
SCALABLE HARDWARE ARCHITECTURE FOR REAL-TIME AI ON THE
EDGE

by

Kaustubh Manohar Mhatre

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2020

Approved by:

Dr. Hamed Tabkhi

Dr. Chen Chen

Dr. Ronald Sass

Dr. Fareena Saqib

ii

c©2020
Kaustubh Manohar Mhatre
ALL RIGHTS RESERVED

iii

ABSTRACT

KAUSTUBH MANOHAR MHATRE. Scalable hardware architecture for real-time
AI on the edge. (Under the direction of DR. HAMED TABKHI)

Deep Learning has brought a massive and revolutionary impact to the field of machine

learning. The research in Neural Network algorithms has made them more efficient

and powerful in the recent years. which gave rise to a need to enhance their perfor-

mance on the edge. The focus in AI processing has attracted the hardware community

and has led development in customizable hardware for AI. GPU’s have proved to be

efficient for processing the AI workloads. Researcher’s today are more focused on

reducing the computational complexity and memory footprint of the networks. This

has led to more sparsity in the Network known as depthwise separable convolutional

neural networks (DSCNNs) e.g: MobileNet and EfficientNet. GPU’s are not designed

to take advantage of the sparsity of such networks. However FPGAs take advantage

of the reconfigurability and design a customizable data path for DSCNNs. This thesis

focus on the FPGA Hardware design for powerful and efficient implementation of the

DSCNNs on the edge FPGAs. It focuses on designing highly optimized convolutional

operators like depthwise, pointwise and normal convolution and an architecture to

support crucial heterogeneous compute units (CUs). It also focus on scalable devel-

opment of those compute units for ease of implementation and support for the future

networks. The hardware is designed using the Xilinx Vivado HLS 2018.3. HLS accel-

erates the development in hardware design. The execution results on Xilinx ZCU102

FPGA board demonstrate 47.4 and 233.3 FPS/Watt for MobileNet-V2 and a com-

pact version of EfficientNet, respectively, as two state-of-the-art depthwise separable

CNNs. These comparisons showcase how this design improves FPS/Watt by 2.2×

and 1.51× over Jetson Nano high and low power modes, respectively.

iv

DEDICATION

This work is dedicated to my father Dr. Manohar Mhatre and my mother Dr. Prati-

bha Mhatre for there constant support and encouragement. I would also like to thank

my friends and family who have helped me throughout this journey.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Tabkhi for guiding me at every step during my research.

I am grateful for all the support provided by him. He has motivated me to pursue

research in this field. I thank Dr. Chen, Dr. Fareena and Dr. Ronald Sass for being

on my thesis committee.

I would like to specially thank my colleague Mohammad Reza who has helped me

in each and every part of my work. He has guided and helped me to better understand

hardware desgin for FPGA, Xilinx HLS and helped me write better codes.

I would also like to thank my Mom and Dad for inspiring me all my years to take

few important steps in my life that led to this thesis. I thank my friends for their

constant love and support which encouraged me to work on my thesis and always go

an extra mile. I would also like to acknowledge Google Meet for providing a platform

for online conferencing. The final defense was conducted online using google meet

due to the uncertain situation created by COVID-19.

vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Contribution 2

1.3. Thesis Outline 5

CHAPTER 2: BACKGROUND AND RELATED WORK 6

2.1. Background 6

2.1.1. Network Model Optimization 6

2.1.2. Quantization 6

2.1.3. Xilinx Vivado HLS 7

2.1.4. Pytorch 9

2.2. Related work 9

CHAPTER 3: DEEPDIVE FRONTEND 13

3.1. Batch Normalization Fusing 13

3.2. Online Channel-wise Low-bit Quantization 13

CHAPTER 4: DEEPDIVE BACKEND 16

4.1. Convolutional Operators 16

4.1.1. Normal Convolution 17

4.1.2. Depthwise Convolution 18

vii

4.1.3. Pointwise Convolution 20

4.2. Network SoC compiler 21

4.2.1. DepDive System Architecture 22

4.2.2. Memory Organization 23

4.2.3. QNet Heterogeneous CUs 24

4.2.4. Host Code Scheduling and CUs Management 27

CHAPTER 5: EXPERIMENTAL RESULTS 30

5.1. Case Study: MobileNet V2 30

5.1.1. Design Exploration 30

5.1.2. Execution Results and Comparison 31

5.2. Case Study: EfficientNet 36

5.3. Moving to Vitis 38

5.3.1. Effect of Vitis on Resources utilization of EfficientNet
BC4 compared to SDSoc

39

5.3.2. Profiling DeepDive on Vitis 40

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 42

6.1. Conclusion 42

6.2. Future Work 42

REFERENCES 44

viii

LIST OF TABLES

TABLE 5.1: Effect of altering α and H for fixed BW = 4 31

TABLE 5.2: Effect of altering α and H for fixed BW = 4 at 200Mhz on
FPS and FPGA Resource Utilization

31

TABLE 5.3: Power Consumption and delay for MobileNet 34

TABLE 5.4: Performance Comparison in Classification 36

TABLE 5.5: Compressed EfficientNet Algorithmic Specs and FPGA Re-
source Utilization with fixed BW = 4, Frequency = 200 MHz

36

TABLE 5.6: Power Consumption and delay for Compressed EfficientNet 38

TABLE 5.7: Resourse and Performace comprison for SDSoC and Vitis 40

ix

LIST OF FIGURES

FIGURE 1.1: Object Tracking 2

FIGURE 1.2: Classification 2

FIGURE 1.3: Semantic Segmentation 3

FIGURE 1.4: Depthwise Separable Convolution 3

FIGURE 2.1: Symmetric and Asymmetric Qauntization 7

FIGURE 2.2: VTA (Vresatile Tensor Processing Unit) 10

FIGURE 2.3: DPU (Deep Neural Processing Unit) 11

FIGURE 3.1: DeepDive: Front-end. 14

FIGURE 3.2: Per-channel range-based linear quantization. In this depth-
wise convolution example, per each N output channel, a separate
mapping function is created.

15

FIGURE 4.1: DeepDive: Back-end. 17

FIGURE 4.2: Schematic block diagram of depthwise and normal
convolution

19

FIGURE 4.3: Shift and updateThe data movement and update mecha-
nism of Window and Line Buffer. 1© Line Buffer is filled with input
feature data. 2© Window Buffer is convoluted with weights. 3© The
data in window is left shifted. 4© New data from the line buffer is
copied in to the window. 5© & 6© Data from the FIFO is then copied
into the line buffer and window buffer. All the Data Movements are
pipelined.

20

FIGURE 4.4: Schematic block diagram of Pointwise Convolution. 21

FIGURE 4.5: Network SoC Compiler 22

FIGURE 4.6: System level architecture of DeepDive. 23

FIGURE 4.7: MobilenNet V2 Head Computing Unit 24

FIGURE 4.8: MobilenNet V2 Body Computing Unit 24

x

FIGURE 4.9: MobilenNet V2 Tail Computing Unit 25

FIGURE 4.10: MobilenNet V2 Classifier Computing Unit 25

FIGURE 4.11: EfficientNet Head Computing Unit 26

FIGURE 4.12: EfficientNet Body Computing Unit 26

FIGURE 4.13: Host level scheduling and memory footprint of CUs. 29

FIGURE 5.1: MobileNet V2 mapped to CUs. 32

FIGURE 5.2: Top1-Energy Efficiency Pareto front. Design point (H =
192, α = 0.5) and (H = 128, α = 0.75) has similar energy efficiency
while Top1 accuracy for (H = 192, α = 0.5) is more.

33

FIGURE 5.3: The energy efficiency (FPS/Energy) comparison of Deep-
Dive against Jetson Nano for both high and low power mode.

35

FIGURE 5.4: Effect of Quantization on Energy Efficiency 37

FIGURE 5.5: EfficientNet mapped to CUs. 38

FIGURE 5.6: Profiling DeepDive on Vitis 41

FIGURE 5.7: Head and Body Compute Unit Profiling 41

xi

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

DNN Deep Neural Networks

DPU Deep Learning Processing Unit

DSCNN Deep Separable Convolutional Neural Network

FPGA Field Programmable Gate Array

HLS High Level Synthesis

VTA Versatile Tensor Accelerator

CHAPTER 1: INTRODUCTION

Over the period of time the field of Deep neural Network has shown tremendous

growth. Particularly Convolutional Neural Networks (CNNs) has enabled many ex-

citing applications in visual analytics like image classification Fig:1.2 , object detec-

tion/tracking Fig.1.1, semantic segmentation Fig.1.3. Deep Learning networks need

extensive compute power to train the network to have considerable accuracy. With

the increasing popularity of the CNN algorithms a need for real time execution of

those algorithms has been a necessity. The high performance CNNs come with a

high computation complexity. Due to the increasing demand in the deep learning

paradigm there has been a shift towards the Domain-specific architecture eg: systolic

array, CGRAs, Tensor Cores. Deep separable CNNs have emerged as an innovative

algorithmic solution to achieve higher accuracy with relatively lower parameters and

operations. The most recent state of the art network have more structural sparsity

compared to traditional CNNs. These new CNNs have more data dependent layer

to layer communication and less data reuse potential. The modular design of the

DSCNNs with the structural sparsity allow the designer to trade between algorith-

mic accuracy and the computational demand. MobileNet has a knob to change the

width of the network which they call width multiplier. Changing the width multiplier

changes the accuracy as well as the computation complexity.

