Architecture used for Machine Translation [2]

stack of encoders and the decoding component is another stack with the same number

of decoding components. The way the attention mechanism is applied or customized

is what makes makes the Transformer architecture so successful and novel.

8.1 Structure of Transformer?

All the encoders are identical in structure and each one of them can be primarily

divided into two parts a self attention layer and a feed forward neural network. The
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encoders input first flows through the self attention layer where the encoder looks

at other words in the input sequence as it encodes a specific word. The outputs of

the self attention layer are fed into a feed forward neural network. The decoder has

three layers; the first one being self attention, the second layer is the encoder-decoder

attention layer and the final layer is a feed forward neural network.

Figure 8.2: Overview of complete Transformer

Just like any other language processing task the first step is converting the input

words as vectors using word embedding. The bottom most encoder handles the word

embeddings, the vectors are of size 512. In all the encoders above the bottom most

one get their input which is basically the output of the encoder just below them.

The general norm is to set the size of the list as the length of the longest sentence in

training data set. Words in each position runs through it’s own path in encoder i.e

that means the position of each word is fixed.

8.2 Self Attention

Self attention [12] is the mechanism that transformer uses to refine the understand-

ing of other relevant words in respect to the one that is currently taken into account.

It’s a way the decoder can focus on certain specific parts of the encoded represen-
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tations. The first step is constructing the three vectors (Query, Key, Value) from

input vectors from the encoders or word embeddings. These vectors have a size of

64 as compared to the size of encoder’s input/output vectors which have a size of

512. Calculating self attention is basically calculating a score. For example we are

calculating self attention for a word "Test". We need to score each word of the input

sentence w.r.t to this word. The score is a measurement which determines how much

focus we can place to other words of a sentence as we encode a word at a certain

position. The score is calculated by taking a dot product of the query vector with the

key vector of the respective word we are scoring. For example if we are calculating

attention for a word in position one, the first score would be dot product of q1 and

k1, the second score would be a dot product of q1 and k2 and so on.

The next step is to divide all the scores by the square root of the dimension of key

vectors used (here the dimensions are 64 as mentioned above so we need to divide by

8).

Figure 8.3: Multiplying x1 by the WQ weight matrix produces q1, the "query" vector
associated with that word. We end up creating a "query", a "key", and a "value"
projection of each word in the input sentence.
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The scores are divided by the square root of dimensions to give more stable gradients.

The next step is doing a softmax operation to normalize the scores so that they all

add up to one. The softmax decides how much each word is expressed at this position.

So the first word at position one will have the highest softmax score but there might

be other high scores if the first word is referring to something that comes later in the

sentence.

The next step is multiplying the softmax score and the value vector, this is done to

drop out irrelevant words and keep intact important words. This can be alternatively

thought as a weighted value vector. The final step is taking a sum over all weighted

value vectors which gives us the output of the self attention layer for that specific

position (first word here). The results of this calculation are then feed to the feed

forward neural network .

Figure 8.4: Entire Self Attention calculation in Visual Format [2]
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However this entire calculation inside a neural network is done in a matrix multi-

plication operation for faster computation. We calculate the word embeddings and

then fit them into a single matrix X and then we multiply it with the trained weight

matrices (WQ,WK,WV ).

Figure 8.5: Attention score formula

8.3 Multi-head Attention

The approach of self attention or dot product attention was succeeded by Multi-

head attention mechanism. In multi-head attention we have multiple sets of Query/Key/Value

weight matrices. Each of these sets are randomly initialized but after training each set

represents a different representation subspace. On all of these versions of queries, keys

and values the attention function in performed in parallel which leads to n dimensions

of output values [11].

Figure 8.6: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention con-
sists of several attention layers running in parallel.
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This gives us n different Z matrices which needs to be condensed into one matrix.

Multi-head attention allows the model to jointly attend to information from different

representation subspaces.

Figure 8.7: Multihead Attention Score formula

Transformer copies the classical attention mechanism (Bahadanau et al) where the

encoder decoder attention layer queries are from previous decoder layer while the keys

and values are from encoder output.

