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ABSTRACT

SHAFIE GHOLIZADEH. Topological Data Analysis in Text Processing. (Under the
direction of DR. WLODEK ZADROZNY)

Topological Data Analysis denotes the set of algorithms and methods to define and

retrieve the underlying structure of the shapes in the data. Utilizing topological

inference in data mining and generally data science is recent, while computational

geometry and computational topology have been examined in the area of applied

mathematics for many years. Some recent studies have shown the strength of topo-

logical data analysis when dealing with high-dimensional data sets. Dealing with

the noisy data, the most common goal in TDA is to refine the underlying shapes as

the most important property of the data. Then what remains may be considered

irrelevant information or simply the noise. Topological inference has been applied

to many sub-areas of pattern recognition and data mining, but it is not widely used

in natural language processing and text mining. A simple reason is that defining

shapes in the text is not easy. In this dissertation document, we introduce three dif-

ferent algorithms of extracting topological features from textual documents, using as

the underlying representations of text the two most popular methods, namely term

frequency vectors and word embeddings, and also without using any conventional

features: (1) To extract topological features without using conventional features, we

analyze the graph of appearance/co-appearance of different entities through long doc-

uments. We show how these topological structures in a text may effectively act as

the signature or identifier of the topic, writer, writing, etc. (2) Then we introduce a

new algorithm of extracting topological features from text, namely by converting a

sequence of word embeddings into a time series, and analyzing the dimensions of the

resulting series for topological persistence. (3) We also provide a topological method
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to analyze the geometry of the term frequency space. In all three algorithms, we

apply homological persistence to reveal the geometric structures under different dis-

tance resolutions. We focus on utilizing our defined features for text classification,

though they may be useful for other natural language processing tasks as well. Our

results show that even if the representation of documents is derived from the standard

term frequency matrix or word embeddings space, similarly produced topological fea-

tures improve the accuracy of classification, meaning that our topological features

carry some exclusive information that is not captured by conventional text analysis

methods.
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CHAPTER 1: INTRODUCTION

The most common goal in TDA is to refine the underlying shapes as the main

property of the data. Recent TDA studies have often targeted pattern recognition, di-

mensionality reduction, or clustering. As high dimensional large data sets are usually

represented data clouds, data mining methods especially distance-based algorithms

try to study the data cloud and reveal, analyze and summarize the relations among

the points in the cloud. Maybe the simplest way to show that how a large number

of data points can represent the whole space is to construct the Voronoi Diagram [1].

Voronoi diagram partitions the space to convex sub-regions (e.g., polygons, polyhe-

drons, etc) and each sub-region covers the area in which a site (i.e., a particular data

point) is the closest data point. An example of the Voronoi diagram is illustrated in

Figure 1.2. TDA methods usually introduce a similar intuition but follow more com-

plex methodologies. While the geometry (as offered by Voronoi Diagrams) depends

on distances to study shapes, topology benefits from homeomorphisms that are closed

with respect to stretching or shrinking. Therefore, TDA methods are often much less

sensitive to the change of metrics [2]. This will allow us to use TDA for a wide family

of problems in which the shape of data matters.

Using topological inference in data mining and generally, data science is recent,

while computational geometry and computational topology have been examined in

the area of applied mathematics for many years. Figure 1.1 illustrates TDA number

of academic publications per year and the publication topics1. In some recent studies,
1Web of Science, retrieved on April 20, 2020
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the topological inference has been used as an alternative to conventional data analysis

and artificial intelligence methods. Particularly, TDA has been examined to deal with

high-dimensional data sets and/or noisy data sets. Dealing with the noisy data, the

most common goal in TDA is to refine the underlying structure as the most important

property of the data. Then what remains may be considered irrelevant information

or simply the noise.

Large data sets often contain a huge number of discrete points. Therefore, we may

require a technique to transform them to some meaningful and continuous topologi-

cal representation, intuitively that would be like the visual interpretation what may

distinguish a continuous meaningful shape out of some close yet discrete points (e.g.,

connecting a few stars and interpreting them as the Great Bear). In topological data

analysis, the tool that provides this kind of interpretation is referred to as persistent

homology [3, 4, 5, 6]. Here, homology refers to the loops or holes in a topological

structure at each dimension. The number of holes at different dimensions is usually

all we are interested to know about the topological properties of shapes, though these

numbers do not represent further geometric properties.

TDA is not widely utilized in natural language processing and text mining methods.

A simple reason is that of course defining the shapes in the text is not easy. Here

we introduce some algorithms to define some underlying structures in the text and

capture their shapes. An initial effort would be to investigate what is missing or

not fully covered by conventional text mining approaches and then try to utilize

topological inference to address them. For instance, in many text mining methods,

the orders appearance and co-appearance of different entities are not considered. If

we assume those lost orders may carry useful information for the analysis, TDA can

possibly provide some framework to analyze the underlying structure of those orders

in the natural language and contribute to the state of the art in natural language
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Figure 1.1: Publications on topological data analysis 1990-2019 based on Web of
Science data (top) and TDA publication topics (bottom).

processing, by providing some additive information regarding the natural language

data. In this dissertation document, we will look at the recent developments and

contributions in topological data analysis and then we will introduce and introduce

and examine a series of methods in the application of persistent homology in text
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Figure 1.2: An example of Voronoi diagram in 2D Euclidean system.

processing: (a) We will introduce different ways of extracting topological features

from textual documents. (b) Then we will examine how to use those features for text

classification. (c) We will investigate how the topological structures in a text may

effectively act as the signature or identifier of the topic, writer, writing, etc. In other

words, (d) we generally show the value of TDA techniques in text processing.

We will introduce some theoretical background in Chapter 2. Chapter 3 describes

recent developments in topological data analysis and specially persistent homology.

In Chapter 4 we describe our methodology, including three different algorithms to

extract topological features (1) without using any conventional text representation,

(2) from term frequency space, and (3) from word embeddings representation of text.
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Summary of the results and contributions, along with the possible future directions

are mentioned in Chapter 5.



CHAPTER 2: BACKGROUND

A topology on a set is defined as the collection of subsets containing the empty set

and the whole set that is closed under intersection and union operations [7]. Note

that by definition, topology is not generally closed under complementing. This is

considered the only difference between topology and σ-algebra. Instead, we call any

element in a topology and the complement of any element in topology an open set

and a closed set respectively.

In TDA, the data cloud is usually being studies based on the underlying simplicial

complexes. We may use the notation of simplex for a single data point (referred to as

0-simplex), a connected pair of data records (1-simplex), three pair-wise connected

data records (2-simplex), etc. In general, a fully connected set of (p+ 1) data records

is referred to as a p-simplex. For the consistency of our definition we let (−1)-simplex

denote an empty set [7]. Now we can define a simplicial complex as a set of some

simplices, given that all the subsets of any simplex belonging to the simplicial complex

are also present in the same simplicial complex. Some examples of the simplices and

an instance of the simplicial complex are illustrated in Figure 2.1.

On a high dimensional space where the dimension of simplices could be high, we

usually need to reduce the dimensions. Moving from the highest dimensions and

decreasing the dimensions step-wise, we will get a Chain Complex (Cn : n = p, p −

1, . . . , 1) where Cp denotes the set of all p-simplices. Then we can define the Euler

Characteristic for a data cloud (here the simplicial complexes), as in Equation 2.1

[8, 2].



7

Figure 2.1: An instance of the simplicial complex (left) and some examples of simplices
(right).

χ(C) =
∑
p

(−1)p dim Cp

=
∑
p

(−1)p number of p-simplices

=
∑
p

(−1)p dim Hp

(2.1)

We define the pth chain group Cp as the free Abelian group of the oriented p-

simplices. Thus, any element c in Cp is a p-chain satisfying c =
∑

i ci[σi], where

σi is any p-simplex and ci ∈ Z is a coefficient. Now, we can define the Boundary

Homomorphism hp : Cp → Cp−1 as a homomorphism defined on any simplex in C [2].

Note that homomorphism is a continuous one-by-one map between two topological

space that has also a continuous inverse.

hp[v0, . . . , vp] =
∑
i

(−1)i [v0, . . . , v̂i, . . . , vp] (2.2)

In Equation 2.2, v̂i denotes the vertex that is deleted from the sequence of vertices.
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Hp in Equation 2.1 is the pth Homology Group defined as:

Hp = Kernel(hp) / Image(hp+1) (2.3)

In Equation 2.1, dimCp is equal to the pth Betti Number. The i-th Betti number

denotes the number of i-dimensional holes in the given simplicial complex. For in-

stance, β0 counts the connected component (clusters), β1 denotes the number of 1-D

holes and β2 refers to the number of 2-D holes (voids), etc. Figure 2.2 shows the

Betti numbers of some simple shapes.

Figure 2.2: Betti numbers of some simple shapes including a single point, a few data
points, a single circle, an empty sphere, and an empty donut (torus).

The technique in topological data analysis to refine the topological fingerprints and

properties of the data cloud is called persistent homology [9, 10, 11]. If we decrease

the spatial resolution and then connect any pair of data points which are close enough

to each other, some loops may be constructed. If we keep decreasing the resolution,

some data records will finally come close enough to each other. So a subset of p

different records may become fully connected and assumed to be a p-simplex where
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there are no loops. A possible requirement to define p-simplex is to have all the pair-

wise distances between the records in the simplex less than or equal to a fixed range

(radius or diameter). The playground of persistent homology is to try all possible

radii. When we increase the radius/diameter gradually, many holes (or equivalently

loops) will appear and then disappear for each dimension. This process is shown in

Figure 2.3. The bottom right of Figure 2.3 shows the persistence diagram–i.e., the

diagram that contains the birth radius and the death radius of all the loops (holes)

that were born and died through the process in a certain dimension. Persistent

diagram is the death vs. birth 2-D plot. Equivalently, the lifetime (birth and death

radi) of the loops (holes) can be illustrated with some barcodes in a 1-D diagram,

plotted from birth radii to corresponding death radii [12, 5, 3] as in Figure 2.4.

Our discussion on the spatial resolution may imply that the Euclidean distance

is used to construct the persistent diagrams or barcodes. But in fact, any other

choice of metrics is applicable here. Also, the process of persistent homology as we

mentioned, only describes one possible way to threshold the distances referred to as

Vietoris-Rips Filtration [5]. For the Vietoris-Rips complex, p-simplices are consisting

of p + 1 nodes where all the pairwise distances are less than or equal to the chosen

threshold. An example of a 2-simplex in Rips filtration is illustrated in Figure 2.5.

But generally, we may examine some stronger constraints, e.g., all the spheres that

are covering the records in the simplex should together have non-empty intersection.

This is commonly referred to as Čech Complex. An example the Čech Complex is

illustrated in Figure 2.6. In another case, working on weighted graphs (as opposed

to the data clouds), one may consider thresholding the edge weights and gradually

change the weights threshold. The latter example is referred to as Weight Rank Clique

Filtration [13].

