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ABSTRACT 

 

 

 

ASHKAN RADNIA. SEQUENCE PREDICTION APPLIED TO BIM LOG DATA,  

AN APPROACH TO DEVELOP A COMMAND RECOMMENDER SYSTEM 

FOR BIM SOFTWARE APPLICATION 

(Under the direction of PROF. JEFFERSON ELLINGER) 

   

Building Information Modeling has become an industry standard for designing, 

documenting, and collaborating within the architecture, engineering, and construction industry. 

Architects spend most of their time developing projects from the feasibility study phase through 

post occupancy operation using BIM software such as Autodesk Revit. There are many tools 

created to automate tedious tasks or speed up the design process, however, most tasks require 

manual work, therefore taking longer to complete and increasing the probability of design errors. 

With each new release software developers are adding more features and tools to increase 

application capabilities; however, these are often underutilized since the proper training and 

resources for adopting the tools are not always available. Due to this limitation, designers will 

tend to stick to the tools they are already comfortable that are not necessarily best fit for all tasks.  

This thesis investigates using Autodesk Revit Journals as a non-intrusive method to 

extract sequential data about user interactions with the software and use collected data to conduct 

analysis on design and work patterns of users. Additionally, collected data is used to develop a 

neural network that takes sequence of user commands and trains to predict the next command. 

The developed neural network can serve as a recommender system suggesting the most suitable 

commands for the user, enabling improved and efficient workflows and enforcement of best 

modeling practices.  
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INTRODUCTION 

BACKGROUND 
 

The architectural design process has changed drastically in the past decades. As 

technology has advanced, numerous tools and software programs have become an integral part of 

an architect's day-to-day work. These programs increase work efficiency, reduce errors in the 

design process, and have made possible the design and construction of some of the most 

influential architectural designs that were not imaginable prior to the emergence of computers in 

offices. 

 In the past decades, beginning with the early 70's, there has been a gradual transition 

from manual drafting tools such as T-squares and compasses to digital software applications 

such as Computer Aided Drawing. As a digital substitute for manual drafting tools, CAD 

allowed for faster development of designs and only required one operator to produce drawings. 

This transition drastically reduced the cost of errors and sped up the design process. However, 

there were still many limitations because the designer still had to produce single drawings and 

documents for each part of the project. If any changes were to be made, all drawings and 

documents had to be manually updated to reflect that change. 

Decades later, Building Information Modeling emerged to disrupt 2D CAD-based 

workflows. The architecture, Engineering, and Construction industry have widely adopted this 

technology over the past two decades. BIM is believed to be one of the most promising 

advancements in the industry because it can transform and enhance performance by decreasing 

inefficiencies, improving productivity, and increasing collaboration among project stakeholders. 
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[1]. In addition to the capabilities of 3D CAD, the virtual building model connects to a database, 

storing all necessary information about individual components that go into the building's 

construction and operation. This data-rich framework of building design helps architects, 

engineers, and contractors design, document, and collaborate simultaneously. [2] ] It offers 

visualization of design, fast creation of alternatives, automatic examination of model reliability, 

production of reports, and building performance forecasting. [3]. Furthermore, BIM applications 

are not limited to the construction phase; they extend to post-occupancy operations and provide 

helpful information at all building stages. 

 In 2015, 79% of construction projects adopted BIM in the United States [4]. Since the 

release of Autodesk Revit in 2000, it has seen exponential growth in users, and by 2019, it had a 

46% share of the global BIM software market. Employers highly demand Revit skills since 

proficiency in using it will reduce the deficiency and decrease design errors which are among the 

major risk factors causing rework and delay [5]. 

Figure 1: Autodesk Revit User Interface 
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The growing influence of computational design has made automation and generative 

tools ubiquitous among every firm's software suits. An Architect spends a substantial portion of 

their time designing, editing, and fixing errors using Revit. Designers utilize such tools to 

improve their workflows by automating tedious tasks, developing designs with complex 

geometry, or finding solutions that require the consideration of multiple criteria. Design is a 

complex and parallel process; hence, it requires a lot of exploration before arriving at a final 

design decision. Despite the substantial efforts to improve and promote the use of computational 

tools, designers often have a hard time integrating them into their workflow due to the 

shortcomings of these tools to accommodate the complex design process. With manual labor 

being a reality in the design process, extensive training, troubleshooting, user education, and 

continuous control of design and software errors are needed. By integrating tools that assist with 

the manual process into the overall workflow helps to reduce errors and increase efficiency 

without reducing flexibility. 

BIM software applications offer many commands for performing various tasks, and with 

each release, additional features are added. It is arduous for managers to keep users up to date, 

enforce best modeling practices, and maintain a healthy model to prevent errors. If not 

appropriately managed, software errors can significantly reduce the modeling process's speed 

and increase the model size [6]. The challenges mentioned above contribute to making AEC one 

of the industries with the least efficiency and productivity, lagging other industries in terms of 

progress in efficiency [7], [8]. 

 This research seeks to analyze the manual design process's characteristics by non-

intrusively collecting and analyzing data from user interactions across multiple projects derived 

from Revit logs called Journals. A Journal collection provided by an international architecture 
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firm was analyzed and processed to identify and extract relevant and valuable information about 

sequences of user interactions with the software during their design process. The processed data 

was then used to develop a Machine Learning algorithm to suggest commands to the user as they 

work within the software and execute commands. Ultimately, this system will help improve the 

user experience within the complex interface of Revit and increase their modeling efficiency. 