8.4 Point-wise Feed Forward Neural Network

Each layer in the encoder and decoder is processed by a feed forward neural network.

The point-wise feed-forward neural network is a two layer linear transformation with

ReLU activation which is used identically throughout the model after the attention

blocks. The dimensions of input and output are dmodel = 512 and the inner layers has

dimensions of 2048.

FFN(x) = max(0, xW1 + b1)W2 + b2 (8.1)

8.5 Positional Encoding

As the model is not using any recurrence or convolutions so in order for the model

to account for the order or sequence of words in the input positional encoding is used.

It is the method of assigning a vector to each of the input embeddings, these vectors

follow a specific pattern and helps in identifying the position of each word and the

distance between words in the sequence. The goal of adding these vectors is that the

information of the sequence and the information of the distance between words are
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meaningfully captured. The encoding allows the model a sense of which portion of

input it is currently dealing with . The positional embedding can be learned or fixed

parameters with comparable results. For the transformer architecture the positional

encodings are represented through the following functions:

PE(pos,2i ) = sin(pos/100002i/dmodel) (8.2)

PE(pos,2i+1 ) = cos(pos/100002i/dmodel) (8.3)

8.6 Layer Normalization

Layer Normalization directly calculates the normalization statistics from the summed

inputs to neurons within a layer. It has been observed that for RNNs it is a more

preferred normalization technique instead of batch normalization.

µl =
1

H

H∑
i=1

ali (8.4)

σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2 (8.5)

Here H stands for the number of hidden units in the layer.



CHAPTER 9: BERT

9.1 Why was BERT required ?

One of the main challenges while working in NLP as compared to Computer Vision

or Image Processing is the dearth of enough trainable data. One might think that

with rise of big data there is enormous amount of text data available over the internet

but when we want to split the data into task specific fields we are only left with

corpus which is merely of few thousand or few hundred examples. Unfortunately to

perform well in Deep learning based NLP models one requires millions or billions

of annotated training examples. Modern research has been majorly in the direction

where general purpose language models are trained on unannotated text data over

the internet which is known as pre-training and then these pre-trained models are fine

tuned on task specific datasets which are comparatively smaller. This has resulted in

great accuracy improvements in almost all major Language processing tasks. BERT

has been a brainchild of this very idea and it can easily be fine-tuned on tasks like

sentiment analysis, question-answering and etc.

9.2 Transfer Learning

Transfer learning is a technique where a deep learning model is trained on a large

dataset is used to perform similar tasks on smaller datasets. The model is called a

pre-trained model. What ImageNet did for computer vision was followed much later

by Transformer for language processing tasks. Briefly stating the advantages of using

transformer based architectures are that these models do not process serially one by

one rather the entire sequence as one, so the models can be parallelized unlike RNNs.

Henceforth huge amount of unlabelled data was no longer required for to train models
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from scratch thus this led to use of transfer learning in NLP.

9.3 Fine Tuning

BERT[7] leverages a huge architecture and over 100 million parameters so training

it from scratch would result in overfitting. The general approach in using BERT is

thus using an already pretrained model on a larger dataset and then further training

on a smaller task specific dataset. There a few fine-tuning approaches which are

discussed as below:

• Training entire architecture - It means training the complete pre-trained model

on a smaller dataset and feeding the output to a softmax function.

• Training some layer and freezing the other layers - It means training the model

partially. It is the most used method where the weights of the initial layers are

frozen and the higher layers or the layers towards the end of the network are

retrained.

• Freezing the entire architecture - It is quite similar to the last approach but we

freeze the entire architecture and few new layers at the end are added as per

the task on which the model needs to be trained.

9.4 BERT Input

A pre-trained BERT model uses a BERT Tokenizer which takes raw text strings

and converts them into tokens that the model can utilise. One of the major reasons

of using an inbuilt tokenizer is that BERT has it’s own vocabulary of tokens. One

minor drawback in using pretrained embeddings is that one cannot use custom created

embeddings since all of the knowledge is based on the embeddings it is trained on.