Bubenik in [14] showed that a the topological signatures in data can be also summa-
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rized in a real-valued function called persistent landscape. Let β(birth, death) denote

the Betti number of a module at some particular dimension d (dth Betti number) in the

resolution interval (birth , death). Then the persistent landscape is a real-valued func-

tion λ: N×R→ R such that λ(n, d) = sup{radius ≥ 0 | β(d−radius , d+radius) ≥

n} for any n ∈ N. Intuitively, if we connect each of those points on the persistence

diagram to the bisector line of R2 via horizontal and vertical lines, and rotate the

space by π/4 clockwise, the result is the landscape function. Persistent Landscape for

an equivalent persistence diagram is shown in Figure 2.7. Note that we may calculate

or even estimate persistent landscape for different samples of data cloud where the

mean of results on different samples still captures the topological signature.

It is worth of mentioning that the algorithm of persistent homology for dimension 0

(connected components) is obviously similar to the idea of distance-based clustering.

In fact, both ideas are to analyze the space of distances among data points. However,

in clustering, the main question is that which data points are close to each other, while

for persistent diagram in dimension 0, the question is how close the data points are to

each other. Intuitively, if we assume that the output of the hierarchical clustering [15]

is a dendrogram like in Figure 2.8, then we can conclude that clustering deals with

horizontal information in the dedrogram (which subsets of the data points are close to

each other) and persistence diagram at dimension 0 deals with vertical information—

that is at which distance (diameter) the subsets of data are positioned.
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Figure 2.3: An example of using Persistent Homology. Defining an area around
each data point with a specific distance (radius) and connect all the points within
each others’ range, simplices are being distinguished. Increasing the radius gradually,
larger simplices will fade in. The persistence diagram represents the summary of the
described process.
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Figure 2.4: A simple example of a data cloud (left), barcodes representation (middle)
and its equivalent persistence diagram (right).

Figure 2.5: A 2-simplex in Rips filtration. In Rips filtration, p-simplices are consisting
of p + 1 nodes where all the pair-wise distances are less than or equal to the chosen
threshold. Here the green regions are satisfying Rips filtration condition.
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Figure 2.6: A complex that does not satisfy Čech complex condition (right) and a
Čech complex (left). In Čech complex, all the spheres that are covering the records
in the simplex should together have non-empty intersection. Here the green region
satisfies the Čech complex condition.

Figure 2.7: Persistent landscape (left) as an equivalent representation of the persis-
tence diagram (right).
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Figure 2.8: A dendrogram visualizes the output of the hierarchical clustering. Clus-
tering mostly deals with horizontal information in the dedrogram (which subsets of
the data points are close to each other) while the persistence diagram at dimension
0 analyzes the vertical information (at which distance the subsets of data points are
positioned.



CHAPTER 3: Literature Review

Topological Data Analysis is not widely examined in the area of natural language

processing and text mining methods. A simple reason would be the non-trivial pro-

cedure of defining shapes in the natural language. There have been only some initial

efforts to use topological inference for text processing. But more than the literature

of text mining, our proposed developments and experiments are inspired by some

promising experiments on the applicability of topological inference to the time series

analysis [16, 17, 18, 19, 20]. Intuitively, many of the ideas in the application of TDA

in time series and signal processing can be borrowed for text processing. In those

studies, persistent homology is often used to measure discontinuity in the topologi-

cal properties of high dimensional time series or the time delay embedding of a one

dimensional time series. In some of those experiments, we may easily substitute the

sequential signal with some long textual documents. Processing the textual document

as a sequence of some different blocks and/or entities may help to analyze the order

of appearances of those entities. As suggested by the promising experiments of TDA

in time series, we may also utilize it to study the order of entities in natural language.

Here, we begin by reviewing some of TDA applications in time-series analysis and

then explore the few developments in the application of TDA in text processing.
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3.1 TDA in Time Series

Skraba et al. in [21] showed that persistent homology can be used in time-delay

embedding models. Time delay embeddings translate a 1-dimensional time series to

a d-dimensional time series in which the current value at each time with (d − 1)

lags coordinate [22, 23]. Skraba et al. developed a framework of analyzing dynamic

systems based on topological data analysis that requires almost no prior information

of the underlying structure. Instead, a discrete sample of data points is being stud-

ied in periodic, quasi-periodic and recurrent systems. The same approach has been

considered frequently in the later works on different applications of time series. The

authors suggested that clustering d-dimensional delay embedding of a time series in

some subspaces of Rd can easily reveal the recurrent nature of the system on appeared

loops and returning paths. The next step is to utilize persistent homology or more

precisely the persistence diagram or Betti numbers to measure these loops. Note that

these loops in delay-coordinate embedding do not necessarily exist in the samples of

the initial time-series. This is one of the reasons that the authors preferred to work

on delay embedding Rd field. Besides, tuning the time delay parameter will result in

a more robust model. Based on Vietoris-Rips or any similar filtration, one can con-

struct the persistence diagram of the delay embedding. As a result, a periodic system

will end up with the Betti numbers (or equivalently persistence diagram) of a circle.

Similarly, a quasi-periodic system with n periods will end up with the persistent Betti

number of an n-dimensional torus. For example when n = 2 the system will have

the Betti numbers of the torus in Figure 2.2. Finally, the persistence diagram of a

recurrent system will look like that of a bouquet of circles. Note that in the first two

cases, after extraction of persistence diagrams there exist many easy ways to retrieve

the time periods explicitly. The persistence diagrams for some of the simple shapes
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that may appear in time delay embedding space are shown in Figure 3.2 along with

their corresponding persistence diagrams.

Figure 3.1: An example of time delay embedding in time series: the original 1-
dimensional time series (top) is translated to the delay embedding, e.g. with d = 4
using (d−1) lags (middle), then we may interpret the d dimensional lags space. Here
we illustrates the first 4 lags vs the original signal for simplicity (bottom), but in
practice all the lags space are compared in d-dimensional space which is not easily
visualizable.

Berwald and Gidea in [24] used persistence diagrams to detect critical transitions
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Figure 3.2: Some simple shapes that may appear in time delay embedding space
and/or sliding windows (left) and their corresponding persistence diagrams (right).
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in genetic regulatory systems that have stochastic characteristics. Based on Vietoris-

Rips filtration, the authors built the persistence diagrams of time windows in data

and then tried to reveal qualitative changes based on the significant topological dif-

ference in consecutive windows. The idea was expanded in [25] where Berwald et al.

suggested a novel approach to distinguish different regimes in a time-dependent dy-

namical system. Constricting the barcodes in dimension 1, the authors used k-means

algorithm to cluster the time windows with the most significant bars. Intuitively, if a

bar is significantly longer than all the other bars, one may assume that the barcode

suggests a periodic regime. There also exist similar conditions to recognize quasi-

periodic and recurrent regimes as discussed in [21]. But here the authors feed the

barcodes of different time windows to an unsupervised algorithm (e.g., k-means). As

a result, local bifurcations are recognizable where the window size is relatively small,

or when the cluster tag is changing frequently over time. On the other hand, global

bifurcation is detectable when the cluster tag is changing only once or more precisely

when the distributions of cluster tags are significantly different before and after a

certain time.

Garland et al. in [26] showed how the Witness Complex may be used to explore

the underlying topology of a noisy sample in dynamical systems. Here the intu-

ition is similar to [25] except the fact that to build the persistence diagrams, the

authors utilized Witness Complexes [27] instead of Vietoris-Rips complexes. Wit-

ness Complexes are often in a smaller size and therefore easier to handle. In a

weak Witness complex, a subset (called landmark) LM of data cloud DC is cho-

sen. A simplex Sim = {l1, . . . , ln} has a weak witness ω ∈ P if and only if for any

(l∗, r) ∈ Sim×(LM\Sim) we have Distance(l∗, ω) ≤ Distance(r, ω). While choosing

a landmark subset via some heuristic reduces the computational cost by far, witness

complexes will still cover useful topological features. Mittal and Gupta in [28] followed
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this idea and tried to use persistence diagrams from witness complexes to describe

and detect chaos and bifurcations in time series. The authors introduced six differ-

ent useful features from the persistence diagram including the number of holes, the

average lifetime of holes, the maximum diameter of holes and the maximum distance

between holes in each dimension. Useful features chosen upon the feature selection

training may feed the descriptive or predictive models.

Chazal et al. developed the idea of persistence-based clustering in [29]. In mode-

seeking clustering, the local peaks of density function are discovered via some hill-

climbing method and are being used as the cluster centers. Since these centers are

often unstable, the authors suggested that stable peaks can be found in terms of per-

sistence. While any local peak will present a unique point to the persistence diagram,

insignificant peaks (e.g., peaks that appeared due to sampling limitations) are to be

eliminated. This is a trivial problem on the persistence diagram. Only the most

important peaks can have a long lifetime (i.e., the gap between the birth radius and

the death radius in Vietoris-Rips filtration). So, the lifetime of points in the persis-

tence diagram reveals an underlying hierarchy for centroids’ importance. Moreover,

the persistence diagram can suggest the number of significant points and the efficient

number of clusters. Chang et al. in [30] proposed multi-persistent clustering analysis

to cluster molecular dynamics simulation data based on scale and density. Similar to

[29] the clusters are defined in the terms of persistence, but here the authors measured

persistence on a 2D-space based on scale and density of data points. Pereira and de

Mello in [16] also followed the general idea in [29] but more focused on topological

properties of each cluster and the relations among them. Their proposed method

uses two-dimensional delay embedding of time series. The authors showed that how

different types of time and the resulted embedding will result in different barcodes.

Khasawne and Munch in [17, 31, 32, 33] utilized the idea of measuring persistent
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homology on time delay embedding to evaluate the stability of time-dependent sys-

tems in which the main characteristics are defined by Stochastic Delay Differential

Equations. They focused on chatter prediction problem [34]. When the delay and the

stochastic terms simultaneously exist in the system, it is usually difficult to summa-

rize the behavior and determine the stability, though in special cases some methods

combine stochastic calculus and numerical methods to evaluate SDDEs (e.g., in Itô

sense). Here the authors used a delay embedding of the signal similar to [21] to

construct persistence diagrams and distinguish the system conditions (i.e., equation

parameters) under which the system is stable.

Perea and Harer in [18] showed how persistent homology can be utilized to detect

the periodic behavior of signals. The authors used 1-dimensional persistence diagrams

of sliding window on periodic noisy signals to discover periodicity. They showed

how their approach can comparably perform as the state of the art. Perea in [35]

extended the theories in [18] to the quasi-periodic functions (i.e., linear summation of

periodic functions with irrelevant frequencies). The author proved the way to obtain

the optimal choice of time delay and window size for sliding window embedding of

such functions and then calculated the upper bound and lower bound for persistent

homology of the sliding window.

