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ABSTRACT

LAUREN E. JOHNSON. Utilizing Image Segmentation for the Extraction of Heart
Rate Variability in the Pursuit of Updating Mental Health Therapeutic Validity

Processes. (Under the direction of DR. JAMES M. CONRAD)

Image and signal processing modalities play critical roles in the diagnosis and treat-

ment efficacy of medical complications in people today. However, these tools have

not yet been utilized to aid in the clinical diagnosis or treatment of neurocognitive

disorders, such as Attention Deficit Hyperactivity Disorder (ADHD). The subjective

nature of diagnosing neurodevelopmental disorders like ADHD has many merits. Yet,

there is inadequate training for many doctors that can diagnosis ADHD without be-

ing a specialist in psychological disorder or disabilities, which leads to a concern for

such subjective processes arising from those struggling to find a diagnosis and ther-

apy to aid them in daily life. Therefore, a need for objective measurements to aid in

the treatment and diagnoses processes exists. The objective of this work is to create

an inexpensive method to be utilized in doctors’ offices and research to aid in the

treatment efficacy and eventual diagnosis processes of neurodevelopmental disorders,

beginning with ADHD. This thesis work analyzes the potential for various image and

signal processing modalities, and highlights the viability of a computer vision modal-

ity. Part of the goal and inspiration for this work is to eventually utilize various

measurements from a single camera, beginning with the physiological measurement

of heart rate variability (HRV). HRV provides great insight into the autonomic ner-

vous system, which is affected in persons with neurodevelopmental disorders. This

work therefore focuses on improving upon previous works that came close to a dis-

tanced distinction of HRV detection for a person via a face camera, and compares the

results of these algorithms to other HRV capturing methods.



iv

DEDICATION

The author dedicates this work to the late Dr. Bharatkumar S. Joshi, who strived for

using engineering principles to better the medical field and world around them. Dr.

Joshi’s legacy for excellence in engineering and joy for learning and sharing knowledge

is recognized by the author as a constant source of inspiration to this day.

Additionally, this work is dedicated to family and friends of the author who strive

for the inclusivity of people with all abilities, and for the physical/mental health of

all individuals in all shapes and forms.



v

ACKNOWLEDGEMENTS

The author would like to acknowledge the support and assistance of their advisor,

Dr. James M. Conrad, and the other members of the advisory committee, Dr. Chen

Chen and Dr. Douglas Markant. Additional acknowledgement goes to other support-

ers of the project. Dr. Andrew Willis taught many of the courses that led to the

author’s pursuits in signal processing and medical technology.

Volunteer and personal experiences with early childhood education for individuals

with various mental and physical capabilities also led to a distinct interest in aid-

ing others. From these experiences and educational backgrounds in engineering and

cognitive science, the author pursued the following topic to aid in the process of find-

ing the right diagnosis and treatment plan for all persons in a faster and objective

manner.



vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER 1: INTRODUCTION 1

1.1. Purpose 2

1.2. Objective of this Work 4

1.3. Contribution 4

1.4. Organization 5

CHAPTER 2: BACKGROUND 6

2.1. Objective Data for Therapy Validity for ADHD patients 6

2.1.1. Cognitive Background 6

2.1.2. Medical Imaging and Signal Processing 8

2.1.3. Other Image and Signal Modalities 9

2.1.4. Decision Matrix 11

2.2. History of Heart Rate Variability 13

2.2.1. Physiological Signals and Their Implications 13

2.2.2. Modalities and Methods 17

2.2.3. Datasets 20

CHAPTER 3: METHOD 21

3.1. Previous Methods 21

3.1.1. PRV Algorithms and Limitations 23



vii

3.2. Method and Algorithms 25

3.2.1. Algorithm of rPPG Methods 26

3.2.2. Synchronization and Filtering 29

3.3. HRV Metrics and Statistical Analyses 30

CHAPTER 4: RESULTS 32

4.1. Overview 32

4.2. Discussion 38

4.2.1. Complications and Drawbacks of Current Setup 40

4.2.2. Implications of Emotion Elicitation Tasks and rPPG- 41

42

43

45

HRV

CHAPTER 5: CONCLUSIONS

5.1. Future Work

REFERENCES

APPENDIX: ACKNOWLEDGEMENT OF MAHNOB-HCI
DATASET

52



viii

LIST OF TABLES

TABLE 2.1: Results of Review of Technology Trends for ADHD Diagnosis
and Treatment Efficacy

12

TABLE 2.2: Standard HRV measurements as determined by the 1996
Task Force on HRV.

15

TABLE 4.1: HR statistical analyses for the neutral and fear conditions,
where the ground truth, mean HR for the neutral and fear trials was
determined as 110.03 and 119.99 BPM, respectively.

35

TABLE 4.2: Time domain analyses for the neutral and fear conditions. 35

TABLE 4.3: HR statistical analyses for the neutral and fear conditions,
where the ground truth, mean HR for the neutral and fear trials was
determined as 110.03 and 119.99 BPM, respectively.

38



ix

LIST OF FIGURES

FIGURE 2.1: Sympathetic (left) and Parasympathetic (right) Anatomy
and Effects on Organ Systems.

16

FIGURE 3.1: The iPPG-HRV algorithm flow diagram of this thesis. 27

FIGURE 3.2: ROI selection process, where the yellow regions indicate the
ROIs for the face and eyes detected with the Voila-Jones algorithm.
Green markers indicate the points of interest found with the Voila-
Jones to KLT methodology after minor editing of the selected ROI
(red box).

28

FIGURE 4.1: These plots each depict the ECG signal for a neutral trial.
The top signal shows the raw signal in its original form in µV of
a subject, where each subsequent graph depicts the normalized HR
signal for all frequency domain filters in order from least to greatest
(ULF∗, VLF, LF, HF, Total band of all possible HR frequencies).

33

FIGURE 4.2: Time domain analysis signal plots for the rPPG methods
in both emotion trial types. The left graph is for neutral trials for
both EVM and PBV methods, while the right depicts the same RR
intervals for the first 90 beats of the fear trials.

36

FIGURE 4.3: Frequency domain analysis signal plots for all methods
across the neutral and fear trials.

37

FIGURE 4.4: LF/HF ratio comparison plots in the FFT spectrum for all
methods across the neutral and fear trials.

39

FIGURE 5.1: Block diagram of system design for objective measurements
to be utilized in diagnosis and treatment efficacy of ADHD.

43



x

LIST OF ABBREVIATIONS

Psychology and Medical Related Terms

AAP The American Academy for Pediatrics

ACE Adverse Childhood Experience

ADHD Attention Deficit Hyperactivity Disorder

ANS Autonomic nervous system

ASD Autism Spectrum Disorder

CEM Cognitive-energetic model

CHADD The society Children and Adults with ADHD

DaRi/T i Dopamine receptor/transmitter (respectively), i = number

DAv Delay aversion

DDM Drift-diffusion model of decision-making

DMN Default mode network

DSM-5 The Diagnostic and Statistical Manual of Mental Disorders, 5th

edition

ECG Electrocardiogram

HFA High-functioning ASD

HRV Heart Rate Variability

MAHNOB-HCI Dataset created for emotion tracking and determination

NSCH National Survey of Children’s Health

PNS Parasympathetic nervous system

PRV Pulse Rate Variability

SR State regulation

TPD Temporal processing deficits

Method and Signal Related Terms

AC Alternating current; a signal’s non-zero (positive) frequency com-

ponents



xi

DC Direct current/component; a signal’s time average (mean) or de-

pendent value

EVM Eulerian video magnification method

FFT Fast Fourier transform

HF High frequency range

IBI Interbeat interval

iPPG Imaging or video-imaging PPG signal

KLT Kanade-Lucas tracking algorithm

LF Low frequency range

OUGP Ornstein-Uhlenbeck third-order Gaussian process filtering method

PBV Blood-volum pulse method

Pk-Pk Peak-to-peak interval

PP Pulse-to-pulse intervals

PPG Photoplethysmography

RGB Red, green, and blue channels of visible spectrum cameras

ROI Region of Interest

rPPG Remote PPG methodology

RR Interval between consecutive heart beats

ULF∗ Ultra-low frequency range

VLF Very-low frequency range

Analytics and Units

α Skin-tone value or metric of varying skin types or pigmentation;

used in the EVM method

λc Cut-off frequency

Hz Hertz, unit of measure for frequency

r Pearson’s correlation coefficient

MAE Mean absolute error



xii

MPE Mean percentage error

RMSE Root mean squared error



1

CHAPTER 1: INTRODUCTION

Since the days of the ancient Romans, physicians began recognizing the relation-

ship of cranial injuries with disruption to one’s mental capabilities, whom the Roman

physician Galen would term as the lesion method [1]. Each branch or practice within

the medical field now is able to work with psychologists to find links between brain

regions and mental functions, leading to the development of such fields as seen in cog-

nitive science. Cognitive scientists utilize concepts from the disciplines of linguistics,

artificial intelligence, philosophy, psychology, neuroscience and artificial intelligence

[2].

