
ENFORCING SECURITY POLICIES WITH DATA PROVENANCE TO ENRICH
THE SECURITY OF IOT/ SMART BUILDING SYSTEM

by

Abdullah Al Farooq

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Software & Information System

Charlotte

2020

Approved by:

Dr. Thomas Moyer

Dr. Weichao Wang

Dr. Heather Lipford

Dr. Dong Dai

Dr. Bojan Cukic

ii

©2020
Abdullah Al Farooq

ALL RIGHTS RESERVED

iii

ABSTRACT

ABDULLAH AL FAROOQ. Enforcing Security Policies with Data Provenance to
Enrich the Security of IoT/ Smart Building System. (Under the direction of DR.

THOMAS MOYER)

Smart Building Management Systems is rapidly growing worldwide mainly to reduce

energy consumption and carbon footprints. Some other benefits that can be achieved

through this system include lowering operational costs and increasing occupant’s com-

fort, safety, and increased productivity. Programmable Logic Controllers (PLCs) are

used widely for automating smart buildings. The vulnerabilities and attack surfaces

of PLCs enable an attacker to control the smart building in order to cause more energy

usage, target specific people, and destroy assets. This thesis summarizes the vulner-

abilities, threats, and attacks for PLC-based systems. Moreover, the current state

of the art of static and dynamic analysis, threat and attack detection, automation,

and conflict analysis of smart buildings are discussed. This thesis aims at detecting,

analyzing, and mitigating the attack surfaces that are possible for smart buildings.

A formal methods approach is proposed for detecting safety and security property

violations for smart buildings. Then, a rule-based method is developed to detect vio-

lations leveraging provenance data collected from the system. These safety violating

incidences are mapped to corresponding variables in a PLC source program. Finally,

we implement defeasible reasoning that enforces safety properties in the system. We

verify that not only does the new PLC program adhere to the safety properties that

have been instrumented, but also it does not trigger any new safety property viola-

tions. Finally, we outline new directions to be investigated in the future.

iv

DEDICATION

This dissertation is dedicated to my family for their endless support and encourage-

ment.

v

ACKNOWLEDGEMENTS

I want to express my sincere gratitude to my advisor Dr. Thomas Moyer. Without

his tremendous support, this dissertation would not have been possible. I also have to

thank my wife, Synthia Tagar, my parents, and my parents in-law for their formidable

support throughout my PhD journey. Finally, I would like to mention my daughter,

Arya Tawshi Farooq. Ever since we knew her existence, I was blessed with limitless

luck.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiii

CHAPTER 1: Introduction 1

1.1. Smart Building and PLC Security 3

1.2. Summary of the Background 4

1.3. Thesis Statement 6

1.4. Contribution 7

CHAPTER 2: Background 9

2.1. Smart Building Infrastructure 9

2.2. Vulnerabilities 15

2.3. Attacks and Threats 17

2.4. Automation and Verification of PLC-based System 24

2.4.1. Static Checking 24

2.4.2. Dynamic Checking 32

2.5. Conflicts in Smart Building and Solution Approaches 33

2.6. Data Provenance in Security 41

CHAPTER 3: Detecting Conflicts in Smart Buildings 44

3.1. Introduction 44

3.1.1. Problem Statement 44

3.1.2. Contribution 44

vii

3.2. Background 46

3.3. IoTC2 Framework 46

3.4. Formal Method for Detecting Conflicts 48

3.4.1. Controller Safety Policies 50

3.4.2. Multiple Action Trigger Policies 51

3.4.3. Multiple Event Handling Policies 55

3.4.4. Completeness of IoT Safety Properties 56

3.4.5. Soundness of IoT Safety Properties 57

3.5. Threat Modeling 58

3.6. Implementation 59

3.7. Evaluation 60

3.7.1. Conflict Impact on Environment Feature 61

3.7.2. Conflict Impact on Energy Usage 64

3.7.3. Conflict Count with IoTC2 65

3.8. Related Work 70

3.9. Discussion 71

CHAPTER 4: Detecting Safety and Security Faults in PLC Systems with
Data Provenance