Predicting the structural breaks and catastrophe stock market crash as early as

possible is considered one of the most valuable yet difficult tasks in the financial

domain. Gidea in [36] utilized the idea of using persistent homology in [18, 35] to

detect the early signs of critical transitions in the financial time series. Here the time

series of each stock of an index may depend on some particular condition but on the

other hand these indices often respond to mutual information, announcements and

regulatory entities. That is how the topology of their correlation graph matters. Con-

sidering the time series of multiple stock returns at each instant time as the nodes of a
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weighted graph, cross-correlations among the nodes are being assumed as the weights

of the graph. So at each time there exist a weighted graph representing the corre-

lations of stock returns. To get the persistence diagram for each of the graphs, the

author used weight rank clique filtration which thresholds the weights and increase

the weights stepwise. Finally, the differences between each persistence diagram and

the persistence diagram at the initial time will construct the time series of differ-

ences. Here the differences are calculated based on Wasserstein distance [37] which

measures the minimum cost to map a distribution to another one. Assuming that

the persistence diagrams are robust in normal conditions, the time-series of distances

can represent and reveal the loss of normal market conditions. The author applied

the proposed method to the data set of companies in Dow Jones Industrial Index at

time interval including 2007-2008 financial crises and the early signs appeared eight

months before the last stock market peak in October 2008. Here the approach is

much similar to what was previously done in [38] except the idea of using persistent

homology. Nobi et al. in [38] worked on time series of global and local stock indices,

built the correlation graph from of these time series in sliding window and got into a

sequence of threshold graphs. However here the authors tried to measure the topolog-

ical change in the sequence of correlation graphs based on the Jaccard index between

any two consecutive graphs and focused on degree distribution on the nodes of the

graphs that reveal important information regarding network density.

Gidea and Katz in [39] utilized persistent landscape to predict crashes on financial

time series. Their method is similar to the general approach in [36]. Here the author

used Lp-norms (i.e., Minkowski distance of order p from the origin of Euclidean

space) of the persistence landscape to detect the signs of a crash. A financial crash

often happens after a period of high variance in is market indices and high cross-

correlations among stocks. Thus, intuitively the Lp-norms may have a rising trend



23

before the crash. The authors used S&P 500, DJIA, NASDAQ, and Russell 2000 data

and analyzed their daily return prior to dotcom crash in 2000 and also 2008 financial

crisis. Four indices make a 4-dimensional time series that was analyzed in a sliding

window of a fixed size with sliding steps set to one day. Calculating the Lp-norm

for each dimension n of the persistent landscape λ(n, x) within each window, we will

have a vector of L-norms. Finally, the Lp-norm of this vector is a function of time

that is used for analysis purposes. As a result, L1 and L2 norms illustrated significant

rising trends before the crashes.

Sanderson et al. in [40] suggested that persistent homology may capture the dif-

ference when the same musical note is played on some different instruments. The

authors used persistence diagrams of 2-dimensional delay embedding to distinguish

musical instruments. They trained a classifier on a few labeled diagrams of differ-

ent instruments. The classifier performed much better than a traditional classifier

based on the Fast Fourier Transform of time series. Instead of feeding the persistence

diagram directly to the classifier, the authors used Persistent Rank Functions– i.e.,

functions that capture the number and position of points on persistence diagrams

[41].

Topological data analysis has been applied to a few other problem statements in

time series and dynamical systems analysis. Myers et al. in [42] used persistent

homology to study the graph representations of time series derived from dynamical

systems. Tymochko et al. in [43] utilized TDA to measure diurnal cycles of hurri-

canes. Maletić et al. in [19] studied the persistence diagrams of delay embedding in

dynamical system similar to [21] and [25], and categorized the expected results on

many well-known non-linear systems of chaotic behavior.

Emrani et al. [44] utilized persistent homology for wheeze (Constant Noise) De-

tection. Considering that the noise frequencies are piece-wise constant, they assumed
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Table 3.1: Studies covering TDA in time series and signal processing.

Study Task/Application
Skraba et al. [21] Analysis of periodic, quasi-periodic, and recurrent

system

Berwald & Gidea [24] Detecting critical transitions in time series with
stochastic characteristics

Berwald et. al [25] Distinguishing different regimes in time-dependent
dynamical systems

Maletić et al. [19] Categorizing the expected diagrams of well-known
chaotic systems

Khasawne & Munch Stability determination in stochastic systems
[17, 31, 32, 33] (chatter prediction)

Garland et al. [26] Underlying topology of noisy dynamical systems

Mittal & Gupta in [28] Detecting bifurcations in time series

Chazal et al. [29] Persistence-based clustering

Chang et al. [30] Clustering molecular dynamics

Pereira & de Mello [16] Properties of different time series clusters

Perea & Harer [18] Analysis of the periodic behavior of signals

Perea [35] Analysis of quasi-periodic functions

Gidea [36] Detecting signs of critical financial transitions

Gidea and Katz [39] Predicting financial crashes

Sanderson et al. [40] Distinguishing musical instruments

Emrani et al. [44] Wheeze (Constant Noise) Detection

Khasawneh & Munch [45] Step detection in periodic signals
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that at least 1 persistent barcode in dimension 1 exists in the barcodes of the noise

signal. The authors reported a huge difference between barcodes of non-wheeze and

wheeze signals. In [45], Khasawneh and Munch used TDA for step detection in pe-

riodic signals. Looking at periodic piecewise constant signals, they tried to detect

the true steps. Topaz et al. in [46] used persistent homology to study biological

aggregations (i.e., dynamical systems defined by a scholar time-series for multiple

agents who interact and influence each other. Venkataraman et al. in [47] used per-

sistence diagrams of time delay embedding for human action recognition based on

three-dimensional motion capture data. Labeling a few diagrams, they showed how

persistent homology can outperform the state of the art in classifying action– e.g.,

jump, run, sit, dance, or walk. Perea et al. in [48] used persistent homology of a

sliding window for periodicity detection in time series of gene expression. Seversky et

al. in [49] provided a collection of persistence diagrams from a variety of well-known

time series sources that can be used for future studies (e.g., feeding the persistence

diagrams to any unsupervised and even sometimes supervised algorithm in traditional

machine learning). Stolz et al. in [20] constructed weight rank clique filtration from

the time series of functional brain networks and interpreted the resulted persistence

landscape.

Some of the studies on the application of TDA and homological persistence in time

series and signal processing are organized in Table 3.1.
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3.2 The Initial Efforts towards Topological Text Mining

Many studies in text analysis have utilized graphs, usually knowledge graphs for

information retrieval, recommender systems, community detection or text summa-

rizations. More specifically, the graph-based approach in natural language process-

ing covers a variety of applications including information retrieval on citation net-

works [50], paragraph-based text representation using complex networks [51], natu-

ral language generation using Knowledge graph [52, 53], plagiarism detection using

knowledge graph-based representation [54], knowledge graph-based approach in the

cybersecurity domain [55], knowledge graph embedding for query construction [56],

graph-based opinion spam detection [57, 58], graph-based semantic representation

[59, 60], graph-based semi-supervised learning [61], text summarization using graph

theory and entropy [62, 63, 64], synset expansion on translation graph [65], Multi-

lingual knowledge graph embeddings [66], and graph-based knowledge reasoning [67].

However, in most of these studies, the topology of the resulted graphs is left behind,

or at least the graphs are not analyzed via persistent homology, as we focus on this

study. Thus, there are only a few works that directly relate topological data analysis

to the natural language processing.

Wagner et al. in [68] utilized the flag complex on the term frequency representation

of a corpus to detect and analyze the similarities among different textual records. The

focus of the author was on processing efficiency of the homology calculation for high

dimensional TF/IDF sparse matrices. The authors suggested a novel approach to

use cosine similarity to measure the distance, threshold the distances and gradually

change the chosen threshold to retrieve the cliques (i.e., complete sub-graphs) in

the graph whose adjacency matrix is the consisting of the cosine distances. The

flag complex is defined as a set of all of the clicks in a given graph. In the study,
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the authors utilized the discrete Morse theory to compress the flag complexes and

compute the Betti numbers.

Zhu in [69] suggested a novel approach to apply homological persistence for text

analysis and introduces a new topological representation for textual documents. The

method is consisting of dividing the text to some number of different text blocks,

building a TF/IDF vector for each of the blocks, and then constructing undirected

graph whose based on the pairwise cosine distance of different text blocks. In the sug-

gested graph, each node represents one of the text blocks. Thresholding the weights

of the graph, the author analyzed the relations among different text blocks. Persistent

homology was used to change the threshold and quantify the topological properties

of the graph. The author only used β0 and β1 to study the connected components

and one-dimensional loops. The study showed that the number of loops in the graph

can measure the level of tie-back in the text.

The similarity filtration that the author used is highly similar to the Rips filtration.

But cosine distance of the blocks is measured instead of the Euclidean distance. As

the algorithm does not consider the order in which the blocks are arranged in the

original text, the author suggested a second method that assumes the edge between

subsequent blocks must always exist in the graph, for any given threshold. The mod-

ification makes the algorithm consider the order. This second approach Similarity

Filtration with Time Skeleton (SIFTS) was examined on some nursery rhymes that

include lots of repetitive patterns and some other textual documents without repeti-

tive patterns. The author also used SIFTS to distinguish between adolescent writings

and child writings, while the effect of document length was controlled via truncat-

ing the writings. The author reported that in 87% of child writings and all of the

adolescent writings some holes existed. Also the average number of holes for child

writings, the original adolescent writings, and truncated adolescent writings were 3.0,
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17.6, and 3.9 respectively. This reveals a significant difference between the topological

properties of child writings and adolescent writings.

In [70], Doshi and Zadrozny examined SIFTS to detect movie genres on the IMDB

data set consisting of movie plots. They concluded that persistent homology may

substantially increase the accuracy in text classification and therefore topological

inference should be considered a helpful approach for discourse classification tasks.

An unsupervised method to extract key phrases was proposed by Guan et al. in

[71]. Their method uses persistent homology for pruning the semantic graph whose

nodes are some candidate phrases. Document summarization in the information re-

trieval context, often begin with many candidate phrases that are finally ranked in a

supervised fashion, and top key phrases are being returned. Here the authors built

a graph whose nodes are the candidate phrases where nodes are connected if and

only if they are sharing a ratio of the same tokens. Afterward the topological collapse

method [72] removes the dominated nodes. Here a node vx is said to be dominated by

another vy if all the neighbors of vx are also in the vy’s neighborhood. A reasonable

assumption here is that the domination condition is satisfied, the dominated vertex is

fully explained by another vertex and therefore should be considered unnecessary in

the graph. The authors examined their method over the NUS corpus and SemEval-

2010 data set corpus reporting better performance than the conventional methods in

the terms of F1 score recall and precision.

Almgren et al. in [73] studied the applicability of TDA in social network popularity

analysis. They used persistent homology to predict the image popularity in the

social network, using Word2Vec representations of the captions from some Instagram

random images. Having the cosine similarity of the vectors representing the images,

the authors utilized Mapper [74] and clustered the set of images. The study revealed

a monotonic increase in popularity ratio over different clusters. Later in [75] the
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authors tried to formulate the problem as images’ popularity prediction and concluded

that topological inference can outperform prior clustering algorithms (hierarchical

clustering and k-means).

