
 

VISION-GUIDED ROBOT FOR PLANETARY HABITAT ASSEMBLY 

 

 

 

by 

 

Kohl Alexander Whitlow 

 

 

 

 

A thesis submitted to the faculty of  

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Master of Science in  

Applied Energy and Electromechanical Systems 

 

Charlotte 

 

2019 

 

   

 

 

 

 

 

 

 

         

 

 

        Approved by: 

 

 

______________________________ 

Dr. Aidan Browne 

 

 

______________________________ 

Dr. Wesley Williams 

 

 

______________________________ 

Dr. Maciej Noras 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2019 

Kohl Alexander Whitlow 

ALL RIGHTS RESERVED 
   



iii 

ABSTRACT 

 

 

KOHL A. WHITLOW.  Vision-Guided Robot for Planetary Habitat Assembly (Under the 

direction of DR. AIDAN F. BROWNE) 

 

 

 The focus of this research is to develop a vision-guided autonomous system for 

structure or habitat construction on distant planets/moons in support of NASA’s Space 

Technology Mission Directorate (STMD). The proposed approach would use building 

blocks produced via additive manufacturing from the in-situ environment and assembled 

using similar methodologies as used on Earth; the block creation and design are not the 

focus of this research. This is an alternative approach to current concepts being evaluated 

by NASA. A system prototype was created by mounting a robot arm with block 

manipulation capability atop a vector-drive robotic platform that enables the system to 

strafe omnidirectionally over the terrain. A vision system provides flexible peripheral 

input for object localization within the environment. The system carries blocks to the 

build location, then uses the vision system and auxiliary sensors to provide guided input 

for the automated piece-by-piece assembly. A prototype of a vision-guided robot for 

planetary habitat assembly successfully demonstrated autonomous erection of an 

emulated structure.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Additive manufacturing (AM), also known as 3-dimensional (3D) printing, has 

become a proven and innovated field. AM has resulted in copious research related to 

printing construction materials from the in-situ environment [1]. Stemming from this 

concept, the National Aeronautical and Space Administration (NASA) presented the 

Centennial 3D-Printed Habitat Challenge. This challenge hosted contestants from around 

the world to develop a prototype system to 3D print habitats; specifically, space 

exploration habitats using emulated recycled building material [2]. 

NASA’s mission to send humans back to the moon by the year 2024 for long term 

expeditions outside the Earth’s atmosphere is ambitious and will require technological 

advancements. Most important of these advancements is preparing suitable living and 

working environments for humans on long term expeditions. Current concepts use mobile 

3D printers and mixing containers to ultimately print these enclosures from the ground up 

[3]. However, “…it is impractical to have printers that are larger than actual buildings” 

[4], much less, transport this machine to another planet. This research explores the 

possibilities of a different method for habitat construction in extra-terrestrial 

environments by focusing on manipulating manageably-sized building blocks and 

assembling them into living quarters via an autonomous robotic system. Exploiting 

smaller-sized building materials rather than attempting to 3D-print entire structures, it is 

possible to produce a smaller, multipurpose platform that assembles habitats block-by-

block. To accomplish this, blocks could be manufactured via 3D-printing materials 
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supplied by the in-situ environment. The emulated building articles would be of block-

like form and similar in shape and size to traditional blocks (bricks or cinder blocks) used 

on Earth. However, the design and manufacturing of these blocks are not a focus of this 

research. The overall objective of this research is to develop a vision guided autonomous 

system for structure assembly on distant planets/moons and demonstrate using emulated 

building blocks to erect a structure for a proof of concept system. 

1.2 Conceptual Overview 

It is assumed that upon arrival to the habitat construction zone, pre-determined 

building data will be available to the autonomous system such as “blueprints” or structure 

location. Functionally, the proposed system would start at a base station, or 

manufacturing hub, to be loaded with building blocks. From there, it would travel to a 

predetermined building zone where the structure is to be constructed. Here, it would use 

the “blueprint” to start the assembly process. Block-by-block, the system would assemble 

the structure, returning to the base station when it needs to be reloaded with building 

blocks. The overall process is conceptual and can be altered to suit the situational 

environment. 

Radio-controlled robots on the Moon would be limited in their abilities due to 

latency issues caused by the long-distance from Earth. Attempting to remotely control a 

robotic system on other planets from the Earth would be even more difficult due to 

increased latency, greatly hindering the controllability of the vehicle. For this reason, 

such a system will be required to operate completely autonomously since its primary 

purpose is to assemble habitats for humans before they arrive on distant planets. This is a 
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difficult challenge considering the ever-changing environments that will be forced upon 

the autonomous system. One of the best countermeasures for such a vehicle with these 

considerations is to incorporate machine, or computer vision into the autonomy [5]. 

Adding this degree of peripheral input can greatly impact the abilities of the system; the 

vehicle developed in this research will be largely dependent on machine vision input for 

object localization. The vision system could later be enhanced to incorporate obstacle 

avoidance to expand overall autonomous behavior.  

Since the blocks proposed in this research are sized similar to those used on Earth, 

it is appropriate to consider the benefits of robotic arms that generally employ a high 

degree of freedom and work well in “pick-and-place” applications. When coupled with 

machine vision, such a system is advantageous and can serve a variety of different 

purposes. Mounting the machine vision camera on the end-effector of the robotic 

manipulator allows the camera to move in three dimensions to better view its 

environment and also reduces the number of cameras required for autonomy. 

Complementing the vision-guided robotic manipulator, the system requires 

mobility for translating the surface so that the structure can be assembled from the ground 

up. Allowing the robot to roam freely on the surface will greatly increase its capabilities, 

such that it could assemble multiple structures and perhaps be repurposed for other tasks 

upon completion of its mission. This concept reduces the required overall size and 

complexity of a vehicle which is ideal for space applications due to reduced costs and 

decreased failure modes.  
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CHAPTER 2: OVERVIEW AND SYSTEMS DESIGN 

A prototype system has been constructed as illustrated in this overview to 

complete the concept described in Chapter 1. The robotic system is broken down into 

three main subsystems: the vehicle chassis, robotic manipulator, and the vision system. 

Basic terminology used to describe components of the vehicle and are: 

 Vehicle Chassis – vector-drive providing system mobility 

 Robotic Manipulator – robotic arm used for block manipulation and camera 

positioning 

 Vision System – camera and vision processing hardware providing machine 

vision feedback to the manipulator controller for object localization 

 Material Bed – the surface on the rear of the vehicle that carries the material 

 End-effector/Gripper – the tool used to interface the manipulator with objects 

 HARP – Habitat Assembly Robot Prototype 

All subsystems are assembled to create the vision-guided robot for planetary 

habitat assembly; each subsystem contains various supporting hardware and will be 

covered in the following overview. This simulated prototype for this system will be 

referred to as the habitat assembly robot prototype (HARP).  

2.1 Environment 

To test the HARP, a simulated building environment was created in a laboratory. 

The general layout of this environment is pictured in FIGURE 2-1. Terminology used to 

describe this work environment is as follows: 
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 Loading Zone – location at which vehicle is loaded with material 

 Building Zone – location at which the robot will build the structure 

 Simulated Building Blocks – blocks used to emulate AM building material 

 Structure – arrangement of blocks to simulate habitat construction 

 Laser Line – designation as to where the structure should be completed 

 

FIGURE 2-1: Emulated building environments 

2.1.1 Emulated Building Material 

The term “building block” will be used to describe the emulated building material 

throughout this document. The emulated building blocks used in this research are for 
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proof of concept of physical 3D-printed block manipulation. On Earth, humans have used 

modular sized building blocks for centuries in structure assembly [6]. Continuing use of 

this technology from the construction industry, the building blocks can be assembled in a 

half-over bonding fashion, and corners can be built in overlapping uniformity for 

strength. The physical blocks used for the concept are represented in FIGURE 2-2 and 

merely represent the concept of the building material; whole blocks are 100 mm wide, 

200 mm long, and 65 mm tall, and half-size blocks are 100 mm wide by 100 mm long by 

65 mm tall. They closely resemble the size and shape of the proposed building materials, 

however, they do not represent the weight of the actual blocks that may be used. Also, the 

size and shape could vary dependent on the needs of the structure.  

 

FIGURE 2-2: Emulated building material representation 
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2.1.2 Loading Zone 

The Loading Zone is the location at which point HARP awaits to be loaded by an 

external device as labeled in FIGURE 2-1. This will serve as the theoretical location of 

the manufacturing area producing the blocks for the construction project. The overall 

concept would use an automated system to load pre-formed blocks onto the robot; 

however, for the purpose of this experiment, a human agent emulates the loading system 

by manually loading three blocks within ±25° rotation on the material bed.  

2.1.3 Building Zone 

The “Building Zone” as presented in FIGURE 2-1 is where the actual structure is 

to be assembled. This is the location where HARP initially drives, and where it returns to 

after each material reload. At this location, a laser line is projected onto the surface and 

signifies where the blocks should be placed. It is assumed that the laser will be placed by 

another system in advance of commencing construction; it serves as a reference for the 

HARP. 

2.2 Vehicle Overview 

The vehicle is demonstrated in FIGURE 2-3 with all functional hardware loaded. 

The placement of these features allows the robot arm to rotate from the material bed to 

the build plane easily. Since the robot arm is mounted on the fore-end of the base, the 

heavy battery used for power was placed under the material bed on the opposite (aft) end 

as a counterweight to maintain stability and keep the center of gravity within the 

wheelbase of the vehicle. Also pictured, the camera is mounted to the end-effector 
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alongside the manufactured gripper. The robot arm controller and vision controllers are 

mounted off of the vehicle and tethered for the proof of concept system due to laboratory 

configuration. 

 

FIGURE 2-3: Complete robotic platform 

An outline of the communications/control strategy is demonstrated in FIGURE 

2-4. The vision system and chassis controllers are the main processing units. The vision 

system’s main objective is image processing and manipulator positioning. However, it 

does not process robot arm path planning but passes positioning data to the robot arm 

Communication/Power Tether 

End-effector 

Camera Robotic Manipulator 

Chassis Controller & Battery 

Material Bed 

Vehicle Chassis 
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controller for positioning computation. The chassis controller is employed purely for 

vehicle position control and sensory input. Each of the motors are equipped with 

quadrature encoders to provide dead reckoning feedback, while the short rangefinder and 

long rangefinder are fused for frontward object detecting. The vision system and chassis 

controller communicate bi-directionally via Ethernet communication relaying vital 

process status and commands. 

