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ABSTRACT

ANUSHA ANAND BABLESHWAR.
A Recurrent Neural Network Based Patch Recommender for Linux Kernel Bugs.

(Under the direction of DR. ARUN RAVINDRAN)

Software bugs result in a variety of issues including system crashes, loss of system

performance, incorrect output and security vulnerabilities. In this thesis, we explore

the design of a patch recommender system for the Linux kernel. Software tools that

aid the developer in quickly developing bug fixes can help in improving programmer

productivity. Previous efforts in automated bug resolution uses a search approach for

exploring the automatically generated patch space for functionally correct patches. In

contrast, we focus on bug reports, and patch commit descriptions manually generated

by humans and expressed in a natural language such as English. Our goal is to relate

a new bug description to the most closely related patch that resolved a similar bug

in the past. Compared to existing approaches, we do not attempt to generate a

patch code, but instead point the user to potential patches that enable developers

to identify the part of the code base that they should focus on. Our approach is

thus complementary to existing research. We explore the use of Natural Language

Processing (NLP) to mine bug/patch descriptions. Our dataset consists of previously

resolved bugs and the corresponding patches from the Linux kernel project. We pose

the bug-patch matching as a semantic similarity NLP problem. After generating

a custom word embedding for the bug-patch dataset, we train a Siamese LSTM

network that outputs the Manhattan distance between bug and the patch. The

Keras-Tensorflow framework is used. We then evaluate our approach with bugs from

the test set, and determine the top-K matches for the bug from all existing patches.

At the 50th percentile of the test bugs, the correct patch occurs within top 11.5 patch

recommendations output by the model.
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CHAPTER 1: INTRODUCTION

Software bugs result in a variety of issues including system crashes, loss of system

performance, and incorrect output. More ominously, bugs result in software vulner-

abilities that are exploited by attackers to launch a variety of cyberattacks against

computer systems. While progress has been made in developing automated tooling

for static analysis of source code, and automated patching of bugs, bug mitigation

still remains a manually intensive job. For complex projects such as the Linux kernel,

the majority of the bugs are largely detected by users, and reported using bug tracker

systems such as Bugzilla[1]. In response to the reported bug, developers release code

patches to fix the bug. Due to the large volume of bugs reported (for example, hun-

dreds per day for the Linux kernel), and the limited availability of developer time to

fix these, many of these bugs remain unresolved for a considerable length of time.

Unfortunately, more the number of days since Day Zero (that is, when the bug was

first reported) that the bug continues to exist, the greater the vulnerability of it being

exploited by attackers to compromise the system.

In this thesis, we explore the design of a patch recommender system for the Linux

kernel. Software tools that aid the developer in quickly developing bug fixes can help

in improving programmer productivity, as well as ensure that bugs are fixed quickly.

In general, bug resolution is a complex task often involving deep understanding of

the code base, and the underlying computing system. Nevertheless, in many cases

similarities exist between new bugs and previously resolved bugs. In such cases,

software patches that have been developed for previously resolved bugs may provide

valuable clues to the developer to fix newly reported bugs.

We investigate if we can possibly exploit information from existing bugs and the
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corresponding patches (bug-patch pair) to aid developers in fixing new bugs. Previous

efforts in automated bug resolution have focused on the bug and the patch code.

Automated bug resolution is cast as a search problem exploring the automatically

generated patch space for functionally correct patches. In contrast, we focus on bug

reports, and patch commit descriptions manually generated by humans and expressed

in a natural language such as English. Our goal is to relate a new bug description

to the most closely related patch that solved a similar bug in the past. Compared to

existing approaches, we do not attempt to generate a patch code, but instead point

the user to potential patches that enable developers to identify the part of the code

base that they should focus on. Our approach is thus complementary to existing

research.

We note that using a simple keyword search is often insufficient, since the semantic

context of the descriptions need to be understood to relate bug reports to patch

commits. In this thesis, we explore the use of Natural Language Processin (NLP) to

mine bug/patch descriptions. Recent years have seen huge gains in NLP due to the

unprecedented success of Recurrent Neural Networks (RNNs). In particular, a family

of RNNs known as Long Short-Term Memory (LSTM) networks has been highly

successful in NLP tasks such as sentiment analysis, language translation, semantic

similarity matching, and text summarization.

