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ABSTRACT

MOHAMED ABUELLA. A Post-processing Approach for Solar Power Combined
Forecasts of Ramp Events. (Under the direction of DR. BADRUL CHOWDHURY)

The growing integration level of wind and solar energy resources introduces new

regulating and operating challenges in the electric grid. Ramp-rate limits of conven-

tional power plants in the generation mix impose an operating constraint on renewable

energy sources to the point that, at high integration levels, the ramp-rates of wind

and solar resources must be managed by situational awareness tools that are based

on forecasts, especially the ramp event forecasts. To leverage such tools, an adjusting

post-processing approach is proposed in this dissertation for improving the predictive

capability of the combined forecasts of solar power to capture ramp events. The per-

formance evaluation is conducted with several evaluation metrics that consider the

accuracy of forecasts in terms of ramp events. Results of case studies demonstrate

the efficacy of the adjusting approach. Probabilistic forecasts are also generated to

quantify the uncertainty associated with the solar power ramp event forecasts and an

uncertainty analysis is carried out.
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CHAPTER 1: MOTIVATION AND PROBLEM OVERVIEW

1.1 Motivation

Wind and solar energy resources have created operational challenges for the electric

power grid due to the uncertainty involved in their outputs in the short term. The

intermittency of these resources may adversely affect the operation of the power grid

when the penetration levels of these variable generations are high [1]. Thus, wherever

the variable generation resources are used, it becomes highly desirable to maintain

higher than normal operating reserves and efficient energy storage to maintain the

power balance in the system. The operating reserves that use fossil fuel generating

units should be kept to a minimum in order to get the maximum benefit from the

deployment of the variable generations. Therefore, the forecast of these renewable

resources becomes a vital tool in the operation of power systems and electricity mar-

kets [2]. From an operations point of view, the power grid might encounter frequency

excursions if the overall response rate is slower than the ramp rate of the solar power

generations. Therefore, it is important to consider the solar power ramp rates in the

forecasting methods [3-5].

A U.S. PV solar market study prepared by Solar Energy Industries Association

(SEIA) and GTM Research [6], highlights the significant projected growth in the in-

stallation of grid-tied solar PV in the USA. Figure 1.1 shows the actual and estimated

additional annual capacity of solar power from 2010 to 2023.

1.2 Objectives and Potential Applications

The objective of this research study is forecasting of solar power ramp events with

increased number of true events and decreased number of false events of the forecasted
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Figure 1.1: Insight of the U.S. market of PV solar power [6]

ramps of solar power.

Forecasts of PV power ramp events can be implemented for several applications in

distribution and transmission systems. A survey which lists several vendors and end

users of solar forecast is available in [7].

Applications of solar power ramp event forecasting at the distribution level:

• Optimizing the operation of voltage regulation equipment;

• Control mechanism of charging and discharging the energy storage systems.

Whereas, in the bulk or transmission level:

• Forecasts of ramp events can be used in the trading decisions, and dispatching

the operating reserve;

• Managing the limits of the ramp rates for reliable and stable operation of electric

power systems that have a high-level of renewable energy integration.

1.3 Problem Statement and Contribution

The post-processing approaches, such as model output statistics (MOS) methods,

are mainly based on linear and non-linear multivariate regression models that fit
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and calibrate the past forecasts to their observations to reduce the residuals with

suitable regularization in the training set. Then, the fitted relationship is applied to

extrapolate the adjusted values of the forecasts over a future time interval. Despite

the fact that the MOS approaches enhance the overall accuracy of the combined

forecasts, they smooth out the sharp changes (i.e., the ramp events of solar power)

in the forecasts, which impacts the accuracy of the combined forecasts at the ramp

events. This issue of MOS has been addressed in [8,9]. The main contribution of this

research work is to develop a post-processing approach to improve the hour-ahead

combined forecasts of solar power further by overcoming the issue of ramp events

that appears in MOS approaches. The proposed post-processing adjusting approach

includes the following contributions:

(i) The combined forecasts are corrected and adjusted by applying the estimated

solar power ramp rates in the ensemble approach.

(ii) The fitting procedure of the ensemble learning is carried out by two loss

functions that have the same principle, but different objectives. The first

loss function is to minimize the errors of the solar power forecasts, while the

second is to minimize the errors of the ramp rates of solar power forecasts.

(iii) The ramp rates are also utilized as one of the metrics to evaluate the perfor-

mance of the forecasting models to predict the ramp events. The evaluation

of the rolling forecasts is conducted over a complete year.

To the best of our knowledge, this is the first attempt to include the ramp rates

of solar power forecasts to adjust and improve the hour-ahead combined solar power

forecasts.

In a nutshell, the main contribution of this research work is the development of a

post-processing approach that adjusts the solar power combined forecasts to capture

more ramp events. The approach combines the forecasts and their ramp rates and
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uses two loss functions, one to minimize the errors of the forecasts, and the other to

minimize the errors of the ramp rates of the forecasts.

1.4 Literature Review

1.4.1 Solar Power Forecasting

As in wind power forecasting, the solar power also consists of a variety of methods

based on the time horizon being forecasted, the data available to the forecaster and the

particular application of the forecast. The methods are broadly categorized according

to the time horizon in which they generally show value [10]. Figure 1.2 demonstrates

the taxonomy of various methods of solar forecasting with their suitability based on

the temporal and spatial resolution.

Figure 1.2: Illustration of different solar forecasting methods and their values based
on various temporal and spatial resolution [11]

A review of a number of solar power forecasting studies are presented in [12], where

the authors indicate that the majority of related publishing works are focusing on the
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solar irradiance instead of the solar power due to the lack of the measured data of

the solar power production. The solar irradiance forecasts need an additional step of

a conversion to the solar power and this is not as accurate as the direct solar power

forecasts.

For intra-hour forecasts of solar power, several time-series models are implemented.

Some of those time-series models are without exogenous variables and depend only

on previous observations of solar output, such as autoregressive integrated moving

average (ARIMA) [13]. Additionally, there are time-series models that may include

several weather variables as exogenous variables, such as nonlinear autoregressive

network with exogenous variables (NARX) and ARIMAX [9].

Methods that are common for intra-day and day-ahead forecasts of solar power

include Numerical Weather Prediction (NWP) and Model Output Statistics (MOS)

to produce forecasts, as well as hybrid techniques that combine ensemble forecasts

and Statistical Learning Methods [14]. Lorenz et al. [15] applied MOS and modified

up-scaling post-processing approaches to refine and spatially up-scale NWP-driven

solar power forecasts up to two days ahead from representative set of PV systems in

Germany.

Applying machine learning techniques directly to historical time series of PV pro-

duction associated with NWP outcomes have generally placed among the top perform-

ing models in global competitions of energy forecasting, such as GEFCom2014 [16].

Machine learning tools include artificial neural network (ANN), support vector re-

gression (SVR), gradient boosting machines (GBM), random forest (RF).

ANN is among the first artificial intelligence (AI) techniques to be employed for

PV solar forecasting because of their ability to approximate the nonlinear relation-

ships [9,17,18]. The SVM for wind forecasting with ramp events is explained in [19].

The prediction of solar irradiance by SVM and other machine learning methods are

presented in [20], it concludes that SVM gives the best forecasts. The study [21] is
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for using SVR to forecast the solar power of a 1MW PV power plant with weather

variables including the cloudiness, it shows that SVR and the cloudiness are improv-

ing the forecasts. The authors of [22] propose an approach including support vector

machine and weather classification methods to a PV-system of 20kW for a day ahead

forecasting, the approach shows promising results. A benchmark study [23] for short-

term wind and solar power forecasts over different sites in Europe, shows SVM models

bring fairly good results. In [24] two separated models of SVR are constructed based

on the cloud cover to achieve more accurate forecasts of the solar irradiance. The value

of new variables to NWP models is also analyzed in the literature. For instance, [25]

found out that the accuracy of the solar irradiance forecasts based on aerosol chemical

transport model depends on the sky conditions, whether it is a clear or cloudy sky.

Persson et al. [26] implemented Gradient Boosted Regression Trees (GBRT) to fore-

cast the solar power of 42 PV power plants in Japan. The historical measurements of

PV power as well as weather features are used. The GBRT model outperformed the

adaptive recursive linear autoregressive model and persistence model on all forecast

horizons from 1 to 6 hours ahead.

For additional details about machine learning techniques for solar forecasting, the

interested reader may refer to [27]. Hybrid models of two or more statistical and

physical techniques are combined to capture complex interactions and provide useful

insights and better forecasts. In ref. [28], a hybrid model that consists of ARMA and

ANN is proposed to forecast the solar irradiance by NWP data for five locations with

a Mediterranean climate. The authors found the proposed model outperforms the

naive persistence model including improvement with respect to its core techniques

as well. The study reported in ref. [29] presents the benefits of combining the data

of solar irradiance that is derived from a satellite with ground measured data to

improve the intra-day forecasts of the solar irradiance in the range of up to six hours

in advance. Since the ANN model which uses the satellite-driven data of the solar
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irradiance and the cloud cover besides the ground measurements gives more accurate

forecasts than ARMA and AR models that use the ground data of the solar irradiance

only. In ref. [30], the authors combine satellite images with ANN outcomes to forecast

the solar irradiance of up to two hours in advance for two sites in California.

Palmer et al. investigated the relative accuracy of using satellite-driven data versus

measurements by ground-based weather stations as the data source for hourly solar

irradiance in UK [31]. They found that as a result of the regional climate and topog-

raphy, the density of weather stations and the exactitude of satellite models should

be the main factors for the data source decision.

In ref. [32], several statistical combining methods are used to combine multiple lin-

ear regression models for load forecasting, and the authors conclude that the regres-

sion combining technique is the most superior when compared to individual models.

Zamo et al. [33] use several statistical models to forecast the hourly PV electricity

production for the next day at a number of power plants in France; the random forest

(RF) technique has shown a superior performance. According to the study reported

in ref. [34], the random forest has the best performance among known techniques

to predict the daily solar irradiance variability of four sites with different climatic

conditions in Australia.

The commonly used ensemble technique in wind and solar power forecasting is

to blend the weather data derived from several sources. In ref. [35], the authors

compare several data-driven models using input data from two NWPs, and building

two artificial hybrid and stochastic ensemble models based on ANN. This model

that combines multiple models outperforms the rest of the models. They provide

evidence that the ensemble forecast is enhanced by including forecasts with similar

accuracy, but generated from NWP data of higher variance and different data-driven

techniques. Ensemble Prediction System (EPS) is used in [36] to produce weather

scenarios by running multiple initials to quantify the uncertainty, and then produce
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probabilistic solar power forecasts for sites in Italy. Pierro et al. [37] apply a physical

post-processing method and ANN to improve the solar irradiance forecasts for one

and two days ahead.

The majority of the ensemble forecasting methods in the existing research work

on solar forecasts do not include the already generated forecasts to boost the model

performance. However, it can be useful to add these past models’ outcomes into the

ensemble learning methods. The research team from the National Renewable Energy

Laboratory (NREL) and IBM Thomas Watson Research Center [38, 39] deploy and

test several machine-learning techniques to blend three NWPs outcomes. They con-

clude that the ensemble approaches that consider diversity and the state parameters

of the models provide lower errors in the solar irradiance forecasting. Although these

studies forecast the solar irradiance at different sites in the U.S., the time period is

limited since they do not investigate the performance of the different seasons over the

entire year.

Probabilistic forecasting has already found a niche in financial, sports, political,

and weather fields for decades. The state-of-the-art of probabilistic forecasts in a

general overview can be found in [40], including some sophisticated scoring metrics

and case studies on wind speed, temperature, and precipitation forecasts. Proba-

bilistic forecasts can be divided, based upon technique, into two main categories:

parametric and nonparametric methods, where the former type is built on forecast-

ing errors and associated assumptions, while the latter avoids dealing with the errors

and assumptions.

Due to the stochastic nature of variable renewable energy resources, probabilistic

forecasting has seen some progress in fields such as wind power, where it has reached

a mature phase [16]. Pinson et al. [41] discussed different aspects of the qualitative

framework of probabilistic forecasts. The same authors have also developed advanced

techniques for probabilistic forecasts of wind power.
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For the solar resource, the same probabilistic forecast techniques that have been

used in wind power forecasting have been implemented, but with a focus on nonpara-

metric methods, such as the quantile regression, Bayesian and Markov chain models

described in [42], and a competitive ensemble of those models have been proposed

and achieved a better performance. Probabilistic forecasting methods including kNN,

ridge regression, lasso regression, random forest, and gradient boosting machines are

presented in [43], where the authors have verified that the probabilistic forecasts of the

ensemble outperforms the individual models. Golestaneh et al. [44] generated proba-

bilistic forecasts by Extreme Learning Machine (ELM) for a horizon ranges from 10

to 60 minutes. They reported with an intensive evaluation with different metrics that

the nonparametric ELM method gives the most accurate forecasts.

Alessandrini et al. [45] applied the analog ensemble (AnEn) technique for proba-

bilistic forecasting of solar power for three sites in Italy. They concluded with an

overall evaluation that the AnEn technique slightly outperforms the quantile regres-

sion model.

1.4.2 Solar Power Ramp Event Forecasting

The NWP systems suffer from latency issue, since the data of the meteorological

conditions are delayed in the assimilation process by supercomputers. Besides, the

forecasts based on NWPs are more accurate with a horizon longer than six hours while

the satellite-driven forecasts and the statistical models are more accurate for shorter

horizons [46, 47]. Thereby using a technique of post-processing or model output

statistics (MOS) to correct and update the NWP-driven forecasts can enhance the

intra-day forecasts.

Solar power is naturally variable and changes occur in fast and slow ramps due to

cloud cover, and the azimuth and zenith angles of the sun during the day and the

seasons. The approach in [48, 49] implements a low-cost camera network to image

the sky and neural networks model to predict the very short-term ramps up to ten



10

minutes of the solar irradiance for two locations in California. It concludes that the

performance of the proposed approach is better than the persistence method.

Florita et al. [50] propose an automated identification swinging door algorithm of a

single parameter to detect and define a new assessment metric for the ramp events of

wind and solar power. A machine learning technique to predict ramp-ups and ramp-

downs of solar irradiance and wind speeds is reported in [51]. A study by Sandia

National Laboratory [52] looks at the solar variability from another perspective, that

is, by identifying the clear sky periods of the solar irradiance.

The relevant literature shows reported studies of identification or detection of solar

ramp events in the measured data of power and weather rather than forecasts. So-

lar ramp event forecasting is more realistic and challenging as the whole framework

depends on the forecasts as inputs to the models.

The Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado

State University designed CIRACAST [53], to forecast the solar irradiance by cloud

information based on satellite data and wind forecasts and it considers the solar ramps

on a timescale up to 3 hours.

The majority of the studies found in the literature are dedicated to forecasting the

ramp events of wind power. In 2010, Ferreira et al. conducted a survey [54] about

wind power ramp event forecasting and they concluded that the topic needs more

research on forecasting and evaluation aspects. Gallego-Castillo et al. also conducted

a later survey [55] in 2016, which reveals the forecasting of wind power ramp events

(WPREs) has experienced a noticeable attention as being an imperative requirement

to efficiently manage systems with higher wind power penetration. Zheng and Ku-

siak [56] apply machine learning techniques to forecast wind power ramp rates from

wind power observations in horizons that range from 10 to 60-minutes. Sevlian and

Rajagopal [57] develop an identification technique to detect wind power ramps in the

historical wind power measurements. Feng et al. [58] propose an elaborate framework
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of feature selection for short-term wind forecasts, the selected features significantly

improve the forecasts in 1-hour lead time. A hybrid model of orthogonal test and

support vector machine (SVM) is implemented in [59], which uses the historical ob-

servations of wind power ramps and the meteorological data to forecast the wind

power ramp events. Qiu et al. [60] proposed an ensemble method of a complete en-

semble empirical mode decomposition with adaptive noise (CEEMDAN), kernel ridge

regression (KRR) and random vector functional link (RVFL) network to forecast the

wind power ramp events. The proposed ensemble model (CEEMDAN-KRR-RVFL)

brought improvements in the range of 25% to 50% over the individual models such

as ANN, SVM, RF, KRR, and RVFL.

Recommendations of the IEA Wind Energy Forecasting Group reported in [61]

highlights the importance of probabilistic forecast to quantify the uncertainty of the

generated renewable energy forecasts in the electric power industry.

An approach of hourly probabilistic forecasts of wind power ramp events is devel-

oped in [62], where the authors emphasize the difficulty of ramp event forecasts and

the importance of linking the uncertainty with the ramp forecasts for a more reliable

decision process. Cui et al. [63] build a platform of probabilistic forecasting of wind

power ramps. The probability distribution of the forecast errors are estimated from

multiple generating scenarios, and an optimized swinging door algorithm is utilized

to detect the ramp events in the forecasts.

1.5 Organization of the Dissertation

The general illustrative layout of the dissertation is shown in Figure 1.3. The rest

of the dissertation is organized as follows:

Chapter 2 provides the theoretical background for modeling solar power ramp events

by using several forecasting techniques.

Chapter 3 covers the modeling cases before applying the adjusting approach. An

evaluation of hour-ahead combined forecasts indicates that the combining process
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effects the forecasts in terms of ramp events. This emphasizes the primary objective

of the proposed adjusting post-processing approach, which is to tackle the problem of

ramp event forecasting. After that, the proposed adjusting approach in this chapter

is implemented to adjust and further improve the hour-ahead combined forecasts of

solar power. Point and probabilistic forecasts of solar power are provided.

Chapter 4 extends the modeling and development of the adjusting approach for

solar power ramp event forecasting. The uncertainty analysis of the probabilistic

forecasts of solar power ramp events is included. In addition, for a comparison with

the adjusting approach, several classification techniques are also implemented to fore-

cast the solar power ramp events.

Chapter 5 evaluates the adjusting approach performance for intra-hour forecasts

of solar power and ramp events by using data with various temporal resolutions at

different locations.

Chapter 6 addresses the conclusions and discussions with recommendations for

future work.



13

Chapter 1

Motivation and Problem 

Overview

Chapter 2

 Theoretical Background

It covers the motivation, problem statement 

and contribution, as well as the literature 

review

Theoretical background for modeling and 

forecasting of solar power ramp events

Chapter 3

Improving Combined Solar Power 

Forecasts

Applying the adjusting post-processing 

approach to improve the hourly combined 

forecasts of solar power 

Chapter 4

Forecasting of Solar Power Ramp 

Events

Applying the adjusting post-processing 

approach to improve the hourly combined 

forecasts of solar power ramp events 

Chapter 5

 Intra-Hour Forecasts of Solar 

Power and Ramp Events

Applying the adjusting post-processing 

approach to improve the sub-hourly 

combined forecasts of solar power and  

solar power ramp events

Chapter 6

Conclusions and Future Work

Final conclusions and recommendations of 

future work

Figure 1.3: The dissertation layout
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CHAPTER 2: THEORETICAL BACKGROUND

2.1 Solar Power Ramp Rates

The variability of solar power is getting increased interest in the ongoing research.

The application scope of the issues of solar power variability depends on the extent

of the variation and the size, or the voltage level of the power system where these

issues are taking place. For instance, on the distribution level, the fast ramps affect

the charge and discharge mechanism of energy storage devices, as well as voltage

regulation equipment on the system, while on the bulk transmission level, the slower

ramps have an impact on trading decisions and dispatching of the operating reserve

facilities, and their coordination with other generation sources. Therefore, a tool

for prediction of solar power ramp events may be needed to mitigate some of these

potential issues.

These solar power ramps exist not only in the presence of clouds, but also in clear

sky situations at morning and late afternoon times, as shown in Figure 4.1, for clear

sky days in the summer and winter.