 

FIGURE 2-4: System control strategy 
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2.3 Vehicle Chassis 

The objective of the vehicle chassis is to provide a means of transportation for 

building material, the manipulator, and the imaging hardware. It employs wheels from 

the Swedish drive family, also known as mecanum wheels. The mecanum wheel is based 

on the principle of a central hub with a number of rollers placed at an angle around the 

periphery of the hub” [7]. The wheel featured on this system is made up of one large 

outer wheel and nine rollers angled at 45° from the tangent of the outer wheel diameter; a 

similar model of the wheel used can be seen in FIGURE 2-5 from [8].  

 

FIGURE 2-5: Mecanum wheel diagram [8] 

The mecanum wheels allow the vehicle to move in an omnidirectional fashion, 

making it ideal for traveling in an efficient, vector-like movement. The chassis employs 

four mecanum wheels mounted in parallel sets on the rectangular base platform. A 

SuperDroid high payload platform and wheel system was purchased for this application, 

illustrated in FIGURE 2-6. The vehicle chassis has a 50.8 cm square-shaped footprint. 

This configuration was chosen because it provides a stable platform for the robotic 

manipulator while maintaining omnidirectional strafing abilities, and sufficient payload 

space.  
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FIGURE 2-6: Vector-drive base configuration. 

The material bed is mounted on the rear of the vehicle, as seen in FIGURE 2-7, to 

carry blocks and serve as a counterbalance; it also provides the vehicle with resources for 

consecutive block place/build operations. The material bed measures 300 mm deep and 

500 mm wide to allow up to three blocks to be transported. The surface of the material 

bed was painted black to increase the contrast of the blocks with respect to the material 

bed to assist image processing.  
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FIGURE 2-7: Vector-drive base loaded with two blocks 

To accurately control system movement, a suite of electronics was chosen 

consisting of a National Instruments (NI) myRIO-1900, four Talon SRX motor 

controllers, four direct current (DC) motors with quadrature encoders, one Adafruit 

VL6180X digital time-of-flight rangefinder, and one Shark 2Y0A21 rangefinder. The 

myRIO controller provides up to 62 general-purpose input/out (GPIO) pins, a regulated 

+5V source, and ±15V sources. Each motor provides a torque of 8.0 kgf-cm at 12 V, and 

a speed of 74 revolutions per minute (RPM) output which is sufficient for the payload 

(~17 kg) and desired controllability. The quadrature encoders are mounted on each motor 

providing feedback to the myRIO for position and speed feedback control. The Talon 

SRX speed controllers enable ramped control of the motors via independent pulse width 

modulation (PWM) signals. Lastly, the VL6180X and Sharp Rangefinders are mounted 

on the fore-end of the vehicle, opposite of the material bed. Each range finding sensor 

provides forward obstacle detection and ranging to assist in collision avoidance with the 

structure-under-construction or any other forward-facing objects. The analog output 

Material Bed 
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Sharp IR sensor was chosen for its ability to sense distances up to 1.2 m. The VL6180X 

sensor was chosen based on its much finer resolution and accuracy at distances less than 

200 mm. 

2.4 Robotic Manipulator 

The robotic manipulator used in this research is the DENSO VP-6242. Its main 

objectives are to provide camera positioning and manipulation of the building blocks in 

the assembly process. The DENSO module consists of a robotic arm with 6 degrees of 

freedom (DOF) and a 2.5 kg payload capacity, including any end-effector tool 

attachments. Also encompassed on the arm module are flexible end-effector mounting 

points and internal pneumatic piping for pneumatically actuated end-effectors. In its 

default configuration, the DENSO has a maximum reach of 432 mm from the center of 

the module base. Further defining the VP-6242 range of motion (ROM), the first 

rotational axis of the arm allows the unit to position the end effector ±160° from the 

front axis of the base, opposite from the power tether as described in FIGURE 2-8. The 

remaining workable area of the system is demonstrated by the shading in FIGURE 2-9. 

These features define the flexibility of the system for the programming approach and how 

the vehicle will need to be positioned. All resources on the DENSO system are sourced 

from the DENSO VP-6242 Robot User Manual from [9] and [10]. 
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FIGURE 2-8: DENSO available reaching area coplanar to the robot base [9] 
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FIGURE 2-9: DENSO available reaching area perpendicular to robot base [9] 

Joints on the VP-6242 are documented from the base up, starting at the first 

rotational axis as, 𝐽1, 𝐽2, … 𝐽6 format. The end-effector mounting face enables the user to 

add a seventh DOF to the manipulator for axis 𝐽7. DENSO documentation describes these 

joints with the graphic in FIGURE 2-10. FIGURE 2-11 represents the positioning time of 

each joint associated with the manipulator with respect to end-effector payload. Here, it 

can be seen that payload mass can affect the positioning time as much as 0.2 seconds. 

The characteristics presented in FIGURE 2-11 are important to consider when 

programming payload placement as it could affect the accuracy of placement by 

moving/departing the placement coordinates before it is acceptable. The total payload of 
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the configuration used for both hardware and blocks is 0.95 kg and can affect positioning 

time up to 420 ms per 100 mm. 

 

FIGURE 2-10: DENSO axis labeling [10] 
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FIGURE 2-11: DENSO end-effector positioning time vs payload weight [10] 

Per the manufacturer specifications, the manipulator is able to repeatedly position 

the end-effector in free space to ±0.02 mm of accuracy. It’s capable of accomplishing 

this by implementing a combination of precision stepper motors and encoders at each 

joint. Positioning controllability is made possible via the DENSO RC8 controller which 

handles the kinematics processing and control. Although the RC8 controller directly 

interfaces with the DENSO arm module, the Compact Vision System (CVS), which is 

outlined in section 2.5, is used with an application programming interface (API) to send 

movement commands to the RC8 controller. 

To interface with the blocks, an SMC-MHZ2-20d pneumatically actuated gripper 

is fixed as the end-effector tool to axis 𝐽6. The fingers were designed to mate specifically 

with the geometry of the block. The optimization of the gripper geometry is contingent 

on the corresponding block shape and size. To appropriately manipulate the material used 
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in this research, two custom fingers were designed and 3D-printed to expand the 

open/close limits of the gripper from 15 mm – 25 mm, to 65 mm – 75 mm as can be seen 

in FIGURE 2-12. Pictured in FIGURE 2-13, the radius of the cylinder that contacts the 

building blocks is exactly the size of the circular protrusions of the building block. The 

cylindrical shape of the gripper attachment helps for misalignment ensuring the block is 

perpendicular to the gripper on every pick application as demonstrated in FIGURE 2-13. 

To further enhance successful material manipulation, the gripper was designed with 7 

mm x 7mm chamfered tips. This was implemented to allow for passive correction of 

small positioning errors accumulated by the vision system. Considering the flexible 

gripper configuration, it is important to note that the gripper can be designed to 

accommodate varying block geometry. For this reason, it is desirable to accommodate a 

standard actuation end-effector tool, with detachable interfacing fingers. This flexibility 

can be very advantageous where varied designs of 3D-printed building material would 

require a special shape tool for compatibility with material manipulation.  

 

FIGURE 2-12: Gripper and finger assembly. 
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FIGURE 2-13: Gripper interfacing with emulated building material 

The robotic manipulator is mounted on the fore-end of the vehicle chassis. 

Mounting the arm here enabled the system to both place blocks on the build plane and 

pick blocks from the material bed located on the rear of the vehicle. The assembly of the 

mounted robot arm is illustrated in FIGURE 2-14. Image “a”, taken from the rear of the 

vehicle, represents the arm picking material from the material bed, and image “b”, taken 

from the left side of the vehicle, illustrates the manipulator placing the object in line with 

the build plane.  
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FIGURE 2-14: Demonstration of the robotic arm in pick and place positions 

2.5 Vision System 

To adapt to the changing environments the vehicle might encounter, a vision 

system for object targeting was implemented. The camera used in image acquisition for 

this research is a single Logitech C270 module. This device encompasses a 60° field of 

view (FOV) and can capture video up to 720p at 30 frames per second. This device was 

chosen for its USB compatibility with the vision controller and its range of resolution 

setpoints which is beneficial in lowering vision processing load.  

The C270 camera is mounted on the end-effector tool of the robot arm. This 

enables the camera to move with the end-effector to achieve any viewing angle/position 

within the manipulators ROM. Using a single image acquisition device was possible by 

moving the end-effector to each image location rather than having multiple stationary 

imaging devices. A 3D-printed bracket was created in order to mount the camera to the 
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end-effector. The camera mounting point relative to the camera lens center is projected 

111 mm outward from the end-effector center to ensure the tool and building material 

would not obstruct the FOV. The camera center coordinates were offset from the center 

of the end-effector mount by 12 mm horizontally. A model of the mounting bracket can 

be seen in FIGURE 2-15. 

 

 

FIGURE 2-15: 3D model of the camera mount 

Lighting was also determined to be a critical factor in image processing. 

Inadequate lighting can increase inconsistencies in many machine vision algorithms. A 

local, constant light source is critical for a mobile system since position based, natural 

End-effector 

Camera 
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lighting will change relative to vehicle location and time of day. Diffused lighting is an 

excellent way to scatter the light source such that the target object is illuminated from 

random angles thus increasing contrast to the material bed [11]. An on-axis ring light 

with diffuser material was chosen for this application. The ring light with diffuser was 

fixed directly below the camera with a constant radius around the lens of the camera. This 

helped the diffused light illuminate the working area from all directions. The lighting 

configuration implemented in this research is illustrated by the graphic in FIGURE 2-16 

but is not an exact representation of the light propagation. 