With cognitive science findings, the scientific and medical communities are rec-

ognizing the associative nature of the "mind-body" connection. A new example of

this recognition is seen with the findings that gingivitis may be the cause of plaque

developing on the brain in Alzheimer’s patients, meaning that preventing gingivitis

with good oral health care could help prevent the development of Alzheimer’s [3]. Yet

just as good "physical" health affects the mind - such as lack of food or sleep can

cause emotional outbursts and improper concentration - so can the mind help affect

the body. These connections between the physical and mental states of a person aid

in many diagnoses to this day, particularly for neurological disorders or disabilities.

Some research has gone into using physical signals for objectifying mental health

related diagnoses, such as using speech analysis to detect Parkinson’s disease [4].

However, there are limited numbers of this type of research, and thus far has mostly

focused on neurodegenerative disorders. In an effort to continue searching for objec-

tive measurements to add to the research community’s discoveries of determining and

adapting one’s mental health, the author began looking into various neurocognitive

disorders. The results of this investigation are covered in the following paragraphs as

well as in the author’s paper on the topic [5].
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1.1 Purpose

Individuals with Attention Deficit Hyperactivity Disorder (ADHD) - a neurodevel-

opmental disorder - are affected by symptomology like inattention [6, 7], hyperactivity

[8], and impulsivity [9], which affect everyday performances such as learning and aca-

demic/work performance [6, 8, 10]. While seemingly high functioning, these persons

struggle compared with their non-disordered peers; they are more likely to have lower

grade point averages, higher dropout and unemployment rates, and more difficulties

with their concentration, memory, and time management skills [11, 12, 13].

The Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5),

describes the medical classification of ADHD as a persistent pattern of inattention

and/or hyperactivity-impulsivity that interferes with functioning or development [14].

Two subtypes of ADHD exist: inattentive and hyperactive/impulsive. The inatten-

tive diagnosis primarily focuses on lack of attention or sustained attention, while

the hyperactive diagnosis involves excessive activity through talking, fidgeting, and

inability to remain still during leisurely activities.

The DSM-5 gives descriptors of symptomology and requirements to be met for

ADHD to be the proper diagnosis. Yet, it does not give any indication on correct

methods or tasks to use during the diagnosing process, beyond incorporating educa-

tional and parental/guardian information and observations. The American Academy

for Pediatrics (AAP) also follows suit of the DSM by providing guidelines which lack

specificity for the actual process for diagnosing and treating children with ADHD

[15]. Typically a psychologist would utilize a general neuropsychological examination

which assesses multiple domains, such as intelligence, visuo-spatial, and attention

[16]. Sources speak about the tasks utilized during such examinations, but there are

multiple options for each cognitive domain in a neuropsychological evaluation, adding

to the subjectivity and potential biasing of the evaluator. However, such biasing is

limited for experts (psychologists and psychiatrists) compared to general-practitioners
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or pediatricians who primarily follow the guidelines provided by the AAP and DSM.

According to the society Children and Adults with ADHD (CHADD), utilizing census

data collected from the 2016 National Survey of Children’s Health (NSCH), only 14%

of children in the U.S. were diagnosed by an expert [18].

Since, these criterion are met through subjective measures, misdiagnoses become a

concern for many patients, doctors and researchers. Studies have validated this trend

for misdiagnosing populations such as children with differing subtypes of ADHD [8].

Other studies indicate the trend for misdiagnosing a patient with ADHD who in fact

has another condition, such as:

• autism spectrum disorder (ASD) [19]

• scotopic sensitivity syndrome (SSS; also known as Meares-Irlen syndrome),

whose characteristics include distortions of print when reading, such as the

text appearing to move or vibrate, along with reduced word recognition and

decreased ability to maintain reading over longer periods of time [20, 21]

• environmental factors like overcrowded classrooms or relative maturity general-

izations [22]

• at least one of the adverse childhood experience (ACE) scores [23], as well as

many others beyond the scope of this thesis [24]

It is noteworthy to emphasize that while these factors could be separate from ADHD,

the authors do not claim they could not be separate from ADHD, merely that other

causes or diagnoses provide more encompassing explanations for many individuals.

This also includes a comorbid diagnosis of ADHD with one or more learning disabil-

ities or other cognitive disorders.

A recent study [25] utilizing census data collected from the 2016 NSCH found that of

an estimated 6.1 million U.S. children 2-17 years of age, 9.4% had received an ADHD

diagnosis at one point; only 5.4 million, or 8.4% of all U.S. children were indicated as
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having ADHD at the time of the survey. While this does not mean the 11.6% difference

of children were neurotypical and received an ADHD diagnosis, it does provide insight

into the rate of misdiagnois of ADHD when a different diagnosis was appropriate.

These rates also do not account for those who received diagnoses in adulthood, or

diagnoses that excluded ADHD when a comorbid diagnosis with other cognitive or

neurological disorders should have been given. Studies also indicate concern with

whether treatments prescribed to patients with ADHD (ie, stimulant medications or

non-pharmacological therapy) effect said patients’ cognitive performance, along with

their biological structures like the cardiovascular system [26].

1.2 Objective of this Work

The purpose of this work is to create an inexpensive method that could be utilized

in doctors’ offices and research to aid in creating more objective measurements for

evaluation in the treatment efficacy of neurodevelopmental disorders, beginning with

ADHD. The work uses image processing over other methods for the purpose that such

a method will be helpful for assessing patients who do not like other people or items

touching them (e.g., children with ASD). This also aids with creating a methodology

that could be quickly and inexpensively implemented within even a typical general

practitioner’s office. This work focuses on updating previous work on pulse rate

variability (PRV) [27, 28] and remote heart rate monitoring for physical activity

assessment [29]. Additionally, this work is utilizing emotion tracking databases for

full range of physiological data recorded from multiple modes of medical and non-

medical devices [30].

1.3 Contribution

This thesis works toward creating more objective, inexpensive models for physiolog-

ical measurements to be utilized in research and clinical treatment efficacy programs

for neurodevelopmental disorders by implementing a heart rate variability (HRV) im-
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age processing model that utilizes data from a typical webcam. By beginning with

HRV, a physiological signal that provides insight for cognitive and physical function,

the method can be implemented for multitudinous diagnosis or therapeutic/treatment

processes in the future. In using a typical webcam that does not need to touch the

individual and records facial data of a person, this increases the modularity of the

method for future work such that other measurements recorded through the images

would be available.

1.4 Organization

This thesis is assimilated into five chapters. Chapter 1 illustrates the motivation

for the presented work along with a brief introduction to its relevant topics. Chapter

2 reviews the background information of signal processing for treatment efficacy of

ADHD, cognitive and medical standings on HRV, and previous works on HRV models

of various measurement modalities. Much of the content in Chapter 2 was also men-

tioned in the author’s paper [5]. Chapter 3 covers the algorithms and methodologies

utilized to implement this work. Chapter 4 analyzes the results of this work. Chapter

5 discusses this work’s conclusions drawn from the full breadth of this thesis, along

with future work to follow.
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CHAPTER 2: BACKGROUND

The purpose of this chapter is to review literature, also discussed in [5], utilizing

technology for treatment efficacy and diagnosis studies in order to provide an informed

system design which will reduce misdiagnosis rates and improve the general diagnosis

and treatment processes. The reasons for neurocognitive/neurodevelopmental misdi-

agnoses often originates from a lack or misguided understanding for the underlying

cognitive mechanisms resulting in these various conditions; these are compounded

upon each other along with a misunderstanding of each condition’s diagnosis and

treatment efficacy resources. Knowing these complications, caused by focusing on

symptomology, leads to the following discussion for a more detailed road of under-

standing the mechanisms leading to said symptomology.

2.1 Objective Data for Therapy Validity for ADHD patients

Much of the information in this section comes from the author’s publication [5],

with adjustments for this thesis.

2.1.1 Cognitive Background

As ADHD relates to neurodevelopment, the nature of the brain must be discussed

and regions which could impact this disorder.

Studies have indicated a link between dopamine receptors and executive functioning

(EF), which there are fewer of (in number or functionality) in persons with ADHD [31].

Cognitive models explaining ADHD also help support this link with the dopaminergic

system. One model explains how participants with ADHD prefer to choose options

which hasten time to reward, known as delay aversion (DAv), which predicted many

hyperactive subtypes explaining their impulsive or reward sensitive behaviors [32].

Another model explains inhibitory control deficits, or executive dysfuntion and impul-

sivity [33] which was the more historical view of ADHD. As the overall dopaminergic

system influences multiple brain regions (e.g. amygdala, portions of the basal gan-
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glia, prefrontal cortex, etc.) effecting cognitive abilities like working memory, reward,

attention and motor control, the connection to ADHD seems essential [1].