On a different vocabulary the model is not sure of what to do.

Now one might assume that what happens if an out of vocabulary word is present

in your dataset. It is not a problem since BERT has an efficient way of handling such
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words on which it has not been trained before. BERT uses a Wordpiece model which

is a word segmentation algorithm to handle OOV words. It forms a new subword on

the basis of maximum likelihood. The original BERT has a vocabulary of the size of

30000 tokens. Approximately one fourth of the tokens are subwords and not complete

words. Breaking into subwords is shown in the below figure:

Figure 9.1: Sub-word selection

In case one of the subwords are missing then it further breaks them down to indi-

vidual characters. BERT also has tokens for the punctuation’s used further helping

in understanding the text.

9.5 Padding

BERT process each of the words independently so it allows parallelizing the process

and helps in running all the input words through BERT at once.

Figure 9.2: BERT encoder layers
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Since the model is a stack of 12 encoders so each one of the 12 layers takes the

enhanced embeddings from the previous one and further enriches the embeddings.

BERT can be applied to sentences of length up to 512 tokens but in order to aid

parallel processing of multiple texts at once, a single fixed length input is required to

be fed to the model. All the sentences are thus either padded or truncated to a single

fixed input length of 512.

9.6 Embeddings

BERT just like other language processing models requires inputs in the form of nu-

merical vectors, so this means converting the features such as vocabulary and parts

of speech into numerical representations. While there are multiple approaches to do

so like one hot encoding, neural word embeddings, word2vec etc the procedure that

BERT takes into account is more explicit than any other embedding algorithms. It

takes into account the context and produces representations that are dynamically

informed by the surrounding words. Let’s take an example:

"The man had a fractured arm"

"It is important to arm yourself with solid education"

Here unlike other embedding algorithms like word2vec BERT assigns different nu-

merical representations to the same word arm as it has been used differently in both

the sentences.

BERT uses a sum of three types of embeddings [13] in it’s model. Each one of the

embedding types serve a specific purpose and help in better learn able features.

• Token Embeddings - The role of token embeddings is to transform words into

vector representation of fixed dimensions. BERT assigns a 768 dimensional

vector for each word. The first thing that is done is adding a start [CLS] and

end token [SEP] to the sentences. The [CLS] token is added at the beginning

of the sentence and [SEP] (separator) is added at the end of the sentence. The

tokenization is done with Wordpiece tokenization, which enables the model to
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store 30,522 words and the token embeddings layer converts the word into a 768

dimensional vector. To visualize this with an example will be a much better

idea:

"I went fishing today" - 4 WORDS

"[CLS]", "I", "went", "fish", "##ing", "to", "##day", "[SEP]" - 8 Tokens

So this results in 8 input tokens which is transformed to a matrix of (8,768).

• Segment Embeddings - Apart from text classification there are couple of two

sentence tasks that the BERT model is a benchmark. For example: Natural

language inferencing where two sentences are fed into the model and the task

into determine how they are logically connected to each other (entail, contradict

or neutral). In such tasks sentence pairs are concatenated and fed into the

model and with the help of segment embeddings the inputs are differentiated.

The segment embedding layer has just two vector representations, a vector of

index 0 is assigned to all the tokens that belong to input 1 and a vector of index

1 is assigned to all the tokens of input 2. Incase of single sentences the vector

is a o indexed vector. The example below explains it further:

"I went fishing. It was great" - 6 WORDS

"[CLS]","I","went","fish","##ing","[SEP]","It","was","great", "[SEP]"

"0","0","0","0","0","0","1","1","1","1" - SEGMENT EMBEDDINGS

• Position Embedding - As BERT is built on the transformer architecture such

just as transformers it doe not encode the sequential nature of the inputs so po-

sitional embeddings are used to distinguish between same words but in different

positions i.e a word [A] in position 3 will have a different encoding that [A] in

position 10, this leads to the model learning a vector representation based on

it’s position. The model is allowed to process an input length of maximum 512,

so the positional embedding layer is a lookup table of dimensions (512,768).
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The 3 embedding representations are summed element wise to produce a single

tensor of shape (1,n,768) which is further processed to the encoder layer.