 

FIGURE 2-16: Ring lighting configuration for the camera system [12] 

Completing the vision system, the controller used for the image processing and 

image acquisition is the NI CVS-1459RT. The CVS employs a 1.9 GHz quad-core Intel 

processor, with 4 GB of RAM, up to 32 GB of local storage, and a user-accessible field-

programmable gate array (FPGA). The quad-core processor and accessible FPGA allow 
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for fast, and efficient machine vision processing. For image acquisition, the CVS-1459 is 

outfitted with two USB 3.0 ports for high-speed camera interfacing which corresponds to 

the selected camera. Although this device is built for image processing, it also employs a 

44-pin connector to interface general-purpose input/output (GPIO) connections. This 

enables the CVS to both process images and send commands to the robot controller. The 

Digimetrix DENSO library was also installed to interface with the VP-6242 system 

maintaining a NI development environment. 
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CHAPTER 3: AUTONOMY AND METHODOLOGY 

Automation of this system is a critical aspect of the successful building 

procedures due to severe latency preventing manual control of the vehicle as described in 

the Introduction. A storyline of operation was created such that the vehicle should start at 

the loading zone awaiting to be loaded with material. A flowchart of the automation 

overview represented in FIGURE 3-1. When loaded, the vehicle will travel to the 

predetermined structure start position. Here, the vision system will look for a laser line 

that signifies where to place the first block. After the first block has been placed, the 

system will place the remaining blocks from the material bed. When the material bed is 

empty, the vehicle will travel back to the loading zone to be reloaded. When loaded, the 

vehicle shall again travel to the building zone to place the newly loaded material. The 

system repeats this process until the structure is completed. For the emulated 

demonstration, a straight wall is erected approximately 0.25 m high by 1 m long for the 

structure completion.  

To approach the design process of this complex system, autonomy was broken up 

into three main tasks with further defined sub-tasks for individual processes. After each 

part was successfully completed and tested, each piece was assembled into the overall 

main program. Automation tasks are summarized by the following list: 

 Vehicle Chassis Autonomy 

o Vector Movement 

o Sensor Data Acquisition 

 Robot Arm Autonomy 

o Axis and TOOL identification 
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o Pick Operations 

o Place Operations 

 Vision System Autonomy  

o Image Acquisition  

o Edge Finding 

o Pattern Matching 

 

FIGURE 3-1: Automation overview 

Programming these tasks yielded a naming convention as follows: 

 Drive – a function to control the robot base 

 Move – a function to move robotic manipulator directly to coordinates 

 Approach – a function to approach a set of coordinates with the end effector with 

a vertical offset 

 Depart – a function to depart from a set of coordinates with the end effector  with 

a vertical offset 

 WORK – used to assign a new work plane relative to the robot manipulator 

 TOOL – used to assign end-effector offsets 
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 Initial Edge Finding – a function to locate edges of blocks on the material bed 

 Full Block Pattern Matching – a function used to find full-size block matches 

 Half Block Pattern Matching – a function used to find half-size block matches 

 Laser Line Finding – a function to calculate the angle and position of the laser 

line 

 Corner Finding – a function to find/calculate the corner of the simulated structure 

3.1 Vehicle Chassis Autonomy 

Automation of the vehicle chassis is handled by the myRIO controller. To control 

the vehicle, the myRIO acquires data from the encoders and rangefinders as outlined in 

Chapter 2. The overall task of the chassis is summarized in the flowchart in FIGURE 3-2; 

the vehicle must travel to the building zone after the material bed has been loaded, wait 

for the material bed to be unloaded, and travel back to the loading zone accurately and 

repetitively without external localization. This is accomplished by polling the 

rangefinders and encoders and fusing the data to calculate how far the vehicle has 

traveled and where it is relative to the structure. 
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FIGURE 3-2: Vector-drive flowchart of operations 

The myRIO pushes pulse width modulated (PWM) signals to each motor 

controller to govern the speed of each wheel independently. By varying the PWM signal, 

each motor throttle could be varied 0% – 100% in forward and reverse directions. Since 

PWM pulses are created with an 8-bit number, throttle control can assume integer values 

between 0 – 255. However, since each motor must be able to rotate clockwise and 

counterclockwise, the throttle increments are halved such that individual throttle steps 

measure 0 – 127 for each direction; essentially throttle increments of ~0.79%. The Talon 

speed controllers are expecting a PWM signal between 1 – 2 ms. The frequency of the 

PWM signal used was 333 Hz such that the period of the signal is 3 ms as obtained by 

equation (1). Therefore, the forward, reverse, and stop throttle values could be calculated 

from equations (2), (3), and (4) such that the maximum forward throttle duty cycle (dc) is 

0.67, with a maximum reverse throttle dc of 0.33, and stopping throttle dc of 0.5. These 
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throttle values are not arbitrary and are set based on the myRIO hardware limitation of 

the lowest PWM frequency of 333 Hz. 

 
𝑃𝑒𝑟𝑖𝑜𝑑 =

1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

(1) 

 
T𝑟𝑒𝑣𝑒𝑟𝑠𝑒 =

1𝑚𝑠

𝑃𝑒𝑟𝑖𝑜𝑑
 

(2) 

 
T𝑓𝑜𝑟𝑤𝑎𝑟𝑑 =

2𝑚𝑠

𝑃𝑒𝑟𝑖𝑜𝑑
 

(3) 

 
T𝑠𝑡𝑜𝑝 =

1.5𝑚𝑠

𝑃𝑒𝑟𝑖𝑜𝑑
 

(4) 

 Adequate throttle control was still achievable so that vector-like movement as 

performed by Stephen Padgett in [13] could be described by equations (5) & (6). Where 

𝑇𝑥 and 𝑇𝑦 are the resulting 2D throttle values, 𝑀 is the throttle vector magnitude, and 𝜃 is 

the desired strafing angle. 

 𝑇𝑥  = 𝑀 sin(𝜃) 
(5) 

 

 𝑇𝑦  = 𝑀 cos(𝜃) 
(6) 

When starting and stopping, it was important to utilize the throttle percentages to 

minimize wheel slip. A ramping function was created to ramp throttles up and down to 

the desired setpoint rather than setting the speed to the maximum at once. This reduced 

the moment of inertia on the vehicle-mounted hardware ultimately reducing wheel slip. 

Reducing wheel slip initially also helped increase dead reckoning accuracy. An example 
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of a ramping input vs a step input is seen in FIGURE 3-3 where the throttle is linearly 

increased over time as opposed to setting the throttle to a maximum at once. 

 

FIGURE 3-3: Ramp input (blue) vs step input (orange) 

Displacement and velocity were calculated from the encoder output pulses. The 

encoders produce 1988 pulses per wheel revolution, which is determined by equation (7). 

 𝑃𝑢𝑙𝑠𝑒𝑠

𝑊ℎ𝑒𝑒𝑙 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
= [

𝑀𝑜𝑡𝑜𝑟 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠

1 𝑊ℎ𝑒𝑒𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
] · [

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑃𝑢𝑙𝑠𝑒𝑠

1 𝑀𝑜𝑡𝑜𝑟 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
] 

(7) 

Equation (7), was used to derive equation (8) calculating displacement (d). 

Likewise, equation (9) was derived to compute the rotational velocity of the wheel. 

 
𝑑 =

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑢𝑙𝑠𝑒𝑠

𝑃𝑢𝑙𝑠𝑒𝑠
𝑊ℎ𝑒𝑒𝑙 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

·
1 𝑊ℎ𝑒𝑒𝑙 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑊ℎ𝑒𝑒𝑙 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 
(8) 
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𝑅𝑃𝑀 =

[
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑢𝑙𝑠𝑒𝑠

𝑃𝑢𝑙𝑠𝑒𝑠
Wheel Revolution

] [
60 (𝑠)

1 (min)
]

𝑇𝑖𝑚𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑠)
 

(9) 

 

Although the wheel encoders worked for dead reckoning, the ranging devices 

were implemented to ensure the robotic base did not collide with the structure or any 

other objects in its path. The Shark 2Y0A21 range finder was used for coarse distance 

measurements with a tested range of 10 cm to 100 cm, while the VL6180X sensor was 

used for distances less than 200 mm. Although both sensors use light for ranging data, 

each sensor works on different theories of operation. The Shark infrared (IR) sensor 

operates on the principle of measuring the reflected light intensity whereas the VL6180X 

functions on the time of flight (TOF) concept by emitting a light beam and measuring the 

time it takes for the beam to reflect to the receiver diode. Sensor fusion between the 

encoders and rangefinders allowed better control of the chassis for approaching the 

structure. This methodology allowed the control system to ramp down motor throttle 

based on how close the system was to its target destination whether by encoder count or 

rangefinder measured distance. 

To calibrate the Shark sensor, a block was placed 100 mm in front of the sensor 

and then moved in increments of 50 mm up to 1000 mm. The analog voltage with respect 

to distance in (mm) from this test was captured and can be seen in and FIGURE 3-4. This 

data revealed a formula describing analog output voltage as equation (10) through 

empirical derivation. Where V is the analog output voltage of the device, and d is the 
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object distance from the sensor. Solving for (d), resulted in equation (11) and was 

actively used to calculate forward distance from the object. 

 
𝑉 =

90.867

𝑑0.797
 (10) 

 

 

𝑑 =  √
90.867

𝑉

0.797

=
286.56

𝑉1.255
 (11) 

  

 

 

FIGURE 3-4: Shark Y0A21 analog response 

The VL6180X sensor is a digital device communicating via inter-integrated 

circuit (I2C) communication protocol. The output response is linear with all 

calibration/scoring set up by the manufacturer and processed internally on the chip. 

However, the measured distance was often recorded to be off by 6 – 10 mm. To counter 

this, the sensor was tested at distances between 10 – 200 mm in increments of 10 mm. 
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The measured distance was recorded and compared to the actual distance to determine 

the offset. Here it was discovered that the sensor actually operated between 10 – 180 mm. 

A plot of measured vs actual distance can be seen in FIGURE 3-5 where the calibration 

offset was determined to be 6.86 mm as described by equation (12). This data was used to 

accurately report ranging measurements in the automation process. 

 𝑑 =  0.993 ∙ 𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 6.862 (12) 

 

 

 

FIGURE 3-5: VL6180X actual distance vs measured distance 

3.2 Robot Arm Autonomy 

The robot arm serves two primary purposes: position the camera at the desired 

viewing locations, and physically manipulate the building material. Mounting the camera 

as an end-effector tool proved to be beneficial as the camera could be positioned nearly 
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anywhere in the robot’s ROM. This allowed one camera to successfully acquire all 

desired images in the robot’s working area. Furthermore, the 6 DOF arm provided the 

required dexterity to accurately manipulate the material in 3D space. 

3.2.1 Setting Coordinate Systems 

The robotic manipulator is capable of functioning in three modes of operation. 