1.1 Motivation

The current design of the DSA is more suitable for dense computations. These DSA

does not perform well for the DSCNNs networks. Fig.1.4 show the structure of the

DSCNNs. DSCNNs first has a Deptheise convolution layer followed by the Pointwise

2

Figure 1.1: Object Tracking

Figure 1.2: Classification

convolution layer. These DSAs are often optimized for single point in isolation. They

convert the sparse convolution to dense convolutions by data replication which leads

to higher data redundancy and higher computational overhead. VTA has to make a

special version of MobileNet which they call mobile net G to remover the depthwise

convolution to make it running smoothly on the systolic array implemented on the

FPGA.

1.2 Contribution

DeepDive is a unified End - to - End fully vertical framework that can be used to

convert any DSCNNs into FPGA realizable hardware that has optimum performance

on the target FPGA board. DeepDive is designed to identify the key heterogeneous

3

Figure 1.3: Semantic Segmentation

Figure 1.4: Depthwise Separable Convolution

convolutions operations such as group, depthwise, and pointwise convolutions. The

frontend uses FPPGA-aware training and online quantization to optimize the model

provided by the model description file (eg. PyTorch). Algorithm-specific fusing of

batch normalization and convolution operators reduce the computation by 4 percent

and extremely low bit per channel quantization across all separable convolutions lay-

ers also reduce 75 percent of model size when compared to Float32. The frontend will

provide a QNET which contains all the meta data like the model parameters, quan-

tization parameters, and network configuration graph of the network. The network

4

SOC compiler uses the pre-designed CUs and the provided convolutional operators

to create a customize memory path and synthesizable model of the entire hardware

accelerator for the programmable logic. It also generated the host CPU code running

on the ARM cores. This host CPU code located in the Processing System(PS) side

of the SoC is mainly responsible for synchronization and scheduling of the hardware

resources. Below are the Deepdive contributions followed by my individual contribu-

tions

• A scalable framework that enables optimized execution of the DSCNNs on

FPGA

• Highly optimized Convolution operators kernel with flexible computational core

for adjusting parallelism

• First scalable solution with the support of recently introduced EfficientNet

DSCNN families

• The vertical integration and library-based operation mapping enables true com-

prehensive design space exploration on FPGAs

My Individual Contributions

• Developing the Backend of DeepDive on ZCU102

• Developing synthesizable compute units : Head, Body, Tail, Classifier

• Porting Entire design to Vitis

• Profiling kernel to find bottlenecks to improve the performance of the kernel

• Network functional verification to have functionally correct output

• Contribute to the overall design flow of Deepdive

5

1.3 Thesis Outline

The thesis is further organised in the following manner. Chapter 2 will give a

background about the techniques used to reduce the computation complexity with

some related work. Chapter 3 talks about the DeepDive frontend where it generates

the hardware specification and the quantized network. Chapter 4 dives into the

backend which describes the basic building blocks of the accelerator. The working of

the Network SoC compiler which is responsible to find the repeated pattern inside the

network graph and based on that pattern divide the network into 4 basic compute

unites (Head, Body, Tail, Classifier). Chapter 5 discusses the experimental setup and

results of the whole framework. The experimental results compare the the execution

of similar networks on embedded GPU and FPGA. Also compare it with the state

of the art solutions. Chapter 6 concludes the thesis with some prospect for future

work.

CHAPTER 2: BACKGROUND AND RELATED WORK

This Chapter focuses on the overall background. Right from some basic model

optimization techniques like Quantization, Batch normalization which helps in re-

ducing the model size and model operations. Then we take a overview of the tools

that helped us develop such a framework without worrying about the complexities

involved in the Domain of hardware design.

2.1 Background

2.1.1 Network Model Optimization

Floating point computation is the popular data type used in deep neural networks

as it is best to handle the overflow involved in the computation. More research in the

field suggest that lower bit fixed point arithmetic can drastically reduce the model

size of the network with very less loss in the accuracy. Thus the process to move

from floating point to fixed point is known as quantization. Batchnorm fusing and

activation fusing are some of the optimizations that optimized the model.

2.1.2 Quantization

Quantization is a process that reduces the number of bits that represents a number.

The desire for reduced bandwidth and compute requirement has driven research to

focus on low bit resolution format. 8Bit integer has shown extensive progress in

reducing the model size with minimum accuracy loss. The use of even lower bit width

such as 4 2 1 is an active field of research which has promised to show great progress.

The method that we used requires quantization aware training. we use Range-Based

Linear Quantization. Here linear means the floating point value is quantized with a

numeric constant also called as the scaling factor. The scale factor is calculated by

7

looking at the actual range of the tensor’s values. A naive approach which is generally

called clipping based only takes the min max of the tensor. An advance technique

uses some derivation based on the tensor’s range which removes the possible outliers

in the network. Further moving there are again two types of quantization modes:

MinxMinxq MaxxMaxxq
=2 -1

BW
=2 -1

BWMaxxq
=2 -1

BWMinxMinxMinx MaxxMaxxMaxx

Qhj: Tj hj: Tj Qhj: Tj Qhj: Tj

Figure 2.1: Symmetric and Asymmetric Qauntization

• Asymmetric In Asymmetric mode the min/max value of the float are mapped

to the min max value of the integer. This mapping requires a zero point also

known as quantization bias. The final range is always in between 0 and 2 raised

to n bit width. The quantized values are always positive

• Symmetric In Symmetric mode the maximum absolute value between min and

max is cheesed to map the min/max of float with the min/max of integer value.

The the mapped values are between a range of -ve to +ve. Thus here we do not

need any zero point.

2.1.3 Xilinx Vivado HLS

Recent advances in the field of High Level Synthesis has enabled the software

community to take advantage of the Hardwware by hiding the complexities related

to Digital Hardware Design. HLS is a automated design process that interprets an

algorithm description of a desired behaviour and creates a digital hardware which

can be implemented on a FPGA. Xilinx HLS has expedited the hardware design

process. It allows functions written in C, C++, SystemC, and OpenCL kernels to be

8

synthesized into RTL design. It also provides specialized libraries for math functions.

HLS also provide support for any arbitrary bit width data type. It also provides

us with streaming interface for data structures which are designed to obtain best

performance and area. Xilnx has provided us with compiler directives or optimization

pragmas. These pragmas help us to determine the required amount of parallelism in

the application. Below are some example of the prgamas that are used in the current

design

2.1.3.1 pragma HLS DATAFLOW

The Dataflow pragma increases the concurrency fo the RTL implementation and

increased the overall throughput of the design by allowing functions and loop to

overlap in their operations by enabling the task level pipeline. The functions inside

a data flow region start concurrently. Thus if there is a data dependency between 2

loops the dataflow can result into inefficient design. Sharing data from same array

inside the dataflow region is not permitted in HLS.

2.1.3.2 pragma HLS PIPELINE II=1

The pipeline pragma reduces the initiation interval by allowing the concurrent

execution of the operations. In default prgama is tries to make the computation to

run in single cycle. Thus any thing that is inside the pipeline pragma is required to

run concurrently.

2.1.3.3 pragma HLS ARRAY PARTITION

By default every BRAM inside the ZCU012 has 2 read and write ports. Using

this prgma we can increases the read and write ports for the storage. When we

are trying to perform several computations at the same time the data demanded by

the computation needs to be supplied simultaneously. This is only possible by array

partitioning the data array that is accessed by the communication buffer.

9

2.1.4 Pytorch

For training the DNNs we used pytorch. Pytorch framework provides us with

awesome debugging capabilities. The dataset used for training in ImageNet. For

quantization and batch normalization we use intel distiller. This distiller can convert

pytorh models to support quantization.