1.1 Summary of approach

The focus of our effort is on the Linux kernel owing to the open source nature

of the project, and the potential impact due to the widespread use of Linux in all

manner of computing systems including embedded, mobile, workstations, cloud and

supercomputers. Linux bugs are reported online on Bugzilla. Patches to the bugs are

available on the Linux source tree[2]. We scrape the two websites to create a bug/-

patch pair data set after suitable pre-processing. We pose the bug-patch matching as

a semantic similarity NLP problem. Note that unlike traditional semantic similarity
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problems such as detecting duplicate text, the bugs and patch descriptions are fairly

dissimilar. After generating a custom word embedding for the bug-patch dataset, we

train a Siamese LSTM Recurrent Neural Network based on 70% the original bug-pair

data set using the Keras-Tensorflow framework. The data set is augmented with

mismatched bug-patch pairs - that is, where the bug and the patch are not related.

We then evaluate our approach with bugs from the test set, and determine the top-K

matches for the bug from all existing patches. At the 50th percentile of the test bugs,

the correct patch occurs within top 11.5 patch recommendations output by the model.

1.2 Key contributions

The thesis makes the following contributions -

• To the best of our knowledge this is the first reported attempt to use NLP on

bug and patch text descriptions to build a patch recommender system

• Developed a bug-patch labeled data set for the Linux kernel for use by other

researchers

• Generated a custom word embedding for the unique vocabulary of Linux kernel

bugs and patches

• Designed a Siamese LSTM based recommender system for predicting closest

matching patch for an input kernel bug

1.3 Organization of thesis

The rest of the thesis is organized as follows - Chapter 2 presents a background

on Linux kernel bugs, previous reported work related to this research, and deep

learning. Chapter 3 presents the Siamese LSTM model used in the recommender

system. Chapter 4 describes the data collection methodology, and the generation of

custom word embedding. Chapter 5 outlines our evaluation approach and presents

the results. Chapter 6 concludes the thesis with a summary of results and future

research directions.



CHAPTER 2: BACKGROUND

In this chapter we present a brief background of kernel bugs, LSTM Recurrent

Neural Networks, as well as previously reported work related to this research.

2.1 Linux Kernel Debugging

The Linux kernel is currently the most widely used operating system running on

a variety of platform including embedded devices, mobile phones, desktops/worksta-

tions, cloud servers, and supercomputers. The kernel is an actively maintained open

source project with contribution from hundreds of developers worldwide. Bugs in the

kernel are reported on kernel Bugzilla by users who encounter bugs. A bug report

consists of the relevant Linux subsystem (for example, Drivers), the kernel version

the bug was encountered on, the description of the problem, as well as relevant dmesg

(kernel message buffer) output. Additionally, the bug report has a title which is

supposed to succinctly describe the bug. The title and the description of the bug is

written in English with relevant jargon used by the kernel development community.

The bug is then assigned to a developer associated with the relevant subsystem, who

develops a kernel patch that fixes the bug. The developer also includes a succinct

title that describes the patch, as well as an English text description of the what the

patch fixes. The patch then undergoes extensive testing and is made available on the

kernel git tree.

Bug fixing is a time consuming activity depending on subtlety of the bug, on

whether the bug is hard to reproduce, and the type of kernel subsystems affected by

the bug. Also, many of the patches in the kernel source tree are not bug related, but

add new features to the kernel. Often, these new patches might trigger bugs in the



5

kernel leading to a regression, which can cause a particular subsystem to not function

as expected, or worse - result in a kernel OOPS, or kernel panic. Analyzing the bug

requires deep understanding of the relevant subsystem, and a series of git bisects to

figure out which patch triggered the bug. Since device drivers account for bulk of the

Linux kernel today (about 70%), and drivers are typically written by less experienced

developers, a variety of bugs are from the driver subsystem. In many cases, similar

bugs may have been resolved for bugs reported on similar devices from other vendors.

The example below gives the reader a sense of what a Linux kernel bug and the

corresponding patch description looks like -

Bug 1526312 - No touchpad - error: i2c_hid i2c-SYNA3602:00:

unexpected HID descriptor bcdVersion (0x00ff)

Reported: 2017-12-15 08:11 UTC by Dietrich

Modified: 2018-12-26 17:55 UTC (History)

CC List: 36 users (show)

Fixed In Version: kernel-4.19.2-301.fc29 kernel-4.19.3-300.fc29

kernel-4.19.3-200.fc2

User-Agent: Mozilla/5.0 (X11; Fedora; Linux x86_64; rv:57.0)

Gecko/20100101 Firefox/57.0

Build Identifier:

On my newly bought laptop I tried to install Fedora 27

Neither Touchpad nor Touchscreen are working.