“X-Y Mode” is used for positioning the payload at a coordinate on a 3-dimensional 

Cartesian plane with respect to axis 𝐽1 center, “Joint Mode” is used for controlling each 

individual joint, and “TOOL Mode” is used to define new reference coordinates with 

respect to the end-effector tool. For the purpose of this research, the “TOOL” mode of 

operation was chosen as the primary means for end-effector positioning. This technique 

was used to identify a coordinate system for both the gripper and camera devices. 

Similarly, a working plane for both the material bed and build plane was assigned using 

the “WORK” feature of the robot controller. This created a 3-dimensional reference point 

for the end-effector with respect to the working surface and base coordinates as presented 

in FIGURE 3-6. Identifying new TOOLs allowed the controller to achieve accurate and 

intuitive 3D coordinate control. This is necessary because both the camera and the 

gripper are mounted as the end-effector tools.  
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FIGURE 3-6: DENSO manipulator coordinate reference [10] 

The mechanical flange interface is used to describe the default TOOL and is 

presented in FIGURE 3-7 such that the z-axis (𝑍𝑚) is projecting outward from the flange 

surface and the y-axis (𝑌𝑚) is pointing to the orientation keyhole. These axes are re-

oriented as seen in FIGURE 3-8 such that 𝑍𝑡 replaces 𝑋𝑚, 𝑋𝑡 replaces 𝑍𝑚, and 𝑌𝑡 

replaces −𝑌𝑚. Knowing this transformation, tool coordinates were created by measuring 

the total 3D offset of the tool center in millimeters for both tools with respect to axis 𝐽6 

center. These offsets not only allow for accurate 3D representation of the tool, but it also 

prevent the robot from moving the tool into a colliding path with any part of the DENSO 

system. 
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FIGURE 3-7: Mechanical flange axes without TOOL axis transformation [10] 

 

 

FIGURE 3-8: TOOL coordinate offset transformation [10] 

https://www.densorobotics.com/user-manuals/001943.html
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3.2.2 End-effector Positioning 

For the movement of the robotic arm, the manipulator was programmed with the 

LabVIEW DigiMetrix toolkit. This toolkit introduced the commands for interfacing with 

the DENSO RC8 controller. The primary commands used in arm positioning are 

“approach”, “depart”, and “Cartesian/move”. The approach command was used to 

approach the desired position with a predetermined vertical offset. Oppositely the depart 

command was used to depart from the position with a predetermined vertical offset. Both 

of these commands are especially useful when the object needs to be picked or placed 

precisely in a vertical fashion. However, the Cartesian/move control method was used to 

move to the exact desired position by the quickest possible route. This was especially 

useful immediately following the approach or depart commands. Each movement was 

tested with different methods of interpolation and movement characteristics to optimize 

behavior. Ultimately, a simple pick operation was created using the approach command 

to move directly above the desired location with the gripper in the open state. This was 

immediately followed by the Cartesian function to move directly to the absolute 

coordinate. At this point the gripper was be actuated to close, followed by a depart 

command. The place command uses essentially the same procedure but swaps the 

open/closed states of the gripper to release the object rather than capture it. A flowchart 

of the pick and place methods summarize this procedure in FIGURE 3-9. 
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FIGURE 3-9: Pick/Place program operation 

3.3 Vision System Autonomy 

Machine vision is the most important task of this research for reaching a state of 

autonomy due to the near-endless possibilities that the vehicle could encounter when 

deployed. To handle this, a vision system was used to locate blocks and the structure for 

object manipulation. This is a driving factor in the successful automation of HARP. 
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3.3.1 Machine Vision Fundamentals 

To understand how this vision processing system works, it is important to 

understand the individual devices and how they operate. The camera is described by its 

functional abilities such as FOV, resolution, and image capture format (32-bit 

Red/Blue/Green, greyscale, or binary). The FOV is the maximum viewing angle 

projecting outward from the camera lens. Resolution is measured by the maximum 

number of picture elements, or pixels, in the y-axis by the maximum number of pixels in 

the x-axis. Combining these functions, cameras work on the principle of recording 

varying light intensity from an array of imaging sensors in the 𝑛 by 𝑚 pixel array [11], 

[14]. 

Image processing is handled by using a variety of techniques. The first step in 

processing and image is choosing what format the image will be processed in. This will 

influence the speed and methodology of processing an image. There are three basic image 

formats for image processing; a greyscale image is represented as an 8-bit number, with 

individual pixel values ranging 0 – 255 in single integer increments. Binary images are 

often derived from greyscale images, where pixel intensity is represented as an 8-bit 

number and every pixel assumes two states; 0 or 255. Red/Blue/Green (RBG) images are 

recorded as 32-bit images where 8 bits are used to make up each R, B, and G parts of the 

pixel. The remaining 8 bits of the 32-bit number are often not used. Many computer 

vision algorithms are performed on greyscale images that are derived from the 32-bit 

color image by extracting a certain color plane from the image [15]. Kanan and Cottrell 

[16] state that “The main reason why grayscale representations are often used for 

extracting descriptors instead of operating on color images directly is that grayscale 
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simplifies the algorithm and reduces computational requirements” meaning a grayscale 

image processing will be less intensive on the vision processing hardware and can often 

be processed faster. Binary images can be processed even faster but this format often 

filters out or omits important characteristics or features of the image. For these reasons, 

greyscale image format was chosen for image processing in this research. A visual 

representation RGB, Greyscale, and binary image formats can be seen in FIGURE 3-10. 

 

FIGURE 3-10: RGB (left), greyscale (middle), and binary (right) 

Further reduction of the computational strain on the vision processing hardware 

can be accomplished by identifying a region of interest (ROI). Hornberg states “The ROI 

identifies the areas of interest for machine vision application and removes the 

uninteresting image data that is beyond the ROI” [11]. Establishing an ROI focuses 

processing power on one designated area and omits all other regions that do not need to 

be processed. This further reduces the computational requirements by the vision 

processing hardware if the object of interest falls in the ROI. It is crucial to verify that the 

selected region of interest encompasses the object or feature of interest. ROIs were 

extensively used in many algorithms for this system. 

It is common to have a certain level of unwanted noise present in the image. 

Filtering becomes an advantageous option in this scenario with many different options to 
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work with. One of the most common, and also used in this research, is the Gaussian or 

smoothing Gaussian filter. The Gaussian filter describes the probability density function 

of a random variable such that it filters out high frequency by averaging adjacent pixels 

creating a low pass filter [14]. In equations (13) and (14), 𝜎 is the standard deviation for 

the distribution, 𝑥 & 𝑟 are horizontal pixels, and 𝑐 represents vertical pixels where 

equation (13) is a one-dimensional filter and equation (14) is a two-dimensional filter 

[11]. 

 
𝑔𝜎(𝑥) =

1

√2𝜋𝜎
𝑒−𝑥2/(2𝜎2) 

(13) 

 
𝑔𝜎(𝑟, 𝑐) =

1

√2𝜋𝜎2
𝑒−(𝑟2+𝑐2)/(2𝜎2) 

(14) 

3.3.2 Types of Vision Processing 

Edge finding techniques are a basic form of image processing, as well as the 

foundation of other machine vision algorithms. The edge finding technique searches for 

an abrupt change in the consecutive pixel intensities. Often, a significant rate of change in 

pixel intensity signifies the edge of an object. “Edge detection methods usually rely on 

calculations of the first or second derivative along the intensity profile” which better 

characterize the edge data [17]. Burger and Burge describe general edge finding 

techniques by equation (15) [18]. Where the function 𝑓(𝑢) presents a rapid change in 

pixel intensity (u) in the x or y axes. To visualize this concept, refer to FIGURE 3-11 

[18]. 
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 𝑑𝑓

𝑑𝑢
(𝑢) ≈

𝑓(𝑢 + 1) − 𝑓(𝑢 − 1)

(𝑢 + 1) − (𝑢 − 1)
=

𝑓(𝑢 + 1) − 𝑓(𝑢 − 1)

2
 

(15) 

 

 

FIGURE 3-11: Edge finding illustration [17] 

Pattern matching is an advanced technique that starts with a characteristic image, 

or template, and searches a given region of interest of a new image for a match. This is 

advantageous when the desired match closely resembles the pattern. As mentioned, edge 

finding is the basis of many machine vision algorithms and is often applied in pattern 

matching by examining the relevant edges in an image and comparing them to a base 

template. Pattern matching was used as the secondary check of object locating in this 

research. Though pattern matching is extremely useful and accurate, often, undesired 

information is captured in images. To eliminate this unnecessary load on the vision 

processing hardware, the pattern, or template is modified to ignore certain aspects of the 

object that may not always be present in an image depending on the object position 

relative to the camera. This, in turn, increases the likelihood of finding a match and 

decreases processing time.   
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According to [19], pattern matching in its simplest form can be represented by 

equation (16), and (17). Where x and y represent pixel intensity values and a “small value 

of d(x, y) or a high value of s(x, y) is indicative of pattern similarity”. 

 

𝑑(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

=
1

𝑁
‖𝑥 − 𝑦‖2

2 (16) 

 

 
𝑠(𝑥, 𝑦) =

1

1 + 𝑑(𝑥, 𝑦)
 (17) 

 

3.3.3 Camera Calibration 

Any vision system that interacts with the outside world likely will report 

processing data in real-world units. This is characterized as a spatial resolution in 

millimeters per pixel by Hornberg [11]. To transpose pixel coordinates into real-world 

units, it is necessary to perform an image calibration. This will allow the vision system to 

relay calculated image data relative to the camera. However, the camera has many 

characteristics that prevent direct pixel to unit mapping that must be taken into 

consideration. 