73

4.1. Introduction 73

4.1.1. Problem Statement 73

4.1.2. Contribution 74

4.2. Background 74

4.2.1. Data Provenance 74

viii

4.3. Design 75

4.3.1. PROV Modeling 75

4.3.2. PLC-PROV Architecture 78

4.4. Evaluation 81

4.4.1. Testbed 82

4.4.2. Safety Property Violations 83

4.4.3. PLC-PROV Execution Time 89

4.5. Related Work 91

4.6. Discussion 93

CHAPTER 5: Conflict Resolution in Smart Buildings 94

5.1. Introduction 94

5.1.1. Problem Statement 94

5.1.2. Contribution 95

5.2. Background 96

5.2.1. Defeasible Logic Programming 96

5.3. DEFEASIBLE-PROV Design 98

5.4. Evaluation 101

5.4.1. DEFEASIBLE-PROV Implementation 102

5.4.2. DEFEASIBLE-PROV Efficiency 102

5.5. Related Work 106

5.6. Discussion 107

CHAPTER 6: Conclusions and Future Work 109

6.0.1. Challenges 111

ix

6.0.2. Future Work 111

REFERENCES 113

x

LIST OF TABLES

TABLE 2.1: Major Machine to Machine Communication standards, al-
liances and Building Management System (BMS) [1]

11

TABLE 2.2: Operating Systems of Some PLCs [2] 16

TABLE 3.1: Notation used 49

TABLE 4.1: Model for Representing Provenance of a PLC System (Smart
Building)

77

TABLE 4.2: Testbed for PLC-PROV Evaluation 84

TABLE 4.3: Conflict Description 85

TABLE 4.4: Violation of Safety Properties that Lead to Conflicts 86

TABLE 4.5: Relationship between IoTC2 and Safety Property Violations
in the testbed

87

TABLE 4.6: Some Selected Sensors (causing conflicts) and Actuators (af-
fected by conflicts in our testbed)

90

xi

LIST OF FIGURES

FIGURE 2.1: A simple PLC-based control system with the basic compo-
nents of any industrial control system.

12

FIGURE 2.2: Security Goal Difference between IT and PLC based control
system

16

FIGURE 2.3: Defeasible Logic Agent Architecture for Smart Building [3] 38

FIGURE 2.4: Notional Provenance Graph for a Light Actuation in a
Smart Building

42

FIGURE 3.1: IoTC2 Framework for Conflict Detection 47

FIGURE 3.2: IoTC2 Framework for Energy Usage Calculation due to
Conflicts

48

FIGURE 3.3: Luminance range of a room when smart window blinder
and smart light are considered

62

FIGURE 3.4: Effect on Temperature when thermostat and window shutter
works at the same time

62

FIGURE 3.5: Effect on temperature of the corridor when it is connected
by two rooms of different temperature

63

FIGURE 3.6: Effect on Humidity when thermostat and window shutter
combinedly changes the temperature and humidity

64

FIGURE 3.7: IoTC2 Calculates Energy Usage Overhead due to Conflicts 65

FIGURE 3.8: IoTC2 Calculates Energy Usage Overhead Over Time 66

FIGURE 3.9: Conflict count when the same alarm is triggered by multiple
events

66

FIGURE 3.10: Frequency of thermostat being actuated more than usual
due to the window being opened

67

FIGURE 3.11: Additional actuation count on the humidifier due to tem-
perature difference in two adjacent rooms

67

xii

FIGURE 3.12: Total count of the luminance range exceeding the comfort-
able range due to conflicts

68

FIGURE 3.13: Additional count of the thermostat being actuated due to
conflicts between management rules and operational rules

69

FIGURE 3.14: Additional frequency of humidifier being actuated due to
conflicts between management rules and random occupancy

70

FIGURE 4.1: Notional provenance model of a PLC-based system for the
change in temperature of a room

76

FIGURE 4.2: PLC-PROV architecure 78

FIGURE 4.3: Smartbuilding testbed 83

FIGURE 4.4: detects p1 violation 88

FIGURE 4.5: PLC-PROV detects p6 violation 89

FIGURE 4.6: PLC-PROV Execution time with increase in policy count 90

FIGURE 4.7: PLC-PROV Execution Time with Increase of Collected Sam-
ple and Conflict

91

FIGURE 5.1: Architecture of DEFEASIBLE-PROV 98

FIGURE 5.2: DEFEASIBLE-PROV Efficiency with Increase in Dealt
Actuators

103

FIGURE 5.3: DEFEASIBLE-PROV Efficiency with Increase in Dealt Sensors 104

FIGURE 5.4: DEFEASIBLE-PROV Efficiency with Increase in Dealt Devices 105

FIGURE 5.5: DEFEASIBLE-PROV Execution time 106

xiii

LIST OF ABBREVIATIONS

CPS Cyber Physical System

DCS Distributed Control System

HMI Human Machine Interfaces

ICS Industrial Control System

IED Intelligent Electronic Device

IoT Internet of Things

MTU Master Terminal Unit

PID proportional-integral-derivative

PLC Programmable Logic Controller

Prov Provenance

RPI3 Raspberry PI 3

RTU Remote Terminal Unit

RTU Structured Text

SCADA Supervisory Control and Data Acquistion

ST Structured Text

CHAPTER 1: Introduction

The significance of smart building management systems has become widespread

over the past decade. People have different thoughts about the architecture, func-

tionality, and impact of an intelligent building for commercial and social purposes.