Figure 9.3: BERT input representation. The input embeddings are the sum of the
token embeddings, the segmentation embeddings and the position embeddings.

9.7 Pretraining BERT

Unlike other architectures BERT is not trained on traditional left to right or right

to left models, on the other hand it is trained on two unsupervised tasks as described

below:

• Masked Language Model (MLM): Before feeding word sequences in BERT 15%

of the words in sentences are replaced with a mask[MASK] token. It forces

the model to predict original values of the masked words on the basis of the

context provided by other words. The entire process is carried out by adding

a classification layer on top of encoder and multiplying the output vectors by

the embedding matrix so that the vectors resemble the vocabulary. Finally a

softmax operation is done which assigns a probability measure to the vectors

and the vector of the word with highest probability is chosen.

In training 15% of the masked tokens are selected randomly. All of these tokens

are not masked, 80% of these tokens are masked with [MASK] token, 10%

are replaced with a random word and in the rest the original word token is
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kept. Masking all the time does not always produce good meaningful token

representations.

• Next sentence Prediction (NSP) - Another pretraining task on which BERT has

been trained is NSP, where the model receives pairs of sentences as input and

learns to predict whether the second sentence is logically subsequent between

the two sentences. During training 50% of the sentences are taken as paired

sentences while 50% of the remaining sentences are randomly chosen where the

second sentence does not logically follow or relate to the first. In training both

MLM and NSP are used and trained together with the goal of minimizing the

combined loss of both the tasks.

9.8 Architecture

Post tokenization of the words, the BERT model generates a set of enriched embed-

dings for every token. The core idea behind this is Attention which we have skimmed

through in the transformers model previously. Let’s take an example sentence for

clarity:

"The tiger is an endangered species, their scientific name is Panthera Tigris"

Here the pronoun "their" refers to a word in the first half of the sentence but how

does a language model understand that ? This is done using self attention. When

producing enhanced embeddings for the word "their", the self attention mechanism

takes a weighted average of embeddings of other surrounding words. This weight is

the number which quantifies how much of attention should be given to the context

words.

Figure 9.4: Attention with respect to "their" word

Here a darker shade means more weight. The weights are assigned on the word
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"their". All the words are assigned some weight (I have kept the rest of the words

white even though they have weight here). The weights are calculated with a softmax

function.

9.8.1 Calculating Attention Weights

In order to build the intuition of self attention let’s look at how Self-Attention

mechanism assigns weights to words in a sentence. The input word is "their" and

the weight needs to be calculated for the context word "name". The first step is

calculating the dot product between the embeddings of "their" and "name". The

result is then passed to a softmax function to get a distribution and these are the

weights.

9.8.2 Projecting the embeddings into query, key and value vector spaces

The calculation of attention weights is done only after projecting the embeddings

into 3 different vector spaces. Projection is technique where we take the vector rep-

resentation of anything and multiply it with a projection matrix to place the object

to a different vector space.

Figure 9.5: Both the yellow and the green vectors are representations of âx’, but the
two spaces (A and B) expose different aspects of âx’

The 3 vector spaces are key,query and value. The input word "their" is first pro-

jected into query space, next every context word is projected into key space, then a

softmax operation is done on the basis of dot product of query and key. Finally the
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product of the softmax scores and the value vectors done and then the weighted value

vectors are summed up.This gives the self attention score with respect to the word

"their".

9.8.3 Feed Forward Neural Network

After self attention has been applied to the word embeddings, the output is passed

to a 3 layered neural network.

