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ABSTRACT
PEILIN CHEN. Statistical Estimation and Inference for the Associations of
Multivariate Recurrent Event Processes. (Under the direction of DR. YANQING
SUN )

In this dissertation, we aim to develop a brand new method with a two-stage pro-
cedure to investigate the association between multivariate recurrent event processes.

First, under the assumption of independent censoring, we model each recurrent
event process marginally through a mean rate model. There are two popular mean
rate assumptions - multiplicative or additive to an unspecified baseline rate function.
The robust semi-parametric approaches can be applied to estimate the covariate ef-
fects as well as the baseline rate function.

Second, inspired by Kendall's tau, we propose the rate ratio as an association
measurement, which is the quotient of two conditional rates - the mean rate of two
joint events over the marginal rates, both conditional on the covariates. Utilizing the
information from the first stage, an unbiased and consistent estimator of the rate ratio
is developed under the Generalized Estimation Equation method. The asymptotic
properties of the rate ratio estimators are derived theoretically. Without modeling the
joint events directly, the rate ratio can measure the association between two recurrent
processes over time.

Since the rate ratio we proposed can be parametric, time and covariate dependent,
it has good interpretability. We developed a formal hypothesis testing procedure to
validate the parametric assumption of the rate ratio. Simulation studies show it is

quite powerful under moderate to a strong association.
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The proposed method is applied to the hemodialysis (HEMO) Study. Patients
enrolled in HEMO study depend on blood dialysis or transplant surgery to continue
their lives and experienced prevalent comorbidities such as diabetes, cardiovascular
diseases, and infections. To increase the expected lifespan of patients, it is vital
for us to understand the associations among these comorbidities. Our study finds
that the dependence between cardiac and infectious hospitalization recurrences for
patients in the HEMO study was not constant over time and was significantly posi-
tively related to the difference of recurring times. We also find a strong association
between past-current cardiac hospitalizations: patients who have experienced cardiac
hospitalizations have increased risk of cardiac hospitalizations than those who have

not.
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CHAPTER 1: INTRODUCTION

This chapter aims to review related works and introduce the benefits and challenges
of estimating the association between multivariate recurrent event processes. The
structure of this chapter is as follows. In section 1.1 -1.2 we review the essential
background for recurrent event data and popular approaches to estimate the mean
event rate or the intensity of Hazard. Literature that focuses on modeling multivariate

recurrent event data is discussed in Section 1.3.

1.1 Multivariate recurrent event data

Recurrent events involve repeat occurrences of the same type event over time,
whereas a process that generates such data is called recurrent event process. Exam-
ples of recurrent events include multiple relapses from remission for leukemia patients,
wildfires, and hurricanes. In Recent years, recurrent event data raises in many fields
such as public health, business and industry, reliability, the social sciences, and insur-
ance, and keep receiving fast growing attention. For instance, the tumor development
time for 48 rats who were injected with a carcinogen represented Gail et al. (1980);
the automobile warranty claims data for a specific car model considered by Lawless
and Nadeau (1995).

Bivariate or multivariate recurrent event processes are often encountered in longi-

tudinal data studies involving more than one type of event of interest. Unlike Life
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Data which is valid to assume events are independent, recurrent event data are usu-
ally correlated because they represent the event time measured for the same subject

over a time period.

1.2 Modeling recurrent event data

Many statistical methods focus on modeling the rate or intensity of the event
recurrence. Aalen (1978) studied the properties of the Nelson-Aalen estimate in the
poisson case and Nelson (1988, 1995) proposed the nonparametric estimation of the
mean function for general processes. Studies based on poisson and related processes
have also been discussed by Cheuvarte (1988), Lawless (1987a,b), Thall (1988), Thall
and Lachin (1988), and Lawless and Nadeau (1995).

Early development was extended from survival analysis for the Cox Proportional
hazards model (Cox, 1972). Aalen (1980) proposed semiparametric additive regres-
sion models for the rate function. Andersen and Gill (1982) introduced the semi-
parametric regression model for the rate functions and derived the asymptotic results
based on the counting process theory.

Pepe and Cai (1993) considered robust methods for parametric or semeparamet-
ric regression analysis for the rate and mean functions. Lin et al. (2000) developed
the asymptotic properties for the semiparametric regression analysis of Cox propor-
tional mean functions whereas, Martinussen and Scheike (1999) and H Scheike (2002)
provide more comprehensive discussion of semiparametric additivie models.

Mean rate models recently became more popular than the intensity based model

because they are easier to interpret. Lin et al. (2000) compared the intensity and
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rate based model. In their paper, N*(¢) denotes the number of events occur over
time [0,¢] and Z(-) is a p-dimensional covariate process, whereas F; is the history of
{N*(s),Z(s) : 0 < s <t} and Agz(t) is the intensity of N*(¢) associated with F;.

The Anderson -Gill intensity model
Az(t) = %072\ (1) (1.1)

is a special case under the assumptions that (a) E[dN*(t)|F] = E[dN*(t)|Z(t)] and
(b) E[dN*(t)|Z(t)] = e 2O\ (t)dt.

Lin (2000) proposed a mean rate model
E[AN*(1)|2(1)] = dyuz (1 (1.2)

without assumption (a), it is impractical to verify if the time-varying covariates ade-

quately captured the dependence of the recurrent events. The regression coefficients

in the mean event rate model nicely reflect covariate effects on the frequency.
Compared to the Anderson- Gill model (1.1), which is a special case of equation

(1.2) by taking

dpz(t) = %70 dpo(t),

dpo(t) = Ao(t) dt,

model (1.2) is more versatile.



1.3 Modeling multivariate recurrent event

Here, we introduce the random effect model for multitype events here. for more
details consult Cook and Lawless (2007). Let k index the subjects (or clusters) and
j index the event type. The event rate at time ¢ for events of type j conditional on

subject and type-specific positive random effect r;; is denoted by

Pr(ANg(t) =1 .
A (8| Fre, ) = lim (AN (¢) | Fts Txj)

1.
At—0+ At ( 3)

j=12,..,J, k=12 ., K where r;; denote the multivariate random effect. With
multivariate random effects, it is often assumed that conditional on 74; and Fj =

{Nk;(s), Zrj : 0 < s < t}, type ¢ and type j event are independent if ¢ # j, that is
Ak (| Fhts Tj) = Trj Mg (8 Fee) (1.4)

Random effect models are usually parameterized by assuming rj; comes from an
underlying distribution G(ry; ¢) so that E(ry;) = 1, var(ry;) = ¢; and cov(rg;, rij) =
®ri- The corresponding likelihood conditional on ry; is

nk,j %
H { H Tkj>\kj (tkﬂ|]-"kt)e:vp< — Tkj / )\kj (Ulfkt) du)) }, (15)
j=1 " i=1 0

and the marginal likelihood for individual k as

J N T
/H { 11 rijkj(tkjl’fkt)exp( — Tk / Akj (] Fre) du)) }dG(’f’k; ?) (1.6)

j=1 " i=1 0

Analogous to the derivation above, we obtain mixed poisson models as well as their

overall and marginal likelihood function by letting Ag;(t|Fit) = Ax;(f). Related es-

timation approaches have been developed such as Abu-Libdeh et al. (1990),Lawless



and Nadeau (1995), Ng and Cook (1999) and Chen et.al (2005).

If the covariance or association parameters are not of interest, modeling multivari-
ate recurrent events can be adapted from the analysis of univariate recurrent event
process under the working independence assumption. Schaubel and Cai (2004, 2005)
developed the estimation and inference for marginal analysis for the cox type model
and H Scheike (2002) formulated a similar robust approach for the additive. Both of

their work did not incorporate the association structure.

1.4  Study of associations

Association measurement such as Kendall’s tau (Oakes, 1989), the correlation coef-
ficient (Clayton, 1978), Cross Ratio (Anderson et al., 1992) and Odds Ratio (H Scheike
and Sun, 2012) are designed for Life Time data. These methods only considered the
first occurrence of each event type and are not suitable for censored recurrent event
data. Most recently (Ning et al., 2015) proposed a time-dependent measure, termed

the rate ratio as
p(s,t) = ———, s,t>0, (1.7)
where the conditional rate function is defined as
Aija(slt) = Ali_}][gl+ Pr{Ni(s + A) — Ni(s) > O|No(t + A) — No(t) > 0} /A (1.8)

to assess the local dependence between two types of recurrent event processes. A com-
posite likelihood procedure was developed for model fitting and estimation. However,

the composite likelihood-based method lacks a clear interpretation and is hard to
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construct. It is not explicit how the method can be extended to a regression model of
recurrent event processes for multiple types of events when the covariates are present.
Here, we develop an alternative approach to model the rate ratio parametrically by
a score function and provide a model checking procedure to test the parametric form

of the rate ratio.



CHAPTER 2: CONDITIONAL RATE RATIO AS ASSOCIATION MEASURE
FOR MULTIVARIATE RECURRENT EVENT PROCESSES

2.1 Preliminaries

Let N,;*j(t) be a counting process registering the number of event occurrences by
time ¢ for the jth subject in cluster k (or equivalently the type j event for subject k),
for j=1,2and k =1,..., N. Suppose (Nj,(s), Niy(t)) are iid. and let Zy;(s), Zy;(t)
represents the associated covariate vector.

The event times for subjects within a cluster, which would be a family or a clinical
center, or the sequentially observed times for a subject, are naturally correlated.
Therefore we did not put any restraint here. The goal of this project is to characterize
and model the association between the occurrences of events.

The marginal conditional rate function for Ny;(¢) is defined by

. PLAN () | Ziy = 25} )
it = tim B Do j=12
Let puopi(s,t; zp1, 2k2) = E{dNj(t) = 1|dNy(s) = 1,2 = 2w, Zka = zk2}. The

conditional rate ratio is defined as

o)1 (8, t; 2r1, 2a2)
pa(t; 2k2)

p(57 t? Zk1, zk?) = for S7t Z 07 (21)

which is a measure of how the occurence of an event for subject 1 (or type 1 event)

at time s modifies the likelihood of event occurrence for subject 2 in the same cluster
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(or type 2 event of the same subject) at time ¢. It is natural to see that p(s,t; 21, 2x2)
measures the dependence of {N/(+), Ny(-)} at time (s,%). If the two processes are
independent then p(s,t; zx1, 2k2) = 1.

Under the definition of the rate ratio,

E{ngl(S)dN,:Q(t) ‘Zkl = Zk1, Zkg = Zkg}
= p(8,t; Zk1, Zr2) 11 (85 251 ) 2 (t; 2r2) dsdt,

= p(s,t; 251, 2k2) E{dNg1 (8) | Ziy = 21 FE{dNgo(t) | Zi2 = 2r2}, (2.2)

where the marginal conditional mean rates E{dN};(s)|Zx1 = zr1} and E{dN},(t)|Zy2 =
zko } can be modeled, for example, by the semiparametric models such as the additive
model of H Scheike (2002) or the multiplicative models of Lin et al. (2000). The asso-
ciation measure p(s,t; z;1, 2i2) can be modeled through parametric or semiparametric

models. Consequently, a two-stage estimating procedure can be adopted.
2.2 Estimation and inference procedures

Let Yj;(t) = I(Ck; > t) be the at-risk process and Ny;(t) = fot Yij(w)dNy;(u) be
the observed recurrent process. Let fi1(s; zx1) and fia(t; zx2) be the estimates of the
marginal rates p;(s; zx1) and us(t; zx2), respectively, which is considered as the first-
stage estimation. There are a number of options to estimate the conditional rate ratio
p(s,t; zk1, 2k2) including nonparametric, parametric and semiparametric approaches,
each with commonly known strengths and weaknesses. The nonparametric approach
may suffer from the curse-of-dimensionality while the parametric models can be mis-

specified. On the other hand, the association measure based on parametric models



can be more interpretable.
Suppose that p(s,t,0; zx1, 2k2), 0 € O, is a parametric model for p(s,t; zx1, 2k2),
where © is a dimensional compact set. The estimating equation for # can be con-

structed as

N
_ Z T[T Op(s,t,0; 211, 2k2)

k=

U0, i1 (+; 2r1)5 f12(; 2x2))

(5,1, 0: 201, 200) Yer (8) 01 (3 2i1) Yaa (£) i (£ 202) s dt}. (2.3)

Model checking is an essential part of the parametric approach. We proposed
a goodness-of-fit procedure to test the parametric form of the rate ratio base on

the supremum test statistic given by 7" = sup, ;c(o.-2 |V (s, 1, 0, i1 (5 211, o (-5 z2) |,

where
V(s,t,0, i (5 20); a5 242))
_ N—1/2i/t /S Wn(uw)ap(u’v’g;@z’mzm){del(u) ANy (v)
k=170 /O
— p(u,v,0; 21, 2k2) Yir (w) fu1 (0 251) Yia(0) fio(v; 252) du dv}, (2.4)
W, (u,v) is prespecified weight function and || - || is the Euclidean norm. The critical

values can be approximated by implementing the Gaussian multiplier method Gilbert

et al. (2017)



CHAPTER 3: ESTIMATION AND INFERENCE OF THE RATE RATIO UNDER
THE ADDITIVE MARGINAL MODEL

3.1  Estimation by a two-stage approach

We illustrate the two-stage approach described in Chapter 2 when the marginal

conditional rate model is additive. Let Ny;(t) follows the additive rates model

EldN; () Zr; (1)) = dp; (1] Z1;(2)),

dpj (| Zij (1)) = dpos(t) + B Zys(t) dt, k=1,. N;j=1,2 (3.1)

where 110,(t) is an unspecified baseline rate function and ; an unknown p-dimensional
vector. We consider the parametric approach by assuming p(s,t,0; 21, 2x2), where 0
is the g-dimensional parameter of interest.

In the following sections, we first review the estimation procedure of 3; and p;(t)
from the additive marginal mean rate model by adapting the method proposed by
H Scheike (2002). Then we develop the estimation procedures for parametric rate ratio
and investigate its asymptotic properties. A goodness-of-fit procedure is also proposed
to test the parametric assumption of the rate ratio. Lastly, we conduct simulations
to validate the estimation and inference procedures, with the results presented at the

end of this chapter.
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3.1.1  Review of the estimation of the marginal model

We define a mean-zero stochastic process as

My;(t, B5) = Ni;(t) — /0 Vij (w){dpoj(u) + B} Zyj(u) du}. (3.2)

Following the Generalized Estimating Equations proposed by (GEE; Liang and Zeger

1986), the estimating functions for p;(t) and j; are as
N t
Z/ Vij(u) dMyj(u; 8;) =0, 0 <t <. (3.3)
k=10

> [ i) Zustu) dbteus ) =0 5.4

respectively. By solving (3.3), we obtain the fig;(¢; 5;) as an estimate of 10;(t), where

/ Sy [ AN (u) — Yig (w) B Zij () du]'

S V() (82)

:&0]
With some simple algebra, equation (3.4) is equivalent to

L;(8) = Z [ 000 = 2,003 [ Voo Va5 20 ]

where Z;(t) = % Substituting fip;(¢; 5;) into equation (3.2) and solve

equation (3.4) gives us the estimate of 3; as

[i | Ytz - j<u>}®2du]‘1kZN1 | 250 - 2z aviyw.

(3.6)

®2

where a®? = aa” for a vector a. Once f3; is obtained, jo;(t) can be estimated by

fio; (t; B;) from equation (3.5).
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For convenience we summarize the estimation method of the additive marginal

model developed by H Scheike (2002) here.

Theorem 3.1 (H Scheike (2002) Theorem A.2.) Under the regularity (C.1.) -

(C.5.), Bj converges almost surely to B, and has the following asymptotic approxi-

mation
) N
VNS = iy = ATINTUEY 6+ op(1)
k=1

where & = fOT{ij(u) — Zj(u) } dMy;(u, ;) and Z;(t) = lim Z;(t).

N—o0

vV N(Bj —B;) is asymptotically normal with mean zero and has the covariance matriz

Aj_leAj_l, where

Ay = B[ {Zi0) = 585,00 dul,
% = Bl AZ35(0) = Ziu)}aMys(u ) [ {Z(0) = Zi(0) ad 0,5
The asymptotic covariance matriz can by consistently estimated by Aj_lijflj_l, with
N T
Aj = Nil Z/ {ij(u) — Zj(u)}®2 du
k=10
N ~
5= NS
k=1
= [ (2w = 2y a3,
dMy;(t; B;) = dNij(t) — Yis (0){ dfio; (t) + B Zj(t) dit}.

Theorem 3.2 Under the reqularity (C.1)-(C.5), fu;(t) converges almost surely to

pio; (t) uniformly in t € [0,7]. V/N{jio;(t) — po;(t)} converges weakly to a mean-zero
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Gaussian process with covariance function

(5, 8) = Bl ($)6us (1)), (3.7
where
mﬂw:A?f@wamﬁ»—Hﬂw@IAEaaw—@w»wmﬂm@x<a&
with H(t) = [ 2y(u)du, 2(1) = T ZF(t) and () = N~ tim T2, Y3 (0).

The consistent estimates of T'(s, ) is Tj(s, 1) = N~ fo:l Orj(5)br;(t), where

émw:A]<>M%W@ /k&] (u)} AT (s By),

with (t) = N7 300, Vi (1) and H(t) = [ Z;(u) du.

3.1.2  Estimation of the rate ratio

The rate ratio can be estimated by equation (2.3), the realization of which under
model (3.1) is
A A N A A
U(ea 617 627 ﬂOl(')? /:LOQ()) - Z Uk(ea 617 ﬁ% /101(')7 ﬂ02('))7 (39)
k=1

where

L Op(s,t,0; Zu, Z
Ui(0, Br, Ba, fror (), floz(+) // o aekl kz){del()dez()

— p(s, 4,05 Za, Zka) i (8) [ dfion (5) + BY Zia () dsYia (1) dfion(t) + B3 Zia(t) dt ] }

Denote 6 the solution to U, B1, B, fo1(+), fio2(+)) = 0. We investigate the asymp-

totic properties of U(é, By, B, fio1(+), fio2(+)) and 0 in Theorem 3.3 and 3.4 below.
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Theorem 3.3 N=/2{U(6, b1, B, fio (), froz(-))=U (0, B, o, pron (+), pron(+)) } converges

to a mean-zero Gaussian process, with covariance

N

®2
Q= ]\}I_Igo N! {hl,NémAfl + ging + hanEro Ay + 92,N,k} .
k=1

The consistent estimate of §2 is

A T S N R @2
Q=N Z {hLmeAl + gin gk + ho N2 Ay + gz,N,k} :
=1

where iLjVN, fkj, Gink(s,t) (7 =1,2) are shown in the appendiz B.

Theorem 3.4 \/N(é — 0) converges to a mean-zero Gaussian process and has the

following approximation based on Taylor expansion that

N
VN —0) = NTVHI0)}) " Wi(0) + 0,(1), (3.10)
k=1
for which the formulae for Z(0) and Wy(0) are given in the appendiz B.
The variance of VN( —6) can be estimated by ® = N~H(Z)"1 S0 (W) E2(Z7) 1,

where T and W), are the empirical counterparts of Z(6) and Wi(6).

3.1.3  Simulation study

Before we conduct finite sample studies to investigate performance of the proposed
estimation procedure, we want to show some examples that motivate us to model the

rate ratio parametrically.