In this research specifically, since the distance from the camera to the object of 

interest can always be known, the Pinhole Camera Model calibration technique is 

sufficient. Caja et al from [20] present this method as, “a camera model transforms the 

coordinates of a point in space (3D) to the coordinates of a point in an image (2D), i.e., 

explains the process of forming an image with a camera”. This is generally summarized 

by the graphic in FIGURE 3-12 and the matrix expression in (18). 
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FIGURE 3-12: Pinhole camera technique representation 

 
(

𝑤 · 𝑢
𝑤 · 𝑣

𝑤
)

= (

𝑎𝑥 𝑠 𝑥0

· 𝑎𝑦 𝑦0

· · 1
) (

𝑟11 𝑟12 𝑟13 −𝑡𝑥

𝑟21 𝑟22 𝑟23 −𝑡𝑦

𝑟31 𝑟32 𝑟33 −𝑡𝑧

) (

𝑥𝑚

𝑦𝑚
𝑧𝑚

1

)     {
𝑼𝒉𝒑𝒊 = 𝑲[𝑹| − 𝒕] · 𝑿𝒉𝒎

𝑼𝒉𝒑𝒊 = 𝑷 · 𝑿𝒉𝒎
} 

(18) 

𝑼𝒉𝒑𝒊 = (𝑤 · 𝑢, 𝑤 · 𝑣, 𝑤)𝑇 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑎𝑛𝑡𝑒𝑠 

𝑿𝒉𝒎 = (𝑥𝑚, 𝑦𝑚, 𝑧𝑚, 1)𝑇 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑟𝑒𝑎𝑙 − 𝑤𝑜𝑟𝑙𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

𝑎𝑥 = 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑎𝑡𝑙 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 

𝑎𝑦 = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 

𝑠 = 𝑆𝑘𝑒𝑤 𝑝𝑎𝑟𝑎𝑛𝑡𝑒𝑟 

(𝑥0, 𝑦0) = 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

𝑹 & 𝑻 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑐𝑎𝑚𝑒𝑟𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 
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Lastly, the geometric distortion is represented by the change in location of the 

image points that are attributed to the lens characteristics in equations (19) and (20). 

Where 𝑢̇ and 𝑣̇ are the distorted coordinates, 𝛿𝑢 and 𝛿𝑣 are the geometric distortion 

properties of 𝑢̇ and 𝑣̇. 𝛿𝑢 And 𝛿𝑣 are modeled by equations (21) and (22). Where ∆𝑢 =

𝑢 − 𝑥0 and ∆𝑣 = 𝑣 − 𝑦0 and 𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑠1, 𝑠2 are the distortion characteristics [20]. 

 𝑢̇ = 𝑢 + 𝛿𝑢 (19) 

 

 𝑣̇ = 𝑣 + 𝛿𝑣 (20) 

 

 𝛿𝑢 = 𝑘1∆𝑢(∆𝑢2 + ∆𝑣2) + 𝑘2∆𝑢(∆𝑢2 + ∆𝑣2)2 + 𝑝1(3∆𝑢2 + ∆𝑣2)
+ 2𝑝2∆𝑢∆𝑣 + 𝑠1(∆𝑢2 + ∆𝑣2) 

(21) 

 

 𝛿𝑣 = 𝑘1∆𝑣(∆𝑢2 + ∆𝑣2) + 𝑘2∆𝑣(∆𝑢2 + ∆𝑣2)2 + 2𝑝1∆𝑢∆𝑣
+ 𝑝2(∆𝑢2 + 3∆𝑣2)+𝑠2(∆𝑢2 + ∆𝑣2) 

(22) 

 

3.4 Machine Vision Automation 

Overall, the prototype implements many machine vision algorithms. Of these, 

pattern matching and edge finding were used most often. These algorithms were 

configured in a two-step process to verify block pick and placement applications. Edge 

finding was used as the primary tool for locating objects in the initial block detection, 

laser line finding, and corner finding functions. This served as an accurate, reliable, and 

time-efficient means of object localization relative to the camera's current position, 

especially when only fragments of the object are within camera FOV. Pattern matching 

was used as the secondary check for block localization via the pattern matching function. 

However, prior to executing these processes, an image calibration was completed. 
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3.4.1 Machine Vision Calibration 

Image calibration is of the most importance when implementing machine vision 

to interact with the outside world. This is a result of requiring accurate measurements in 

real-world coordinates. Using the Vision Assistant application from LabVIEW, a 

calibration was successfully completed to examine overall distortion percentage, mean 

and max error map, standard deviation, as well as a pixel to real-word unit mapping. The 

Dot Grid method was used in this process with the Distortion Model calibration and 

implemented in every machine vision application. Since the vision system acquires 

images at multiple different z-axis elevations, a calibration was required at each to 

eliminate inaccurate measurements. Mapping the error relative to the camera lens after 

image correction revealed the plot in FIGURE 3-13 to demonstrate an example of 

distortion attributed to the camera and imaging hardware. 
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FIGURE 3-13: Dot-Grid image calibration distortion representation 

3.4.2 Finding Block Coordinates 

A summary of the vision tools/process used in locating block coordinates is 

presented in FIGURE 3-14. Where edge finding is used to find the approximate center of 

each block for the initial block finding function, to then reposition the camera above these 

coordinates acquiring an image at each location. Finally, these images are then compared 

to a template searching for the actual block location in the image relative to real-world 

coordinates to complete the pattern matching function.  
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FIGURE 3-14: Block finding flowchart of operations 

The FOV for the camera limited the ability to see all blocks loaded on the 

material bed at once. To counter this, approximate block locations are computed by 

implementing a simple edge finding algorithm which is known as the initial block finding 

function. Here, the manipulator positions the camera at the highest possible point above 

the material bed center. An image is then acquired and saved in memory. After an image 

is captured, the edge fining algorithm is applied. The edge finding algorithm is tailored to 

search specific ROI’s for edges within ±25°, of the vertical for rotation depending on the 

edge parameters. Using the NI Vision Assistant ‘Caliper’ function, the algorithm can then 

calculate where the edges intersect to characterize the block corner, as well as compute 
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the angle of each edge with respect to the vertical/horizontal. With this information, the 

approximate center can be calculated. The settings used in the initial block finding 

algorithm are presented in TABLE 3-1. 

TABLE 3-1: Edge finding settings used in the initial block finding function 

 

Calculation of the approximate center coordinates is illustrated by equation (23) 

and (24) using sin and cos trigonometry properties. Where h is the known diagonal length 

to the center of the block from the corner, 𝜃 is the angle from the camera vertical to the 

edge of the block, y is the magnitude to move vertically, and x is the magnitude to move 

horizontally with respect to located block corner. FIGURE 3-15 illustrates the edge 

finding algorithm locating up to three block corners. The algorithm can use the x and y 

coordinates to command the arm to move the camera to each calculated center point to 

acquire an image at each location.  

 |𝑦| = |h · cos(26.57° ± θ)| (23) 

 

 |𝑥| = |h · sin(26.57° ± θ)| (24) 

 

Edge Polarity Dark to Bright 

Edge Type Best Edge 

Minimum Edge Strength 25 

Kernel Size 13 

Projection Width 13 

Pixel Gap 10 
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FIGURE 3-15: Initial corner finding algorithm finding three corners 

After an image has been acquired at each of the approximate block centers, the 

developed algorithm examines them individually with the pattern matching function. 

Each image is compared to a template using the LabVIEW Pattern Matching algorithm. 

Here, the pattern matching template is customized to ignore certain areas and focus on 

others. Using correlation scores, the image pixel intensity is analyzed to see if there is a 

match. From this match, the new center coordinate are calculated by combining the 

results from the edge finding algorithm and pattern matching algorithm. This information 

is used as the final coordinate of the block center. The pattern matching script outputs a 

non-destructive overlay illustrating where the match is located on the image as 

demonstrated in FIGURE 3-16. 
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FIGURE 3-16: Half and full-block successful pattern match 

3.4.3 Finding Block Placement Coordinates 

In addition to finding the blocks, the vision algorithm must be robust enough to 

determine where to place the blocks. If the structure has not been started, the vision 

system executes the laser line finding function examining the build plane for a laser line 

as a reference point to place the first block. This provides both a starting position, as well 

as angle so the rangefinder sensors can later be used for vehicle positioning. The 

“Advanced Edge Finding” option in the Vision Assistant application was used since this 

environment could present much background noise. The parameters used in this process 

are presented in TABLE 3-2. 
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TABLE 3-2: Edge finding settings used in the laser line finding function 

 

After the first block has been placed, the corner of the structure is used to identify 

where to place the next block. To do this, the manipulator positions the camera at 500 

mm above the middle of the working surface and acquires an image. Then, the corner 

finding function is used to locate the corner of the partially assembled structure. After this 

is accomplished, the algorithm positions the camera at these coordinates with a vertical 

offset of 350 mm to acquire yet another image. The corner finding function is executed 

once more to recalculate the coordinates of the corner with respect to the new camera 

position. This two-step process was used to ensure accurate placement of the block since 

the visual perception of the corner can vary depending on the angle of which it’s viewed. 

Further definition of this process is illustrated by the flowchart in FIGURE 3-17. 

Detection Method First Edge Projection 

Search Direction Bottom to Top 

Edge Polarity Any Edge 

Minimum Edge Strength 20 

Minimum Edge SNR 6.09 

Kernel Size 5 

Search Gap 15 

Edge Angle Range ±25° 
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FIGURE 3-17: Block placement flowchart of operation 

The edge finding algorithm used in the corner finding function was tuned with the 

“Advanced Edge Finding” option in the Vision Assistant application as done with the 

laser line finding function to decrease the effects of excessive noise. This was tested with 

all available block colors with the parameters listed in TABLE 3-3.  

TABLE 3-3: Edge finding parameters used in the corner finding function 

Detection Method First Edge Projection 

Search Direction Bottom to Top 

Edge Polarity Any Edge 

Minimum Edge Strength 20 

Minimum Edge SNR 6.09 

Kernel Size 5 

Search Gap 15 

Edge Angle Range ±20° 



53 

  

Processing both images, the angle of the structure with respect to the camera is 

used to calculate the magnitude of the x and y offsets using equations (25) and (26) as 

demonstrated in FIGURE 3-18. These equations are very similar to those used in Section 

3.4.2 but x and y are interchanged because the blocks are approximately horizontal with 

respect to the camera/vehicle. FIGURE 3-18 graphically represents calculated offsets 

from equations (25) and (26) of which the gripper should position the block. As noted in 

the graphic, 𝛽 is the angle between the structure and the camera horizontal axis, 𝛼 is the 

constant angle from the edge of the block to the diagonal (h). Moreover, 𝜃 is the 

algebraic sum of these angles used to calculate x and y displacement vectors. 

 |𝑦| = |h · sin(θ)| (25) 

 

 |𝑥| = |h · cos(θ)| (26) 

 

 

FIGURE 3-18: Block placement calculation methodology 
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3.5 Systematic Automation 

Each of the subsystems previously mentioned must work together to complete the 

overall automated vehicle. Providing feedback between systems improves successful 

process completion. Since the CVS and myRIO are two separate controllers, they must 

communicate during the process for system verification. To do this, a shared variable 

node was generated on the myRIO device. This allows variables to be monitored by both 

devices in order to reveal what state the system is currently operating in. 