Machine learning (ML) has been growing exponentially in the past years due to 

unprecedented access to data, increased hardware capabilities, and unforeseen developments in 

ML tools that make these advanced and complex techniques more accessible for a wide range of 

users. ML techniques are being applied extensively to solve problems and automate mundane 

tasks across a variety of domains. Contrary to the exponential growth and adoption of ML in 

other industries, the AEC industry has lagged in the uptake of ML solutions for addressing the 

challenges of the industry [9]. BIM platforms can be leveraged to extract valuable data and 

develop ML applications using them to address many of the industry's challenges. 

We explored the use of machine learning approaches to find methods and workflows to 

leverage Revit Journals to improve the working experience for architects. A supervised ML 

model for a sequence prediction was developed and trained on the collected data from Journals 

to predict the next command sequence. This model can serve as a recommender system, helping 

users to have improved workflows and enforce best modeling practices by providing useful 

suggestions. Unsupervised models, such as topic modeling, were also explored to learn more 

about similar commands and usage patterns across multiple users and projects. 
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LITRETURE REVIEW 

In computing, logs are referred to as files that record events that occur in an operating 

system, other software runs, or any information about processes during the execution of a system 

or software. Logs have several characteristics that make them ideal for research on user interface 

design and the interaction between humans and computers. Each time an application is used, 

Logs can be used to collect data on any number of users over time. [10]. 

 Log files can be analyzed to understand user behaviors across different platforms. With 

extensive usage of web applications, a large amount of log data gets collected and stored. The 

collected data is then used to perform a wide range of analyses and studies, such as user behavior 

prediction, product recommendation, optimized hardware distribution, and platform 

enhancements for optimized user experience. [11], [12]. One example of using logs is in E-

commerce platforms, which rely heavily on log data. As these platforms grow in popularity, it is 

vital for them to predict users' purchase and browsing behavior to maximize their sales, manage 

inventory, and increase user engagement. In “A Method of Purchase Prediction Based on User 

Behavior Log” by Li et al., a method using probability statistics was used to predict user's 

purchase preferences based on their click patterns gathered from a well-known international 

mobile e-commerce platform [13]. Log files are also used for generating recommendations based 

on their purchasing behavior and item browsing history and recommend item bundles that are 

more likely to be bought together [14] 

Another example where log data is being used is in Human-computer Interaction (HCI) 

research. In HCI, researchers utilize log files to study the behavioral traits of users. Log files are 

rich data sources because they can collect a large scale of data from people interacting with 

systems in the most natural way. [15] Using log files, HCI researchers can categorize user website 
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revisiting patterns [16], creating an interface that facilitates information re-use from previously 

visited emails, web pages, documents, and appointments. 

Working with log files is challenging since they store a large volume of unstructured data 

that requires a lot of effort to identify valuable information from the raw logs and then extract 

and structure them. Some of the major errors and distortions in the log are missing events, 

dropped data, and misplaced semantics. These issues must be addressed to get realistic and 

valuable information through exploratory data analysis and pre-processing before using the data 

for further research. [15] 

A few studies have been conducted on BIM logs. In one study, operation data from Revit 

logs files, also known as a Journal, was analyzed using "Rapid Miner" software to understand the 

3D building modeling process. The data used was information about general and specific 

commands that the user had executed in developing a framing model for a typical two-story 

building. The study's goal was to identify the most used commands and give suggestions to 

improve them [17]. A similar approach was taken to mine implicit 3D modeling patterns from a 

dataset. Log files of multiple Revit projects from an international firm were collected and parsed 

to extract data about users, project names, commands, etc. A sequence mining algorithm based 

on Generalized Suffix Trees (GST) was used on the extracted data to identify implicit 3D 

modeling patterns and the total execution time of that pattern for different users. A significant 

average time difference for executing identical commands was observed among various users 

showing differences in working styles [18]. In another similar research, Zhang et al. used 

PATRICIA (PAT) tree algorithm to mine and characterize patterns in the design log dataset. 

They studied the frequency of patterns and the time that it takes each user to execute one of the 

sequences as a metric for productivity measurement. It was discovered that one particular pattern 
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(Select to modify - Trim Extend – Finish Sketch) was accounting for 46% of instances associated 

with the top five discovered sequential patterns of design commands. [8]. 

Pan et al. used a Long Short Term Memory neural network on structured data extracted 

from log files to predict the class of the following possible command in a sequence as the next 

step in the design process's automation. They manually categorized commands in 14 distinct 

categories and trained their neural network on the commands to classify sequence. The trained 

model achieved 70% accuracy outperforming other methods such as the K-nearest neighbor 

machine learning algorithm. [19]. 

Most of the studies that used BIM log files for knowledge discovery and analysis had 

similar approaches and workflows in working with the data. The first step is extracting useful 

information from the raw log files and then structuring them as tabular data. 

The task of recommender systems is to turn data on users and their preferences into 

predictions of probable future likes, interests, and actions. [20] Today recommender systems and 

computer-generated suggestions are an inseparable part of our daily digital experience. These 

systems help us finish a sentence when writing an email, select what content to choose to 

entertain ourselves, or suggest what we should buy for our next purchase. Therefore, it is crucial 

for businesses to develop a sophisticated algorithm to match user preferences.  