Proposition 1 Under shared frailty model

dpj(t) = R - {dpo;(t) + B] Z;(t) dt}, (3.11)
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where Ry is identically and independently distributed positive random variable, with
E(Ry)=p and var(Ry)=0?. The rate ratio only depends on the variance of frailty
random variable and can be explicitly expressed as

o2
p(s,t,0) =p= 1—|—E. (3.12)

Proposition 2 Let 7 be the maximum observation time and cq lies in the middle of

0 and 7. Suppose the shared frailty mean rate model for N,;"j(t) S
dp(t | Z1(t), Bu(t)) = Ri(){dpo;(t) + B} Zuj(t) dt} (3.13)

where Ry(t) = I(t < co)Ryo + I1(t > co) Ry
Before we exam the rate ratio in this time varying additive mean rate model, we

introduce the shifted gamma distribution. Define the probability density function of

the shifted Gamma(a,b,0) as

—(z=9)
b

f(zla,b,d) = (x—6)""te ,x € [6,00), >0 (3.14)

['(a)be
for x € [0,00), 6 > 0 and here I'(+) denotes the Gamma function. Let X come from
shifted Gamma(a,b,d) then we have E(X )=a-b+ 46 and var(X )=a-b*. As we can see
when 6 = 0, the shifted Gamma distribution is reduced to the gamma distribution.

If Ry and Ry are independently from the corresponding shifted gamma distribution
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(ag, bo, 60) and (a1, by,01), then the rate ratio is piecewise constant:

aob?
(agbg + 09)?’

a,b?
(arby +01)%’

p(0,s <cot <o) =1+
p(0,s > co,t >co) =1+

p(0,s < co,t >cy) =p(0,s>co,t <cp) = 1. (3.15)

Proposition 3 For j = 1,2, denote \;(t|z;) the event rate of nonhomogeneous Pos-
sion Process N;(t). Let No(t) be a monhomogeneous Poisson process with event
rate \o(t|z;). Assume that N;(t) and Ny(t) be mutually independent, i.c. for any
Uy, Us..., Up, the random vectors {Ny(uy), Ni(u1),, ..., Ni(un)}, {Ng(us), ..., No(un)}
and {No(uy), ..., No(u,)} are independent to each other.

Let Nj(t) = N;(t) + No(t) for j = 1,2. Since N,(t) is the summation of two
independent Poisson processes, N;(t) is also a Poisson process with rate \;(t|z;) =
Ni(t|25) 4+ No(t|2;).

Let po(s,t,0|z1,22) and the p(s,t,0|z1,22) be the rate ratio of {No(s), No(t)} and

{N1(s)}, No(t)} for s,t >0, then we have p(0, s, t| z1, 22)

14 {po(0, s, t; 21, 20) — 1} Ao(s]21) Ao (t]22)

0,s,t: =
p(0,s,t; 21, 22) A1(s|z1)Aa(t]22)

(3.16)

The association is introduced by the shared counting process Ny(s) and Ny(t). If
po(0,s,t; 21, 20) = 1 then p(0, s,t; 21, 20) = 1, thus if {Ny(s), No(t)} is independent so

is {N1(s), Nao(t)} .
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We conduct simulation studies to evaluate the finite sample properties based on
the guidance of Proposition 1, 2 and 3. Let 7 = 5, Cy; follows a uniform distribution
on [0,7], and covariates Zj; are from a uniform[1, 2] for j = 1,2. The observed events
for the jth type in cluster £ would be all the event times that are smaller than Cj;.
We consider I, II, IIT scenarios where the rate ratio is constant, time varying, and
covariate dependent. Scenario IV is an extension from II and III, with the rate ratio

depending on event time and covariates.

(I) Constant p(s,t,0) = 6

Recall the shared frailty model in equation (3.11)
dp;(t|Re, Zyj(t)) = R - { dpoj(t) + B Z; (1)} for  j =1,2.

Let Ry follows i.i.d Gamma(a, b) with E(Ry) = ab and var(R},) = ab®. By proposition
1, p(s,t,0) = 0y where 0y = 1 + ab*/(ab)? =1+ 1/a.

Let 51 = 0.5, By = 1, po1(t) = poe(t) = 0.25¢,0.5¢,t. The averaged observed type
1(2) events after right censoring are 2.50(4.37), 3.13(5.02) and 4.37(6.26) respectively.
To variate the strength of the association, we take Ry from the pairs of (a,b) equal
to (4, 0.25), (2, 0.5), (1.33, 0.75) and (1, 1) so that 6, = 1.25, 1.5, 1.75 and 2
correspondingly.

By taking the expectation of Ry in equation (3.11), the mean event rate still follows
model (3.1). In the first-stage, 53;, fio;(t) are evaluated by equation (3.6) and (3.5). In
general, the estimates of fSy; and p;(t) agree with the discussions in literatures. We

show part of the numerical results for the first-stage estimates in Table 1, from which
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it is observed that Bl and Bg converges to the true values f; = 0.5 and $, = 1. The
mean Estimated Standard Error of 8; (ESE) is very close to the Sample Standard
Error of Estimates (SSE) and Empirical Coverage Probability (CP) is around to 0.95.
We will skip the marginal model simulation result and focus on the estimation of the
parameters in the rate ratio in the studies.

In the second-stage, ij fup; for j = 1,2 are plugged into equation (3.9) and the
root is derived by the Newton-Raphson method. Convergence is achieved at the

o . e e _pli-1)
ith iteration if ==~

e— < 107° or 4 > 50. In Table 2, the Bias is negligible for
all the cases and the Standard Error of Estimates (SEE) is close to the Estimated
Standard Error (ESE). The 95% coverage probability (CP) is also around 0.95. Both
SEE and ESE decrease with a larger sample size. It is also observed that the SEE
and ESE increase when the association between the two processes becomes stronger
(i.e. 0y is larger) and such increment is slowly reduced by increasing the sample size.
A possible interpretation is that for bivariate recurrent event processes, given the
observed dataset with a fixed sample size, less information would be obtained if the

two events are highly related. We might be able to adapt a weight function in the

estimation equation (3.9) to improve the efficiency of this estimating procedure.

(IT) Time dependent rate ratio p(0,s,t) =1+ 6y x (—0.15¢t 4+ 0.9)(—0.15s + 0.9)

For the j th individual in the kth cluster, let
Nij(t) = Nij(t) + Nyo(t), for j=1,2 (3.17)

where {Ni1(-), Nia(+), Nio(-)} are independent Poisson process, conditional on co-
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variates and frailty. Consider E{dNyo(t)|z;, Rk} = Ri - Mo(t| Z; = z;)dt, where
Meo(t] Zis) dt = dpoj(t) + BojZx;, and Ry is ii.d from a positive distribution with
E(Ri)=po and var(R;)=0c2. By Proposition 1, the rate ratio of {Nyo(s), Nxo(t)} is
po(s,t,0)21,22) = 1+ 03/ 1.

Denote the mean rate for Ni;(t) as Aj(t| Z; = zi;) (for j = 1,2 and t € (0,7))
and assume \g;(t| Ze; = 21;) = {(0.15t + 0.9)~" — 1}\o(t| Ze; = 215), By equation
(3.17), the mean rate of N;(t) is Ag;(t|zk;) = (0.15¢ 4+ 0.9) " Ao (¢ |21;5)-

Following Proposition 3, the rate ratio of { Ny1(s), Ni2(t)} can be expressed as
p(0,5,1) =1+ 0 x (—0.15¢ + 0.9)(—0.155 + 0.9), (3.18)

. Let Ry, follows i.i.d Gamma(a,b) so that ug = ab and oy = ab*. We

§ NquNJ

where 0y =
take (a,b) as (4,0.25),(2,0.5), (1,1) and (0.635,1.6) and therefore the corresponding
Oy are 0.25, 0.5, 1 and 1.6. To generate moderate and frequent event observations, we
take Bp1 = Bo2 = 0 and set po;(t) = po2(t) to be 0.25¢, 0.5¢, 0.75¢ and ¢, which gives
us averaged events count as 2.13, 4.17, 5.21 and 6.39 respectively.

The Bias of the estimates (Bias), the Estimated Standard Error (ESE), the Sample
Standard Error of Estimates (SSE) and 95% Empirical Coverage Probability (CP)
are calculated from 1000 simulated datasets with sample size N = 200, 500, 800. The
bias of 6y is low, the ESE is close to the SSE and the coverage probability is around
0.95. When the association between N (-) and Nio(+) become stronger, the ESE and

SSE both increase, which is similar to the scenario I. For details, see Table 3.

(IIT) Covariate dependent rate ratio p(0; Z;) = 611(Z, = 1) + 6,1(Z;, = 0)
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Let Z; be a cluster level binary covariate. Assume the counting process N,jj(t)

follows the shared frailty model

E[dNy; ()| Zy, Ri] = Ri{ dpo;(t) + B;Zx(t) dt},

where E[Ry,| Z;] = u(Z;) and var[Ry|Z;,] = 0*(Z},). Following Proposition 1, we obtain

o*(Zy)
1A (Zy)

p(0;Z;) =1+ (3.19)

We take 51 = 0.5, B2 = 1, po1(t) = po2(t) = 0.25¢,0.5¢,0.75t. Z; comes from
Bernoulli(p = 0.5), so that Z; has equal chance to be 0 or 1. We generate R}, from
Gamma(4,0.25) and Gamma(1.33,0.75) for Z, = 1 and Z;, = 0 respectively.

In equation (3.19), p(6; Zx = 1) = 1.25, p(0; Z; = 0) = 1.75 and therefore we

rewrite the rate ratio as
p(0;Z) = 011(Z, = 1)+ 0,1(Z;, = 0), (3.20)

with ; = 1.25 and 0, = 1.75. Under this setting, the averaged observed type 1(2)

events after right censoring are 2.50(4.37), 3.13(5.02) and 4.37(6.26).

(IV) Time and covariate dependent rate ratio

Consider the bivariate counting processes { Ny1(-), Nk2(-)} constructed by the sum-
mation of two independent Poisson processes Ny;(+) and Ngo(-), as described in Propo-
sition 3. Denote po(0, s, t; 21, 22) and p(0, s, t; 21, 22) be the rate ratio of (N (), Nio(s))

and ({Ng1(s), N2(t)}) respectively. Following from Proposition 3, we have

14+ {po(0, s, t; 21, 22) — 1} Ao(s; 21) Ao(t; 22)

0, st =
p(0,s,t; 21, 22) A(s;21)Aa(t |22) ,
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where Aro(s|21) ds, Aj(s|z1)ds are the conditional mean rate of Nyo(s) and N (s),
whereas Ago(t|22) ds, As(t]z1) dt are that of Ngo(t) and Nya(?).

Let Aio(t|Zk, Ri) = Ry(0.25+ Bo; Zx) and ij (t) = 0.5t, where Ry, is generated from
i.i.d Gamma(a,b) and Z is from Bernoulli(0.5). Consider (a,b) equal to (4, 0.25),
(2, 0.5) and (1.33, 0.75) such that po(0, s,t|2z1, 22) = 1.25,1.5 and 1.75. Let By = 0.1,

02 = 0.2. The rate ratio of Ni1(s) and Ngo(t) is time-varying and dependent on the

covariate Zj;, where

(0.25 +0.12)(0.25 4 0.2Z},)
(0.5t + 0.25 + 0.17;)(0.5s + 0.25 + 0.2Z;)’

with 6, = % =0.25,0.5,0.75 and 1.
To evaluate the influence of observed event frequency on the estimating procedure,

we modified Ayo(t|Zk, Ri) = Ri(0.5 + (ojZ)), whereas the rate ratio follows

(0.5 +0.12;,)(0.5 + 0.27;)

0,s,t|Zy) =146 '
PO s ) = L e 0 5 0.1 2,)(055 + 05+ 0225)

(3.22)

We obtained él and 92 from the two-stage estimation procedure. Table 5 has the
simulation result, from which we observe the bias is going to zero and the ESE is
getting close to SSE as sample size increase. The coverage probability is getting close

to 0.95 for both 6, and 65. Each entry is based on 1000 simulated datasets.
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3.2 Hypothesis testing of the rate ratio

Although the parametric rate ratio model has better interpretability than nonpara-
metric ones, it might suffer from model misspecification and induce model bias. In
this section, we aim at providing a goodness-of-fit procedure to test the parametric as-
sumption of the rate ratio, i.e. Hy : p(s,t,0; 21, 29) = 0y, under the additive marginal
mean rate model. A finite sample study is also conducted to check the performance

of the goodness-of-fit procedure.

3.2.1  Procedure description

The residual process followed by equation (2.4) under model (3.1) is defined as

V(S;@é,fh(';Zk1)7ﬂ2('52k2 = UQZVk (s 2k1), fi2(*; 242)) (3.23)
with

Vi (Sv t, éa lal('; zk1)7 [jl2('; Zk2))

[ [ o

— p(u, v, 0)Yia (w){dfior (u) + B Zra () du} Vo (v){dfr02(v) + B3 Zra(v) dv}}7
(3.24)
where Wy (u,v) is a prespecified weight, and for simplicity we let Wy (u,v) = 1.
With correctly specified marginal mean rate and p(s, t, 0; 21, zx2), one would expect
the value of equation (3.23) to fluctuate around zero at the any (s,t) € [0, 7]2.
Let T' = sup; 4e0..2 | V (5,1, 0,11 (- zr1), fia(+; zk2)) || be the supremum test statistic

which measures the maximum observed residuals across the observable periods of type
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1(2) events. A reasonable small T' value is expected from a good fitting. Since the
underlying distribution of T is intractable, we apply the Gaussian multiplier method

to approximate its empirical distribution.

The Gaussian multiplier method.

The first order Taylor expansion of equation (3.23) w.r.t 6 is

V<57 t? év /ll(u zkl)v ﬂ?(; Zk:2)>

ov (svtvevﬂl('?Zkl)vﬂQ('§Zk2)> ~
:V<3at797ﬂ1(';2k1>7ﬂ2('3ZkZ)) + N71/2 50 NY2(0 —0)

+ 0,(1), (3.25)
which can be further decomposed as

V<S7 t? év /ll(a Zkl)v ﬂ?(u Zk2)>
= N712 25:1 {Vk (87 0, 115 zrn), pr2 (5 Zk2)>

+ Tkl(s, t, 9) + TkQ(S, t, 9) -+ Ckl(s, t, 9) + Ckz(s, t, 9)} + 0p(1), (326)

with details shown in Appendix C.

Let T* = sup, sefo, 2 | V*(s,1) [| and

~

V*(s,t,0)
N ~
— N_1/2 Z {Vk(37 ta 07 lal(7 Zkl)’ /]’2(’ ZkQ))
k=1
+Yk1(87 t, é) _'_ ékl(s7 t’ é) —|— Yk2(87 t, é) _'_ ék?(sa t) é)}le (327)

where G, is i.i.d standard normal random number. V(s,t, é, Q155 zx1), fro (v zk2)> in

equation (3.27) converges to a mean zero Gaussian process, which is approximated
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by V*(s,t,0). and hence the T has empirical distribution 7.

The Gaussian multiplier resampling method is summarized in Algorithm 1. In one
simulation, a Gaussian random vector {G1, Gs, ..., Gy} is generated and V*(s, ¢, é) is
calculated from equation (3.27). By taking the maximum of V*(s,¢,6) across all the
equally distanced grids, we have one sample from the T™ distribution. Repeating this
simulation procedure 1000 times allows us to obtain 1000 samples and therefore the
empirical distribution of 7. On the other hand, the supremum test statistic 7" can be
obtained by taking the maximum of equation (3.23). We consider the 95th percentile
among the 1000 realizations of T as the critical value (Co5) and would reject Hy if

T > Cogs.

3.2.2  Simulation studies

In this section, we conduct simulation studies to investigate the performance of the
proposed goodness-of-fit procedure.

For bivariate counting processes, firstly, we detect the existence of dependency.
The null model is that the bivariate counting processes are indepdendent and the
constant rate ratio model is treated as its alternative. Secondly, we test the hypotheses
Hy : p(s,t,0;21,20) = 0y vs Hy @ p(s,t,theta;z,29) # 6p. The model under Hy
is generated from the shared frailty model whereas we consider piecewise constant
(PWC), time dependent (TD), time and covariate dependent (TCD) models as H,
models. The size and power of the test are also computed via Gaussian multiplier

method.
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3.2.2.1  Testing for independence

The first hypothesis of interest is whether { Ny (-)} and {Ng2(:)} are independent,
which is equivalent to test Hy : p =1 vs H, : p # 1. To investigate the size, events

data are generated from an additive marginal model

dpj(t; Zij(t)) = dpos(t) + B Z1;(t).

Let 7 =5, Bo1 = 0.5, Bo2 = 1, Cy; follows Uniform[0, 7| and covariates Zy1, Zyo are
from a uniform distribution on [1,2]. We take p;(t) = 0.25¢, 0.5¢, 0.75¢, and ¢ which
gives the average observed events counts range from 2.50 to 6.26. Datasets under

H, : p(0,s,t) = 0y are generated from the shared frailty model

dpj(t; Zyj(t), Re) = Re{dpo;(t) + B;Z1;(t)},

where Ry, from Gamma(a, b) with (a,b) = (4, 0.25), (2, 0.5), (1.33, 0.75), (1, 1). Thus
0y in H, are equal to 1.25,1.5,1.75,2. We compare the supreme test statistic under
p(0,s,t) = 0y to the corresponding value obtained by assuming p = 1 and regard the
rejection rate among 1000 simulations as the power of the test.

We only consider the case when p; = 0.25¢, since it has the smallest number of ob-
served events and other cases would have even more rejection, i.e. higher power. The
empirical size (power) calculated as the rejection rate from 1000 simulated datasets
under Hy : p=1 (H, : p(s,t,0; 21, 20) = ).

Table 8 shows that the proposed testing procedure has size around its nominee

value (5%). The test procedure is powerful at detecting the non-independent case
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with probability above 99%.

3.2.2.2  Testing for parametric form with constant rate ratio

We are also interested in testing the parametric assumption of the rate ratio, i.e.

Hy : p(0,s,t) = 6y. The Hy model is the shared frailty model in equation (3.11),
shared frailty: E[dN;;(u)|Re, Zij(w)] = Re{dpo;(w) + B Zi;(u) du}

from which p(s,t,0) = 0y where 0y = 1 + 02/u?, E[R;] = p and var[R;] = o2

From the first section in Table 9, we see the empirical size of the test under null
model is bounded by its nominee value 0.05. Thus the hypothesis testing can control
the probability of mistakenly reject Hy : p(s,t,0) = 6y under 0.05.

To investigate the power of the test, we propose three alternative models to intro-
duce the time varying and covariate dependency cases: the piecewise constant rate
ratio model(PWC), the time dependent rate ratio model(TD Model) and the covariate
dependent rate ratio model(CD model). Alternative models and the corresponding

performance are illustrated in the following sections.

(I) The piecewise constant rate ratio model - PWC Model
Described in equation (3.28), the random effect is time varying, which is a natural

generalization of the shared frailty model
PWC: duy(t [Rult), Zy(1)) = Ru(){dpoy (1) + 87 Zs(Dy e}, (3.28)

For simplicity, we consider Ry(t) come from different distributions only when ¢ falls

in non-overlapping intervals.
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Let 7 = 5, Ri(t) = I(t < 2.5)Ryo + I(t > 2.5)Ry1, where Ry and Ry are in-
dependently from the shifted Gamma(ay, by, d) and Gamma(ay, by, d;) respectively.
The shifted Gamma Distribution with (a, b, d) as shape, scale and shift parameters is
introduced here to avoid rare event observations. We take g1 (1) = po2(u) = 0.125u?
1 =0.5, By =1, and Zyy(u), Zg2(u) from uniform(1, 2].

Table 6 summarizes the parameter settings and the corresponding rate ratio value.
We see the variation of the association is increasing from PWC; to PWC4 and one
can visualize the trend in Figure 1 as well.