Figure 2.1: The solar power of clear sky days and their hourly ramp rates
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The ramp rate (RR) of the solar power is the change of solar power during a certain

time interval [64], and mathematically may be defined as follows [65],

Ramp Rate,RRP (t) =
dP (t)

dt
=
P (t)− P (t−D)

D
(2.1)

where P(t) is the solar power of the tth hour, it can also be its forecast F(t); D

is the time duration for which the ramp rate is determined (1 hour in this study).

Therefore, the ramp rate is found from the difference in the solar power forecasts at

the forecasted hour and the hour before it (i.e, F(t) and F(t-D)). The event could

be a ramp-up (positive rate) or a ramp-down (negative rate). It could also be an

extreme ramp of a high rate or a normal ramp of a low rate. The variability of the

solar power becomes lower by scattering the solar plants across a larger region thus

making use of the geographical smoothing effect.

Ramp rates that are derived from forecasts can be compared with ramp rates of

the observed solar power plant, and the residuals are defined as the root-mean-square

errors (RMSE). The RMSE is useful for quantifying the accuracy of the forecasts in

predicting the ramp events.

Figure 2.2 illustrates the forecasts and the ramp rates of different forecasting models

for the first two days in May. As may be observed, the ramp rates can be positive

or negative. It should be noted that the ramp-rates of the best forecasting methods

should be as close as possible to the ramp rates of the actual solar power plant.

By observation of the graphs in Figure 2.2, the dispersion of the ramp rates of the

different forecasts increases at the extreme ramp events, as they occur at hour 12 and

36 in Figure 2.2. Thus, the ramp rates of the different forecasts and their standard

deviation can be considered as additional features for adjusting and improving the

combined forecasts.



16

(a)

(b)

(p
.u

.)
(p

.u
./
h
r)

Figure 2.2: (a) Solar power forecasts and (b) their ramp rates, 2 days

2.2 Framework of Solar Power Forecasting

The general flowchart of the steps followed for the solar power probabilistic forecasts

is shown in Figure 2.3.

Different models are built to generate solar power point forecasts derived from NWP

data by using different machine learning techniques, such as, the artificial neural

networks (ANN), support vector regression (SVR), and multiple linear regression

(MLR) [66-68]. In addition to these individual models, the persistence model (Pers.).

The details of these models are presented in following sections in this chapter.

2.3 Data Preparation

The data preparation is essential before building the forecasting model. For an

overall inspection of the available dataset, the scatter plot is usually the first step



17

Pre-Processing

Outlier detection and 

data cleansing

Feature engineering

Weather Data

Solar irradiance

Temperature

Cloud coverage

Humidity 

...etc.

PV System Data

Measured PV power output

Location and modules type, 

orientation, tilt,..etc.
Forecasting Models

Persistence model 

Statistical models

Artificial intelligence models

Point forecast

Probabilistic forecast

  Combining models’ outcomes

by ensemble learning

Post-Processing

Ensemble

Analog ensemble

Figure 2.3: Flowchart of solar power forecasting

of data preparation. After that, the statistical analysis of the dataset is carried out

for data cleansing by removing the outliers and imputing the missing data. From

the scatter plots, the outliers do not change the general data trends. The majority

of the extreme points in the observed data occurs near sunrise and sunset periods.

By experiment, data cleansing is conducted which led to a tiny improvement in fore-

casts. However, this does not mean one should underestimate the data cleansing

stage in data preparation before the modeling stage since sometimes, outliers could

be generated from data entry issues.

The various steps of the data preparation are shown in Figure 2.4. Figure 2.5 shows

the box plot of the distribution of the observed solar power data for a complete year.

It is obvious that the lower PV power output of this illustrated dataset occurs in the

6th month because the PV system is located in Australia in the southern hemisphere,

where the seasons are completely opposite to those in the northern hemisphere. The

data is available in [69].

The scatter plot is also useful to get sense of the relationships between the predictor
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Figure 2.4: Flowchart diagram of data preparation
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Figure 2.5: Box plot of the distribution of observed solar power

variables (the weather variables) and response variable (the solar power). Figure 2.6

presents the advantage of plotting the data in scatter plots for the observed power

with respect to the solar irradiance, also called surface solar radiation down (SSRD).

The scatter plot on the left of Figure 2.6 is for the SSRD which is in accumulated

values (J/m2), while the plot on the right is for the average values of SSRD (W/m2).

The relationships between the variables on the right hand plot is more obvious and

one can tell it is a positive relationship with relatively high positive correlation co-

efficient. The last four given weather variables (i.e. solar and thermal radiations

besides the precipitation) are in accumulated field values, and not average values.
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They are increasing for every hour until the end of the day and then start again in

accumulation [70]. For getting the average values for these data we apply the formula

in (2.2).

Avg(t) =
Acc(t+ 1)− Acc(t)

3600
(2.2)

since t is the time in hour steps, Avg and Acc are the average and accumulated values

of the data respectively.

Figure 2.6: Scatter plot of the observed solar power vs. Solar Irradiance

Moreover, the data preparation includes the detrending process to remove the diur-

nal and annual variation from the time-series data to make it stationary for suitable

analysis and modeling [71]. Figure 2.7 shows graphs of solar power observation and

forecasts before and after the data detrending.

Normalizing the data is important since the scale of the values for each variable

might be different. The best practice is to normalize the data and transform all the

values to a common scale, it is represented by (2.3).

XScaled = a+
[x−min(X)]

[max(X)−min(X)]
∗ {b− a} (2.3)

where x is a sample from data variable X, {a, b} is the desired range of the normalized
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Figure 2.7: Solar power observations and forecasts (a) without data detrending,
(b) with data detrending

data, such as {0, 1}, and X (min, max )=the minimum and maximum of the observed

data.

There is also a standardization technique, especially when the variance of the data

is high, which is making the data to have a zero mean and a unit standard deviation,

as follows:

Xstandardized =
[x−mean(X)]

std(X)
(2.4)
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2.4 Feature Selection

The available historical data contains solar power observations and various weather

variables. It is worth mentioning that the selection of features (input variables) in the

different forecasting models is conducted by the greedy search approach in the training

set of the data to find the most effective combination of variables. The wrapper

technique is adopted for the search, which considers the interaction of the available

variables with each other and their correlation to the solar power (the output) of

the forecasting models, retaining the most effective variables and removing the less

effective ones from the final set of selected input variables [72].

The root mean square error (RMSE) of the solar power forecasts and the Diff.

Index (as defined in section 2.9) for the forecasts of solar power ramp events are used

as scores to find the best combination of variables with a cross-validation strategy

in the training set for most robust and efficient performance of each model. The

cross-validation is also implemented for tuning the parameters of the models.

Features Set 

Evaluation
 

Training Data:
(weather forecasts, solar 

power forecasts and their 

ramp rates) 

Search 

Algorithm

Wrapper Approach

Information Features 

Set

Selected 

Features 

Figure 2.8: Flowchart of wrapper approach for features selection

As shown in Figure 2.8, the wrapping approach has a feedback feature which pro-

vides input about the performance of the model with the selected features. The

random forest is utilized as the wrapper regression model. It considers all possible

subsets of the available features. If the features are many, certain heuristic algorithms,
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such as, genetic algorithm (GA) and particle swarm optimization (PSO) could be im-

plemented for faster search time. Nevertheless, heuristic algorithms are liable to find

the local-optima rather than the global optimum [73].

The search for the most effective features is conducted by the wrapper algorithm, as

shown in the following pseudocode. The score depends on the application objective,

such as RMSE for solar power forecasts and Diff. Index for ramp event forecasts, (see

to section 2.9).

Wrapper Algorithm

Inputs:
D = {F1, F2, ..., FN}; dataset D with N number of available features
S0; initial subset of features
δ = RMSE, Diff. Index, or F1 score; some scores of feature selection
Output: Sbest; best subset of features
1 Initialize S0 = {φ}; initialize of features ranking
2 For i=1,...,N;
D = Fi; and run a given M model with a feature i
Evaluate the model M with a suitable criterion δ
S0 = Fbest; set S0 to the best scored feature
δ = δbest; set the value of the criterion δ to the Fbest score
End For; with S0 = Fbest

3 Initialize Sbest = S0; n=N-1; initialize of features subset selection
4 For j=1,...,n;
Fbest /∈ D; Remove Fbest from the available features of D
D = {Sbest, Fj}; add a new feature j to best features subset
Run and evaluate the model M with D by using a suitable score δ;
If δ better than δbest;
Fbest = Fj; set the Fbest to the feature j
Sbest = {Sbest, Fbest}; set Sbest to this best scored subset of features
δ = δbest; set the value of the criterion δ to the Sbest score
n=n-1; decrease the available features number by 1
End If

End For
5 Stop; no more features to select, and Sbest is the best features subset
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2.5 Forecasting Models

Different parametric and non-parametric models are built to generate solar power

forecasts by using statistical and machine learning techniques. The models of day-

ahead forecasts are multiple linear regression (MLR), artificial neural networks (ANN),

and support vector regression (SVR).

Task: 

(Regression / 

Classification)

Input Variables:

(Solar power and 

weather forecasts)

Output Variable: 

(PV solar power ramp events forecasts)

Training Dataset:

(Past solar power  

and weather 

data) 

Fitting / Learning 

Algorithm of the 

Forecasting Model

Figure 2.9: Block diagram of PV solar power and ramp event forecasting models

2.5.1 Multiple Linear Regression Model (MLR)

The multiple linear regression (MLR) model can be represented as shown in equa-

tion (2.5).

Y = βo + β1X1 + ....+ βkXk + ε (2.5)

where Y is the output variable; X is the input variable; β is the regression coefficient,

and ε is the residual in Y . [74]. In our case, the output variable is the solar power, and

the input variables are the most effective combination of variables including weather

variables, time-based variables, such as hours, days, and months. Moreover, variables

that contain the interactions between the weather and time-based variables are in-

cluded in the model to produce more accurate forecasts. The regression coefficients

βk are found by fitting the model via ordinary least squares (OLS) algorithm in the
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training set and these coefficients are applied in the MLR model to forecast the future

values of solar power. The implemented MLR model is presented in Table 3.10.

2.5.2 Artificial Neural Network (ANN)

For the day-ahead forecasts, an artificial neural network of the feed-foreword type

is suitable. However, the recurrent neural network (RNN) is deployed for hour-ahead

forecasts, where the lagged values of the solar power are used as a feedback input,

because they are important in short-term forecasts [9].

The ANN has an input layer, a hidden layer, and the output layer. In the hidden

layer, when the number of neurons is too large, it could lead to an overfitting issue,

when the ANN model performs with high accuracy at the training stage, but performs

poorly in the testing stage. When the number of neurons is too small it could lead

to an underfitting issue. Thus, for proper regularization, a hidden layer with 20

neurons maybe designated for the ANN model. The back-propagation algorithm

of the adopted ANN model based on the gradient descent, which could sometimes

converge to the local optima rather than the global optimum. To overcome this, the

ANN model runs several times (e.g., 10 times) and the average value is used for both

training ANN and forecasting the solar power [75]. The most effective combination

of the available inputs are found by the wrapper approach of search in the training

set of the ANN model. These are as shown in Table 3.10.

2.5.3 Support Vector Regression (SVR)

This model inherits its basic properties from support vector machines (SVM) - a

supervised learning technique that is used for data classification. The classification

in the SVR is carried out for the regression residuals that are greater or less than

a certain threshold parameter, ε. The main optimization and the kernel that are

utilized with the SVR forecasting model are presented by (2.6) and (2.7) [76]. The
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SVR requires the solution of the following optimization problem:

Minimize
W,b,ξ

1

2
W TW + C

l∑
i=1

ξi

subject to yi(W
Tφ(xi) + b) ≥ (1− ξi), i = 1, . . . , l.

(2.6)

since (xi, yi) training set pairs i = 1, ..., l. W is a normal unit vector that is perpendic-

ular to the boundary margin, b is a slack variable, ε a threshold parameter. C is the

penalty parameter. Training vectors xi are mapped into a higher dimensional space

by the function φ, this is the kernel trick K(xi, xj) = φ(xi)
T (xj). The kernel trick

transforms the data into a higher dimensional space where the data become more

separable. The common kernels are linear, polynomial, and radial basis functions

(RBF) [77].

For a RBF-based kernel function:

K(xi, xj) = e−γ(‖xi−xj‖2) (2.7)

where γ is a kernel parameter.

The grid-search is used in the training set to find the best hyperparameters (C

and γ) of the SVR, as they appear in (2.6), and (2.7). A complete grid-search can

be a time-consuming; so it is recommended to use exponentially growing sequences

of C and γ to find the optimal hyperparameters. For example, C = 2−5, 2−3, ..., 215,

γ = 2−15, 2−13, ..., 23 [78]. The optimal hyperparameters (C = 50 and γ = 1) are

found by conducting a grid-search and using the same inputs for the ANN model.

Then, using these hyperparameters, the wrapper approach is used to find the most

effective input variables through cross-validation among the training set for the SVR

model. The combination of the selected features of the SVR model are shown in

Table 3.10. The SVR is less prone to overfitting and local optima issues that appear

in the ANN model.
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2.5.4 Extreme Learning Machine (ELM)

Basically, the ELM is an ANN where the neurons at the hidden layer connect the

inputs with the outputs, but the weights are learned in a single step by solving a

linear equation using a specific matrix inversion - the Moore-Penrose pseudo inverse.

ELM requires a large number of hidden neurons to achieve a proper generalization.

The ELM model is used instead of the SVM model because ELM has been proven to

be simpler and faster, since there are no parameters to be tuned except the number of

neurons, and it does not suffer from the difficulties faced by gradient-based algorithms,

such as the local optimum issue in the conventional ANN model [79,80].

2.5.5 Persistence Model

The persistence model utilizes the most recent solar power measurements that can

be collected by sensors or SCADA systems from the plant. The most recent lagged

value of the solar power becomes the forecast of the solar power for the next hour as

seen in (4.8). The persistence model generates hour-ahead forecasts of solar power on

a rolling basis over the day and then used in the combining and the adjusting stages

of the proposed approach for improving the hour-ahead combined forecasts [81].

Persistence Model, F (t) = P (t− 1) (2.8)

where F is the forecast, P is the actual solar power.

2.6 Classification Models

The classification models that have been implemented for solar power ramp events

are reviewed in this section. For more details about the classification models, the

interested reader may refer to [77,82].
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2.6.1 Naive Bayes

The classification in this model is carried out by the conditional probability of a

jth class of the output variable Y at which, the input variable X belongs to a vector

Xo. Although it seems to be naive, its concept is the basis of other sophisticated

and more powerful classification models. The conditional probabilities of the output

classes are estimated by the training set of observations.

2.6.2 Linear Discriminant Analysis (LDA)

This is a simple parametric model which makes some assumptions about the con-

ditional distribution of its input and output variables. Since the LDA depends on the

mean and the variance of the observations of each class, this makes it more sensitive

to the observations than other classification models, but in general, it is stable with

dispersive observations. It is popular in cases of multiple classes. The coefficients to

the linear discriminant are estimated through the training.

2.6.3 k-Nearest Neighbors (kNN)

A non-parametric model without assumptions which is built based on a simple intu-

ition for determining the observation of the unknown class by measuring the distances

to the neighboring observations, and thus the given observation’s class belongs to the

major class of the nearest observations. k stands for the number of the neighboring

observations that are used to identify the class of a given observation, its value is

chosen by searching the optimal value of the highest accuracy in the training set.

2.6.4 Decision Tree

The decision trees can be implemented efficiently for problems of binary decisions

since they are recursively splitting the data into two sets. The binary splitting pro-

cedure is conducted by applying conditional tests on samples of each variable, and

it continues until the minimum number of the samples is reached at each node. The

tree splitting should be terminated (i.e., tree pruning) before the tree overfits with the
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data during the training. The maximum number of splits and the minimum number

of samples (leaf size) are set for more efficient and less complexity of the decision tree

model. One of the advantages of the decision tree model is that it can deal with both

continuous and categorical variables.

2.6.5 Logistic Regression

In a nutshell the logistic regression is a special case of the generalized linear regres-

sion model. Like the LDA model, the logistic regression is also a parametric model,

since it has some assumptions. Its output is categorical, while its input variables

can be either continuous or categorial. The maximum likelihood method is used

during the training to estimate the coefficients of the models and then, those fitted

coefficients are applied for the test set.

2.6.6 Random Forests (RF)

Random forests have been proposed to tackle the correlated classification and re-

gression trees (CART). The trees of the RF are more various and uncorrelated as

they are grown by a random number of features and observation samples. Two main

parameters are required to be set in the RF: the number of trees B (forest size), and

the minimum number nmin of observations per node (leaf size). It is worth mentioning

that the performance of the RF is not overly sensitive to the values of these parame-

ters. In addition, the RF does not rely on cross-validation to estimate the parameters

because it has a built-in out-of-bag (OOB) estimation algorithm, which validates the

performance of the trees with samples that are not used in the training. Thus, the

robustness and flexibility are the main advantages of the RF model.

In addition, ANN and SVM models are also used as classification models of solar

power ramp event forecasts. For details, refer to the aforementioned ANN and SVR

forecasting models.
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2.6.7 Imbalanced Classification Techniques

The classes of solar power ramp events are not balanced, since the high-rate classes

of ramp events are less than the classes of low-rate ramp events. Thus, some im-

balanced classification methods are implemented for forecasting of solar power ramp

events [83, 84]. The imbalanced classification that are employed and investigated

include:

• Resembling techniques of the minority and majority of ramp classes;

• Synthetic Minority Over-sampling Technique (SMOTE);

• Misclassification costs for the minority classes of high-rate ramp events;

• Autoencoder with the existing features to create suitable representative features;

Those imbalanced classification techniques either increase the true events or de-

crease the false events of ramp events, not improving both of them. Meanwhile, in

this dissertation, the objective is to obtain a higher number of true events and lower

number of false events of the high-rate ramp events of solar power. In addition, all

forecasting models of solar power ramp events are built based on weather forecasts

with a high uncertainty of weather conditions at some ramp events. Therefore, the im-

balanced classification methods do not further enhance the classification performance

of solar power ramp events.

2.7 Ensemble Learning

The algorithms that use decision trees are useful to combine the different models’

outcomes efficiently. This ensemble approach combines all the outputs from various

models besides the features, such as the weather data, that allow the ensemble method

to find the associative rules to determine the best output. For instance, if the weather

is sunny, then the outputs of model A has a heavier weight for the ensemble forecasts;
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otherwise the outputs of model B is better, and so on.

Fensemble = WA ∗MA +WB ∗MB + ..+WN ∗MN (2.9)

where WN is a weight assigned to the outcome of a model MN
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Figure 2.10: General diagram of combining different models

This ensemble learning approach has shown very promising results in numerous

machine learning benchmarks [85]. For more details on this topic, i.e., ensemble

learning and its techniques as bagging, boosting, stacking, and Bayesian averaging,

the interested reader may refer to [77].

2.7.1 Random Forest

Since the classification and regression trees (CART) use the bagging principle of

ensemble learning, and are built by using the same data, these trees sometimes suffer

from being correlated and statistically dependent on each other. Consequently, to

make the trees more various and uncorrelated, Breiman [86] proposed that each split

of the bagged tree should be grown by a random number of features and observation

samples. Hence, this method is called the random forest (RF).

Three parameters are required to be set in RF, the number of trees B (forest size),

m the number of predictors out of p variables (features) that are randomly chosen to

be used for each split, and the minimum number nmin of observations per node (leaf

size).
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The random forest building algorithm [77] has three major steps as follow,

a) Create B sample datasets of size N from the training data, these sample datasets

can be replaced and overlapped.

b) For each sample dataset, grow a random forest tree Tb, by repeating the following

steps for each terminal node, until the minimum node size nmin is reached:

i) Select m predictors at random from the p variables.

ii) Pick the best predictor among the m selected predictors for the split-point.

iii) Split this point (node) into two daughter nodes by setting certain decision

rules.

c) Finally, find the ensemble of the trees {Tb}B1 , where B is the number of trees in

the random forest.