Machine Learning and Deep Learning have become widely adopted to solve some of the 

most challenging problems across different disciplines. ML models use algorithms and 

computational statistic to learn from data without being explicitly programmed. ML application's 

exponential boom has been enabled by easy access to massive volumes of data and increased 

hardware capabilities. Deep learning-based recommender systems are one of the most successful 
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applications of data mining and machine-learning technology in practice that are proliferating. 

They provide higher quality results compared to traditional methods such as collaborative 

filtering. Sequence-aware recommendation systems developed with deep learning algorithms 

such as Recurrent Neural Networks, which uses data from sequential logs, can use both long-

term and short-term histories of user sequential actions to recommend items that match those 

patterns. Some application examples of RNN based recommender systems are click prediction 

for online advertisement, prediction of the next item in a sequence given the current one [21], 

and modeling user activity in e-commerce platforms based on sessions [22]. 

Recommendation systems applications are not limited only to content and item 

recommendation within web-based applications and mobile apps. Soh et al. implemented a deep 

sequential recommendation system that suggests a personalized user interface based on the latent 

embedding of parameters. The Adaptive User Interface can enhance the usability of complex 

software by providing real-time contextual adaptation and assistance.[23]. 

Command recommendation systems in the context of complex software applications can 

aid users in enhanced utilization of programs and suggest tools that are a good fit while they are 

working. These suggestions also bring awareness to the tools that are available that often go 

unnoticed. Two main approaches exist for developing such systems, Social and Task-Based. The 

social approach uses data collected from the software usage logs and applies deep learning or 

collaborative filtering methods to make recommendations. On the other hand, the task-based 

approach mines user manuals and documentation and applies logical clustering for command 

groups. [24]. Autodesk AutoCAD, one of the most used CAD drawing software, has hundreds of 

different commands, and it continues to grow more with each updated version. However, the 

largest group of its users only use between 31-40 commands. A research group from Autodesk 
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developed a recommender system, Community Commands, using a dataset obtained from 

participants in the Customer Involvement Program with 40 million observations from 16,000 

users culminated over a 6-month period. The recommender system was developed using 

collaborative filtering and was made accessible to the users via a window within AutoCAD. 

After the user installs the system, it collects user commands history for some time. Once the 

collection period ends, it suggests the top 10 most relevant commands to the user.[25] 
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IMPLEMENTAION 

WORK OUTLINE 

Two steps were involved in implementing this research; the first step was to analyze, 

discover, and comprehend how user events and data are recorded in a journal, and the second 

step was to develop a pipeline to extract the information and structure it as a tabular data frame. 

Raw log files were analyzed to extract string patterns and develop a script to parse raw 

Journals to collect data and store them as a structured data frame. Different exploratory data 

analysis was performed on the collected dataset to gain insight into data for feature extraction 

and preparation for Machine Learning development. This analysis provided necessary insights to 

decide what features and observations should be kept and identify null, irrelevant, or noise data 

to be removed. This process also helps us learn about key features, the distribution of event 

instances, and underlying implicit structures and patterns. 

The second step was to develop the Machine Learning model, which began by 

formulating the task and then selecting a model architecture that was a good fit for the task and 

the available data. The task for this research was defined as a supervised machine learning 

problem, which is fed with inputs and learns to map inputs to labels. Inputs were created as a 

sequence of commands, and the labels were the following actions in the sequences. Because of 

our dataset's sequential and temporal type, a neural network architecture capable of capturing this 

type of relation was selected. As we trained and evaluated the model throughout the development 

process, we tuned model parameters and tried different data configurations to improve the 

model's predictions.  
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In the subsequent chapters, the work process for each step will be explained further, and 

implementation details, challenges, failures, and achievements will be discussed. 
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DATA COLLECTION AND PREPRATION 

Journal files are unstructured timestamped log files that Autodesk Revit generates for the 

working sessions. Capturing information begins once Revit starts, and it is saved to the Journal 

directory on the system. The Journal records information about the system, file paths, external 

loaded add-ins and plugins, user information and modeling activities, event timestamps, errors, 

warnings, failures, etc. During each phase of a project, multiple log files with numerous lines of 

information are generated and are often discarded after a brief period since they are mainly used 

for file recovery, diagnostics, and troubleshooting by Autodesk customer support once a project 

file gets corrupt.  

The resources available about Journal files are limited, and they do not give enough 

information about how events are recorded in it and which keywords are used when recording 

different event types. To extract information from the Journal and structure it, we need to 

identify the main keywords and patterns Revit uses to record this information in Journals.  

We used the extracted string patterns to make Regular Expression search strings to parse 

the log files. The strategy for understanding Journals was to start a blank Revit project and 

execute a few commands with a defined order. Then, we closed the Revit, browsed the Journal 

directory, and performed a simple string search on the session's Journal for keywords we know, 

such as project names. This method allows us to identify and extract string patterns from the 

large Journal file and record any keywords or string patterns that we find essential. A large 

international architecture firm provided the Journal archive for this research which was collected 

over six months period.  
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 We already knew the Username for the sample Journal is "aradnia," and the file name is 

"House Model.rvt", we searched for matching strings in the sample Journal and identified Revit 

records username as "Jrn. Directive "Username" _" and file name uses a similar pattern as 

"Jrn.Directive "DocSymbol." " Events that users produce are saved with "Jrn." prefix. After 

verifying the patterns with some samples from the Journal archive, we continued to apply the 

same method for extracting other information such as commands, Revit version, etc. Error events 

are recorded similarly with the keyword "Jrn.Data "Error dialog" _" followed by detailed 

information about error type (failure, error, warning) and the number of errors raised. 