There are some other studies trying to apply TDA to text processing. Chris-

tianson et al. in [76] analyzed the topological structure of semantic networks in

mathematics texts. A topic detection algorithm using Mapper [74] on TF/IDF space

was proposed by Torres-Tramón et al. in [77], where the highly connected compo-

nents among the set of candidate topics are returned as final topics. In [78], Chiang

used simplicial complexes to cluster TF/IDF vectors of textual documents. In [79],

Zadrozny and Garbayo suggested a sheaf model that distinguishes the disagreements

and contradictions in the corpus. Savle and Zadrozny in [80] utilized TDA for text

entailment prediction. In addition to the contributions mentioned in Table 3.2, there

are many studies utilizing persistent homology in time series and system analysis

[16, 18, 17, 19, 26, 20] whose general logic is considerable for embedding based text

processing. We organize some of the most related contributions in Table 3.2
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Table 3.2: Studies covering TDA in text processing.

Study Input Task/Application
Wagner et al. [68] TF/IDF Measuring heterogeneity of docu-

ments in corpus

Zhu [69] TF/IDF Finding repetitions in text (nurs-
ery rhymes / writings)

Torres-Tramón et al. [77] TF Topic detection in Twitter data

Almgren et al. [73] Word Embeddings Image popularity prediction in
social media

Doshi & Zadrozny [70] TF/IDF Movie Genre Classification on
IMDB movie plot data

Savle & Zadrozny [80] TF/IDF Text entailment prediction



CHAPTER 4: Methodology

The feasibility of TDA has been examined by many studies in image processing

[81, 82, 83], sensor networks [84, 85, 86, 72, 87, 88], system analysis [21, 45, 25, 17],

time series and signal processing [24, 18, 35, 49, 39] and ensemble methods [89, 90,

91, 92, 93, 94, 95]. On the other hand, despite a few instances that were mentioned

in the previous sections, there exists no general study on the feasibility of TDA in

natural language processing.

A wide class of methods for information retrieval text mining and are based on Bag-

Of-Words (BOW) models [96, 97, 98, 99]. These models are not considering the orig-

inal order of the tokens in the text. Adding parts of the parse tree or part-of-Speech

may partially, or using ngrams may at least partially address the issue. More impor-

tantly, in another family of methods in conventional text processing, there are some

ideas to consider the value of token orders in textual documents, e.g., word embed-

dings representations to the Convolutional Neural Networks (CNNs) [100, 101, 102],

Recurrent Neural Networks (RNNs), or Bidirectional Long Short Term Memories

(BiLSTMs) [103, 104, 105, 106]. However, that is unclear to what extent these neural

network based methods can reflect the actual importance of orders in textual docu-

ments. Therefore, there may exist some gaps between the value of the order in the

text and the state of the art power of text processing methods. We would consider

this as an opportunity for TDA and especially persistent homology to fill the gap.

In other words, topological approaches might be helpful to provide a more effective

order preserving method for text processing. In a special case, we can utilize TDA
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to interpret the word embeddings space of textual documents, i.e., going from word

embedding to document embedding.

We will begin with a framework to extract topological features from textual docu-

ments without using any conventional features such as TF/IDF and word embeddings.

We will show how TDA may be utilized in text processing after extracting time series

from the textual documents using named entity recognizer (NER).

Second, we will focus on word embeddings. Word embeddings are the more general

family of techniques to convert text into time series. Word embedding algorithms

like GloVe [107], Word2Vec [108], fastText [109] or ConceptNet Numberbatch [110]

translate a textual document to a D-dimensional time series. As described in the

literature review, this is a widely used structure of data in TDA literature. Word

embedding is an NLP technique in which words or tokens are mapped into a (usually

high-dimensional) coordinate system. The more relevant tokens in such coordinate

space are placed in closer proximity. The relevance is often defined as the level

of common contexts. Such techniques in practice will provide an opportunity to

move toward order-preserving algorithms, e.g., using CNNs, RNNs, or BiLSTMs.

Simultaneously, these techniques are providing an opportunity to apply topological

data analysis for text processing.

Last but not least, we introduce a method to extract some non-conventional topo-

logical features from TF/IDF space. We will show how combining the topological

features from word embeddings and TF/IDF with the conventional features may lead

to a boost in the performance of text processing models. In all of our methods, we

focus only on persistent homology in dimension zero (number of clusters) and di-

mension one (number of loops), due to the practical reasons such as their affordable

computational cost.
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4.1 Applying TDA to Text without Using Conventional Features

Here we propose a method to examine whether persistent homology is capable of

capturing the order of different entities in textual documents. Choosing 75 famous

books from the Project Gutenberg written by some famous novelists in the roman-

ticism era of the 19th century, we evaluate our algorithm. We introduce a novel

method [111] that utilizes topological data analysis for author prediction solely based

on what we define as the graphs of the leading characters in each of the novels. Table

4.1 includes the authors list and also and the frequency of each author.

4.1.1 Extracting Non-Conventional TDA Features from Tagged Entities

Downloading each novel in raw text format from project Gutenberg, we removed

the appendices, tables of contents and other metadata that existed in each raw text

file. Then we utilized Stanford CoreNLP API as the Named Entity recognizer (NER)

[112] to extract the positions of the appearance for each of the characters in each novel,

splitting by sentences, tokenizing, and annotating with the tags of named entities, we

retrieved all the positions of each token annotated with “Person” named entity tags

(e.g., ‘Bob’, ’Alice’, etc.). This way for each book, we got the token indices (word

positions in the text) of all the main characters, so the schema of what we processed

is like:

Book01 : [Bob : [15, 170, 210, 1730, . . . ], Alice : [92, 270, 920, . . . ], . . . ]

Book02 : [Adam : [1, 133, 156, 1127, . . . ], Eve : [31, 88, 1520, . . . ], . . . ]

...
...

...
...

Book75 : [Beth : [5, 150, 198, 1025, . . . ], Roy : [13, 95, 1023, . . . ], . . . ]
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For the consistency of the process among different novels, we retrieved only ten lead-

ing characters in each novel, assuming that most novels include at least ten characters.

Also, we assumed that the most frequently appearing characters are the leading char-

acters in each novel. For each novel, we used the set of indices in which each of the

characters appears to measure the distance among them (e.g., the distance between

‘Alice’ and ‘Bob’ in ‘Book01’). Let V and W denote the set of retrieved indices for

the characters ‘Ch_A’ and ‘Ch_B’, respectively. Without losing the generality, we

may assume W has more indices than V , so we retrieve a subset of W having the

same size as V . That is V ∗ in Equation (4.1), where we assume that n ≤ m.

V = (v1, v2, . . . , vm)

W = (w1, w2, . . . , wn)

W ∗ = (w∗1, w
∗
2, . . . , w

∗
m)

(4.1)

Our objective in the method of choosing W ∗ indices is minimizing the pairwise

distances between the indices of V and the indices of W ∗. Intuitively, the elements of

similar positions should be close to each other. The process is formulated in Equation

(4.2), where the constraints guarantee that only n unique elements will be retrieved

from W .

w∗p = argmin
wq

|wq − vp| ∀p ∈ {1, . . . ,m} , q ∈ {1, . . . , n}

w∗p 6= w∗r ∀r ∈ {1, . . . , (p− 1)}
(4.2)

Having the equal sizes of indices for each pair of characters, we may define a distance

measure between the character ‘Ch_A’ and the character ‘Ch_B’ more easily, as in

the Equation (4.3). In the equation, Ṽ and W̃ are obtained by normalization of V
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and W ∗, respectively. Note that the elements in V or W ∗ are divided by the length

of the book—that is the number of tokens in the book. We may also consider using

the expanded or compacted representations of Ṽ and J̃ in which the elements are

raised to the power of n. We will call them Ṽ (n) and W̃ (n), respectively. Equation 4.3

defines the distance between the characters, where WDist0.5 denotes the Wasserstein

distance [37, 113] with the order of 1/2.

Distp(‘Ch_A’ , ‘Ch_A’) = WDist0.5(Ṽ
(1+p), W̃ (1+p)) (4.3)

Note that Wasserstein distance is in fact cost of mapping one distribution to another

distribution. Intuitively, working on two diagrams, it measures the movements of dots

in one diagrams to get into the second diagram, as illustrated in Figure 4.1.

Figure 4.1: Wasserstein distance measures the movements of dots in one diagrams
(green dots) to get into the second diagram (red dots).

In Equation 4.3, for p = 0 the defined distance is measuring the difference of the



36

original indices vectors (Ṽ and W̃ . We use the Wasserstein distance of the order 1/2

to push the distance measure being more sensitive where the corresponding indices in

the two vectors are closer. The main intuition here is that if we try different values

of p, we are in fact more focusing on characters that are co-appearing at the initial

chapters of the novel (p > 0) or some close characters that are co-appearing at the final

chapters of the books (p < 0). These two scenarios will add the degrees of freedom

and will consequently increase our chance of retrieving the geometrical/topological

style of different authors.

Having the pairwise distance between the leading characters in each novel, we

used Rips filtration [114, 115, 116] to construct a persistence diagram representation

of each Book. For each of the novels, we tried three different values of p (p =

0, + ε and − ε) to cover the three different scenarios discussed before and retrieve

more homological features. Using ε = 1/10, for each novel we built three different

diagrams. TDA package [117] in R [118, 119] was utilized for the implementation of

the persistence diagrams and and for quantification over the constructed diagrams.

Figure 4.2 illustrates some instances of the persistence diagrams for p = 0 case.

Assuming that we have made the persistence diagrams of all the given books,

we can measure the pairwise distance among the books to quantify the geometric

similarities and differences among different books. This would reveal whether the

authors are repeating any topological characteristics in their books. In other words,

we are interested to know whether (1) different novels by the same author have simi-

lar persistence diagrams and (2) different authors usually have significantly different

persistence diagrams. We utilized the Wasserstein distance (order = 1) to quantify

the differences and compare the diagrams and dimensions zero and one. Equation

4.4 formulates the overall distance for each pair of books. Since each novel, three

diagrams are constructed (p = 0, + ε and − ε) and each diagram is coming in two
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Figure 4.2: Some examples of the persistence diagram constructed from the graph of
the leading characters in different books.
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different dimensions (dimension zero and dimension 1), we need two combine six dif-

ferent scores for each pair of books to provide the final difference score. In Equation

4.4, PerD0
p only represents the clusters (connected components) and PerD1

p repre-

sents the holes (loops in dimension 1). Here B and B′ are any two given books and

WDist denotes Wasserstein distance (order=1).

Distp(B , B′) = WDist{PerD0
p(B), P erD0

p(B
′)}

+ WDist{PerD1
p(B), P erD1

p(B
′)}

Dist(B , B′) = {
∑

p∈{−ε,0,+ε}

Distp(B , B′)2}
1
2

(4.4)

Our method is summarized in Algorithm 1.

4.1.2 Results of TDA on Tagged Entities

Our method of evaluation was consisting of running We used k Nearest Neighbors

supervised method in cross validation mode (using ten folds), where the independent

variables (predictors) were the distances among different books and the dependent

variable (prediction target) was the author of each book. Since we got different

numbers of books by each author, for binary author classification, we used balanced

training samples. For example when classifying author A against author A′ where

author A has m books and author A′ has n books, assuming n ≥ m (without loss of

generality), we randomly selected m books from author A to get a balances set. Also,

to cover all possible combinations, for each pair of authors, we iterated 250 times

through the balanced records and each time measured the performance of the cross

validation. Based on our manual grid search we chose k = 5 for the kNN model. In

our modified kNN model, each of the neighbors has a specific vote value inversely
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Algorithm 1 Compare Books Using Topological Features from Name Entities
Input: plain textual documents:

A list Book = [book(1), . . . , book(n)] where book(i) is the plain text of i-th docu-
ment.