To evaluate the power of the test, first, we generate 1000 datasets and within each
simulation, the rate ratio p(6,s,t) is estimated under Hy. The residual process and
supreme statistic 7" are computed and a rejection is made when 7" > Cys, where Cys is
the 95% percentile of Gaussian Multiplier samplers. The overall rejection rate among
the 1000 datasets is considered as the empirical power of the hypothesis test. From
Table 9, the power increases with the sample size and it is more likely to detect the

divergence from H, when the association become stronger.

(IT) Time dependent rate ratio model - TD model

Assuming { Ny (s), Nyo(t)} follows the bivariate counting processes below

Nia(s) = Nia(s) + Nio(s),

Nia(t) = Nia(t) + Neo(2), (3.29)

where Nii(+), Nia(-) and Nyo(+) follow Poisson Processes and are also mutually inde-

pendent.
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Let Ago(t|Zk;, Ri) dt be the event rate of Nyo(t) and Ao (t|Zk;, Ri) = Ri(dpo;(t) +

2 For j =

BojZi;(t), where Ry is the frailty variable with mean p and variance o
1,2 and t € (0,7), let ij(t\ij(t)) = {(—0.15s + 0.9)™' — 1} M\4o(t|Zk;(t)) Following

simulation settings in equation 3.18 to generate data that share the rate ratio as
TD model: p(0,s,t) =1+ 6y x (—0.15s + 0.9)(—0.15¢ + 0.9). (3.30)

where 0y = Z—; reflects the time varying component in p(6, s,t) proportionally. To
capture different time varying levels, we take Ry from a shifted gamma distribution,
with parameters (a,b,d) = (0.25,2,0.5),(0.2,3,0.4) (0.25,3,0.25) and (0.2,4,0.2) so
that u =1 and 6% = 1, 1.8, 2.25 and 3.2. Let Sy = Boa = 0, 7 = 5, Cy; be uniform
on (0,7), and Zyy, Zye are i.i.d uniform(1,2). Simulation settings are summarized in
Table 7 and Figure 2.

The variation of p(6,s,t) is scaling up from TD; to TDy, so does the empirical
power of the test shown in Table 9. From our observation, the proposed model
checking procedure performs well with a large sample size, especially when the rate

ratio is very time dependent.

(ITII) Time and covariates dependent rate ratio model -TCD Model

Under the same framework of the TD Model, assume Ny () and Nkj(t) are Pois-
son processes with rate conditional on covariates and unobservable frailty Ry as
Meo(t| Zij, Ri) = Ri{0.25 + By Z;} and ij(t) = t respectively. The conditional
rate of Ng;(t) equals to \g;(t|Zxj, Ri) where Ag;(t|Zx;, Rx) =t + {0.25 + Bo;j Zk; }-

Let Bo1 = 0.5, Bo2 = 1, Zy; follow uniform(1,2). Take Ry as i.i.d Gamma(l/v,v)
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with v = 0.5,0.8,1,2 so that E(R;) = 1 and var(Ry) = 0.5,0.8,1,2. Denoted by

p(0,s,t; Zr1, Zia) the rate ratio of { Ny (s), Ng2(t)}, where

(0.25 4+ 0.5Z51)(0.25 4+ Zya)
(t+0.25+0.5Z1)(s +0.25 + Zpo)

p(@, S, t, Zkl; Zkg) =1+ 0 (331)

is obtained by Proposition 3, with true # equal to 0.5, 0.8, 1 and 2.

The average rejection of Hy : p(s,t,0) = 6y under equation (3.31) among 1000 are
summarized in Table 9. The test is powerful at detecting violation of Hy and the
rejection rate of the test is consistently increase when the sample size changed from

200 to 800.
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Algorithm 1 Gaussian Multiplier Method
For dataset m =1,2,.... M

1. Let M the total number of simulated datasets, consider M = 1000;
2. For a given dataset, calculate T' by equation (3.2.1);

e set 1 =1;

e while 7 <= 1000, we generate a vector composed by i.i.d Standard Gaussian
random numbers, so that each row is an N dimensional vector: G; =

{Gila Gi27 Gi?n sy GlN}
e applying (3.27) to calculate {V*(s,t)} and obtain T;.
e i =1+ 1;

3. Denote the 95th percentile of {77, Ty, ..., Ti500} to be Cos. We would reject Hy
if T'> Cys and fail to reject Hy if T' < Cls.

4. Calculate the percentage of rejections in a total of M datasets to find the size
or the power of test statistic.
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Table 6: Summary of simulation settings under the piecewise constant rate ratio
model with the corresponding p values followed from Proposition 2.

Settings PWC, PWC, PWCs4 PWC,
Reo: (ao,bo,00) (0.251,0.75)  (0.5,1,0.5) (0.25.2,0.5) (0.25,2,0.5)
R : (a1,bi,61)  (0.25,1,0.75) (0.25,1,0.75)  (0.5,1,0.5) (0.25,1,0.75)

pls < 2.5, < 2.5) 1.25 1.5 2 2
p(s > 2.5t < 2.5) 1 1 1 1
p(s > 2.5t > 2.5) 1.25 1.25 1.5 1.25

Figure 1: Visualization of piecewise constant p(s,t,0) (PWC) under the additive
marginal. The variation of p(s,t) between different pieces is growing from PWC; to

PWC,.
PWC,
5
4 psit0) =1 p(s,t,0) =1.25
03
\
\
o2
p(s,t,0) =1.25 pls,t,0) =1
1
0
0 1 2 3 4
O<s<5
PWC3
5
4 0)=15
plst0) =1 plst,0) =1.
03
\
\
o2
ols,t,0) =2 plst,0) =1
1
0
0 1 2 3 4
O0<s<5

PW’C2
5
4
p(s,t,0) =1 plst,0)=1.25
03
\
\"
o2
plst,0)=1.5 pls;t,0) =1
1
0
0 1 2 3 4 5
O<s<5
PWC,
5
4 t,0) = 1.25
p(s,t,0) =1 pls:t,0) =1.
03
\
\
o2
plst0) =2 ps,t,0) =1
1
0
0 1 2 3 4 5
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Table 7: Simulation settings of the time varying rate ratio (TD models). From TD1 to
TD4, the value of 02 /u? is increasing and so is the association between the bivariate

recurrent event processes.

Settings TDl TD2 TD3 TD4
(n,0?)  (1,1) (1,1.8) (1,2.25) (1,3.2)
o 1 1.8 2.95 3.2

2

=

Figure 2: The contour plot of the rate ratio p(s,t) under the additive marginal mean
rate models. The x-axis and y-axis represents the observation time for typel and
type2 events. From upper left to lower right, the heterogeneity of p(s,t) is increased.

3.5 3.5

2.5 2.5

15

O<s<5

3.5

2.5

O<s<5 O<s<5
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Table 8: Observed sizes and powers of the test statistic T via the proposed model-
checking procedure under Hy : p(s,t,0) = 1 vs H, : p(s,t,0) = 6y and 6y > 1 , at
significance level 0.05. The numbers in the parentheses represent the count for type
1 and type 2 event across the observation period. Each entry is calculated based on
1000 Gaussian multiplier samples with 1000 replicates.

Size

event count p  N=200 N=500 N=800
(2.50,4.37) 1 0.043  0.052  0.051
(3.13,5.02) 1 0.061  0.057  0.051
(3.76, 5.64) 1 0.043  0.053  0.041
(4.37,6.26) 1 0.045  0.049  0.054

Power

6y N=200 N=500 N=800

(2.50, 4.37) 1.25 0.995 1.000 1.000
1.5  1.000 1.000 1.000

1.75  1.000 1.000 1.000

2 1.000 1.000 1.000
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Table 9: Observed sizes and powers of the test statistic T for the proposed model-
checking procedure under Hy : p(0,s,t) = 6y (i.e. constant) vs H, : (0,s,t) # 0y, at
0.05 significance level. Each entry is calculated based on 1000 Gaussian multiplier
samples with 1000 replicates.

event count

(3.50, 4.67)

(2.91, 4.80)

(4.27, 4.27)

(6.67, 8.54)

N
200
200
800

200
200
800

200
200
800

200
200
800

Size

0p=125 Op=15 0,=2 0,=2.25

0.038 0.038 0.031 0.038
0.057 0.037 0.032 0.040
0.042 0.042 0.051 0.046
Power
PWC, PWC, PWC; PWC,
0.173 0.579 0.638 0.755
0.421 0.912 0.958 0.983
0.622 0.979 0.990 0.999
TD1 TDQ TD3 TD4
0.197 0.231 0.311 0.307
0.556 0.621 0.760 0.738
0.773 0.821 0.887 0.894
TCD, TCDy  TCDg TCDy
0.250 0.336 0.405 0.455
0.514 0.678 0.756 0.823
0.735 0.900 0.917 0.933




CHAPTER 4: ESTIMATION AND INFERENCE OF THE RATE RATIO UNDER
THE MULTIPLICATIVE MARGINAL MODEL

4.1  Estimation by a two-stage approach

Additive and multiplicative mean rate models postulate a different relationship be-
tween the underline counting process and the covariates. The multiplicative model,
also known as Cox model is popular due to its easy implementation and clear inter-
pretation of the covariate effect. In this chapter, we develop the estimation procedure
for the rate ratio under the multiplicative marginal event rate model.

Lin et al. (2000) proposed the mean rate of the counting process Nj;(t) as

EldN;; (1) Zij ()] = dpy(t; Zi(t)),

dpj (t; Zrg () = € 790 dpg (1), (4.1)

where f3; is a p-dimensional vector, fi;(t) is an unspecified baseline rate at time t.
Assume p(s,t,0; zk1, 2k2) is the rate ratio of N (t) and N/, (s). 6 is the dependence
parameter which can be approximated by solving the estimation equation (2.3), with
the f1;(t) estimated by the method proposed by Lin et al. (2000). We adjust some
notations from Chapter 3 with a superscription ¢ (Cox-type) to represent estimators

derived from model (4.1).
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4.1.1 Review the estimation of the marginal model

Adapting from the approach of Lin et al. (2000), for type j event we define

AN, (t) = i ANy (%),

t
M () = Nis(0) = [ i) 25 dpn)
0

N
SH(t.8) = N7 YV (0Zg e 0, d=0,1,2 (42
k=1

where a® = 1, a®' = a, and a®? = aa”. Let Zj(t,ﬁ) = Sjl(t,ﬁ)/S?(t,B); Zi(t, B),
s4(t, B) be the limit of Z;(B,t) and S§(t, B) as N — oo respectively.

Denote (; the solution to L§(B,7) = 0, where L§(3,7) = S [T Zi (u) —
Z;(u, 3)}dNy;(u) is the partial likelihood score function.

Under certain regularity conditions, Bj converges almost surely to ; and \/ﬁ(éj —
;) has weak convergence to a zero-mean normal random vector with covariance
matrix [} = (AS)712¢(AS) "L When f3; is available, the baseline function fi;(t) can

be consistently estimated by the Aalen-Breslow type estimator

o [ dN;(w)
poilt B = ). NSY(u, ;)]

t €0,7]. (4.3)
We investigate the asymptotic properties of 6 under the assumption that the distri-

bution functions of the Cy; are independent from covariates and the counting process.

We recall Theorem 4.1, Theorem 4.2 due to Lin et al. (2000).

Theorem 4.1 (Lin et al. (2000) A.1.) Forj=1,2, 5‘]- converges almost surely to

B; and /N (B;— B;) is asymptotically normal with covariance matriz (AS)~TX5(AS),
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A5 = E[ [ 4210 = 505050 2 dyn >]
= B[ [ 420~ 5w syt ) [(20) = 50 80aM50] (44
The asymptotic approrimation of Bj 1
~ N T ~
VN(B; = Bj) = (A5 "N Z/O {Zkj(u) = Zi;(u, B;)} dM; (u, B;) + 0p(1), (4.5)
k=1
from which the covariance matriz can be consistently estimated by A 12 A , where
~ N T
Aj = N_lz/ {Zj(u) Zk](“ ﬁ])}@Yk]( ) 5 2ng dMOJ( )
5, =N~ ng] ,
= [ (20 = Zujw,55)} dgta),
0
My (t) = Ni (t) — / Y (w)e™ 25 dfig; (u).
0

Theorem 4.2 (Lin et al. (2000) A.3.) For j = 1,2, fio;(t) = fio;(t, 5;) converges
almost surely to pig;(t) in t € [0,7], and vV N{jio;(t) — po;(t)} converges weakly to a

Gaussian process with mean zero and covariance function given by

F;(Sat>:E[¢zj(3)¢Zj(t)] at (s, 1),

where

"M, (u; B T a1 7 5 c
L0 = [ S [y - ases ) dg ). (19
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and

Ht: ;) = / 5o, ;) dpo () (47)

The covariance function F;(s,t) can be consistently estimated by

Di(s,t) = N7UY 7 fij(s) g (1) (4.8)
k=1
where
) = [ G i3 [ 200) =t i
and

4.1.2  Estimation of the rate ratio

In the second stage, the dependence parameter can be estimated by the root to the

following estimation equation

Uc<9,ﬁl7ﬂo1<) Ba, poa (- ) iU (9 B, por(+), 52,,“02(‘))7 (4.9)

k=1

where

Ug(@,ﬁl,ﬂm(‘),52;#02('))
/ / 0p(0, s, t; Zkl( ) Z2(t) -{de1(3> dNpo(t)

— (0, 8, t; Z11(8), Zia (1)) Vi1 (8)€7T 7290 dpigy (5)Yia (£) €72 202D dyigs (1) } (4.10)
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with SB1, B2, po1(+), po2(+) replaced by estimator By, Bo, fio1(+), fio2(+) from the first
stage.

The resulting estimator 6 does not have an explicit form. We adapt the asymptotic
properties of Bj and figj(-) from Theorem 4.1 and Theorem 4.2 to show the weak

covergence of 6.

Theorem 4.3 N_I/Q{UC<9,5~1,/101(-),5~2,/]02(-)) — UC<9,51,M01(')752,M02(')>} Jfol-

lows a mean-zero Gaussian process and has the following approrimation

N=Y2LU(0, B, dfior(+), B2, dfioa(-)) — U0, Br, dpion(-), Be, dptoa(-)) }
N

= NV (AD) T+ v+ o (A2) G g | 0 (NTH2), (411)
k=1

where

Ip(0, s,t)
00

N T T
By = NSO / / 450, 5,6 Z5(5) dptor ()daoa ),
=1

Qf(97 S, t) = _p(ea S, t) Yil (S)GBTZH(S)YZQ(t)GBQTZZQ(t)’

N T T

Moy =Ny / / 050, 5,8) Z5(0) dptoa()dpion (s),
=1 0 0
N T T

= NS / / 460, 5, 1) dpioa(t) dos, (5),
=170 0

N T T
Gk =N [ [ a0 0) dpon(s) ot (4.12)
1=1 70 /O

The right hand side in equation (4.11) can be estimated by
N 7 ~ -~ ~ ~ ~
N2 Z {hlvNAl_lékl + Gk + han Ay o + §2,N,k}7

k=1

where by, &1, hon, &2, Gink Gong are obtained by plugging B;, 0, fig;(-) and
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ori(t) into equation (4.12).

Theorem 4.4 We show in the Appendixz that \/N(é — 0) is asymptotically normal

and has the following i.i.d. approximation:

VNG —0)
= N7V2I0, B, por (), By proa ()} Z Wi(0, B, po1(+), B2 po2(+)) + 0p(1) (4.13)
where

8U;§(9a/31,M01(‘)>52,M02('))}T, (4.14)

N
Z°(0, B, por (), B2y proz(-)) = =N 1 Z { a0
k=1

and

W]gc(ea 517 HOl(')a ﬁQa MOQ())

= U(0, B, proa (), Ba, pro2(+)) + {hi,N(Ai)_lf& + giN,k + h%,N(Ag)_1€I§2 + gg,N,k}'

(4.15)

By the central limit theorem \/N(é — 0) is asymptotically normal with mean 0 and
variance which can be estimated by ® = N1 (I)"Y (0, WE)(ZT)™", where T and

Wy are the empirical counterparts of

790, By, po1(+), Ba, pro2(+))

Wi (0, By, po1(+), B2, po2(+))

respectively, obtained by substituting 0, B, fio(+), By, fio2(+) into equation (4.14) and

(4.15).
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4.1.3  Simulation studies

To evaluate the performance of the proposed method, we conduct a finite sample
simulation study with some shared settings. The end of study time is set as 7 = 4,
censoring time follows uniform(3,4), and covariates {Z;} for the two types of disease

are generated from uniform(1,2).

(I) Constant rate ratio p = 6,

Under the shared random effect model, E[dNy;(t)| Ry, Zy;(t)] = Ry {e% 71 ® dpo;(t)},
where {Ry} is the cluster level random effect, and are assumed to be i.i.d from a
positive distribution with mean E(Rj) = 1 and variance var(Ry) = o2 Proved in
Propositionl that the rate Ratio is reduced to p(f) = 1 + o2, which only related to
the variance of random effect Rj.

Let 81 = 0.2 By = 0.4. Take po1(t) = po2(t) = 0.125¢%, 0.25¢2, 0.375t%, and 0.5¢>
such that the averaged observed type 1(2) events after right censoring are 2.06(2.84),
4.18(5.67), 6.25(8.48), 8.3(11.3) respectively. Ry are independently simulated from a
Gamma distribution with mean 1 and variance 0% = 0.25,0.5,0.75, which leads to
p=125151.75.

In the first-stage, we estimate (31, 2 based marginal mean rate model (4.1). From
the result in Table 10, Bl and Bg converges to true the values f; = 0.2 and [y =
0.4, and the ESE (Estimated Standard Error) is close to SEE (Standard Error of
Estimates). The empirical coverage probability is close to its 95% nominee value.

In the second-stage, we substitute 31, (s, fio1(+), fioz(+) into the estimation equation

(4.9) and obtain 6 by solving U(@,Bl,ﬂ()l('),ég,ﬂgg(')) = 0. The average Bias, SEE
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(Standard Error of Estimates), ESE (Estimated Standard Error), CP (coverage prob-
ability of the 95% confidence interval) of p are summarized in Table 11, where each
entry based on 1000 replicates.

p is unbiased and the estimated standard error can be reduced by increasing the
sample size. Similar to the estimation result shown in table 3, the standard error
is underestimated which cause the coverage probability consistently slightly smaller
than 95%, especially when the p increases. One possible explanation is that the
information gains from increasing the sample size is offset by the stronger association
between two recurrent event processes. An extreme condition is that the two processes
are identical, then we are actually observing and utilizing the information for a single

process and therefore the rate ratio would be underestimated.

(IT) Time varying rate ratio p(6,s,t) =1+ 6y(—0.15s +0.9)(—0.15¢ + 0.9)

Assume the counting process for j th type event in cluster A at time u as
Nij(t) = Nij(t) + Nio(t), for j=1,2

where {Ny;(t)}, and {Nyo(t)} are mutually independent. Denote po(6, s,t) be the rate
ratio of Nyo(s) and Nio(t). By proposition 3, we have the rate ratio of { Ni1(s), N2 ()}

as

Aro(s]21(8)) Ao (t|22(2))
Ak1(8]21(8)) Ara(t]22(2))

p(973’t|21(3)’ ZQ(t)) =1+ {PO(Q, $>t) - 1}

where E{dNgo(s)|z1} = Meo(s]|21(8)) ds, E{dNk1(8)|z1(5)} = Ar1(s]z1(s)) ds, while
E{dNia(t)|22(t)} = Aga(t|z2(t)) dt. Tt is straight forward to show Agi(s|z1(s)) =

Mro(s]21(5)) 4+ Me1(s|z1(s)), with Agi(s|z1(s)) be the mean event rate for counting
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process Nkl(s). The same logic applies to type 2 event.
for s,t € [0, 7], we take g1 (s|z1) = {(=0.15540.9) "1 — 1} Ao (s]21) and A (£]22) =
{(—0.15t + 0.9)7" — 1} \go(t]22).