In defining smart buildings, we would like to quote from Clements-Croome et al. [4],

"An intelligent building is one that is responsive to the requirements of

occupants, organizations, and society. It is sustainable in terms of energy

and water consumption besides being lowly polluting in terms of emissions

and waste: healthy in terms of well-being for the people living and working

within it; and functional according to the user needs. "

The emergence and growth of highly integrated and intelligent buildings can be seen

as achieving several goals; such as reducing energy consumption [5], [6], improving

worker productivity, and achieving maximum business profitability [7]. Additionally,

due to the increase in energy cost, energy efficient smart building management is

considered one of the most viable options for both energy independence and sustain-

ability. It is worth noting that the smart building market is expected to achieve a

20% reduction in primary energy use by 2020 with an aim to keep carbon dioxide

emissions under control [8]. Furthermore, smart buildings have the potential to cut

greenhouse gas emissions by 80-95% by 2050, as set by European Union [8]. At this

point, we note that people often confuse smart buildings with smart homes. Smart

buildings cover a wide domain with numerous devices, rules, and requirements as

compared to smart homes. The controller, Programmable Logic Controller (PLC), is

the most distinguishing component for smart building automation. PLCs are digital

computers to automate electromechanical processes and industrial appliances. They

2

contain input ports to receive signals from the physical world and output ports to

control devices with the help of stored programs. Therefore, the safe and secure op-

eration of a smart building depends largely on the characteristics and features that a

PLC-controlled system offers. It is worth noting that the PLC-controlled system was

expected to grow to $10.33 billion in different controlled system domains by 2018 [9].

Because PLCs have been used successfully for large scale substantial automation, it is

regarded as a reliable component for most control systems. This emergence cannot be

abolished overnight by the likes of smart home devices for smart building automation.

In the past two decades, control systems have been exposed to a number of cyber

attacks. One of the first attacks was the disruption of Worcester air traffic commu-

nication where an attacker knocked out phone service at the control tower, airport

security, airport fire department, weather service, and over 600 homes and businesses

[10]. Another attack that took place in Australia in 2000 released 264,000 gallons of

raw sewage into nearby rivers and parks [11]. This attack interfered with normal life

as well as introduced potential health issues. Furthermore, another group of attackers

managed to infect the train signaling system in Jacksonville, FL in 2003 [12]. This

attack affected ten Amtrak trains on routes serving the northeast corridor of the USA.

While these incidents caused essential service interruption and property damage, they

did not cause any deaths. However, an incident in Bellingham, WA in 1999 caused

a pipline failure which leaked 237,000 gallons of gasoline and an ignition 1.5 hours

later [13]. Eventually, this incident caused three deaths and eight injuries along with

extensive property damage . Recently, another type of cyber attack affected control

systems that has geo-political motives and impacts. The Stuxnet malware which up-

loaded malicious code into a PLC is an example of such an attack. This malware was

believed to be jointly built by American-Israeli cyber intelligence to sabotage Iran's

nuclear program. The uploaded code in the PLC resulted in damage to the machines

of nuclear plants for years without being detected [14]. Although no attacks have

3

been recorded targeting smart buildings to date, they are still vulnerable because the

same/similar PLCs are used for the automation.

1.1 Smart Building and PLC Security

With the advancement of technology, a smart building is no longer limited to heat-

ing, ventilation, and air condition (HVAC) automation functionalities. The likes of

smart lights, locks, window blinds, speakers, IP cameras, carbon monoxide detectors,

alarm devices, motion and water sensors have become integral components of a smart

building. Most of these devices are resource constrained and do not include security

features in themselves. These devices are infrequently patched, leaving them with

known vulnerabilities, making it easy for attackers to gain access. Furthermore, the

way they are distributed with insecure communication protocols, leaves the commu-

nication channels exposed to attackers. An attacker can trigger an event that leads to

conflicting actions on the same device or feature of a smart building. For example, an

attacker can create multiple events that trigger a thermostat to increase and decrease

the temperature of a room at the same time. Sending two different commands to the

thermostat at the same time continuously can damage it, by artificially shortening

the device’s lifespan. In this way, the attacker not only damages an asset but also

may drive the occupants out of the room to leave due to fluctuations in the comfort

level of the room. As we see from the above-mentioned example, only two rules are

enough to create a conflict. Recent research indicates that there can be as many as

30,000 rules in a smart building [15]. Moreover, misconfigurations are possible as

there are numerous rules or policies for taking actions by the controllers after events

have occurred.