The prediction of a given point x of the response variable is then obtained by

averaging the outputs of individual trees:

f̂RF =
1

B

B∑
b=1

Tb(x) (2.10)

The ensemble learning algorithm repeatedly assembles the input data to create

regression trees that best fit the relationship between the features and the output.

This process of decorrelation of the trees makes the random forest outcomes less

variable and more reliable [87].

2.8 Probabilistic Forecasts

As shown in Figure 2.3, different models are used to generate the forecasts which

are combined by a random forest to obtain the hour-ahead point forecasts, as (2.10)

indicates. After that, the probabilistic forecasts are generated through the post-

processing of these point forecasts by ensemble-based and analog ensemble techniques.
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2.8.1 Ensemble-based probabilistic forecasts

The outcomes of the ensemble learning (i.e., random forest) are the combined

forecasts that are associated with uncertainty. There are B outcomes from the total

individual trees, which are trained with different samples of the dataset [77]. Thus,

this bootstrapping approach can be employed to obtain the prediction interval around

a given point forecast(c) [61], as shown in Figure 2.12.

The cumulative distribution function (CDF) is implemented to estimate the prob-

ability distribution of the trees’ outcomes. By calculating the mean and standard

deviation of the outcomes, the CDF can be found. Therefore, to distribute the values

of the random variable (probabilistic forecasts) through all quantiles [1st - 99th], the

inverse CDF (CDF−1) is used to find the probabilistic forecasts of the corresponding

quantiles.

Probabilistic 

model

Solar power 

point forecasts

NWP point 

forecasts

Probabilistic 

forecasts of 

solar power

(a)

(b)

(c)

Figure 2.11: Illustration represents (a) diagram of ensemble-based probabilistic fore-
casts, (b) Splitting mechanism of trees in the random forests, (c) sample of ensemble-
based probabilistic forecasts of solar power of 3 days



33

2.8.2 Analog ensemble (AnEn) probabilistic forecasts

The second technique to generate the probabilistic forecast is the analog ensemble,

which is shown in Figure 2.12. As the name implies, it is carried out by an analog

procedure of collecting the similar point forecasts from the past that are in close

proximity to the given point forecast to which the probability distribution will be

fitted. When similar forecasts are found, then their corresponding observed power

are selected and the CDF is used to estimate the prediction interval for the given

point forecast from the corresponding observed power values [45, 88,89].

The norm (ε), which is used to identify some of the past forecasts that are close to

the point forecast and then selected for the analog ensemble, is presented in (2.11).

From experience, we assume ε = 0.1, since the forecast values are normalized and

forecasts with difference less or equal to 0.1 from a given point forecast are chosen.

Because of diurnal variations in the forecasts, this analog process should be conducted

among the forecasts of each hour separately. For example, if the given point forecast

is for hour 13:00, then the analog process is carried out for this hour for all available

past days.

|FGivenHrFPastHr| ≤ ε (2.11)

where FGiven
Hr denotes the given point forecast at an hour Hr, for which the predic-

tion interval will be estimated, FPast
Hr the point forecasts at the same hour of the

day. Notice that all values are normalized in the range [0, 1].

2.8.3 Persistence probabilistic forecasts

The third method, as shown in Figure 2.13, is the persistence probabilistic forecasts.

It is considered a useful benchmark for a comparison with other studies. It does not

need past forecasts as the AnEn method does. For a given point forecast at a certain

hour, the most recent observed solar powers at the same given hour are selected to
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Figure 2.12: Schematic diagram of analog ensemble method

quantify the probability distribution. The 10, 20 and 30 recent observed powers are

carried out, and it is found that the recent 10 observed solar powers at the given hour

with CDF distribution achieve more accurate persistence probabilistic forecasts [42].
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Figure 2.13: Schematic diagram of persistence probabilistic method

Remark : In all three techniques of the probabilistic forecasts, the CDF assumes a

normal distribution of trees’ outcomes. On the other hand, without this assumption

and applying the piecewise nonparametric estimation of CDF leads to probabilistic

forecasts with a very small difference from the normally-distributed CDF, whereas,

the linear probability distribution of the trees’ outcomes (without applying the CDF

at all) leads to a significant difference and less accurate than using CDF. For the sake

of illustration, consider Figure 2.14.
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Figure 2.14: Different distributions of probability for a given point forecast

2.9 Evaluation Metrics

2.9.1 Forecasts of Solar Power

Several conventional metrics are suggested for measuring the accuracy of energy

forecasting models [10,90,91].

A survey in Ref. [91] for many variable renewable energy forecasting methods re-

veals that the root mean square error (RMSE) is the most common metric, as sum-

marized in Figure 2.15. In general, the metrics are dependent on the applications

that the forecasts are deployed for, and a few of them are for forecasting the ramp

events.

Table 2.1 describes the metrics that are summarized in Figure 2.15. Studies that

are denoted as ’Others,’ have tailor-made metrics, including metrics that consider the

variability and ramp events as those in studies [49, 50,92].

A comprehensive survey of their suitability for ramp event forecasting is beyond the

aim of this study. Therefore, for the case study, the root mean square error (RMSE),

mean bias error (MBE), and Skill Score (ss) as common metrics are chosen to evaluate

the forecasts. In addition, a proposed metric which depends on ramp rates of solar

power is explained with some details in section 4.2.

Firstly, the common conventional metrics as described follows:
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Figure 2.15: Evaluation metrics in solar and wind resources forecasting [91]

Table 2.1: Evaluation metrics of energy forecasting

Evaluation Metric Description
For Ramp

Events

RMSE = Root Mean Square Error No

MAE = Mean Absolute Error No

MBE = Mean Bias Error No

MAPE = Mean Absolute Percentage Error No/Yes

Others Yes/No

SS = Skill Score No

MSE = Mean Square Error No

STD = Standard Deviation No

R2 = Coefficient of Determination No

MPE = Mean Percentage Error No

CC = Correlation Coefficient No

ME = Mean Error No

MaxAE = Maximum Absolute Error No

MeAPE = Median of the Absolute No

Percentage Error No

MASE = Mean Absolute Scaled Error No

RMSE =

√√√√ 1

n

n∑
i=1

(Pi − Fi)2 (2.12)

MAE =
1

n

n∑
i=1

|Pi − Fi| (2.13)
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where F is the forecast of the solar power and P is the observed value of the solar

power. F and P are normalized to the nominal installed capacity of the solar power

system; n is the number of hours, which can be day-hours or month-hours.

When the solar power forecasts are used for the management activates of the electric

grid including the electricity market trading, the security, and reliability operations,

the root mean squared error (RMSE) is more suitable than the mean absolute error

(MAE) because it penalizes the large errors more than the smaller errors.

The objective is to minimize the RMSE for all forecasting hours to yield more ac-

curate forecasts. If the training and testing of the model are carried out for just the

daylight hours while filtering out the night hours (which have zero solar power gen-

eration), the RMSE should also be determined for those daylight hours only without

including the night hours.

The mean bias error (MBE) is calculated by (2.14). It is an indication of the

performance of the model and whether it would be biased to underestimate the solar

power outputs and yield positive errors, or overestimate and yield negative errors.

Bias (MBE) =
1

n

n∑
i=1

(Pi − Fi) (2.14)

For solar power forecast applications, the MBE or the bias is also important, since

it conveys information about the overestimation and underestimating errors. For

instance, if the end-user of the solar power forecasts was the power system operator,

it could be more suitable to use a forecasting model that has underestimation errors

since the operators would prefer forecasts that underestimate the actual solar power

because in that case at the real-time operation they just curtail the surplus generated

solar power rather than facilitate fast operating reserves to back up the energy deficit

in the case of a forecast with overestimation errors.

The improvement or the skill score (SS) metric is to compare a method with respect
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of other benchmark methods.

Improvement or Skill Score(%) = (1− RMSEMethod

RMSEBenchmark
) ∗ 100 (2.15)

Diebold-Mariano (DM) test measures how significant the accuracy is for a forecast

comparing with other forecasts [93]. In other words, the DM test is a statistical test

for the significance of the differences in forecasting accuracies of the models. The null

hypothesis is that the two forecasting models have equal performance, with 5% as a

significance level at the DM test.

dt = L(ε1, t)− L(ε2, t)

DM =
d̄

σ̂dt

(2.16)

where ε1 and ε2 are the errors of forecasts F1 and F2 respectively. L(εi, t) is a loss dif-

ferential function which should be always positive, so the forecast errors are squared,

ε2
i . d̄ is the statistical mean of dt and σ̂ is the estimated standard deviation of dt.

For instance, if DM= 25 for two forecast series F1 and F2, this means that 25 % of

the differences dt are significant (when ε2 smaller than ε1, or F2 better than F1), by

using 5% as a significant level at the DM test.

2.9.2 Forecasts of Solar Power Ramp Events

The majority of common evaluation metrics are not suitable for evaluating the

forecasts’ capability to predict the ramp events. Thus, a proposed metric which

considers the ramp events is used in the case study. It is developed from ramp rates

of solar power as shown in (2.17).

Ramp rates that are derived from forecasts can be compared with ramp rates of

the observed solar power plant, and the residuals are defined as the root-mean-square

errors (RMSE). The RMSE is useful for quantifying the accuracy of the forecasts in

predicting the ramp events.
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To evaluate the ramp forecasting of the forecasts, the ramp rate of each hour is

calculated as in (2.1) and the RMSERR of the ramp rates is calculated as in (2.17)

for each model [94].

RMSERR =

√√√√ 1

n

n∑
i=1

(RRPi
−RRFi

)2 (2.17)

where RRPi
is the ramp rate of solar power observations at hour i and the preceding

hour, RRPi
is calculated as in (4.1). RRFi

is the ramp rate of the solar power forecasts

at hour i and the preceding hour. RRFi
is calculated as in (4.1), but using the forecasts

instead of the observations. Since the available data is normalized, the RRP and RRF

are in units of (p.u./hr).

There are no standard evaluation metrics to gauge the accuracy of the solar power

ramp events. Some metrics of the classification accuracy, such as recall and precision,

can be misleading metrics since they take into account the insignificant ramp events,

and this often comes at a cost of the accuracy of significant ramp events [54]. In

choosing the evaluation metrics, we consider the following:

(a) Our objective is to increase the true events and decrease the false events of high-

rate ramps.

(b) It is preferred that the chosen evaluation metrics have the same trend of Diff. In-

dex=(true - false) of high-rate events, which is used as an index in the feature

search process.

(c) True events of low-rate ramps are not as important as the true events of high-

rate ramps. Since the majority of ramp events are low-rate events, the selected

metrics should assign lighter weights for these events. In addition, the false events

of low-rate ramps that are classified as high-rate events should be considered by

the metrics.
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Figure 2.16: Confusion matrix of possible rates of solar power ramp events

Remark : It is worth mentioning that forecasting of solar power ramp rates is more

challenging than the direction (i.e., up or down) of the ramp events. Therefore,

the ramp event forecasting task is conducted for all four classes of ramp events, as

shown in Figure 4.3(a), considering the ramp rate and the direction. The evaluation

procedure is carried out as a binary classification problem by including two main

classes of high-rate and low-rate ramp events. The direction of the ramps are included

in the evaluation implicitly by combining the four classes to be high-rate (both up

and down ramp), and low-rate (both up and down ramp) events.

Figure 2.16 displays the confusion matrix of possible cases of the main ramp-rate

classes of the solar power ramp events.

Diff. Index = (True – False) of High-Rate Ramp Events (2.18)

Total Accuracy =
True Events

Total Events
(2.19)

Precision =
True High

True High + False High
(2.20)
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Recall (Sensitivity) =
True High

True High + False Low
(2.21)

Balanced Precision =
1

4

n∑
Class=1

True Class

True Class + False Class
(2.22)

F1 score =
2.(Precision × Recall)

(Precision + Recall)
(2.23)

where High denotes a high-rate ramp event, and Low denotes a low rate ramp, True

refers to a case when the event is predicted to belong to a certain class exactly as it

actually is in the observations, while False refers to a case when the event is predicted

to be in a ramp class that is not the same as in the observations. Some of these metrics

are also used for other applications of classification methods in data science [83] and

wind ramp events [54, 59]. The Diff. Index is the difference between the true and

false events of high-rate ramps. The Total Accuracy metric gives equal weighting to

all classes, so that it is affected by low-rate events. The Precision is the ratio of the

true events of forecasted class to the total events of same class in the forecasts, the

Recall is the ratio of the true events of forecasted class to total events of same class

in the observations; it does not consider the false events of the evaluated class as does

Precision. The Balance Precision metric is the average of the precision of each class;

it is also slightly impacted by the low-rate ramps. F1 score mitigates the issue that

the Recall and the Precision metrics share an inverse relationship to each other. The

most suitable metrics for our application are the Diff. Index and the F1 score.

2.9.3 Probabilistic Forecasts of Solar Power

Pinball loss function is adopted to evaluate the probabilistic forecasts, it calculated

by (2.24). Pinball function is a comprehensive metric for the reliability and the

sharpness of the probabilistic forecasts.
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Pbq(fq, z) =


(1− q

100
)(fq − z), if z < fq

q
100

(z − fq), if z ≥ fq,

(2.24)

where Pbq(fq, z) is the loss function to the probabilistic forecasts for each hour. fq is

the forecasted value at the certain q quantile of the probabilistic solar power forecasts

and z is the observed value of the solar power. The quantile q is also called the

percentile and it has discrete values q ∈ [1 − 99]. For instance, q = 90 means that

there is a 90% probability that the observed solar power will be less than the value of

the 90th quantile. fq and z are normalized values of the nominal power capacity. The

average of loss function Pbq(fq, z) for all forecasting hours should be minimized to

yield more accurate forecasts. Therefore, the average loss function value is adopted

as a score to evaluate the model performance.

The most common evaluation metric of the probabilistic forecasts is the Continuous

Ranked Probability Score (CRPS) [40]. CRPS as shown in (2.27) is mainly used for

density forecasts, while the pinball loss function quantifies the quantile forecasts [95]

CRPS(F, z) =

∫ ∞
−∞

[F (y)−H(y − z)]2dy (2.25)

H(.) =


1, if y ≥ z

0, if y < z.

(2.26)

CRPS(F, z) =

∫ z

−∞
F (y)2dy −

∫ ∞
z

(F (y)− 1)2dy (2.27)

where z is the observed value corresponding to the F probabilistic forecast, F (y) is

the CDF of the F probabilistic forecast, such as F (y) = P[X ≤ y], X is the random

variable associated with F (y). While H(y − z) is the CDF of the zth observed

value and it is a step function H(.) as in (2.26), CRPS(F, z) is the CRPS of the F
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probabilistic forecast corresponding to the zth observed value, and it is simplified as

in (2.27).
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CHAPTER 3: IMPROVING COMBINED SOLAR POWER FORECASTS

3.1 Introduction

Several forecasting models are combined together to mitigate the uncertainty as-

sociated with the solar power generation resource and improve the power generation

forecasts. The common ensemble approach in wind and solar power forecasting is the

blending of meteorological data from several sources. In this study, the present and

the past solar power forecasts, as well as the associated meteorological data are incor-

porated into an ensemble learning tool. Since forecasts based on numerical weather

prediction systems are more valuable in horizons longer than six hours, the proposed

approach includes the simple persistence model of hour-ahead forecasts along with

the different models of day-ahead forecasts so that the combined forecasts become

hour-ahead solar power forecasts. In addition, the proposed approach combines the

ramp rates of the forecasts to enhance the ensemble learning. Furthermore, the ap-

proach improves the ensemble learning by using two loss functions - the first function

to minimize errors of the forecasts, and the second to minimize errors of the ramp

rates of the forecasts. The performance of the combined forecasts is evaluated over

the entire year and compared with other techniques [96].

3.2 Modeling

3.2.1 Data Description

The solar power system is in Australia and has a latitude 35◦16’30”S, longitude

149◦06’49”E, altitude 595m. The panel type is Solarfun SF160-24-1M195, consisting

of 8 panels, its nominal power of (1560 W), and panel orientation 38◦ clockwise from

the north, with panel tilt (of 36◦). The historical observed solar power data are

normalized to the rated capacity (i.e., 1560 W).

The weather forecast data and the available measured solar power data from April

2012 to May 2014 are shown in Table 3.9. The weather forecasts are derived from the
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ECMWF model. They include solar irradiance, cloud cover, air temperature, wind

speed, relative humidity, precipitation, etc. In addition, some time-related features

such as hours, month days, and months are also used as input variables to the models.

Since the data is from Australia in the Southern Hemisphere, the seasons are com-

pletely opposite to those of the Northern Hemisphere.

3.2.2 Data Preparation and Feature Selection

The feature selection of the available data features is conducted by the wrapper

approach, as presented in section 2.4. For day-ahead forecasts of solar power, the

most effective variables are the solar irradiance, cloud cover, air temperature, relative

humidity, and wind speed. For hour-ahead forecasts, the most effective variable is

the lagged observations of solar power. The combinations of selected input variables

that are used with the models are given in Table 3.10.

3.2.3 The Adjusting Approach

The adjusting approach, as shown by Figure 3.1 and Figure 3.2, is built up from

three main stages, i.e., forecasting, combining, and adjusting. They are explained in

some details below.

3.2.3.1 Forecasting Stage

The forecasting stage is shown in Figure 3.1(a) to produce the 24-hour-ahead fore-

casts from the NWP data and the observed solar power. The forecasting day should

only be excluded, while the rest of the available data are used to train the models,

MLR, ANN, and SVR. Different parametric and non-parametric models are built to

generate solar power forecasts by using statistical and machine learning techniques.

The models of day-ahead forecasts are multiple linear regression (MLR), artificial neu-

ral networks (ANN), and support vector regression (SVR). For more details about

these models, refer to section 2.5. Table 3.10 provides additional details about build-
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ing the models.

The persistence model produces hour-ahead forecasts from the lagged solar power

observations. The forecasting hour is excluded from the training set when the hour-

ahead forecasts are generated.
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Figure 3.1: (a) Forecasting, (b) combining, and (c) adjusting schemes of the adjusting
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Using models with different individual biases to generate dissimilar solar power

forecasts is necessary to reduce the systematic bias inherited from the NWP model

and that enhances the accuracy of the combined forecasts at the combining stage.

Then, the combined forecasts are adjusted by the proposed adjusting post-processing

approach for further improvement.

3.2.3.2 Combining Stage

The second stage of the approach, as shown in Figure 3.1(b), it is where the ensem-

ble learning tool (i.e., the random forest) combines the available weather data and

the previous forecasts from the first stage, all blended together with the hour-ahead

persistence model to find the best associative rules for achieving better hour-ahead

combined forecasts rather than day-ahead forecasts. In the combining stage, the past

weather forecasts and the outcomes of different models are used to boost the ensemble

learning and improve the accuracy of the combined forecasts. The idea of including

the lagged solar power observations is a common practice in short-term time-series

forecasting [75, 97]. However, in our case, we use the prior hour’s solar power obser-

vations as an exogenous variable (i.e., the persistence forecast model) which can then

be combined with other weather variables and the day-ahead solar power forecasts in

the ensemble method for more accurate hour-ahead forecasts.

RF does not need cross-validation to estimate the parameters because it has a built-

in out-of-bag (OOB) estimation algorithm, which validates the prediction accuracy of

the trees with sample data that are not used for training [77]. The parameter selection

is carried out by the wrapping strategy or a greedy search for the best evaluation

results among the available training data. The parameters that are used: Number

of trees B=100, samples m=6 (i.e.,18/3), leaf size nmin = 5. It is worth mentioning,

that a change with a reasonable range of these parameters does not affect the RF

performance, as shown in Figure 3.3. Thus, the robustness and flexibility of RF are

the main advantages of this ensemble method.
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Figure 3.3: Different sizes of RF with different number of variables (features) at each
node

3.2.3.3 Adjusting Stage

Since the combined forecasts by the ensemble learning are the average of the en-

semble regression trees as shown in (4.2), these combined forecasts might not be best

suited for forecasting ramp events. Although the combined forecasts are well suited

for solar power forecasts in normal events, they do not always capture the ramp

events. Thus, there is a room for improvement the combined forecasts further. By

applying the adjusting stage of the approach, the accuracy of the hour-ahead com-

bined forecasts at the ramp events are also improved, as seen from the results of the

case study.