Figure 9.6: Transformer Encoder showing multi-head attention layer and the Feed
Forward Neural Network

The feed-forward neural network is sub-layer two as shown in figure. This layer

is a normal fully connected neural network with weights W1 and biases b1, the non-

linearity used is Gelu and then a second fully connected layer is applied with weights

W2 and biases b2. The Gelu activation used here stands for Gaussian error linear

unit. Activation functions in general allow faster and better convergence of neural

networks. Dropout are used to regularize where some of the activations are multiplied

by 0. Another regularizer called zoneout is used to multiply the input by 1. All of

these are combined by stochastically multiplying the input by 0 or 1 and getting the

output value deterministically.

The neural network is designed in a way so that you feed a 1 ∗ 768 input (word

embedding after attention) and get a 1 ∗ 768 output. The neurons in hidden layer are
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3072, which is set as per convention i.e. 4 times the embedding size.

Figure 9.7: Feed Forward Network with Gelu activation

9.8.4 Multi-headed Attention

Multi-head attention is a mechanism which runs through an attention mechanism

multiple times in parallel. The independent attention calculations are concatenated

and linearly transformed into a required dimensional output. They are multiple in-

stances of the self attention mechanism , where each one is trained to perform different

functions. The output matrix is as follows:

Multihead(Q,K, V ) = concat(head1, ........, headh)W
O (9.1)

where each of the heads mean:

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (9.2)

Each instance of self attention is referred to as attention heads and BERT is designed

with 12 heads. Each one of the heads have their own unique instance of Q, K, V

projection matrices.
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Figure 9.8: Visual Illustration of multi head Attention

As shown in the above figure for a single input word it is run through 12 unique

instances of self attention, so this outputs 12 different enriched embeddings. While

each BERT layer only produces one embedding per input word so the 12 outputs are

needed to be combined into one.

9.8.5 Residual Connections

We know each of the encoders can be broken down into two sub-layers. A residual

connection is used around each sub-layer which is followed by layer normalization.

The figure below will help us in visualizing the residual connections further:

Figure 9.9: Visual Illustration of Residual connections
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The output of the sub-layers can be thought as LayerNorm(x +Sublayer(x)) where

sublayer(x) is the function implemented by the sublayer. This is followed in the

decoder side as well.



CHAPTER 10: METHOD

10.1 Dataset

The experiments are carried out on CNN/Daily Mail dataset which is a collection

of news articles used specifically for summarization tasks. A reason for using this cor-

pus is because it consists of multi-sentence summaries. The dataset [14] is comprised

of an average of 3.75 sentences per summary or approximately 56 tokens on average.

The pre-processed version of the dataset has 287,226 training set samples, 13,368 val-

idation set samples and 11,490 test set samples. We operated on the non-anonymized

version of the dataset as it is preprocessed. We tokenize the dataset using WordPiece

tokenizer, the tokenization decreases the average size of text to something around

650-690 and the average summary length to 50 tokens.

10.2 Model

The main architecture is built on Sequence-to-sequence framework built on top

of BERT, we incorporate a decoder network to the BERT architecture. The input

document is denoted as X = {x1, x2, ......, xm} and the output summary is denoted as

Y = {y1, y2, y3, ......, yL}. Given an input document X a rough version of the summary

is predicted by a transformer decoder. The output of the decoder can be considered

as summary in stage 1 which is then processed through another BERT model and the

summaries are refined in this process.

10.2.1 Encoder

In the encoder size of the network, BERT has been used as an encoder which

helps in converting input document texts to encoded vector representations. Firstly

the sequence which has been feed as input is transformed to embeddings and then
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the encoders [15] construct sentence embeddings using attention to compute context

aware representations of words leveraging both the ordering of words and identity of

other words with respect to the current word.

H = BERT (x1, x2, .......xi) (10.1)

10.2.2 Decoder

The model has a two stage decoding process [16] where in the first stage a N layered

Transformer decoder is used. The decoder learns the conditional probability P (A|H),

as we train the decoder attention mechanism of the model helps the decoder learn

soft alignments within summary and source documents. At this stage the decoder’s

predictions are based on previous outputs and the hidden encoded representations.

The learning objective of the decoder is to minimize the negative likelihood of the

conditional probability.