2.2 Related work

Modern CNN accelerators can be divided into two main categories: single compute

engine [1, 2, 3, 4, 5, 6], and multiple streaming compute engines [7, 8, 9, 10, 11, 3]. Sin-

gle compute-engine accelerators are typically a systolic array of processing elements

(PEs). These kind on accelerators execute the target CNN layer-by-layer sequen-

tially. They have a versatile solution to support different CNNs with the cost of some

execution deficiencies. This architecture design has high amount of memory trans-

actions. In contrast, streaming architectures consist of multiple dedicated hardware

blocks, customized for the target CNN’s layers running in producer/consumer fash-

ion. While achieving relatively higher efficiency, they have less scalability to support

different networks [12, 13].

Many recent frameworks have proposed a vertical design flow from algorithm to

the hardware [1, 7, 3, 9, 14]. However, the primary focus is on optimizing classical

CNNs with dense operation with regular memory access, such as YOLO and ResNet

network family. One notable example of single-engine architecture is DNNWeaver

[1]. It offers customizable, hand-optimized RTL templates capable of shrinking or

expanding the architecture based on the target CNN workload and target device

hardware constraints. The templates support common CNN layer operations such

as standard convolution, pooling, and batch normalization. However, the design-flow

is not autonomous as it requires the user to define the network topology and layer

structure. Wei et al. [5] designed a novel 2D systolic array that localizes data shifting

10

to between neighboring PEs. This removes the need for multiplexers and simplifies

the routing complexity, allowing for higher throughput. They also employ a custom

C-based front-end, which, similar to [1], requires user interaction to define the nested

convolutional loop using custom pragmas in C++. The custom front-end makes

it more challenging to integrate with existing high-level DNN libraries (PyTorch,

TensorFlow, Caffe, etc). VTA is another recently introduced approach, which presents

a versatile hardware solution to support different dense CNNs. Fig.2.2 shows the

block diagram of the VTA. VTA enjoys the generality by adapting instruction-based

scheduling and flexible systolic array. However, this generality leads to more power

dissipation. Another aspect that should be considered is that solutions based on

versatile systolic arrays intrinsically do not support depthwise convolutions due to

introduced sparsity in these types of convolutions; thus, users need to convert the

depthwise convolutions to group convolution to execute a DSCNN on designs similar

to VTA. All these succumb to more power dissipation and memory transactions,

which lead to having an inefficient hardware solution for DSCNNs.

Figure 2.2: VTA (Vresatile Tensor Processing Unit)

The design proposed in [15] presents a framework to minimize the complexity and

the model size of dense CNN by mapping normal convolution to depthwise separable

11

Figure 2.3: DPU (Deep Neural Processing Unit)

convolution. Similarly, TuRF [16] replaces standard convolution layers with depth-

wise separable convolution and applies layer fusion to enhance the performance of

dense networks. The design presented by [17] is another hardware accelerator based

on matrix multiplication and customized adder-tree to support MobileNet. However,

their fixed design platform is not scalable to support fast-growing and forthcoming

DSCNNs. A parallel acceleration scheme proposed in [18], demonstrates computing

reusability with design reconfigurability. However, the accelerator suffers from mas-

sive data movements due to frequent reads and writebacks to the DDR because of

the lack of fused layer execution. Moreover, the design-flow is not autonomous and

requires the user to define the layer structure. A MobileNet based hardware accel-

erator on FP32 computation is presented in [19]. DPU [20] is another solution to

support MobileNet based on an optimized RTL hardware model with a dedicated

operator for depthwise; however, it cannot be considered as a versatile solution to

12

support DSCNNs due to lake of support for swish activation function and Pointwise

multiplication. Fig:2.3 show the basic block diagram of the DPU. It also has a in-

struction based scheduler with a core engine for normal and pointwise convolution

and a separate engine for depthwise convolution. DPU does not support elementwise

multiplication, which makes it incompatible with the EfficientNet model. To the best

of our knowledge, none of the above approaches present a fully vertical framework to

implement the-state-of-the-art DSCNN architectures, e.g., EfficientNet family.

CHAPTER 3: DEEPDIVE FRONTEND

This section illustrates the Front End of the DeepDive. This is mainly responsible

for bringing hardware-awareness into training DSCNNs. Fig 4 gives a brif under-

standing about the frontend and its curresoponfin output. A pre-trained floating

point network is the input to the deep dive system. To reduce the computation

complexity we try to fuse the batch normalization into the convolution. So the fi-

nal network will not have any computation related to the batch normalization. This

reduces the operation by a small amount. The other feature of the front end is to

perform the online channel wise low bit quantization. The quantization can be per-

formed for arbitrary bit precision (3, 6, 8 bit). This post-training linear quantization

also fuses the ReLU6 into the convolution operators. Lets discuss this 2 approaches

further.

3.1 Batch Normalization Fusing

Batch normalization increases the stability of the network by normalizing the out-

put activation layer by subtracting the batch mean and divining the batch standard

deviation. It also increases the training speed of the network. The BN function is

defined below

3.2 Online Channel-wise Low-bit Quantization

Quantization is a well-known approach to compress the network model size, and

speed up the computation, by mapping number representations from floating-point

single precision (FP32) to integer representation. Due to the malleability of FPGA

fabrics, designers can greatly reduce the integer bit-width, while minimizing the intro-

duced quantization error, by training the network for the new representation. Deep-

14

FPGA-aware
Training

Model Calibration

Batch-Norm
Fusing

Pretrained FP
Model

Trained QNet.

Max-Min of
Network

Post Trained
Model

Quantization
and Activation

Fusing

QNet.

Training
and

Validation
Set

Validation
Set

User Defined
Bit Width

Configuration
Per Layer

User Defined
Bit Width

Configuration
Per Layer

HW
Configuration

Per Layer

HW
Configuration

Per Layer

O
n

lin
e

C
h

a
n

n
el

-w
is

e
Lo

w
-B

it

Q
u

n
ti

za
ti

o
n

Figure 3.1: DeepDive: Front-end.

Dive applies the Range-Based Linear quantization to compress the network weights

and biases. Let’s define T = {x | x ∈ R}, such that T is the floating-point pre-

trained network model. Function h : T → Q will map and scale T to Q, where Q

is quantized integer representation set. Eq. 3.1 defines function h:

x = S(xq +mzp) | xq,mzp ∈ Q, (3.1)

where S ∈ R, is the scaling factor, xq is the quantized value, and mzp is the zero-point

defined to make the right-hand side of Eq. 3.1 equal zero when xfp = 0. Based on

the range of xq, two methods of Asymmetric Representation and Symmetric Repre-

sentation are defined. In asymmetric mode the minx = min(x) is mapped to 0, while

maxx = max(x) is 2BW −1, while BW is the bit-width. In contrast, symmetric maps

both [minx, maxx] to [−(2BW−1), 2BW−1− 1]. MobileNet-V2 uses ReLU6 as its non-

linearity function — its output is always positive and less than 6. Therefore, we opted

for the asymmetric method, since the negative range of the symmetric representation

is not useful, and we are not able to benefit from the full range of representation;

thus, it will have an impact on the output accuracy of each activation layer.

15

K

N
K

K

N
K

Qh0: T0 h0: T0 Qh0: T0 Qh0: T0

Qh1: T1 h1: T1 Qh1: T1

QhN-1: TN-1 hN-1: TN-1 QhN-1: TN-1

Floating-point
values

Quantized
 values

Quantized
 weights

Figure 3.2: Per-channel range-based linear quantization. In this depthwise convolu-
tion example, per each N output channel, a separate mapping function is created.

DeepDive can quantize a network model per output channel, or per convolu-

tion layer. Per layer approach defines h function per whole convolution layer, while

per-channel quantization defines hj | j = 0, · · · ,M − 1 per each output channel for

a convolution operator. For instance, Fig. 3.2 shows the per-channel quantization

approach for a depthwise convolution.

After the network is trained and quantized based on the user-provided config-

uration, the validation set is used again for the network model calibration. The

calibration data will be used to make the trained network ready for post-training

quantization. In this step, based on the acquired min-max, and the type of quantiza-

tion, the scaling S and mzp will be recalculated again to re-evaluate hj, which results

in hpqj : [0, 6]→ [0, 2BW − 1]. By applying this approach, DeepDive fuses the ReLU6

activation to the convolution operator.

CHAPTER 4: DEEPDIVE BACKEND

DeepDive’s back-end offers a novel micro-architectural approach, and design flow,

customized for efficient execution of DSCNNs on edge FPGAs. Fig. 4.1 presents the

DeepDive back-end design flow. The heart of DeepDive’s back-end is the Network

SoC Compiler. It receives the design properties from DeepDive’s front-end and gen-

erates a full design of the system for both hardware (as synthesizable C++ models

mapped to FPGAs fabric), software codes, and system configurations. To generate

the optimized hardware for DSCNNs, the Network SoC Compiler uses pre-designed

highly-optimized RTL micro-architectural blocks or synthesizable C++ model for

depthwise , pointwise , and normal convolution operators. In simple words, the

Network SoC Compiler generates a network graph containing the network layout and

data dependencies. It then creates key heterogeneous CUs, called QNet Accelerators,

with respect to DeepDive’s system architecture. In the following, at first, we describe

micro-architectural details of convolutional operators, and then we discuss the details

of the Network SoC compiler and system architecture.