A sole dopamine related explanation excludes parts of the ADHD spectrum. In fact,

the noradrenergic (norepinephrine) system also affects arousal, attention and working

memory in certain brain regions (e.g. hypothalamus, thalamus, etc.), which helps

explain more ADHD symptoms, i.e. emotional regulation. A cognitive model that

supports the inclusion of the noradrenergic system is the cognitive-energetic model

(CEM). The CEM involves arousal mechanism disruptions, which effects sustained

attention, in people with ADHD [34].

There is also the multi-pathway model, which shows that inhibitory deficits, DAv,

and temporal processing deficits (TPD) are all dissociable yet influential toward de-

scribing ADHD subtypes [35, 36]. TPD also incorporates the noradrenergic system

as it also transmits to the temporal lobe, along with the dopaminergic system, thus

adding to the validity of the heterogeneous multi-pathway model. A new additional

model is the drift-diffusion model of decision-making (DDM), where slower event rates

or reaction times was indicative of higher inhibitions and slower information process-

ing [37, 38]. The DDM shows consistency with the multi-pathway model supporting

multiple facets for ADHD brains.

Many of the aforementioned studies utilized reasoning based on medical imaging

modalities to back up their claims for the cognitive models of ADHD. Said research

aided in the discovery of an understanding of cognition for persons with ADHD.

Therefore, numerous studies are looking at different imaging and signal processing

modalities to find a more objective way of not only researching, but understanding

treatment efficacy with stimulant medications. Genetic advancements and testing

have also been employed for determining if a person has or is predisposed to developing

ADHD. However, this paper does not cover the topic as the authors define genetic

testing as not being apart of image or signal processing modalities (for some reference
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to genetic or neuroscience studies please see [31]). The following sections discuss

current research focused on developing treatment and diagnostic aids for ADHD, as

well as any concerns with each modality.

2.1.2 Medical Imaging and Signal Processing

The meta-analysis by Sridhar et al.[39] covers most of the medical modalities uti-

lized at discovering differences between neurotypical persons and those with ADHD.

Primary modalities include magnetic resonance imaging (MRI), functional magnetic

resonance imaging (fMRI), electroencephalography (EEG), single photon emission

computed tomography (SPECT), positron emission tomography (PET), and discus-

sion of the genetic markers underlying ADHD. The studies discussed by Sridhar et

al. help provide a greater understanding of the differences of ADHD and neurotypi-

cal brains, particularly the effects of iron levels affecting dopaminergic regions of the

brain found in PET/SPECT studies the authors reviewed. The EEG studies Srid-

har et al. covered generally mentioned high accuracy rates for measurements from

the frontal lobe regions and improved predictability of treatment efficacy when also

utilizing machine learning techniques.

Resting fMRI studies showing the blood-oxygen levels and low-frequency default

mode network (DMN; default brain activities used for comparison in fMRIs) were also

indicative of a vast effect on ADHD brains, showing many brain regions that differed

from the default neurotypical brain [39]. Other multi-modal studies, combining fMRI

and typical structural MRI studies also support the vast areas impacted by ADHD.

Such indications were discovered by utilizing machine learning techniques to create

better classifiers which found that ADHD participants have reduced gray matter

volume primarily in the frontal lobe, and differing visio-spatial and DMN connectivity

versus their neurotypical counterparts [40, 41, 42]. Volume size in areas like the

amygdala and hippocampus also contribute to some ADHD symptoms related to

those regions [43]. A primary stimulant, methylphendiate, used in treating ADHD
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was used in fMRI studies and shown to aid significantly in mediating attentional

control complication for inhibitory tasks [44].

These modalities helped show the complex and variable regions that ADHD affects

the brain. As such varying modalities (from fMRI to EEGs) show this, it goes to

prove even further that multi-deficit models are more indicative of ADHD than any

single deficit model. Many of these modalities are utilized in research to support

cognitive models of ADHD and cognition in general, but other techniques should be

considered if they can validly provide diagnosis or treatment efficacy of ADHD.

2.1.3 Other Image and Signal Modalities

The following section reviews imaging and signal modalities that do not look at

the brain, but rather at other physiological attributes indicative of brain behaviors.

2.1.3.1 Imaging

A link between microsaccades, small fixational saccades, and prestimulus anticipa-

tion has been established [45, 46]. The ability to inhibit microsaccades when expecting

a stimuli, something persons with ADHD struggle with, is correlated with improved

task performance [45]. Gottlieb et al’s paper [47] backs up these claims by showing

that information-seeking cognitive models use gaze patterns, as they differ when ac-

quiring a task and when learning. Their paper also mentions that gaze is utilized in

monitoring uncertainty or predictability of the surrounding environment.

Two varying techniques for measuring microsaccades during computerized tasks

of attention were accomplished by Fried et. al. [48], and Danker et. al. [49]. Each

utilized a different form of continuous performance test (CPT) which involved looking

for targets and/or non-targets in a region of interest (ROI) as a test of attention for

a participant. Each of these have some merits, yet both have some pitfalls in their

methodology as well.

One inconsistency with [49] findings was that nearly a third of the Danker et al.
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ADHD participants showed better sustained attention performance than the median

of all their participants. This variability for the ADHD population on saccade effects

could be due to either medication taken by participants (as the authors did not screen

for this conflict), or their ability to hyper-focus on some task. However, another

reason is that those participants did not suffer from poor sustained attention as much

as other symptoms of ADHD.

Danker et al. also discussed that their findings supported ADHD participants

having fewer microsaccades and more saccades than neurotypical participants. This

contradicts the findings of Fried et al. who used a different rendition of an attentional

testing task. A possible explanation for these conflicting discoveries could be that

Danker et al. presented their targets and non-targets centrally (the shapes and colors

took up the center of the screen), while Fried et al. presented their targets and non-

targets peripherally (9◦, vertically away from center). Studies confirm that ADHD

participants struggle with fixation tasks and show excessive saccadic intrusions when

instructed versus not instructed to fixate [50, 51].

2.1.3.2 Physiological

Another cognitive model that requires mentioning, is the state regulation deficit

(SRD) model. The SRD resembles similarities to the other multiple deficit models,

as it discusses the regulation ability of the energetic states of arousal, activation and

effort. According to a study by van der Meere [52], this model helps explain studies

showing slow response times in persons with ADHD as the SRD model indicates the

deficiencies of effortful maintenance for optimal activation levels required for main-

taining a consistent state of motor preparation. Additionally, much of state regula-

tion pertains to physiological data, such as heart-rate, breath-rate, eye movements,

etcetera - each of which may require various measuring techniques to record.

An interesting investigation by van der Meere involved looking at the heart rate

variability (HRV) of persons with ADHD, captured with an electrocardiogram (ECG)
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modality. The author discussed that midfrequency band of 0.03 to 0.15 Hz involves

modulation by the sympathetic and parasympathetic (vagal) influences, and lower

amplitudes of these frequencies indicates a more effective compensatory SR. The

author found that participants with ADHD and HFA exhibited larger amplitudes

than their control peers for the midfrequency band particularly during slow stimulus

presentations over fast presentations. Thus, ADHD participants allocated less effort

in the slow condition and had difficulty remaining motivated.

Recent studies have also investigated the relation between ADHD and the cardio-

vascular system. One study showed the use of a remote HRV monitor (ie, ECG)

such that a longer evaluation which followed the patient through routines could be

evaluated for treatment efficacy [53]. Another use for such remote diagnostics for

treatment efficacy comes from studies indicating a longer adverse effect on cardiovas-

cular systems for persons taking ADHD stimulant medications [26].

A benefit of a camera modality for eye-tracking is that other physiological factors

can also be determined with a camera. Studies have proven that heart-rate can be

measured by visible-spectrum cameras. Effectively, this means that measuring HRV

would also be plausible with the camera (discussed further in Section 2.2, thus adding

to the utility of the visible-spectrum imaging modality [54].

2.1.4 Decision Matrix

Based on the discussed technological modalities, the authors have summarized

their findings in Table 2.1 with some adjustments from the original found in [5]. The

table implements the multiattribute utility theory (MAUT), also known as a decision

matrix [55]. The categories for ranking include:

• the general accessibility of cost and safety (modalities which could be harmful

to subsets of persons, will be penalized),

• time (length of process; mostly for procedure and analysis),
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Table 2.1: Results of Review of Technology Trends for ADHD Diagnosis and Treat-
ment Efficacy

InformationModality Spectral Temporal*2 Safety Price Time Total

PET & SPECT 4 2 1 2 3 12
EEG 3 10 4.5 3 3.5 24
MRI 5 2 3 2 3 15
fMRI 3.5 9 3 2 3 20.5

Physiological 1.5 8 5 4.5 4.5 23.5
Computer Visiona 1.5 9 5 5 4.5 25
a Computer Vision refers to the eye-movement and HRV factors being measured
with a visible-spectrum camera.