Output: A matrix Distancen×n where Distance[i, j] is the distance between book(i)
and book(j).

1: for i = 1 to n do
2: Retrieve all name entities tagged as PERSON in book(i).
3: Keep 10 most frequent name entities in book(i).

Save their corresponding indices in Person1(i), . . . , P erson10(i).
4: for v, w = 1 to 10 do
5: Compute distance between Personv(i) and Personw(i) under parameter p—

that is Distp{Personv(i), P ersonw(i)} for p ∈ {−ε, 0,+ε} using Equation
4.3.

6: end for
Using the adjacency matrix Distp make the persistence diagram PDp(i) of
book(i) for p ∈ {−ε, 0,+ε}.

7: end for
8: for i, j = 1 to n do
9: Calculate the distance between the i-th and the j-th books, Distance[i, j] based

on their persistence diagrams using Equation 4.4.
10: end for
11: return Distance matrix Distancen×n
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proportional to its squared distance.

While every writer or author may change her style over the time, it still sounds

reasonable to assume that the writers usually their specific style in at least some

different works. That is why our topological method might be capable of providing

some informative neighbors for the kNN model. However, what we call style here,

only denotes the pairwise proximity of different leading characters. The performance

of the pairwise (one-vs-one) classifications is shown in Table 4.1 in terms of accuracy.

Note that the total number of predictions was around 69k and a mean accuracy of

77.0% was achieved. Table 4.1 suggests that accuracy can be very high in some cases

(pairs of authors) and much lower in some other cases. For instance, distinguishing

Jane Austen’s books from Fyodor Dostoevsky’s looks much easier than distinguishing

Fyodor Dostoevsky’s works from Émile Zola’s or Walter Scott’s as also Figure 4.2

reveals. Sometimes these variations can be due to the limitations of our homological

methods but note that the real similarity of different authors may also confuse the

classifier.

Table 4.1: Cross validation performance in one-vs-one classification. Numbers inside
parentheses denote the number of processed books by each author. While the classifier
can be highly accurate in some cases, in some other cases, the accuracy can be as low
as 55%. In average, the achieved accuracy is 77%.

W.Scott M. Twain J. Austen F.Dostoevsky É. Zola C. Dickens

(18) (8) (6) (8) (18) (17)

W. Scott 73.9 83.3 55.8 94.7 68.5 -

M. Twain 74.6 68.8 73.3 82.9 - 68.5

J. Austen 100 64.2 90.2 - 82.9 94.7

F. Dostoevsky 72.2 65.0 - 90.2 73.3 55.8

É. Zola 87.0 - 65.0 64.2 68.8 83.3

C. Dickens - 87 72.2 100 74.6 73.9

AVG 75.2 73.6 86.4 71.3 73.7 81.5
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In our study, for the initial named entity recognition step, we skipped using Co-

reference Resolution [120, 95]. The reason is that currently, co-reference resolution

tools are not useful enough for our proposed method. We may acknowledge that

this way many of the possible indices are being missed by the NER, especially when

the character is indirectly mentioned or implied with some pronouns. However, we

may assume that for most of the missed indices, the corresponding leading character

(person) in the story is directly mentioned a few lines above or bellow the missed

pronoun. For the purpose of this study, retrieving the most reliable named entities

is much more important than covering a higher number of named entities. That is

why is skipped using co-reference resolution. Note that missing some indices most

probably only affects the geometry in the graph of the leading characters, while the

topology of the graph is not significantly affected. On the other hand, a high portion

of false-positive indices not only change the geometry but can also lead to a critical

change in the topology in the graph of the leading characters and subsequently, the

topological fingerprint of the author may fade.

The main scope of the proposed study is to examine the existence of homological

fingerprints in the text, especially in long writings. Choosing some publicly available

novels as the symbolic instances of long textual documents, we examined our method.

We still need to investigate if/how the results are extendable to some more realistic

problem statements, e.g., the general application of text or topic classification. The

other matter of concern would be the cost of computation, especially when dealing

with tons of textual documents. Notably, while our results are promising to show the

existence of the homological features, the performance is not high enough to assume

that we can apply the proposed framework for many real word applications, unless

we use the topological features in addition to some conventional text representations

such as TF/IDF vectors or word embeddings.
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The table of the results reveals that the homological fingerprints of the authors exist

in their works. As the main contribution, we analyzed the special names (the leading

characters through the books), made the graphs of proximity among the leading

characters, and finally used those graphs to extract the homological features using

persistent homology. One of the main properties of the framework we introduced is

the robustness toward the translation and insensitivity to the document size.
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4.2 A Topological Algorithm Using Word Embeddings

In our algorithm for topological inference of the embedding Space, we utilize word

embedding and persistent homology. The input is the textual document and the

output is a topological representation of the same document. Later we may use these

representations for text classification, clustering, etc.

4.2.1 Main Steps in TDA Algorithm on Word Embeddings

Step-by-step specifications of the topological method on the embedding space are

explained is this section.

Pre-processing: Like any other text mining method, standard pre-processing

possibly including lemmatization, removing stop words and if necessary lowercasing

will be applied to the text. Also, there might be some specific pre-processing tasks

that are inspired by TDA algorithms.

Figure 4.3: Word embedding representation for the Book of Genesis (King James
Version) based on GloVe pre-trained vectors.

Word Embedding Representation: In a document of size T , replacing each

token with its embedding vector of size D will result in a matrix Ψ of size T × D.
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This matrix can naturally be viewed as a D-dimensional time series that represents

the document. More precisely, each column Ψd (d = 1, . . . , D) will represent the

document in dimension d of the embedding, as shown in Equation 4.5. An example

of such representations for the Book of Genesis (King James Version) based on GloVe

pre-trained vectors is illustrated in Figure 4.3.

ΨT×D =



ψ1
1 ψ1

2 . . . ψ1
d . . . ψ1

D

ψ2
2 ψ2

2 . . . ψ2
d . . . ψ2

D

...
...

...
...

ψt1 ψt2 . . . ψtd . . . ψtD
...

...
...

...

ψT1 ψT2 . . . ψTd . . . ψTD


1 ≤ t ≤ T

1 ≤ d ≤ D

(4.5)

Aggregation on Sliding Window: One of the easiest and potentially most

efficient ways of such smoothing is to replace each element Ψt,d (t = 1, . . . , T ) in Ψd

with a local average in its neighborhood. Equivalently, we may describe it by taking

the summation in the sliding window of size ω, where c = (ω− 1)/2 so the smoothed

vector is

Ψ̃t,d = Ψt−c,d + Ψt−c+1,d + · · ·+ Ψt,d + · · ·+ Ψt+c,d

and Ψ̃(T−ω+1)×D is the smoothed D-dimensional time series that represents the docu-

ment. For long documents this is almost the same as using a smoother matrix ΠT×T ,

i.e.,

Ψ̃T×D = ΠT×TΨT×D
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where Π is a tridiagonal (for ω = 3), pentadiagonal (for ω = 5) or heptadiagonal (for

ω = 7) binary matrix. The only difference is that in the latter definition, no value of

time series will be dropped, so the result is only slightly different in size, assuming

T >> ω. Note that we can also use exponential weights in summation of elements in

the sliding window instead of simply adding them up. In one of our experiments, we

tried the exponential form of:

Ψ̃t,d = Ψt,d

+
1

8
Ψt−3,d +

1

4
Ψt−2,d +

1

2
Ψt−1,d

+
1

2
Ψt+1,d +

1

4
Ψt+2,d +

1

8
Ψt+3,d

Computing Distances: Assume that in a documents, some of the embedding

dimensions and the relation among different dimensions are carrying some information

regarding the document. Such information could be revealed in a coordinate system,

where each embedding dimension is represented by a data point, and the distance

between two data points (embedding dimensions) represents their relation. A possible

choice of distance is formulated in Equation 4.6.

ϑ(Ψ̃i, Ψ̃j) : =
√
E[Ψ̃2

i ]E[Ψ̃2
j ]− E[Ψ̃iΨ̃j]

=
1

T

∥∥∥Ψ̃i

∥∥∥∥∥∥Ψ̃j

∥∥∥− 1

T
Ψ̃T
i Ψ̃j

=
1

T

∥∥∥Ψ̃i

∥∥∥∥∥∥Ψ̃j

∥∥∥ {1− CosSim(Ψ̃i, Ψ̃j)}

(4.6)

The intuition behind the way of defining distance in Equation 4.6 is to (1) con-

sider the relation between Ψ̃i and Ψ̃j via Cosine similarity, (2) distinguish significant

embedding dimensions (the term
∥∥∥Ψ̃i

∥∥∥∥∥∥Ψ̃j

∥∥∥ will do this), and (3) make the distance
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almost non-sensitive to the size of document via term 1/T . Note that Equation 4.6

can be replaced by any other definition satisfying these three conditions. Aggregation

on sliding window along with a distance formula like Equation 4.6 guarantee that the

order of the tokens in documents is considered in the final distance matrix Φ, defined

by

ΘD×D = [ϑ(X̃i, X̃j)] ; i, j = 1, . . . , D.

For simplicity let’s fix ω = 5, so remembering that each column of Ψ̃ as a simple

time series is a function of time (the index of word/token in the document),

Ψ̃i = Ψ̃i(t) = Ψi(t− 2) + Ψi(t− 1) + · · ·+ Ψi(t+ 2)

and assuming that the length of document T is large enough (T >> 1) we have

E[Ψi(t+ s)Ψj(t+ s)]→ E[Ψi(t)Ψj(t)]

as T →∞, so

E[Ψi(t+ s)Ψj(t+ s)] ≈ E[Ψi(t)Ψj(t)]

since shifting the time index will only exclude |s| elements from the beginning or the

end of time series and its effect is negligible when T >> |s|. It is easy to show that

E[Ψ̃iΨ̃j ] = E[Ψ̃i(t)Ψ̃j(t)]

≈ 5E[Ψi(t)Ψj(t)]

+ 4E[Ψi(t− 1)Ψj(t)] + 4E[Ψi(t)Ψj(t− 1)]

+ 3E[Ψi(t− 2)Ψj(t)] + 3E[Ψi(t)Ψj(t− 2)]

+ 2E[Ψi(t− 3)Ψj(t)] + 2E[Ψi(t)Ψj(t− 3)]

+ 1E[Ψi(t− 4)Ψj(t)] + 1E[Ψi(t)Ψj(t− 4)]
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and similarly, in a general form for any window size ω, Equation 4.7 holds.

E[Ψ̃iΨ̃j] = E[Ψ̃i(t)Ψ̃j(t)]

→ wE[Ψi(t)Ψj(t)]

+ (ω − 1)E[Ψi(t− 1)Ψj(t)] + (ω − 1)E[Ψi(t)Ψj(t− 1)]

+ (ω − 2)E[Ψi(t− 2)Ψj(t)] + (ω − 2)E[Ψi(t)Ψj(t− 2)]

...
...