4.1 Convolutional Operators

Since DeepDive is specially designed for DSCNNs, it naturally supports all con-

volutional operations, namely, normal convolution , depthwise convolution , and

pointwise convolution . Each convolution operator buffers minimum job data size,

which is necessary to start the computation, with the assumption that the network

parameters necessary for computing are transferred to internal memory, and that the

intermediate feature maps are streamed in and out. These operators are pipelined

and parallelized in a way that is ideal for both memory-bound and compute-bound

17

Memory
Memory
Interface

DeepDive Accelerator

DMA Instances

PL Side
SoC

QNet

QNet CUs

Head CU Body CU Tail CU
Classifier

CU
Head CU Body CU Tail CU

Classifier
CU

QNet CUs

Head CU Body CU Tail CU
Classifier

CU
Network
Config.

Host

HLS BitstreamBinary FileNet. Params

ARM
Cores

AXI Interfaces

Head
CU

Head
CU

Body
CU

Body
CU

Tail CUTail CU
Classifier

CU
Classifier

CU

Network SoC
Compiler

DSCNN

Pre-designed
Convolution

Operator

Figure 4.1: DeepDive: Back-end.

operations. The heart of a convolutional operator is a reconfigurable Direct Convolu-

tion core with different degrees of parallelism. The amount of parallelism defines the

utilization, and parallel read/write ports required by the scratchpad or local buffers.

This flexibility allows the Network SoC Compiler to manage the resources efficiently

by tweaking the parallelism knobs to achieve the best performance (will be further

discussed in section 4.2). Next, we elaborate on each operator from the design stand-

point. In addition, we formulate the amount of parallelism per each convolutional

operator.

4.1.1 Normal Convolution

The DSCNN has one normal convolution , and it is the first operator to embed

patterns from both spatial and channel dimensions from the given input image. Since

18

the next layer after normal convolution is depthwise , it is essential to generate

output pixels column-wise (spatial dimension) so the depthwise can start the job

immediately. Therefore, we improve the parallelism level by having a dedicated adder

tree located after the direct convolution kernel for the input channel reduction. The

block diagram of normal convolution is, also shown in Fig. 4.2. The parallelism

in normal convolution is across kernel size and input channels — described in the

following: Parallel Ops = Knc
max × Knc

max × Nnc
max, where Nnc

MaxSize is the maximum

input channel size, and Knc
max is the maximum kernel size, assigned from all normal

convolution . Normal convolution has slightly more data movements compared to

the depthwise convolution due to the pipelined adder tree implemented at the end

of direct convolution core.

4.1.2 Depthwise Convolution

The Depthwise convolution uses a 3D line buffer and 3D window to perform direct

convolution. The input feature is streamed into a line buffer and then copied into a

window buffer with parallel read access, as shown in Fig. 4.3. Once the computation

is finished, the data in the computation core will be flushed and reloaded with the new

one from the line buffer. The hardware design ensures the data movement involved in

this process is fully pipelined, and the initiation interval is limited to a single cycle.

Computation starts as soon as the required amount of data is streamed from the main

memory. For the current design, the max achievable parallelism is limited to the K

and N .

Fig. 4.2 presents the micro-architecture of depthwise and normal convolution op-

erators. As depicted in Fig. 4.2, the selected input is read in streaming fashion into

the 3D line buffer and then copied into the sliding window. The weights are burst

read into the weight scratch pad. The Sliding Window and the Weight scratchpad

have multiple read ports. Every channel of the input is processed by the direct convo-

lution compute core. The direct convolution compute core has a parallel multiplier,

19

Approximator
&

Clip Unit

To Next Layer

Weights
Buffer

DMA

Decided at synthesis time

Read Buffer

From Previous Layer

1
DMA

Decided at synthesis time

Read Buffer

From Previous Layer

1
DMA

W

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multi

Pipeline Adder tree

Weight
Scratchpad

WW11

Direct Conv. Channel (N-1)

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multi

Pipeline Adder tree

Weight
Scratchpad

W1

Direct Conv. Channel (N-1)

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multi

Pipeline Adder tree

Weight
Scratchpad

W1

Direct Conv. Channel (N-1)

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multi

Adder tree

Weight
Scratchpad

WW11

Direct Conv. Channel 1

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multi

Adder tree

Weight
Scratchpad

W1

Direct Conv. Channel 1

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multiplier

Pipeline Adder tree

Weight
Scratchpad

WW

Direct Conv. Channel 0

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multiplier

Pipeline Adder tree

Weight
Scratchpad

W

Direct Conv. Channel 0

3D Line Buffer
Dimension 0

Sliding Window

K×K Input Features

Parallel Multiplier

Pipeline Adder tree

Weight
Scratchpad

W

Direct Conv. Channel 0

11

ScratchpadScratchpad

SerializerSerializer

D
ecid

e
d

 at syn
th

e
sis tim

e

D-Mux

Mux

Adder Tree
N

o
rm

al
C

o
n

vo
lu

ti
o

n

D
e

p
th

C
o

n
vo

lu
tio

n

Figure 4.2: Schematic block diagram of depthwise and normal convolution

and a pipelined adder tree, together which carryout the MAC operation, followed by

the Approximator and Clip unit. This unit truncates, or rounds, the results and then

clips them to [0, 2BW − 1] based on the quantization parameters extracted at the

front-end for this operator. Therefore, this unit also acts as the ReLU6 activation

layer defined in MobileNet V2 or EfficientNet. The depthwise convolution is more

sparse, and has the least amount of data reuse. The maximum parallel operations

are calculated as the following: Parallel Ops = Kdw
max ×Kdw

max × Ndw
max, In Eq. 4.1.2,

Kdw
max, and Ndw

max are the maximum kernel size and maximum input-channel across all

20

Update Line Buffer

W

K – 1

Window Buffer

K

K N

N

3D Line Buffer from Input Feature

W

K – 1

N

Input Feature Map

W

H

N

Read FIFO

j

l

o

Weight Buffer

K

K N

k

m

n

Figure 4.3: Shift and updateThe data movement and update mechanism of Window
and Line Buffer. 1© Line Buffer is filled with input feature data. 2© Window Buffer
is convoluted with weights. 3© The data in window is left shifted. 4© New data from
the line buffer is copied in to the window. 5© & 6© Data from the FIFO is then copied
into the line buffer and window buffer. All the Data Movements are pipelined.

the depthwise convolutions in the network, respectively.

4.1.3 Pointwise Convolution

Due to the dense operation of pointwise , the design of this operator can be similar

to the design of a general matrix multiplication, which is well suited for the systolic

array. With maximum data reuse, this operator can leverage maximum parallelism.

It has both fewer algorithmic, and fewer data movement complexity, which makes it

best fit for a high amount of parallelism. Fig. 4.4 shows the structure of pointwise

convolution operator. The required input is directly read into the input scratchpad

from the read buffer. The weights are burst read into the weight scratchpad. The

input buffer and the weight scratchpad have multiple read ports for parallel data

access. The single-cycle parallel multiplier and the adder tree take advantage of the

multiple ports to perform the MAC operations in parallel fashion. The amount of

parallelism for our design is across the input channels

Parallel Ops = NPWtype
max ,

where NPWtype
max is the maximum input channel size across all the specific type (eg.

projection or expansion pointwise in the MobileNet V2) of pointwise convolutions

mapped to specific compute unit.

21

Single Cycle Parallel Multiplier

Pipeline Adder tree

Weight Scratchpad

Approximator &
Clip Unit Write

Buffer
DMA

Weights
Buffer

DMA

Decided at synthesis time

Read Buffer

From previous layer

1
DMA

11

Input Scratchpad

Decided at synthesis time

To the next layer

Figure 4.4: Schematic block diagram of Pointwise Convolution.

4.2 Network SoC compiler

The Network SoC Compiler observes the network graph, the targeted hardware

device, and existing pre-designed synthesizable C++ IPs for convolution , and then

translates the network graph by grouping the convolutional operators into customized

QNet CUs with respect to system architecture. It tweaks the hardware architectural

knobs to maximize parallelism, fusing as many convolutional operators as possible to

reduce the number of shared memory transactions, and increase the overlap between

computation and memory latency. Based on the repetitive pattern, it wraps the

convolution operators in four different heterogeneous CUs: 1© The Head CU generally

consists of normal convolution followed by a special case of IRB which is only called

22

once; 2© The Body CU invokes IRB since it has maximum repetitions based on the

DSCNNs architectures; 3© The Tail CU usually consists of pointwise convolution

followed by Average Pooling to embed the features and make them ready in respect

of size and shape for the classifier; 4© Finally, the mapping of Tail CU output to

k−classes is accomplished by Classifier CU. Below, we describe the details of Network

Figure 4.5: Network SoC Compiler

SoC Synthesizer including, system architecture, memory organization, Heterogeneous

QNet CUs, host code scheduling and CUs management.