• how much information into the ADHD process a modality can provide in terms

of spatial and temporal resolution

Each category will be given a rating of 1 (poor) to 5 (high). However, the temporal

information column is given a weight of two as ADHD cognitive functionality can

only be represented well via temporal data during cognitive tasks.

The results of Table 2.1 show that modalities which provide brain analysis are given

higher scores for spatial and temporal information. Modalities which can provide more

details into specific brain functionality during tasks give higher temporal resolution

and understanding. The visible-spectrum camera modality had the best total score,

based on its accessibility making it more cost-effective and reducing the time spent for

data collection and analysis, along with adding the potential for other physiological

measurements than typical physiological capturing methods. While other modalities

provide better insight into the brain effects of ADHD on a spatial level, measure-

ments of eye movements and HRV captured with computer vision techniques, still

provide valuable indicators for treatment efficacy, and thus, diagnosis of ADHD as

well. Therefore, this modality will be utilized for the primary modality of this work.
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2.2 History of Heart Rate Variability

There are studies about the physical impact of working the body (i.e., exercising)

on HRV and autonomic nervous system (ANS) [29, 56], but what about the gym-

nastics of the mind? The remaining portions of this chapter will review the deeper

connections of HRV with ANS and cognitive capabilities. From there previous work

on creating remote HRV measuring modalities are covered, along with any datasets

that accompany these works as well.

2.2.1 Physiological Signals and Their Implications

To understand the connection between ADHD and HRV, the ANS and its subsys-

tems must first be reviewed. The ANS involves maintaining the body’s homeostasis

(especially internal), meaning it pertains of all systems related to automatic or invol-

untary responses of the body. The ANS breaks down into the two subsystems known

as sympathetic and parasympathetic as depicted in Figure 2.1. The sympathetic sys-

tem is responsible for the secretion of adrenaline and noradrenaline (norepinepherine),

which aids in accelerating HR while dilating (ie, relaxing) the bronchi of the lungs.

On the other hand, the parasympathetic nervous system (PNS) conserves and re-

stores energy by slowing the HR and constricting the bronchi primarily through the

vagus nerve; vagal tone, therefore, is directly associated with proper heart and lung

strengthening, as in, aerobic exercise [57].

Each of these systems continues to compliment each other not just at the abstract

level of expending or conserving energy, but also down at the neurotransmitter level.

Serotonin, dopamine, norepinephrine, and epinephrine receptors are all of the general

monoamine, where the latter three are catecholamines as they all are one step from

each other in structure. These receptor systems are each linked with some form of

arousal and attention (whether excitatory or inhibitory) for cognitive and physical

systems, and therefore fall under the sympathetic system. Acetylcholine systems
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are inversely related to the monoamine systems for the physiological structures, and

the primary receptors of the PNS are the muscarinic acetylcholine (ie, cholinergic)

subtype.

As the ANS subsystems suggest, the physiological relation to neurotransmitter sys-

tems that closely effect cognitive abilities often hindered by ADHD, such connections

can be utilized to aid in understanding ADHD’s effect on more than cognitive perfor-

mance. Though many physiological measures, such as breath rate, show a connection

with the ANS, only heart related measures are connected with the dopaminergic sys-

tem. This further supports the conclusions made in [5] which found HRV to be an

informative metric for the treatment efficacy of persons with ADHD, yet now we must

define exactly what that entails.

One final correlation to the ANS, is its role in the fear-neurocircuitry system.

This system includes regions such as the hippocampus and ANS - regions previously

discussed as being negatively influenced in persons with ADHD. Due to the fear-

neurocircuitry’s succinct relation to emotional responses, emotion elicitation trials

would serve as a good performance metric for establishing the differences in different

emotion tasks which could infer the difference experienced by patients with ADHD

during varying attentional/cognitive tasks.

The 1996 Taskforce [58] expressly defines HRV as the oscillation within the time

interval between consecutive heartbeats (RR). Essentially, HRV does not simply look

at the beats per minute as HR does, but in fact looks primarily at the interbeat

intervals (IBI) and its variability. The HRV signal is further broken down into time

and frequency domain components for full analysis (full details are covered in Table

2.2). While all of these measurements aid in the understanding of HRV, the frequency

domain has particular relevance to physiological health. Firstly we define several

frequency ranges as the following: ultra-low (ULF), very-low (VLF), low-frequency

(LF) and high-frequency (HF), and additionally the range ultra-low-star (ULF∗). The
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Table 2.2: Standard HRV measurements as determined by the 1996 Task Force on
HRV. Adapted from [58, 60]

Variable Units Description
Time Domain, Statistical Measures
SDNNa ms Standard deviation of all NN intervals
SDANNa ms Standard deviation of the averages of NN intervals in all short-term

(typically, 5 min) segments of the entire recording
RMSSDa ms Root mean squared of the sum of the squares of differences between

adjacent NN intervals
SDNN index ms Mean of the standard deviations of all NN intervals for all short-term

(typically, 5 min) segments of the entire recording
SDSD ms Standard deviation of differences between adjacent NN intervals
NN50 count Number of pairs of adjacent NN intervals differing by more than 50

ms in the entire recording
pNN50 % NN50 count divided by the total number of all NN intervals
Time Domain, Geometric Measures
HRV triangular
indexa

Total number of all NN intervals divided by the height of the
histogram of all NN intervals measured on a discrete scale with bins
of 1/128 s

TINN ms Baseline width of the minimum square difference triangular
interpolation of the highest peak of the histogram of all NN intervals

Differential index ms Difference between the widths of the histogram of differences
between adjacent NN intervals measured at selected heights

Logarithmic index ms−1 Coefficient φ of the exponential curve keφt, which is the best
approximation of the histogram of absolute differences between
adjacent NN intervals

Frequency Domain, Short-term Recordings (2-5 min)
Total power ms2 Variance of all NN intervals (≈≤ 0.4Hz)
ULF∗b ms2 Power in the ULF range (0.0005 ≤ f ≤ 0.003Hz)
VLF ms2 Power in VLF range (f ≤ 0.04Hz)
LF ms2 Power in LF range (0.04 ≤ f ≤ 0.15Hz)
LF norm n.u. LF power in normalized units: 100 ∗ LF/(Totalpower − V LF )
HF ms2 Power in HF range (0.15 ≤ f ≤ 0.4Hz)
HF norm n.u. HF power in normalized units: 100 ∗HF/(Totalpower − V LF )
LF/HF Ratio LF/HF
Frequency Domain, Long-term Recordings (24 h)
Total power ms2 Variance of all NN intervals (≈≤ 0.4Hz)
ULF ms2 Power in the ULF range (f ≤ 0.003Hz)
VLF ms2 Power in the VLF range (0.003 ≤ f ≤ 0.04Hz)
LF ms2 Power in the LF range (0.04 ≤ f ≤ 0.15Hz)
HF ms2 Power in the HF range (0.15 ≤ f ≤ 0.4Hz)
α Slope of the linear interpolation of the spectrum in a log-log scale

(f ≤ 0.01Hz)
a These measurements are the most indicative values of HRV for statistical
calculations (in the time-domain) according to [58].

b This value was added for reference to work done by [59], but was not defined by
the Task Force of 1996.
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Figure 2.1: Sympathetic (left) and Parasympathetic (right) Anatomy and Effects on
Organ Systems. Adapted from [57].

1996 Task Force on HRV [58] mentions that ULF and VLF ranges are typically only

looked at for 24 hour recordings, while the LF/HF ratio is only reviewed for short-

term (2-5 minutes) measurements. LF/HF ratio is not modulated by physiological

mechanisms that are considered stationary, and therefore during longer recordings this

measurement can be determined by breaking up the recording into shorter segments

(eg, 2-5 minutes) then taking the average over all segments.

In a 2015 article [60], the work from the 1996 Task Force [58] was reviewed in an

attempt to update some of the HRV analysis techniques. The frequency bands for

the frequency domain HRV measurements, were certainly unchanged from the two

articles which span nearly 20 years. Yet, this contradicts the ranges utilized by recent

work [57] that cited the 2015 [60] article. However, most researchers maintain the

original ranges from the 1996 Task Force for their analyses, whether working with

designated HRV measuring devices or working toward developing new methods to

utilize other modalities such as optical sensors.

Another crucial measurement to understand is pulse rate variability (PRV). The

PRV signal is obtained by measuring the pulse-to-pulse (PP) intervals from the peaks

of RRs; this refers to utilizing a peak-to-peak (Pk-Pk) analysis. While this PRV
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measurement seemingly appears to be a surrogate for HRV, as some studies have

indicated [28], this serves as more of an interpolation of the HRV signal than being a

true representation or replacement.

2.2.2 Modalities and Methods

One of the primary techniques many articles reference (such as [57]) pertains to

photoplethysmography (PPG) which utilizes optical signal processing to detect the

blood volume changes in the microvascular tissue bed just under the skin’s surface.