...
...

+ 1 E[Xi(t− ω + 1)Xj(t)] + 1 E[Xi(t)Xj(t− ω + 1)]

as T →∞

(4.7)

Such coefficients will guarantee that the order is considered in the final distance

matrix θ. It means that each embedding dimension for each token in the text is being

compared with all the other embedding dimensions in the same token, a few tokens

before that, and a few tokens after that, though these comparisons will have different

weights, as illustrated in Figure 4.4. Note that similar equations can be easily derived

for correlation-based and covariance-based distances. In any case, the distance matrix

is sensitive to the window size ω, or more generally to the smoothing algorithm. For

instance, using exponential smoothing will result in geometric sequence of coefficients

instead of arithmetic sequence of coefficients in Equation 4.7 (i.e., ω, ω − 1, . . . ,1).

Regarding using the sliding window, the choice of ω is a trade-off between increasing

the captured information on one side and decreasing the noise on the other side.

Applying Persistent Homology: Having the distance matrix Θ for each doc-

ument, a persistence diagram PD(Θ) can be constructed for topological dimension1

1These dimensions should not be mistaken with embedding dimensions.



48

Figure 4.4: Working on the smoothed matrix, during distance calculation step, each
embedding dimension for each token in the text is being compared with all the other
embedding dimensions in the same token, a few tokens before that, and a few tokens
after that. Note that the comparisons will have different weights that depends on the
smoothing function.

0 (number of clusters) and dimension 1 (number of loops) denoted by PD0(Θ) and

PD1(Θ) respectively. However, this persistence diagram alone is not very useful as

the representation of the document.

In our previous algorithm [111] the resulted graph of the proximity of the leading

characters (persons) in each book, and therefore the distance matrix was not anno-

tated nor was needed to be annotated, since we had designed the algorithm to deal

with the main characters whatever their names are. In other word, to capture the

topological signature of a novelist, it did not matter whether the names of the main

characters are shifted. But here, dealing with time-series in different dimensions, the

order of embedding dimensions is meaningful, since different embedding dimensions

have different roles in representing document. Therefore, feeding the time series to
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the persistent homology algorithm is meaningless, unless we somehow manage to dis-

tinguish different dimensions. If we fail to address the issue, the embedding space that

persistent homology perceives is not annotated and the map of different embedding

dimensions will be lost as shown in Figure 4.5.

Figure 4.5: The embeddings distance space annotated by the embeddings indices
(left) and the embeddings distance space that persistent homology may perceive.

One intuitive way is comparing the persistence diagram with and without each

embedding dimension. In other word we can measure the change in persistence dia-

gram when we exclude one embedding dimension. We measure the sensitivity of the

persistence diagram generated by Ripser [121, 122] to each embedding dimension to

use it later as a measure of the sensitivity of the document itself to each embedding

dimension. This way the document will be represented in an array of size array of

D based on PD0(Θ) and another array of size D based on PD1(Θ), as formulated in

Equation 4.8, where W is any measure of distance between two persistence diagram,

e.g, Wasserstein distance.
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V0(d) = Ψ( PD0(Θ) , PD0(Θ \ d) ) ; d = 1, . . . , D

V1(d) = Ψ( PD1(Θ) , PD1(Θ \ d) ) ; d = 1, . . . , D

(4.8)

The steps are summarized in 2 and A block diagram of the algorithm is shown in

Figure 4.6.

Figure 4.6: A block diagram of the topological algorithm on the embedding space.
Word Embedding representations are aggregated over sliding windows. Then defining
the distance between pairs of embedding dimensions, persistence diagram can repre-
sent the text. Finally, the topological features are the sensitivity of the persistence
diagram with respect to different dimensions.

4.2.2 Data Specification to Apply TDA on Word Embeddings

To examine our topological algorithm on the word embeddings space, we use the

following data sets and predict the labels in multi-class multi labeling classification.

• arXiv Papers: We downloaded all of arXiv papers in quantitative finance2

published between 2011 and 2018. Then we selected five major categories (sub-

ject tags): “q-fin.GN” (General Finance), “q-fin.PR” (Pricing of Securities),

“q-fin.MF” (Mathematical Finance), “q-fin.ST” (Statistical Finance), and “q-

fin.RM” (Risk Management). For pre-processing we removed the titles, author

names and affiliations, abstracts, keywords and references. Then we tried to
2https://arXiv.org/archive/q-fin
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Algorithm 2 Topological Feature Extraction from Word Embeddings
Input: word embedding representation of text:

A matrix ΨT×D where T is the number of tokens in the text and D is the dimen-
tionality of word embedding.

Output: embedding-based topological features of text:
A vector of size 2×D.

1: for d = 1 to D do
2: Smooth d-th column of Ψ: Update the smoothed matrix Ψ̃ smoothing column

Ψ(d) of ΨT×D.
3: end for
4: for i, j = 1 to D do
5: Calculate distance between columns Ψ̃(i) and Ψ̃(j).

θ(Ψ̃(i), Ψ̃(j)) = 1
T
||Ψ̃(i)|| · ||Ψ̃(j)||{1− cos(Ψ̃(i), Ψ̃(j))}

6: end for
7: Apply persistent homology on ΘD×D = [θ(Ψ̃(i), Ψ̃(j))].

Get persistence diagrams PD0(Θ) and PD1(Θ) for components and loops respec-
tively.

8: for d = 1 to D do
9: Make the persistence diagrams excluding d-th column and row from Θ, i.e.,

PD0(Θ \ d) and PD1(Θ \ d).
10: Calculate Wasserstein distance of persistence diagram including and excluding

dimension d.

V0(d) = Wasserstein{PD0(Θ), PD0(Θ \ d)}

V1(d) = Wasserstein{PD1(Θ), PD1(Θ \ d)}

11: end for
12: return Ω0 and Ω1 as

Ω0 = [V0(d)] ; d = 1, . . . , D

Ω1 = [V1(d)] ; d = 1, . . . , D
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predict the subjects solely based on the paper body.

• IMDB Movie Review [123]: Using IMDB reviews annotated by positive/negative

label, we examined the topological algorithm on word embeddings for binary

sentiment classification task.

Table 4.2 contains the specifications of both data sets. Note that each records in

the arXiv data set may have more that one label. The histogram of number of labels

for each record is shown in Figure 4.7. As shown in the histogram, the majority of

records in arXiv data set are tagged with only a single label.

Table 4.2: Data Specification for arXiv papers and IMDB review data sets.

Specification arXiv Quant. Fin. Papers IMDB Movie Reviews
Labels 5 (Multi-label) 2
Clean Records 4601 6000
Length of Records 8456.9± 6395.8 540.5± 171.9

Frequency of Labels

q-fin.GN : 1258
q-fin.ST : 1144
q-fin.MF : 977
q-fin.PR : 907
q-fin.RM : 913

Positive : 3000
Negative : 3000

In practice, for many of the classification and clustering tasks in text processing, the

data covers only very short documents (e.g., a limited data set of social media posts).

Therefore a big challenge is training word embedding models on short documents.

Such a challenge is beyond the scope of this study and we will use pre-trained versions

of word embeddings that are previously trained on large corpora. Specifically, we use

the following pre-trained models.

• GloVe [107] pre-trained on Wikipedia 2014 and Gigaword 5 with vocabulary
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Figure 4.7: Histograms of number of labels per document in arXiv data set of papers.

size of 400K and 300d vectors3.

• fastText [124, 125] pre-trained on Wikipedia 2017 with the vocabulary size of

1M and 300d vectors4.

• ConceptNet Numberbatch [110] v17.06 with the vocabulary size of 400K and

300d vectors5.

4.2.3 Results from TDA on Word Embeddings

We run our binary classification and multi-label multi-class classification on both

data set using XGBoost [126, 127] with the parameters eta = 0.25, max_depth = 10,

subsample = 0.5, and colsample_bytree = 0.5. In each data set 2/3 of the records

were selected for train the model and the remaining 1/3 were used for testing. Table

4.4 and Table 4.5 show the results on arXiv paper data set and IMBD movie review
3http://nlp.stanford.edu/data/glove.6B.zip
4https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec
5https://conceptnet.s3.amazonaws.com/downloads/2017/numberbatch/numberbatch-en-

17.06.txt.gz
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Table 4.3: Results per class on arXiv papers dataset using ConceptNet Numberbatch
as pre-trained embedding and window size of 3.

Subject Test Records Precision Recall F1 Accuracy
q-fin.GN 410 73.2 68.5 0.708 83.8
q-fin.ST 396 70.2 67.5 0.688 83.6
q-fin.MF 306 66.0 45.6 0.539 77.5
q-fin.PR 305 69.5 55.2 0.615 82.7
q-fin.RM 307 62.5 61.0 0.617 84.5

data set, respectively. On each data set, we run the classifier using different pre-

trained embedding models and different sliding window sizes to smooth the embedding

signals. For both arXiv papers set and IMDB Movie Review data set, the best result

is achieved using ConceptNet Numberbatch as pre-trained embedding and window

size of 3. Detailed results for arXiv papers set are shown in Table 4.3.

To evaluate out results, for arXiv data set we run a convolutional neural network

using the same pre-trained word embeddings. As shown in Table 4.4, our best con-

figuration using our topological features outperforms the base CNN model in terms

of accuracy and F1 score defined by Equation 4.9 and Equation 4.10 respectively.

Accuracy =
TP + TN

P +N

=
TP + TN

TP + TN + FP + FN

(4.9)

F1-Score =
2× Precision×Recall
Precision+Recall

(4.10)

Here TP and TN are the numbers of true positives and true negatives and FP FN

stand for the numbers of false positives and false negatives respectively. Precision and

recall are defined in Equation 4.11 and Equation 4.12
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Table 4.4: Results on arXiv papers dataset. The best result is achieved using Con-
ceptNet Numberbatch as pre-trained embedding and window size of 3.

Model Embedding Window Prec. Rec. F1 Acc.
Topology + XGBoost fastText 3 61.9 55.4 0.575 80.1
Topology + XGBoost GloVe 3 63.1 56.7 0.597 80.7
Topology + XGBoost Numberbatch 3 68.7 60.5 0.643 82.6
Topology + XGBoost fastText 5 60.8 54.7 0.576 79.8
Topology + XGBoost GloVe 5 61.8 56.1 0.588 80.3
Topology + XGBoost Numberbatch 5 65.5 58.4 0.617 81.6
Topology + XGBoost fastText 7 58.9 54.4 0.566 79.5
Topology + XGBoost GloVe 7 62.8 56.4 0.594 80.6
Topology + XGBoost Numberbatch 7 65.7 57.7 0.614 81.3
Topology + XGBoost fastText 7 expon. 60.3 54.6 0.573 79.7
Topology + XGBoost GloVe 7 expon. 61.2 55.9 0.584 80.2
Topology + XGBoost Numberbatch 7 expon. 66.4 59.6 0.628 82.2

CNN fastText - 57.1 64.3 0.605 80.0
CNN GloVe - 57.6 64.2 0.607 80.6
CNN Numberbatch - 55.0 67.6 0.607 79.8

Precision =
TP

FP + TP
(4.11)

Recall =
TP

FN + TP
(4.12)

For IMDB reviews data set, we compare our results to the previous results of

Shauket et al. (2020) [128] lexicon based approach and Giatsoglou et al. (2017) [129]

hybrid approach. The comparison reveals that our topological algorithm outperforms

the previous models.