4.2.1 DepDive System Architecture

As emphasized before, the convolutional operators of DSCNNs demonstrate a repet-

itive structural behavior wherein some either appear once, or they are repeated across

the entire network. Depending on the recurrence of the convolutional operators, they

are mapped to the Head, Body, Tail, and Classifier CU. Fig. 4.6 shows the system

architecture of DeepDive Hardware Accelerator. Each CU has its own dedicated Di-

rect Memory Access (DMA), and its parameters, such as array pointers, N , M , and

H, can be configured at runtime via the control bus (e.g., AXI Lite Bus). After con-

figuration, each CU can transfer the input/output features map and weights tensors

via streaming channels (e.g., AXI HP Interface) through System Memory Manage-

23

ment Unit (SMMU). The composition of CU is parameterized by the buffer shapes,

data type widths, and the computation core, which are a few of the architectural

knobs provided while designing the hardware accelerator. This makes our design

scalable and reconfigurable for DSCNNs. We will discuss our hardware knobs and

each CU’s internal composition in detail after we explain the memory transactions

and management. The CUs are scheduled and pipelined to increase the concurrency.

AXI Lite

AXI HP Interface

ARM CoresSMMU

DDR
Controller

DDR

Head CU

DMA

Head CU

DMA

Body CU

DMA

Body CU

DMA

Tail CU

DMA

Tail CU

DMA

Classifier CU

DMA

Classifier CU

DMA

Figure 4.6: System level architecture of DeepDive.

4.2.2 Memory Organization

Each CU has its own dedicated buffer and scratchpad to handle its memory re-

quirements. The memory layout of the on-chip buffers are designed to satisfy the

data access pattern required by the convolutional operators, in order to minimize

the pipeline depth implemented in the computation core. The memory transactions

in the CUs can be categorized into two groups: 1© memory to memory transaction,

where data is burst read from DDR memory to PL memory, and 2© memory to stream

transaction, where data is streamed via DMA to or from PL memory. As an example,

Fig. 4.7 demonstrates the memory transactions for Head CU targeted for MobileNet

V2 . Convolutional network parameters like weights, quantization parameters, and

biases are burst read from DDR to PL buffers. The input/output feature maps are

streamed from DDR to PL. Apart from memory transactions of input/output features

between DDR and PL, the inter-CU data transfers within its operators also occurs

in streaming fashion, where intermediate feature map data is streamed in-between

24

different convolutional layers. Stream FIFO offers two main advantages, memory and

computation latency overlap and data movement reduction between DDR and PL.

4.2.3 QNet Heterogeneous CUs

In this subsection, we will explain the heterogeneous CUs, and the available archi-

tecture knobs that can be tweaked based on hardware and performance constraints.

As mentioned earlier, Network SoC Compiler creates four unique CUs for each DSC-

NNs. The CUs are completely parameterizable, and customizable, for scalability and

flexibility. Following section describes each CU in detail. We also provide illustrative

figures for the example of MobileNet V2 .

Mem to
Stream

Head CU

Stream
to Mem

AXI Lite

Mem2Mem

CU Configurations

DMA

Quant. Params.Net. Params. Quant. Params.Net. Params.

NC DW PW

AXI HP Interface

Figure 4.7: MobilenNet V2 Head Computing Unit

Mem to
Stream

Body CU

Stream
to Mem

AXI Lite

Mem2Mem

CU Configurations

DMA

Quant. Params.Net. Params. Quant. Params.Net. Params.

PW DW PW

AXI HP Interface

Mem to
Stream

Body CU

Stream
to Mem

AXI Lite

Mem2Mem

CU Configurations

DMA

Quant. Params.Net. Params.

PW DW PW

AXI HP Interface

Figure 4.8: MobilenNet V2 Body Computing Unit

25

Tail CU
Mem2Mem

Quant. Params.Net. Params. Quant. Params.Net. Params.

PW Reshape AVG

AXI HP Interface

B
u

f

Mem to
Stream

Stream
to Mem

DMA

AXI Lite CU ConfigurationsAXI Lite CU Configurations

Figure 4.9: MobilenNet V2 Tail Computing Unit

Mem to
Stream

Classifier CU

Stream
to Mem

AXI Lite

Mem2Mem

CU Configurations

DMA

Quant. Params.Net. Params. Quant. Params.Net. Params.

Classifier

AXI HP Interface

Figure 4.10: MobilenNet V2 Classifier Computing Unit

Head CU: DSCNNs tend to start with a particular pattern, which comprises of a

fixed set of layers that are not recurrent in any other part of the network. As explained

in the section ??, the Head CU has its own dedicated internal memory for buffers.

The data transactions occur in memory-to-memory mode and the intermediate data

streams between convolutional layers within the head CU. As an example, Fig. 4.7

demonstrates the Head CU for MobileNet V2 model, which is composed of normal

convolution followed by depthwise and pointwise convolution , all fused by FIFO

stream. This CU is scheduled once during the course of any DSCNN implementation.

After running the head of CU, the repeatable pattern will be merged and mapped to

the Body CU explained in the next part.

26

Figure 4.11: EfficientNet Head Computing Unit

Figure 4.12: EfficientNet Body Computing Unit

Body CU: The Body CU is the most important CU within DeepDive’s system ar-

chitecture. It is responsible for executing majority of DSCNNs blocks iteratively. As

an example, the IRB, which is the most repetitive block of MobileNet V2 , is entirely

mapped to the Body CU. The IRB consists of pointwise (expansion), depthwise ,

and pointwise (projection) layers, all running concurrently in a fused fashion within

the Body CU. Fig. 4.8 shows the structure of this CU for MobileNet V2 . Upon

examining the network graph of DSCNNs, we see that occasionally, the IRB needs to

perform residual connections. Depending upon the network graph, DeepDive facili-

tates residual connections implementation within or outside the PL targeted device

27

resources. The Body CU is parameterized so as to support both memory-bound IRBs,

which ideally are earlier blocks of DSCNNs, and compute-bound IRBs, which tend

to be later blocks of DSCNNs. Therefore, the network SoC compiler configures the

Body CU with maximum buffer size needed by memory-bound IRBs, and maximum

level of parallelism to meet the demand imposed by compute-bound IRBs. At the

same time, the Body CU supports convolution operations with variable stride over

different IRBs. These features increase the framework inclusiveness by supporting

multiple IRB scenarios within the same DSCNN.

Tail CU: The Tail CU consists of the last layers of DSCNNs. The task of this CU

is to make the embedded feature size ready for the dense layer implemented in the

Classifier CU. Fig. 4.9 represents the structure of Tail CU in MobileNet V2 . This

CU is comprised of a single pointwise convolution operator, followed by an average

pool. As intermediate feature maps are streamed from layer to layer in a channel-wise

fashion, the reshape block reorders the memory layout of the feature map in a column-

wise mode. Therefore, the average pooling can accumulate the input on-the-fly and

stream out.

Classifier CU: The last Compute Unit is the Classifier CU, which concludes the

DSCNN implementation. Fig. 4.10 represents the MobileNet V2 Classifier CU. Simi-

lar to others, this CU is parameterized such that the parallelism across the computing

core can be adjusted based on the available hardware resources. Classifier CU com-

prises compute-bound operations and has a similar configuration to the pointwise

convolutional operators.

4.2.4 Host Code Scheduling and CUs Management

Finally, the Network Soc Compiler also manages the host-level scheduling of CUs.

Fig. 4.13 visualizes the CUs scheduling and their memory footprints on shared mem-

ory. The host or PS initializes the DDR with network models and quantization

parameters. The DeepDive back-end generates the memory layout so that the net-

28

work data region is shared between PL and PS. Therefore at each CU invocation, the

PS only passes the data pointer, and the PL fetches the data based on the provided

pointer rather than copying the data to its region. This memory layout will remove

the necessity of copying data between the PL and PS memory region. The host starts

scheduling procedure by configuring the Head CU with appropriate memory pointer

addresses, offsets, network parameters, and network configuration, i.e., M , N , H,

which are compiled into network configuration header files. When Head CU com-

pletes execution, it writes back the data in feature tensors and interrupts the host

CPU. Following the same trend, the host will schedule the Body CUs for j times,

where j is the number of Body CU invocations calculated based on CU’s mapping.