The network that handles the distributed control application of a smart building

is generally organized in a two-tiered model; a field network and a backbone net-

work [16]. Sensors, actuators, and controllers (SACs) comprise the field networks

where predominantly non-IP field protocols are used. On the other hand, the back-

4

bone network is comprised of the management and operating workstations where the

programming of initial points, changing set points and controller logic takes place.

Interconnection devices (ICDs), e.g., routers or gateways, connect these two networks

to a wide area network (WAN). An attacker can get access to the data passing through

an ICD by attacking the applications running there. Moreover, because an ICD can

be connected to the internet directly, this can be used as an access point to initiate

further attacks on a smart building.

Weak authentication and poor integrity checks are regarded as the two most sig-

nificant weaknesses of the communication protocols used in PLC-based systems [17].

These flaws can be used to initiate a man of the middle (MITM) attack, denial of

service (DoS) attack, and memory corruption attacks (e.g., array, stack, and heap

overflow, integer overflows, pointer corruption). The lack of proper authentication

methods enables an attacker to replay, modify, or spoof data as well as spoof de-

vices. Moreover, most of the PLC-based system use protocols that transmit clear

text while communicating, thus making the system susceptible to eavesdropping and

manipulation. The reconnaissance for an attack on a smart building is straightfor-

ward. Additionally, these protocols have very few or no security capabilities and their

documentation is available for free. It is not uncommon to have a single network to

handle both control and non-control traffic of a smart building system. It is possible

for an attacker to flood a network with unsolicited messages (non-control traffic) to

make a particular device unavailable. They can impact the availability of critical

sensor data, leading to a denial of service attack.

1.2 Summary of the Background

There have been several attempts to deploy security policies with static verifi-

cation, dynamic verification, and the combination of these two for cyber-physical

systems where PLCs are used. Static verification (model checking) is proposed in

TSV [18] where a middleware, sitting between a PLC and the devices, verifies that

5

the safety properties are maintained. The verification is performed before the com-

mands reach the devices from the PLC. The safety properties are written in temporal

logic and are verified using model checking. While this work is mainly on verify-

ing the system’s behavior, other research focuses on the verification from the PLCs’

source program [19, 20]. Furthermore, some works propose to automatically generate

formal models from PLC programs [21, 22, 23, 24, 25]. While static analysis performs

the verification before a PLC program is operational, dynamic analysis, on the other

hand, ensures that policies are not violated at run-time. C2 [26] is one of the most

prominent methods to enforce safety policies in PLC-based system. When a PLC

issues a command to an actuator, the current state of the system is checked and

decisions are made through C2 to determine if the command should be issued. In

this work, concerns about the size of the trusted computing base (TCB) and state

explosion in the model checking are expressed. Another approach reduces the size

of the TCB considerably and combines the static and dynamic analysis of TSV and

C2 [27]. The works by McLaughlin, et al. focus specifically on safety properties. This

was subsequently extended in [28] with an effort to find malicious PLC programs. An-

other approach to dynamic analysis of PLC-based systems is proposed in [29] using

Interval Temporal Logic (ITL) and the Tempura framework, which aims to provide

early alerts when the system output does not match the safety properties. Later, this

work was extended in [30] where an ITL/Tempura definition of a Siemens S7-1200

PLC ladder logic was presented. Their developed monitoring methodology captures

a snapshot of the current state (with values for markers, input, output, counters,

and timers) of the PLC. Tempura was implemented to execute on an Arduino Uno

connected to the PLC, ensuring that the PLC does not need a powerful computing

node to perform the computations. While static analysis has proven promising, the

wide range of possible inputs and outputs for automation can lead to state explosion.

Therefore, the completeness of the verification approach is not assured. Similarly, dy-

6

namic verification suffers from a coverage problem, where only executed code paths

are verified. Symbolic execution helps in this regard by minimizing the state space. It

cannot guarantee complete verification of outputs (actuation command) from input

sets (sensor measurement).