Ldec1 =
|a|∑
t=1

−logP (at = y∗t |a<t, H) (10.2)

Here y∗t denotes the ground truth word of summary at the t-th position. The stage 2 of

the decoding process incorporates a refine process, which helps the decoder to leverage

BERT’s contextualized and enriched representations. The rough summary output

from the stage 1 decoding is passed to BERT model to generate better context rich

vectors. The output is then passed to the final transformer decoder which predicts the

final summary. The output of BERT which goes inside the final decoder is masked,

at t-th time step the t-th word of summary is masked which is then predicted by

decoder on the basis of other words present in the summary.
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Figure 10.1: The novel BERT architecture with multi stage decoding

The objective function required for learning is shown in below figure where yt is

the t-th summary word and y∗t is for the ground truth summary word.

Ldec2 =
|y|∑
t=1

−logP (yt = y∗t |a 6=t, H) (10.3)

From the perspective of a language model, the stage two of the decoding process

provides a more context rich input sequence. One way to think of it is that the stage

one of the decoding process generates an initial summary while the stage two decoder

fine-tunes the generated summary. The reason why a portion of the sentences are
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removed as they are feed to the final decoder is solely because BERT is pre-trained in

an almost similar task where a certain percentage of the inputs are masked i.e MLM

or masked language modelling. We can think of it as a cloze task, wherein we mask

out a certain percentage of the words and feed the rest of the sequences to the model.

The model then predicts the masked words based on the sequence of context words,

that’s exactly similar to BERT’s pre-training objective. It thus succeeds in generating

more fluid and natural sequences since it has already been trained on that task. Both

the decoder transformers are trained using Teacher Forcing, where the ground truth

is used to help the training process, here the target word is passed to the decoder to

help make better predictions for words at future time steps. Teacher forcing helps in

converging the network faster, during early stages of training the predictions of the

decoder are bad so if teacher forcing is not used then the error-ed model is carried

forward and the errors accumulate over time making the model learn very less.

Another scenario occurs where a certain section of the tokens in input document

are out of vocabulary words, an approach called copy mechanism [17] is followed as

done in the original transformer architecture. In this certain segments in the input

sequence are selectively replicated in the output sequence. This is done using a model

called COPY NET , it can integrate both the normal word generation process in the

decoder along with the copy mechanism which chooses sub sequences in the input

sequence and place them at proper positions in the output sequence.

Let’s say V = {v1, v2, .......v} denotes the target vocab and X denotes the unique

set of words in source sentence x = {x1, x2, ...., x}. The unknown words are denoted

by < UNK > token which is not a part of Vocab V. The extended voab thus is an

union of V ∪X∪ < UNK >.
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Figure 10.2: Caption

The above figure shows the final probability of a given token y from the extended

voacb at the t-th time step. We will now look at it from the perspective of our model.

At time step t attention probability distribution is calculated over source X using a

dot product of last layer of decoder ot and encoder output hj.

ujt = otWchj (10.4)

ajt =
expu

j
t∑N

k=1 expukt
(10.5)

The next step involves calculating gt which makes a soft choice between selecting

from source or generating. gt gives the weighted sum of copy [17] and generation

probability put together to get the final probability.

Pt(w) = (1− gt)P vocab
t (w) + gt

∑
i=w

ait (10.6)

As discussed earlier during training process the two processes are trained using

teacher forcing and the objective functions is:

Lmodel = Ldec1 + Ldec2 (10.7)

The ground truth is feed to each decoder and the objective function is minimized at

training however at test we do not have the ground truth summary. We choose the

argmax of the probability P (y|x). This leads to a situation called Exposure Bias as

due to the discrepancy between objectives in learning/training and inference.
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As we are dealing with a language model for a language generation task here, so it is

the task of the decoding algorithm(decoder) to sample the probability distributions to

generate the most likely sequence of words. Decoding the most likely output sequence

requires searching through all possible output sequences based on likelihood. In order

to resolve this problem in inference beam search, topK and nucleus sampling has been

used. All of these are techniques to sample from language models as explained below.