Host CPU then schedules the Tail CU, which executes the compute-bound operations

quickly. And finally, the last call is to the Classifier CU, which will update the content

of feature tensor needed by the softmax layer to calculate the confidence. Host CPU

creates a sequential yet fused scheduling and management of CUs for DSCNNs.

29

PL Side

PS Side

Scheduler
Head configuration and
tensor memory address

Head CU

Body0 configuration and
tensor memory address

Body CU

Tail CU

Classifier CU

Bodyj configuration and
tensor memory address

Tail configuration and tensor
memory address

Classifier configuration and
tensor memory address

DDR

Image
Feature
Tensors

Weights and quantization
tensors for Head CU

Weights and quantization
tensors for Body CUs

Weights and quantization
tensors for Tail CU

Weights and quantization
tensors for Classifier CU

Figure 4.13: Host level scheduling and memory footprint of CUs.

CHAPTER 5: EXPERIMENTAL RESULTS

5.1 Case Study: MobileNet V2

The procedure starts from a PyTorch model of MobileNet-V2, pre-trained on Ima-

geNet. At DeepDive’s front-end, we configured the FPGA-aware training for different

BW based on the channel-wise asymmetric ranged linear quantization. Fig. ?? shows

the Top-1 accuracy for MobileNet-V2 when its α = 0.75 and H = 160. As can be

seen, DeepDive maintains accuracy with respect to FP32 by reducing the BW to 8

for first Normal Convolution, and 4 for the rest of the layers, respectively. The per

layer-specific quantization compresses the model size with a ratio of 8, with 4.4%

degradation in Top1 accuracy. The results demonstrate a dramatic drop in accuracy

for BW = 3. For the rest of this case study, BW = 4, as it achieves competitive

accuracy with considerably smaller model size.

5.1.1 Design Exploration

The front-end is configured to re-train, quantize, and calibrate the network for

different α and H values. Table 5.1 summarizes the model size, operation numbers

and Top1 accuracy per each design point. Based on Table 5.1, we observe that model

size is only effected by α, while the number of operation number is a function of both

α and H. Top1 accuracy is also a function of both H and α; however, it is not a

linear relationship. For instance, design point (H = 224, α = 0.75) has better Top1

accuracy compared to design point (H = 160, α = 1) while its model size is 33% less

than the latter one. Therefore, we introduce the network complexity as the product

of the network model size and network operation number to consider both of them.

Fig. ?? depicts the Top1-Network Complexity Pareto front. The network complex-

31

Table 5.1: Effect of altering α and H for fixed BW = 4

α 1 0.75 0.5 0.35

H 224 192 160 128 96 224 192 160 128 96 224 192 160 128 96 224 192 160 128 96
Params(Mb) 13.31 13.31 13.31 13.31 13.31 10.01 10.01 10.01 10.01 10.01 7.48 7.48 7.48 7.48 7.48 6.37 6.37 6.37 6.37 6.37
#Ops(M) 313.621 230.755 160.638 103.269 58.649 220.326 162.212 113.038 72.805 41.513 104.164 76.868 53.772 34.875 20.177 64.835 47.973 33.706 22.033 12.953
Top1(%) 69.07 67.256 65.78 62.3 56.036 66.404 64.364 59.928 53.112 43.002 59.502 57.452 52.608 45.316 34.88 54.43 51.214 46.59 39.328 27.2

Table 5.2: Effect of altering α and H for fixed BW = 4 at 200Mhz on FPS and FPGA
Resource Utilization

α 0.75 0.5 0.35

H 224 192 160 128 96 224 192 160 128 96 224 192 160 128 96
FPS 11 14 18 22 28 16 19 25 30 37 20 25 31 40 51
Power(mW) 460 450 440 370 350 400 320 310 300 290 270 270 260 250 250
DSP(%) 57 57 58 57 57 37 37 37 37 37 24 24 24 24 24
LUTs(%) 75 74 76 74 74 71 70 70 70 70 68 67 67 67 67
BRAM(%) 96 96 97 92 90 92 91 89 88 87 84 84 82 81 80

ity helps the front-end to measure the final hardware complexity at a higher level of

abstraction. We annotate the starting point of each α in this figure and one non-

Pareto point for the sake of comparison. Here, we observed that the design point

(H = 96, α = 1) has approximately the same network complexity with respect to

(H = 224, α = 0.5), while its Top1 accuracy is almost 4% less than top achievable

accuracy.

5.1.2 Execution Results and Comparison

This subsection evaluates DeepDive’s execution performance for MobileNet-V2 on

the Hardware Accelerator, different energy-efficient design points implementations,

and finally provides a comparison against two other FPGA accelerators [14, 18].

Since there are no other solutions that support both MobileNet-V2 and EfficientNet,

we also compare it against Nvidia’s Jetson Nano as existing state-of-the-art system.

Mapping: As discussed in section ??, based on the network graph generated by

Network Compiler, DeepDive’s back-end identifies the mapping between the convolu-

tional operators and heterogeneous CUs. Fig. 5.1 reveals the mapping of MobileNet-

V2 to heterogeneous CUs. The Head, Tail, and Classifier CU are scheduled only once,

but the Body is scheduled 16 times. Because of this, DeepDive allocates maximum

resources to the Body CU to gain maximum performance. It makes the body CU

32

support both memory-bound and compute-bound operations. For α = 1.0, DeepDive

was not able to fit the design in XCZU9EG SoC chip. If we configure the DeepDive to

select different values, less than Nmax per operator, we observed a significant degra-

dation in the final accelerator performance. Therefore, for the rest of this section, we

did not consider these design points.

Im
ag
e

P
W

D
WN
C

Head

Im
ag
e

P
W

D
WN
C

Head

+

P
W

D
W

P
W

Body

+

P
W

D
W

P
W

Body

A
V
G

P
W

Tail

A
V
G

P
W

Tail

C
la
ss
if
ie
r

Classifier

C
la
ss
e
s

Figure 5.1: MobileNet V2 mapped to CUs.

Energy efficiency: Here we configure the back-end to compile different network

architecture by altering α and H. Multiple fully functional execution instances have

been created for all configurations in Table 5.1, except when α = 1.0.

Table 5.2 summarizes the power consummation, FPS, and hardware utilization.

The power is measured using a power monitoring device, as shown in Fig. ??. The

measured power is the difference of the idle power dissipation of the board and the

power consumed by the DeepDive accelerator while running inference. This power is

consumed by MPSoC (ARM cores + FPGA fabric), memory hierarchies, and shared

DDR memory during the inference. Resource utilization is directly proportional to α,

while the power is a function of both α and the input resolutionH. Design point (H =

96, α = 0.35) has the lowest power consumption at 250mW, as compared to (H =

224, α = 0.75) with the highest power consumption at 460mW. Fig. 5.2 depicts Top1-

Energy Efficiency (FPS/Watt) Pareto front. We only annotate the design points that

have a higher than 50% accuracy. DeepDive enables us to understand the relationship

between energy efficiency and accuracy. As we can see, design point (H = 160, α =

0.75) has almost same FSP/Watt and Top1 accuracy with (H = 224, α = 0.5).

33

Similarly, the next design point, (H = 192, α = 0.5), can improve energy efficiency

by 45.14%, while the accuracy is dropped by only 2.48%. Based on the design points

provided by DeepDive, it can be observed that by decreasing α and increasing the H,

we can improve FPS/Watt without sacrificing the Top1-accuracy dramatically.

50 100 150 200
Energy Efficiency(FPS/Watt)

25

30

35

40

45

50

55

60

65

70

T
o

p
1

A
cc

u
ra

cy
 (

%
)

Design Points
Pareto Frontier

(H=224, ,=0.75)

(H=192, ,=0.75)

(H=160, ,=0.75)

(H=192, ,=0.5)

(H=224, ,=0.35)

(H=128, ,=0.75)

Figure 5.2: Top1-Energy Efficiency Pareto front. Design point (H = 192, α = 0.5)
and (H = 128, α = 0.75) has similar energy efficiency while Top1 accuracy for (H =
192, α = 0.5) is more.