The final waveform includes two components; the first being the pulsatile physiolog-

ical signals that are correlated with the blood volume changes with each heart beat,

and the second component is the baseline with various LF portions related to respi-

ration, sympathetic activity and thermoregulation. As [52, 53] and their references

reported lower parasympathetic and higher sympathetic responses in ADHD patients,

the expectation would be to see such responses in all forms of HRV measurements

and modalities.

Some PPG methods include using phone cameras that analyze heart-rate and HRV

by having the user place a finger on the camera and remaining still [61]. Researchers

also utilize the accelerometer in phones or wearable HR measuring devices (eg, Fitbits,

Apple Watches) to remove motion artifacts from the signals [57, 62]. The next step

in this evolution was toward an optical method of HRV measurement that did not

involve contact to a user’s body.

Remote photoplethysmography (rPPG) enables contactless heart-rate monitoring

using optical sensors, such as a regular video camera [29]. In a recent study utilizing

the rPPG method [63], a general overview of previous work on utilizing rPPG for HR

measurements was given. One confusing aspect about this method however is the

existence of a similarly named method - imaging/video-imaging photoplethysmogra-

phy (iPPG). The only distinction from each method is that iPPG is a subclass of

rPPG that specifically works with RGB spectrum cameras, while rPPG could use



18

methods from the near-infrared spectrum [64], or five color channeled cameras [28].

However, these terms seem to be interchangeable [28]. Beyond the terminology used

to reference working with light detecting sensors, the next step in using this method

for heart related measurements goes to the type of method for extrapolating such

data from imaging modalities.

2.2.2.1 Methods Designed for HR and Variability Estimation

Primarily, the previous work will begin with the Voila-Jones [65] method to detect

the face in video frames, followed by some form of region-of-interest (ROI) selection

for the specific areas of the skin to include for the signal. Some work has been done to

aid in this ROI selection process, including: using discriminative response map fitting

[66, ?], and adaptive patch selection [67]. Other works employ the Kanade-Lucas

Tracking (KLT) algorithm as well to improve the processing speed of their algorithms

[68]. After this first phase, comes the second phase of chrominance estimation and

rPPG signal extraction, which could involve various algorithms.

There are many known algorithms for rPPG signal extraction, which could involve

various additional methods used alongside them. Simplistic algorithms for rPPG sig-

nal extraction include: only looking at the green channel (G), the green subtracted

from the red channel (G-R), independent component analysis (ICA), principal com-

ponent analysis (PCA). Most work to this point employs the pulsalite blood volume

(ie, blood volume pulse; PBV) method [69]. PBV uses the dependency of the output

response of a camera on the skin pigmentation of a person, the light source’s emis-

sion spectrum and internal RGB filters of the camera in order to calculate the RGB

components of the blood volume vector. Not all implementations of "PBV" utilize

each of the three dependencies, yet the concept for removing the background/external

dependencies of the rPPG signal generally refers to the PBV method. However, other

methods add additional metrics to use in calculations for enhanced signal retention.

The plane-orthogonal-skin method (POS) [70] builds on the PBV method. POS
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projects the temporally normalized signal that is orthogonal to the normalized RGB

space and skin-tone, making it skin-tone independent. A method known as sub-

band rPPG (SB), improves upon POS by creating frequency bins, or sub-bands,

using fast Fourier transform (FFT) to be independently analyzed across each color

channel which is critical for HR estimation during physical activity [29]. This work

was expanded into SB with continuous wavelet transform (SB-CWT) instead of using

FFT for the signal decomposition [63]. Eulerian video magnification (EVM) produces

motion or color magnifications (using spatial or temporal filtering, respectively) with

first-order Taylor series common in optical flow or tracking analyses, like that of KLT

[54]. Other methods include: Self-Adaptive Matrix Complex (SAMC) [71], full video

pulse (FVP) extraction [64], etcetera.

After interpolating the skin-tonal variations into an impulse for each video frame,

methods continue to diverge for exactly how to filter the signals to their final forms.

Most variations pertain to different types of bandpass filters, how many filters, and

data interpolation or noise/motion artifact removal. The work referenced in this

section typically looked at determining rPPG methods with fitness videos, though

some looked at HR estimation using conditions where a participant is sitting while

performing cognitive tasks [?]. With these methods toward HR rPPG estimation, the

direction now turns toward efforts for using rPPG methods for HRV signal extraction.

The biggest advancement toward HRV estimation via optical sensors has been the

pulse rate variability (PRV) method [27, 28]. In a recent study [28], a sumarization of

additional PRV/rPPG methods was provided with the PRV signal determined from

peak-to-peak intervals of a post-process signal (ie, filtering applied after the initial

data recording). The HRV metrics determined by the 1996 Task Force always are

utilized in these studies, though most only use some of the metrics. For example,

the only study referenced that calculated for key HRV frequency and time domain

metrics (refer to Table 2.2) and tested participants in stress conditions utilized a five
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color channeled camera, increasing the monetary cost of the method. While HRV

measurement through visible-spectrum cameras currently has limited research, the

work that has been achieved thus far provides a great step to HRV-rPPG.

2.2.3 Datasets

Through each of the aforementioned studies, the research had to include data for

comparison. Some work created their own datasets that were not made publicly avail-

able, yet many worked with data that has been made publicly available (either to all or

solely to academic researchers). In a recent study [63], the authors mention multiple

datasets suitable for rPPG studies. One such dataset being the MMSE/MMSE-HR

dataset created by [71], with the HR subset being especially made for the use in rPPG

research advancements.

Another dataset heavily utilized being the well referenced MAHNOB-HCI Tagging

database, which is a multimodal database recorded in response to affective stimuli

with the goal of emotion recognition and implicit tagging research [30]. This database

includes face videos, audio signals, eye gaze data, EEG signals and peripheral ner-

vous system physiological recordings, such as ECG recordings. The MAHNOB-HCI

dataset has been used for emotion research, but also in rPPG work. In [68] the au-

thor uses this dataset for HR estimation using the color camera recordings and ECG

data for ground truth. This study even mentioned using the dataset for any potential

future work on HRV implementation for cameras.

A fully public dataset comes from Physionet, and was expressly implemented in

the recent PRV studies [27, 28]. Though there are even more potential datasets that

could be utilized for imaging HRV algorithm testing, those explicitly mentioned here

have been worked with for such work making them great testbench datasets.
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CHAPTER 3: METHOD

This chapter reviews the methods and algorithms utilized in this work. First,

a more detailed review of previous methods relative to this work will be discussed

for better understanding toward the choices of the final method implemented. Such

review also bears weight on any oversights of past works, whether they be explicit

mistakes or implicit for potential user misinterpretation. These reviews then lead into

the final method for this work, followed by the metrics used for the final analysis of

the method’s outcomes.

3.1 Previous Methods

All methods tend to utilize the Voila-Jones algorithm for detecting the face in

videos/images [65]. Further ROI editing and selection occurs from there before mov-

ing into additional steps for selection of the iPPG signal. Yet all rPPG methods

always need to have the unadulterated RGB signal, which is calculated as:

Cfacei =
1

mn

m∑
j=1

n∑
k=1

Iijk (3.1)

in which Cfacei denotes the i-th spatial RGB color channel signal (ie, raw RGB signal);

Iijk represents the pixel intensity value I at each j-th row and k-th column location for

every i-th color channel, where i increments by one for each possible color in ascending

order (ie, R = 1, G = 2, and G = 3). These rPPG methods begin to vary from here,

whether by amplifying skin-tone color changes, removing illumination variations of

the environment for noise reduction, or some other slight alteration to filtering the

iPPG signal.

EVM for heart-rate extraction, for example, utilizes temporal filtering to amplify

the skin-tone fluctuations [54]. One drawback though for their open-source method

comes from needing to determine the correct alpha (α) coefficient for each skin-type

and individual, to pass into their algorithm. The authors indicate that α may be
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forced to zero in order to amplify lower frequencies for wavelengths below a spatial

cutoff frequency (λc); this could mostly be useful for motion amplification, such as

determining breath rate. For pulse amplification their α values tend to be between

100-120 for adults going from skin-type I-III (ie, fair to dark) respectively. Yet for

infants the α variable was higher (150) for lighter skin-toned children; this is more

than likely due to the faster heart-rate for infants and young children. Inversely

realted to the effects of skin-type and age on α is their effects on λc, where the adult

with lighter skin-tone had the highest λc (1000) and the infant had the lowest (600).

These amplifications with the EVM method make HR easy to distinguish, however,

there are also skin-tone independent methods that significantly reduce the concern of

debugging individual trials proper α values.