The touchscreen "works" with a firmwarefile - but does random things

- so maybe wrong firmware?

For the touchscreen I did choose the firmware from here:
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https://github.com/onitake/gsl-firmware/blob/master/firmware/onda/

v891w/FW_I89_GSL3676B_19201200_.fw renamed that to: mssl1680.fw

With that firmware the laptop does random things like opening

rightclick menu and closing windows and opening the gnome shell...

It’s kind of funny but not usefull :(

As for the touchpad I never got it to do anything useful.

I tried adding kernel parameters: i8042.nomux=1 i8042.reset

according to: https://bbs.archlinux.org/viewtopic.php?id=226212

But not success.

Reproducible: Always

Steps to Reproduce:

1. boot

2. touch

Actual Results:

3. no touch :(

Expected Results:

Having touch features

And the associated patch

author Julian Sax <jsbc@gmx.de>2018-09-19 11:46:23 +0200

committer Jiri Kosina <jkosina@suse.cz>2018-09-29 21:25:59 +0200

commit 9ee3e06610fdb8a601cde59c92089fb6c1deb4aa (patch)

tree 90689de6f079e313896cadd3282c29fad0b70601

parent dc4e05d079591c6f69bb28a07bcc13d4f1c9993b (diff)

download linux-9ee3e06610fdb8a601cde59c92089fb6c1deb4aa.tar.gz

HID: i2c-hid: override HID descriptors for certain devices

A particular touchpad (SIPODEV SP1064) refuses to supply the HID



7

descriptors. This patch provides the framework for overriding these

descriptors based on DMI data. It also includes the descriptors for

said touchpad, which were extracted by listening to the traffic of the

windows filter driver, as well as the DMI data for the laptops known

to use this device.

Relevant Bug: https://bugzilla.redhat.com/show_bug.cgi?id=1526312

2.2 Related Work

Automatic bug repair (also known as bug patching) has been receiving a steady

stream of attention starting in the mid 2000s. Monperrus [3] has provided a com-

prehensive review of the literature as of 2018. Bug repair consists of the following

elements - (1) a bug oracle that determines the existence of the bug, and (2) a repair

strategy that is employed to fix the bug. Further, the repair strategy could be a be-

havioural repair - where the source code is transformed (compile time or run time), or

it could be a state repair - where the state of the system under repair is changed (run

time only). Examples of state repair include re-initialization and restart, checkpoint

and rollback, input and environment modification.

The work presented in this thesis is a behavioral repair strategy. our goal is to

serve as aid to the kernel developer by recommending existing patches that are most

closely associated with the bug. We, therefore, focus our review on papers that are

most closely aligned to our approach. In general these approaches use test suites and

static analysis tools to detect bugs, and then generate patches for these bugs through

either known solutions for different bug patterns, or by mining existing patches for

possible solutions.

In the BugFix project [4], association rule learning is used to generate a database of

relationships between resolved bugs in the code and the corresponding code patches.
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Bugs in new code are detected either through failing tests, or by searching the code

for known bug patterns. A prioritized list of bug-fix suggestions from the database

(based on a confidence value) is then made available to the user. The project is

evaluated on the Siemens benchmark of relatively small C programs.

In the Prophet project [5], a parameterized probabilistic model trained from exist-

ing patches, is used to rank candidate patches generated for a detected bug. Correct

patches are shown to share general features across applications and hence is learnable.

The approach is evaluated on large open source application in C that include gzip,

python, wireshark, and php.

In the Getafix project [6], Facebook describes a tool that automatically suggests

bug fixes for engineers. Existing bugs and patches are mined to create a collection

of patch templates considering the broader context of the bug fixes. New bugs found

by their static analysis Infer tool are resolved by performing pattern mining using

a hiearchial clustering technique and extraction of abstract patterns. Facebook has

successfully deployed this tool in production.

Other recent research includes the Deep Repair [7] projects that use Deep Learning

analysis of code to generate candidate patches from the same code base, and the Sim-

Fix [8] project that uses generates candidate patches from an intersection of existing

patches and code snippets in the same project. Both these projects are evaluated on

the Defects4J Java benchmark.

Contrary to all the above approaches to automated bug resolution that target

the source code of the bugs and patches, in our work we use human generated text

description of bugs and patches. Unlike bugs detected by static analysis tools, bugs

reported by users are in a text format that describes the symptoms of the bugs. In

a complex code base such as the Linux kernel, it is not readily apparent what causes

the bug. The goal of our approach is to guide the developer to the right parts of

the code base to start the bug patching process. Once the right part of the code
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base that is the source of the bug is identified, the approaches outline above can be

employed to patch the bug. We, therefore, consider our approach as complementary

to the existing research on automated bug patching.