Comparison: To showcase the energy efficiency of DeepDive, we compare its

FPS/Watt against off-the-shelf Nvidia Jetson Nano IoT Edge Device. We mapped

the design points of Table 5.2 to TensorRT and obtained the metrics after its graph

optimization and quantization. Similar to the DeepDive, we calculate the power con-

sumption only for inference time. We compared the delay and power consumption

34

Table 5.3: Power Consumption and delay for MobileNet

H
Power(W) Delay(ms)

Nano(H) Nano(L) DeepDive Nano(H) Nano(L) DeepDive

224 5.49 2.64 0.46 14.91 20.73 88.49
192 5.22 2.51 0.45 13.61 19.96 70.32
160 4.78 1.88 0.44 13.07 19.6 54.45
128 3.35 1.56 0.37 11.24 17.19 45.51
64 3.25 1.32 0.35 7.89 13.91 35.71

between DeepDive and Jetson Nano in two different power consumption modes: high

power, and low power. It can be seen that DeepDive consumes a lot less power when

compared to Jetson Nano, as depicted in Table 5.3. Fig. 5.3 shows the compari-

son of the Jetson Nano energy efficiency against DeepDive for different input sizes

while α = 0.75. DeepDive, on average, can improve the FPS/Watt 2.2× and 1.51×

against high and low power mode, respectively. DeepDive outperforms Nano because

1© DeepDive performs extreme bit quantization as opposed to nano which uses FP16;

2© Although, TensorRT optimized the network model to fuse convolutional operators,

DeepDive groups the convolutional operators in heterogeneous CUs at higher gran-

ularity. This heterogeneity effectively reduces the shared memory transactions and

overlaps both computing and memory latency; 3© DeepDive provides a customized

dataflow for depthwise separable convolution as opposed to Jetson Nano which per-

forms general matrix multiplication for depthwise convolution due to fixed systolic

array implementation.

Table 5.4 provides a comparison between DeepDive configured with (H = 224, α =

0.75) design and other similar accelerators. Since VTA’s [14] architecture does not

support depthwise convolution, they modify the MobileNet to have group convolu-

tions instead of depthwise convolutions, coined MobileNetG. Their MobileNetG was

not accessible; hence, there was no chance to present a straightforward comparison.

However, we realized that ResNet-18 has almost same inference latency when com-

35

12.2
14.1

16.0

26.6

39.0

18.3
20.0

27.1

37.3

54.5

24.6

31.6

41.7

59.4

80.0

224 192 160 128 92
Input Size(H)

0

10

20

30

40

50

60

70

80

90

E
n

er
g

y
E

ff
ic

ie
n

cy
 (

F
P

S
/W

at
t)

Jetson Nano (High)
Jetson Nano (Low)
DeepDive

Figure 5.3: The energy efficiency (FPS/Energy) comparison of DeepDive against
Jetson Nano for both high and low power mode.

pared to MobileNetG based on their results, so we decided to compare the energy

efficiency of VTA running ResNet-18. As we can see, DeepDive can improve energy

efficiency 2.27×. The instruction-based scheduling approach, and versatile systolic

array adopted by VTA, both need to consume more power to decode instructions and

map layers to the ALU sequentially, which leads to more shared memory transactions

and higher power dissipation. Similarly, we compare DeepDive with the hardware ac-

celerator presented by [18]. DeepDive outperforms [18] by 37.25× in energy efficiency.

This improvement is because of two main reasons: 1© Extreme bit-quantization, BN,

and ReLU activation fusion accomplished by front-end which increases the efficiency

of the hardware accelerator. 2© DeepDive groups the convolutional operators in the

CUs at higher granularity to overlap the memory transactions and computations.

36

Table 5.4: Performance Comparison in Classification

Design Network Platform Freq. (MHz) Speed (FPS) Power (W) Energy Efficiency (FPS/W)

VTA [14] ResNet-18 ZCU102 200 15.44 1.47 10.51
[18] 0.5 MobileNet ZYNQ 7Z045 100 1.38 2.15 0.6418
Ours MobileNet-V2 ZCU102 200 11 0.46 23.91

5.1.2.1 6-bit Data-path

To showcase the ability to create random bit data-paths, We reconfigure DeepDive

to generate and synthesize the MobileNet-V2 for BW = 6 to understand the effect

of different bit resolution on the final Top1 accuracy and the hardware efficiency. We

observe that BW = 6 can improve the Top1 accuracy by 1.49%, while the effectiveness

of the hardware (FPS/W) drops by 4.88% on the average.

Overall, DeepDive improves hardware efficiency by adopting customized functional

blocks for depthwise and pointwise convolutions. Heterogeneous CUs also remove un-

necessary memory transactions between the PL and shared memory by fused pipeline

execution across layers within a block which decreases the power consumption, while

improving the overall system performance.

5.2 Case Study: EfficientNet

The baseline EfficientNet model was intentionally designed to be larger than MobileNet-

V2. While this might be ideal for state-of-the-art accuracy, it was not suitable for

low-power embedded devices. Taking advantage of the compound model scaling fac-

tors introduced in [21], we were able to compress the model using smaller α, network

depth, and H, to achieve a model size capable of running on edge devices. The algo-

rithmic details and hardware resource utilization of this model can be seen in Table

5.5.

Table 5.5: Compressed EfficientNet Algorithmic Specs and FPGA Resource Utiliza-
tion with fixed BW = 4, Frequency = 200 MHz

Algorithmic Parameters Hardware Parameters

H Parameters (Mb) #Ops (M) Top1 (%) FPS Power (mW) DSP (%) LUTs (%) BRAM (%)

128 7.81 4.914 55.02 35 150 90 80 68

37

H
=2

24

,

=0
.7

5

H
=1

92

,

=0
.7

5

H
=1

28

,

=0
.7

5

H
=9

6
,

=0
.7

5

H
=1

92

,

=0
.5

H
=1

60

,

=0
.5

H
=9

6
,

=0
.5

H
=2

24

,

=0
.3

5

H
=1

92

,

=0
.3

5

H
=1

60

,

=0
.3

5

H
=1

28

,

=0
.3

5

H
=9

6
,

=0
.3

5

Design Points

0

50

100

150

200

250

E
n

er
g

y
E

ff
ic

in
ec

y
(F

P
S

/W
at

t)

8 bit
6 bit
4 bit

Figure 5.4: Effect of Quantization on Energy Efficiency

Mapping: EfficientNet is structurally different as compared to MobileNet-V2.

Fig. 5.5 shows the mapping of EfficientNet to the CUs. The squeeze and excita-

tion convolutional operators are represented as PW-SQ and PW-EX, respectively.

DeepDive takes advantage of EfficientNet architecture by fusing more convolutional

operators together. EfficientNet comparatively has a larger body than the MobileNet-

V2, with six layers fused. This mapping helps in achieving better performance by

reducing more memory transactions by invoking the Body CU only nine times. For

the case of EfficientNet, we excluded the classifier from mapping and also comparison.

Energy Efficiency: As we can see in Table 5.5, the number of body CU invocation

is 1.78× less than MobileNet-V2, which leads to less power consumption and higher

FPS due to fewer memory transactions. Table 5.5 shows DeepDive reaches to 35 FPS

38

Im
ag

e

A
V

G

D
WN
C

Head

+

D
W

P
W

 -
 E

X
P

Body

A
V

G

P
W

Tail

A
V

G

P
W

Tail

C
la

ss
if

ie
r

Classifier

C
la

ss
e

s

P
W

 -
 S

Q

P
W

 -
 E

X

P
W

 -
 P

R
J

x

A
V

G

P
W

 -
 S

Q

P
W

 -
 E

X

P
W

 -
 P

R
J

x

PL Side PS Side

Figure 5.5: EfficientNet mapped to CUs.

Table 5.6: Power Consumption and delay for Compressed EfficientNet

H
Power(W) Delay(mS)

Nano(H) Nano(L) DeepDive Nano(H) Nano(L) DeepDive

128 5.61 2.22 0.15 6.581 12.6 28.57

for a power consummation of 150mW. This model gives us the Energy Efficiency of

233.3 FPS/Watt.

Comparison: Table 5.6 compares the FPS/Watt against Nvidia Jetson Nano. For

EfficientNet, DeepDive can improve the FPS/Watt 8.6× and 6.7× against high and

low power mode, respectively. Based on the massively fused layers in Body CU, fewer

memory transactions translates to more energy-efficient hardware.

5.3 Moving to Vitis

Vitis is a unified programming model that supports both the edge and cloud com-

puting applications. Vitis provides us with the flexibility to design and develop one

single application which can be run on both edge and the cloud. Vitis AI and Vi-

tis libraries allow end-to-end application acceleration with just software defined flow

with minimum hardware expertise. Vitis is a successor of SDAceel and hence it fol-

39

lows OpenCL semantic. Vitis AI has a well vertically integrated software stack. It

has algorithmic optimization built in into it. Right from compressing the model,

quantization and pruning Vitis has build in support for all these operations. While

conducting experiments to understand the difference of DeepDive on SDSoC and

Vitis. We found that Vitis HLS is highly optimized for resources rather then per-

formance. Which means you can fit even bigger design compared to SDSoC at the

cost of performance. Vitis even solves the inherent timing issue that SDSoC was not

able to synthesize. This sometimes comes at the cost of performance. Vitis tries to

add resistors to relax the timing constrains and sacrifice more clock cycles for the

smae. Vitis is more suitable for throughput oriented design rather then the latency

oriented design. Overall Vitis unified flow makes it more user friendly when it comes

to developing AI application. As Vitis uses OpenCL semantic style of execution. It

also supports OpenCL profiling tools. Kernel profiling is done on the hardware level.