At this stage, a adjusting post-processing approach for the hour-ahead combined

forecasts is developed as shown in Figure 3.1(c).

This post-processing approach can be summarized below:

(i) Add the recently generated combined forecasts.

(ii) Associate these with the different forecasts (i.e., persistence, MLR, ANN, and

SVR).

(iii) Add their ramp rates as determined by (4.3), including the ramp rates of the

combined forecasts.
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(iv) Finally, deploy random forest for the ensemble again, but this time, with two

loss functions (3.2) and (3.3) for fitting the ensemble learning. This approach

can adjust the combined forecasts for the ramp events, and hence increases

the overall accuracy.

Ramp Rate,RRFP (t) =
F (t)− P (t−D)

D
(3.1)

where P(t-D) is the observed solar power of the past hour; D is the time duration,

which is 1 hour in this study; F(t) is the solar power forecast at the tth hour. Thus, the

ramp rates are now the differences of the solar power forecasts at the forecasted hour

and the observed solar power of the past hour. The target ramp rates are determined

by the observed solar power, as in (4.1). The outcomes of this adjusting approach

should be as close as possible to the target observed solar power and its ramp rate to

minimize the forecast errors.

MSEF =
1

n

n∑
i=1

(Pi − Fi)2 (3.2)

where F is the forecast of the solar power and P is the observed value of the solar

power. F and P are normalized to the nominal installed capacity of the solar power

system; n is the number of hours, which can be day-hours or the month-hours.

MSERR =
1

n

n∑
i=1

(RRPi
−RRFi

)2 (3.3)

where RRP and RRF are the ramp rates of the observed solar power and the

forecasts for each model, respectively.

Remark 1: It should be noted that the weather variables are simply weather

predictions that are likely to have misleading predictions and a systematic bias, es-

pecially at the ramp events [98], and therefore, they are not included in the adjusting

approach. Because of this fact, replacing the weather features by the ramp rates
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of different forecasts in the adjusting approach yields better solar power forecasts.

However, including the weather features before the adjusting approach is necessary

for optimizing the ensemble learning to produce more accurate solar power combined

forecasts, regardless of the ramp events capability.

Remark 2: To include the ramp rates of persistence forecasts in the adjusting

approach, the ramp rates of the persistence model should be calculated by using the

forecasts only, instead of the observed solar power P (t − 1) even for the past hour,

i.e., F (t − 1) as shown in (4.3). Since the persistence model is basically built from

the prior hour’s observed power as in (4.8), if the observed power P (t− 1) was used

instead of the forecast at the previous hour F (t−1), the ramp rates of the persistence

model would be zero and in that case, they should not be included in the adjusting

approach.

The forecast horizon and the ramp rate duration (D) is 1-hour because the dataset

used in the case study consists of solar power observations with a resolution of 1-hour.

Short-term forecasts tend to be more accurate, but they are also more challenging to

improve, as shown in Figure 3.9. Therefore, we have adopted the shortest horizon of

the available dataset for the duration of the ramp rates. It is useful for the electric

power system operator to obtain improved and updated forecasts in the range of an

hour in advance to re-dispatch the generating units (solar or conventional plants)

from an economic standpoint. Moreover, these improved hour-ahead forecasts are

also valuable in situational awareness tools to deal with the ramp rates limitations of

the system. On the other hand, forecast horizon of an hour may not be short enough

to be valuable for certain solar power variability issues, such as the fast ramp events

and fluctuations that impact the voltage regulation in distribution systems.
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3.3 Results and Evaluation

3.3.1 Point Forecasts of Solar Power

The following metrics are used to evaluate the accuracy of the forecasts and the

model performance: graphs, RMSEs as calculated by (2.12) and (2.17), and a compar-

ison with other methods. Also, the improvement is used to compare the performance

of the combined forecasts with respect to the other methods as in (2.15).

The RMSE is a metric with a negative orientation, so that the lower RMSE in-

dicates more accurate forecasts over the testing period. If the training and testing

of the model are carried out for just the daylight hours while filtering out the night

hours (which have zero solar power generation), the RMSE should also be determined

for these daylight hours only without including the night hours.

For a broader evaluation of the combined forecasts, the comparison is conducted

with individual models and the simple average method over the course of one year, as

shown in Table 3.1. It is clear that the ensemble method has lower monthly RMSEs.

As shown in the bottom row, the mean (i.e., the statistical average) of the monthly

RMSEs indicates that the combined forecasts from the ensemble method have the

most accurate forecasts (RMSEF,avg=0.0628).

In some months, such as October, the ensemble method has higher improvement

over the other models. Meanwhile, in July, the improvement is relatively low.

The monthly RMSE is calculated for all hours of the month, where now n, as

written in (3.2), is not the day hours, but the month hours; it could be 744 or any

other number of hours depending on the month.

The mean bias error (MBE) is calculated by (2.14).

In Table 3.2, the monthly biases of the models are the summation of the errors,

while their average or the bias over the entire year is shown at the bottom of the

table. The combined forecasts have a bias 0.047, which is different from the ensemble

members and it is with a slight tendency of underestimation of the solar power over
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Table 3.1: Results of different models and the combined forecasts

Month
RMSEF

Persistence MLR ANN SVR Average Ensemble

June 0.1136 0.0745 0.068 0.0726 0.0622 0.0621

July 0.1189 0.0926 0.0865 0.0831 0.0809 0.082

August 0.1306 0.0864 0.0811 0.0793 0.0758 0.072

September 0.1298 0.0738 0.0724 0.0776 0.073 0.0693

October 0.1280 0.0723 0.067 0.0648 0.0652 0.0589

November 0.1267 0.0793 0.0665 0.0679 0.0665 0.0609

December 0.1168 0.0618 0.0542 0.0604 0.0556 0.05

January 0.1155 0.0705 0.0526 0.0552 0.0525 0.047

February 0.115 0.0874 0.0704 0.0749 0.067 0.0628

March 0.1229 0.0855 0.0805 0.0832 0.0786 0.0766

April 0.1138 0.0748 0.0637 0.0648 0.0642 0.0605

May 0.1189 0.0571 0.0545 0.0566 0.0588 0.0513

Average
RMSEF

0.1209 0.0763 0.0681 0.0700 0.0667 0.0628

the entire year to compensate the systematic bias in the NWP.

The persistence model has the same trend of its bias throughout all months of

the year when it always underestimates the solar power. The average method has a

negative bias since it is more influenced by the biases of the individual models that

are affected by the systematic bias.

In September, October and April, the combined method reverses its bias with

respect to the average method, and this is an indication of its ability to overcome the

bias of the individual models, and thereby, adjust the forecasts.

To evaluate the combined forecasts in terms of ramp rates, the ramp rate of each

hour is calculated as in (4.1) and the RMSERR of the ramp rates is calculated as in

(2.17).

Therefore, from Table 3.3, it is obvious that with regard to the ramp events, the

combined forecasts (RMSERR=0.0750) are not the best although they are the best

for solar power forecasts before applying the adjusting approach.

Now we are applying the adjusting approach, which utilizes the ramp rates and its

loss function as well as described in section 3.2.3.3, to bring more improvement of the
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Table 3.2: The bias of different models and the combined forecasts

Month
Bias (MBE) of Different Models

Persistence MLR ANN SVR Average Ensemble

June 0.0106 -4.5496 -4.4558 -2.0429 -2.7594 -0.1668

July 0.0272 -15.66 -9.7906 -14.187 -9.9026 -9.3774

August 0.1474 -1.0525 -2.399 -7.1867 -2.6227 -0.797

September 0.1449 -0.0871 1.5521 -2.3912 -0.1953 2.0591

October 0.0651 3.1621 -4.7463 -5.0227 -1.6354 0.4065

November 0.1008 9.0623 0.8405 -0.6515 2.338 3.8489

December 0.0435 6.9379 -0.276 -5.1266 0.3947 0.2941

January 0.059 -5.8772 -4.1514 -3.8977 -3.4668 -2.7234

February 0.0289 -1.6228 -2.8414 -4.3724 -2.2019 -0.9419

March 0.0924 0.8454 3.5505 -0.9198 0.8921 5.216

April 0.1601 5.0138 -1.6179 -4.1976 -0.1604 0.127

May 0.0272 2.0297 2.1124 -1.4953 0.6685 2.6174

Average 0.076 -0.150 -1.852 -4.291 -1.554 0.047

Table 3.3: Results of the ramp rates of different forecasts over the entire year before
and after applying the adjusting approach

Method Persist. MLR ANN SVR
Simple
Aver-
age

Ensemble
(Before
Adjust-

ing)

Ensemble
(After

Adjust-
ing)

RMSEF 0.1209 0.0763 0.0681 0.0700 0.0667 0.0628 0.0523

RMSERR 0.1383 0.0771 0.0722 0.0747 0.0796 0.0750 0.0698

Skill Score 57% 31% 23% 25% 22% 17% —

DM Test 31% 21% 16% 15% 19% 15% —

combined forecasts of the solar power and their ramp rates.

Implementing the Diebold-Mariano (DM) test as in 2.16, it is obvious that the

combined forecasts from the adjusting approach have significant accuracy differences

over the combined forecasts before the adjusting and the simple average, by 15% and

19% respectively, as shown by DM test results in Table 3.3.

Figure 3.4 shows the graphs of the hour-ahead combined forecasts for several cloudy

days before and after applying the adjusting approach. It is not clear from the

graphs that the combined forecasts are improved significantly. Therefore, a statistical

evaluation is carried out over all months of the year.

Table 3.4 provides the ensemble results over all months of the year before and after
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Figure 3.4: Graphs of the combined and adjusted combined forecasts for several
cloudy days

applying the adjusting approach on the combined forecasts. The third column, which

is the result of the adjusting or correcting approach where the generated combined

forecasts from the pre-corrected case and the ramp rates of all forecasts and their

standard deviation are added along with the other forecasts.

Table 3.4: Combined forecasts before and after the ramp rate adjusting approach

Month

Ensemble Results
(RMSEF)

Improvement of
the Corrected

Combined
Forecasts %

Before
Ramps

Correction

After
Ramps

Correction
July 0.0825 0.0646 22%

August 0.0727 0.0595 18%
September 0.0705 0.0589 16%
October 0.0579 0.0502 13%

November 0.0605 0.0512 15%
December 0.0507 0.0428 16%
January 0.0464 0.0397 14%
February 0.0627 0.0528 16%

March 0.0755 0.0619 18%
April 0.0605 0.0481 20%
May 0.0516 0.0424 18%

Average 0.0628 0.0523 17%
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Figure 3.5: Monthly RMSEs of the combined forecasts before and after applying the
ramp-rates adjusting approach

From the averaged RMSEs throughout the entire year, it is apparent that the

combined forecasts of the solar power are more accurate after considering the ramp

corrections. Thus, the ensemble of the ramp rates and the combined forecasts increase

the accuracy of the combined forecasts.

Figure 3.5 shows the combined forecasts before and after applying the adjusting

approach. It is obvious that in the winter and fall seasons (their months as in the

Southern Hemisphere) the adjusting approach that uses the ramp rates is more ef-

ficient while in other seasons (dashed box) the improvement is lower. Thus, the

ramp-rates adjusting approach is more effective in the cloudy days than the sunny

days.

The overall comparison of different forecasting methods of the hour-ahead fore-

casts is summarized in Table 3.5. After the ramp correction, the combined forecast

improved by 17% over the pre-corrected combined forecast, and 22% over the aver-

age method, which was 6% before the correction. The comparison, when conducted

with other hour-ahead forecasts that are generated by time-series forecasting meth-

ods, such as ARIMAX, NARX which include weather data as exogenous inputs [9],

are not competitive with the hour-ahead combined forecasts. Table 3.5 also shows

the hour-ahead corrected combined forecasts have outperformed all other time-series
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forecasts, as demonstrated by the DM test, which evaluates the significant accuracy

differences of the corrected combined forecasts with respect to other forecasts.

The outcomes of the MLR, ANN, and SVR are day-ahead forecasts and they are

less accurate than the hour-ahead combined forecasts so that they are not included

in Table 3.5, but their performance is shown with some details in Table 3.1.

Table 3.5: Comparison of hour-ahead forecasts over a complete year

Method Persist. Average ARIMA ARIMAX NARX Combined
Corrected
Combined

RMSEF 0.1209 0.0667 0.0928 0.0915 0.0754 0.0628 0.0523

Skill Score 57% 22% 44% 43% 31% 17% —

DM Test 31% 19% 23% 23% 16% 15% —

Now after implementing the adjusting approach, by using the same qualification of

the performance (i.e., RMSERR) of the ramp rates of different solar power forecasts,

as shown in Table 3.3. The combined forecasts become more accurate in forecasting

the ramp rates (RMSERR=0.0698) compared to the pre-corrected combined forecasts

(RMSERR=0.0750). The combined forecasts predict the ramp rates even better than

the ANN, which was the best method for prediction the ramps before the adjusting

approach.

Moreover, to examine the ability of the combined forecasts to predict extreme

ramps of high rates, rates that are greater than 0.4 p.u./hr (40%) of the nominal

solar plant capacity are examined against the ramps of the actual solar power. The

normalized ramp rates of actual solar power outputs in the dataset are observed to

range from 0 to 0.78 pu/hr. The approximate middle value (0.4 pu/hr) is arbitrarily

chosen as a threshold, which identifies the high ramp events when the absolute value

of ramp rates exceed 0.4 pu/hr as high-rate ramp events. Table 3.6 demonstrates the

occurrence of 162 extreme ramp events and examines which forecasting method has

the best prediction accuracy for these ramps and the lowest errors compared with the

other methods. Before applying the correcting approach, there are 33 ramp events out



57

of 162 where the combined forecasts have the best predictions. After the correcting

approach, there are 57 events out of 162 that are predicted by the combined forecasts

more accurately than the other methods. Thus, there is an improvement of 15% (20%

to 35%) in enhancing the prediction of the extreme ramps by the combined forecasts.

Table 3.6: Best forecasting of the high-rate ramp events captured by the different
models, (|Rate| ≥ 0.4pu/hr)

Method
Before Correction After Correction

Counts Percentage Counts Percentage
Persistence 6 4% 4 2%

MLR 34 21% 30 19%
ANN 18 11% 18 11%
SVR 71 44% 57 35%

Combined 33 20% 53 33%
Total 162 100% 162 100%

Table 3.6 indicates that for the existing 162 high-rate ramp events found in the

dataset, the SVR forecasts are better than the combined forecasts by just the one

event (SVR 58 vs. Combined 57 events). Because the combined forecasts are gener-

ated from random forest technique, which, as the last step in the algorithm, combines

the trees’ outcomes by taking the average as shown in (4.2). In addition, to overcome

the local optima issue of the gradient-based algorithm, each of the ANN model’s

outputs is generated by taking the average of ten runs. Meanwhile, the outputs of

SVR model are used directly since it does not suffer from the local optima problem.

Thus, the forecasts of the SVR model are more accurate at those 162 high-rate ramp

events. In terms of the overall accuracy, the forecasts of SVR (with RMSEF=0.0700

and RMSERR=0.0747) are more accurate than the forecasts of the MLR and the per-

sistence models, and less accurate than the ANN model and the corrected combined

forecasts. Nevertheless, the accuracy of the combined forecasts at these ramp events

is improved by applying the adjusting approach (from 33 to 57 events). In terms

of the overall accuracy, the adjusted combined forecasts are improved and outper-

form the other forecasts (with RMSEF=0.0523 instead of RMSEF=0.0628 before
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the correction). A similar examination is carried out for the ramps of low-rates, and

the combined forecasts’ capability of capturing these ramps is already superior, but

it also improved by 3% after the adjustment approach.

3.3.2 Probabilistic Forecasts of Solar Power

There are always errors associated with even the most robust solar power point

forecasts; so a great deal of attention has been paid to probabilistic forecasting to

quantify the uncertainty and risk associated with point forecasts. The ensemble

learning tool, the random forest is used to combine the individual models to obtain

hour-ahead combined point forecasts and then to generate the ensemble-based prob-

abilistic solar power forecasts. Comparisons are provided with probabilistic forecasts

that are generated by the analog ensemble technique as well as the baseline persis-

tence probabilistic technique. The evaluation is carried out over the entire year, and

it is found that the ensemble-based and analog ensemble probabilistic forecasts have

almost the same accuracy [99].

As shown in Figure 2.3, different models are used to generate the forecasts which are

combined by a random forest to obtain the hour-ahead point forecasts, as (2.10) indi-

cates. After that, the probabilistic forecasts are generated through the post-processing

of these point forecasts by ensemble-based, analog ensemble and persistence-based

techniques. These techniques of probabilistic forecasts are covered in section 2.8.

The dataset of this study is described in section 3.2.1. The following metrics

are used to evaluate the accuracy of the forecasts: graphs and a pinball function

as calculated by (2.24), which is a comprehensive metric for the reliability and the

sharpness of the probabilistic forecasts. The continuous ranked probability score

(CRPS) as represented by (2.27), which is the most common criterion is utilized as

well to evaluate the probabilistic forecasts. The graphical evaluation for the different

methods is shown in Figure 3.6.

In the completely cloudy day case (middle day), the persistence has the widest
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Figure 3.6: Graphs of the probabilistic forecasts of the three methods

prediction interval, which is between 10th and 90th quantiles in the graphs. Also, the

band does not cover the observed solar power for all hours of the day. This indicates

a low sharpness and reliability of the persistence probabilistic forecasts. However, it

is hard to distinguish between them visually for the other methods.

Table 3.7 presents the different probabilistic forecast techniques for a comparison.

The bottom row is the average pinball and the improvement rates over the year.

The persistence probabilistic forecasts have the highest pinball (0.0178) so that they

are less accurate. The ensemble-based probabilistic forecasts are the most accurate

although in some months the analog ensemble method is more accurate.

The last two columns are the improvement rate of the ensemble-based probabilis-

tic forecasts over the persistence (Pers.) and analog ensemble (AnEn) forecasts.

For some months, the improvement rates are negative because the analog ensemble

forecast outperforms the ensemble based-forecast. That is why the improvement is

sometimes referred to as a skill score (ss) of the forecasts because it is not always

a real improvement with positive rates, as in positive improvements of the ensemble

over the persistence forecasts.
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The nonparametric estimation of CDF rather than the assumption of the normal

distribution to quantify the prediction interval was also implemented, which led to

an average of 0.0100 instead of 0.0102. Therefore, the difference is negligible.