Apart from verification and real-time monitoring approaches, there have been some

research efforts to attribute an anomaly or adversary with data provenance. A recent

work, PROV-CPS [31], collects provenance from resource-constrained embedded de-

vices of the cyber-physical system. However, this research collects provenance from

sensors only to identify anomalous measurements. Another notable work in this area

is ProvThings [32] where a provenance collection framework is proposed for IoT apps

and devices. ProvThings presents an automated instrumentation mechanism for IoT

apps and device APIs. The collected provenance is then used to generate explanations

for “why” a particular action occurred.

1.3 Thesis Statement

In this thesis, we address the problem of safety policy violations in a smart building

environment. In doing so, a formal method needs to be developed to define high-

level safety and security policies. Violation of these policies results in anomalous or

conflicting situations among the devices. We propose a system to track the data flows

to detect policy violation and actively enforce the safety and security policies of the

system are not violated. The central thesis of this work is, therefore:

Data provenance can secure smart buildings by enforcing safety policies

that prevent policy violations in smart buildings. Data provenance, the

history of data, provides a rich source of information from the initiation

of a system which helps in robust forensic analysis.

While the anomalies for the smart building are vast, we focus specifically on the

anomalies that arise from device and environmental feature conflicts. To that end,

the thesis examines the following questions:

7

• How do we define a set of sound and complete safety policies for large scale smart

buildings, the violation of which lead to conflicting behavior in the domain?. The

automation of the system may lead the controller to command a device which

is already performing a different action. As events are random, their occurrence

cannot be managed most of the time. We formalize this type of policy violations

in Chapter 3. An attacker can leverage these violationss or force some specific

events to occur in order to take advantage of misconfigurations (i.e.rule conflicts)

in the system.

• How do we detect conflicts in smart buildings? Having formalized the safety

properties to detect conflicts, a novel approach is developed to track the data

flow in smart buildings. The primary goal is to detect whether or not safety

properties violations have occurred. This requires a way to track inputs and

outputs, and a mechanism to model the evolution of the system from inputs

to outputs. With these mechanisms in place, it becomes possible to ensure

that the PLCs do not send commands to actuators that violate the safety and

security policies of the system. To detect conflicts in smart buildings, we propose

PLC-PROV, presented in Chapter 4.

• How do we enforce security policies in smart buildings? In order to ensure the

safety and security of smart buildings, a methodology needs to be developed to

enforce that no safety property violations are taking place. Data provenance

is a robust approach to detect deviant values (i.e., sensor measurement and

actuator action in smart buildings). This, combined with a conflict resolution

method, can be effective for enforcing safety properties in smart buildings. To

examine these, we propose DEFEASIBLE-PROV which is presented in Chapter 5.

1.4 Contribution

In answering the above questions, this thesis provides the following contributions:

8

• We propose a formal methods approach that considers the interactions among

sensors, actuators, and controllers to detect safety policy violation. We prove

the set of policies are sound and complete. The safety properties we formalized

to consider conflicts as the preeminent threat to smart buildings. We show

that the conflicts lead to additional actuation which eventually results in more

energy consumption.

• We propose a mechanism to track the inputs and outputs of the system and

compare them against the safety and security properties we have formalized. We

employ data provenance for tracking the data flow to and from the PLCs and

use that provenance to determine if a violation has occurred in smart buildings.

Basically, provenance is the “history of data transformed by a system”, and

has been accepted as a novel approach to reason about the context in which

an action is taken. Because PLCs are entirely event-driven, context is vitally

important, and provenance is a natural fit for this sort of analysis as such.

• We propose an enforcement mechanism, DEFEASIBLE-PROV, to ensure conflicts

in smart building operations are resolved with high efficacy. After analyzing

the collected provenance graph, we develop methodologies to impose exceptions

and superiority relationships among the smart building rules. Our proposed

approach has the capability to resolve conflicts during run-time by continuous

analysis of the information received from smart buildings.

CHAPTER 2: Background

This chapter summarizes the literature that discusses the basic infrastructure of

smart buildings. Then we examine the literature that explores the Programmable

Logic Controller(PLC) used for automating smart buildings. After describing the

technologies used, we examine the vulnerabilities, threats, and attack surfaces there.