After manually identifying string patterns for different events, we used Regular 

Expression to parse the Journals archive. Regular Expression, often referred to as RegEx is a 

sequence of characters that specifies a search pattern. String searching algorithms use these 

patterns for different operations on the strings. We ran the parser script on the Journal archive 

and extracted data. usernames and project name were assigned to observation based on the last 

recorded Journal entry before that Event. For instance, if we collect "Jrn.Directive "Username" _ 

A" username "A" was assigned to all the commands that came after that observation. If a change 

occurs in a Journal such as "Username" _ B" user B is registered for the commands from thereon. 

Figure 2: Revit Journal and String patterns for Username and File name 
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Once the parsing process was done, all the extracted information was stored as a data frame and 

exported with “csv” file extensions to be used in the next steps. 
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EXPLORATORY DATA ANALYSIS 

 The most important part of developing a successful machine learning model is to have 

adequate, high-quality, and clean data. Data parsed from Journals was processed and analyzed so 

it can be used for training the model. Processing is done to handle null values and noise in the 

observation and standardization. The dataset consists of 26,132,122 observations with six 

categorical features and two date-time features. To get familiarized with the data and the 

features, we performed exploratory data analysis. We produced different data visualizations to 

help uncover implicit and explicit patterns and identify key features and values. Insights from 

this step were used to refine our dataset and extract features for developing the machine learning 

model. 

Figure 3: An overview of collected data 
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 The analysis began by looking at the relationship between the time and the observations. 

Figure 5 illustrates the total number of events executed on each day of the week, and  Figure 4 

shows the number of commands executed and warnings or errors raised for each hour of the day. 

There are fewer events recorded over the weekend, and a positive correlation exists between the 

Figure 5 : Total Recorded events for each day of week. 

Figure 4: Number of commands and warnings per hour 
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number of executed commands and errors. In a workday, the number of commands performed 

increases steadily for at least the first half of the day, then drops at noon, and then we see a 

steady increase again in the afternoon. 

 Each user tends to utilize specific tools, working on different tasks and developing unique 

work routines. By looking at the top 10 executed commands for the six users with the highest 

recorded events, we can see each of them has different command usage patterns, but some 

commands such as ID_ALIGN seem to be mutual between all of them ( Figure 6 ).  

Figure 6: Top 10 most used command of users with highest number events executed 
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Each project also has different specifications; therefore, different requiring diverse types of tools 

and workflows for developing their design. Figure 7 illustrates the most used commands for the 

projects that had the highest number of events recorded. Like top users' command frequency, the 

most frequently used commands for each project are different.  

Figure 7: Top commands for top 6 projects with the most recorded events. 
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 To better understand the order of commands, we created a graph network based on event 

sequences using network-x an open-source python library. A node was defined for every unique 

event, and bi-directional edges between nodes were added whenever an event followed another 

one. Edge weights were calculated by the number of times that the pattern was observed. The 

created network was taken to Gephi [26] to visualize and analyze the network based on 

communities and edge weights, and other calculated network properties. Modularity class was 

calculated based on the nodes and their weights, and it groups nodes used together more 

frequently. We used to calculate the modularity class to assign colors to clusters. Node sizes and 

Figure 8: Command’s network constructed from ordered sequences in the dataset. Nodes are Command ID and 

edges are defined if they were executed before or after each other. The color of nodes and edges correspond to 

Community detection results and node  
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the order from right to left indicate how often that command was executed after other commands, 

with most frequent having the largest node size and being placed on the right side of the diagram. 

Figure 

The insights gained from the exploratory data analysis process will help us to curate and 

refine data for each experiment to improve results. We did a general refinement to do a 

preliminary data cleaning and normalization and removed features or values that are missing, 

redundant, or cannot be used for predicting the target features. Observations with missing 

features or irrelevant data were removed. To normalize the distribution of observation, those 

with extremely high or low frequencies were removed to prevent imbalanced data. The event 

feature has 1,584 unique values with frequencies ranging from 1 to 15,468,859, and 

"ID_CANCEL_EDITOR" had the highest frequency, with 6 million observations more than the 

second most frequent Event "ID_CANCEL_DELETE." The high frequency of these events can 

be explained by the way Revit users work. Whenever users want to select a new tool or change 

process within Revit, they press the Escape button, and pressing it repeatedly becomes a habit. 

Both ID_CANCEL_EDITOR and ID_BUTTON_DELETE are unimportant commands to 

predict. Also, numerous observation instances with these values will cause a skew in the data and 

affect the training negatively. Therefore, any observation with these values for the Event feature 

was removed from the dataset. Many repeated instances of consecutive observations with 

identical values for the Event feature were observed in the dataset, causing redundancy, affecting 

predictions negatively. We removed the repeated commands by comparing the dataset with a 

shifted copy of it. Any observation that had an identical Event with the shifted copy was 

dropped.  
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After we learned about data and their relationships and identified prominent features, we 

did a preliminary data cleaning and normalization. The next step is to use the data for developing 

and training the Neural Network with the prepared dataset.  