Other research for HR/PRV extraction with rPPG methods look to eliminate any

dependency on factors such as environment lighting. In one such study the raw RGB

signal is first corrected for the background luminescence before temporal filtering

and normalization.For illumination rectification of a raw RGB signal Cfacei(j), the

equation is defined as:

CIRi
= Cfacei − hCbgi (3.2)

such that Cbgi(j) is the background luminescence at each j-th video frame or time

increment, and h being a weighting filter. The Normalized Least Mean Squared

(NLMS) filter was employed to first find the optimal h to eliminate motion artifacts

of the PPG signal, which is defined by:

hi(j + 1) = hi(j) +
µCIRi

(j)Cbgi(j)

CH
bgi
(j)Cbgi(j)

(3.3)

with the stepsize coefficient of µ (found to be 0.0003 in [68]), CH
bgi
(j) as the Hermitian

transpose of Cbgi(j), and the normalizing factor of CH
bgi
(j)Cbgi(j) being the input

energy. From equation 3.3, the optimal h can now be applied back into equation 3.2,
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followed by temporal filtering and normalization of the signal.

Many other studies work with a variation of rPPG algorithms, all of which begin

with normalization to illiminate the dependency on α, unlike EVM [72, 63, 73]. This

equation makes the iPPG signal become skin-tone independent by detrending the DC

component. Temporally normalizing the raw RGB-signal C (ie, AC/DC-1) is defined

as:

Ci =
Ci

µ(Ci)
− 1 (3.4)

where Ci denotes the zero-mean color variation of the i-th channel, and µ(·) represents

a typical moving average operator.

3.1.1 PRV Algorithms and Limitations

When comparing rPPG methods alongside an rPPG PRV implementation [28], the

authors decided to implement ICA methods over those like EVM based on findings

from [74] that ICA provided better results with the HRV metrics. However, the filter

parameters from [74] are not fully explained, so the findings could be due to their

filtering methods used in conjunction with EVM and ICA rather than the fault of

those rPPG methods themselves.

An additional important distinction refers back to the discussion of what HRV

and PRV signals actually define and represent, back from section 2.2. Though the

authors of this PRV-iPPG method [27, 28] run their analyses using the HRV time

and frequency domain metrics, does not mean that the PRV method usurps the HRV

method. This point is crucial to understand going further, as the Pk-Pk interval

variations do not equate to methods which look into additional interval changes of

a raw signal. Therefore, after an initial band-pass filter, instead of up-sampling

the video’s PPG signal from the sampling frequency of the camera to the sampling

frequency of the ECG signal (ie, the cubic interpolation step of this PRV method

resampling to 1 kHZ from 15 Hz), the reference signal should be down-sampled to
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the rate of the video signal rate for better analytical comparison.

One such method which could aid in the full HRV analysis is the Ornstein-Uhlenbeck

third-order Gaussian process (OUGP) filter [59]. This filter serves as an improvement

of the authors’ original detrending filter algorithm known as the smoothing by Gaus-

sian process priors (SGP) [75]. In more recent HRV studies [68], detrending filters

are a part of the temporal processing steps of the overall rPPG design. However,

these PRV implementations analyze the iPPG signal in an opposite way by drawing

conclusions from information which was highly interpolated signals.

The primary reason for the PRV method to up-sample their video signal comes

from the recommendation to record HR information at a sampling rate of 250 to 500

Hz or higher [58]. Such sampling rates are due to a typical HR max of 240 bpm,

so a minimum of 250 Hz (ie, 1/250 cycles per second) would ensure capture of such

information. Yet, Nyquist’s theorem states that in order to capture a signal well,

the sampling frequency should be twice that of the frequency desired for capture and

analysis, which explains the 500 Hz max. Since most ECG type of devices record at

1 kHz for optimal signal understanding, the choice to up-sample the 15 Hz video rate

(ie, 15 fps) to 1 kHz is understood. However, by interpolating/resampling the video

signal by such a large factor (ie, a factor of 66.667) the information inferred for the

HRV analyses could be incorrect based on this large sampling rate gap interpolating

information that may not exist.

Other concerns regarding this PRV work relates to the utilization of the PhysioNet

dataset [27, 76]. This PhysioNet dataset only provides preprocessed video signals,

which is bad for testing other ROI algorithms, including the calculation of background

illumination for luminescence correction. The work also never explicitly covers the

frequency ranges they utilized for their HRV analyses. Though the authors cite the

1996 Taskforce, not redefining the work calls into question if the correct ranges were

used.
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The suggested sampling rate ranges for HRV analyses are also backed up by [61, 77],

though their source for an accurate sampling rate mentioned the minimum frequency

as 200 Hz instead of 250 Hz. This discrepancy could be due to quoting a source that

came before the 1996 Taskforce publication, or a difference in the methodology and

technology of that era. Altini et al vary from Rodriguez by interpolating the video

signal only the 180Hz from 30 Hz; this means the interpolation increases by a factor

of 6. The authors choose this frequency as their design uses typical PPG methods

with an iPhone camera against a user’s finger, and the iPhone has the capacity to

compute at 180Hz easily.

The iPhone PRV method also only does the interpolation step for the frequency

domain HRV analyses and not for the time domain [61]. Upon further investigation

of the rPPG-PRV work [27, 28], this interpolation step was never mentioned as be-

ing used for only the frequency domain analyses. The rPPG-PRV publications do

state that the Kubios HRV analysis software is utilized for their frequency domain

analyses while the time domain metrics are calculated in MATLAB. The authors of

the rPPG-PRV papers could have realized that the interpolated signals are aligned

in time; yet, this does not however clear up the new concerns for the results from

these PRV methods since the time domain analyses are done differently. However,

the interpolation step may not be a problem if the reference signal is down-sampled

instead of up-sampling the video signal.

3.2 Method and Algorithms

Firstly, this work utilizes the MAHNOB-HCI dataset [30] for testing the HRV

method. As this dataset is well cited and publicly accessible (to academic researchers),

this already creates an ideal scenario for continued research. MAHNOB-HCI also uti-

lizes a typical RGB-spectrum camera facing the participant and provides physiological

measurements from ECG to EEG signals and eye-gaze tracking. The trials also relate

to emotion based cognitive tasks, making an all around ideal dataset for this work



26

and its usage for future work in expanding to other physiological signal extraction

with computer vision techniques, as well as other modalities for testing (see Figure

5.1).

Before continuing into the final algorithm, this dataset’s full utility must be further

broken down. The MAHNOB-HCI dataset culminates thirty participants over forty

emotion trials each. Each odd trial (ie, every other trial) is a neutral emotional trial

that lasts approximately ten to twenty seconds each and is meant to bring the subject

back to baseline in between emotionally charged trials of approximately two minutes

each; the charged trials are elicited from video clips that would bring a person joy

or some other emotion. There are a total of three fear trials from different climatic

moments of classic horror films (ie, The Shining and Silent Hill) which are tested

against each subject and is important to note for the work of this thesis. Only the

subjects who gave permission for publication and had zero errors during trials were

utilized during testing of this thesis. The final flow diagram for the algorithm can

be found in Figure 3.1, though the following subsections will provide greater detail

about each step of this process.

3.2.1 Algorithm of rPPG Methods

Using Viola-Jones method to detect the face, which leads into using the KLT

algorithm for improved processing speed of the Viola-Jones algorithm. From there,

the ROI of the face is further simplified by detecting the eyes region, such that the

final ROI of just the lower portion of the face where eye blinking contributing to

noise in the iPPG signal is eliminated. Figure 3.2 demonstrates this ROI selection

process, for a subject whose forehead region would be less informative due to the

obstruction of the skin by the participant’s hair. This is done in order to improve the

quality of the raw skin-average signal as some subjects have hair on their forehead

or beards/mustaches, and thus keeps the algorithm modular for the various potential

interference of hair impeding the ROI. A video sequence is then saved with the edited
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Figure 3.1: The iPPG-HRV algorithm flow diagram of this thesis.
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Figure 3.2: ROI selection process, where the yellow regions indicate the ROIs for the
face and eyes detected with the Voila-Jones algorithm. Green markers indicate the
points of interest found with the Voila-Jones to KLT methodology after minor editing
of the selected ROI (red box).

ROI information. The background signal of the video is also calculated during this

step for each trail’s video, which is used for later calculations as this signal shows the

illumination variations within the video.

The next step will load the saved ROI edited videos and the following processes are

applied to each video sequence individually. From these videos, all pixels of non-zero

values are then averaged for each frame of the video to obtain the raw iPPG signal

resulting in Ci(j). Following this, two paths emerge for the remaining steps: EVM

and non-EVM methods. First, each trial’s background illumination signal is now

subtracted from the raw iPPG signal to reduce noise from the illumination changes

in the environment just as from equations 3.2 and 3.3 giving the variable CIRi.

Second, using the moving average (denominator of equation 3.4: µ(Ci)) which can
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then be utilized to calculate the α or skin-tone factor for the EVM method. This

signal is henceforth referred to as CEVMi
to represent the usage of the EVM method

on the video.

The algorithm next synchronizes the iPPG and ECG signals with each other before

any other processing.