Overall, the sub-processes specified above are condensed into two main 

programs; the vehicle positioning and structure assembly programs. The vehicle 

positioning program runs on the myRIO, and the structure assembly program runs on the 

CVS. The vehicle movement commands are specified for four building zone locations 

categorized as positions 1-4 with the loading zone remaining stationary. The vehicle is 

positioned at any of the positions based on the status of the structure by strafing across 

the surface always returning to the loading zone to be reloaded. The structure assembly 

program, however, is only used when it is in a position to build the structure. The block 

finding function is repeatedly called to locate blocks while the build functions are utilized 

to manipulate these blocks into the structure. An image of HARP building the structure is 

seen in FIGURE 3-19. 
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FIGURE 3-19: Complete robotic system used in testing 
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CHAPTER 4: RESULTS AND OBSERVATIONS 

The results from the data collection methodology are presented in the following 

sections. In this chapter, each system is tested individually and later tested as a combined 

system to ensure correct operation and functionality. 

4.1 Vector-drive Testing 

Control and maneuverability was a vital aspect of the testing procedure. The first 

approach to vector-drive testing was analyzing throttle control. This is essential in order 

to accurately control the movement and direction of the vehicle. To do this, motors were 

tested from 0 to 100% in both forward and reverse. The velocity of each motor was 

captured in revolutions per minute (RPM) by recording encoder counts over a set period 

of time. These counts were then transposed into RPMs by equation (9). A plot comparing 

motor throttle in percent and RPMs over time can be seen in FIGURE 4-1. This test also 

analyzed the controllability of the motor by ramping the throttle in increments of 1.48%. 

Both forward and reverse responses were recorded to verify that each direction operated 

appropriately in a linear fashion to the maximum of 74 RPMs. 
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FIGURE 4-1: Motor throttle and RPM over time 

Concluding this test, it was observed that better motor control for the robotic base 

would provide more accurate vehicle movement. It was recorded at low throttle values, 

that the motors were jumpy and did not provide fine throttle resolution which hindered 

dead reckoning and velocity control. Incorporating a speed control system with at least 16 

bits of resolution could significantly impact the controllability of the base unit. 

4.2 Robotic Manipulator 

Accuracy testing and tool offsets were tested in this section. Accuracy testing was 

performed before tool offsets were finalized to verify that the positioning error of the 

robotic manipulator would not affect tool offsets. 
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4.2.1 Accuracy Testing 

David Vutetakis performed a calibration for his robotic system using the exact 

robotic manipulator that was used in this research. This test was used to validate the 

manipulators' performance and benchmark the accuracy and precision thereof. A 

methodology similar to Mr. Vutetakis’ was used to verify the manipulator’s performance 

did not change since the arm was mounted on the vehicle chassis and mobile relative to 

the build plane. To test this, a foam board with a soft yet rigid material was precisely 

placed on the build plane. All supporting hardware including the gripper, ring light with 

power source, and camera were mounted on the end-effector for accurate tool weight 

representation. A special gripper attachment was 3D printed to project a needlepoint with 

a diameter of 0.40 mm as shown in FIGURE 4-2.  

Using the robot arm, the needle was then inserted into the foam board ten times 

with 20 mm of space between each puncture. A second series of ten punctures was 

created with the same 20 mm spacing. On the second series, the needle was positioned 

and then re-inserted into each of the holes a total of ten times. In summary, twenty holes 

were created; the needle was re-inserted into half of these holes an additional nine times 

each. Once the process was complete, a Basler ACA2500 machine vision camera was 

fixed on a camera stand 40 mm off the surface of the board, as seen in FIGURE 4-3, to 

capture an image of each hole. From here, Vision Assistant was used to calibrate the 

camera and measure the mean diameter both sets of ten holes. 
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FIGURE 4-2: Gripper-mounted needle test apparatus 

 

FIGURE 4-3: Camera stand for measuring the hole diameter 

Puncture 
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FIGURE 4-4 demonstrates the error measurement methodology where 𝜀𝑎𝑟𝑚 is the 

manufacturer specified maximum positioning error (±0.02 mm),  𝑟1is the radius of single 

punched hole, and  𝑟10 is the radius of the hole punched ten times. This illustrates the 

error relative to the manufacture specified error and relative to the single punched holes. 

 
FIGURE 4-4: Position error measurements 

After this experiment was completed, the mean diameter of the single punched 

holes was compared to the mean diameter of the 10x punched holes. Here it was 

determined the mean diameter of the single punched hole was 0.357 mm with the mean 

diameter of the 10x punched holes measured at 0.422 mm. The difference in means is 

0.065 mm which can be interpreted as a positioning precision of ±0.0325 mm. This test 

confirms that while mounted on the mobile base, the robotic manipulator positioning 

error is 0.0125 mm greater than the manufacture specification. This precision error was 

determined to be negligible due to the very small effect it would have on gripper 
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positioning with respect to the size of the blocks/structure. The complete results can be 

viewed in TABLE 4-1 

TABLE 4-1: Robot arm positioning test data 

4.2.2 Tool Offset Mapping 

To verify the gripper coordinates had been successfully mapped, a series of three 

targets were clearly marked on the same material used in the previous test. This was done 

to outline where the manipulator was commanded to position the end-effector tool in 

real-world coordinates as seen in FIGURE 4-5. Each position was set relative to the true 

base coordinates of the manipulator as previously outlined in FIGURE 3-6. Position 1 

was located at coordinates [-200 mm, 300 mm], position 2 was located at [0 mm, 300 

mm], and position 3 was located at [200 mm, 300 mm]. Upon arrival to the position, the 

needle mounted on the end-effector modification was then inserted into the material 

leaving behind a mark on the surface. This process was repeated ten times at movement 

speeds of 25%, 50%, and 75% to rule out speed-related positioning errors. This test 

Hole Number 10X Holes Diameter (mm) 1X Holes Diameter (mm) 

1 0.411 0.328 

2 0.415 0.395 

3 0.419 0.400 

4 0.420 0.369 

5 0.414 0.3782 

6 0.414 0.356 

7 0.409 0.322 

8 0.402 0.354 

9 0.426 0.311 

10 0.490 0.357 

Mean 0.422 0.357 

Standard Deviation 0.025 0.030 
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revealed that the gripper coordinates were off by negative 1 mm in the x-axis and positive 

1 mm in the y-axis and are recorded in TABLE 4-2. 

 

FIGURE 4-5: Robotic manipulator positioning test setup 

To verify the camera offset, position P2 of FIGURE 4-5 was used for the 

reference center point as to where the camera should be positioned. The camera was 

repositioned until the intersection of P2 was measured at the center pixels of the pixel 

array using the Vision Assistant application. The offsets recorded in these procedures for 

both the camera and gripper are recorded in TABLE 4-2 

TABLE 4-2: Tool offsets 

TOOL 

Offset (mm) 
X Y Z Rx Ry Rz 

Gripper -1 1 181.31 0 0 -90 

Camera -18.5 107 50 0 0 0 
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4.3 Machine Vision Testing 

Several aspects of machine vision are to be tested as this greatly impacts the 

functionality of the assembly process. Of these, calibration, edge finding, and pattern 

matching were of the greatest interest. 

4.3.1 Image Calibration 

The results from the calibration performed by the vision system are recorded at 

both 500 mm elevation and 350 mm elevation. The results are represented in tabular form 

as seen in TABLE 4-3 and TABLE 4-4. Furthermore, a plot of the error after image 

correction is seen in FIGURE 4-6 and FIGURE 4-7 with respect to image pixels in the x 

and y-axis. 

TABLE 4-3: 500 mm calibration results 

Mean Error 0.06220 mm 

Max Error 0.07025 mm 

Standard Deviation 0.00148 mm 

Percent Distortion 0.10563 % 

Average Calibration Time 1.19 ms 
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FIGURE 4-6: Error plot at 500 mm vertical offset 
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TABLE 4-4: 350 mm calibration results 

Mean Error 0.05091 mm 

Max Error 0.05285 mm 

Standard Deviation 0.00037 mm 

Percent Distortion 0.08810 % 

Average Calibration Time 1.20 ms 

 

 

FIGURE 4-7: Error map with 350 mm vertical offset 
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In comparison, the maximum difference in error and distortion between the two 

calibrations is ~0.1 pixels, however, different calibrations are essential due to the change 

in elevation which would results in inaccurate measurements and calculations if not 

considered.  

4.3.2 Edge Finding 

4.3.2.1 Initial Block Location 

This initial block finding function searched the entire camera FOV for at least 

three block corners on the material bed. The parameters used in this process were fine-

tuned for the most accurate results and are recorded in TABLE 3-1. With these 

parameters set, the function was tested by placing blocks on the material bed and 

positioning the camera over its center. In this test, it is assumed that three blocks will be 

loaded on the material bed by another machine with some degree of accuracy. This was 

simulated by manually positioning the blocks on the material bed with at most, ±25° 

rotation, separated by at least 10 mm. This test was performed a total of 25 times to prove 

the functionality of the algorithm. FIGURE 4-8 represents a common block configuration 

and successful initial block finding. Here, the green boxes represent the ROIs and the red 

lines are the calculated edges per the ROI. Of the 25 tests, three block corners were 

successfully located in every experiment. 
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FIGURE 4-8: Initial block finding function success 

After the test was completed with three blocks, it was again performed with only 

two blocks to examine if the algorithm reads false positive. Here it was concluded that 

the algorithm continued to work accurately with only two blocks if they were placed with 

the original parameters in the previous paragraph. It was later discovered that there was 

the potential for a false reading if the block merged into the opposing ROI. As a solution, 

the loading device would be capable of communicating how many blocks were placed on 

the material bed.  

4.3.2.2 Laser Line Finding 

Testing the laser line finding function, HARP was positioned at random with the 

laser line in the camera FOV. The function was the executed recording the results and 

summarizing them in TABLE 4-5. These findings revealed that if the laser line was 

within the camera FOV, the line was located. However, it was also discovered that as the 
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intensity of the laser line faded, false positives could be recorded due to the decreased 

signal to noise ratio (SNR) in the background environment. Appropriate measures were 

taken to ensure the laser line intensity did not fade during operation by implementing a 

regulated power source. Although the laser line was located every time it was within the 

camera FOV at full intensity, the actual measurements of the laser's position and 

orientation varied slightly. This error was used to characterize the accuracy of the laser 

line finding function with an average y-axis misalignment of 5.04 mm and a standard 

deviation of 3.28 mm. The angle was recorded to have an average error of 0.88° with a 

variance of 0.87°. It is important to note that the “Actual Laser Position (mm)” is 

measured from the center of the manipulator base to the laser line whereas “Measured 

Position (mm)” is computed from a combination of the vision and manipulator data. 