To specify the po(0, s,t), we consider
E[dN;(s)| Rk, Zi1] = Ry, - {eﬂlTZ’“ dpio1(s)},

EldNyo(t)| Ry, Zia] = Ry - {eﬂgzm dpoe(t)},

where Ry, is the cluster level random effect which is i.i.d from a positive distribu-
tion. We take Z;; from i.i.d U[1,2] and set ; = [y = 0. Ry are generated from
Gamma distribution with E(Ry) =1 and var(R;) =0.25, 0.5, 1, 1.5,and 2, which

yields po(0,s,t) =1.25,1.5,2 and 2.5. The rate ratio p(f, s,t) can be represented as
p(0,5,8) =1+ By(—0.155 + 0.9)(—0.15¢ + 0.9), (4.16)

with the parameter 6y equal to 0.25, 0.5, 1 and 1.5.

A simulation study for the rate ratio with sample size K = 200, 500, 800 is sum-
marized in Table 12, with each entry based on 1000 simulations. The estimator is
unbiased and the estimated standard error is very close to its true value, with coverage
probability around 95%. The SSE and ESE is decreasing while increasing the sample
size showing that the estimation procedure is more efficient with a large sample size.
We observe consistently higher standard error when the association between bivariate

recurrent processes increases.

(ITII) Covariate dependent rate ratio p(¢;Z;) = 6,11(Z, = 1) + 621(Z;, = 0)
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Let Zy; = Zj, denote the cluster level covariates. Assume the shared frailty model
E[dN;; (1) Zx, Ri)] = Ry, - €97 dpug, (1) (4.17)

where E[Ry|Zy]) = u(Z) and var[Ry| Zx] = 0?(Z). Following Proposition 1, p(s, t,6) =

o?(Zy)

1+ w2 (Zk)

. Denoted by the 0; and 65 the value of p(s,t,6) when Z, = 1,0, i.e.
p(s,t,0) =011(Z;, = 1)+ 0:1(Z, = 0). (4.18)

Let Bo1 = 0.2, Boa(t) = 0.4. We consider p;(t) = 0.125¢%0.25¢* for moderately
observed event process, whereas fio;(t) = 0.375¢t% and 0.5¢* stand for more frequently
observed ones. Zj from Bernoulli(p = 0.5) and Ry from Gamma(l/vg,vx) so that
E(Ry)=1 and var(Ry) = vy. Let 6, = 1.25 and 6, = 1.75 represent the weak and the
strong association, which are generated by taking v, = 0.25 for Z; = 1, and vy =0.75
while Z;, = 0.

Simulation result for sample size 200, 500, 800 and 1100, each with 1000 replicates
are shown in Table 13. The estimator is unbiased and the ESE is close to SEE. The
coverage probability is approaching to 0.95 when the sample size increases from 200
to 1100. The ESE and SEE of 6, are consistently larger than that of 8, even through

both are reduced in a larger sample size.

(IV) Time and covariate dependent rate ratio

For j = 1,2, we construct a bivariate counting process Ny; with N;(t) = ]ij () +
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NkO (t) . Let

E{dNyo(t)| Zyj, R} = Meo(t| Zyj, Ry) dt

E{dNy;(t)| Zyj, R} = A (t) dt

where \yo(t|Z1;, Ri) = Riei?ri0.25¢ and ij(t) = 0.25.

We take Ry, from i.i.d Gamma(a, b) with (a, b) equal to (4, 0.25), (2, 0.5), (1.33, 0.75)
and (1, 1) such that pg(0,s,t) = 1.25,1.5, 1.75 and 2. Let Zj is from Bernoulli(0.5),
Bo1 = 0.1 and Syz = 0.2. By Proposition 3, the rate ratio of Nyi(s) and Nyo(t) is

time-varying and dependent on the covariate Zj; which is denoted by

(0.25¢ €%12k1)(0.255 €0-22k2)

0,5,t|Zk1, Zya) = 1+ 0
P05 12 Zia) = L e 551 700 (0.25 1+ 0,255 037e2)

(4.19)

where 6 = po(0,s,t) — 1 =0.25,0.5,0.75 and 1.

To evaluate the performance difference between moderate and high frequency event
processes, we consider A\yo(t|Zy;, Ry) = Ry, - 0.5¢%i%ki. While keeping other settings
the same, the event process Ny;(t) would expect to have more observations than the

previous setting and following equation (4.19) we have

(0.5t %12%1)(0.55 e0-22k2)

0,5,tZ) =1+0 .
PO 11 2) = L e 5 57 e01%2) (0.25 + 0,55 0%

(4.20)

The simulation result from Table 14 shows that the estimating procedure works
well for both settings. The bias is going to zero and the ESE is getting close to SSE
as sample size increase. The coverage probability is getting around 95% for both 6,

and 05.



51

(08¥6°0 ‘09¥6°0) (9STT°0 ‘FLTIT°0) (661T°0 ‘€121°0) (¥S00°0- ‘2000°0-) 008

(02£6°0 ‘09%6°0) (9GFT°0 ‘z8PT'0) (FIST0 ‘66F1°0) (€££00°0 ‘TC00°0-)  00S

(02€6°0 ‘0196°0)  (6222°0 ‘81€2°0) (92.€2°0 ‘F1€2°0) (8€00°0 ‘OF00°0-) 002 €CL'T
(0096°0 ‘0576°0)  (¢260°0 ‘¢00T°0) (9960°0 ‘TFOT'0) (810070~ ‘€200°0) 008

(0976°0 ‘0096°0) (82210 ‘2921°0) (91€1°0 ‘2621°0) (110070 ‘2100°0)  00S

(00560 ‘09€6°0)  (9€6T°0 ‘L86T°0) (8S6T'0 ‘0012°0) (LT00°0 ‘TL000) 002 G'T
(09560 ‘0L¥6°0) (162070 ‘062,0°0) (1SL0°0 ‘9180°0) (£100°0 ‘#000°0-) 008

(0876°0 ‘0¢¥6°0) (0960°0 ‘9660°0) (6560°0 ‘0660°0) (2F00°0 ‘6£00°0-)  00S

(02¥6°0 ‘0¥c6°0)  (90ST°0 ‘TL6T°0) (TLST°0 ‘G9¢T1°0) (82000~ ‘8900°0) 002 GT'T IGLE0
(0966°0 ‘00¢6°0) (0611°0 ‘2221°0) (2611°0 ‘9¢21°0) (1T00°0 ‘9900°0-) 008

(0876°0 ‘06£6°0) (L0ST°0 ‘S¥ST°0) (62S1°0 ‘6851°0) (9T00°0 ‘9900°0-)  00S

(00S6°0 ‘0¥6°0)  (S9€2°0 ‘82FT0)  (¥6£2°0 ‘L8F2°0) (L1000 ‘6610°0-) 00T GL'T
(0£76°0 ‘0176°0)  (020T'0 ‘T90T°0) (0SOT0 ‘00TT°0) (65000 ‘6200°0) 008

(0L76°0 ‘0L¥6°0) (9821°0 ‘TPET°0) (0ZET°0 ‘Ge€T°0) (26000 ‘GLO0°0-)  00S

(01¥6°0 ‘09¥6°0) (820Z°0 ‘2012°0) (220Z°0 ‘6€12°0) (2600°0 ‘T900°0)  00Z €T
(02¥6°0 ‘08%6°0) (L080°0 ‘1980°0) (2280°0 ‘1280°0) (9%00°0- ‘2€00°0) 008

(0676°0 ‘08%6°0) (120T°0 “880T°0) (L£0T°0 ‘080T°0) (12000 ‘TF00'0) 00

(09560 ‘0296°0)  (009T°0°0TLT°0)  (69ST°0 ‘6.9T°0) (6100°0 ‘€900°0-) 00T CTT 1ST0
do (% ‘Tg)asH (2 “1d) AAS (¢ ‘1) joserq N %9 ()

‘S[eULS IR SAIRII[AINUW [}IM [9POTW J09]j0 WOPUeRL
paIeys Iopun sjasejep peje[nuuls ()] U0 paseq st Anjue yoey (g ‘lg) 10j pezirewwns J0) ‘(10113 pIepurl§ pojewl)sy) HSH
‘(segewurysy Jo Ioary prepuels) gHS ‘serq (§°0‘z’0) s[enbe anfea eniy yym (g ‘Ig) I0J s)msal [edlLWNN ] OLIRUSOG ()T 9[RBT,



52

oATYROTAI)NT )M [9POUW 1090 WOpPURI
pIepuelg pojyewnysy) HSH ‘(seyewnysy jo

0L£6°0 9S60°0 ¥SS0°0 80000 008 0FE6'0  6850°0 €190°0 0Z00°0- 008

02€6'0 9890°0 GTILO'0 S0000  00S 0260 STL0°0 €FLO'0 €900°0- 00S

0L16'0 0Z0T'0 S880T°0 LS00°0- 00% GL'T 0L68°0 SLOT'0 ¢IZI'0 2800°0- 007 GCL'T

02860 29€0°0 92£0°0 €1000 008 08V6'0 T6€0°0 ¢8E0'0 80000~ 008

06260 9¥F0°0 ¥SFO'0  ST000- 00S 0FF6'0 T6F0°0 TIS0'0 ST000- 00S

0£26°0 €L90°0 SZLO'0 0F00°0- 00Z 0S'T 00160 6SL0°0 0SG80°0 20000 00Z 0S'T

0S76'0 98T0°0 6100 0T000- 008 OFF6'0 €220°0 82200 60000~ 008

08V6'0 F€T0'0 S€20'0  F000°0- 00S 0L£6'0 SLZO'0 G820'0 0000~ 00S

00€6'0 29€0°0 0LE0'0 90000- 00Z GT'T 2160 03260 TEFO'0 E€FP0'0 2200°0- 002 ST'T L5370

0S€6°0 09¢0°0 LS00 ¥T000- 008 0TP6'0 GZ80°0 8E€80°0 95000~ 008

0L26°0 L690°0 €£L0°0 T1S00°0- 00S 09260 ¢FOT'0 60TT°0 L0000~ 00S

05060 GZOT'0 TI80T°0 ¥600°0- 00C GCL'T 0L16°0 9SGT°0 €6GT°0 2800°0- 00C GL'T

09260 0L£0°0 S8€0'0 0T00°0- 008 08€6'0 0€90°0 9¥90°0 8Z00°0- 008

0L160 6SF70°0 €6¥0°0 T€00°0- 00S 06260 68L0°0 9I80°0 9%00°0- 00S

0£16'0 T0LO'0 TPLO'0 SF00'0- 00T 0C'T 0616'0 66TT°0 €L3T°0 SS00°0- 00% 0S'T

00¥6°0 66T0°0 90Z0°0 20000~ 008 0£S6°0 0SF0°0 FFFO'0 20000~ 008

08€6'0 ¢SO0 LS20°0 €000°0- 00S 0Z¥6'0 TLS0'0 88G0'0 ¥0000  00S

08160 98¢0°0 TIFO'0 0T000- 00Z GT'T Z1GL€°0 01260 8.80°0 TT160°0 IF00°0- 002 GT'T ZISZT0

dn ASH  ddS  seig N % WY gD ASH  HdAS  seiq N % (o
‘s|eurgrew

poreys Iopun sojyestidor ()OO UO poseq SI AU oy pozZLIRWWNS oI J0) ‘(1011
o1y prepuels) qAS ‘serg %9 = (§ 2 's)d wt O jo uoryewnsy - ] OLRUDIG (TT J[qR],



53

06160 €980°0 46800 €¥00°0- 008 01260 €960°0 OF0T°0 8900°0- 008
0¥¢6°0 T60T°0 €LTT°0 LEOOO- 004 06€6°0 80¢T'0 TOCI'O 80000 004
0988°0 ¥C9T°0 68L1°0 84000- 00¢ T 0968°0 T8LZT'0 €681°0 O0LI00- 00 T
0096°0 8E€Y0'0 LEVO'0 60000~ 008 06€6°0 8€G0'0 ¥950°0 Lc000- 008
08€6°0 €990°0 99500 TO000- 00¢ 06€6°0 8L90°0 €890°0 <0000~ 009
0¢16'0 G€80'0 06800 <¢800°0- 00¢ 050 0¢c60 0v0T°0 GL0T°0 <¢¥00°0- 00¢ 050
0T¥6°0  ¥9¢0°0  99¢0°0 ¥000°0 008 0¢r6'0 89€0°0 0LEO'0 <ST00°0- 008
09€¢6°0 TE€EO0 ¢veE0’0 TT000- 009 0€46°0 ¢9¥0'0 ¥4¥0°0 <1000~ 004

08¢6°0 SGIS0°0 ¥#¢5S0°0 ¥000°0 00C GC0 £#5°0 0LE6°0  LTL0°0 €T1L0°0 6000°0- 00¢ S¢°0 #49¢°0

0T€6'0 ¥060°0 ©c600 <¢€00°0- 008 09¢60 G8TT'0 <¢IcI'0 €€00°0 008
0€€6°0 €¢IT'0 €PITO0 TS00°0- 009 06€6°0 8L¥YI'0 &8¥1°'0 4¥00°0- 009
0988°0 €L9T°0 T&8T°0 ¢8I0°0- 00¢ T 0606°0 ¥cecc'0 ¥evc 0 9000°0- 00¢ T
0¥€6'0 €L¥0°0 ¥6¥0°0 €000°0- 008 0€v6'0 G¥L0°0 99200 6¢00°0- 008
0T€6°0 L8300 T6S0°0 8E00°0- 009 06¥6°0 0¥60°0 L9600 <1000 009
09¢6°0 16800 Tc60°0 8E000- 00 090 08¢6°0 S¥PI'0 LgST'0 €900°0- 00C 090
0,860 86¢0°0 66¢0°0 0T00°0- 008 0L£6°0 T850°0 40900 0000°0 008
09¢6°0 GLEO0 G6E0°0 00000  00S 0876°0 T€L0°0 GPL0°0 €100°0  00S

0G76°0 6L50°0 085900 <€00°0- 00C SGC'0 Z#5LE°0 0LE6°0 OFITO 8ITT'O <v000- 00C GC'0 Z#5CT°0

dD qSH  AHdS  ser N % (%  go ASH  HAS  selig N %  (pfod

"suorjR[UIS ())()] WO Paseq ST AIjUe yoey ‘poyloads A[10a1100 ST (g ‘2 s)d Jo urio] ougeurered o) pue
oAryeor[diynur st [ppowr [eutdrewt oy ], "(£31[Iqeqold 98RIon0))) JO) Pue (1011 plepurils pojyewt)sy)HSH ‘(Sorew)sy Jo 1015
prepuesg) S ‘serq jo Arewrwms oy, (60 + $CT°0—)(6°0 + 1ST°0—)% +1 = (9 7 's)d ut % Jo uorpewysy - [ OLIEU2OG g O[BL



54

04260 89900 €690°0 <1000~ 0L¥6°0 Lcc0'0 6¢¢0°0 €000°0- OO0TT

06160 ¥8L0°0 €980°0 6¢00°0- 06760 €9¢0°0 89¢0°0 L000°0- 008

0T€6'0 69600 T¥OT'0 ¥I100°0- 09€6'0 92¢E0'0 G€E00 G000~ 009

0¢88°0 66€T'0 €¥9T°0 <¢v10°0- 0G16°0 66700 0€50°0 GE00°0- 00¢ 7740

06€6°0 86900 €TLO00 6100°0- 08¢6°0 G¥c0'0 854200 TIO0'0  OOTT

0T€6°0 70800 9¥80°0 <c00°0- 0T€6°0  €8¢0°0 ¢6¢0°0 <0000 008

08¢6°0 €860°0 8¥OT'0 090070~ 06¢6°0 L¥EO'0 ¥9€0°0 62000~ 009

0068°0 ¥EVI'0 <¢c91'0 6¢10°0- 0G16°0 ¢€90°0 €950°0 6€00°0- 00C  £#4L€°0

0¥c60  LELO'0 9¢80°0 <¢€00°0- 06760 8.c0'0 8200 6000°0- O0O0TT

0616°0 09800 ¥€60°0 L0000~ 0T¥6°0 61€0°0 9¢€0°0 6000°0- 008

0T¢6'0 T90T°0 6VIT0 L0000~ 0L¢6°0 TOYO'0O OFPPO'0 01000  00S

0LL8°0 LZST'0 T69T°0 ¥LT0°0- 0L16°0 80900 6€90°0 0¥00°0- 00¢ 7#4¢0

00760 66800 0960°0 L0000 09960 <¢8E0'0  8LE0°0 9000°0  0OOTT

0¢c6'0 6€0T°0 690T°0 €€00°0- 0€46°0 ¥¥¥0°0 L¥¥P0°0 L0000 008

0¢16°0 99¢T°0 C¢S€T'0 6€T0°0- 0¢r6'0 L9900 06500 0c00°0- 004

0G68°0 088T'0 L81C'0 ¥910°0- 00c6'0 €¥80°0 G800 G¥00°0- 00C  £#4¢T0

dD  HSH  USS  seig dd ASd  ddAS  seid N (1)
0 '

suoTyeIIILS ()T UO Paskq ST A1Ud Yoey] "GL T = %) Pue Gg'T = g anfea onyy yim (0 = 7)1 + (1= 7)1
= (17 9)d ut g Jo gD ‘(0117 prepuelg poyewsy) HSH ‘(SoyeWSH JO I01I pIEpuelS) S ‘Selq - [ OLRUedS €T O[q¥L



55

06160 61L0°0 TLL00 ¥L00°0- 0¢e6'0 0LE00 LLEO'O 0c000- OOTT
0€€6'0 LZ80'0 €€80°0 8¢00°0- 0LE6°0 9¢¥0°0 8YFO'0 8000°0 008
08¢6°0 9490T°0 6L01T°0 T100°0 0LT6°0 T€90°0 T950°0 6900°0- 009

0€L8°0 L8GT'0 L6LT0 GEO00- 00T 0¢c60 GE80'0 80600 GT00°0- 00C 00T

0€v6'0 6€590°0 ¥¢50°0 0€00°0- 06760 ¥¢c0'0 ¢€c0’0 01000  O00TT
00¥6'0 82900 <1900 02000~ 06660 09¢0°0 €Lc0°0 <000°0- 008
0L06°0 €6L0°0 T¥80°0 €€00°0- 0¥¢6'0 €660°0 L9010 ¥000°0 009

0088°0 6VIT'0 98C1°0 L600°0- GL°0 06060 TIL¥T°0O %84T0 ¥6000- 00c GL°0

0¢e6'0 0LE0°0 LLEO'O 02000~ 0¢r6'0  €090°0 88700 00000  OOTT
0LE6°0 9¢¥0°0 8¥FO'0 800070 00¥6'0 06500 L1900 L000°0- 008
0LT6°0 T€S0°0 T950°0 690070~ 09¢6'0 G€L0°0 €9L0°0 ¥000°0 009

0¢c6'0 G€80°0 80600 SCTO00- 090 0LI6°0 O€IT°0 LE€CT'O ¢I100°0- 00c 050

0676°0 ¥¢c0'0 ¢€c0'0 010070 00960 09€0°0 4¥€0°0 9000°0- OO0TT
06660 09¢0°0 G.¢0°0 <0000~ 06¥6'0 TI¥0'0 0c¥0'0 6000°0 008
09€6°0 8¢E0'0 GEE00 00000 0646°0 81900 80500 <€r00°0 004