3.2.2 Synchronization and Filtering

Initial confusion with the variable provided in the metadata for each of the MAHNOB-

HCI trials created complications for the ground truth ECG signal’s comparison to the

iPPG signal. The values of such variables were also not matching the true length of

the signal, such as a 10 second video clip with metadata variables vidEndSmp −

vidBeginSmp giving 21 seconds for the video clip length. Yet, detailed investiga-

tion resulted in discovering a trigger signal before the physiological recordings began

was time-stamp for when the recording started between each signal; this serves as

indicator for the beginning of each ECG recording with the beginning of the video

recording. Upon removing this section of the trigger signal, then the ECG signal is

trimmed to match the same length as the iPPG signal length. To achieve this, a time

vector was calculated for each signal as being the number of samples divided by the

sampling rate of each respective signal. Following this the ECG data was linearly

interpolated as it was sampled at the higher rate; the interpolated signal then would

have values which matched those of the iPPG signal’s time vector.

After determining the synchronized positions for the ECG and iPPG signals, the

iPPG signal was filtered in various ways before the final HRV analysis could be

preformed. As previously mentioned, butterworth filters are useful for real-time ap-

plications; yet, for simplicity since this application is a post-processing performance

of this rPPG implementation, an ideal band-pass filter was applied for the typical

heart-rate frequencies of [0.7 4] Hz (ie, 42 to 240 bpm).

Most studies now either interpolate the iPPG signal or use a moving average filter,
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followed by an HRV metric analysis. The OUGP filter [59] is used for the smoothing

of the iPPG signal, along with filtering for the various frequency domain metrics by

their respective frequency limits.

3.3 HRV Metrics and Statistical Analyses

For full comprehension in the performance of the method outlined in Figure 3.1,

certain metrics must be calculated and reviewed. The HRV metrics mentioned in

Table 2.2 are calculated according to their respective definitions. All measures are

calculated in MATLAB, where only the four key time domain metrics and short-term

designations of the frequency domain are calculated.

Additionally, several statistical measures are analyzed for better comparison to

previous works’ results. These methods are as follows:

• Pearson’s correlation coefficient (r) is a statistical parameter used to measure

the linear association between two continuous variables CrPPGj
and Crefj , which

is defined by:

r =

n∑
j=1

(CrPPGj
− CrPPGj

)(Crefj − Crefj)√
n∑
j=1

(CrPPGj
− CrPPGj

)2
n∑
j=1

(Crefj − Crefj)2
(3.5)

where r is an interval that ranges from −1 to +1; a value of +1 indicates a

perfect positive association, 0 means no association and −1 indicates a perfect

negative association.

• Root Mean Squared Error (RMSE) is a common measure of the differences

between two continuous variables, but in comparison with MAE, RMSE it pun-

ishes large errors, defined by:

RMSE =

√√√√ 1

n

n∑
i=1

(CrPPGj
− Crefj)2 (3.6)
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where CrPPGj
is the predicted value and Crefj is the observed value.

• Mean absolute error (MAE) calculates the absolute average errors’ magnitude

via the formula of:

MAE =
1

n

n∑
j=1

|CrPPGj
− Crefj | (3.7)

where CrPPGj
denotes the j-th average value, Crefj for the reference average

and n represents the number of facial recordings.

• Mean percentage error (MPE) measures the average percentage error where the

estimated values (CrPPGj
) differ from the reference values (Crefj):

MPE =
100%

n

n∑
j=1

CrPPGj
− Crefj

Crefj
(3.8)

Each of these methods will also be calculated for the individual rPPG method (ie,

EVM, etcetera), along with each i-th color channel and the sum of the color channels.
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CHAPTER 4: RESULTS

Application of the aforementioned knowledge and rPPG-HRV method lead to the

following results presented in this chapter. Low to abstract explanations are also given

throughout for enhanced understanding of the implications for the current rendition

of this method.

4.1 Overview

Initial simulations of this implementation began with running a handful of trials for

the primary MAHNOB-HCI subject, who typically represents the general method of

interest across most sources that utilize this dataset. In honor of this tradition, most

of the steps for the method were tested on this subject, such as the ROI selection

process of Figure 3.2. From the ROI selection and iPPG extraction stages, indicated

in the flow diagram of Figure 3.1, to the analysis processes followed.

To indicate the different effects the various HRV frequency domain metrics have

on the time domain signals, Figure 4.1 depicts each of the frequency ranges had on

the overall signal. Each subplot in the depiction was calculated on neutral trials of

the ECG signal as these HRV methods are primarily applied to such medical signals

in current practice. From these graphs time domain representations of each range’s

effect on the overall HR signal. This figure shows how the ULF∗ method really

lacks informative representation of RR intervals and in general explains why this

metric is rarely calculated for short-term recordings such as these from the MAHNOB-

HCI dataset. However, additional metrics should be analyzed before drawing any

conclusions. The figures and tables that follow will aid in showing other HRV metrics

of interest.

Measurements for the frequency domain PSD responses of each frequency range,

LF/HF ratio plots, and time domain plots are provided for the comparison between

ground truth ECG recordings and the EVM and PBV methods. These can all be
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found in Figures 4.1 to 4.4. Further statistical measurements of the neutral (ie, trials

in between emotion elicitation trials with non-applicable emotion elicitation) and fear

elicitation trials for the primary subject are given in Table 4.2. Yet before discussing

these figures, some general data needs to be reviewed.

A synopsis of the HR statistical calculations across the two types of trials of interest

and two rPPG methods can be found in Table 4.1. First looking at the neutral trials,

the PBV method outperforms the EVM implementation in error calculations for all

channels. In the fear trials, the EVM method did show one decent calculation, though

its blue channel continued to show its poor performance for each trial type. On the

other hand, the PBV method did fairly well again for the neutral trials. The best

performing color channels for the EVM and PBV methods across each trail type was

the total rgb and red (R), respectively; therefore, these color channels were analyzed

in the graphical methods for further investigation into their differences. Additionally,

these results indicate that looking only at the green channel of an image, as many

methods have done before, may not have been as informative as previously thought.

Continuing to the values depicted for the time domain analyses in Table 4.2, the

general understanding of these values can be confusing though generally, the better

SDNN and RMSSD values are smaller. This therefore further vindicates the better

performance of the rgb channel for the EVM method and red channel of the PBV

method. The average rr values are more confusing from just the table; however, in

Figure 4.2 the first ninty beats of Neutral and Fear trials gives a better indication for

the greater swing, or higher difference detection between consecutive RR intervals.

Referring back to Table 4.1, the PBV method has already been shown to indicate less

caluclation errors for the HR measurements. Combining this knowledge with the plots

of Figure 4.2 and rr values of Table 4.2 the PBV method continues to outperform

EVM.

From the tachogram plots of Figure 4.2, a better sense of the two rPPG meth-
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Table 4.1: HR statistical analyses for the neutral and fear conditions, where the
ground truth, mean HR for the neutral and fear trials was determined as 110.03 and
119.99 BPM, respectively.

Emotion rPPG channel Mean (BPM) MAE (BPM) MPE (%) RMSE (BPM)

Neutral,
ecg=110.03

(BPM)

EVM

R 85.13 25.60 22.97 25.60
G 88.01 23.09 20.75 23.09
B 114.51 36.87 -34.57 36.87

rgb 85.93 24.74 22.21 24.74

PBV

R 117.02 9.47 -7.51 9.47
G 119.42 11.44 -9.76 11.44
B 117.90 19.42 -16.47 19.42
rgb 119.32 17.94 -16.88 17.94

Fear,
ecg=119.99

(BPM)

EVM

R 111.77 8.21 6.84 8.21
G 113.62 6.37 5.31 6.37
B 215.35 95.36 -79.48 95.36

rgb 117.24 2.75 2.29 2.75

PBV

R 119.27 0.72 0.60 0.72
G 117.90 2.09 1.74 2.09
B 116.70 3.28 2.74 3.28
rgb 134.69 14.70 -12.25 14.70

Table 4.2: Time domain analyses for the neutral and fear conditions.

Emotion rPPG channel rr (avg) SDNN RMSSD

Neutral

EVM

R 0.0085 0.0072 0.0060
G 0.0092 0.0079 0.0057
B 0.0699 0.0592 0.0362

rgb 0.0090 0.0077 0.0059

PBV

R 0.0920 0.0807 0.0488
G 0.1438 0.1214 0.0731
B 0.1155 0.1003 0.0599
rgb 0.0964 0.0825 0.0503

Fear

EVM

R 0.0111 0.0056 0.0065
G 0.0178 0.0089 0.0079
B 0.0634 0.0317 0.0199

rgb 0.0139 0.0069 0.0072

PBV

R 0.1983 0.0992 0.0597
G 0.2193 0.1096 0.0675
B 0.1771 0.0886 0.0544
rgb 0.0183 0.0092 0.0054
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Figure 4.2: Time domain analysis signal plots for the rPPG methods in both emotion
trial types. The left graph is for neutral trials for both EVM and PBV methods,
while the right depicts the same RR intervals for the first 90 beats of the fear trials.

ods in both analyzed emotional elicitation trials began forming. Moving toward the

frequency domain metrics of Table 4.3, the values are uninformative from just the

summary this table depicts. Looking at the power spectral density (PSD) plots of

Figure 4.3 provides a clearer picture of the table’s values. For each of the emotion

trials the PBV method provides higher values than the ground truth method.