In the Deep Triage project [9], a RNN based-model is used to process bug reports

so as to assign it to the appropriate developer. However, unlike our work, no attempt

is made to recommend bug patches.

2.3 Deep Learning

Deep Learning is a part of the machine learning family of algorithms which works

on data representations as opposed to task specific algorithms. The underlying goal of

Deep Learning is to replicate a human brain architecture made of neurons connected

in series and parallel as an Artificial neural network. Among the different classes

of artificial neural networks, Recurrent Neural Networks (RNN) has had the most

impact on the Natural Language Processing (NLP) algorithms we intend to apply to

our bug automation problem. The core concepts of Recurrent Neural Networks are

laid out in the next section.

Feedforward neural networks, often called as Deep feedforward networks are the

standard deep learning models. Neurons are connected in layers with the first layer

taking inputs and the last layer producing outputs. All the other layers are hidden

from the external world. Each neuron takes weighted sum of inputs applies an acti-

vation function and returns an output(Figure : 2.1). The operation of each neuron

are as mentioned in equations 2.1 and 2.2

ZT = W T ∗XT (2.1)

Y T = A(ZT ) (2.2)
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X1

X2

X3

W1

W2

W3

Y

Figure 2.1: Operations of a single Neuron

2.3.1 Recurrent Neural Networks

A Recurrent Neural Network (RNN) [10] is a type of neural network architecture

which has a loop pointing to the same circuit (Figure : 2.2) unlike the normal feed-

forward neural networks.

A

ht

xt

Figure 2.2: A chunk of RNN

Simple RNNs are a network of neurons where each neuron at a time-step (t),

receives the input vectors as well as its own output from the previous time-step

(t− 1).
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The output of each neuron for a time-step (t) in an RNN step is a state (yt), so

the input to each neuron of the next step is the previous output state y(t−1) and the

input xt. The operation for each neuron:

y(t) = φ(x(t)
T .wx + y(t−1)

T .wy + b) (2.3)

Here, wx is the weight of input and wy is the weight of the previous output.

RNNs that can take in sequential inputs and give out sequential outputs are called

sequence-to-sequence models, such as used in language translation. On the other

hand, when the network is fed a sequence of inputs, and ignore all outputs except

for the last one, this is called a sequence-to-vector model(Figure:2.3). We have used

sequence-to-vector model for our purpose.

X(0) X(1) X(2) X(3)

Y(0) Y(1) Y(2) Y(3)

Ignored outputs

Figure 2.3: Sequence to Vector learning RNN unrolled.

Since an RNN network takes the previous times-step’s output and one of the inputs,

we can assume that it has some sort of memory retention. Each module of the network

is called a cell. However, RNNs have trouble with long term dependencies since
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the gradient of the loss function decays exponentially leading to vanishing gradient

problem. On the other hand, when the error gradients accumulates in very large

networks, it leads to exploding gradient problems. A solution to this problem would

be to use cells which have the quality of long-term memory.

2.3.2 Long-Short Term Memory (LSTM)

One example of such cells is a Long-Short-Term Memory (LSTM)[10] cell. The

LSTM cell was proposed in 1997 by Sepp Hochreiter and Jurgen Schmidhuber [11].

LSTMs can be very useful while dealing with long term dependencies. The most

important concept of an LSTM cell is that it has two state vectors and they are kept

separate. The architecture of the LSTM cell is shown in Figure 2.4. LSTMs also

have a repeating module like the RNN, but the repeating modules have a different

structure. Each cell has 4 neural network layers. The key to an LSTM cell is the

state vector that runs throughout the cell. Its value can be modified with minor linear

interactions. It can easily flow through without any alterations as well. This state

vector is changed according to what needs to be remembered and what needs to be

forgotten, these operations are regulated by structures called gates. Gates optionally

let information through.
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Figure 2.4: LSTM Architecture [10]

The state of an LSTM cell is split into two vectors h and c where h is short-term

state and c (c stands for cell) is the long-term state. The forget gate layer decides

what information to throw away or to not retain. It takes in h(t−1) and xt and gives

out either 0 or 1 (Eq: 2.5) for the cell state C(t−1), 0 means forget this state and 1

means remember this state. The next step is to decide what information gets updated

to the new one(Eq: 2.6). The input sigmoid layer decides that with it (Eq: 2.4) and

the tanh layer. The tanh creates a vector g(t), to be (Eq:2.7) added to the cell state.