56

Table 4.5: Results on IMDB Movie Review dataset. The best result is achieved using
ConceptNet Numberbatch as pre-trained embedding and window size of 3.

Model Embedding Window Prec. Rec. F1 Acc.
Topology + XGBoost fastText 3 84.8 85.8 0.853 85.4
Topology + XGBoost GloVe 3 86.9 88.0 0.874 87.5
Topology + XGBoost Numberbatch 3 87.9 89.0 0.884 88.5
Topology + XGBoost fastText 5 84.2 85.2 0.847 84.8
Topology + XGBoost GloVe 5 85.6 86.6 0.861 86.2
Topology + XGBoost Numberbatch 5 86.5 87.6 0.870 87.1
Topology + XGBoost fastText 7 82.8 83.8 0.833 83.4
Topology + XGBoost GloVe 7 83.8 84.8 0.843 84.4
Topology + XGBoost Numberbatch 7 85.3 86.3 0.858 85.9
Topology + XGBoost fastText 7 expon. 84.3 85.3 0.848 84.9
Topology + XGBoost GloVe 7 expon. 86.5 87.6 0.870 87.1
Topology + XGBoost Numberbatch 7 expon. 87.0 88.1 0.875 87.6

Shauket et al. (2020) [128] Lexicon based - 86.7
Giatsoglou et al. (2017) [129] Hybrid - 0.880 87.8
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4.3 Additive Information in TDA Features Using TF/IDF and Word Embeddings

As mentioned before, we may refine topological features out of TF/IDF space or

word embedding representation of text. Previously we defined the method to extract

the topological features from word embeddings space. Here we introduce a method

that extracts topological features from TF/IDF space and then we add both set

of features to a conventional text classifier and quantify the availability of additive

information in the topological features as the change in the classification performance.

4.3.1 TDA on TF/IDF Vs. Word Embeddings

Our method of extracting embedding based topological features is described in

Algorithm 2. As mentioned in Algorithm 2 working on textual documents represented

in D-dimensional word embeddings, we get D features for topological dimension 0

(components) and another D features for topological dimension 1 (loops). We can

use the resulted 2×D topological features to represent the text. To apply persistent

homology on TF/IDF space, we follow the approach in [69], i.e., dividing the textual

document to a fixed number of blocks and then searching for repetitive patterns in

the text. In fact we analyze the topological properties of a graph where the vertices

are coming from the TF/IDF vectors of the consequent blocks of the original text.

Once again we utilize persistent homology to retrieve the geometric structures under

different distance resolutions. The details of our method are described in Algorithm

3.

We divide each document into 10 consecutive blocks of equal size, we calculate

TF/IDF vector for each block. We chose 10, but one may try different number of

blocks for each document. However, we note that using a large number of blocks

could make the TF/IDF vectors too sparse, so that comparing them would not be

useful. For instance, if an average number of tokens in a document is only 200 tokens
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Figure 4.8: Working on the graph of 10 vertices, persistent homology thresholds
the distance (e.g., cosine distance) among different nodes using all possible thresh-
olds.The resulted edges for a few choices of threshold are shown here. Topological
characteristics are summarized in the persistence diagram (bottom left).

and we divide each of the documents into 100 blocks, there would be two tokens in

each block, and most of the blocks would have zero similarity.

In our experiments, we work on graphs of 10 vertices, where each vertex is rep-

resented by its TF/IDF vector. An example of such graphs is illustrated in Figure

4.8. The figure shows that when persistent homology is applied, the number of edges

connecting the ten vertices will increase with the size of the radius (as we described

in Chapter 2). The distance between two vertices is given by the cosine similarity of

the vectors associated with each vertex.

With 10 vertices, in topological dimension 0 (components) we get exactly 9 diam-
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eters of birth and 9 diameters of death. Since for topological dimension 0 all of the

birth diameters are always equal to zero, we only retrieve 9 death diameters.

For topological dimension 1 (loops), we may get different number of loops for dif-

ferent documents. Thus, if we retrieve all of birth and death diameters, we will get

different numbers of features for different textual documents. Therefore, we summa-

rize the information from topological dimension 1 (loops) in five statistically inferred

features: number of loops, the average diameter of birth, the average diameter of

duration, the standard deviation of birth diameters, and the standard deviation of

duration diameters. This is similar to what Mittal and Gupta suggested in [28] to

summarize persistence diagram— that is using six features from the persistence di-

agram including the number of holes, the average lifetime of holes, the maximum

diameter of holes and the maximum distance between holes in each dimension. Here

we utilize some similar features. The resulting 14 features (9 from dimension zero

plus 5 from dimension one) represent patterns in the text. (As noted by [69] such

representation may capture e.g. repetitive patterns of the text).

Among the five features we retrieve from TF/IDF representation in topological

dimension 1, the number of loops is the simplest statistic we can define to quantify the

shape of the graph of 10 text blocks (by counting them). The average diameter of birth

represents the scale of the holes in the graph— that measures at which diameters the

holes begin to appear on average. The standard deviation of birth diameter measures

how diverse are such diameters. In other word, mean and standard deviation of birth

diameters represent the location and scale [130] in the distribution of birth diameters,

respectively. Working on duration diameters, once again we measure the location and

scale of their distribution. Note that duration diameters represent the magnitude of

loops in the graph of text blocks— they measure how persistent are the holes in the

graph. We summarize the description of the five mentioned features in Table 4.6.
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Algorithm 3 Topological Features from TF/IDF
Input: text:

A array R of size T where T is number of tokens in text.
Output: TF/IDF based topological features of text:

A vector of size 14.
1: Divide R to 10 equal-size arrays of size T/10.

R = Concat(R(1), . . . , R(10))

2: for d = i to 10 do
3: Calculate TF/IDF vector of R(i).

φ(i) = TF/IDF{R(i)}

4: end for
5: Apply persistent homology on Φ = [φ(i)] ; i = 1, . . . , 10.
6: Set X = [x1, . . . , x9] where xi’s are the diameters of deaths for components (di-

mension 0). We get exactly 9 death diameters.
7: For each loop (dimension 1), we have the diameters of birth and death.

Calculate Y = [y1, . . . , y5]

y1 = number of loops

y2 = average diameter of birth

y3 = average diameter of duration

y4 = standard deviation of of birth diameters

y5 = standard deviation of duration diameters

where duration diameter is defined as death diameter minus birth diameter.
8: return X and Y
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Table 4.6: Features from dimension 1 extracted from TF/IDF representation (the
graph of 10 text blocks), with their other uses. Features 2,3, and 5, to our knowledge,
were not previously used with TDA for classification, even though standard deviation
is a most common statistic.

Feature Loops Distribution
Information

Prev. Applications

1 Number of loops Loops variety among
text blocks

Used by Zhu [69] to find
repetitive patterns in
text.

2 Mean diameter of birth Birth diameter location
3 Std. Dev. of birth di-

ameters
Birth diameter scale

4 Mean duration (death -
birth)

Duration location Used by Mittal and
Gupta [28] for dynami-
cal system analysis.

5 Std. Dev. of duration Duration scale

4.3.2 Specification of the Experiment

We run both Algorithm 2 and Algorithm 3 on Wikipedia Movie Plots from Kaggle6.

We selected the movie plots annotated by four major genres of Drama, Comedy,

Action, and Romance. Keeping only the plots containing at least 200 words, we tried

to predict the genres solely based on the plot texts.

The data set contains 11,500 total records. Each record may have been annotated

by more than one labels. More specifications per class are shown in Table 4.2. We

used 2/3 of the records for training and 1/3 for testing.

To represent the data in word embedding space, we used fastText [124, 125] pre-

trained on Wikipedia 2017 with the vocabulary size of 1M and 300d vectors7. We

chose fastText since in our initial experiment it showed slightly better performance

compared to Google word2vec [108, 131, 132], GloVe [107], and Conceptnet number-

batch [110] pre-trained vectors. To apply persistent homology and extract topological
6https://www.kaggle.com/aminejallouli/genre-classification-based-on-wiki-movies-plots/data
7https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec
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Figure 4.9: The effect of changing the location and the scale of a distribution. Chang-
ing the location will push the probability density function to left/right (top) while
changing the scale will stretch/shrink the probability density function (bottom).

features we utilized Ripser [121] package. The TF/IDF vectors for Algorithm 3 were

extracted with text2vec package [133].

4.3.3 Results of TDA using TF/IDF and Word Embeddings

For each record in the data set, we computed two sets of topological features based

on word embeddings as in Algorithm 2 and TF/IDF space as in Algorithm 3. We

will call these two sets of features TP1 and TP2, respectively.

First, we fed TP1 to the XGBoost [127] classifier with max_depth = 2, eta = 1,

and 25 iterations. Then we tried adding TP2 features to the same classifier to boost

the results. We also tried a Bidirectional LSTM to classify the records without using
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Table 4.7: Number of records per class and overlaps among different classes.

Specification Drama Comedy Action Romance
Overlap with drama - 524 223 379
Overlap with comedy 524 - 207 544
Overlap with action 223 207 - 117
Overlap with romance 379 544 117 -
Exclusive Records 4592 3302 1181 672
Total Records 5615 4477 1658 1614

our topological features. Our bidirectional LSTM model containing 64-dimensional

main layer output was trained with a batch size of 32 in five epochs with adam

optimizer [134].

While bidirectional LSTM showed stronger performance than the XGBoost model

feeding our topological features, we assumed that there might be some exclusive

information carried by our topological features that are not captured by the LSTM.

Thus we tried combining the LSTM results with the XGBoost models. As one of

the easiest ways to combine the results, we fed the probabilities (not the rounded

predictions) returned by the two models (LSTM and XGBoost using TP1 and TP2)

to a logistic regression model.

As shown in Table 4.8, our best ensemble model outperforms the LSTM accuracy

and F1-score by 1.6% and 5.1%, respectively. The previous results8 using linear

Support Vector Classifier (SVC) and multinomial Naïve Bayes are also provided in

the table. The detailed results per class are also provided in Table 4.9.

Note that the topological features that we extracted from the word embedding

space (i.e., TP1) can classify the records alone with an accuracy comparable but

not equal to the LSTM. On the other hand, the topological features extracted from

TF/IDF space are primarily used to reflect some repetitive patterns in the text, as
8https://www.kaggle.com/aminejallouli/genre-classification-based-on-wiki-movies-

plots/notebook
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Table 4.8: Macro-average Results by different methods.