  

Figure 9: Frequency of Top 30 most frequent commands (excluding cancel) 
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RECURRENT NEURAL NETWORK DEVELOPMENT  

Artificial Neural Networks (ANN) are sets of algorithms inspired by our brain cells' inner 

working. A neural network Takes an input vector, weight parameters, and activation functions 

and learns to output a vector. The inner cells, called perceptron, are stacked as layers, and data 

passes through them. Perceptron weights are updated using an optimizer algorithm that 

minimizes the loss value of each unit. The learning process of the neural network can be 

categorized as Supervised and unsupervised. In supervised learning, a neural network takes 

inputs and learns to map them to labels, while an unsupervised learning model learns the 

relationships and mappings on its own. 

Backpropagation and gradient descent are essential concepts in neural network learning. 

While a supervised model is training, the objective is to adjust weights and parameters in the 

network to minimize the difference between prediction and true value. This weight adjustment is 

often made using a backpropagation algorithm, an iterative process in which the network goes 

through cells in each layer and adjusts their weights to minimize the difference between true 

value and prediction [27]. An optimization algorithm such as gradient descent adjusts parameters 

to minimize the loss value calculated by the loss function. It penalizes the network based on the 

distance between prediction and true value. The loss function is chosen based on the task 

assigned to the network.[28] 

ANNs have gained massive popularity in the last two decades. However, they have been 

a reality in computer science since 1950, when Nathanial Rochester from the IBM research 

laboratories led the first efforts to simulate a neural network. Different problems require different 

ANN types; hence it is essential to understand the problem we aim to solve and select an ANN 

that is a good fit for the goal.  
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While in a classical neural network, the inputs are assumed to be independent, for 

temporal and sequential data, inputs at each time step are dependent on previous inputs. The 

deep learning model must learn these relations; however, classic ANN cannot capture these 

temporal relations. 

Recurrent Neural Networks (RNN) (Figure 10 source [29]) are a class of ANN that share 

weights through different time steps, allowing persistence of information from input across the 

network. Essentially RNN is a sequence of neural networks that perform the same function for 

every input while information circulates through them. At each time step, in addition to the new 

input, information from the previous time step will be added; therefore, the produced output is 

influenced by present and past information. 

RNN leverages internal cell state (memory) to process inputs, making them suitable for 

tasks involved with sequential data such as language processing, sequence prediction and 

classification, and time-series predictions. Given the sequential structure of the dataset we 

created, RNN was a good fit for developing the prediction model. RNN applications can be 

categorized into five categories based on input and output lengths (Figure 11 source [29]) 

 

Figure 10: An unrolled RNN showing multiple copies of the same network each passing data to 

their successor. 
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The first type is One to One, which is the same as traditional ANN. The second type, one 

to Many, is the model that receives a single fixed-size input and outputs a sequence. Image 

captioning is an example of this type of network that receives a fixed size input (a single vector 

with image information) and outputs a sequence of data (a sentence describing the image). Many 

to many models are another type of RNN that takes multiple inputs and gives multiple outputs. 

Two kinds are based on whether the input and output lengths are equal or not. The latter is used 

for named entity recognition. When the input is a data sequence and outputs a fixed-size value, 

the model is referred to as many to one. The model developed for this research is from this 

category since our inputs are sequences of multiple unique values and model outputs are a single 

label.[30] 

As illustrated in Figure 10, a standard RNN unit that takes input from the previous step 

and the current output has unit structure. The unit includes an activation function often "tanh" 

that takes the cell's inputs and remaps it to a value between -1 to 1. 

The vanishing gradient problem is a shortcoming of standard RNN, as the network 

backpropagates through time and calculates the gradient to update the network's weights. If the 

previous layer affects the current layer by a small amount, then the gradient value will be small 

Figure 11:  Different models of sequence prediction using RNN 
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and vice versa. Vanishing gradients will cause the gradients to shrink down exponentially as the 

network backpropagates. Smaller gradients will fail to update weights effectively; hence, the 

network does not learn the effect of earlier inputs causing short term memory problems. For 

predicting user actions from a sequence, it is essential to have the context of the previous task 

and the recent ones to achieve more accurate results. Therefore, an RNN capable of capturing 

this long term and short-term memories is essential.[31] 

LSTM and GRU 

LSTM (Long-Short Term Memory) and GRU (Gated Recurrent Units) are types of RNN 

developed to address the vanishing gradient and short-term memory problem. The inner 

mechanism of these units, which is called gate, controls the flow of information. It learns what 

information in the sequence is important, keeps it, and passes the relevant information to the next 

unit. This mechanism enables LSTM and GRU to produce a state of results in the tasks that have 

sequential characteristics. [22], [32] 

LSTM, in addition to cell state, has an input, output, and forget gate. Cell state carries the 

relevant information (long term memory) across the network, and the gates add or remove 

additional information to it along the way. 

Forget gate, which decides whether information should be kept or discarded, uses a 

sigmoid function that remaps the value between 0 and 1, and values close to zero will be 

discarded. In contrast, values close to one will be multiplied by the cell state. 