We then update the old state into the new state - we multiply ft with the old state

and then add it ∗ g(t) (Eq:2.8). Finally, we need to decide which parts of the long-

term state should be read and produced as outputs y(t) (Eq:2.9)which is done by the

sigmoid layer. The tanh layer is used to limit the outputs between -1 and 1. The

LSTM cell has the ability to notice important inputs and store it for as long as needed

and extract it when needed. Equations 2.4

i(t) = σ(Wxi
T .x(t) +Whi

T .h(t−1) + bi) (2.4)
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f(t) = σ(Wxf
T .x(t) +Whf

T .h(t−1) + bf ) (2.5)

o(t) = σ(Wxo
T .x(t) +Who

T .h(t−1) + bo) (2.6)

g(t) = tanh(Wxg
T .x(t) +Whg

T .h(t−1) + bg) (2.7)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (2.8)

y(t) = h(t) = o(t) ⊗ tanh(c(t)) (2.9)

Wxi, Wxf , Wxo, Wxg are the weight matrices of each of the four layers for their

connection to the input vector x(t). And Whi, Whf , Who, Whg are the weight matrices

of each of four layers for their connection to the previous short-term state h(t−1). And

all the biases are present for respective layers.



CHAPTER 3: DESIGN OF THE RECOMMENDER SYSTEM

In this chapter we elaborate on the design of the proposed patch recommender

system. Our goal is to relate a new bug description to the most closely related

patch that solved a similar bug in the past. We note that using a simple keyword

search is often insufficient, since the semantic context of the descriptions need to be

understood to relate bug reports to patch commits. We explore the use of NLP to

mine bug/patch descriptions formulating the bug-patch matching as a text matching

problem. However, different from the typical application of text matching to detect

duplicates, we instead use the degree of match as a similarity metric. We leverage the

success of RNNs in NLP and base our matching model on a Siamese LSTM model.

For a new bug, the recommender system then evaluates the bug against all the patches

recommending the top-K patches for the bug.

3.1 Model

We use an MaLSTM model [12] to generate a similarity score between bug and

patch descriptions, MaLSTM has a shared LSTM network (Siamese LSTM) with

two inputs - the bug description and the patch description. The outputs are the

labels that describe the relationship between the bug and the patch (0 or 1). The

words in the text are represented using the word embedding matrix (See Section

4.3. The MaLSTM uses the LSTM network to read in word-vectors that represent

each input text and employs its final hidden state as a vector representation for each

description. The vector representation of these descriptions are used to calculate the

Manhattan distance between them. There are 4 layers in the model, the input layer,

the embedding layer, the LSTM layer and the Manhattan layer.
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Embedding Layer Embedding Layer 

[28059,21802,49666,26884,.....0,0,0] [32417,9463,44158,25170,......0,0,0]

LSTM LSTM

PREDICTIONS

exp(-|h(left)- h(right)|)

Figure 3.1: The illustration of the MaLSTM model. The sentences are represented
using word embeddings in the embedding layer. Outputs from the LSTMs are used
to obtain a representation between the bug and that patch before the model predicts.

Figure 3.1 shows the MaLSTM. The boxes with the same color carry the same

weight. These layers are shared between the the two inputs and each layer has two

nodes to serve each input. The outputs of the LSTM layer are vectors representing

the bug and the patch description. These vectors are used to calculate the Manhattan

distance using Equation 3.1.

y = exp(−|h(left) − h(right)|) (3.1)

The model is trained on the bug-patch data and drives the output (Manhattan

distance) closer to the target variable by reducing the loss function after each training

epoch. We minimize the negative log-likelihood of the observed labels at training time.
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L(y, yp) = −y ∗ logyp + (1− y) ∗ log(1− yp) (3.2)

In Equation 3.2 , y is the actual class of the sample and yp is the predicted Manhattan

distance of the class for the sample.

After the model is trained, we use this model to make patch recommendations for

the bugs. The model predicts a Manhattan Distance between the bug description

and the patch description. The new bug is tested against all the existing patches and

Manhattan distances are calculated. The patches are sorted according to their Man-

hattan distances and top-K patches are chosen from these. For practical purposes, K

would be a small number between 5 and 10.