Classifier Pre. Rec. F1 Acc.
1 BiLSTM 68.0 59.7 0.608 76.2
2 XGBoost on TP1 59.6 53.2 0.560 71.1
3 XGBoost on TP1 & TP2 59.9 53.7 0.564 71.4
4 BiLSTM + XGBoost on TP1 67.8 64.8 0.656 77.3
5 BiLSTM + XGBoost on TP1 & TP2 68.5 64.6 0.659 77.8

Previous Results (Linear SVC) 73.5
Previous Results (Naïve Base) 73.3

Table 4.9: Accuracy per class using different methods. Here BiLSTM, XGB, XGB2,
LR, and LR2 are the same as models 1 to 5 in Table 4.8. prev. SVC and prev.
NB refer to the previous results using linear SVC and multinomial Naïve Bayes,
respectively.

Class BiLSTM XGB XGB2 LR LR2 prev. SVC prev. NB
action 87.7 86.7 86.9 89.3 88.9 81.5 82.7
comedy 75.6 69.0 69.1 76.9 77.7 74.6 73.3
drama 69.9 63.9 64.3 71.0 71.6 66.1 67.4
romance 87.6 86.0 85.9 87.8 87.8 88.3 84.3
macro-avg 76.2 71.1 71.4 77.3 77.8 73.5 73.3

Zhu [69] suggested in a similar study. However, as shown in Table 4.8 and Table

4.9, using the topological feature sets can boost the accuracy of classification in the

ensemble model.
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4.4 Discussion

In the proposed framework of extracting topological features without using con-

ventional text representations (as introduced in Section 4.1), the results reveal that

some homological fingerprints of the authors exist in their works. As the main con-

tribution, we analyzed the special names (the leading characters through the books),

made the graphs of proximity among the leading characters, and finally used those

graphs to extract the homological features using persistent homology. One of the

main properties of the framework we introduced is the robustness toward the transla-

tion and insensitivity to the documents size. Although the performance is not much

reliable to apply it to many applied problems, we can still modify or generalize the

framework to make it more accurate. For instance trying different model parameters,

introducing different quantifiers and measures of distances on the topological graph,

or even utilization of POS tags, location tags, or topics instead of the spacial names

as we did, may lead to a better algorithm.

However, the method of extracting homological features without utilising conven-

tional features is not easily applicable to the general problem of text classification.

Therefore, we explored the possibility of extracting some topological features from

widely used numerical text representations such as TF/IDF and word embeddings,

as described in Section 4.2 and Section 4.3.

In Section 4.2, we introduced a novel method to define and extract topological

features from word embedding representations of corpus and used them for text clas-

sification. We utilized persistent homology, the most common tool from TDA to

interpret the embedding space of each textual documents. In our experiments, we

showed that working on textual documents, our defined topological features can out-

perform conventional text analysis features. Specially when the textual documents
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are long, using these topological features can improve the results. However, in topo-

logical algorithm over the embeddings space, we are analyzing different embedding

dimensions as time series. Thus, to achieve reasonable results, a large number of

tokens in each textual document is required. We acknowledge this issue as the main

limitation of our algorithm. Also, it is not easy to measure and/or interpret the im-

pact of different parts of the text input on the output in the topological algorithm.

This is one of the possible future directions for this study.

In Section 4.3, we described a framework to use holomogical features in addition

to the conventional features for text classification. Here the focus is on introducing

and examining two methods to apply TDA to text classification. Term frequency (or

TF/IDF) and word embeddings are the most frequently used methods to translate

the text into numerical data. Therefore they deserve to be examined, as a priority, for

potential to reveal their hidden dimensions by applying topological methods. First,

we introduce a novel method of using word embeddings where we view text documents

as time series. We believe this method shows great promise, since it can be applied to

documents irrespective of their length (with some likely limitations), and it encodes

the temporal succession words in a latent semantic space. Our algorithm analyzes

the topology of the embedding space to discover relations among different embedding

dimensions of the analyzed text. The precise nature of this space is not clear to us at

this point. However, we know it is there, because our experiments show its influence

on the accuracy of classification.

In the second experiment, working with TF/IDF representations of textual docu-

ments, we use a method that divides the text to a fixed number of blocks, analyzes

topological structure of the relations among different blocks and summarizes the re-

sults. As with the first method, this topological summary consists of numerical fea-

tures derived from the persistence diagram of each document. And as in first case, it
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improves the accuracy of classification, proving the existence of the latent topological

dimension (speaking metaphorically).

The intuitive idea behind both experiments has to do with the central premise

of topological data analysis, namely that when examining a cloud of data points at

different resolutions, the emerging diagrams encode global geometric properties of

the point as shown in Figure 2.4 and later in Figure 4.8. There we observe, with the

change of the threshold, i.e. the distance at which we add connections to the points,

new elements are added to the persistence diagram, culminating in a clear circle, or

torus-like signature in in Figure 2.4 (shown as the long line in the right panel), and a

more complex representation of the geometry in Figure 4.8. In our case we measure,

and use as features for machine learning the birth and death diameters in dimension 0

and 1, as well as their derivatives that is the number of holes, the average divided by

the standard deviation of death diameter, and the same ratio for the duration (death

- birth).

We used two different methods to extract topological features from text and ap-

plied them to the task of document classification. The first method converts text,

represented as a sequence of word embeddings into a high dimensional time series,

which at the end is analyzed using the machinery of topological data analysis, namely

homological persistence. The second method augments the classical TF/IDF repre-

sentation of the text with topological features.

Specifically, we have leveraged existing word embeddings along with topology of

text to show that such structure can carry some useful information for machine learn-

ing classifiers to learn from.

As we have shown in the results, while a classifier utilizing only topological features

may fail to outperform more conventional models like bidirectional LSTMs, these

topological features are capable of carrying some exclusive information that is not
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captured by the conventional text analysis methods. Therefore, adding these features

to more conventional features models can boost the results. In our experiment, adding

using topological features in the ensemble model resulted in 4.9% increase in recall,

0.5% increase in precision, and 5.1% increase in F1 score.

Briefly, our contributions are as follows:

• We introduced a new algorithm of extracting topological features from text,

namely by converting a sequence of word embeddings into a time series, and

analyzing the dimensions of the resulting series for topological persistence.

• This algorithm works with documents of any length and, importantly, preserves

the word order in its representation.

• We have shown that this new method produces features of value for the task of

document classification.

• We showed that even if the representation of documents is derived from the

standard TF/IDF matrix, similarly produced topological features improve the

accuracy of classification.

We end with a discussion, including some of the limitations, and open problems.

The strength of our algorithm for analyzing documents as a time series of embeddings

is in its universal applicability, irrespective of the length of the document. The second

important property is using the word order. Finally, the algorithm produces the

representation in one pass.

However, one of the limitations of our methodology is the size of block of text.

Regarding the embedding based topological features, the topological structure of a

short text would not be stable. Also due to lack of context, the embedding may not

be able to provide enough information for classification tasks. Similarly, using its
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TF/IDF vectors on short documents, can result in poor simplicial shapes, when we

divide our text in blocks of 10, as in Section 4.3. That is, a set of separate dots in

the space most of which are not connected at all. In such a case, it is challenging to

find informative topological structure in text.

Proving the value of the methods used in this dissertation for other natural language

processing tasks, such as summarization, entity extraction or question answering, is

both a limitation of this work, and an open problem.



CHAPTER 5: Summary and Future Direction

While the feasibility of topological data analysis has been explored by many stud-

ies on numeric data sets, it is still a challenging task to apply it to text. As the

primary goal in topological data analysis is defining and then quantifying the under-

lying shapes in (numeric) data, defining shapes in textual documents is much more

challenging, even though the geometries of the vector spaces and the conceptual spaces

are clearly relevant for information retrieval and semantics.

We examined three different methods to define and extract topological features

from textual documents, using as the underlying representations of words the two

most popular methods, namely term frequency vectors and word embeddings, and

also without using any conventional features. Here are the short descriptions of the

methods:

1. To extract topological features without using conventional features, we analyzed

the graph of appearance/co-appearance of the leading characters through long

documents. Choosing some publicly available novels as the symbolic instances

of long textual documents, tries to predict the authors based on the topological

properties of such graphs.

2. To extract topological features from the embedding space, we interpreted the

word embedding representation of the text as a high dimensional time series,

and then we analyzed the topology of the underlying graph whose vertices cor-

respond to the different embedding dimensions.
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3. For topological data analysis on the term frequency space, we analyzed the

topology of the graph where the vertices represent the TF/IDF vectors of dif-

ferent blocks in the text.

In all cases, we applied persistent homology to retrieve the geometric structures of

the text under different distance resolutions. Our results show that the topological

features are capturing some exclusive information that is not carried by the conven-

tional text representations.

The idea of extracting topological features without using conventional features was

to investigate our hypothesis that (a) different novels by the same author have similar

persistence diagrams and (b) different authors usually have significantly different

persistence diagrams. The average accuracy of 77% for the author prediction task

suggests that there are topological signatures (topological styles) in the novels that

identify the authors.

Feeding topological features refined from word embeddings space, we achieved the

F1 score of 64.3% on arXiv papers classification that beats our convolutional neural

network model by 3.6%. Using the same methodology on IMDB Movie Review data

set, we reached to the F1 score of 88.4% which is 0.4% above the previous results

using lexicon based and hybrid approaches.

In our experiment of using topological features for additive information, using

topological features (extracted from TF/IDF and word embeddings spaces) in the

ensemble model resulted in 4.9% increase in recall, 0.5% increase in precision, and

5.1% increase in F1 score, on the Wikipedia movie plot data set.

Based on the above, we have shown that topological methods deserve deeper ex-

amination as a tool for text analysis. We believe that as with the geometries of vector

spaces and conceptual spaces mentioned earlier in Section 4.2 and Section 4.3, the
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topological features, which capture certain geometric invariants, are relevant for text

analytics and semantics of natural language.

In our future work, on extraction of topological features without using conventional

features, we will analyze the co-appearances of more entity types. Currently, we have

analyzed only the name entities tagged as ‘person’. However, the co-appearances

of locations, different POS, etc. might be informative as well. We validated our

method on a set of novels, for which the name entities are intuitively among the most

important tokens. But for different document types, that is not necessarily true. That

is why extending our method to analyze other entity types is worth of investigating.

Here we mainly focused on text classification. We will extend and apply our meth-

ods for other natural language processing tasks, such as summarization, entity ex-

traction or question answering.

We will investigate the possibility of connecting our work on topology of text with

the work on the understanding of topological properties of deep neural networks,

exemplified e.g. by [135] and [91].

We tried extracting topological features without using conventional features, using

TF/IDF space, and using word embeddings space. Another interesting input for

the topological data analysis would be the attention models— that is the attention

matrix.

In our method of extracting topological features from TF/IDF space we were divid-

ing each document to a fixed number of blocks, e.g. 10 consecutive blocks. We know

that persistent homology utilises a filtration on distances, i.e., defining the ε-distances

around the data points and then increasing ε from 0 to ∞. We may investigate the

performance of a 2D filtration where not only we try any possible ε in (0,∞), but we

also try all possible numbers of blocks in {2, . . . , L} where L is the size of the textual

document.
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A technical open problem is to find the actual text behind the topological struc-

tures. This is a challenge to be addressed in our future work.
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