 The input gate takes the previous hidden state and current input and passes it to a 

sigmoid function to decide what is important by keeping values close to 1. Hidden state and 
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current input also get passed to tanh function, and both values from tanh and sigmoid will be 

multiplied and added to the cell state. 

Lastly, the output cell decides what should be passed to the next cell as the hidden its 

state. The output gate takes the previous hidden state and current input and passes them to a 

sigmoid function. The result gets multiplied by the tanh of the current state, and the result will be 

passed as the hidden state of the next cell. Figure 12 (source [29])illustrates the processes of 

internal gates for both LSTM and GRU. 

 GRU is a modern variant of LSTM, which has a similar gate structure. It consists of a 

reset gate and update gate and only uses the hidden state to pass information from the previous 

cell. The reset gate controls how much information of the prior step is kept. The update gate is 

responsible for how much information should be added to information from the last step and 

carried on to the next step. The simplification of gates results in shorter training time and better 

model performance. Multiple RNNs with LSTM or GRU cells were developed, trained, and 

Figure 12: Inner structure of gates for LSTM cell (right) and GRU (left) 
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evaluated to select suitable ones for our task. Throughout the process, unique features, data 

configurations, and parameters were tested to achieve desired results. 

All Machine learning development processes from loading and preparing the data to 

deployment was done using TensorFlow [33] and Keras [34]. They are open-source deep 

learning frameworks that facilitate the development of deep learning models by providing 

various tools and utilities for different development stages, from data pre-processing to 

deployment. The development of RNN was done in the Google Colab environment, a cloud-

based interactive python notebook that provides access to powerful machines equipped with 

GPUs for machine learning developments. 
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MODEL EXPERIMENTS 

The task formulated to tackle was developing and training RNN that takes a Sequence of 

Events with a defined length and outputs the command proceeding the sequence. Training and 

evaluating consists of several steps: mapping data from strings to integers, creating inputs and 

labels from the sequences, building the neural network with LSTM or GRU units, and finally 

training the model. After each training model’s performance was evaluated by accuracy, loss 

metrics and predictions were generated to be compared against the actual sequences and then 

were evaluated by their relevancy to the input sequence. 

Event feature values were selected from the refined dataset and used to create input 

sequences and labels for training. Neural networks cannot be trained on strings; therefore, string 

sequences must be mapped to a numerical representation. A lookup table was created to map 

each of the 1,541 unique values in the initial data to an integer value. Since we wanted to 

interpret the prediction results and integers are not interpretable by humans, we had to convert 

them back to the actual strings; another lookup table was created to map integer predictions to 

original strings. For creating input sequences and labels, the chronologically ordered events were 

split into sequences of length 100. The input sequence length is an important parameter, and 

different lengths were tested throughout the process. A corresponding label was created for each 

input sequence with the same length and items shifted one over. Inputs and labels were split into 

batches of size 64 and then shuffled. The neural network goes through all the inputs within each 

batch and then backpropagates to update model weights to reduce loss value using a stochastic 

gradient descent algorithm.  
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The first model was created with four layers: trainable embedding, dropout, GRU with 

1024 cells, and a fully connected dense layer for outputting the prediction. The embedding layer 

creates N-Dimensional space and turns the integer representation of unique inputs to a vector in 

the embedding space. Embedding will allow for a better training performance on large sparse 

inputs like the event sequences data we are using. It will also enable the model to learn the 

contextual relation between vectors by placing similar inputs closer together in the N-

Dimensional embedding space. As the model trains for more epochs, inputs are updated, and 

their representation improves. Different approaches are used for embedding, especially for 

natural language data. One-hot encoding, embedding layer, and pre-trained embeddings such as 

GloVe are among the most used ones. Pre-trained embedding was not an option for this research 

since pre-trained embeddings are trained on a corpus of natural language texts and cannot 

represent our data, so we had to use an embedding layer to train ours.  

Dropout is used to regularize the model and prevent overfitting; deep neural nets are 

prone to overfitting, drop out is a technique for addressing this problem. The key idea is to 

“randomly drop units (along with their connections) from the neural network during training; 

This prevents units from co-adapting too much.” [35] 

A final dense layer transforms the logits (LSTM or GRU's numerical output) into 

probability with a SoftMax activation function. SoftMax takes the exponents of each output and 

then normalizes them, so their sum equals 1. The output with the highest value will be the 

prediction for the given input. 

The model was compiled, and a Sparse categorical entropy loss function and Adam 

optimizer with a learning rate of 0.001 were attached. The loss function evaluates the model at 
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each training step on how much difference exists between the predictions and actual labels for 

each input. Then loss values are passed to an optimizer often to update the weights and reduce 

loss in the next epoch.  

Figure 13 shows the first model’s parameters, and loss and accuracy scores at each 

training step; model prediction accuracy reached 13.2% after 30 epochs. In addition to 

quantitative metrics, we wanted to evaluate the interpretability of the model’s predictions as 

Revit workflows and compare it with actual commands following the input to check similarities 

between them. 

The defined prediction function takes a seed sequence, trained model, and a diversity 

parameter and predicts the next event. Since the goal is to predict a sequence of next actions, the 

seed sequence is combined with the prediction and is fed back to the model to get a new 

prediction; this combining allows for more context in prediction. This process repeats for as 

many predictions as needed. The diversity parameter determines how much randomness is added 

to the predictions. A lower value means a more accurate representation of the actual data; 

Figure 13: Loss and Accuracy score for the first model 
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however, it might cause getting the same output consecutively; hence, different values should be 

tested to get the best value for each case. 