CHAPTER 4: DATA COLLECTION AND PREPARATION

The bug-patch dataset is obtained from two open source platforms (Bugzilla [1] and

Linux Source Tree [2]). The data collected is a combination of bug-patch pairs with

label 1, and bug-(non-patch) pairs with label 0 (See Figure 4.1). The data collection

and processing process and how the data is modified to be fed in to the model are

explained in this chapter.

4.1 Data scraping

Webscraping is the automated process of extracting information from the targeted

website. For the analysis of the bug and patch, we scrape the short description part

of the bug and patch reports. We did this using BeautifulSoup [13] - a Python library

for parsing HTML data. Beautiful Soup provides a few convenient techniques for

navigating through and searching a parse tree.The first step for information extraction

using BeautifulSoup is to find the URL source from where we scrape the information.

We extracted a list of URLs for patches from Linux source tree. The URLs for bugs

was found in the patch descriptions. To extract a specific section of the page we

identify the structure of the the webpage’s HTML. After locating the the URLs,

writing the code for scraping is fairly simple. The content from the webpage is

requested from the server by using the get() method and the response stored in a

variable. The content of the page is saved by .text. By creating a BeautifulSoup

object we can access the data under each tag of the HTML tree.
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4.2 Data Pre-processing

Figure 4.1: Example of Scraped dataset.The document is divided into bug description,
patch description, label followed by their respective patch links

Figure 4.2: Example of unprocessed bug and patch descriptions

Pre-processing the data is one of the most important steps before we train the

model. As we can see in Figure 4.2, the bug and patch descriptions have a lot of

unwanted information that does not contribute the semantic meaning. The first task

was to remove all the special characters and symbols. Then all the documents were

tokenized and turned to lower case. Stopwords (most commonly occurring words such

as a, an, the, they) are removed from the document as they do not add much meaning

to the sentence. Python NLTK [14] libraries were used to perform these tasks. The

preprocessed data is shown in Figure 4.3.
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Figure 4.3: Example preprocessed document of bug and patch descriptions from
dataset.

4.3 Word Embeddings

Semantic vectors (also known as word embedding) allows the comparison of seman-

tic meanings of the words numerically. Since there are Linux kernel specific jargon

present in our data, a general pre-trained word embedding like GloVe [15] cannot be

used. We found that there were only 22% of the words present in Glove from the bug

and patch vocabulary. For this research we use word2vec to create our own word em-

bedding to better represent the data. The corpus for training word2vec is generated

by picking out all the necessary words by preprocessing the data and removing all

the unnecessary words.

Word2vec can be treated as a neural network with a single projection and hidden

layer which we train on the corpus. The weights are used as the embeddings, the

size of the hidden layer is equal to the dimension of the vector representation. The

embeddings can be found in two ways: Skip Gram and Common Bag Of Words

(CBOW). CBOW takes the context of each word and tries to predict the context.

Whereas Skip Gram takes in the target words and gives out probability distributions

for N possible words. CBOW works with large amounts of data and hence suits well

for our purpose.

Word2vec groups similar words together in a vector space. Given enough data
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word2vec can predict the meaning of words in a context with high accuracy (e.g.

"man" is to "boy" what "woman" is to "girl"). These clusters can form the base of

sentiment analysis and recommendations. The output of word2vec is a vocabulary

for each word having a vector along with it. The dimension of this vector is to be

decided by the user; in our experiments we have used 100 as the vector dimension.

Figure 4.4 shows an example of words in the corpora similar to the word "error" and

their vector representations.

Figure 4.4: Example of word2vec similar words

4.4 Data Preparation

Since we cannot feed text words to the first layer of our model, the embedding

Layer, we need to convert them to numbers before training. We numerically index the

words in the vocabulary starting from 0 to the length of vocabulary. The vocabulary

is a list of all the unique words present in the entire text of dataset available. After

creating a dictionary, each word as the key and the number assigned as the value,

the words in the text are replaced by these integer numbers. Any unknown words

appearing here are given an <UNK> token. The integer acts as a key for the words

in the embedding matrix and helps us retrieve their vector representations. Both of

these (the integer form of words and the embedding matrix) are fed to the embedding

layer. The embedding layer replaces the integers with their vectors (n-dimensional)

while training and passes these to the MaLSTM layer.



CHAPTER 5: EVALUATION AND RESULTS

In this chapter we describe the evaluation methodology of the proposed patch

recommender system, and present results.