Table 3.7: Pinball of probabilistic forecasts of different methods before and after
applying the adjusting approach

Month

Pinball Improvement of Adjusted
Ensemble Over:

Persistence

Before Adjusting After Adjusting

Analog

Ensem-
ble

Ensemble

Analog

Ensem-
ble

Ensemble Persistence

Before

adjust
AnEn

Before

adjust
Ensemble

June 0.0166 0.0099 0.0093 0.0088 0.0087 47% 12% 7%

July 0.0176 0.0119 0.0121 0.0091 0.0094 47% 21% 22%

August 0.0182 0.0105 0.0113 0.0089 0.0095 48% 9% 15%

September 0.0173 0.0117 0.0114 0.0101 0.0092 47% 21% 19%

October 0.0149 0.0097 0.0093 0.0095 0.0082 45% 16% 12%

November 0.0191 0.0103 0.0104 0.0093 0.0087 54% 15% 16%

December 0.0162 0.0089 0.0087 0.0078 0.0074 54% 16% 15%

January 0.0179 0.0080 0.0076 0.0070 0.0069 62% 14% 10%

February 0.0215 0.0099 0.0095 0.0085 0.0079 63% 20% 17%

March 0.0208 0.0129 0.0131 0.0101 0.0102 51% 21% 22%

April 0.0194 0.0099 0.0098 0.0078 0.0079 59% 20% 19%

May 0.0137 0.0086 0.0078 0.0073 0.0065 53% 24% 17%

Average 0.0178 0.0102 0.01 0.0087 0.0084 52% 18% 16%

Table 3.8: CRPS of probabilistic forecasts of different methods before and after ap-
plying the adjusting approach

Month

Continuous Ranked Probability Score (CRPS) Improvement of Adjusted

Ensemble Over:

Persistence

Before Adjusting After Adjusting
Analog

Ensem-
ble

Ensemble

Analog

Ensem-
ble

Ensemble Persistence

Before

adjust
AnEn

Before

adjust
Ensemble

June 0.0327 0.0196 0.0171 0.0175 0.0170 48% 13% 0%

July 0.0347 0.0235 0.0227 0.0180 0.0185 47% 21% 19%

August 0.0360 0.0208 0.0226 0.0177 0.0186 48% 11% 18%

September 0.0341 0.0232 0.0226 0.0199 0.0187 45% 20% 17%

October 0.0294 0.0192 0.0195 0.0188 0.0170 42% 12% 13%

November 0.0376 0.0204 0.0212 0.0185 0.0178 53% 13% 16%

December 0.0319 0.0175 0.0177 0.0155 0.0152 52% 13% 14%

January 0.0352 0.0157 0.0162 0.0137 0.0136 61% 13% 16%

February 0.0424 0.0196 0.0184 0.0168 0.0165 61% 16% 10%

March 0.0411 0.0256 0.0265 0.0200 0.0208 49% 19% 22%

April 0.0384 0.0196 0.0190 0.0154 0.0150 61% 23% 21%

May 0.0270 0.0169 0.0152 0.0143 0.0136 50% 19% 10%

Average 0.0351 0.0201 0.0199 0.0172 0.0169 51% 16% 15%

As Table 3.7 provides, the pinball of the ensemble-based probabilistic forecasts af-

ter the adjusting is Pb=0.0084 instead of Pb=0.0100 before the adjusting approach.

Almost the same improvement is obtained by the AnEn forecasts, PB=0.0087 over
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Pb=0.0100. Since the ensemble-based forecasts are the most accurate, the improve-

ments of those forecasts with respect to the other forecasts are listed in the three

right columns.

Table 3.8 evaluates the performance in CRPS. Regardless the different evaluation

scores (i.e., pinball or CRPS), the monthly improvements by pinball are not much

different from those by CRPS. Actually, on average, as presented in the last row, the

improvements by pinball and CRPS are approximately equal.

The results are also presented graphically. Figure 3.7 shows the monthly pinballs of

different probabilistic forecasts. Figure 3.8 illustrates the monthly improvements in

terms of pinball for the adjusted ensemble-abased probabilistic forecast with respect

to other forecasts.

Meanwhile the ensemble and analog ensemble techniques have almost equal pin-

balls, the difference with respect to the persistence forecasts is obvious.
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Figure 3.7: Monthly Pinballs of the probabilistic forecasts

3.3.3 Results of Model Selection

The available input variables and the data partition into training and testing sets

are shown in Table 3.9.

The parameters of the models and the selected input variables that are used with
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Table 3.9: (a) Input variables and their numeral codes, (b) available data size

(a) (b)

No. Input Variable, (X) No. Input Variable, (X)

1 Cloud Water Content 10
Surface thermal

radiation down

2 Cloud Ice Content 11 Top net solar radiation

3 Surface Pressure 12 Total precipitation

4 Relative Humidity 13 Heat Index

5 Cloud Cover 14 Wind Speed

6 10m - U Wind 15 Hours

7 10m - V Wind 16 Months

8 2-m Temperature 17 Days of Month

9
Surface solar radiation

down
18 Days of Year

Month Year Partition

From April 2012
Training Set

To May 2013

From June 2013
Testing Set

To May 2014

the models are provided in Table 3.10. The subscripts of the features correspond to

the input variables (X) that are listed in Table 3.9.

3.3.4 Comparison with Existing Studies

Figure 3.9 shows a comparison with other studies of solar forecasting from a review

paper [10]. One of the basic evaluation of the renewable energy forecasts is to compare

their performance with respect to the persistence forecasts by using the improvement

metric or skill score (ss), as represented by (2.15).

However, in some studies, the target is the solar irradiance not the solar power and

the duration of the performance evaluation is varied from several hours to months.

While in our case, we concentrate on solar power forecasting, and the evaluation
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Table 3.10: Models’ parameters and their selected input variables

Model Model Parameters Selected Features (Input Variables)

MLR

The regression coefficients

(β) of the MLR model are
found using OLS with the

training set

The candidate MLR model=

β0 + β1X9 + β2X8 + β3X10 + β4X12 + β5X2 + β6X4 + β7X16 +
β8X15 + β9X9

2 + β10X9
3 + β11X9 ∗X15 + β12X9 ∗X16 +

β13X9 ∗X17 + β14X9
2 ∗X15 + β15X9

2 ∗X16 + β16X9 ∗X8 ∗
X15 + β17X9 ∗X10 ∗X15 + β18X9 ∗X4 ∗X15 + β19X9 ∗X12 ∗
X15 + β20X9 ∗X2 ∗X15 ∗X17 + β21X9

2 ∗X17 + β22X5 ∗X15 +

β23X8 ∗X15 + β24X1 ∗X15 + β25X2 ∗X15 + β26X12 ∗X15 +

β27X4 ∗X15 + β28X10 ∗X15 + β29X11 ∗X16 + β30X11 ∗X17

ANN
Hidden layers=1

Neurons=20
X1, X2, X4, X5, X6, X7, X8, X9, X10, X11, X12, X15

SVR
Kernel type= RBF

C=50 and γ=1
X4, X5, X8, X9, X10, X11, X12, X14, X15

RF

RF Size, B=100 Trees

Leaf size, nmin=5

Input samples, m=6

The models’ outcomes and their ramp rates: Day-ahead

forecasts include MLR, ANN, SVR. Hour-ahead forecasts include
persistence and combined forecasts. Using two loss functions,

MSEF and MSERR

Software of Modeling: MLR in SAS. ANN and SVR in MATLAB. Random forest (RF) in Python.

duration is conducted throughout the entire year.

Our results, are shown in Table 3.5, where the persistence model result is also

included as baseline forecasts. The forecasts horizon is 1-hour ahead. The results of

our study are represented in Figure 3.9 as a red triangle.

Although the studies, shown in Figure 3.9, are not results of post-processing ap-

proaches, the improvement of our proposed adjusting approach is substantial (57%)

compared to the closest study with a similar 1-hour-ahead horizon, which is (40%).

3.4 Summary

Ensemble forecasts by the random forest boosts the performance of the combining

model of different forecasts throughout the year. An ensemble of the past generated

forecasts of the individual models increases the accuracy of the combined forecasts.

Combining the univariate persistence model (i.e., the most recent solar power obser-

vations) with other multivariate models makes the day-ahead forecasts as hour-ahead

forecasts.

Although the combined forecasts are better than the individual forecasts, that does

not necessarily mean they are also the best for capturing the ramp events. Finding

out the ramp rates of the forecasts and calculating their RMSERR which can be used
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Figure 3.9: Comparison with other studies of solar forecasting [10].

to qualify the ramps prediction accuracy of the forecasting methods.

Using the adjusting post-processing approach with an ensemble of the different

forecasts and their ramp rates adjusts the combined forecasts and leads to further

improvement. The combined forecasts before the adjusting approach have an average

RMSEF of 0.0628 (6% better than the simple average combining method of an aver-

age RMSEF of 0.0667). Meanwhile, after the adjusting, the combined forecasts have

an average RMSEF equalling to 0.0523 which is 17% better than those combined fore-

casts before the adjusting approach and 22% over the average method. In addition,

the capability of the combined forecasts to predict the ramp events enhances after

the adjusting approach since the RMSERR of their ramp rates decreases from 0.0750

to 0.0698, and these adjusted combined forecasts become the best accurate forecasts

for 57 extreme ramp events instead of 33 events before the adjusting approach.

The adjusting approach is more effective in the cloudy hours than the clear-sky

hours.

The computational runtime of combining and adjusting the solar power forecasts for

each hour depends on the random forest size. By considering the day-ahead forecasts
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are already available, the combining and the adjusting approach by a random forest of

100 ensemble trees takes a fraction of a second by a standard dual-core CPU system.

The random forest is a powerful ensemble learning method for combining the dif-

ferent forecasts and quantifying the probability distribution of these combined fore-

casts. Combining the forecasts from various models not only leads to accurate point

forecasts, but also provides a suitable technique to quantify the uncertainty that is

associated with the point forecasts in obtaining probabilistic forecasts.

Throughout the complete year, the ensemble based-probabilistic forecasts are more

accurate than the analog ensemble and persistence probabilistic forecasts. The pin-

ball improvements of the ensemble-based probabilistic forecasts after applying the

adjusting approach are 18% over Analog Ensemble and 16% over the ensemble-based

probabilistic forecasts, both before the adjusting, while the improvement with respect

to baseline persistence probabilistic forecasts rises to 52%.

The CDF with the assumption of a normal distribution is better than the linear

distribution to produce the probabilistic forecasts. In addition, the nonparametric

estimation of CDF without the normality assumption yields a small improvement of

the accuracy of probabilistic forecasts.
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CHAPTER 4: FORECASTING OF SOLAR POWER RAMP EVENTS

4.1 Introduction

The growing integration level of wind and solar energy resources introduces new

regulating and operating challenges in the electric grid. Ramp-rate limits of conven-

tional power plants in the generation mix impose an operating constraint on renewable

energy sources to the point that, at high integration levels, the ramp-rates of wind

and solar resources must be managed by situational awareness tools that are based

on forecasts, especially the ramp event forecasts. To leverage such tools, an adjust-

ing post-processing approach is developed in this study for improving the capability

of hour-ahead combined forecasts of solar power to capture ramp events. The per-

formance evaluation is conducted with several evaluation metrics that consider the

accuracy of forecasts in terms of ramp events. Results of a case study demonstrate

the efficacy of the adjusting approach. Probabilistic forecasts are also generated to

quantify the uncertainty associated with the solar power ramp event forecasts and an

uncertainty analysis is carried out [100].

4.2 Solar Power Ramp Rates

The PV solar power output is naturally variable and it experiences fast and slow

ramps due to cloud cover, and the azimuth and zenith angles of the sun during the

day and seasons.

The ramp rate RRp(t) for the solar power observations are defined as the varitions

of solar power during a certain time interval, and mathematically as follows [8],

Ramp Rate,RRP (t) =
dP (t)

dt
=
P (t)− P (t−D)

D
(4.1)

where P(t) is the solar power at the target hour, which may also be its forecast F(t);

D is the time duration for which the ramp rate is determined (D=1 hour, as the

temporal and the forecast horizon of the PV solar power output). Therefore, when
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using the hour-ahead forecasts, the ramp rate is defined as the difference between

the solar power forecast at the target hour (F(t) and the solar power observation in

the past hour P(t-D)). The event could be a ramp-up (positive rate) or a ramp-down

(negative rate). It could also be an extreme ramp of a high rate, or a normal ramp of

a low rate. The variability of the solar power may be managed by scattering the solar

plants across a larger region, thus taking advantage of the geographical smoothing

effect.

The diurnal changes of PV solar power output in clear-sky days over time intervals

in the range of minutes may be small, but those same clear-sky changes of solar power

output can be significant over an hour. Figure 4.1 shows the solar power of typical

clear-sky days in the winter and summer. It can be observed that the ramp rates

during the 8 am hour in the summer and during the 9 am hour in the winter exceed

0.3 pu/hr, while the ramp rates during the 3 pm hour in the winter and the 4 pm hour

in the summer exceed 0.2 p.u/hr. Thus, even during the clear-sky days, the changes

of solar power output of the PV system can exceed 30% and 20% of its rating capacity

over one hour time period.

Figure 4.1: The solar power of clear sky days and their hourly ramp rates

Ramp rates that are derived from solar plant output forecasts can be compared

with ramp rates of the observed plant output, and the residuals are defined as the
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mean square errors (MSE). The MSE of ramp rates is utilized as a loss function for

quantifying the forecast errors of the ramp events in the adjusting post-processing

approach to enhance the capability of the combined forecasts to capture more ramp

events, as it is explained in section 4.3.

Figure 4.2 illustrates the solar power forecasts of different forecasting models on a

cloudy day. The ramp rates can be up or down, and the best models should be able

to forecast the ramp rates as close as possible to the actual solar power observations.

The dispersion of the different forecasts increases at the extreme ramp events, as seen

at hours 12 to 14 in Figure 4.2. Thus, the ramp rates of various solar power forecasts

can be used as additional features for adjusting and improving the ramp forecasting

of the combined forecasts.

Different Forecasts of a Cloudy Day 

Figure 4.2: Forecasts of the solar power of a cloudy day

The classes are defined by the direction and rate of the ramp while the ramp

duration is 1-hour as the temporal resolution of solar power observations and the

forecast horizon. As shown in Figure 4.3(a), the solar power ramp events are classified

into four classes, and the hourly distribution of ramp classes above and below the

threshold ramp rate (Tsh = 0.4 per unit/hr of the rating capacity) is shown by

the scatter plot in Figure 4.3(b). The threshold (0.4 pu/hr) is chosen as a mid-level

value of ramp rates since the maximum rate is 0.76 pu/hr, and it is also above the



69

ramp rates of the daily normal ramp events which occur in the mornings and late

afternoons. Setting the threshold to the medium value of ramp rates is also common

in wind power ramp event forecasting [55].

(a)

(b)

Solar Ramp Events

Ramp-Down EventsRamp-Up Events

Low-RateHigh-Rate Low-RateHigh-Rate

Class1

Rate  +Tsh

Class2

0  Rate < +Tsh

Class3

Rate  Tsh

Class4

0  Rate > Tsh

Figure 4.3: (a) Solar power ramp events classes and (b) their ramp-rate scatter plot

4.3 Adjusting Post-Processing Approach

The ensemble learning, random forest is grown by the algorithm that is presented

in [77]. The ensemble of the trees {Tb}B1 , where B is the number of trees in the

random forest. In the regression problem, the prediction of a given point t of the
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forest output f̂RF is obtained by averaging the trees’ outputs given by (4.2).

f̂RF =
1

B

B∑
b=1

Tb(x) (4.2)

Thus, the total accuracy of the combined forecasts is improved, but they are not meant

to forecast the extreme events, such as the solar power ramp events. Therefore, for

improvement of the combined forecasts to include ramp events, the adjusting approach

is implemented for hour-ahead combined forecasts as depicted in Figure 4.4. The

adjusting post-processing approach is summarized in three main stages, as follows:

(i) Collect the available 24-hour-ahead solar power forecasts based on NWP and

hour-ahead forecasts.

(ii) Combine the forecasts along with the persistence forecasts in the random forest

to obtain the combined forecasts.

(iii) Finally, add the ramp rates of all forecasts, as determined by (4.3), including

the ramp rates of the combined forecasts. Then, apply the random forest to the

combined forecasts again, and use two loss functions, shown in (4.4) and (4.5)

to minimize the errors of the forecasts and their ramp rates.

Ramp Rate,RRFP (t) =
F (t)− P (t−D)

D
(4.3)

where P (t −D) is the observed solar power in the past hour; F (t) is the forecast of

solar power at the next target hour; D is the time duration for which the ramp rate

is determined.

MSEF =
1

n

n∑
i=1

(Pi − Fi)2; RMSEF =
√
MSEF (4.4)
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where F is the forecasted solar power and P is the observed solar power; n is the

number of data samples, which can be day-hours or month-hours.

MSERR =
1

n

n∑
i=1

(RRPi
−RRFi

)2; RMSERR =
√
MSERR (4.5)

where RRP and RRF are ramp rates of solar power observations and ramp rates of

solar power forecasts, respectively.
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Figure 4.4: Block diagram of the adjusting approach

Thus, this post-processing approach is, in essence, jointly using the forecasted
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ramp rates and two loss functions, where, one of them minimizes the errors of the

solar power forecasts, while the other minimizes the ramp rates of the solar power

forecasts to boost the accuracy of the combined forecasts in terms of ramp events.

4.4 Probabilistic forecasts of solar power ramp events

Forecasting of the solar power ramp events is associated with substantial uncer-

tainty, and consequently, probabilistic forecasts are more useful for the system oper-

ator in situational awareness tools to help monitor the stability of the power system,

especially at high penetration levels of solar energy resources [3].

The outcomes of numerical weather prediction (NWP) models have information

about the weather uncertainty. In addition, the solar power forecasts that are driven

from NWP also carry similar information about the uncertainty. Thus, they can be

utilized to estimate the associated uncertainty of the forecast errors to produce the

probabilistic forecasts [61].

4.4.1 Ensemble-based probabilistic forecasts

From the ensemble learning, random forest, the forecasts of the solar power at

a given instant of time (t) is obtained by averaging the outputs of the individual

trees, as in (4.2). Each tree of the random forest is trained with random samples

of the dataset and random combinations of features. In the forecasting process, the

random forest produces various forecasts, which can be then used for estimating the

uncertainty of the average output and for producing the probabilistic forecasts.

4.4.2 Probability distributions by the cumulative distribution function (CDF)

Three probability distributions are implemented to deduce the cumulative distri-

bution function (CDF) of the generated forecasts form the ensemble learning, the

unified, normal, and nonparametric distributions of probability.

Figure 4.5 is an illustrative example for deriving the probability distribution of the

probabilistic forecasts for hour 12:00 pm on May 29th, 2013 as shown in Figure 4.5(a)
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with an observed power of 0.612p.u. Figure 4.5(b) shows the random forest outcomes

for this hour with three probability distributions. Figure 4.5(c) illustrates how the

probabilistic forecasts are generated from different CDFs for this hour (i.e., 12:00 pm

on May 29th), where the CDFs range from 0.3 p.u. to 0.7 p.u.

In Figs. 4.5(b) and 4.5(c), the curves of normal and non-parametric CDFs are

almost the same, while the uniform CDF is not close to these curves. Thus, the er-

rors form the normal and the non-parametric distributions are approximately equal.

For the hourly forecasts over the entire year, the probability distribution with non-

parametric CDF is used, although the assumption of normality does not significantly

reduce the accuracy of probabilistic forecasts compared to the non-parametric prob-

ability distribution.

4.4.3 Quantifying the solar ramp event uncertainty by the probabilistic forecasts

The probabilistic forecasts quantify the uncertainty in the solar power ramp event

forecasts. In this stage, the probabilistic forecasts of solar power are converted to the

probabilistic forecasts of ramp rates by implementing the ramp definition in (4.1).

Table 4.1 illustrates three probabilistic forecasts of solar power ramp rates with

different levels of accuracy to estimate the probability of the classes of ramp events

at the same given hour in Figure 4.5, i.e., 12 pm, on a cloudy morning day, May

29th. The ramp-rate classes are specified by a threshold (Tsh=0.4 p.u/hr). From the

observations, as shown in Figure 4.5(a), this ramp event has a high rate in the up

direction.

Needless to say that all three probabilistic forecasts of ramp rates easily capture

the direction of the ramp event since all quantiles have positive ramp rates; hence the

ramp direction is up with high certainty (100% as up, 0% as down). Meanwhile, for

the rate of the ramp event, the probabilistic forecasts (C) of solar power ramp rates

have the highest certainty (55% as a high-rate and 45% as a low-rate ramp event).