08¢6°0 86700 €¢50°0 9€00°0- G¢'0 0¢¥6'0 86L0°0 %0800 02000~ 00c SC0

dD GG HHS setd 9 ddD GG CICH setd N '9

(9G°2)F1'T ST JuoAd (Z)] odA) I0J SIUOAD POAIISO POSRIOAR O], "SUOIJR[IUIIS

000T UO paseq ST AIJUo [ord aIoym ¢ Jo 0 ‘(1011 prepue)g pojyewrnysy) HSH ‘(sejewrysy Jo Iolry plepue)s) 4HS ‘serq jo
Arewrung 00’7 PU® GL°0 ‘G0 ‘g0 03 1enbs ¢y ‘19 jo senpea oniy oY) YIAA (2175025 0162 0) (171,021 0 462 0) p+1= (g7 g)d
: (2452-025G°0) (145 1-¢27G°0)
(24,,5-0258°0+52°0) (14, 1-2#5T 0+5T 0
(285-025G2°0) (1315102153 °0)

pue :m + 1 = (7 2's‘g)d oIoyM S[PPOUW SUIIOPUN O] UL %) ‘Tg S9jemIIso - AJ OLIRUODG :fT S[(e],



56
4.2 Hypothesis testing of the rate ratio
4.2.1  Procedure description

For the case that the marginal mean rate model is additive, we developed a supreme
test statistic to check the null hypothesis p(s, t,6) = 6,. We apply the same procedure
and illustrate the test statistic below for hypothesis testing purposes. Define the

residual process under the multiplicative marginal mean rate model as

N
Ve(s,t,0, i1 (5 211), a5 2k2)) = N7V2 Z Vie(s,t,0, (5 2), a5 202)), (4.21)

k=1

where

Vi (8,8, 0, fir (5 2r1), fi2 (5 2r2)) =

// w(u, v) ““9)‘ 9{de1( )dNpo(v)

— p(u, v, 0)Yi (w)dpor (w)e®T 25 - Yoo (v)dpga (v)e?? va)}. (4.22)

We define a Supreme test statistic

T = sup H VC(Sat,é, ﬂl(';zkl),ﬂz(';zm)) H . (4-23)

s,t€[0,7]
Similarly, to access the empirical distribution of T, firstly we approximate it by the

first-order Taylor expansion,

VEe(s,t,0, i (-5 zr1), fla(-; 2k2))

OVe(s,t,0, (- zr), fla(-; 2x2))
00

= V(s,t,0, i1+ 21), fra (s 22)) + N7V NY2(6 —6)

+0,(1), (4.24)
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where

Ve(s, 1,0, fir (s 2r1), fia(-; Zr2))

N
= N2 V(518,21 i 1) + T (5,0) + T, 0)} + (1),
k=1
and
N—1/28VC(57 .0, (- 2k1), fio(; Zkg)) NG )
00
= NG5, 4,0) + G 5,1, 60)} + 0,(1). (4.25)

Therefore equation (4.24) can be written as

V(5,8 0, i (5 2m), fia (5 2k2))

N
= NS VE (5,10, 115 200), 125 202) + T (5, ) + Tig(5,1)
k=1
 Gials1,0) + Cials,1,0) |+ 0,(1) (4.26)

Next, we apply the Gaussian multiplier method by multiplying random numbers Gy,

from normal distribution, so that

V*(s,t,0)

— N—1/2

NE

{V;CC<S’ t, 97 H’l(a Zk‘l)7 IUQ(’ Zk?))

k=1

+ TZl(‘% t7 é) + TZQ(‘Sv ta é) + 521(87 t) + 5152(87 t)} : Gk (427)

By taking the supremum of V*(s,t,é) among mesh grids of (s,t), we obtain T*
from the empirical distribution of sup; ez || V*(s,t,0) ||. Repeating above the

process 1000 times enables us to have enough observations and we would reject the
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Hy : p(s,t,0) = 6y when T* excesses the 95th percentile of the observations.

4.2.2  Simulation studies

Here, we hope to answer two questions: (1)Are the two event processes indepen-
dent? (2) If not, is the association constant? Firstly, to detect the dependency, we
consider the independent bivariate counting processes as the null model and the con-
stant rate ratio as alternative model. Secondly, we propose the constant rate ratio
model as the null and Piecewise Constant (PWC), Time Dependent (TD), Time and
Covariate Dependent (TCD) models as the corresponding alternatives.

To investigate the performance of the model checking procedure, finite sample
studies are conducted, with multiplicative mean rate marginal model. The size and

power of the hypothesis test are also computed via Gaussian Multiplier Method.
4.2.2.1  Test for constant association with multiplicative marginal models

We consider the shared frailty model below as the null model

B[N} (8)| Ry, Zia(s)] = Rie™ 29O dpgy (s),

B[N}y (8)| Ry, Zia(t)] = Rie™ 720 dpgo 1),

where Ry is independent and comes from a Gamma Distribution. Following from
Proposition 1, under the null model, we have p(0,s,t) = 1 + 02/u* where 02 and p?
represent E(Ry) and var(Ry). Let By = 0.2, Boa = 0.4, 7 = 4 and the censoring time
follow uniform(3,4). We take baseline rate fi01(t) = uo2(t) and set the values equal
to 0.25t%,0.375t2,0.5t? to represent moderately or more frequently observed events.

The event count after censoring ranges from 4.18 to 11.30. To accommodate the
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association strength, we generate R from Gamma distribution with E(Ry) = 1 and
var(Ry) = 0.25,0.5,0.75, 1 so that p = 1.25,1.5,1.75 and 2 respectively.

As we can see, the null model corresponds to Hy : p(6, s,t) = 6. Implementing the
Gaussian Multiplier method enables us to approach the empirical distribution of the
supreme residuals under the Hy. Therefore the rejection rate under the Hy can be
used as an empirical size of the test and should be around its nominee value. The
simulation result summarized in Table 16 shows the test has size below or around
0.05 consistently which agrees with the theoretical value.

Similar to the illustration in section 3.2.2.2, we propose the PWC, TD and TCD
model as alternative models to exam the power of the testing procedure. The ad-
justment is concerned with the marginal mean rate, which should be multiplicative

in the following sections.

(I) The piecewise constant rate ratio model - PWC model

Assume 7 = 4 and analogous to equation (3.28),the counting process Ny (t) is from
BIAN; (8)| Ri(t), Zus (0] = Ri(6){dpuos (1) #5}. (4.28)

where Ri(t) = I(t < 2)Ryo + I(t > 2)Ry is time varying frailty. Let Sy = 0.2,
Boz = 0.4, Cy; be uniform on (3,4) and Zj; follows Uniform(0,1). To modify the
events observed before censoring, we take fi;(t) equal to 0.125¢%, 0.25¢%, 0.375¢%,
0.5t2. Consider Ry and Ry are independently generated from Gamma(ag, by) and
Gamma(ay, by), where the choice of parameters represent the value of the piecewise

rate ratio. The simulation settings are summarized in the Table 15 and Figure 3.
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PWC models are alternatives to the null model and therefore the residuals calcu-
lated under Hy should depart far away from zero. We would expect the supreme test
statistic to go beyond threshold with high likelihood and a high rejection rate is an
indicator of the power. 17 shows the proposed procedure can correctly detect non
constant rate ratio at or above 95% of the cases when sample size is large (N = 800)

and the accuracy is improved by increasing the sample size.

(IT) Time dependent rate ratio - TD model
Consider the Bivariate Counting Process described by equation (3.29). Assume the

Poisson process Ngo(t) has conditional mean rate
EldNyo(t)|Zx;(t), Ri] = Aro(t| Zk;(t), Ry) dt

and

Neo(t| Zi; (1), Ri) dt = Ry - dyag;(t)e i Zki®, (4.29)

with R}, is the cluster level random effect. Let the conditional mean rate of Poisson
process be ij (t|Zk;(t)) and by assigning an appropriate value, we can generate the

counting processes Ny (t) and Nyo(s) with rate ratio
p(0,5,t) = 1+ 60(—0.155 + 0.9)(—0.15¢ + 0.9).

where 0 = Z;. To consider rare, moderate and high time dependent association, we
generate # = 0.5,1,1.5,2 by taking Ry from Gamma distribution, where the shape
and scale parameter pairs in the Gamma Distribution are (2,0.5), (1,1), (0.67,1.5)

and (0.5,2). The color plots for the four settings are also illustrated by Figure 4.
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The goodness of fit procedure is more likely to detect non-constant rate ratio for a
more varying scenario or a larger sample case. It is observed in Table 18 that the time
dependent rate ratio and piecewise constant rate ratio model have similar simulation

performance.

(III) Time and covariate dependent model - TCD model

The time and covariate dependent rate ratio can be derived by comparing to section
3.2.2.2. Assume the Poisson process Nio(t) has marginal conditional rate Ag(t) where
Mo (t|Z; (1), Ry) dt, = Ry - dpio;(t)e?5%+® with Ry, the random frailty. By Proposition

2 and p represent the variance and mean of

1, p(0,s,t;21,2) = 1+ 02/u?, where o
Ry. Let the Poisson process Nkj(t) has rate ij =1. Following Proposition 3, the rate

ratio of {Ny1(s), Nko(t)} is equivalent to

)\0(5’21))\0@’22)

0,s,t;21,20) =1+6 ;
plf:s, 421, 22) T Ro(s]20) (L + do(ll2)

where 6§ = o2 />

To generate 6 = 0.25,0.5, 1,2, we consider Ry be from Gamma distribution with
p=1and 6 = 0.25, 0.5, 1, 2. Let 7 =4, Bo1 = 0.1, Boa = 0.2 and pp,(t) = 0.125¢%
0.25¢t2, 0.375t2, 0.5t% for j = 1 or 2. Take the censoring time and covariates from

uniform distribution on (3, 4) and (1, 2) respectively. The rate ratio is in form of

)\0(5’21))\0<t’22)

0,s,t;21,20) =140 ,
plf: 5,621, 22) T Ro(s]o0) (L + dolll2)

Table 19 summarizes of the simulation result for the above settings, from which
similar patterns of PWC and TD models are shown. In general the test performs

well and can distinguish the null model and alternative models with high precision,
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especially when the sample size is large or the variability of association is increasing.
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Table 15: Summary of simulation settings under the PWC model with the corre-
sponding € values followed from Proposition 2. The marginal model is multiplicative.

Settings PWC, PWC, PWGC; PWG,
Rro: (a0, bo) (4,025) (4,025) (2,05) (4,0.25)
Rpi: (a1,b)  (2,05) (1.330.75) (1,1)  (1,1)

p(s <2,t<2)  1.25 1.25 1.5 1.25
ps>2,t<2) 1 1 1 1
ps>2t>2) 15 1.75 2 2

Figure 3: Visualization of piecewise constant p(s, t,0) (PWC) under the multiplicative
marginal mean rate models. The variation of p(s, t) between different pieces is growing
from PWC; to PWC,.

PWC 1 (multiplicative marginal) PW(:2 (multiplicative marginal)
4 4
3.5 3.5
3 p(s,t,0) =1 pst,0) =15 3 p(s,t,0) =1 pls,t,0) =1.75
25 2.5
< <
v \
- 2 - 2
v v
o o
15 15
1 p(s,t,0)=1.25 pst,0) =1 ] 1r p(st,0) =1.25 p(st,0) =1
0.5 0.5
0 0
0 1 2 3 4 0 1 2 3 4
O<s<4 O<s<4
PWCa (multiplicative marginal) PWC 4 (multiplicative marginal)
4 4
35 3.5
3 plst0) =1 plsit,b) =2 3 plsit,6) =1 plsit,b) =2
25 2.5
< <
A" A"
- 2 + 2
v v
o o
15 1.5
1 p(s,t,0) =15 pst,0) =1 1 p(st,0) =1.25 p(st,0) =1
0.5 0.5
0 0
0 il 2 3 4 0 1 2 3 4

O<s<4 O<s<4



64

Figure 4: The contour plot of the rate ratio p(s,t) under the multiplicative marginal
models. The z-axis and y-axis represent the observation time for typel and type2
events. From upper left to lower right, the heterogeneity of p(s,t) is increased.

TD,

1D,

0<t<5

O<t<5
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Table 16: Observed size of the test statistic T for the proposed model-checking pro-
cedure under Hy : p(0,s,t) = 0y vs Ha : p(0,s,t) # 6y, at significance level 0.05. The
numbers in the parentheses represent the average observed count of type 1 and type
2 event after censoring. Each entry is calculated based on 1000 Gaussian multiplier

samples and 1000 replicates.

Size

event counts  pg;(t) N

(4.18,5.67)  0.25t2 200
500
(6.25, 8.48)  0.375¢2 200
500
(8.34, 11.30)  0.5£2 200
500

0.041
0.038
0.042
0.040
0.040
0.043

0.025
0.042
0.035
0.037
0.037
0.043

0.037
0.033
0.030
0.039
0.003
0.032

0o =125 Op=15 0,=175 0O, =2

0.034
0.033
0.021
0.037
0.030
0.037




Table 17: Power of Hy : p(0,s,t) = 6y vs Ha
piecewise constant rate ratio (PWC model). Each entry is calculated based on 1000

Gaussian multiplier samples with 1000 replicates.

event counts g, (t)

(2.09, 2.83)  0.125¢2

(4.16, 5.65)  0.25¢2

(6.25, 8.48)  0.375t2

(8.34,11.32)  0.5¢2

Power

N PWC; PWC, PWC; PWC,
200 0.443 0.882  0.777  0.942
500 0.934 0.999 0.994  0.999
800 0.995 1.000  1.000  1.000
200 0.867 0977 0951  0.987
500 0.998 1.000 1.000  0.999
800 1.000 1.000  1.000  1.000
200 0955  0.993 0968  0.991
500 1.000  1.000  1.000  1.000
800 1.000  1.000  1.000  1.000
200 0985 0.994 0986  0.995
500 1.000 1.000 0.999  1.000
800 1.000 1.000 1.000  1.000

66

: p(0,s,t) # 0y. The H, model has
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Table 18: Power of Hy : p(0,s,t) = 60y vs Ha : p(0,s,t) # 0. The H, model is time
and dependent (TD). Each entry is calculated based on 1000 Gaussian multiplier

samples with 1000 replicates.

Power

Hoj (t) N TDl TD2

0.125¢> 200 0.129 0.252
500 0.295 0.560
800 0.463 0.817
0.25¢2 200 0.238 0.415
200 0.587 0.862
800 0.768 0.974
0.375t> 200 0.337 0.518
500 0.748 0.933
800 0.931 0.991
0.5t 200 0.433 0.578
200 0.826 0.949

TDg

0.308
0.706
0.906
0.524
0.929
0.990
0.598
0.961
0.994
0.691
0.962

TDy

0.355
0.782
0.932
0.556
0.940
0.986
0.675
0.947
0.995
0.674
0.968
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Table 19: Power of Hy : p(0,s,t) = 6y vs Ha : p(0,s,t) # 0y . The H, model is time
and covariate dependent (TCD). Each entry is calculated based on 1000 Gaussian
multiplier samples and 1000 replicates.

Power

po;(t) N TCD, TCD2 TCD3 TCD4

0.125¢* 200 0.102 0.226  0.453  0.706
500 0.208 0.520 0.916 0.991
0.25¢2 200 0.175 0.417  0.704  0.798
500 0.508 0.923 0.988 0.977
0.375t> 200 0.246 0.480 0.701  0.727
500 0.650 0.946 0.983 0.963
0.5t 200 0.210 0.437 0.566 0.631
500 0.658 0.952  0.972 0.949




CHAPTER 5: DATA APPLICATION

5.1  The hemodialysis (HEMO) study

5.1.1  Study design

The HEMO study was a 2-by-2 prospective, randomized, multicenter clinical trial
of dialysis prescriptions for patients at end-stage renal disease (Greene et al., 2000).
The HEMO study design has 2 levels of dose: standard dose and high dose (equili-
brated Kt/V levels of 1.05 and 1.45, respectively), and two membrane types: low-flux
dialyzers (mean [s-microglobulin clearance of <10 ml/min) and high-flux dialyzers
(mean fSy-microglobulin >20 ml/min). The study randomized 1846 patients between
March 1995 and October 2000; follow-up continued until December 31, 2001.The
maximum follow-up period for individual patients was between 0.9 and 6.6 years, de-
pending on the randomization date. Fifteen clinical centers, with a total of 72 dialysis
facilities were involved in this study. 926 patients enrolled in the standard ktv group,
while 920 patients were in the high dose group. In terms of flux types, there were 925
patients in low-flux and another 921 were assigned in high-flux group. The patient

enrollment is summarized in Table 20.
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5.1.2  Hospitalization review

The primary outcome of the study was all-cause mortality. Since Cardiac dis-
ease is the leading cause of death among dialysis patients, and infections are one of
the main concerns, various predefined hospitalizations and death due to cardiac or
infectious causes (Cheung et al., 2004; Rocco et al., 2002) are considered as the sec-
ondary outcomes. The HEMO study recorded hospitalizations due to cardiac causes,
which included angina, myocardial infarction (MI), congestive heart failure(CHF), ar-
rhythmias and other heart diseases (valvular diseases, pericarditis, and endocarditis).
Hospitalization due to infectious causes includes Bacteremia-sepsis infection (BACT-
SEP), or Soft tissue-cellulitis infection(TISSUE). Each hospitalization or death could
potentially be attributed to one or multiple causes.

A total of 1503 patients experienced 7832 hospitalizations during the study period,
6 hospitalizations occurred before the randomization of the HEMO study and were
removed. The cleaned data set has 7826 eligible hospitalization records for 1502
patients. 343 of them were censored because they either transferred to non-trial
clinical centers, received kidney transplantation, died or because the study ended.

The hospitalization classifications from clinical centers are summarized in Table 21.
The label ’Any Cardiac’ consists of hospitalization caused by Angina, Arrhythmia,
Arrhythmias, CHF, MI, or other heart diseases and the next five labels are broken
down by specific causes. 22.51% (1762 of 7826) of all hospitalizations were identified
as Any Cardiac, whereas 22.23% (1740 of 7826) are classified as Any infection, leav-

ing 55.24% classified as noncardiac and non-infection. Among Cardiac diseases, Ar-
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rhythmia and CHF attribute to the most classified hospitalizations, whereas Angina,
Arrhythmia, and CHF are common among patients (more than 23%).

Hospitalizations with missing causes are excluded since they only comprise less
than 1% of the composite cardiac and infection hospitalizations. We show baseline
characteristics of the study cohort in Table 22 and Figure 5. The age of patients
ranged from 18 to 80, with a median 61, mean 58.21 and the standard deviation
13.66. The prior years of dialysis before entering the HEMO study varies a lot:
mean duration is 3.78, standard deviation is 4.37, the shortest duration is 0.19 year
(about 69 days) while the longest is 31.27 years. Half of the patients have been on
dialysis for less than 2.2 years.Kaysen (2003) found that serum albumin is lower than
normal range among dialysis patients and resistant to therapy since the simultaneous
occurrence of decreased protein intake and inflammation prevent these homeostatic
compensations to reduced nitrogen and energy intake from occurring. The baseline
albumin of the study cohort ranges from 2.55 to 4.90, with 3.60 as the mean level
and 0.3569 as the standard error.