Then, we discuss the current state of the art to detect, analyze, and mitigate the

attacks and safety property violations in this domain. As one of our primary concerns

is to deal with security policy violation/ conflicting situations in smart buildings, we

study the methodologies and algorithms that include but are not limited to defeasible

reasoning for mitigating conflicts. Finally, we conclude this chapter with some recent

data provenance approaches that have been used in the IoT/ cyber-physical system

domain.

2.1 Smart Building Infrastructure

A smart building consists of a number of sensors, actuators, and controllers con-

nected with the wireless sensor network (WSN) or wireless sensor actuator network

(WSAN). The devices (sensors, actuators, or controllers) include but are not lim-

ited to lights, thermostat, humidifier, speakers, security camera, video doorbell, door

lock, window blinds, smoke detectors, carbon monoxide detectors, fire alarms, smart-

phones, and last but not least PLCs. Fortino et al., [6] analyzed all the requirements

smart buildings based on WSANs with several parameters. The first one is the fast

reconfiguration capability of the nodes (sensors, actuators). Some building manage-

ment frameworks have capabilities to reconfigure nodes by sending packets while some

do not have. It depends on the manufacturer of the nodes. In-node processing is an-

10

other important parameter of WSAN in buildings. Because energy saving is one of the

major goals of smart buildings, in-node processing saves both bandwidth and energy

by shifting from in-network processing (data fusion, shared variables, etc). It must

have multi-hop support in order to cover the whole building. It should be capable of

handling different types of sensor nodes with different features. A user or a controller

can send a command to actuators (appliances, lights, radiators, etc) based on sensor

values and rules. A building programming abstraction is proposed to capture the

morphology of a building and to store the location of the devices (e.g, bathroom,

lounge, seminar room, office) with their functionality (e.g., ambient temperature,

lighting system, ventilation system). The building management system should have

rules for operating the building in an energy saving and comfort providing manner.

Also, smart buildings should have sufficient infrastructure to provide human-machine

interaction to edit, delete, or add new rules to a controller or a set of controllers.

Devices like NEST Protect, Wemo Plugin, and Scout Alarm have gained popularity

in materializing a home as a smart home. Some widely used smart home management

systems are given in table 2.1 [1]. The second column is straightforward, indicating

whether the standard is open source. The third column of the table indicates whether

the standard or the system has dedicated controlling and management capabilities.

This refers to the customization of the GUI for smart building applications. The

fourth column in the table refers to Open Systems Interconnection (OSI) layers. The

lower the layer, the closer it is to the physical medium of communication e.g., copper

wire, optical fiber or air. On the other hand, the higher layer indicates the actual

application and management intelligence. The last column indicates whether the

standard supports functionality for the future smart grid.

However, for a smart building, in contrast with a smart home, the domain is much

wider, and there are numerous devices and requirements to handle. PLCs are the most

used and still considered the most reliable controllers to automate smart buildings

11

Table 2.1: Major Machine to Machine Communication standards, alliances and Build-
ing Management System (BMS) [1]

Name Open Source Offer BMS OSI Layer Support Demand
Services Defined Response

Apple HomeKit N Y (5)-(7) N
Samsung SmartThing N Y (5)-(7) N

OpenHAB Y Y (7) N
Fairhair Alliance N Y (5)-(7) N

Thread Y N (3)-(4) N
Volttron Y N (5)-(7) Y
Weave Y N (5)-(7) N
AllJoyn Y N (5)-(7) N

Open Interconnect Y N (5)-(7) N
openADR Y N (7) Y
ZigBee Y N (3)-(7) N
Z-Wave N Y (1)-(7) N
Lora N N (1)-(2) N
SigFox N N (1)-(2) N

EnOcean Y N (1)-(3) N
IEEE 802.15 Y N (1)-(2) N
IEEE 802.11 Y N (1)-(2) N
6LoWPAN Y N (3) N

[16, 33]. Regardless of the current hype of smart home hubs, the need for PLC in

managing a smart building cannot be removed overnight. According to [9], there is

more than 10 billion US dollars in the PLC market worldwide.

Figure 2.1 shows a notional Industrial Control System, comprised of several compo-

nents that together provide the ability to automate industrial processes. At the heart

of this system is the PLC. The PLC takes input from the sensors and determines the

appropriate commands for the actuators to adjust the environment. The logic for the

PLCs are programmed with an engineering workstation that contains the IDE used

by the programmer to develop the application logic for the ICS. Additionally, an ICS

has one or more Human Machine Interfaces, or HMIs, that enable operators to view

current and historical data from the ICS. The historical data is stored in the data

historian and is often used for post-facto analysis of events.