5.1 Evaluation

The bug and patch data is collected as described in Chapter 4. The scraped

data contains 4963 matching bug-patch pairs and 4899 of bug-patch pairs that do

not match. In order to reduce generalization error the data can be augmented to

mitigate overfitting problem. By creating more negative data for a bug, we will have

more clarity on the match for each bug. To create the additional negative samples

we picked 3560 bugs from the matching pairs and paired them against other non-

matching patches. Our dataset consists of 27670 samples with a bug having one

matching patch and 5 non-matching patches. The dataset is divided into training

(19,369), validation (4151) and test (4150). The input data is limited to 100 words

per description; those which are shorter are padded with zeroes.

5.1.1 Software and Hardware platform

The implementation of our proposed approach is based on Python programming

language working on the Jupyter Notebook [16] platform. Python has a large num-

ber of libraries for data processing and machine learning . The framework for the

model was implemented using Keras [17] which is based on TensorFlow [18]. Tensor-

Flow is an open source library used for tensor calculations described using data flow

graphs. The neural network architectures can be readily be expressed as Tensorflow

operations. Keras is a high-level open source neural network library built on top of

TensorFlow. The training was done on Nvidia GeForce GTX 1060 GPU with 6 GB
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memory. The training for each epoch took about 1 minute and the entire training

process of 94 epochs with early stopping took about 1.6 hours.

5.1.2 MaLSTM Model parameters and Evaluation Metrics

The baseline of the MaLSTM model is two parallelly running LSTM layers each

with 50 neurons followed by the Manhattan layer which calculates the Manhattan

distance between the two vectors. The model is trained using the Adadelta optimizer

based on Adagram [19]. Adagrad is an algorithm for gradient-based optimization

which performs larger updates for infrequent parameters and smaller updates for fre-

quent parameters. Adadelta is an extension of Adagrad which reduces its aggressive-

ness, uniformly reducing the learning rate. Instead of accumulating all past squared

gradients, Adadelta restricts the window of accumulated past gradients to some fixed

size w.

The model was trained with a starting learning rate of 0.5, batch size of 64, accuracy

threshold of 0.8, and for maximum of 200 epochs with early stopping at 94. Some

experiments were done with the embedding layer and observations were made. When

the Embedding layer is set to be ’trainable’ the validation and training accuracy

were seen to be fluctuating a lot and the entire training process was consuming more

time. Thus, we decided to keep the Embedding layer to be ’un-trainable’. The Mean-

Square Error (MSE) loss is checked after every epoch and if the validation loss does

not decrease after four update checks, early stopping of training is done.

The model testing is done by taking a bug-patch matching pair and evaluating the

Manhattan distances against all patches (2132 patches) using the MaLSTM model.

The patches are then reordered according to the Manhattan distance and the match-

ing patch is located in the list. Our goal is to ensure the presence of the matching

patch in the top-k recommended patches, with the lowest possible k.
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5.2 Results

We experimented with various numbers and sizes of the LSTM layer and found

that 1 LSTM layer with 50 hidden units gave the best results. As seen in Figure

5.1, the train and test accuracy as well as the loss are show a monotonic decrease

throughout the training process, indicating that the model is not overfitting over the

training data. The model accuracy with the test set after the training of the model

was 90.8% after 94 epochs. The accuracy is calculated as:

Accuracy =
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative

(5.1)

Figure 5.1: Accuracy and Loss of the training and validation set.
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However, the goal of this model is not to predict whether the bug and the patch

supplied to the model is a match or not. Instead the model serves as a means to

calculate a similarity score. Our main purpose of this model is to recommend top-K

patches to a new bug. To calculate the performance of the model in that domain, we

chose a test bug and calculated the Manhattan distance of that bug against all the

patches existing in our database. The Manhattan distance closest to 1 would act as

better fixes to the bug than the patches having Manhattan distance closer to 0.

Testing with about 314 bugs, against the 2132 patches, and using a threshold for a

valid match, 50% of bugs had the best recommendation (fix patch) made in the top

20 patches.

Figure 5.2: Percentile Plot of the Top-K recommendations made

The percentile plot for top K for a 314 bug test set is shown in Figure 5.2. The k

value at the 50-th percentile (median) is 11.5, while at the 75-th percentile is 28.25.



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

In this thesis we have proposed and demonstrated an alternative approach to patch

recommendations for Linux kernel bugs. Our approach uses the natural language

description of bugs and patches instead of the established technique of using the bug

and patch source code. As such, the proposed approach can be considered as a first

step to bug fixing for complex projects such as the Linux kernel. Based on the patch

recommendations of our model for a new input bug, the developer will have a better

sense of which part of the code base to target. Initial results indicate that at the

50th percentile of new test bugs, the model outputs the correct patch in its top 11.5

recommendations, while at the 75th percentile, the model outputs the correct patch

in its top 28.25 recommendations.