To better understand the patient demography factors and their impact on hospi-
talization, we summarized the average frequency of cardiac and infectious hospital-
izations in Table 23, Figure 6 and Figure 7. The qualitative covariates are sex, race,
diabetes status, Ktv dose, flux level and ICED score, the last one of which is the
index of comorbidity where a higher value indicates a more severe degree. Females,
nonblack, diabetic patients or those with more severe comorbidities have more aver-
aged cardiac hospitalizations. Patients receiving high-flux dialyzer or high dose Ktv

treatment have higher cardiac hospitalization rates. In terms of infectious hospital-
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izations, females, black or diabetic patients, or those who had standard Ktv dose or

low-flux dialyzer have more frequent admissions.
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Table 20: A 2 by 2 balanced factor design. 1846 patients randomized into the com-
bination of two flux levels and ktv doses.

low-flux high-flux total
standard-ktv 467 459 926
high-ktv 458 462 920
total 925 921 1846




74

Table 21: Clinical center classifications of hospitalizations due to cardiovascular and
infections. Total hospitalization N=7826 cases confirmed or missing (N/A).

clinical center classification

classified

N/A

hospitalization hospitalization

Patients

(%)

Any Cardiac

Angina

Arrhythmia

CHF (congestion heart failure)
MI (myocardial infarction)
Other heart diseases

Any infection

Bacteremia or sepsis infection
(BACT-SEP)

Soft tissue, cellulitis infection
(Tissue-Infection)

1762
360
657
722
256
207

1740
811

1298

17
4
>
10
8
9

808 (53.79%)
427 (28.43%)
360 (23.97%)
418 (27.83%)
201 (13.38%)
161 (10.72%)

834 (55.52%)
516 (34.35%)

693 (46.14%)




Table 22: Baseline characteristics of the study cohort (N=1502).

Factors Mean Sd Min  25th Median 75th Max
Age (years) 58.21 13.66 18 49 61 69 80
Duration (years) 3.78 437 019 095 220 4.75 31.27
BALB (albumin, g/dL) 3.61 0.36 255 3.37 3.60 3.85  4.90
Follow-up (years) 282 1.79 0.022 130 2.50 4.22  6.64

75
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Figure 5: Visualizing the baseline characteristics of the study cohort (N=1502).

1

count ( persons )

o-

1

count ( persons )

000

800

600

400

200

000

800

600

400

200

0

Histogram of age

age (years)
Histogram of baseline albumin

5 3 3.5 4 4.5
BALB

Histogram of treatment dose level

(3]

0 ktv level (0 = standard dose; 1= high dose ) 1

Histogram of sex

‘—

1= male; O=female
Histogram of ktv dose level

0 kv level (0 = standard dose; 1= high dose ) 1

histogram of duration time
1000

count ( persons )

0 5 10 15 20 25 30 35
duration of dialysis before enrollment (yrs)

Histogram of Follow-up time

0 1 2 3 4 5 6 7
Follow-up time (years)
Histgram of races
1000
800
N
(=4
@ 600
[
Q
€ 400
=
9]
o
200
0
0 1= black; 0 = nonblack 1
Histogram of ICED score
1000
800
N
c
@ 600
[
Q
€ 400
3
<]
o
200
0
0,1 2 3
ICED Score
Histogram of flux levels
1000

count ( persons )

flux level ( 0= low flux; 1= high flux )



Table 23: Mean hospitalization frequency of the study cohort (N=1502).

Factors level %Patients Cardiac Infectious
Sex male=1 42.34% 1.12 1.11
female=0 57.66% 1.21 1.19
Race black=1 63.05% 1.16 1.19
nonblack=0 36.95% 1.20 1.11
Diabetic  Yes=1 46.80% 1.25 1.34
No=0 53.20% 1.11 1.00
Ktv dose  standard=0 49.67% 1.14 1.19
high=1 50.33% 1.21 1.12
Flux level low=0 50.47% 1.15 1.17
high=1 49.53% 1.20 1.14

ICED score =0,1  33.36% 0.90 0.93
score =2 31.89% 1.43 1.23
score =3 34.75% 1.21 1.32




78

Figure 6: Mean hospitalizations caused by cardiac diseases (angina, arrhythmias,
congestive heart failure (CHF), myocardial infarction (MI) and other cardiovascular
diseases). Grouped by diabetes status, race, sex, ICED scores, Ktv doses, and flux

types.
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Figure 7: Mean hospitalizations caused by infections (including Bacteremia-sepsis in-
fection (BACT-SEP), or Soft tissue-cellulitis (Tissue) infection). Grouped by diabetes
status, race, sex, ICED scores, Ktv doses, and flux types.
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5.2 Application 1: the rate ratio between composite cardiac and infection

hospitalizations

In Table 21, 808 patients experienced 1762 composite cardiac (Angina, Arrhythmia,
CHF, MI or other heart diseases) hospitalizations, which is similar to hospitalizations
caused by infections. Cardiovascular diseases and infections are common among dial-
ysis patients and we are interested to investigate their associations. The rate ratio we
proposed, by definition, can compare the rate of cardiac hospitalizations conditional
on infections information to the mean rate of cardiac hospitalizations alone. It en-
ables us to know if and how the occurrence of infections would impact on the rate of
cardiac hospitalizations.

In this data application, the bivariate counting processes are composite cardiac and
infectious hospitalizations. To estimate the rate ratio, we first model the mean rate

of cardiac and infectious hospitalizations separately by the additive model, i.e.

E[dN:(s)|Z1] = dpa(s) + 1 21,

E[dNa(t)|Zs) = dpa(t) + oo,

where Z; and Z2 are covariates which include age, duration, sex, race, diabetes status,
ktv dose, flux, and ICED score. Table 23 indicates dummy variables for these quali-
tative covariates, except the ICED score, which is represented by ICEDs; and ICEDj3.
ICEDy=1 if ICED score is 2 whereas ICED3;=1 if the score is 3. Cases for ICED score
equal 0 and 1 are represented by letting both ICEDy and ICED3 both be 0. The

marginal additive means rate model for cardiac and infectious hospitalization are fit-
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ted separately (Table 24). For cardiac hospitalizations, the significant covariates are
BALB, Black, age, ICEDy and ICEDj3. Estimation results show on average a lower
event rate for black patients or those who have a higher BALB value, whereas aged
patients or those with more severe comorbidity status have an elevated rate. For infec-
tious hospitalizations, being diabetic or having severe comorbidities(ICED,, ICED3)
is related to higher infections rate significantly, while the rate is lower for black pa-
tients or those have higher value of BALB. We also found that the treatments are not
significant for both cardiac and infectious hospitalizations. Thus, patients who took
high dose ktv or high-flux dialyzer did not have significantly different hospitalizations
rates than those receiving a standard dose or low-flux dialyzer.

In the second stage, we first investigate the global association by the constant rate

ratio model,

p(s,t,0) = 06y. (5.1)

Results are summarized in Table 25,where the estimated rate ratio is 1.0293 and the
95% confidence interval (0.9464, 1.1122) which contains value 1. It suggests a mul-
tiplicative increase of 1.0293 risks in cardiac hospitalization for patients experienced
infections than those who did not; however, the increase of risk is not significant.
Since the rate ratio is the ratio of two event rates, which is nonnegative, we propose

the second model.

log{p(s,t,0)} = o (5.2)

where 6, is the parameter of interest. The estimation result in Table 25 suggested
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the risk in cardiac occurrence does not significantly elevate for patients who had
infections, comparing to those who had no infections. We check the assumption of
global dependence structure, i.e Hy : p(s,t,0) = 0y vs H, : p(s,t,0) # 6y via the
supreme test statistic. The p-value calculated by Gaussian multiplier methods is
0.004, which indicate a strong support to H.

BALB, Black, ICEDy; and ICEDj3 are significant risk factors to the mean rate
of cardiac, as well as the infectious hospitalizations (Table 24). We are interested
in quantifying the impact of risk factors on the association between cardiac and

infectious hospitalizations. Here we propose a third model

log{p(s,t,0; Zx)} = 0y + 6;BALB + 6,Black + 0;1CED, + 0,JCED4 (5.3)

which describes the logarithm of rate ratio by the linear combination of significant
risk factors in the marginal mean rate models. The estimated result shows none
of BALB, Black, ICED, and ICEDj3 are significantly contributing to the rate ratio
because the 95% confidence intervals all include value 0.

Instead of describing the rate ratio by a constant or linear model with covariates,
cardiac and infectious hospitalizations might be dependent on event times. We ap-
ply the piecewise constant model by dichotomizing the time scales of the cardiac or

infectious hospitalizations at the median follow up time - 2.5 years (see Table 22),

log{p(s,t,0)} =0y + 011(s < 2.5) + 021(t < 2.5) +051(s < 2.5,t <2.5). (5.4)

In the interpretation section of Table 25, the rate ratio of early recurrence of cardiac

and infectious hospitalizations is, exp(fy+6; +02+63) = 1.2015 with a 95% confidence
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interval (1.0718,1.3312) which indicates a multiplicative increase of 1.2015 in the risk
of early cardiac hospitalizations conditional on early infections. If cardiac events
occurred at early follow-up time, the risk of having infections later is reduced since
the rate ratio exp(#y+6,) = 0.7652 and the confidence interval is between 0.6093 and
0.9211. Likewise, exp(fp+05) = 0.7384 with a 95% confidence interval (0.1714, 1.3054)
suggests no elevated risk of later time cardiac events if patients had experienced
infections at early time. However, we find that cardiac and infectious events are
strongly positively associated at a later follow-up period, with rate ratio exp(6y) =
1.2402 and a confidence interval (1.0459,1.4345).

From the fitting result of model (5.4), the cardiac and infectious events occurred at
the same time period (both earlier than median follow-up or later than that point) are
strongly associated. This motivates us to consider the log-distance rate ratio model

below

log{p(s,t,0)} = 0y + O1]s — t], (5.5)

where the rate ratio is varying continuously with the difference of recurrence times.
The result of model (5.5) in Table 25 indicates that the longer the time between
cardiac and infectious hospitalization recurrence, the weaker the dependence. The
log-distance assumption can be supported by a scatter plot of cardiac and infectious
hospitalization times. For instance, patient A had cardiac hospitalizations at s =
(1.79,5.48,5.56) and infections at t = (4.75,4.82). Therefore there are 6 unique pairs
of cardiac-infectious admission times during the follow-up period, which is shown in

Figure 8 plot (a). Patients B, C, and D are included in the plot (b) and we find
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the observations are clustered around the diagonal line - 12 dots lie within 0.5-year
distance, 19 within 1 year, 20 within 1.5 years and 24 within 2 years. The density
of joint events can be calculated using the event number over the length of the time
interval, according to which the density within dashed lines of the plot (c), (d), (e)
and (f) are 12, 9.5, 6.7 and 6 respectively. Similar pattern is observed for all patients

(N=1502), with details in Figure 9.
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Table 24: Additive marginal mean rate models for cardiac and infectious hospital-
izations are fitted separately. At a = 0.05, BALB, Black, ICED, and ICEDj3 are
significant for both cardia and infectious events.

Factor est se 95% lwr 95% upr Z-value p-value

Any cardiac

BALB -0.2392 0.1151 -0.4647 -0.0136  -2.0786 0.0377
Black -0.0972 0.0381 -0.1719  -0.0225  -2.5495 0.0108
diabetic 0.0202  0.0412 -0.0605  0.1008 0.4899  0.6248
age 0.4478 0.0752 0.3004  0.5952 9.9535 < 0.001
ICED, 0.1792  0.0441 0.0928  0.2656 4.0659 < 0.001
ICEDs; 0.1362  0.0399 0.0579  0.2144 3.4095 < 0.001
ktv 0.0126  0.0336 -0.0534  0.0785 0.3739  0.7084
flux -0.0339 0.0346 -0.1017  0.0338 -0.9816  0.3261
sex 0.0040  0.0369 -0.0683  0.0763 0.1077  0.9142

duration(yrs) -0.0483 0.1015 -0.2473  0.1507  -0.4754 0.6347

Any infection:

BALB -0.6445 0.1098 -0.8598 -0.4293  -5.8688 < 0.001
Black -0.0753 0.0316 -0.1371 -0.0134 -2.3849 0.0171
diabetic 0.1296 0.0343 0.0624  0.1967 3.7823 < 0.001
age 0.0031  0.0721 -0.1382  0.1444 0.0435 0.9653
ICED, 0.1133  0.0360 0.0427  0.1839 3.1435 < 0.001
ICED; 0.1623 0.0376 0.0887  0.23359 4.3210 < 0.001
ktv -0.0294 0.0294 -0.0870  0.0281 -1.0030 0.3158
flux -0.0313  0.0295 -0.0892  0.0265 -1.0610  0.2887
sex 0.0199 0.0302 -0.0393 0.0791 0.6587  0.5105

duration (yrs) 0.1055 0.1066 -0.1034 0.3144 0.9900  0.3222
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Table 25: Estimation: The estimate, standard error and the 95% confidence interval of
parameters in the proposed rate ratio models. Interpretation: under the assumptions
specified in equation 5.4, rate ratio is piecewise constant; the estimate of exp{f}, its
standard error, and the 95% confidence interval.

Estimation

model 0 estimate standard error 95%lwr 95%upr
(5.1) 0o 1.0293 0.0423 0.9464 1.1122
(5.2) 0o 0.0289 0.0435 -0.0564 0.1142
(5.3) 0o -0.4020 0.1839 -0.7624 -0.0416
0, 0.4953 0.3444 -0.1797  1.1702
0y 0.1539 0.0953 -0.0329  0.3408
03 0.1844 0.1057 -0.0227 0.3914
04 0.1029 0.1054 -0.1036  0.3094
(5.4) 0o 0.2153 0.0799 0.0586  0.3720
0, -0.4829 0.1119 -0.7022  -0.2636
0y -0.5186 0.1179 -0.7498 -0.2875
03 0.9698 0.1599 0.6563  1.2833
(5.5) 0o 0.5944 0.0780 0.4415  0.7473
0, -0.4963 0.1013 -0.6948  -0.2977

Interpretation
exp{0} estimate standard error 95%lwr  95%upr
(54)  exp{fy+0,+0,+05} 12015 0.0662 1.0718  1.3312
exp{fo + 61} 0.7652 0.0796 0.6093  0.9211
explfo + 05} 0.7384 0.2893 0.1714  1.3054

exp{fp} 1.2402 0.0991 1.0459  1.4345
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Figure 8: Cardiac/infectious hospitalizations for example patients. Plot (a): patient
A has cardiac hospitalizations at s = (1.79,5.48,5.56) and infectious ones at ¢ =
(4.75,4.82). The unique (s,t) pairs are (1.79, 4.75), (1.79, 4.82), (5.48, 4.75), (5.48,
4.82), (5.56, 4.75) and (5.56, 4.82). Plot (b): similarly, we plot the pair-wise event
time points of patient A, C, and D with numbers of pairs followed in the parentheses.
Plot (c)-(f): boundary defined by |s —t|= 0.5, 1, 1.5 and 2 (years) in plot (c), (d), (e)
and (f); points fall inside boundary are 12, 19, 20 and 24; within boundary density
(number of joint events over time length) equals to 12, 9.5, 6.7 and 6. Joint events
clustered around diagonal line ¢ = s.
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Figure 9: Cardiac/infectious hospitalizations for all patients (N=1502). Plot(a): 2259
joint events observed within the region defined by |t — s| < 0.5, which gives us the
event density (joint event count over interval length) 2259. Similarly,the density of
joint events fall within boundary region in plot (b) is 1254.5 and the density dropped
to 898.3 and 703.8 in plot(c) and (d).

(a) Solid lines: [t —s| < 0.5 (b) Solid lines: |t —s| <1

infectious hospitalization time (t)
infectious hospitalization time (t)

cardiac hospitalization time (s) cardiac hospitalization time (s)

(c) Solid lines: |t —s| < 1.5 (d) Solid lines: [t —s| <2

infectious hospitalization time (t)
infectious hospitalization time (t)

cardiac hospitalization time (s) cardiac hospitalization time (s)
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5.3  Application 2: the rate ratio of composite cardiac hospitalizations

Cardiac disease is a common cause of death in chronic hemodialysis patients. We
observe that 53.79% of patients experienced a total of 1762 hospitalizations attributed
to cardiac diseases. It is critical for us to understand the progression of cardiac
diseases to prevent, predict and reduce the fatality among dialysis patients. Existing
literature focuses on detecting the dose or flux effect on the cardiac hospitalization
and cardiac deaths (Alfred K. Cheung and et al., 2000; Cheung et al., 2004; Jennifer
E. Flythe and Brunelli, 2011), while the dependence at different recurrence times has
not been studied yet.

First, we want to investigate if patients who had cardiac hospitalization in the past
are more vulnerable and more likely to experience similar hospitalization than those

who did not have. We slightly modify the rate ratio by defining

o(s.t.0) = H2nllls) (5.6)

pa(t)

with t > s > 0 and utilizing the composite cardiac hospitalization data to fit the

constant rate ratio model in equation (5.7)

p(s,t,0) = 06y. (5.7)

Table 26 shows strong dependence between past and future cardiac events. The
interpretation of the estimated rate ratio equal: a multiplicative increase of 1.7287
risk in cardiac hospitalizations for patients who had cardiac hospitalizations in the

past compared to those who did not. The 95% confidence interval (1.4300, 2.0274)
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shows this increasing risk is significant.

The global dependence structure specified by the model in (5.7) is significant but
ignored the possible local dependence. To check the goodness of fit for model (5.7),
we applied the Gaussian multiplier method and got a p-value=0.000 based on 1000
re-samplings. We would like to reject Hy : p(s,t,0) = 0y and the global association
model is not enough to describe the dependence structure between past and future
cardiac events. Here we consider the log-distance model which allows the rate ratio to
vary continuously with the difference between current and past cardiac hospitalization

times,

log{p(s,t,0)} =0y + 6,(t —s), for t>s>0. (5.8)

From the results of model (5.8) in Table 26, we observe significant time difference
effect. Thus the dependence between the current and past cardiac event decays with
the time difference. If the past cardiac event is far away from the current event in a
time scale, then they are less associated.

On the other hand, the rate ratio is the ratio of event rates, and a positive associa-
tion entails an elevated event rate, which suggests a high event density - event count
per unit time. If the model (5.8) is reasonable, we would expect to the density in
region (¢t — s) < r; would be higher than that of in region (t — s) < rq if r; < ro.

To demonstrate the idea, we first consider patient B, who had cardiac hospitaliza-
tions at time 0.11, 0.16, 0.33, 0.34 years during the follow-up. The 6 pairs of (s, t)-
(0.11,0.16), (0.11, 0.33), (0.11, 0.34), (0.16, 0.33), (0.16, 0.34) and (0.33, 0.34) are

shown in the first plot of Figure 10. In the same way, we have the past-current event
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time points for patients A, C, and D.