The PLC applications are written in one of several programming languages includ-

12

Data
Historian

Engineering
Workstation

HMI

WANLAN

Interface
Card

Sensors

Actuators

Control Center Plant

Figure 2.1: A simple PLC-based control system with the basic components of any
industrial control system.

ing Instruction Lists (IL), Structured Text (ST), Functional Block Diagram (FBD),

and Ladder Logic (LL). Regardless of the programming language used, the instruc-

tions control the features of the PLC including I/O control, communication, logical

decisions, timing, counting, three mode proportional-integral-derivative (PID) con-

trol, arithmetic, and data and file processing. The inputs to the PLC come from

a wide array of sensors such as temperature sensors, motion detectors, smoke de-

tectors, water leak detectors, and surveillance cameras. The outputs of the PLC

go to actuators that adjust the current environment. These actuators include ther-

mostats, humidifiers, speakers, security cameras, video doorbells, door locks, and

window blinds.

The topology of an ICS network can be broadly divided into two subnets. The

first is the control network where the sensors and actuators interface with the PLC.

In a more complex control system, there may also be a Master Terminal Unit, or

MTU, that provides the control programs for the PLCs. This control network uses

non-IP-based protocols such as Modbus [34]. The second network is the corporate

network, where the historian, HMI, and engineering workstation are located. This is a

traditional enterprise network, using standard IP protocols to communicate. In order

13

to link the corporate and control networks, interface cards are used to provide a bridge

between IP-based protocols and the Modbus protocol. The PLC uses a Modbus/TCP

protocol to send data to the historian. The PLC also provides an HTTP service for

the historian to access and store historical data into a database.

For a distributed system like SCADA (Supervisory control and data acquisition) or

DCS (Distributed Control System), a group of PLCs is assigned to different subsys-

tems. This is mainly done to handle long distance communication among geograph-

ically dispersed assets (e.g., power grids, natural gas pipelines, water distribution,

wastewater collection systems, railway transportation systems). The far-reaching na-

ture of these systems necessitates numerous control systems responsible for controlling

local operations but working in concert to ensure the global functioning of the sys-

tem. While these systems are more complex, they rely on many of the same basic

components of a smaller-scale ICS.

Even in localized ICS environments (e.g., smart buildings), it is common to rely

on several PLCs that work in concert to provide a range of functions. Consider for

example that there might be a PLC that controls the heating, ventilation, and cooling,

or HVAC, system, one PLC that controls the elevators, one PLC that controls the

door and window locks, and finally one PLC that monitors for hazard conditions

(e.g., smoke, carbon monoxide, water and chemical leaks, etc.). While these systems

can be implemented independently, there are often dependencies that need to be

accounted for. Consider a case where the hazard monitoring PLC detects smoke in

the building, it must send notifications to the elevator and door/window lock PLCs

that this condition is present so that appropriate actions can be taken. Those actions

might be to open the locks on the doors, and move the elevator to the ground floor and

then lock out the use of the elevator. These dependencies ensure safety and efficiency

in these automated systems. The followings are some examples where PLCs are used

for automating smart building.

14

In Barz et al., [35], it has been shown how PLCs are used for operating a smart

building. Devices are connected via a bus system, or star topology. With the help

of PLCs, the automation for turning off the lights, lowering the blinds, increas-

ing/decreasing room temperature, alarm on smoke and theft are possible. The au-

thors discussed the Simatic S7-1200 System control which is operated with the help

of a STEP7 program. This software provides interaction with the sensors and actu-

ators through input addresses and commands the process through output addresses

[36, 37]. The STEP7 Basic Software V12 has some functionalities that includes the

configuration and parameterization of hardware, defining communication, program-

ming, testing, developing documentation, and generating a display screen for the

SIMATIC basic operating panels. The source program is written through a GUI. The

program is run through the software which causes the code to be transferred from

the software to the PLC. An operator can change the logic of the process by looking

at sensory data and current states through the software. Hence, access authorization

and authentication of the computer that has the STEP7 Basic Software is important.

Sysala and Neumann [38] proposed a smart family house control with the help of a

commercially used PLC. However, they focused not only on the logical operation of the

system, but also with the communication between the system and other devices like

computers, tablets, and mobile phones. The project uses the "PLC Tecomat Foxtrot

CP- 1006" by a Czech company named Teco. This PLC follows the international

standards IEC 61131-3. The PLC provides the web server function to provide access

to the functionality of PLC. Apart from controlling the heating, lighting, air condition

system, controlled access, the PLC was capable of controlling infra-red (IR) devices

like television. radio, satellite, and other multimedia devices.