1. Greedy Search simply selects the word with the highest probability as the next

word. wt = argmaxwP (w|w1:t−1) is the equation for greedy search at each

time step t. One disadvantage of greedy approach is the it often misses high

probability words hiding behind low probability words. The below diagram

shows such a scenario:

Figure 10.3: Visual Illustration of Greedy Search

As seen the word "has" has a higher conditional probability of 0.9 here which

is behind the word "dog" of 0.4. Thus the sequence of "the dog has" is missed

by greedy search.

2. Beam search thus came into the picture due to the inability of greedy decoding
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to provide best suited samples. Instead of greedily choosing the most likely

step, beam search increases all the possible next steps and keeps the "k" most

likely where k is super specified parameter. It control the number of beams

throughout the sequence of probabilities. One way of thinking about it can be

that greedy search is beam search with k=1. Increased beam width results in

better performance as there are multiple candidates which increase the likeli-

hood of better matching at target sequence but it also slows down the decoding

speed. One downside of beam decoding is that it suffers from repetitive genera-

tion. Also high quality human language does not follow the distribution of high

probability next words which also means humans do not always use the same

word even if the context is same.

3. Top k sampling primarily means sorting by probabilities and zero-ing out the

probabilities below a threshold. It improves the quality by omitting a part

of the distribution below threshold which makes it less likely to go off topic.

This provides better accuracy but in some cases there are words which are

good candidates and can be sampled from a broad distribution while in other

situations a narrow distribution is preferred to sample next words as shown in

below figure.
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Figure 10.4: Narrow and broad distribution

4. Top p sampling also known as nucleus sampling. Instead of sampling only from

the most likely k words, Top p chooses from the smallest possible set of words

whose cumulative probability exceeds the probability p. The probability mass

is then redistributed among the next set of words. In this way the size of set of

next words either dynamically increases or decreases on the basis of next word’s

probability distribution. In a broad distribution it might take more samples to

exceed the probability mass value while in a narrow distribution it generally

takes less likely words or candidates.
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Figure 10.5: Top p sampling

In the above example p is set to 0.92 or 92% of the probability mass, so Top p

sampling picks the minimum number of candidates that are required to exceed

the p value. In case of the first example 9 words are needed while in the second

example which is probably froma narrow distribution only 3 words are needed.In

our approach we have used Top-k and Top-p in combination.

10.3 Settings

The entire architecture has been built on BERTBASE, which is the smaller of the

two predominantly used BERT models. It has 12 encoder stacks also to maintain

uniformity we have set the decoder stacks to 12 as well. The attention heads are

fixed at 12. The sub-word selection algorithm used is Word piece embeddings like

BERT. The vocabulary size is 30000. Accumulation steps are kept at 36 for gradient

accumulation. The batch size is set to 2 and Adam optimizer has been used for

training. The model has been trained for 4 epochs on 1 Tesla V100 GPU for around

190 hours or 8 days. The beam sizes used are 2,3,4 and the length penalty has been

set to 1. For regularization we have used dropout [18] of 0.1 and label smoothing=0.1

[19].
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10.4 Evaluation and Results

We have used a very common evaluation metric ROUGE [20] for analysing the

results. ROUGE stands for Recall oriented understudy for gisting evaluation, it is

essentially used for evaluating automatic summarization of texts as well as machine

translation. It compares automatically produced summaries against a set of human

summaries. Recall in context of rouge means how much of the reference summary

the generated summary has been able to overlap which is nothing but

number − of − overlapping − words
total − words− in− reference− summary

(10.8)

But in terms of text summarization a machine generated summary can be extremely

long capturing all words in reference summary but a majority of the words in the

generated summary can be useless. This leads to the use of precision in evaluation

which is determining how much of the system summary is relevant i.e.

number − of − overlapping − words
total − words− in− system− summary

(10.9)

ROUGE-N measures the unigram, bigram and trigram or other n-gram lexical

overlaps.

ROUGE-L measures the longest matching sequence of words using LCS.