 In the sequence generated from 10 items input, predictions and ground truth sequence 

did not have any similarities in the type of commands; also, it was observed that some 

commands with higher frequencies such as ID_EDIT_ALIGN were repeated in the generated 

sequence. In a shorter sample with length five, a similar pattern was seen. ID_EDIT_UNDO, 

which is the command ID for undoing, was the last item in the input sequence, and might have 

contributed to the poor predictions since it is a general command. These types of inputs should 

be removed from the sequences. 

For another experiment, the model was trained for more epochs. After 80 epochs of 

training finished, it reached an accuracy of 13.4%, showing no significant improvement. The 

generated predictions were also not related logically, and repetition of high frequency commands 

was still present in the predictions. Next was to test if changing the sequence length can improve 

the results, so inputs and labels with varying lengths were created. Although longer sequences 

can give more context to the model for learning and predicting next commands, longer sequences 

will also increase the probability of including irrelevant commands that do not represent 

meaningful Revit workflows. After developing and training multiple models with different input 

lengths using both GRU and LSTM, cells accuracy did not increase beyond 13.8 % and 

prediction results were still irrelevant to the input sequences. 

A large number of categories and lack of enough data for training was potentially the 

main factor causing the poor performance of different models. With 1541 categories, the neural 

network fails to learn the relationships between inputs and proper mapping between inputs and 
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labels. To test if a reduced number of categories and more normalized distribution of events can 

improve the predictions, we further processed data to identify and discard irrelevant commands 

or have frequencies less than a threshold defined. We removed observation with Event or Access 

values with frequencies less than 100; additionally, observations from users and projects with the 

total number of observations less than 500 were also dropped from the dataset. After data 

refinements, the number of categories was reduced to 464, and new sets of inputs and labels were 

created. 

 An LSTM with 1024 units was built and trained on the dataset with reduced categories 

for 60 epochs, reaching 12.4% accuracy. However, predictions generated with this model were 

more relevant. The predicted sequences were similar to the actual commands following the input 

sequence. Some predictions were observed in the same category of the commands in the input 

sequences. For instance, ID_FINISH_SKETCH was predicted for an input sequence with 

ID_FINISH_SWEEP, which both commands from conceptual massing workflow in Revit. 

After trying different models and parameters for training and, evaluating them, none of 

the models achieved a satisfactory performance. Only a slight improvement was seen when cell 

type was changed to LSTM, and the number of categories was reduced. However, further 

improvements on the accuracy and interpretability of predictions on test data were essential. 

To achieve better results and predictions, the process of input and label creation was 

revisited. Initially, we ordered all the commands chronologically and split them into sequences 

of desired lengths. By doing so, we were ignoring the proper order of commands that the user 

was executing. For instance, some input sequences might have included commands from two 
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different users or include commands that are a day apart. Training the model on inputs that do 

not represent proper workflows, unpredicted results, and poor performances was inevitable.  

To address the issue with sequence creation and proper representation of workflows, 

commands by each user for each project were separated. They were grouped into sessions based 

on UserName, FileName, and the time gap between each consecutive command. Whenever the 

Username or file name changed or the time gap was more than 10 minutes, a new session was 

defined; 246,941 sessions were extracted from the dataset using this logic. After loading new 

data and mapping strings to their numerical representation, labels, and inputs for sequences of 

length 20 were created, same as the previous experiment length of the sequences were left as a 

parameter to tune. For creating multiple training examples for each session, first 20 commands 

were set as input and 21st  commands were set as the label then, shifting the 20-item window over 

the data by one index to get the second item through 21st as input and 22nd as the label, and so on. 

The 19,535,112 created inputs and labels and were split into a train and test set with a 0.7 - 0.3 

ratio. The test set is the data that is not shown to the model during the training process and is 

used to evaluate its performance and the ability to generalize on unseen data after training.  

Multiple LSTM models with different parameters and input sequence lengths were built, 

trained, and evaluated by their loss and accuracy values as well as their predictions on sample 

sequences. Layers added to the first network were: an embedding layer with 100-dimensional 

vector, an LSTM layer with 64 units and a built-in dropout, an intermediate dense layer for 

adding additional representational capacity to the network, a dropout layer, and for the last layer, 

a fully connected dense layer with a SoftMax activation function to output predictions by 

producing the probability for each category. The model trained for 80 epochs after it was 

compiled with Adam optimizer and a categorical loss function. 
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The trained network reached 34.4% accuracy, exhibiting that the new method for creating 

inputs had a positive impact and improved the model’s performance compared to the results from 

the first experiment. To check how the model’s performance compares to just random guessing, 

we calculated accuracy if we were to use the most frequent labels to make predictions and 

compared it to the trained model’s accuracy results. Using ID_ALIGN, the most frequent label 

model achieved 8.1% accuracy, and by using the top 9 frequent commands and their frequency 

as probability, predictions were made for all the inputs, and total accuracy was 2.91%. These two 

experiments demonstrated that the model outperforms both guessing using the most frequent 

word and using relative word frequencies to make predictions, meaning the network learned 

from the data to some extent.  