A better understanding of these values comes from the [58] paper, in which ap-

proximate correspondence between the time and frequency domain metrics. The

SDNN and RMSSD of the time domain values are correlated with the total power

(TP) and HF power values, respectively. Therefore, in looking at the TP value and

the HF value and response, we can continue to understand that the PBV method is

performing better than the EVM in the emotion trials.

An additional metric to consider heavily is the PSD plot of the LF/HF responses,

which can be found in Figure 4.4. The graphs were created in the FFT spectrum and

better illustrate the difference between the neutral and fear trails. Just as with the
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Table 4.3: HR statistical analyses for the neutral and fear conditions, where the
ground truth, mean HR for the neutral and fear trials was determined as 110.03 and
119.99 BPM, respectively.

Emotion rPPG channel VLF LF HF LF/HF TP

Neutral,
ecg=110.03

(BPM)

EVM

R 0.002643 -376.15 -812.42 0.463 0.00064
G 0.002203 -492.22 -1070.57 0.460 0.00080
B 0.000005 -241.14 -683.70 0.353 0.00000

rgb 0.002501 -393.34 -853.35 0.461 0.00066

PBV

R 0.000017 -166.40 -366.02 0.455 0.00000
G 0.000001 -136.48 -317.87 0.429 0.00000
B 0.000005 -136.36 -308.39 0.442 0.00000
rgb 0.000003 -337.71 -727.30 0.464 0.00000

ecgN 0.000001 -190.07 -470.28 0.4157 0.0000

Fear,
ecg=119.99

(BPM)

EVM R 0.000110 -280.54 -673.40 0.417 0.00000
G 0.000060 -281.01 -685.13 0.410 0.00000
B 0.000032 -280.29 -696.66 0.402 0.00000

rgb 0.000053 -279.56 -669.18 0.418 0.00000

PBV

R 0.000002 -276.28 -656.16 0.421 0.00000
G 0.000003 -279.81 -654.96 0.427 0.00000
B 0.000000 -279.33 -681.30 0.410 0.00000
rgb 0.000000 -290.89 -939.79 0.310 0.00000

ecgF 0.000000 -279.78 -716.28 0.391 0.00000

graphs in Figure 4.3, the ECG and EVM trials highlight the difference between the

two emotional trials where the fear signals have a much lower amplitude. Though the

PBV graphs may seem to be varying from the range of the true values, they still are

closer to the values of the ECG data, whose LF and HF values are much closer to

those of the PBV compared to the EVM. The current data though does not seem as

varying from each other for the frequency domain metrics as would be desired, which

leads to a discussion of these findings and the viability of these rPPG methods for

determining differing cognitive states.

4.2 Discussion

Though the above results provide insight into the general outcomes of the proposed

rPPG-HRV methods, they do not give a broader understanding as to why the results

are as they are. These remaining sections for this chapter will provide substantial

insight into the implications of this method and any of the trade-offs for the current
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implementation.

4.2.1 Complications and Drawbacks of Current Setup

The Voila-Jones Algorithm struggles with data that has a subject’s bare chest or

neck region intersecting with the edges of the video frame. During such a scenario, the

algorithm seems to crash and consider the ROI of the full face to go past the actual

size of the video frame. This scenario immediately shows how quick the entire method

could crumble and give terrible data just based on this odd limitation of the Voila-

Jones face detection algorithm. Not only does the ROI selection in the current method

have this bounding box exceeding the true frame size potential for complication, it

also is simplistic at the moment in detecting the difference between skin and non-skin.

While the post-processing filters help remove this issue by removing luminescence and

other DC component variances from the raw iPPG signal, a more robust alternative

for skin-patch selection and tracking over time would be more beneficial to eliminating

errors caused at the beginning of a method’s rPPG extraction.

While a general viability has been established for the PBV implementation of the

tested methods, the lack of difference between the two emotional trials is worth dis-

cussing. One potential issue would be the current method analyzes emotion trials

that are much longer than neutral trials. Additionally, the dataset currently imple-

mented did not include individuals with ADHD, nor did it test said individuals pre-

and post-treatment processes. This means that the variation difference between trials

showing greater distinctions should not be inferred as quickly. This further indicates

that the anticipated larger distinctions of the LF/HF ratio do not necessarily cor-

relate to the higher ratio distinctions of those with ADHD pre- and post-treatment

processes, which leads to other implications of this thesis.
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4.2.2 Implications of Emotion Elicitation Tasks and rPPG-HRV

Multiple types of emotionally charged trials were available in the MAHNOB-HCI

dataset. However, as this work aims to understand how rPPG-HRV methods might

perform for treatment efficacy of ADHD patients, the neutral and fear trials were

of greater value for such an investigation. Neutral trials were considered as a form

of baseline signal, while the fear trials are heavily linked to the fear-neurocircuitry

system of which the ANS is tightly entangled.

Currently, a key value for distinguishing a difference between the two emotion sub-

sets, namely the LF/HF ratio, seems minuscule. A possible explanation may be from

the fewer fear based trials compared to the neutral ones, which come from two classic

horror film moments which may have been known by the subjects whether they had

seen the film or merely heard of them. Additionally, as the subjects have more neutral

trials than fear based ones and the length of each also varies extremely, results may be

skewed and potentially less indicative of true understanding. Yet, the PBV method

performed extremely well across these trials, especially compared to the EVM and

a difference between the LF and HF values separately is very distinct. These dis-

tinctions between higher or lower LF and HF magnitudes between the two emotional

trial types further proved the relevance of the PBV method whose results matched

the ground truth far closer than the EVM. Therefore, based upon the current results,

this indicates a general validity for using the PBV method in continued research.
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CHAPTER 5: CONCLUSIONS

Multiple contributions were achieved in this thesis. Firstly, the state of current

research toward developing objective measurements for the understanding and treat-

ment efficacy process of neurotypical individuals and those with ADHD. In reviewing

this background, visible spectrum image and signal processing methods were deter-

mined as the most viable options for the goals of this thesis based on their safety,

modularity, and in-expense.

Additionally, the correlation between neurocognitive disorders like ADHD, phys-

iological measurements and ANS - a part of the fear-neurocircuitry system - was

surveyed. Subsequently, a review of the current efforts in rPPG methodologies led to

the combination of various rPPG algorithms, noise removal and filtering, to enhance

the iPPG signal extraction for improved HRV detection and analysis These survey

culminations grant substantial information which not only aided in the choices of

method design, from a RGB camera to the filters utilized, but also provided the basis

of knowledge for the design and analysis of this rPPG-HRV method.

Further contributions include the analysis and comparison of different video based

trials for different types of emotional states, which are highly correlated to affecting

the cognitive state of the mind. The results of this thesis also showed that channels

other than solely the green channel of a camera provide better results in some of the

rPPG methods and should therefore not be overlooked so easily. With these addi-

tions to the current rPPG repertoire, a new system for collecting and understanding

physiological attributes is attainable. Not only will these aid in the ability to analyse

performance of individuals in the physical realm as past rPPG methods have focused

on, but also mental understanding; this was achieved by investigating an emotion

elicitation dataset for comparison of neutral and emotional trials. Thus, future im-

provements to the current method are now discussed for furthering the potential gains

and achieving the long-term aims of this thesis.



43

Figure 5.1: Block diagram of system design for objective measurements to be utilized
in diagnosis and treatment efficacy of ADHD [5]

.

5.1 Future Work

In regards to the HRV method, future work could test various combinations of

ROI selection, rPPG methods, illumination and motion artifact correction, as well as

filtering techniques. One recent study working with the MAHNOB-HCI dataset uti-

lized adaptive patch selection for improved ROI detection and estimation [67]. Since

different patch regions (eg, left and right cheek, chin/mouth, forehead) are tracked

throughout this method, further investigation for the usefullness of varying regions

for individuals could be analysed across multiple trials to see how even each patch

is affected during different cognitive tasks and under the influence of pharmaceutical

treatments.

Additional investments toward adding multiple parameters for informative deci-

sions would include eye-gaze tracking, as depicted in Figure 5.1. The MAHNOB-HCI

dataset already includes ground-truth information on gaze data, yet testing on other

datasets, particularly ones which indicate any neurocognitive or neurodevelopmental

disorder, would enhance the overall method’s robustness. These are but a few steps

on the path of utilizing image segmentation for the extraction of HRV for updat-

ing mental health, therapeutic validity processes. For example, other neurocogni-

tive/developmental disorders affect the ANS, like ASD and PTSD. Even though this
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thesis focused primarily on ADHD for inspiration, this is only one segment in the

signal or season in life, which can continue improving; whether by success or failure,

the segment goes to the next time interval and the season will change.
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