The table below gives the scores on our model tested on around 1650 test samples

along with the current 3 SOTA models.

Figure 10.6: Comparison of ROUGE scores between 3 current SOTA models and our
model
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The below table shows the summarized versions as generated by our model. We

can see the model learns from the source and is summarizing the text, to a certain

extent it has been successful in generating meaningful sequences but as the sequence

length increases it loses the fluidity in it’s generated sequences. Also the model can

some problem in linking two sentences or jumping from one context to another and

is quite unnatural in selecting the next sentence. However it effectively captures the

most salient parts of the text.

Since ROUGE solely relies on the lexical overlaps of the terms and phrases between

source and summary therefore in certain cases of abstractive summarization where

the model paraphrases ROUGE scores might not be effective or the best indicator of

evaluation. Though ROUGE is not the best metric we report these scores as they

are the standard metric for evaluation for all summarization tasks. In all the results

displayed below we have a comparatively high Rouge-Avg score but if we evaluate and

analyse the results it’s clear that certain summaries are more natural and coherent

than the others.

Let’s state for example the third summary in Figure 10.7 we see it has a com-

paratively lesser Rouge score than the second example. However if one analyses the

third example we can see firstly it captures the meaning of the reference summary

somewhat entirely. It paraphrases the first sentence into two sentences. One can

notice that the generated summary jumps abruptly from one context to another, the

sentence is syntactically correct in parts but is not true or factually correct. There

has been some work in fact checking the generated summaries against reference using

Reinforcement learning which is a scope for future work.

Upon looking at the first example in Figure 10.7 we see a summary which in my

opinion is most natural and semantically coherent even though it does not have the

highest Rouge measure. It is much shorter than the reference output and is quite good

in condensing the source text. The transitions from one sentence to another are more
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natural than the rest of the examples, also one major point that can be noticed in all

the generated summaries are that they generated words which are legitimate words

and no non-words are generated i.e logical generation of words. Another take away

from the experiment is that we do not come across repetitive words which has been

an age old issue with generative language models. Another example of a fairly good

generated summary would be the last example where the first half of the summary is

coherent and natural but the text becomes illogical and unstructured as the sequence

gets longer. It converts the word "selfie" with "self ied" as selfie is not a part of the

BERT. vocabulary and it generates the nearest natural word by breaking into word

piece embedding.

I believe there is scope for improvement in the model as as the sequences increase

in length we can notice the summaries tend to become less coherent and less natural.

Also another drawback is the abruption and disambiguation in text as the model

jumps from one sentence to another or from one context to the next one.
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Figure 10.7: Generated Summaries with Rouge scores



CHAPTER 11: CONCLUSION

The novelty of the architecture lies in the implementation of using BERT in a se-

quence to sequence framework [6]. We have used Transformer decoder as the decoder

along with BERT as encoder. We implement a two stage decoding process using

a learning objective which is a summation of the objective of decoder phase 1 and

decoder phase 2. The model has been trained end to end without another feature

engineering. Also the use of search and sampling in inference to refine the results

has been a new approach in our model. ROGUE scores show that the model learns

from the summaries and ROUGE-1 score on our test dataset is around 0.25 which

is around 25, the current state of the art for summarization is around 44. I believe

we can further much better if we trained the model for longer (the current model is

trained on just 4 epochs).

I believe even though we used the architecture on a text summarization task but

it can be implemented for other language generation tasks such as neural machine

translation, question-answering to name a few.

I believe we could further improve the model by using a Stochastic beam search

[21], which is a stochastic variant of beam search which draws samples without re-

placement from a sequence model. There has been success using Stochastic beams

in sequence models like translation and image captioning. Another approach could

be using adversarial learning along with transformers, where in problem where we

jointly train two systems, a generative model to produce response sequences,and a

discriminator analogous to the human evaluator in the Turing test to distinguish be-

tween the human-generated dialogues and the machine-generated ones. The idea is

similar to GAN’s but is not exactly the same [22] [23].
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