Sets of predictions were generated from sample input sequences with lengths of 5, 10, 

and 20. It can be said that the commands in the predicted sequences were relevant to the input 

sequence, and they could be interpreted as a continuation of the commands in input to some 

extent. Other experiments for improving the results were training the model for 150 epochs, 

building models with 2 LSTM layers and a Bi- Directional LSTM layer, and finally training with 

input sequence lengths of 10 and 100. By stacking multiple LSTM layers and creating a deeper 

network, a more complex representation of inputs can be learned. However, better results are not 

guaranteed. The hidden states generated in the first layer are passed as inputs for the second 

layer, enabling the model to learn a different input representation. The Bidirectional LSTM layer 

will allow the model to go over the input’s sequences in forward and backward directions, 

enabling it to learn more about the context of inputs. Finally, different input sequence lengths 
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can affect the model’s training depending on how much context it is getting for predicting the 

next command. 

 

  

Figure 14: final model results with various parameters 
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DISCUSSIONS AND FUTURE WORK 

This research aimed to explore potential of Revit Journals as a non-intrusive user 

interaction data source. Data extracted and structured from Journals were analyzed and 

visualized to uncover implicit user design and work patterns, for instance what are the most used 

commands per user or project. This type of insight enables managers and leaders to better 

understand the project’s requirements and team members' capabilities to better plan the project 

timeline. Additionally, Journal data was used to generate inputs and labels to train a command 

suggestion supervised machine learning model. Series of different Recurrent Neural Network 

models were developed and tested to predict next actions following input sequences extracted 

from journals.  

Different challenges had to be dealt with through the process. First challenge was 

extracting important features and values and normalizing the data since the initial extracted data 

was imbalanced and had noise. Creating inputs and labels with a large number of categories was 

another challenging part of RNN development. After taking different approaches in extracting 

sequences and creating inputs and labels and training model with different hyperparameters, the 

most significant improvement in results and performance was observed when the label and input 

creation process was changed and the number of categories was reduced by discarding values 

observations with less importance. That being said, selecting a model suitable to the task and 

tuning the hyperparameters is an integral part of the process that cannot be overlooked. 

The next steps in further developing this project would be conducting a series of user 

studies to further evaluate the relevancy, novelty, and usefulness of predictions of the RNN by 
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having the users respond to the questionnaire. It is important to have input from the users and 

their interpretation of commands since relying on quantitative metrics is not enough to assess the 

predictions. For any input sequence there are variety of labels possible, however metrics such as 

accuracy evaluate the model based on single label for each input. Using the finding from the user 

study we can further develop the model and fine tune data and parameters. 

To develop the user study, it is essential to integrate the model with Revit interface. 

Preliminary attempts were done for integration but fully integrating was beyond the scope of this 

research. Revit official API does not expose methods for listening to the command ID, we were 

able to use UI. FRAMEWORKSERVICES namespace and use getActiveCommandID to listen 

to commands as they get executed and print Command IDs. PyRevit an open-source rapid 

development python framework for Revit was used for the interface prototype.  

The collected data from logs have great potential to be further studied. For instance, we 

can identify the sequence of commands that resulted in warnings or errors and train the model to 

predict and alert the user if the commands they are executing might cause errors. Warnings and 

errors are common in BIM files. They cause the model to slow down or crash, resulting in losing 

work or important data. Additionally, the same approach can be taken with the cancel 

commands. The high frequency of using it by users can be an indicator of how often they 

activate tools unintentionally and must cancel out from it. Every time this sequence happens, a 

fraction of time is lost; given the high frequency of this sequence the total lost time can be 

significant. A recommender system capable of suggesting suitable commands can prevent such 

lost time and improve the users' working experience.  
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Development in machine learning and deep learning is growing exponentially, and 

sophisticated language models such as GPT3 produce extraordinary results, such as texts that 

cannot easily distinguish whether a real human created it or not, are becoming more available. 

Journals capture the exact commands and actions user takes to design something in Revit. One 

can replay a Journal file by simply dragging it to Revit and see each step being reproduced. 

Suppose resources and data become available to train generative models like GPT-3 on a 

collection of Journals. It is not far from reality to develop a generative model that generates new 

Journals that Revit can execute to create a building project. There is exciting potential in 

exploring this unconventional approach to develop an automated generative system to create new 

building designs that instead of using parametric and relational approaches generate design by 

learning design process from actions logs of architects working on various projects. 
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CONCLUSIONS  

This research implements a process to understand Revit Journals to extract and structure 

data about user interactions with the software. This data has detailed information about the 

commands that each user has executed for the projects they worked on and any errors raised 

during the process. By analyzing the Journal data, we can gain insights into user design and work 

patterns and have a holistic understanding of the design productivity. 

A Recurrent Neural Network model a class of Artificial Neural Networks that utilizes 

internal state to learn from sequential data. We developed a sequential prediction model and 

trained it on the labels and inputs created from the user interactions data extracted from log files. 

This model can be integrated with the Revit interface to serve as command recommender system 

to suggests suitable commands to the user based on their actions. This will enable users to learn 

novel commands and improve their productivity by reducing errors and decreasing navigation 

time. This work demonstrates the potential usages of Journals as a data source to learn about how 

architects design spaces and explores using deep neural nets as s way to leverage this data to 

assist designers. 
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