Outcomes of quantiles with high-rate ramps (i.e., |Rate| ≥ 0.4 pu/hr) are shaded
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(a) (b)

(c)

Figure 4.5: Probability distributions of the random forest outcomes at 12:00 pm on
May 29th. (a) Solar power observations of the given day, (b) histograms of the random
forest outcomes of the forecast at 12:00pm,(c) estimated CDFs for the probabilistic
forecasts at 12:00pm.

in Table 4.1. The solar power observations, shown in Figure4.5(a), reveal that this

cloudy morning day contains PV output ramps from 0.14 p.u. at 11 am to 0.612 p.u.

at 12 pm.

Table 4.1: Three different probabilistic forecasts of a ramp event at 12:00 pm on May
29th

Probabilistic

Forecasts

Ramp Rate of Quantiles (1 to 99)
Probability of Ramp Classes

Class1 Class2 Class3 Class4

Q1 Q45 Q46 Q50 Q61 Q62 Q80 Q81 Q99 (Up,

HR)

(Up,

LR)

(Down,

HR)

(Down,

LR)

A 0.101 0.261 0.265 0.279 0.318 0.321 0.396 0.401 0.457 20% 80% 0% 0%

B 0.266 0.364 0.366 0.374 0.398 0.400 0.445 0.449 0.483 39% 61% 0% 0%

C 0.313 0.399 0.401 0.409 0.430 0.432 0.472 0.475 0.505 55% 45% 0% 0%

Up: Ramp-Up, Down: Ramp-Down, LR: Low-Rate Ramp, HR: High-Rate Ramp



75

This procedure of producing the probabilistic forecasts of solar power ramp events

are carried out for all hours over the entire year. The probabilistic forecasts of ramp

rates that have a certainty of forecast interval (CFI) that exceeds half of the quantiles

(50%) is used to identify the rate of the ramp events in the case study.

4.4.4 Evaluation of the certainty of the probabilistic forecasts of solar ramp events

The estimated certainty of forecast interval (CFI) of the probabilistic forecasts of

solar ramp events are calculated for each event from the outcomes of the quantiles.

The average of the certainty of forecast interval (CFIavg) is then calculated as in

(4.7).

CFI(RCn) =
1

99

99∑
i=1

Qi
n, Qi

n =


1, RCn

F (Qi
n) = RCObs

n

0, Otherwise

(4.6)

CFIavg =
1

N

N∑
n=1

CFI(RCn) (4.7)

where CFI(RCn) is the estimated certainty interval of the probabilistic forecasts of

the nth ramp event; Qi
n is the outcome of the i th quantile of the probabilistic forecasts

of the nth ramp event; RCn
F (Qi

n) is the forecasted ramp class of the nth ramp event

of the i th quantile; RCObs
n is the observed ramp class of the nth ramp event; N is the

total number of ramp events for which the CFIavg is estimated.

4.5 Modeling

4.5.1 Data Description

The solar power systems considered for the case study are located in Australia, and

their specifications are shown in Table 4.2.

The weather forecast data and the measured solar power data span from April

2012 to May 2014. The weather forecasts are derived from the European Center for

Medium-Range Weather Forecasts (ECMWF), which is a global NWP model. The
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weather forecasts include the cloud cover, cloud water and ice contents, solar irradi-

ance, air temperature, wind, relative humidity, air pressure, precipitation. The data

of solar power systems and weather forecasts are available in the public domain [69].

Table 4.2: Specifications of solar PV systems

PV System PV1 PV2 PV3

Longitude 149◦06’49”E 149◦04’01”E 149◦09’E

Latitude 35◦16’30”S 35◦23’32”S 35◦32’S

Altitude (m) 595 602 951

Capacity (W) 1560 4940 4000

(Number), Type

of PV Panels

(8), Solarfun

SF160-24-1M195

(26), Suntech

STP200-18/ud

(20), Suntech

STP200-18/ud

Orientation of

Panels

38◦ Clockwise

from North,

Panel Tilt (36◦)

327◦ Clockwise

from North,

Panel Tilt (35◦)

31◦ Clockwise

from North,

Panel Tilt (21◦)

4.5.2 The Methodology

First of all, the PV1 solar power system is adopted as the target system, where

the forecasting of solar power ramp events is performed, while the other two systems

(PV2 and PV3) are utilized as off-site information. The aim is to study the spatial

effect of the neighboring systems.

4.5.2.1 Features selection

The different solar power forecasts and the associated ramp rates are used as fea-

tures in the forecasting of solar power ramp events. The search for the most effective

features is conducted by the wrapper algorithm, which is a greedy search technique

with forward selection of important features, as described in the simplified pseu-

docode of the wrapper algorithm. The flowchart of the wrapper algorithm is shown

in Figure 2.8
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Wrapper Algorithm

Inputs:
D = {F1, F2, ..., FN}; dataset D with N number of available features
S0; initial subset of features
δ = Diff. Index ; a feature selection criterion
Output: Sbest; best subset of features
1 Initialize S0 = {φ}; initialize of features ranking
2 For i=1,...,N;
D = Fi; and run a given M model with a feature i
Evaluate the model M with a score δ
S0 = Fbest; set S0 to the best scored feature
δ = δbest; set the value of the criterion δ to the Fbest score
End For; with S0 = Fbest

3 Initialize Sbest = S0; n=N-1; initialize of features subset selection
4 For j=1,...,n;
Fbest /∈ D; Remove Fbest from the available features of D
D = {Sbest, Fj}; add a new feature j to best features subset
Run and evaluate the model M with D by using a suitable score δ;
If δ > δbest;
Fbest = Fj; set the Fbest to the feature j
Sbest = {Sbest, Fbest}; set Sbest to this best scored subset of features
δ = δbest; set the value of the criterion δ to the Sbest score
n=n-1; decrease the available features number by 1
End If

End For
5 Stop; no more features to select, and Sbest is the best features subset

Since the objective is to forecast the solar power ramp events, the difference between

the true and false events of high-rate ramps (Diff. Index) is used to score the search

outcomes. The cross-validation strategy is conducted with 12-folds, a month for each

fold, and hence, the selected features are validated over a complete year.

4.5.2.2 Individual forecasting models

Forecasting the solar ramp events depends on solar power forecasts and weather

forecasts as inputs to the models. Numerous forecasts are produced from different

models. Some forecasts are 24-hour-ahead hourly solar power forecasts based on

NWP output, which use multiple linear regression (MLR), artificial neural networks
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(ANN), or support vector regression (SVR), refer to section 2.5 for description of those

models. In addition, the time-series forecasting models may also be built to generate

hour-ahead solar power forecasts from time-series autoregressive linear and nonlinear

models. Some time-series models without exogenous variables, such as autoregressive

integrated moving average (ARIMA) and nonlinear autoregressive network (NAR)

models, depend only on the historical solar power series, while other models, such

as ARIMAX and NARX models, include weather data as exogenous variables [9].

Preprocessing and detrending procedures are implemented to make the time-series

stationary [71]. In addition, the basic persistence hour-ahead forecasts are produced

from the historical ground measurements of solar power, as described in (4.8), which is

the hourly lagging data of the measured solar power. The most recent measurements

of solar power outputs from neighboring PV systems are used and they can be a

suitable alternative to the data obtained from satellite systems.

Persistence Model, F (t) = P (t− 1) (4.8)

where F is the forecast, P is the actual solar power.

4.5.2.3 Combining of forecasts

The hour-ahead combined forecasts of solar power are produced by applying the

ensemble learning method, i.e., random forest, as shown in the combining stage in

Figure 4.4 of the adjusting approach block diagram. It combines the weather forecasts

and the generated 24-hour-ahead forecasts from the forecasting stage, all blended

together along with the persistence forecasts of the target PV system, PV1. The past

forecasts of the previous days are also included in the combining stage to boost the

ensemble learning to find the associative rules to obtain more accurate hour-ahead

combined forecasts.
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4.5.2.4 Adjusting forecasts

Finally, the last stage of the post-processing approach is implemented, combining

the most effective features with the combined forecasts and the ramp rates of the

forecasts in the random forest. Two loss functions, MSEF and MSERR are used to

train the ensemble learning tool, random forest, as shown in Figure 4.4. Both those

loss functions minimize the error forecasts of the solar power and their ramp events.

The ensemble learning objective function J of the adjusting approach may be written

as follows:

Min J(MSEF ,MSERR) (4.9)

where MSEF and MSERR are the loss functions of the solar power forecasts and

their ramp rates, as shown in (4.4) and (4.5), respectively.

In most of the post-processing approaches, such as the model output statistics

(MOS), which are either empirical higher degree polynomials or regression models

that best fit the past forecasts to their observations, the loss function of the forecasts

MSEF may be used in the training stage to reduce the forecast errors. Then, the fitted

relationship is applied to extrapolate the adjusted value of the forecast at a future

hour. In the proposed adjusting approach, the ramp rates of solar power forecasts and

the loss function MSERR are included in addition to the solar power forecasts and

the loss function MSEF . Thus, the combined forecasts from the ensemble learning

are not only fitted with the solar power forecasts, but also with the ramp rates of the

solar power forecasts.

4.6 Case Study Results and Discussion

4.6.1 Description of the Solar Ramp Classes

The PV1 system is selected to conduct the solar power ramp event forecasting, with

off-site information coming from the two neighboring PV systems. The PV system
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data is described in section 4.5.1. The testing part of the data contains 12 months

of measurements, from May 2013 to June 2014. After filtering the night hours and

eliminating the very low ramps at sunrise and sunset, there were a total of 3,828

ramp events of the test data. The four classes of solar power ramp events are shown

in Figure 4.3(a), and the distribution of the ramp events at (Tsh=0.4 pu/hr) is shown

in Figure 4.3(b).

4.6.2 Features Selection

4.6.2.1 2-D projection of available features

Various forecasts of weather and solar power are implemented as features to forecast

the solar power ramp events. It is crucial to investigate these available features. Fig-

ure 4.6 is the projection of the weather, and all available features into a 2-dimensional

space by plotting the two main principles of the principal component analysis (PCA).

Weather forecasts, by themselves, are not enough to make the ramp events separable,

as shown in Figure 4.6(a). On the other hand, using additional features, such as

hour-ahead time-series and combined forecasts and their ramp rates, can make the

ramp event data more separable, especially in terms of the direction (Up/Down) of

the ramps, as shown in Figure 4.6(b). The low-rate events are scattered, and they

are not separable from the high-rate events in the 2-D space, and this is what makes

the ramp event forecasting more challenging in terms of ramp rates. For this rea-

son, evaluations are carried out for the ramp rate classes (High/Low) as well as the

direction classes (Up/Down) of the ramp events.

4.6.2.2 The most effective features of solar power ramp event forecasting

The features search by the wrapper algorithm with forward selection leads to the

following subset of the most effective features for solar power ramp event forecasting:

• Cloud information, including cloud water content and cloud cover;

• Persistence forecats of PV1 and PV3;
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(a)

(b)

Figure 4.6: PCA projection of PC1 and PC1 of features of solar power ramp event
forecasting. (a) for weather features, (b) for all available features

• Hour-ahead of solar power forecats from NARX and combined forecasts.

For the weather features, the cloud water content and cloud cover were found to

be among the most effective features. For the solar power forecasts, the persistence

PV1 and PV3 forecasts, nonlinear autoregressive with exogenous variables (NARX)

forecasts, and combined forecasts were the selected features. It should be mentioned
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that the selected solar power forecasts were all of the hour-ahead forecast category.

The persistence PV3 was among the most important features because it consists of PV

panels with very similar physical orientation as that in PV1 (see Table 4.2), for which

the ramp event forecasts were generated. The persistence of PV3 also has a higher

correlation, since the correlation of the persistence forecasts of PV3 and PV2 with

solar power observations of PV1 are 0.87 and 0.68 respectively. The three PV systems

have a distance of about 5 miles from one another. These solar power forecasts (i.e.,

persistence PV1 and PV3, NARX, and Combined) and their ramp rates are used

as the most effective features in the solar ramp event forecasting approach shown in

Figure 4.4.

4.6.3 Solar Power Ramp Event Forecasts

The following results are the forecasts of four classes of ramp events of solar power.

Although the evaluation metrics focus on high and low-ramp classes, the other classes

of the results are implicitly included within the evaluation; see Remark 1. However,

the direction of high-rate ramp events (|Rate| ≥ 0.4 pu/hr) are separable and accu-

rately forecasted, as shown in Figure 4.6(b).

4.6.3.1 Point and probabilistic forecasts of solar power ramp events

The forecasts of the different ramp event forecasting methods are shown in Fig-

ure 4.7, with different evaluation metrics. All metrics are positive-oriented, which

means higher positive values indicate better forecasts. The evaluation metrics are de-

fined in section 2.9. The right scale of the y-axis represents Diff. Index. The forecasts

are conducted with four classes of ramp events, and the evaluation focuses on the

high-rate classes. Out of the total 3,828 ramp events that are forecasted, there are

162 true events of high-rate ramp events, while the rest (3,666 events) are possible

false events that could be forecasted as high-rate ramp events. What follows is a

discussion of the results shown in Figure 4.7, starting from left and continuing to the
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right.

1) The persistence PV1 column show the basic forecasts, which is a common bench-

mark that is adopted in renewable energy forecasting. They are lagged in time, so that

the most recent solar power observations are used as forecasts for the next hours as

shown in (4.8). They are the less accurate forecasts as indicated by all the evaluation

metrics used.

2) NARX, or nonlinear autoregressive with exogenous variables forecasts are hour-

ahead time-series forecasts, which usually outperforms the persistence forecasts. These

forecasts have a Diff. Index of high-rate ramps with a negative value (-2), since there

are 11 false events that are forecasted as high-rate ramp events, and 9 high-rate ramp

events are correctly captured (out of the total 162 high-rate events). As a result of the

lagging process in the persistence and autocorrelation in the NARX, both forecasts

are out of phase with the actual observations, and can thereby, cause false ramp event

forecasts.
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Evaluation Solar Power Ramp Events Forecasts by Using Different Evaluation Metrics

Precision (%) Recall (%) Balanced Precision (%) F1-Score (%)  Diff(True-False)F1 score Diff. index

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Persistence,

PV1
NARX

Simple 

Average 

(NARX, MLR, 

ANN, SVR) 

Combined 

(Pers. PV1, 

MLR, ANN, 

SVR)

Adjust 

Approach 

(Pers. PV1, 

MLR, ANN, 

SVR)

Combined 

(Pers. PV1 & 

PV3, NARX, 

Clouds, MLR, 

ANN, SVR)

Adjust 

Approach 

(Pers. PV1 & 

PV3, NARX, 

Clouds, MLR, 

ANN, SVR)

Probabilistic 

Forecasts 

(Q1 to Q99)

Probabilistic 

Forecasts

(Q25 to Q75)

Precision (%) 0% 45% 67% 74% 75% 81% 87% 88% 81%

Recall (%) 0% 6% 32% 28% 39% 49% 51% 53% 67%

Balanced Precision (%) 34% 61% 80% 79% 83% 81% 86% 90% 88%

F1 score (%) 0% 10% 43% 41% 51% 64% 64% 66% 73%

Diff. index (True-False) 0 -2 26 30 42 61 71 74 83

Figure 4.7: Forecasts of solar power ramp events with different evaluation metrics of
high-rate ramp events (|Rate| ≥ 0.4 pu/hr = 162 events).
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The persistence and NARX forecasts and associated ramp rates, as well as cloud

information are not effective individually without incorporation of other forecasts that

are not mainly built on lagging solar power observations, such as MLR, ANN, SVR.

3) Simple average: these are combined forecasts obtained by averaging the 24-hour-

ahead solar power forecasts (MLR, ANN, SVR) associated with hour-ahead forecasts

(NARX). These forecasts are useful for a valid comparison because they are produced

by a simple average method, which is free of any tunable parameters [101]. This

method has Diff. Index=26, the F1 score=43%, and more true events of high-rate

ramps are forecasted than false events.

4) Hour-ahead combined forecasts by the ensemble learning instead of the simple

average. These are obtained by assigning different unequal weights for the solar power

forecasts (MLR, ANN, SVR, and persistence PV1) depending on the associative rules

of training with different weather features, and as a result, the forecasts are slightly

improved with Diff. Index=30.

5) Forecasts based on the adjusting post-processing approach by using the same

input forecasts as in the ensemble learning (MLR, ANN, SVR, and Persistence PV1),

and their ramp rates, and also using two loss functions, as shown in Figure 4. These

forecasts have Diff. Index=42 and F1 score=51%, indicating that the adjusting ap-

proach by combining similar forecasts leads to more accurate forecasts of ramp events.

6) The combined forecasts of solar power forecasts (MLR, ANN, SVR) in the en-

semble leaning by including the most effective features (persistence PV1, persistence

PV3, NARX, and cloud information). Here Diff. Index=61 and F1 score=64%. In-

cluding the clouds, persistence PV3, and NARX clearly improves the forecasts of

ramp events, as seen in the Diff. Index.

7) The adjusting approach to combine the solar power forecasts (MLR, ANN, SVR)

with the most effective features. This is the main framework of the proposed approach

as depicted in Figure 4.4. It has Diff. Index=71, which is better than the ensemble
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learning method when using the same features.

8) The probabilistic forecasts by the adjusting approach while using the most ef-

fective features with all quantiles (Q1-Q99), and by taking 50% of the outcomes of

quantiles to identify the ramp class for each event yields Diff. Index=74.

9) The probabilistic forecasts with quantiles (Q25-Q75) lead to Diff. Index=83 and

F1 score=73%, indicating that using the probabilistic forecasts of the quantiles be-

tween (Q25-Q75) gives better forecasts because the generated forecasts are biased

and overestimate the actual solar power, which is common in forecasts that use in-

formation from NWP models [98]. The uncertainty analysis of these probabilistic

forecasts with different ramp rates and thresholds is discussed in the next subsection.

Thus, the adjusting approach as post-processing of the combined forecasts improves

the forecasts in terms of ramp event forecasting, and produces probabilistic forecasts

to estimate the uncertainty as well.

4.6.3.2 Uncertainty analysis of probabilistic forecasts of solar power ramp events

The probabilistic forecasts quantify the uncertainty of the classes of ramp events,

and so, those results are presented in terms of certainty of forecast intervals (CFI) [61].

An example of a ramp event is presented in Table 4.1, and the average of esti-

mated certainty of forecast intervals can be calculated from (4.7). Using a threshold

(Tsh=0.4 pu/hr), a middle value of ramp rates [55], and with eight ranges of ramp

rates as shown in Fig 4.8, we generate probabilistic forecasts of all 3,828 events and

determine the average and standard deviation of certainty of forecast intervals for

each range of ramp rates. The certainty boundary of the probabilistic forecasts of the

ramp events depends on the purpose for which the ramp event forecasts are deployed.

Let us assume that the lower and the upper boundaries are LB (e.g., 0.20) and UB

(e.g., 0.80), so that:

• CFI ≥ UB: defines a certain high-rate ramp event;
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• CFI ≤ LB: defines a certain low-rate ramp event;

• LB < CFI < UB: for an uncertain class of ramp event.

From Figure 4.8 and with this CFI boundary, the lower and higher rates of ramps

have high certainty. On the other hand, ramp rates between 0.4 pu/hr and 0.6 pu/hr

are the most uncertain (0.20 < Avg(CFI) < 0.80), and the deviation is the highest,

which indicates a dispersion of uncertainty among the probabilistic forecasts at this

range of ramp rates.

The system operator might be concerned about other thresholds rather than the

threshold of 0.4 pu/hr to define the ramp rates. In that case, the probabilistic fore-

casts of ramp rates should be generated for the specified thresholds. The average cer-

tainty of the probabilistic forecasts of ramp events that have rates higher than various

thresholds are shown in Figure 4.9. The probabilistic forecasts at lower thresholds

have a higher certainty of the ramp events. Thus, with more conservative schemes

of ramp rates at lower thresholds, the probabilistic forecasts have a higher certainty.

The certainty of the probabilistic forecasts decreases by increasing the thresholds.