TABLE 4-5: Laser line finding results 

 

4.3.2.3 Corner Finding 

Testing the corner finding  function was completed similar to the laser line 

finding test by positioning HARP at random with the partially assembled structure in the 

camera FOV. The full corner finding function was executed to record the results through 

Actual Laser 

Angle (deg.) 

Measured Laser 

Angle (deg.) 

Actual Laser 

Position (mm) 

Measured 

Position (mm) 

Processing 

Time (ms) 

~0 -0.73 366.27 366.46 96 

6.43 7.75 356.33 352.03 96 

10.64 12.78 330.63 323.50 94 

-5.37 -5.27 346.52 355.38 94 

-9.4 -9.31 384.77 389.45 95 

Mean - - - 95 

Error Standard 

Deviation 

- - - 0.82 
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five different tests as summarized in TABLE 4-6. Here it was determined that the two-

step corner process was beneficial by examining the position error between the 500 mm 

and the 350 mm results. This error is a result because the 500 mm image is taken in line 

with the center of the vehicle, and the 350 mm results are taken in closer alignment to the 

corner of the structure with the provided offset coordinates of the 500 mm calculation. 

The visual perception of this is represented in FIGURE 4-9 where image “a” is taken at 

500 mm above the center of the build plane, and image “b” is taken 350 mm above the 

corner of the structure at the build plane, as previously explained in Section 3.4.3.  

 

FIGURE 4-9: 500 mm and 350 mm image perceptions 

The results in TABLE 4-6 are indicative that the average error in the x-axis was 

9.99 mm and 17.78 mm in the y-axis with an error variance of 4.04 mm in the x-axis and 

3.36 mm in the y-axis. This low variance and high mean error indicate that the two-step 

process is beneficial to block placement. The coordinates for these results were then 

verified to be true by placing a block at each position in-line with the partially completed 

structure. Further testing of this function was completed in section 4.4 where structure 

completion error was recorded. 
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TABLE 4-6: Corner finding results 

Test Number 500 mm 350 mm |𝐸𝑟𝑟𝑜𝑟 𝑋| |𝐸𝑟𝑟𝑜𝑟 𝑌| 
Processing 

Time 

1 (-59.50,-8.47) (-72.07,-22.95) 12.57 14.47 202 

2 (-9.98,45.35) (-14.86,27.26) 4.87 18.09 207 

3 (-8.94,7.11) (-15.30,-11.35) 6.36 18.46 200 

4 (-51.30,-31.47) (-63.94,-46.49) 12.64 15.02 203 

5 (64.94,-14.48) (51.45,-37.37) 13.49 22.89 209 

Mean - - 9.99 17.78 204.20 

Standard 

Deviation 
- - 

4.04 3.36 3.70 

 

4.3.3 Pattern Matching 

Concluding the edge finding algorithms, pattern matching was completed. The 

pattern matching function was challenged to locate both full blocks and half blocks, 

however, testing of each size was completed separately. 

4.3.3.1 Pattern Matching: Full-Size Block  

The first test performed by this algorithm was to experiment with the script's 

ability to find a block in random positions and orientations within the camera’s FOV. To 

complete this test, a full-size block was placed randomly on the material bed with at least 

95% of surface area within the cameras FOV. This was performed 40 different times to 

validate the pattern matching abilities, by successfully finding 40 of 40 matches. Each 

located block coordinate and angular rotation is compiled in FIGURE 4-10 and FIGURE 

4-11. Where the red line in FIGURE 4-10 represents the x-coordinate distribution with a 

standard deviation of 42.69 mm, and the blue line represents the y-coordinate distribution 

with a standard deviation of 27.55 mm. The viewable area in this camera position is 300 
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mm x 200 mm, calculating that the variance of block position was 14.2% in the x-axis, 

and 13.78% in the y-axis. The black line in FIGURE 4-11 represents the angular rotation 

distribution with a standard deviation of 116.61 degrees. The large variance with respect 

to FOV indicates that the block was placed randomly with respect to the camera module 

FOV.  

 

FIGURE 4-10: Normal distribution of block coordinates 
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FIGURE 4-11: Normal distribution of block rotation 

The processing performance of each image varied slightly. Further testing of the 

vision script was performed to analyze if position, rotation, or color affected the 

processing time. The first examination of the pattern matching test was to compare the 

match score vs both position, and angular rotation. This was done to record if the position 

or angular rotation affected the results. The angular rotation test was accomplished by 

placing a full block from 0° − 360° degrees in increments of 45° directly under the 

center of the camera lens. For the position test, the block was placed with vertical 

alignment in random positions away from the camera center with zero rotation. It was 

shown that block position relative to the camera negatively affected the match score more 
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than rotation. However, it was observed with angular movement, processing time 

increased by 289.28 ms on average. The average score for the angled block was 

963.22/1000 with a standard deviation of 10.41. For the random position, the average 

score was 938.61/1000, with a standard deviation of 18.72. FIGURE 4-12 displays the 

data captured in this experiment with the blue bars as match score vs position, and the 

orange bars as match score vs angular movement. This test demonstrated that with better 

initial alignment to the block, the results are calculated faster and with more accuracy.  

 

FIGURE 4-12: Match score relative to the position, and angular rotation 

When testing the effects of color, it was discovered that each image resulted in a 

mean processing time of 1235.42 ms with a standard deviation of 133.88 ms. The data 

represented in FIGURE 4-13 implies that color had little correlation on processing time 

except for the yellow block. On average, the pattern matching function processed the 
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yellow block images 247.23 ms faster than the average processing time of all other 

colors.  

 

FIGURE 4-13: Processing time vs block color 

FIGURE 4-14 illustrates processing time versus block rotation. Here, the plot 

indicates that there is little correlation between processing time and magnitude of angular 

rotation.  
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FIGURE 4-14: Processing time vs block angle experiment 

FIGURE 4-15 presents processing time vs block position. As with block rotation, 

there appears to be no correlation with processing time versus position. 
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FIGURE 4-15: Processing time vs block position experiment 

Further testing of the pattern matching algorithm revealed that it could search the 

image for the presence of a template in one-degree increments approximately every 3-5 

ms. This was noted such that the easiest way to reduce processing time was to narrow the 

search angle. Since the initial block finding function was used to re-orient the camera 

over the approximate block location and angle, the pattern matching function was tuned 

to search the image within ±25° for the template rather than 0° − 360°. This resulted in 

processing the image 5.27 times faster; or processing an image every 245.5 ms on 

average. A chart comparing the processing times with 360° (orange) and ±25° (blue) is 

illustrated in FIGURE 4-16.  

 

FIGURE 4-16: Reduced processing time comparison 
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4.3.3.2 Pattern Matching: Half Size Block 

Repeating the steps in Section 4.3.3.1, the half-block pattern matching routine 

was tested 40 times with the object placed randomly in the camera FOV. The results from 

this test are summarized by the plot in FIGURE 4-17 where the red line represents the x-

coordinate distribution with a standard deviation of 55.24 mm, and the blue line 

represents the y-coordinate distribution with a standard deviation of 38.76 mm. Again, 

the spread of this dataset indicates that the block was placed randomly within the camera 

FOV. Of these, the block was found a total of 40 out of 40 times with an average 

matching score of 831.4/1000, and matching score standard deviation of 37.85. 



78 

 

FIGURE 4-17: Scatter plot of located block positions 

As done with the full block test, processing time was analyzed examining the 

effects of position, rotation, and color. It was discovered that the processing results were 

similar to that of the full-block tests such that the test had little correlation to processing 

time. The results from the half-block pattern matching tests are summarized in TABLE 

4-7. Here, processing time has a mean of 493.75 ms and a standard deviation of 40.94 

ms. As with the full-block pattern matching, the yellow block processing time was faster; 

on average, 52.5 ms. However, after lowering the search region to ±25°, the mean 
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processing time of all colors was reduced to 131.80 ms with a standard deviation of 6.11 

ms as presented in the following table. 

TABLE 4-7: Half-block pattern matching results 

 

4.4 Autonomous Structure Assembly 

Several aspects of the overall autonomy were analyzed. The primary focus of 

scoring was to analyze the placement of the blocks by recording the first block placement 

relative to the laser line compared to the position of the final block placed relative to the 

laser line. Performing this test presents a model for accumulated error over a one-meter 

span. In a separate test, the assembly process was timed to test consistency and determine 

if any process variation resulted in increased build times. Furthermore, to verify that the 

vehicle positioning devices worked within their programmed tolerances, rangefinder 

distance and encoder counts were recorded throughout the process and analyzed. 

During the automated building process, the imaging system searches for a laser 

line to place the first block. When the line is located, the system then places the block 

coincident to the laser line. At this point, the placement error relative to the laser line is 

recorded. From here, the program adds onto the structure three blocks at a time until the 

structure is completed. Since the blocks are not permanently cemented in place, each 

Block Type 
Average Processing Time 

360° (ms) 

Average Processing 

Time ±25° 

Standard Deviation 

360° (ms) 

Red 515.00 177.20 
40.94 

Blue 527.90 196.10 

Green 514.10 184.72 Standard Deviation 

±25° (ms) Yellow 466.51 167.33 

Average 493.75 181.35 14.92 
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consecutive build operation could potentially perturb previously set blocks resulting in a 

drifting error if the placement is not properly aligned. The error of the structure relative to 

the laser line is recorded throughout the process. This is used to measure where, if any, 

error accumulates during structure assembly. An illustration describing potential error 

measurements is described in FIGURE 4-18; this graphic is exaggerated and not to scale 

for illustration purposes.  

 

FIGURE 4-18: Structure start and end error diagram 

TABLE 4-8 summarizes the error over five different tests. It is important to note 

that the error in the x-axis will always be zero for the first block placement since it sets 

the starting point of that axis. The completion error of the x-axis for the final block 

placement is measured with respect to where the first block was placed with a mean of 

4.02 mm. The average structure start error was off by 2.71 mm in the y-axis with an 

angular misalignment of 0.113°. To complete the structure, the average y-axis error 

relative to the laser line was 2.78 mm with angle misalignment was off by 1.307°. 
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TABLE 4-8: Structure completion error 

 

Next, the overall completion time of the assembly process was evaluated. 