Future extensions of this work would seek to integrate code along with the text

descriptions. The MaLSTM model used in our work could also be used to correlate

bug descriptions with patch code. For a new input bug, the model would then be able

to recommend patch code to the developer. Another line of research could focus on

using encoder-decoder networks to "translate" bug descriptions to patches. A similar

approach was used by Jiang, Armally, and McMillan [20] to automatically convert

code diffs to commit messages.
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APPENDIX A: KERAS MA-LSTM MODEL

n_hidden = 50

gradient_clipping_norm = 1.25

batch_size = 64

n_epoch = 500

l e f t_ input = Input ( shape=(max_seq_length , ) , dtype=’ int32 ’ )

r ight_input = Input ( shape=(max_seq_length , ) , dtype=’ int32 ’ )

embedding_layer = Embedding ( output_dim=embedding_dim , input_dim=nb_words

, weights=[word_embedding_matrix ] , input_length=max_seq_length ,

t r a i n ab l e=False )

# Embedded ve r s i on o f the inputs

encoded_le f t = embedding_layer ( l e f t_ input )

encoded_right = embedding_layer ( r ight_input )

# Since t h i s i s a s iamese network , both s i d e s share the same LSTM

shared_lstm = LSTM(n_hidden )

l e f t_output = shared_lstm ( encoded_le f t )

r ight_output = shared_lstm ( encoded_right )

# Ca l cu l a t e s the d i s t ance as de f ined by the MaLSTM model

malstm_distance =Lambda( func t i on=lambda x :

exponent_neg_manhattan_distance (x [ 0 ] , x [ 1 ] ) , output_shape=lambda x : (

x [ 0 ] [ 0 ] , 1) ) ( [ l e f t_output , r ight_output ] )

# Pack i t a l l up in to a model

malstm = Model ( [ l e f t_input , r ight_input ] , [ malstm_distance ] )

#We need s e t an opt imize r

# Adadelta opt imizer , with g rad i en t c l i p p i n g by norm

opt imize r = Adadelta ( c l ipnorm=gradient_clipping_norm , l r =0.5)

#Now we w i l l compi le and t r a i n the model .

malstm . compi le ( l o s s =’mean_squared_error ’ , opt imize r=opt imizer , met r i c s =[

threshold_binary_accuracy ] )

es = EarlyStopping ( monitor=’ threshold_binary_accuracy ’ , mode=’auto ’ ,

verbose =1, pat i ence=4)
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malstm_trained = malstm . f i t ( [ X_left_train , X_right_train ] , Label_train ,

batch_size=batch_size , nb_epoch=n_epoch ,

va l idat ion_data =([ X_left_val , X_right_val ] ,

Label_val ) , c a l l b a c k s =[ es ] )
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APPENDIX B: DATA PRE-PROCESSING

columns = [ ’ patch_desc ’ , ’ bug_desc ’ ]

f o r c o l in ( columns ) :

#remove s p e c i a l cha ra c t e r s

data [ c o l ] = data [ c o l ] . s t r . r ep l a c e ( ’ [ ^ a−zA−Z \ . ] ’ , ’ ’ )

data [ c o l ] = data [ c o l ] . s t r . r ep l a c e ( r ’ [ ^ \w\ s ] ’ , ’ ’ )

data [ c o l ] = data [ c o l ] . s t r . lower ( ) #lower ca s ing a l l words

data [ c o l ] = data [ c o l ] . s t r . r ep l a c e ( ’ + ’ , ’ ’ )#more than one space

data [ c o l ] = data [ c o l ] . s t r . r ep l a c e ( ’0+ ’ , ’ ’ )#more than one 0

data [ c o l ] = data [ c o l ] . s t r . r ep l a c e ( ’\n ’ , ’ ’ )

data [ c o l ] . dropna ( i np l a c e=True )

data [ c o l ] = data [ c o l ] . apply ( word_tokenize )#token i z e

#Remove Stopwords ( commonly occur r ing words ) from the data

f o r i in ( range (0 , l en ( data ) ) ) :

a = [ ]

f o r word in data [ c o l ] [ i ] :

i f word not in stop_words :

i f l en (word ) >2:

a . append (word )

data [ c o l ] [ i ] = a