0% 0% 2%

15%

43%

68%

88%
94%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
er

ta
in

ty
 (

%
)

Average of Certainty Std. Dv. of Certainty

Range of 

Rates, |p.u/hr|
[0-0.1) [0.1-0.2) [0.2-0.3) [0.3-0.4) [0.4-0.5) [0.5-0.6) [0.6-0.7) [0.7-0.8)

Ramp Events 1787 1183 478 218 108 41 11 2

Figure 4.8: The certainty of probabilistic forecasts by the adjusting approach for
different ranges of ramp rates when threshold=0.4 pu/hr.
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Figure 4.9: The certainty of probabilistic forecasts by the adjusting approach with
different thresholds, Tsh=0.1 to 0.7 pu/hr.

4.7 Forecasting Solar Power Ramp Events Using Machine Learning Classification

Techniques

Classification techniques are implemented to classify and forecast the solar power

ramp events, and comparing their performance with the previous results of the ad-

justing approach. A case study over an entire year is conducted and several evaluation

metrics are considered to assess the performance of the classification models of solar

power ramp event forecasts [102].

4.7.1 Case Study

This case study uses the same dataset of the case study which is descried in sec-

tion 4.6. The results of this study can be also compared with the results of applying

the adjusting approach as shown in Figure 4.7.

The objective of implementing the classification techniques for the solar power ramp

event forecasting is to increase the true events and decrease the false events of high-

rate ramp casess. The classes of solar power ramp events are shown in Figure 4.3(a),

and the distribution of the ramp events at (Tsh=0.4 pu/hr) is shown in Figure 4.3(b).
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4.7.2 Results and Evaluation

Based on the wrapper approach to search the best features for the classification

models, the most effective features were found, as shown in Table 4.3(a). The selected

features and the parameters of each classification model are given in Table 4.3(b), the

features are represented by numbers associated with them as in Table 4.3(a).

Table 4.4 shows the results of implementing the classification techniques to forecasts

the solar power ramp events. Figure 4.10 displays a graph of the results of the

classification techniques in terms of different evaluation metrics for the 162 high-rate

ramp events. There are 3828 total ramp events identified, 3666 of them are low-rate

and 162 are high-rate ramp events.

Since the direction of ramps are easily forecasted with high accuracy, they are

combined for the evaluation metrics for a binary classification problem with two

main classes, as follows: high-rate events include both up and down ramp events.

Low-rate event also include both up and down ramp events. The Diff. (true-false) is

represented by integers, not percentages, so that its scale is shown on the right hand

side y-axis on the graph.

For the individual calcification methods, the best forecasts are obtained by random

forest (RF) and SVM, where the Diff Index = 48 and F1 score = 55% for SVM,

and Diff Index = 51 and F1 score = 56% for RF. The combined forecasts of the

different classification methods yields the best performance with Diff Index = 60 and

F1 score = 64%.

As shown in Table 4.4, in terms of the precision, the logistic regression model gives

a competitive precision when compared to the RF model, since it has a lower number

of false events with respect to true events of high-rate classes. On the other hand,

in terms of the recall, the poor performance of the logistic regression is identified, as

it captures a lower number of true events of high-rate classes compared to the RF.

Thus, for an overall assessment of the classification model performance, evaluation
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metrics such as the Diff. Index and F1 score are more useful.

Table 4.3: (a) The Most important features; (b) the selected features and the param-
eters for each model

(a) (b)

No Most Important Features

1
Cloud water content, NWP

output

2 Cloud cover, NWP output

3
Top net solar radiation, NWP

output

4
Hour-ahead combined

forecasts of solar power

5

Ramp rates of NWP-driven

day-ahead solar power

forecasts by ANN

6

Ramp rates of NWP-driven

day-ahead solar power

forecasts by SVR

7

Ramp rates of hour-ahead

combined forecasts of solar

power

8

Ramp rates of time-series

hour-ahead forecasts of solar

power by NARX

9

Ramp classes of persistence

hour-ahead forecasts of solar

power

10

Ramp classes of NWP-drive

day-ahead solar power

forecasts by ANN

11

Ramp classes of NWP-driven

day-ahead solar power

forecasts by SVR

12

Ramp classes of hour-ahead

combined forecasts of solar

power

Model Parameters
Selected

Features

Naive

Bayes

Distribution=Normal; distribution

parameters are estimated in the

training

1, 5, 11

LDA
Its coefficients (µ) are fitted in the

training

1, 2, 3, 6,

9, 10, 12

Decision

Tree
Max of splits=15; Min leaf size=1 1, 12

kNN
Euclidean distance; k=15 (nearest 15

neighbors)

1, 4, 6,

7,8

Logistic

Regression

Its coefficients (β) are fitted in the

training

1, 3, 11,

12

Random

Forests

Forest size=100 trees; Min. leaf

size=1

1, 3, 11,

12

SVM
Kernel= Radial basis function;

C=184; γ = 5

1, 3, 11,

12

ANN Hidden layer=1; Neurons=10 1, 5, 12
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Table 4.4: Detailed results of the solar power ramp event forecasts by the classification
techniques

Classification

Method

All

True

Events

High-

Rate

True

Events

All

False

Events

High-

Rate

False

Events

Total

Accuracy

(%)

Precision

(%)

Recall

(%)

Balanced

Precision

(%)

F1 score

(%)

Diff. Index

(True-False)

Naive Bayes 3165 70 663 43 83% 62% 43% 75% 51% 27

LDA 3288 64 540 34 86% 65% 40% 78% 49% 30

Decision

Trees
3077 61 751 23 80% 73% 38% 80% 50% 38

kNN 3200 50 628 23 84% 68% 31% 78% 43% 27

Logistic

Regression
3102 49 726 13 81% 79% 30% 59% 44% 36

Random

Forest
3118 70 710 19 81% 79% 43% 80% 56% 51

SVM 3125 69 703 21 82% 77% 43% 80% 55% 48

ANN 3259 61 569 26 85% 70% 38% 78% 49% 35

Combined

Classifiers
3309 81 519 21 86% 79% 50% 87% 61% 60

Out of 3828 162 3828 3666

Figure 4.10: Solar power ramp event forecasts by the classification techniques of the
high-rate ramp events (162 events)
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4.8 Summary

Forecasting of solar ramp events is more challenging than simply identifying solar

power ramps in the historical data because the ramp events, especially the extreme

ramps, are hardly represented by the weather forecasts that are used as inputs in

the forecasting models of ramp events. The quality of ramp event forecasts depends

highly on the quality of the weather forecasts form NWP models.

Combining different solar power forecasts by the ensemble learning method can

improve the forecasts. In this paper, we apply an adjusting approach to enhance the

combined forecasts to forecast ramp events more accurately. The computational time

of the adjusting approach is just a few seconds for each hourly forecast, depending on

the structure of the ensemble learning method, i.e., the random forest. The forecasts

may be used as input variables to comply with the system operator’s requirements

for applications that require forecasts of solar power ramp events, such as control

schemes of energy storage and voltage regulation equipment, as well as for situational

awareness tools to maintain the reliability and stability of the grid.

The features needed for forecasting solar power ramp events are different from

those required to forecast solar power. The insignificant ramps events of very low-

rate ramps can be deemed as noise data in the model training, and only affects the

forecasts of high-rate ramp events. However, those very low-rate ramp events are

excluded for the sake of higher accuracy of ramp events. The direction classes of

ramp events (i.e., up and down) are forecasted easier and with higher accuracy than

the magnitude classes of ramp events (i.e., low- and high-rate), especially for the

high-rate ramp events.

The forecasting approach for solar power ramp events can be considered as a sep-

arate forecasting system. The outputs of solar power ramp event forecasting system

are the four possible classes of solar power ramp events.

The persistence forecasts or the lagged solar power observations of the target and
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relevant neighboring PV systems play key roles in hour-ahead forecasts of solar ramp

events, and this information can be an alternative to the information provided by

satellite systems and sky imagery devices, especially in the case of abundant obser-

vations of high density of neighboring PV systems.

An uncertainty analysis is used with the probabilistic forecasts of solar power ramp

events because those classes of ramp events are categorical. The uncertainly analysis

shows the lower thresholds have a higher certainty of the ramp events. Thus, those

probabilistic forecasts are more valuable with conservative operating schemes. Several

classification techniques are implemented to forecast the solar power ramp events by

using features including solar power forecasts and weather predictions. This study

presents the challenging aspect of ramp forecasting, and it is not comparable to

studies that detect the ramp events by using historical solar power observations and

meteorological measurements. For a general assessment of the classification model

performance for solar power ramp event forecasting, the evaluation metrics that con-

sider the precision and the recall together, such as Diff. Index and F1 score, should

be used, in order to properly weigh both the true and the false events of high-rate

ramp events.

In the individual classification models, the RF and SVM models yield the most

accurate forecasts of solar power ramp events. In addition, combining the outcomes

of the models improves the accuracy and leads to a more robust performance. The

classification techniques (i.e., RF, SVM, and combined classifiers) outperform the

solar power forecasts that are used as features to these classification techniques, and

hence, this is one of the advantages of using the classification techniques with several

solar power forecasts as inputs.

Imbalanced classification techniques are also investigated for solar power ramp

event forecasting, including 1) Resembling techniques of the minority and majority

of ramp classes; 2) Synthetic Minority Over-sampling Technique (SMOTE); 3) Mis-
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classification costs for the minority classes of high-rate ramp events; 4) Autoencoder

with the existing features to create more suitable representative features.

Those imbalanced classification techniques either improve the recall or the precision

of the classification. In other words, either increase the true events or decrease the

false events of ramp cases, not improving both of them. Meanwhile, in our case,

the objective is to obtain a higher number of true events and lower number of false

events of the high-rate ramp cases of solar power. Moreover, the features - even

in the imbalanced methods - are extracted from the weather forecasts with a high

uncertainty of weather conditions at some ramp events. The main concern of the

classification methods is the high computational cost with only a slight improvement.

The key factor of the forecast accuracy of solar power ramps is the accuracy of

weather forecasts, and improving those weather forecasts boosts the accuracy of solar

power ramps.
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CHAPTER 5: INTRA-HOUR FORECASTS OF SOLAR POWER AND RAMP

EVENTS

The study in this chapter serves as an out-of-sample test of forecasting accuracy

by applying the adjusting approach [103]. In this chapter the adjusting approach is

also implemented for improving intra-hourly forecasts of solar power and ramp events

by using other data of PV solar power systems at different locations in the United

States. Thus, various individual intra-hourly forecasts of solar power are combined

and adjusted by applying the adjusting approach. Both point and probabilistic fore-

casts of solar power are included. After that, solar power ramp event forecasting by

the adjusting approach is carried out.

5.1 Data Description

The data description and the specifications of PV solar systems are presented in

Table 5.1. The dataset of previous studies is also included in the rightmost column,

which has the lower temporal resolution, 1-hour. The datasets of PV systems at the

U.S. sites have higher temporal resolutions, wherein the original resolutions are 15-

min for Golden, CO, 5-min for Cocoa, FL, and Eugene, OR. These data are associated

with measurements of several weather variables listed in Table 5.2, and were acquired

from NREL [104,105]. The U.S. data is adopted for evaluating the adjusting approach

with intra-hour forecasts of solar power and ramp events.

Unfortunately, there are missing values of the intra-hourly data, conversely to the

previously used high quality data of the PV site in Australia, which is only with

hourly observations of solar power, and hence, not suitable for intra-hour forecasts.

If the missing values in the data of U.S. sites are neglected, this can impact the ramp

events modeling and forecasting. Therefore, those missing values are interpolated to

fill the temporal gaps in the solar power time-series.

To obtain a consistent duration of the ramp rates, 3 durations are chosen (15-min,
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30-min, and 60-min), and these durations are also the rolling windows for intra-hour

forecasts of solar power and ramp events. It can be noticed in Table 5.1 that the

variability (i.e., standard deviation) of the U.S. data decreases as the data resolution

becomes lower. However, the Australian data with only 1-hour resolution has the

highest variability (st.div.=0.259).

Table 5.1: Data description and specifications of PV solar systems

Dataset Golden, CO Cocoa, FL Eugene, OR Canberra

Country USA USA USA Australia

Climate type Semi-arid Subtropical Marine coast Oceanic

Latitude (◦, -S) 39.74 28.39 44.05 -35.16

Longitude (◦, -W) -105.18 -80.46 -123.07 149.06

Elevation above sea
(m)

1798 12 145 595

Number of panels 11 11 11 8

Panel tilt (◦) from
horizontal

40 28.5 44 36

Panel orientation (◦)
clockwise from North

180 180 180 38

Total capacity (W) 1252 1272 1290 1560

Time period of
observations

Aug. 2012 to
Sep. 2013

Jan. 2011 to
March 2012

Dec. 2012 to
Jan. 2014

April 2012 to
May 2014

Data resolution 15min 5min 5min 1hr

Missing (% of
observations)

18% 17% 10% 0%

Variability (data
resolution) Std.Div.

(15min) 0.256
(1hr) 0.119

(5min) 0.251
(1hr) 0.164

(5min) 0.250
(1hr) 0.161

(1hr) 0.259

Therefore, using the data from the U.S. sites with 3 forecast horizons (15, 30, and

60-min) for each site of the available sites, the number of case studies is 9.

5.2 Methodology

The adjusting approach, as described in the previous chapters, is now modified to

include some adjustments for determining intra-hourly forecasts of solar power and

ramp events. The procedure is depicted in Figure 5.1.

Remark The advancements of High-Resolution Rapid Refresh (HRRR) model,

which is run by the National Oceanic and Atmospheric Administration (NOAA),
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Table 5.2: Measured weather variables that are associated with data of PV systems
at the U.S. sites

Weather variables (measurements)

Plane-of-Array (POA)
Irradiance (W/m2)

Amount of solar irradiance received on the PV panel
surface

Back-Surface Temperature of
PV Panel (◦C)

PV panel back-surface temperature, measured
behind the center of PV panel

Relative Humidity (%) Relative humidity at the site

Precipitation (mm) Accumulated daily total precipitation in millimeter

Direct Normal Irradiance
(DNI) (W/m2)

Amount of solar irradiance received within a 5.7◦

field-of-view centered on the sun

Global Horizontal Irradiance
(GHI) (W/m2)

Total amount of direct and diffuse solar irradiance
received on a horizontal surface

Diffuse Horizontal Irradiance
(DHI) (W/m2)

Amount of solar irradiance received from the sky
(excluding the solar disk) on a horizontal surface

made it possible to produce hourly forecasts of weather variables. However, powerful

computing equipment and big data tools are required for modeling solar ramp events

efficiently with those HRRR forecasts in terms of storage size and computation speed.

Moreover, the weather forecasts are not yet available in intra-hourly timescale, and

despite the high accuracy of HRRR weather forecasts, some of the extreme ramp

events are still unpredictable [106,107].

Since this study is focused on very short-term forecasts with U.S. data for horizons

up to 1-hour, the available meteorological measurements in the U.S. may be used as

an alternative to the weather predictions in the Australian data, which were used for

hourly forecasts.

Statistical time-series models are employed to generate the individual forecasts of

solar power, including ARIMA, NAR, ANN, and Extreme Learning Machine (ELM).

At the combining stage of the adjusting approach, as shown in Figure 5.1, the dou-

ble target-horizon forecasts are combined with target-horizon forecasts, for which the

adjusting is performed. Some available meteorological measurements are assimilated

in the adjusting approach. The combined meteorological data are the temperature

of PV panel, the relative humidity, and the direct normal irradiance (DNI). The
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Figure 5.1: Block diagram of the adjusting approach for intra-hour forecasts of solar
power and ramp events

intra-hourly information of the cloud cover can be delivered by the DNI [7].

5.3 Results

The performance of the individual forecasts are evaluated by using the RMSE,

MAE, and MBE, for the 3 forecast horizons of the 3 sites of the U.S. data, as shown

in Table 5.3.

The last row in Table 5.3 provides the aggregated evaluation of each individual
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Table 5.3: The individual intra-hourly forecasts of solar power

Location
Forecast

Horizon

Persistence NAR ARIMA ANN ELM

RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE RMSE MAE MBE

Golden

15min 0.0344 0.0255 0.2394 0.0327 0.0235 -4.647 0.0346 0.0254 -0.0007 0.0344 0.0257 -5.276 0.034 0.0254 -0.969

30min 0.0481 0.0365 0.2113 0.0434 0.0322 -2.108 0.0459 0.0346 -0.3162 0.0432 0.0322 -7.525 0.0464 0.0345 -2.022

60min 0.0715 0.0541 0.2113 0.0586 0.0438 -6.07 0.0608 0.0462 0.8859 0.0571 0.0431 -3.672 0.0646 0.0465 3.773

Cocoa

15min 0.0411 0.0303 0.3746 0.039 0.0269 -6.028 0.0405 0.0287 0.3298 0.0384 0.0274 -9.703 0.0408 0.0302 -0.904

30min 0.0553 0.0417 0.3005 0.0479 0.0315 -2.244 0.047 0.0334 0.2949 0.0451 0.0307 2.389 0.0492 0.0325 -0.482

60min 0.087 0.0678 0.4302 0.0587 0.042 -7.261 0.0595 0.0427 -0.1683 0.0562 0.0394 -2.768 0.0579 0.0413 0.107

Eugene

15min 0.0358 0.0235 0.2126 0.036 0.0238 0.939 0.0355 0.0219 0.2201 0.035 0.0215 -5.825 0.0344 0.0215 -2.752

30min 0.0483 0.0344 0.2144 0.0425 0.0271 -7.997 0.0442 0.0281 -2.9847 0.0425 0.027 3.761 0.0421 0.027 -3.048

60min 0.0738 0.0561 0.2144 0.0586 0.0397 0.187 0.0616 0.0415 -0.0845 0.0575 0.0397 -3.480 0.0568 0.0394 -3.485

Average 0.055 0.041 0.268 0.046 0.032 -3.914 0.048 0.034 -0.203 0.046 0.032 -3.567 0.047 0.033 -1.087

forecast, by taking the average of the evaluating values of all 3 horizons and 3 sites

(i.e., averaging each column), which are rearranged and represented by RMSEagg,

MAEagg, and MBEagg in Table 5.4.

Table 5.4: The aggregated evaluation of the individual intra-hourly forecasts of solar
power

Forecast Persistence NAR ARIMA ANN ELM

RMSEagg 0.0550 0.0464 0.0477 0.0455 0.0474

MAEagg 0.0411 0.0323 0.0336 0.0319 0.0332

MBEagg 0.2676 -3.9143 -0.2026 -3.5665 -1.0871

The RMSE and MAE have the same trends, and they indicate that in some cases of

the individual forecasts, especially at the shorter horizon (15-min), they do not always

outperform the persistence forecasts. The ANN produces the most accurate forecasts

(RMSE=0.0455) with an average RMSE improvement equalling to 17% over the per-

sistence forecasts. Meanwhile, the ARIMA forecasts (RMSE=0.0477)obtain 13% of

an average RMSE improvement over the persistence forecasts (RMSE=0.0550). The

MBE values of the individual forecasts are different in magnitude and sign, and so,

the individual forecasts are diverse, and this is crucial in order to efficiently combine

those forecasts by the ensemble learning in the adjusting approach.

The simple average method is also employed to combine the individual forecasts

for a comparison with the intra-hourly combined forecasts of solar power by applying
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the adjusting approach. The diagram of the combining method by the simple average

is shown in Figure 5.2.
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Figure 5.2: Block diagram of the simple average method for combining intra-hour
forecasts of solar power and ramp events

Table 5.5 presents the combined forecasts of solar power by the simple average

(Simple Average) and the combined forecasts (Adjusting Approach) by the adjusting

approach.