In Figure 11 plot (a), there are 9 points in region s < ¢t < s+ 0.5, which gives us a
density value 18. When the distance between s and ¢ is enlarged, the event density is
decreasing to 11, 10 and 8.5 in the regions defined in plot(b), (c¢) and (d) respectively.
Figure 12 shows the scatter plot for 1502 patients, each point stands for a event time
pair (s,t). We observe higher density and more clustered points when the distance
between s and t are smaller; when ¢ — s increases, the density decreases. Therefore
it is reasonable to assume that if event times are close, the association is stronger,

which is reflected by a higher relative conditional rate.
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Table 26: The estimate, standard error and the 95% confidence interval of parameters
in the rate ratio model (5.7) and (5.8).

model @ estimate standard error 95%lwr 95%upr

(5.7) 6y 1.7287 0.1524 1.4300  2.0274

(5.8) 6y 1.0779 0.3138 0.4629  1.6930
6, -0.4469 0.1964 -0.8319 -0.0618
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Figure 10: Cardiac hospitalizations for example patients: Patient B has hospitaliza-
tion time set 0.11, 0.16, 0.33 and 0.34. Let t be the current event time, and s be the
past time (i.e t > s). For t=0.16, past event time is s=0.11; for t=0.33, s would be
0.11 or 0.16; while for t=0.34 (the most recent records), previous events occurred at
s=0.11, 0.16 and 0.33. Therefore, in total we have 6 pairs of unique (s,t) under the
assumption (¢t > s). Using the same technique, we plot the current-past event time
pairs of patient A, C, and D.
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Figure 11: Clustering in hospitalizations :
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(s,t) pairs have higher density in when

t — s is small. We define the density as the number of pairs over the corresponding
distance. In plot(a), there are 9 pairs of events occurred within distance 0.5, therefore
the density for t — s < 0.5 is 18. Using the same technique, for region ¢t — s < 1 the
density is 11; for region ¢t — s < 1.5 the density is 5 and for t — s < 2 is reduced to

4.25.
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Figure 12: Clustering in hospitalizations (N=1502) : (s,¢) pairs have higher density
in when ¢ — s is small. We define the density as the number of pairs over the corre-
sponding distance. In plot(a), there are 707 pairs of events occurred within distance
0.5, therefore the density for ¢ —s < 0.5 is 1414.Using the same technique, for region
t —s < 1 the density is 1113; for region t — s < 1.5 the density is 919 and for t —s < 2

is reduced to 764.
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APPENDIX A: PROOFS OF THE PROPOSITIONS IN CHAPTER 3

Proof of Proposition 1
By the conditional expectation property and the conditional independent increment

of Ni1, Nio, we have :

E{dNi1 (s)dNk2 ()| Zra (s), Zia (1)}

= B{ B{dNu(s)ANia(t)| Zia (5), Zia (1), R} |

— E{ B{dNy(5)|Z1(s), Fa} E{ANia (1) Zia(t), R} }

= B{Ri{dpon(s) + 5 Zua(s) ds} Ru{dpuoa(t) + BF Zio(t) dt} |

= E{RyHdpou(s) + BY Zia(s) dsH{dpoz(t) + By Zia(t) dt} (A1)

and

E{dNu(5)| Zu1(5)} = E{ E{aNu(5)| Zua(s), Re} |} = E{RHdpor(5) + 5 Zaa (s) ds},

E{dNia(t) | Zia(D)} = B E{dNw ()| Zia(t), Bi} b = E{RxHdpuoa 1) + B3 Zia(t) dt).

Therefore, follows from the definition of the rate ratio in (2.1),

p— E{dNk1(8)dNka(t) | Zr1(s), Zka(t)} _ E{R?} _ u? + o g 0_2
E{dNy1(s) | Zp1(s)}E{dNiao(t) | Zia(t)}  E{Ri}E{ Rk} p? p
A2

(

)
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Proof of Proposition 2

Similar to the proof of Proposition 1,

E{dNg1(s)dNy2(t)| Z11(8), Zia(t) }
— E{E{del(s)\Zkl(s), R E{dNwo(1)| Zia(8), Rk}}

= E{R(s)Ri(t)} - {do1(s) + BT Zp1(s) ds}{dpoa(t) + B3 Zya(t) dt} (A.3)

and

E{dNyi(s) | Zua(s)} = E{Ri(s)Hdpor(s) + B{ Zua(s) ds}

E{dNi2(t) | Zia()} = E{Ru(t) Hdpoz(t) + B Zea(t) dit}. (A.4)

Since Ry (u) is piecewise constant, we have

.

E(RkoRko) = (CLobo + 50)2 + aobg if s,t € (0, Co]

E{Ry(s)Ry(t)} = E(RjRy1) = (a1by + 01)% + a1 b2 if s,t € (co, 7] (A.5)

E(RyoRy1) = (agbo + do)(arby + 1) otherwise
.

(

E(Rko)E(Rko) = (aobo + 50)2 lf S,t € (O, Co]

E{Rk(‘S)}E{Rk(t)} = E(Rkl)E(Rkl) = ((Ilbl + 51)2 if s,t € (Co, T]

E(Ryo)E(Ry1) = (aobo + 6o)(aiby + 01) otherwise
(A.6)

\



This yields the piecewise constant rate ratio below :

p(0,s,t) =

_ R R}
E{Ry(s)}E{Ri(1)}

(

agbg
1+ (aobo+60)?

alb%

1+ a1b1+61)2

1 otherwise

101

if s,t € (0, ¢

if 5,1 € (co, 7] (A7)
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Proof of Proposition 3

By the definition of mean event rate

E[dN,(s) dNy(t) |21, 2]
— P{dNy(s) = 1, dNy(t) = 1| Z1(s) = 21, Zs(t) = 2}

= P{ le(S) + dNO(S) = 1, ng(t) + dN()(t) =1 ’ Zl,ZQ}
since {N;(-)} and {Ny(-)} are conditional independent to each other, we have
P{ le(S) + dN()(S) = 1, dNQ(t) + dN(](t) =1 | 21,22}
= P{dN1(8> = 1, dN()(S) = O, dNQ(t) + dNo(t) =1 ’ 21, 22}
+ P{dN:(s) = 0, dNo(s) = 1, dNo(t) + dNo(t) = 1] 21, 22} (A.8)
On the right hand side of (A.8),
P{le(S) = 1,dN0<S) = 0, dNQ(Zf) + dN()(t) = 1’21,22}
= P{dN1(5> =1 | Zl} . P{dNo(S) = O, ng(t) = O, dNo(t) = 1‘21, 22}

+ P{dNy(s) = 1| 21} - P{dNo(s) = 0, dNa(t) = 1, dNo(t) = 0|21, 25}

= Mi(s|z1)ds - No(t] zo) dt + A (s | z1) ds - My(t | 20) dt (A.9)
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Similarly,
P{le(S) = O,dN[)(S) = 1, dNQ(t) + dNQ(t) = 1| 21,2’2}
= P{le(S) =0 | Zl} . P{dN()(S) = 1, dNQ(t) = 0, dN()(t) = ]_| 21,22}
+ P{le(S) =0 | Zl} . P{dN()(S) == ]_, ng(t) == 1, dN()(t) = 0| 21,22}

=1-po(0, 5, 21, 2)No(5 | 21) ds - No(t| 22) dt + 1 - Mo(t ] z0) dt Mo(s| 21) ds  (A.10)
Combine equation (A.9) and (A.10) allows us to represent equation (A.8) as below

E[dN1(s) dNy(t) |21, 2o]
= P{dNy(s) + dNo(s) = 1, dNy(t) + dNy(t) = 1| 21, 2}
= M (s|z1)ds-Xo(t]z)dt + M (s]21)ds - Mo(t]| 2,) dt
+1-po(0, 5, 21, 22) Xo(s | 21) ds - No(t] z0) dt 4+ -No(t ] z0) dt - No(s|21) ds
= { (5] z1) + No(s | z0) Ho(t] 22) + No(t | 22)} ds dt
+{po(0, s,t| 21, 22) — 1} No(s|21)No(t | 22) ds dt

= Ai(s|z1)Aa(t ] 2z2) dsdt + {po(0, s,t| 21, 22) — 1} Xo(s| 21)No(t | 22) dsdt  (A.11)
and
E[dN;(s) | z1] E[dNa(t) | z2] = Mi(s]21)Aa(t ] 22) ds dt. (A.12)

By definition the rate ratio of bivariate counting processes { Ni(s), Na(t)} is

E[le(S) ng(t)| 21, 2’2]

E[dN:(3)] 2] BLdN, (0] 23 (4.13)

p(Q,S,ﬂ 21722) -
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and substituting equations (A.11) and (A.12) into the (A.13) gives us

Ao(s]z1)Ao(t] 22)
)\1(3’ ZQ))\Q(t| 22)

p(ea Sat| <1, 22) =1+ {po(e, 87t| 21, 22) - 1}

The rate ratio of N;(s) and Ny(t) depends on that of Ny(s) and Ny(t). If No(s) and
No(t) are independent, po(0, s, t|z1, z2) would be 1, which leads to p(0, s, t|z1,20) = 1 as
well. If the occurrence of events at time s, ¢ are positively correlated, po(, s, t|21, 22)
will be greater than 1 and therefore p(6,s,t|z1,22) > 1. For negatively associated
event occurrence, both po(0, s, t|z1, 22) and p(0, s, t|z1, z5) will be both less than 1.

O
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APPENDIX B: PROOFS OF THE THEOREMS IN CHAPTER 3

Condition 1.
Adapting from H Scheike (2002), we show the asymptotic properties of the first-
stage estimators in our proposed method. The following regularity conditions are

assumed for 7 =1, 2:

C.1. {Ng;(+); Cj, Zs(+) } are independent and identically distributed for k = 1,2, ..., N.

C.2. Pr(Cy; > 7) > 0, where 7 is predetermined constant; Ny;(7) < 7 < oo are

bounded by a constant almost surely

C.3. Ny;(7) are bounded by a constant;

CA. |Z;(0)| + [ |dZk;(s)| < ¢z < oo, almost surely, where ¢z > 0 is a constant.
C.5. Denote the positive-definiteness matrix A; as
A= B[ {Zigta) = 5(6,,w)* ds),
0

_ _ N
where Z;(t) = ]\}I_I)réo Z;(t) and Z;(t) = —Z’“Si’;fy(z)ﬁ)] ®)

Proof of Theorem 3.1

Denote the likelihood function as

L) =Y / {Zuy(0) — Z,(u)} dMiy(u, 5y), (A.14)
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and with the first order Taylor expansion with respect to 3; gives us

(B, — B;) = A (57N / (Zi(u) — Zj(w)} dMys(u. B)),  (A.15)

where
dMy;(t; B;) = dNg;(t) — Yai () {dpo; (t) + B} Zi;(t) dt}
Ay(B) = —N- 12 / {Zus() — Z3(B, )} du,

with £* a value falls between Bj and ;.
By (C.4) and the strong law of large numbers (SLLN), Bj converges almost surely
to ;. From the Slutsky’s theorem and (A.15), \/N(B] — f3;) is asymptotically normal

with mean zero and covariance matrix Aj’leA;l, where

¥, = E[/OT{ZU(U) — Z;(u) }dMi;(u, B;) /OT{ZU(U) Zj(v)} dMy;(v, B;)].

From (A.15) it is straight forward to show

VN{B; = B} = A7' N2 &+ 0,(1). (A.16)
where
= (Ziy () — 2y (u)}y dMys (u, ). (A.17)

The asymptotic covariance matrix of v N (BJ — f;) can be consistently estimated by
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~

Aj_lfljflj_l, with the corresponding estimators
dMy;(t; B;) = dNi;(t) — Yiy () {dfao; () + BT Zus (t) dt},
i = [ {200) = Z3()} bty us ).

N
=N G5
k=1
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Proof of Theorem 3.2

Consider

fuoj (£) — 1105 () = {0j (£ B;) — fio (£ Bj)} + {fto;(t; B;) — pos (1)} (A.18)

By the first order Taylor approximation, we have
A A t j—
jus(t:5) = st ) = —(5 = ) [ ZI@iduto, (V). (A1)
. dMy: (u; 6 _
fos(t: 55) — pio(t) = N~ Z / T o, (), (4.20)
Using the strong convergence of §; in Theorem 3.1 and the Uniform SLLN (Pollard
1990), {/u;(t; 3;) — fio;(t; B;)} converges almost surely to 0 uniformly in ¢ € [0,7].
Similarly, p;(; 5;) converges strongly to jio;(t) uniformly.
By the Triangle Inequality,
|10 (£) — o ()] < Lfios (£; By) — fuog (8 By)| + litos (£ B) — pao; (£)].

Therefore, fig;(t) converges almost surely to p;(t) uniformly in ¢ € [0, 7] as well.

Substituting (A.19), (A.20) into (A.18) and multiplying both sides by /N gives,

VN{fioj(t) = o (1)} = N2~ (1) + 0p(1), (A.21)

where

Ou (8 5;) = / %u)ﬂ) HY (1) A / (Zus(0) = %5(u)} dMiy(u By), - (A.22)

with H(t) = [ z; 0 Z

Thus v/ N{ji;(t) — po;(t)} converges weakly to a mean-zero Gaussian process with
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covariance function I';(s,t) = El¢1;(s; 5;)¢1(t; B5)], which can be consistently ap-

proximated by

with
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Proof of Theorem 3.3
To prove the asymptotic of {U(Q,Bbﬂl(')agz,%(‘)) - U(9751>M01(')752#02('))}
where U(97317ﬂ01(')7527ﬂ02(')) = Zivzl Uk(eaBl?ﬂOl(')?B%ﬂ(ﬁ('))u we consider the

following decomposition:

Uk(97317ﬂ01(')7327/)02('))
= Uk<07517,“01(')7B27H’02('))
+ {Uk(0, B, fro1 (+). B, froz(+)) — Ux(0, Br, por (+), Ba, froz(+)) }

+ {Uk(0, B, 1101 (+), B, froz(+)) — Ux(0, Br, por(+), Ba, proz(+)) } (A.23)

The third term in (A.23) can be further expressed as

/OT /OT _8,0<2,9t, G)P(S’ t, 9) . {YkQ(t){d,&oz(t) + BngQ(t) gt

— dpoa(t) — B3 Zia(t) dt}Yia (s){dpor (s) + B Zia(s) ds}},
by replacing (32 — B2) and fig;(t) — po;(t) with (A.16) and (A.21) respectively, we have
Uk(ea 617 /,601(8), 527 ﬂOZ(t)) - Uk(ea 517 dﬂOl(S)a 527 dﬂOQ@))

— /OT /OT _Wﬂ(s, t,0)Yi1 (8){dpo1(s) + BT Zyi(s) ds}

N N
YkQ(t){Z,”;’;(t)dt AF'NTY G+ N7 dena(t; 62)} +0,(N71) (A.24)
=1 =1

Similarly {U (6, 81, fior(5), B, fioa(t)) — U(0, Br, o1 (s), Bo, fioz(t))} in (A.23) is equiv-
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alent to

/Or /OT _MP(S,@ Q)Ykl(S)Ykz(t)[dlLOQ(t) + 52TZk2(t)dt]

N N
{ Z0()ds ATNT Y G+ NUYT douls ) b+ o, (V) (A.25)
=1 =1

It follows from (A.24), (A.25) and the definition in (3.9) that

N_l/z{U(Q, 51, fion (+), Ba, fio2(+)) — U(8, b1, por (), B, Moz('))}

= N"1/2 Z {hLmeAfl + ging + hanEro Ayt + gZ,N,k} +0p(N7?) (A.26)
k=1

where the terms are denoted by

als, ) = = PEL0 (s 03 ()t

N T T
hiy = N1 lzl /0 /0 a5, ) {dpoa(t) + 87 Z(t) dt) Z2(s) ds.
N T T
h27N = ]\7_1 Z/ / ql(s, t){dum(s) + ﬁfle(S) dS}Zlg(t) dt,
=1 0 0
N T T
nox=N"Y /0 /0 a(5, ) {doa(t) + BT Zuo(t) dt}y dbun(s: By,
N T T
Gong = N1 121/0 /0 qu(s,t){dpuor(s) + BL Zi1(s) ds} dopa(t; Ba).

Deriving from (A.26) the covariance matrix can be estimated by

A N TR NP St B @2
Q=N Z{hl,N&ﬂAl + g1.vk + ho nEre Ay +92,N,k} : (A.27)

k=1
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Ip(s,t,0)
0

N T T
by = NS / / als D{dfioa(t) + BT Zun(t) di} Z5(s) dss,
1=1 70 J0

(jl(s?t) = - p(S,t,@)Yzl(S)Yig(t)

N N T T N
h27N = ]\7_1 Z/ / q1(57 t){dﬂ01(3) + /BTZ”(S) dS}Zlg(t) dt,
1=1 70 J0
N T T R R N
Giwg = N1 ; /0 /0 (5, ) {djion () + BT Zun(8) ity ddya (s: ),

N T T R R R
gZ,N,klelZI /O /0 ai(s, ) {djior (5) + B Zun (s) ds} dbus(t: o).

(A.28)
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Proof of Theorem 3.4

Denote

Wi (0, By, o1 (+), Ba; pro2(+))

= Ui(0, B, po1(+), B2, pro2(+)) + {hl,meAfl +gink+ h2,N§k2A§1 + gZ,N,k}a (A.29)

which follows from equation (A.26) and let

Z(0, B, por (+), Bo, poa () = =N~ Z <3Uk(9,51,,11052'),52,#02(-)))71' (A.30)
k=1

The First-order Taylor expansion of the estimation equation around the true values
gives us,
VN (0 — 0)

N

= NI, By, por (), Ba, roa ()} Z Wi (0, Br; o1 (+), Ba, o2 (+)) + 0p(1)-

k=1

(A.31)

By the central limit theorem that v/ N (é — 0) is asymptotically normal with mean 0

and its variance that can be estimated by ® = N=Y(Z)~' 2N (W,)®*(Z7)~!, with

~

1= I(é,Bl,ﬂm(‘)yﬁmﬂoz('));
Wy = Wk(éaﬁl,ﬂm(‘)aBz,ﬂm('));

obtained with the plugged in estimators 6, 3, fio1(+), B, fio2(+), & and &o.

O
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APPENDIX C: PROOFS OF THE MODEL CHECKING PROCEDURE IN

CHAPTER 3

Recall (3.25)

V(S7 t7 év lal(a Zk1)7 ﬂ?(a Zk?))