Recorded in TABLE 4-9, the autonomous assembly process was completed a total of five 

times. The length of time was measured and any visually observed errors that occurred 

were recorded. These five tests revealed that the average structure completion time was 6 

minutes 20.9 seconds with a standard deviation of 7.5 seconds. Overall there was one 

major error in test 1, which occurred when placing the last block at build position 3 was 

not properly aligned. This resulted in having to manually fix the block to continue the 

process. Test 2 and 5 had minor errors at which the block slipped out of the gripper. The 

block was then re-inserted into the gripper and the process was continued. This was not 

considered a critical error because the gripper was at fault and could be improved for a 

better mate with block geometry. 

Test 

Number 

Build Start Build Finish 

𝜀𝑥 (𝑚𝑚)  𝜀𝑦 (𝑚𝑚) 𝜀𝑎𝑛𝑔𝑙𝑒 (𝑑𝑒𝑔. ) 𝜀𝑥 (𝑚𝑚) 𝜀𝑦 (𝑚𝑚) 𝜀𝑎𝑛𝑔𝑙𝑒 (𝑑𝑒𝑔. ) 

1 0 0.55 0.161 3.28 3.46 1.376 

2 0 4.73 0.129 4.36 6.93 0.129 

3 0 3.25 0.070 4.4 2.06 3.008 

4 0 3.03 0.166 4.65 0.2 0.166 

5 0 1.97 0.041 3.4 1.27 1.856 

Mean - 2.71 0.113 4.02 2.78 1.307 

Variance - 1.56 0.056 0.63 2.60 1.214 
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TABLE 4-9: Structure completion time 

Test Number Minutes Seconds Comments 

1 6 17.13 
Place top block 

incorrectly 

2 6 20.804 
1 block slipped out 

of the gripper 

3 6 17.695 Success 

4 6 13.608 Success 

5 6 35.138 
1 block slipped out 

of the gripper 

Mean 6 20.875 - 

Standard Deviation 0 7.488 - 

 

Completing the full-system tests, the Shark IR sensor data was recorded with 

respect to encoder counts over time as illustrated in FIGURE 4-19 and FIGURE 4-20. 

Also pictured in this graph are the setpoint values to signal the vehicle to stop when it has 

reached its destination. The purpose of this comparison is to analyze the difference in 

encoder counts and rangefinder data relative to their setpoints when the vehicle has 

arrived at a build location. FIGURE 4-19 represents this data for traveling to the first 

position. Here it can be seen that both the encoder count and rangefinder setpoint values 

have been reached upon arrival at build position one as highlighted by the red oval. 

FIGURE 4-20 presents this data relative to position 4. This figure demonstrates that the 

range finder stopped the vehicle before the encoder set point was reached. This is because 

the vehicle would have collided with the structure if only encoder counts were used for 

positioning. Using encoder counts for positioning accumulates error over the course of 

the assembly process resulting in positioning drift. This pattern was noticed throughout 

the assembly process proving that dead reckoning alone may not be sufficient in 

positioning schemes due to wheel or roller slip in acceleration/deceleration. Sensor fusion 
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between the encoders and range finders was essential in successfully traveling to and 

from the structure for the assembly process. 

 

FIGURE 4-19: Position one encoder count and object distance relative to set points 
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FIGURE 4-20: Final position encoder count and object distance relative to set points 
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CHAPTER 5: CONCLUSIONS 

5.1 Vehicle Chassis 

Overall, mobilization of the robotic system was considered a success and a critical 

factor of the simulated concept. All hardware with the exception of the RC8 controller 

and CVS was fitted on the vehicle chassis. This system also was capable of carrying three 

blocks to the building zone. The vector-drive enabled the HARP to strafe the surface to 

the desired build position while maintaining a perpendicular heading with respect to the 

building zone. This provided an efficient means for transportation of the assembly 

hardware. It was noted after preliminary testing that dead reckoning was not sufficient in 

vehicle positioning, thus the ranging devices were implemented to ensure the correct 

spacing from the structure and that the vehicle did not collide with an object in its path. 

The preliminary results indicate that these positioning schemes still may not be sufficient 

in vehicle positioning. Another means of vehicle localization should be considered in 

future applications so more accurate traveling can be accomplished in its environment.  

5.2 Vision Guidance 

The vision system was successful in locating building material of two different 

sizes for the assembly process. Locating where to place the material was also successful 

via vision guidance and was confirmed in vigorous testing as outlined in Chapter 4. Since 

accuracy was the primary concern for the vision system, all block/structure locating 

based algorithms work on a two-step process. An image was taken to calculate the 

approximate location of the material first since the object of interest was often not 

completely in the camera FOV. Using these results, a second image was captured at these 
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locations to calculate the exact position of the material/structure. This two-step process 

enabled a self-checking algorithm so that the vision system could accurately locate the 

blocks and/or structure. 

The block finding algorithm was improved to locate the building material with a 

96.32% match, every 245.5 ms. The overall image processing time was reduced by 

narrowing the angular search region to ±25° which was 5.27 times faster than 

searching 360° for the object. Testing revealed that the block position relative to the 

camera had no correlation with processing time but decreased the overall match score by 

2.46 % on average. Interestingly, processing images with yellow blocks were observed to 

be computed 247 ms faster than that of the red, blue, or green average block processing 

times. Calculating where to place the blocks was accomplished using advanced edge 

finding techniques to locate the corner of the structure. Testing proved this to be an 

appropriate means of structure assembly by recording 4.02 mm of error in the x-axis and 

2.78 mm of error in the y-axis on average resulting in a 5.82% structure completion error.  

5.3 Robotic Manipulator  

It was also confirmed that the DENSO robot arm was sufficient in end-effector 

positioning whilst mounted on the mobile base. The needle puncture test as performed in 

section 4.2.1 proved that the precision of the end-effector positioning could be repeated 

to ±0.0325 mm while mounted of the base unit. This variance is much smaller than the 

smallest block size (100 mm x 100 mm) and was considered to be negligible. Through 

the use of a 3D-printed gripper, the end-effector was successful in interfacing with the 

emulated building blocks. The 6 DOF supplied by the DENSO system proved to be 
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sufficient in picking and placing the material in any 3-dimensional position within its 

ROM. 

The gripper was designed such that it directly mated with features on the 

emulated building blocks used in this research. An important detail in the gripper finger 

design significantly increased the reliability of the pick operations. A 7 mm by 7 mm 

chamfer on the tooltip passively allowed for slight misalignments of up to ~3.5 mm that 

could have conspired from the coordinate transposition of the vision system or 

positioning error. Also, it is important to note that the gripper was geometrically 

optimized to interface with the blocks used in this research, and could be remodeled to 

mate with a wide range of block geometries.  

5.4 Structure Assembly 

A simulated structure 0.25 m tall by 1 m long was successfully assembled via the 

build straight wall function. It is presumed that the build straight wall function is one of 

the many structure assembly functions that could be programmed into the machine i.e. 

build arc, build roof, etc. This structure was successfully assembled multiple times 

throughout the testing process. Complete testing revealed that structure completion was 

assembled with an average position error of 4.02 mm in the x-axis and 2.78 mm in the y-

axis. Furthermore, it was concluded that the average structure assembly time was 

measured to be 6 minutes and 20 seconds placing a total of 16 blocks per build. Overall, 

this vehicle served as an initial research platform such that a proof of concept model was 

successfully developed to autonomously erect a simulated structure. This was 
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accomplished by assembling manageably-sized building blocks rather than attempting to 

3D-print entire habitats in real-time/space.   

5.5 Future Work and Other Applications 

When considering improvements to the overall system operation, many 

conclusions can be made. The most significant is likely upgrading the vision system to 

incorporate stereovision such that better depth perception can be accomplished. Although 

this was not a large factor in a controlled environment, it will likely be difficult to place 

blocks more accurately without improving the depth perception of the vision system to 

accommodate for un-parallel working planes. Since the camera is mounted on the gripper 

of the robot arm, it could be positioned in different locations for image acquisition such 

that simulated stereovision could be accomplished with only one camera. The assembly 

process could further be improved by using the vision system to inspect the assembly 

progress intermittently and correct misplacements in real-time to ensure that the structure 

is completed as expected. This improvement would solve the critical error that occurred 

in testing in section 4.4. The final recommendation for improvement is to incorporate 

more accurate vehicle positioning hardware. This would greatly enhance the accuracy of 

vehicle localization relative to the building zone. In order to be implemented in a 

planetary environment, vehicle positioning should be improved. 

The HARP described in this research could be used as a multipurpose device once 

its primary task is completed. Additionally, the vehicle could be used in applications on 

Earth. Such a system could significantly impact on the construction industry. Also, the 

system could be used to build structures in an environment that is unsafe for humans. 
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This concept stems from the Chernobyl disaster containment effort in which the entire 

site was sealed off by a permanent structure. With the proper design, a fleet of assembly 

vehicles could be deployed in a hazardous environment to build a containment structure 

around a dangerous site such as the Chernobyl Nuclear Reactor. Overall, this simulated 

vehicle is proposed to prepare structures for humans when it is unsafe or unavailable for 

them to do so by traditional means of labor. This, in turn, will lower the risk of human 

life by implementing robotic vehicles in hazardous environments in place of humans. 

5.6 Summary 

This research concluded that the concept of autonomously assembling structures 

via manageably-sized building blocks can be accomplished with a mobile robotic system. 

Each sub-system worked together to ultimately complete the goal of assembling a 

simulated structure 0.25 m high by 1 m long. Overall, the vision system positively 

impacted autonomy by providing a means of locating where to pick and place building 

material. In addition, the robotic arm provided an accurate and reliable mode of 

manipulating the building material. Furthermore, the mecanum-drive vehicle chassis 

worked well to move the system hardware in omnidirectional, vector-like strafing to the 

target location. To quantify the implementation status of the HARP,  NASA’s 

Technology Readiness Level (TRL) was used [21]; as the HARP has been successfully 

tested in a laboratory environment, it is concluded that the HARP is currently at TRL 4. 

The concept of autonomously assembling preformed modular blocks into a structure was 

proven feasible using the habitat assembly prototype and should be continued in future 

research.  
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