As expected, the combined forecasts even by the simple average outperform the

individual forecasts, and an additional improvement is achieved by applying the ad-

justing approach. From the last row in Table 5.5, the average RMSE improvement of

the combined forecasts (RMSE=0.0310) from the adjusting approach is about 16%

over the combined forecasts (RMSE=0.0368) by the simple average and 44% over the

persistence forecasts (RMSE=0.0550). A graph of average improvements of the com-

bined forecasts by the adjusting approach over other forecasts is shown in Figure 5.3.

As in the previous study, the probabilistic forecasts are also utilized to quantify the
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Table 5.5: Individual and combined forecasts of solar power

Location
Forecast
Horizon

RMSE

Persistence NAR ARIMA ANN ELM
Simple

Average
Adjusting
Approach

Golden

15min 0.0344 0.0327 0.0346 0.0344 0.0340 0.0322 0.0246

30min 0.0481 0.0434 0.0459 0.0432 0.0464 0.0328 0.0280

60min 0.0715 0.0586 0.0608 0.0571 0.0637 0.0484 0.0453

Cocoa

15min 0.0411 0.0389 0.0405 0.0384 0.0408 0.0288 0.0240

30min 0.0553 0.0478 0.0470 0.0451 0.0484 0.0345 0.0288

60min 0.0870 0.0587 0.0594 0.0562 0.0578 0.0511 0.0420

Eugene

15min 0.0358 0.0360 0.0355 0.0350 0.0344 0.0255 0.0193

30min 0.0483 0.0425 0.0441 0.0425 0.0421 0.0313 0.0257

60min 0.0738 0.0586 0.0607 0.0575 0.0568 0.0465 0.0411

Average 0.0550 0.0464 0.0476 0.0455 0.0472 0.0368 0.0310
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Figure 5.3: Average improvements of the combined forecasts by the adjusting ap-
proach with respect to other forecasts

uncertainty of the intra-hourly point forecasts of solar power. The probabilistic fore-

casts including ensemble-based probabilistic forecasts (Ensemble), Analog Ensemble

(AnEn), and the persistence probabilistic forecasts (Persistence).

The intra-hourly combined forecasts from the adjusting approach for different loca-

tions and timescales are also evaluated by the DM test, as in 2.16. Table 5.6 indicates

the adjusted combined forecasts outperform all other time-series forecasts, as demon-

strated by the DM test, which evaluates the significant accuracy differences of the

adjusted combined forecasts with respect to other forecasts.

As shown in Table 5.7, the AnEn probabilistic forecasts are used to quantify the
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Table 5.6: The DM test of the intra-hourly combined forecasts by the adjusting
approach over other forecasts

Location
Forecast
Horizon

DM Test (%)

Persist. NAR ARIMA ANN ELM
Simple

Average

Golden

15min 25.22 17.4 25.20 25.74 24.90 33.34

30min 28.14 22.35 26.12 22.64 25.35 15.15

60min 19.48 10.43 15.56 11.49 10.70 5.87

Cocoa

15min 34.81 25.06 30.77 31.46 34.63 20.44

30min 28.40 13.70 22.01 16.29 11.71 12.61

60min 28.12 13.34 15.46 12.92 13.51 15.47

Eugene

15min 25.47 26.00 22.72 22.49 23.32 16.53

30min 24.96 15.90 16.94 16.94 16.95 9.85

60min 24.90 12.30 11.70 13.06 12.90 7.20

Average 26.61 17.39 20.72 19.23 19.33 15.16

uncertainty of the combined forecasts from two combining methods - the simple av-

erage and the adjusting approach. The uncertainty of the combined forecasts by the

adjusting approach is also quantified by the ensemble-based probabilistic forecasts,

which are provided in the rightmost column of the table.

Table 5.7: Pinball of the intra-hourly probabilistic forecasts of solar power

Location
Forecast
Horizon

Pinball (PB)

Persistence
AnEn
Simple

Average

AnEn
Adjusting
Approach

Ensemble
Adjusting
Approach

Golden

15min 0.0236 0.0098 0.0071 0.0064

30min 0.0271 0.0102 0.0084 0.0077

60min 0.0289 0.0162 0.0141 0.0124

Cocoa

15min 0.0277 0.0082 0.0069 0.0063

30min 0.0304 0.0101 0.0081 0.0073

60min 0.0319 0.0166 0.0123 0.0109

Eugene

15min 0.0316 0.0067 0.0053 0.0046

30min 0.0370 0.0087 0.0072 0.0062

60min 0.0415 0.0148 0.0126 0.0106

Average 0.0311 0.0113 0.0091 0.0080

Table 5.8, presents the evaluation of intra-hourly probabilistic forecasts of solar
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power by using CRPS instead of pinball as an evaluation metric for the probabilis-

tic forecasts. Although the evaluating values of pinball and CRPS are different,

the improvements by pinball and CRPS are almost the same. However, in terms

of pinball (PB), the average improvements of the ensemble-based probabilistic fore-

casts (PB=0.0080) by the adjusting approach over the EnAn of adjusting approach

(PB=0.0091) and the EnAn of simple average (PB=0.0113) are 12% and 29% respec-

tively. It should be noted that the average improvement of (PB=0.0080) is about

74% over the persistence probabilistic forecasts (PB=0.0311).

Table 5.8: CRPS of the intra-hourly probabilistic forecasts of solar power

Location
Forecast
Horizon

Continuous Ranked Probability Score (CRPS)

Persistence
AnEn
Simple

Average

AnEn
Adjusting
Approach

Ensemble
Adjusting
Approach

Golden

15min 0.0466 0.0196 0.0141 0.0127

30min 0.0535 0.0202 0.0167 0.0153

60min 0.0572 0.0322 0.0281 0.0245

Cocoa

15min 0.0546 0.0164 0.0136 0.0125

30min 0.0600 0.0201 0.0161 0.0145

60min 0.0630 0.0330 0.0245 0.0216

Eugene

15min 0.0623 0.0134 0.0106 0.0091

30min 0.0731 0.0173 0.0143 0.0123

60min 0.0819 0.0294 0.0251 0.0210

Average 0.0614 0.0224 0.0181 0.0159

Forecasting of solar power ramp events is also carried out with these intra-hourly

data at sites in the U.S. Table 5.9 shows the statistics of solar power ramp rates with

different thresholds to define the ramp rate as high or low, we observed that the maxi-

mum ramp rate is 0.487 pu/dt occurs at the Cocoa, FL, site with a temporal resolution

equalling to 30-min. In provirus studies with the Australian data, the maximum ramp

rate was about 0.8 pu/hr. The number of high-rate ramp events is reduced signifi-

cantly by increasing the threshold. For instance, at threshold=0.4 pu/dt, the total

number of high-rate ramp events is 6 events only. Whereas, in the Australian data,
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when using the same threshold (Tsh = 0.4 pu/hr), the number of high-rate events

is 162. The lower temporal resolution of the U.S. data are obtained by aggregating

the higher original resolution data of each location, with 15 min, 30 min, and 60 min

averages over the entire year. In addition, as shown in Table 5.1, the Australian data

have the highest variability (i.e., Std. Dev.=0.251 at 1 hr temporal resolution). The

medium value of the solar power ramp rates of those data is about 0.2 pu/dt, but it

is about 0.4 pu/hr in the Australian data.

Table 5.9: Statistics of intra-hourly data of the solar power observations for solar
power ramp rates. (a) at different thresholds, 0.1 pu/dt to 0.4 pu/dt, (b) some
statistical measures of the ramp rates

(a)

Location Temporal
Resolution

Total
Ramps

Ramp Rates at Different Thresholds

|Rate| = 0.1pu/dt |Rate| = 0.2pu/dt |Rate| = 0.3pu/dt |Rate| = 0.4pu/dt

High-
Rate

Ramps

Low-
Rate

Ramps

High-
Rate

Ramps

Low-
Rate

Ramps

High-
Rate

Ramps

Low-
Rate

Ramps

High-
Rate

Ramps

Low-
Rate

Ramps

Golden
15min 13142 170 12972 9 13133 7 3282 0 3289
30min 6575 246 6329 21 6554 2 6573 0 6575

60min 3289 472 2817 40 3249 2 13140 0 13142

Cocoa
15min 13367 351 13016 23 13344 13 3349 2 3360
30min 6694 382 6312 39 6655 11 6683 2 6692

60min 3362 734 2628 89 3273 6 13361 0 13367

Eugene
15min 14615 305 14310 44 14571 5 3672 0 3677
30min 7332 303 7029 41 7291 7 7325 2 7330

60min 3677 600 3077 60 3617 13 14602 0 14615

(b)

Location Temporal
Resolution

Total
Ramps

Statistical Measures of Ramp Rates, |Rate|
Min.
Value

Max.
Value

Medium
Value Median Mean Std.

Div.

Golden

15min 13142 0 0.373 0.187 0.023 0.030 0.026
30min 6575 0 0.353 0.176 0.031 0.039 0.033
60min 3289 0 0.398 0.199 0.042 0.054 0.047

Cocoa

15min 13367 0 0.364 0.182 0.025 0.033 0.030

30min 6694 0 0.487 0.243 0.027 0.035 0.033
60min 3362 0 0.411 0.205 0.025 0.035 0.034

Eugene

15min 14615 0 0.387 0.193 0.024 0.032 0.031
30min 7332 0 0.422 0.211 0.026 0.035 0.032

60min 3677 0 0.384 0.192 0.026 0.035 0.032

The intra-hourly forecasting of solar power ramp events is conducted with two

thresholds to define the high and low ramp events, |Rate| ≥ 0.1 pu/dt and |Rate| ≥

0.2 pu/dt, as shown in Figure 5.4 and 5.5, respectively.

Figure 5.6 illustrates the forecasts of solar power ramp events by implementing the
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Evaluation of Solar Power Ramp Events Forecasts by Using Different Evaluation Metrics

Precision (%) Recall (%) Balanced Precision (%)  F1 Score (%) Diff. Index

Forecasts NAR ARIMA ANN ELM Simple Avg. Adj. Approach

Precision (%) 39% 36% 45% 33% 69% 60%

Recall (%) 13% 9% 14% 11% 24% 48%

Balanced Precision (%) 50% 46% 53% 47% 71% 69%

F1 Score (%) 19% 12% 20% 15% 29% 53%

Diff. Index 19 17 31 18 34 79

Figure 5.4: Forecasts of solar power ramp events with different evaluation metrics of
high-rate ramp events, when |Rate| ≥ 0.1 pu/dt
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Evaluation of Solar Power Ramp Events Forecasts by Using Different Evaluation Metrics

Precision (%) Recall (%) Balanced Precision (%)  F1 Score (%) Diff. Index

Forecasts NAR ARIMA ANN ELM Simple Avg. Adj. Approach

Precision (%) 11% 0% 4% 5% 13% 57%

Recall (%) 5% 0% 0% 2% 4% 30%

Balanced Precision (%) 39% 34% 35% 35% 44% 69%

F1 Score (%) 6% 0% 1% 3% 6% 38%

Diff. Index -5 -2 -2 -6 -4 1

Figure 5.5: Forecasts of solar power ramp events with different evaluation metrics of
high-rate ramp events, when |Rate| ≥ 0.2 pu/dt
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classification techniques. The SVM and RF techniques achieve the most accurate

forecasts. Since the combined forecasts of solar power ramp events by the adjusting

approach (Diff. Index=79) are included as input variable in the classification tech-

niques, this leads to slightly more accurate forecasts of solar power ramp events by

the SVM model (Diff. Index=82). Excluding the adjusted combined forecasts of solar

power ramp events from the classification methods yields lower Diff. Index compared

to the adjusting approach, as was observed by the case study covered in section 4.7.

Method SVM DT ANN RF Log. Reg LDA kNN

Precision (%) 60% 59% 57% 59% 56% 30% 35%

Recall (%) 36% 33% 31% 32% 20% 11% 36%

Balanced Precision (%) 68% 68% 67% 66% 57% 52% 52%

F1 Score (%) 43% 40% 37% 39% 28% 15% 35%

Diff. Index 82 67 65 73 37 21 -72
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Evaluation of Solar Power Ramp Events Forecasts by Using Different Evaluation Metrics

Precision (%) Recall (%) Balanced Precision (%)  F1 Score (%) Diff. Index

Figure 5.6: Classification techniques for forecasting of solar power ramp events with
different evaluation metrics of high-rate ramp events, when |Rate| ≥ 0.1 pu/dt

It may be useful to compare all datasets from Australia and U.S. sites within the

same timescale. Table 5.10 shows the comparison of hourly probabilistic forecasts by

the adjusting approach when using different datasets. The forecasts in the Australian

case are driven by NWP, which reduces the uncertainty and improves the probabilistic

forecasts in the range of 20% - 33%.
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Table 5.10: Pinball and CRPS of the hourly probabilistic forecasts of solar power by
the adjusting approach with different datasets

Location Australia Golden, CO Cocoa, FL Eugene, OR

Pinball 0.0084 0.0124 0.0109 0.0106

CRPS 0.0169 0.0245 0.0216 0.0210

5.4 Summary

In an overall evaluation, the individual solar power forecasts (NAR, ARIMA, ANN,

and ELM) outperform the persistence forecasts, but they are not efficient for high-rate

ramp events.

The adjusting approach with the sub-hourly resolution data at the U.S. sites, ad-

justs and improves the combined forecasts, especially at the ramp events that are

impacted by combining individual forecasts.

The probabilistic forecasts of the shorter horizons are more accurate than those

of the longer horizons. The ensemble-based probabilistic forecasts are more accurate

than the analog ensemble-probabilistic forecasts (by 12% in the U.S. case, and 1%

in the Australian case). The pinball improvements of the probabilistic forecasts are

higher than the RMSE improvements that are obtained by point forecasts. For 1-hr

horizon, the pinball is 0.0084 for the Australian case, 0.0124 for the data from Golden,

CO, 0.0109 for Cocoa, FL, and 0.0106 for Eugene, OR. In the Australian case, the

forecasts are driven by NWP, which reduces the uncertainty and gains improvements

in the range of 20% - 33%.

Forecasting solar power ramp events is different and more challenging than forecast-

ing the solar power which include both the normal and ramp events. The adjusting

approach leads to the most accurate forecasts of solar power ramp events throughout

various thresholds, locations and forecast horizons.

The classification techniques need a feature selection for each threshold, location,

and horizon which increases the modeling complexity.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Concluding Remarks

The concluding remarks for each case study are provided in the results and sum-

mary sections of the relevant study. However, the final conclusions and the recom-

mendations of future work are highlighted in this chapter.

The main objective is to improve the solar power combined forecasts in terms of

ramp events by increasing the true events and decreasing the false events of solar

power ramp event forecasts.

Various forecasting models are implemented to forecast the solar power and ramp

events, which include statistical and machine-learning models such as MLR, ANN,

SVR, ARIMA, NAR, and ELM, as well as using the ensemble learning to obtain the

combined forecasts and implementing the proposed adjusting approach to adjust the

combined forecasts.

Additionally, for comparison purpose, several classification machine-learning tech-

niques are employed to forecast the solar power ramp events. These classification

techniques are: Naive Bayes, Linear Discriminant Analysis, k-Nearest Neighbors, De-

cision Trees, Logistic Regression, Random Forest, Support Vector Machines, Artificial

Neural Networks, and the ensemble of classification models.

The observations and final concluding remarks of the aforementioned studies may

be summarized as follows:

1. The combined forecasts by the ensemble learning method outperform other fore-

casts from the individual forecasting and classification models, and the proposed

adjusting post-processing approach improves those combined forecasts further

and adjusts them in terms of ramp events.

Since the proposed adjusting post-processing approach combines the most re-

cent solar power observations (temporal downscaling), and then uses the ramp
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rates of the forecasts and two loss functions for the solar power forecasts and

their ramp rates, the adjusting approach mitigates the smoothing effect of the

combining process of different forecasts and improves the capability of the com-

bined forecasts to capture the ramp events.

The basic stages of the proposed adjusting approach are as follows:

• Combining the multi-model forecasts of solar power by assimilating the

most recent solar power observations (SCADA data) improves the fore-

cast accuracy. The ensemble strategies lead to bagging and stacking the

outcomes of heterogeneous models by the ensemble learning method or

random forest.

• The ramp rates can also yield an additional improvement, especially in

terms of ramp event forecasts.

• Using two loss functions (MSEF and MSERR) improves and adjusts the

combined forecasts in terms of solar power and ramp event forecasts.

2. Diverse individual forecasts are crucial in order to efficiently combine those

forecasts by the ensemble learning in the adjusting approach.

3. The main advantage of the regression methods is the simplicity with a compet-

itive accuracy in comparison with the classification methods.

4. The classification methods are sensitive to the combination of features that are

used as input variables, since each classifier has different features from the other

classifiers, which increases the complexity of the modeling. On the other hand,

the regression methods can be conducted only with one combination of the best

features.

5. The PCA projections shows the classes of solar power ramp events become more

separable by using data with all possible available features, which include the
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individual solar power forecasts, their ramp rates, and the class labels of the

ramp events.

6. Feature selection is carried out by a greedy search algorithm (i.e. the wrapper

approach) to find the most effective features from the available list for more

accurate forecasts of high-rate ramp events.

7. The Diff. Index and F1 score of high-rates ramp events are the most suitable

scores of feature selection and proper evaluation metrics to assess the perfor-

mance of the forecasts of solar power ramp events, because they consider the

true and the false events of high-rate ramp events.

8. It is not necessary that an improvement in the RMSE of solar power forecasts

leads to the same level of improvement for forecasting of solar power ramp

events (Diff. Index or F1 score), especially for the combined forecasts.

9. The most effective features for the solar power ramp event forecasting include

the cloud information, the solar irradiance at the top of the Earth’s atmospheric

layer, the ramp rates of the solar power forecasts, and the class labels of ramp

events.

10. The sky conditions, such as the cloud type, height and their formation, are

the major factors for determining the forecast accuracy of solar power ramp

events, and also the accuracy improvement that can be achieved by employing

the adjusting approach.

11. Probabilistic forecasts can quantify the uncertainty of the forecasts of solar

power ramp events, which is useful for the system operator as a tool of situa-

tional awareness to improve system reliability and stability.

12. Combining probabilistic forecasts does not lead to a significant improvement of

quantifying the uncertainty of solar power ramp event forecasts.
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13. Imbalanced classification techniques are also investigated for solar power ramp

event forecasting. Those imbalanced classification methods include: 1) Resem-

bling techniques of the minority and majority of ramp classes; 2) Synthetic

Minority Over-sampling Technique (SMOTE); 3) Misclassification costs for the

minority classes of high-rate ramp events; 4) Autoencoder with the existing

features to create more suitable representative features.

14. The imbalanced classification methods improve the classification recall of the

high-rate ramp events of solar power, (i.e., the accuracy which considers the false

low-rate events), but those imbalanced classification methods are not helpful

when the classification is focused on obtaining higher true events and lower

false events of the high-rate ramp events of the solar power.

15. The computational cost is the main concern in using some of imbalanced clas-

sification methods, such as the anomaly detection by Autoencoder, which does

not lead to a remarkable improvement for forecasts of solar power ramp events.

6.2 Future Work

Recommendations and further work for this dissertation are as follows:

1. A direct comparison against satellite-driven forecasts at the same site will be

considered as future work to investigate the capability of the proposed approach

to be an alternative to satellite-driven forecasts.

2. Using datasets with different levels of spatial and temporal resolution of so-

lar power variability for a comprehensive assessment of the adjusting post-

processing approach.

3. Since ramp events also exist in wind power, deploying the adjusting approach

could also lead to more accurate forecasts of the wind power ramp events.
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4. Although relevant temporal and spatial information of solar power ramp events

have been used, the adjusting post-processing approach is capable of assimi-

lating other data, such as additional solar power measurements of neighboring

PV systems, sky imaging, and satellite data to improve the combined forecasts

further.

5. Using operational weather forecasts of high-resolution rabid refresh (HRRR)

model as a further work to improve the solar forecasts. Specific computing

equipment and tools are needed to train the forecasting models efficiently with

the data obtained from the HRRR model.
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