- V(SJ t? 07 /11(7 Zkl)a /12(7 Zk2)>

av (57 t7 97 ﬂl(a Zk1)7 ﬂ?(a Zk?))
00

+ N2 NY2(6 —0) 4 0,(1),

Note that V(s, t,0, 11(; Z), fa(; Zkg)) can be further decomposed by

V(S,t,e,,a1<';Zkl),ﬂg(';Zk2)>
= V<87 t7 Qvﬂl(a Zkl)?/“LZ('; Zk2>)
+ V<S7 ta 97 ﬂl(u Zk1)7 /:L2(7 ZkQ)) - V<57 t7 07 ,ul(u Zk1)7 /:L2(7 Zk2>>

+ V(& t,0, 11 (-5 Zia), fra (5 Zk2)) - V<5, 0, 11 (5 Zia), pa (5 Zk2)>- (A.32)

Applying the same techniques in the proof of Theorem 3.3, the third and forth lines

in equation (A.32) are

\/N{V<s t,0, fin (- Zk1),ﬂ2(';Zk2)> - V<S,t79aﬂl(‘§Zk1)>ﬂ2('$Zk2)>}

N
dp(u,v, 9 Zy1, 2,
:Z/ / p = k2) (u7U70;Zk17Zk2)
0

k=1

N N
Yie1 (w) Yia (v) [ dpsgz (v) + Bngg(v)dv]{Z,ﬂ(s) ds A;'N ™! Z &+ N1 Z dgbll}
=1 =1

+0,(N71), (A.33)
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and

\/N{V<S .0, (v Zia), fia (- ZkQ)) - V(s,t,@,m(-;Zm),,ug(-;Zk2)>}

N
op(u,v,0; Ziy, Z,
Z/o / ,0 o0 iz kQ) (U’7U79; ZkthQ)

k=1

N N
Yo (0) Vit (u) {01 (u) + B Zga (u) du }{Z;;FQ(U) AN e+ N d¢lz}
=1 =1

+0,(N7Y). (A.34)
Combine (A.33) and (A.34), and rewrite (A.32) as

V(& t,0, (1 (-5 Zia), ol Zk2)>

= V(s,tﬁ,ul(-; Zi1), po(; ZkQ))

4+ N2 ZN: {hLN(s, DEAT + v r(s,t) + haon(s, 1) At + gan (s, t)},
k=1
+0,(N7) (A.35)
where
al,0) = =20 o 0,0)%i ()i 0

han(s,t) = N1 Z/O /Osw(u,v)ql(u,v){d,uol(u) +ﬁfZl1(u) du}Zl:g(u) dv
onk(S, 1) = N7t t Sw(u,v) 1(u, v){dpor (u —i—ﬁlTle u) du} dppe(v
g > |t vt ) ) (u) du} dya(v)
hin(s,t) = N1 t sw(u,v) (w, v){dpo2(v) + BT Zp(v) dv} Z[ (u) du
> | [ et vatu o dun) (v) dv} Zf (u)

giNk(s,t) = N1 Z/o /OS w(u, v)q (u, v){dpoe(v) + B2 Zip(v) dv} dépi (u) (A.36)
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To simplify the notation, we define

Yia(s,t,0) = {hl,N(Sa e AT + 91,N,k:(8,75)} +0,(N71),

Tio(s,t,0) = {th(S, ) AT + g, i(s, t)} +0,(N7Y),

~

N
V(s,t,0, fn (v 211, fia(; 202)) = N2 Z Vi (s, t, 0, i (- 211), fia (5 2k2)),
k=1

so that (A.35) can be rewritten as

V(& .0, 1 (-5 Zi1), fla(; Zk;Q))

N
— N_I/QZ {Vi(s, 1,0, p1(; Zir), pa(cs Zra)) 4 Tra(s,t,0) + Tia(s,t,0) } + 0p(1).

k=1
(A.37)
Following the empirical approximation of v/ N (é — ) in equation (A.31),
N—l/zav(sytaeaﬂl('; Zkl)aﬂz('; Zkz))Nl/z(é . 0)
00
N
= y(s, t){Nfl/Q{I(a Bus por (+), Bas pron())} Y Wil8, B, pron (+), B, ,uoz(‘))}
k=1
+ 0p(1)
N
= N2y (s, ){Z(9, Br. po1 (+), B2 ptoa ()} Z {hin& AT + g1 vk + ho nEra A
k=1
+ gani} + 0p(1), (A.38)

where Wy(s,t) = limy_o0 N—1/2%. We reform (A.38) as

12 oV <S, t, 07 Bl; ﬂOl(')a BQa ﬂOQ()>

N—l
00

Nl/Q(é - 0) = N_1/2{Ck:1(37 t 0) + Ck2<87t7 0)}

(A.39)
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by letting

Cr(s,t,0) = Wo(s, t){Z(0, B1, pro1(-), 527#02('))}_1{h1,N€k:1A1_1 + 91,N,1<;},

Gia (5,1, 0) = Wals, )T (O, B, pon (), B ica( )} { o i Az™ + gowa ). (A40)

Plugging (A.37) and (A.39) back into equation (3.25) gives us (3.26)

~

V(5,80 (5 i), fial's Zia)
N
= NN {Vk(s, t,0, 11 (55 Zia), pa(5 Zi2))

k=1

+ TM(S,t, ‘9) + TkQ(S,t, 9) + Ckl(S, t, @) -+ CkQ(S,t, 9)} + Op<1).
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APPENDIX D: THE PROOFS OF THEOREMS IN CHAPTER 4

Condition II.

In this section, we investigate the asymptotic properties of 6° under the indepen-
dent censoring assumption and that the distribution functions of the censoring times
are independent from covariates. Following regularity conditions in Lin et al. (2000):
(C*.1) {Ng;(+), Ya;(4), Zij () }(k = 1,2,...,N;)(j = 1,2) are independent and identi-
cally distributed;
(C*.2) Pr(Cy; > 1) > 0, where 7 is predetermined constant;
(C*.3)Ny;(1) are bounded by a constant;
(C*.4)Zy;(-) has bounded total variation, i.e. [Zg;(0)] + [, 7|dZy;(t)] < C. for all
j=12and k = 1,2,..., N, where Z;; is the [th component of dZ;; and C, is a
constant.
(C*.5) AS = E[fOT{ij(u) — (85, ) YOV, (w)e® 2 dpg;(u) | is positive definite,
where F is the expectation.
We summarize the asymptotic properties of BAJC in the following theorem, where the
subscription ¢ denote that the estimator is derived when the marginal model is mul-
tiplicative.
Proof of Theorem 4.1

Adapting A.2 in Lin et al. (2000), the partial likelihood score function for f; is

L;(B;,7), where

LB, 7) =Y | {%ki(w) = Z;(8;,w)} dMi; (u; By),
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It is shown that N*1/2L§(Bj, t)(0 <t < 1) converges weakly to a continuous zero-

mean Gaussian process with covariance function

S (s, ) / (Z0(0) — % (B, u) / {Z15(0) = (85, v)} dME, ()],

0<s,t<r,

between time points s and ¢.

By Taylor series expansion,

VNG — ) = A7 WE}%J Z;(By,u)} dMi (), (A.41)

where flj(ﬁj) = —N‘18L§(ﬁj, 7)/0B;, and B* is on the line segment between Bj and
B;, with Bj is the solution to L§(8;,7) = 0.

The almost sure convergence of BJ and A, ;(B;) for B; and A§ imply that VN3 N(B;—5;)
converges in distribution to a mean-zero normal random vector with covariance matrix
(AS)715(AS)~" and X§ = ¥5(7, 7). For future reference, we denote the asymptotic

approximation as

\/N(B] — B;) = (43) )TN 12 Z &k; (w3 B;) + 0p(1). (A.42)

where

€ (us ;) = / {2y (w) — 2w B,)} dME (3 6,).
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The consistency estimators of A; and X; are denoted by

Ay = N7V {Zg(u) — Z3(By, 1) Y2y (w)e? 260 dfig (w),

N
S =N &
k=1
with
N T ~ ~ ~ ~
ey =N' Z/ {Zkj(u) = Zij(u, B;) } dMj;(u; 5;),
k=10
My(t; B;) = Nij(t) — / Vi (w)e?s 2@ dfig; (u). (A.43)
0
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Proof of Theorem 4.2

~ ~ oS t dN;(u ~
Let fig;(t) = fio; (t, B5) = J, ngzi’gj) and decompose fig;(t) as

fiog (t) = po(t) = {fio;(t, B;) — fiog (£, By) } + {fios(t, B}) — po;(t) }- (A.44)

The uniform strong law of large numbers (Pollard, 1990) implies S9(3;,t) —

s9(B;,t) and N;(t)/N — E[N;(t)] uniformly in ¢ and 3;, and hence the uniform

t dNJ (u)

to po;(t) = [ . B])du ;(u). Furthermore, we

convergence of fi; (t, 5;) = 9 (u,B;)
J

can represent the second term in (A.44) as

fioj (L, B;) — po;(t) = % — dpio;(u)

Y

=N~ / Zie 1de] u ) +0,(N7Y). (A.45)

The first term in (A.44) can be rewritten as

¢ dNJ(U) _ dNJ(U)
0 NS]O(U,B]) NSJ()(uvﬁ])’

= [ 2Bt s B = )+ o,

ﬂOj(t,Bj) — fio;(t, B;) =

= [ 50 0,805, 5) + 0, (8.
The asymptotic approximation of {BJ — f;} in (A.42) entails
fiog (t, B;) — fiog (L, ;)
N T
= [He(t; 8;)]" (AS) "IN Z/O {Zk;(u) = Z(u, B;)} dMg;(us; ;) 4+ 0p(N 1),
k=1

(A.46)
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with He(t; 5;) = fot Zi(u, B;) dpoj(u, B;). Plugging (A.46), (A.45) into equation (A.44)

and multiplying both sides by v'N yield

VN fiog(£) = oy (1)} = 1/22% )+ 0,(1), (A47)

where
Qij(t?ﬂj)
_ [fAMGwB) (u ¢ (s B
_ / o L ) / {Zu () — 2, By)} dME, (3 ).
(A.48)

Since ¢y;(t) is independent mean-zero normal random variable, v/ N { fuo; (1) — p,gj(t)}

converges to a zero-mean Gaussian process with covariance function at (s,t) as

Uj(s,t) = Elog;(s; 8;)0k; (¢ B5)]; (A.49)

which can be approached by its consistent estimator
N ~ ~
Li(s,t) = N7U Guj(s: B5) s (15 58y),
k=1
where

()= [ ;fj‘fT“‘u)) - oAy [ 2y () — Zug(u, )} Al s ),

and

10 = [ .5 dig(t. ) (A.50)



123
Proof of Theorem 4.3

Considering the decomposition:

Uﬁ(e,ghﬂm('), 52, /102(')) - Uk(‘g?ﬁl’ N01(‘), fBa, MOQ('))
= {00, 31, ior (), Bo, 1)) = Un(0, B, 10n (-, B, i (1) }

+ {Uk(ea51,#01(')752,,&02(')) - Uk(&ﬁl,ﬂm(')’52#02('))} (A.51)

The first term on the right hand side of (A.51) is equivalent to

T ap(0, s,t 5T .

{Ym(s>eﬁf2m<s> dfion(s) — Yin (s)e? 201 dum(s)} (A.52)
In (A.52), Yii(s)ePT 210 djigy () — Yia (s)eP Z616) dpgy (s) can be further rewritten as

Ykl(s){eéfzkl(s) dﬂm(s) _ eﬁfzkl(s) d/]()l(S) 4 eﬁfzkl(s) d,aOI (S) _ eﬂfzm(s) dﬂﬁl(s)}
— Y (s) {82009 22 () o (5)(Br — Bu) + P70 (don(s) — () }

+ 0p<61 - Bl>®2

Applying the asymptotic properties of the first-stage estimators from (A.42) and

(A.47) gives

Vit (5)€7 2616) dfigy () — Yia (s)e™ 219 dpgy (s)
N N

= Vi () { e A1 2] () dpaon () (A5) N i+ T AOINTTS gy (s) )
=1 =1

+0,(N7h). (A.53)
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By Combining (A.52) (A.53), and (A.55) we have

{Uk (0, B, fior (s), Ba. fioa(-)) — UL (0, Br, pron (-), Bzydﬂoz(t))}
/ / —,0 st (’90 295 t) ( )eﬂlTZm(S) -Ym(t)ef}?TZkQ(t)

N” Z{ ) dpior(5) dpoa (DA &6, + ddfy(5) dpoa() | +0,(1)  (A54)

In a similar fashion,

Yk2(t)€E2TZ’“2(t) dfioa(t) — Yk2(t)€ﬂgz’“2(t) dpio2(1)

N N
= Yia(){e™ 22 ZL(t) duon (1) (A5) TN &y + eEARONTYS " dofy (1))
=1 =1
+o0,(N71). (A.55)

Since the Ykg(t)eggzkz(t) dfige(t) and Yy (s )eﬁl #105) dfigy (s) only have 0,(N71) differ-
ence compared to their true values, the product term has negligible difference of even
higher orders.

The second part of (A.51) via a similar technique can be proved as

{U§(9,51,dﬁ001(5)7B%dﬂm(t)) - U§(0=617d”01(8)’BQ’d/“LOZ(t»}

N
N {Zkg ) dpior(5) dpoa(1)(A5) €6, + e 720 dyagy (5) dofy(1) | + 0,(1)

=1

(A.56)
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Since

U“(0, B, fior (), Be. fioa(-)) — U0, Br, p1o1(+), Bes oz (+))

Z{ 0, By, ftor (+), Ba, fioa(+)) — U§(67517N01(')752=M02<’))}

k—1
by exchanging the order of the double summations, as well as switching the notations

between [ and k, it can be shown that

N71/2{UC(9> Bla /101(5)7 327 ﬂ02(t)) - UC(Qa B, M01(')7 B, Moz(‘))}

NTV? Z {hi N(AD T + gf PN (A5) T + g5 N} + op(1). (A.57)

k=1

where

ap(0, s, )
00

N T T
By = NS / / 450, 5.0)ZE(5) dpton (5)dpoa ),
=1

N T T
G = NS [ [ a(65,0) duealt) i 9),
1=1 /0 O

G (0. 5.t) = —p(6.5.1) Yis () 700 Yy 1) 20

N T T
Moy = NS / / 450, 5,6 Z5(0) dptoa () dpion (s),
=1

N T T
Gy =N / / 450, 5, O)dpior () e (). (A.58)
=1 0 0
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Proof of Theorem 4.4

By the first order Taylor expansion of the estimation equation,

VNG —-6)
- {_Nil 8UC(6’ Bl’ d,uo(;é>7 ﬁ2, dNO2(>> }71N71/2UC(67 Bla /101(')’ BQ? ﬂ02()>
+op(N71?) (A.50)
Denote
N c . .
T8, Bu, po1 (+), B2, proz(+)) = =N~ Z (3Uk(97/31,lt05é),52,/~602( )))T (A.60)
k=1

and applying (A.57) and (A.60), (A.59) can be rewritten as

VN - 6)

= NI, By, por (), Ba, proa ()} Z Wi (0, Brs tor(-), Ba, pro2(+) + 0p(1),

k=1

(A.61)

where

Wi(0, By, o1 (+), Ba, po2(+))

= {UE0. B 101 (), Ba, 102 () + 15 5 (AS) 76 + g5+ 5 0 (A5) "6 + v |-

(A.62)

By the central limit theorem that v/ N (é — ) is asymptotically normal with mean
zero and variance ® that can be approximated by ® = N~'Z-1(320, WE)(ZT)~!,

where Z and W, are the empirical counterparts of

ZG, Br, por (), Bas po2(+))
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and
Wi (0, B1, por(+), Ba, po2(+))
respectively, which are obtained by replacing 6, 51, poi(+), 1, to2(-) in equations

(A.62) and (A.60) with their estimates 6, 5y, fio1(-), 1, floz(-)-

O
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APPENDIX E: PROOFS OF THE MODEL CHECKING PROCEDURE IN

CHAPTER 4

Recall (4.24)

Vc(87 ta 07 ﬂl(? Zk1)7 ﬂ?(a ZkQ))

= Vc<8, t,0, (- Ziy), fia(-; Zk2)>

avc <S7 ta 97 ﬂl(a Zk1)7 ﬂ?(a ZkQ))
00

+ N2 NY2(6 — 0) + 0,(1) (A.63)

We decompose V¢ (s,t, 0, i11(+; Zya), fia(+; ZkQ)) by letting
Ve (87 t7 07 ﬂl(a Zkl): ﬂ?(a Zk2)>
= VC(& t,0, 11 (5 Zia),s pa( Zk2>)

+ VC (57 ta 97 ﬂl(u Zk1)7 /:L2(7 ZkQ)) - VC (87 tu 07 ,u1(7 Zk:l); IEL2<; Zk:Z))

+ Ve (57 t,0, 11 (-5 Zia), fra (5 ZkQ)) - Ve (87 0, 11(+5 Zia ), pia (5 ZkQ))- (A.64)

By definition in equation (4.21), the first term on the right hand side of equation

A .64 can be written as
N
VC<S, 6,0, 11 (5 Zia), po (5 Zk:2)) => V/f(S,t’ 0, 11 (s Zk1), a5 Zk;2)> (A.65)
with

Vié(s, t, 0 (5 zr1), (v 2k2))

/ / apu v, 9 N g{del( )dNj2(v)

= plu,v, é)Ykl(U)dum(u)@ﬁlTZM(u) : Yk2(v)duo2(7’)e’ggzk2(v)}.
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The second term on the right hand side of equation (A.32), analogous to equation

(A.54) follows

\/N{Vc (8, t,0, 15 Zra), fia( ZkZ)) - Ve <S, t, 0, p1 (5 Zra), iz Zk2)> }

N t s
0 0: 21, Z
_ 2 :/ / _ p(u, v, é k1, k2)p(u7v’ 0’ Zkla ZkQ)Ykl(S)eﬁTZkl(s) i YkQ(t)eﬁngg(t)
k=1 0 0

NS {Zle(s) dpion (5) dpon (1) (AS)LEE + dgst, (s) dNOQ(t)} +o,(1),  (A.66)

and the last term in equation (A.64) has the expansion below

VA6 (3 Z00) ol Zi) ) = V(6,5 Zin), ol i) ) |

N t s

a (0,s,t; Zya, Z

_ Z/ 10 , S, aae k1, k?)p<97 S,t; Zkh ZkQ)Y]d(S)eﬁ?Zkl(s) . Ykg(t)eﬁngQ(t)
= Jo Jo

N
NS ZE(8) dton () dpaoa (1)(A5) 76y + €720 dpigy () deiy(8) -+ 0,(1).
=1
(A.67)

Combining (A.66) and (A.67) together gives us the i.i.d summation form of equation

(A.64) as

Ve (37 t,0, (1 (-5 Zia), ol Zk2)>

- Nl/zi {Wc(satﬂ,ul('; Zy1)s pa(; Zk2))

k=1
+ hiN(& t)51§1(Ai)_1 + giN,k:(S’ t) + h;,N(Sa t)&EQ(AS)_l + g;,N,k(sv t)},

+0,(N 1) (A.68)
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where

Ip(0,u,v)
o0

N t S
B (s, t) = N TS / / 45 (0, u, 0) Z1E () dptor (w)dpioa (),
=1

qlc(ua U) = _p(ga u, U) Yil (u)eﬁlel(U)YEQ(U)eﬁngg(v)’

N t S

G alst) = NIy / / 450, 5. ) duoa(t) det (s),
1=1 /0 70
N t S

Bn(st) = NS / / 000, 5,6) Z5(0) dpioa()dpion (s).
1=1 70 70
N t s

Gnals,) = NSO / / 000, 5, 8)dpor () ety (1) (A.69)
=1 /0 70

To simplify the notation, we define

Tia(s,t,0) = {1 (5, €0 (AD ™ + g a5, 1) | + 0p(N ),

Tk(::2(87 ta 6) = {hg,N(S7 t)flfQ(A;)_l + gg,N,k(S’ t)} + OP(N_1)7

so that (A.68) can be rewritten as

Ve (58,0, (3 Zua). fials Zaa))

N
=N"1/2 Z {Vi(s, 1,0, 11 (5 Zia)s o (5 Zia)) + T (5,1, 0) + T (s,,0) } + 0p(1).

k=1
(A.70)
Following the empirical approximation of v N(f — 6) in equation (4.13),
n-1720VE(5, 1,0, fn (5 Zyn), fia Zk2))N1/2(§ —0)
06

N

= \IIE(S,t){N—W{IC(@a B, to1(+), Bas oo ()} Z WEO, B, pior (), Be, Moz('))}
k=1

+0p(1), (A.71)
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—1/20V<(s,t,0
00

where W§(s,t) = limy_0o N ). We reform equation (A.71) as

1 ove (3, t, 9, Bl: ﬂOl(')a BQ? laOZ()>

— ]\f1/2(9~ —0) = N—l/z{Cgl(s,t, 0) + (io(s,t,0)}

N—l

(A.72)

where
Clgl(sa ta 0) = q];(Sa t){Ic(ea 517 /'L01<'>7 ﬁ27 NUQ('))}il{hl,Néﬁl (Ai)il + giN,k}?
CI?Z(Sa t, 9) = \Dg(& t){Ic(e, ﬁla uOl(')> B27 MDQ('))}_l{hg,N&Q(Ag)_l + gg,N,k}' (A73)

Substituting (A.70) and (A.72) back into equation (A.64) gives us (4.26)

VC <S7 t? éa ﬂ1(7 Zk1)7 ﬂQ(y Zk2))

N
= N_1/2 Z {ch(87 t 97 ﬂl(? Zk1>7 HQ(’ Zk2))

k=1

+ Tgl(& ta 9) + Tl;:2(87 ta 0) + Clgl(sa t7 0) + C122<S7 t? 9)} + Op(l)'