Vitis uses openCL runtime which they call (XRT Runtime). The XRT consumes

some resources inside the FPGA to do scheduling. Enabling Hardware Profiling puts

additional content in the XRT to profile the hardware running on the system. It

supports both Data Transfer and Compute profiling.

5.3.1 Effect of Vitis on Resources utilization of EfficientNet BC4 compared to

SDSoc

As discussed Vitis is more optimized for resources rather the performance. We

observed comparatively low resource utilization then compared to the SDSoC. Table:

5.7 shows the resource utilization of EfficientNet BC4 on SDSoC and Vitis. DSP and

LUTs has similar amount of utilization for the same network whreas there is a massive

reduction in the BRAM utilization when compared to SDSoC. Vitis uses 36% less

BRAM compared to SDSoC. The FPS on vitis is low then the SDSoC as vitis design

principles are different then the SDSoC Design principles. Vitis is more throughput

oriented then SDSoC. on the other hand SDSoC is more performance oriented with

40

less consideration for the resource. Hence Vitis has little poor performance when

compared to SDSoC. Architectural modification which are more suitable to the Vitis

design flow can boost the performance of the Vitis Design.

Table 5.7: Resourse and Performace comprison for SDSoC and Vitis

Software DSP BRAM LUTs Speed (FPS) Frequncy

SDSoC 90% 68% 80% 35 200
Vitis 86.75% 43.49% 81.22% 24 150

5.3.2 Profiling DeepDive on Vitis

Due to the advances in profiling the application on the vitis. We are able to find

the performacne bottlenecks compared to the SDSoC. Fig: 5.6 shows the execution

timeline of the DeepDive Compute units on the ZCU102 platform. As we can see

the green blocks are the actual total execution time required by the Compute units.

Which includes the data transfer as well as the computation time utilized by the

compute unit. They body Compute unit is invoked multiple times as the body is

invoked multiple times during the execution. It also gives us an insite about the data

transfer prallalization. As we can see the blue block are the data read into the FPGA

and the red block are the Data write back to the DDR.

The timeline gives us a brief idea about the data transfers and their initiation.

Figure: 5.7 Show the zoomed in view of the profiler. This enabled us to find the

bottleneck in the deepdive design or any design. The Head and Body figure shows

that the data commute kernel consumes a lot of time

41

Figure 5.6: Profiling DeepDive on Vitis

(a) head (b) Body

Figure 5.7: Head and Body Compute Unit Profiling

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This paper introduced DeepDive, as a fully functional framework for an agile,

power-efficient execution of DSCNNs on edge FPGAs. DeepDive offers a vertical algo-

rithm/architecture optimization, starting from the network description model down to

full system synthesis and implementation. At the front-end, DeepDive performs high-

level optimization such as BN fusing, and Online channel-wise low-Bit quantization at

extremely low-bit resolutions to bring FPGA-awareness when training DSCNNs. At

the back-end, Network SoC Compiler receives the design properties from DeepDive’s

front-end and generates a full design of the system for both hardware model and soft-

ware host codes. To generate the optimized hardware for DSCNNs, the Network SoC

Compiler uses pre-designed micro-architectural blocks for depthwise, pointwise, and

normal convolution operators. For the results, we have synthesized, executed, and

validated two state-of-the-art DSCNNs, MobileNet-V2 and EfficientNet on Xilinx’s

ZCU102 FPGA board. The execution results demonstrated 47.4 and 233.3 FPS/Watt

for MobileNet-V2 and a compact version of EfficientNet, respectively. These compar-

isons showcased how DeepDive improved FPS/Watt by 2.2× and 1.51× over Jetson

Nano high and low power modes, respectively. It also enhances FPS/Watt about

2.27× and 37.25× over two other FPGA implementations.

6.2 Future Work

As future work, we plan to improve the back-end of DeepDive to support cloud-

based FPGAs such as Alveo family. We plan to extend support for multiple instances

of Body CU to improve both latency and throughput. Each body could have a dif-

43

ferent level of parallelization based on the knobs introduced in Section ??. The host

would also map the IRB layers to the body CUs based on the required computa-

tion power. Various Body CUs with varying degrees of parallelization could improve

DeepDive without power and hardware resource compromises.

44

REFERENCES

[1] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” in Microarchi-
tecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on,
pp. 1–12, IEEE, 2016.

[2] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang,
“Angel-eye: A complete design flow for mapping cnn onto embedded fpga,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. PP, pp. 1–1, 05 2017.

[3] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“Dnnbuilder: An automated tool for building high-performance dnn hard-
ware accelerators for fpgas,” in Proceedings of the International Conference on
Computer-Aided Design, ICCAD ’18, (New York, NY, USA), pp. 56:1–56:8,
ACM, 2018.

[4] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock, J. Clay-
baugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q.
Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and P. Unterbrunner, “The
snowflake elastic data warehouse,” in Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD ’16, (New York, NY, USA), pp. 215–
226, ACM, 2016.

[5] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong,
“Automated systolic array architecture synthesis for high throughput cnn infer-
ence on fpgas,” in Proceedings of the 54th Annual Design Automation Conference
2017, DAC ’17, (New York, NY, USA), pp. 29:1–29:6, ACM, 2017.

[6] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards uni-
formed representation and acceleration for deep convolutional neural networks,”
in Proceedings of the 35th International Conference on Computer-Aided Design,
ICCAD ’16, (New York, NY, USA), pp. 12:1–12:8, ACM, 2016.

[7] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning: Automatic generation
of fpga-based learning accelerators for the neural network family,” in Proceedings
of the 53rd Annual Design Automation Conference, DAC ’16, (New York, NY,
USA), pp. 110:1–110:6, ACM, 2016.

[8] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural network
inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’17, (New York, NY, USA), pp. 65–74,
ACM, 2017.

45

[9] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Automated mapping of convo-
lutional neural networks on fpgas (abstract only),” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’17, (New York, NY, USA), pp. 291–292, ACM, 2017.

[10] K. Abdelouahab, M. Pelcat, J. Serot, C. Bourrasset, and F. Berry, “Tactics to
directly map cnn graphs on embedded fpgas,” IEEE Embedded Systems Letters,
pp. 1–4, 2017.

[11] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. Oâbrien, Y. Umuroglu,
M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-learning framework for
fast exploration of quantized neural networks,” ACM Trans. Reconfigurable Tech-
nol. Syst., vol. 11, Dec. 2018.

[12] C. Baskin, N. Liss, A. Mendelson, and E. Zheltonozhskii, “Streaming architecture
for large-scale quantized neural networks on an fpga-based dataflow platform,”
CoRR, vol. abs/1708.00052, 2017.

[13] M. Samragh, M. Javaheripi, and F. Koushanfar, “Codex: Bit-flexible encoding
for streaming-based FPGA acceleration of dnns,” CoRR, vol. abs/1901.05582,
2019.

[14] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm, Z. Jiang,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “A hardwareâsoftware blueprint
for flexible deep learning specialization,” IEEE Micro, vol. 39, no. 5, pp. 8–16,
2019.

[15] R. Zhao, X. Niu, and W. Luk, “Automatic optimising cnn with depthwise separa-
ble convolution on fpga: (abstact only),” in Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA â18, (New
York, NY, USA), p. 285, Association for Computing Machinery, 2018.

[16] R. Zhao, H.-C. Ng, W. Luk, and X. Niu, “Towards efficient convolutional neural
network for domain-specific applications on fpga,” pp. 147–1477, 08 2018.

[17] L. Bai, Y. Zhao, and X. Huang, “A cnn accelerator on fpga using depthwise
separable convolution,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 10, pp. 1415–1419, 2018.

[18] J. Liao, L. Cai, Y. Xu, and M. He, “Design of accelerator for mobilenet convolu-
tional neural network based on fpga,” in 2019 IEEE 4th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), vol. 1,
pp. 1392–1396, 2019.

[19] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, “An fpga-based cnn accelerator
integrating depthwise separable convolution,” Electronics, vol. 8, p. 281, 03 2019.

46

[20] D. Wu, Y. Zhang, X. Jia, L. Tian, T. Li, L. Sui, D. Xie, and Y. Shan, “A
high-performance cnn processor based on fpga for mobilenets,” pp. 136–143, 09
2019.

[21] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 6105–
6114, 2019.