Skeledzija et al., [39] proposed a modified version of a PLC (littlePLC) for automat-

ing a smart building. The main goal was to reduce energy consumption and carbon

footprint significantly apart from ensuring better comfortability for the occupants of

15

the building. In this work, an ARM-based microcontroller unit was used instead of

using commercially available PLCs. Although the littlePLC does not have industrial

grade temperature operating range or other resistive techniques to an aggressive at-

mosphere, it provides a platform for easy implementation of control logic with a lower

price. The smart building is divided into four subsystems; Central Processor Unit

(embedded processor), Model Predictive Control algorithm (MPC), Programmable

Logic Controller (littlePLC), and Wireless Sensor Network.

The most essential component of this system is the MPC that uses a dynamic

model with the constraints of the system. MPC takes current measurement into

account in order to forecast system behavior and to produce actions that lead to

optimizing energy consumption. The CPU provides the resource to run the MPC.

The sensors send the measurement to MPC through a wireless sensor network. Once

MPC determines the optimal actions to be taken with these measurements, commands

are sent to the actuators (HVAC system) via littlePLC.

2.2 Vulnerabilities

Generally, almost all PLCs are manufactured and made available commercially.

Milinkovic et al., [2] listed the operating systems of some popular commercial PLCs.

Those are given in Table 2.2. As can be seen, Microsoft Windows operating system

is used in Siemens SIMATIC PLC. Hence, the vulnerabilities of Windows OS are also

present in that PLC. Operating systems like OS-9 and VxWorks are less pervasive and

therefore have fewer known vulnerabilities. However, VxWorks debug service (WDB

Agent) has a known vulnerability over UDP port 17185 that allows complete access

to the device, including the ability to manipulate memory, steal data, and hijack of

the entire OS. Moreover, VxWorks has a weak password hashing implementation [40].

Although PLCs can be exposed to the same type of attacks as traditional IT

equipment because of using the same operating systems, the security for the control

system should not be the same. Milinkovic et al., [2] differentiated the focus of the

16

Table 2.2: Operating Systems of Some PLCs [2]

PLC Operating System
Allen-Bradley PLC5 Microware OS-9
Allen-Bradley ControlLogix VxWorks
Emerson DeltaV VxWorks
Schneider Modicon Quantum VxWorks
Yokogawa FA-M3 Linux
Wago 750 Linux
PLC reference platform QNX Neutrino
Siemens SIMATIC WinAC RTX Microsoft Windows

security goals of a PLC-based control system from the IT system in Figure 2.2. The

assets and confidential data need to be more secured than anything else for general

IT and therfore confidentiality becomes the most concern there. If the service is

not available, it does not cause any damage or death. On the other hand, if the

service is not available for a PLC-based system, the consequence may be catastrophic

with causing death. We have mentioned some similar examples (e.g., train service

interruption, sewage, and pipeline leakage) in chapter 1.

Figure 2.2: Security Goal Difference between IT and PLC based control system

Stouffer et al., [41] listed a number of vulnerabilities that are present in the In-

dustrial Control System domain. They pointed out that the protocols (Distributed

Network Protocol (DNP) 3.0, Profibus, and other protocols) used to communicate

with PLC are freely available. Sometimes these protocols have very few security ca-

pabilities . Moreover, the use of clear text while communicating with the PLC make

17

it possible to eavesdrop on the communications. Inadequate authentication and ac-

cess control to the workspace that has PLC application makes it more susceptible to

attack.

A PLC-based system suffers from weak authentication and poor integrity checks

because of the communication protocols used [17]. These vulnerabilities can easily be

used to initiate man of the middle (MITM) attacks, denial of service (DoS) attacks,

and memory corruption attacks (e.g., array, stack, and heap overflow, integer over-

flows, pointer corruption). An attacker can replay, modify, or spoof data as well as

spoof devices because of the weak authentication system. Moreover, most PLC-based

system use protocols that transmit clear text while communicating, thus making the

system susceptible to eavesdropping. The reconnaissance for an attack on a smart

building becomes straightforward in this case. In addition, not only do those pro-

tocols lack security capabilities, but also their documentation is available for free.

A single network may have to handle both control and non-control type commands.

The non-control traffic can initiate a DDoS attack to make some specific sensors and

actuators unavailable.

2.3 Attacks and Threats

In addition to the real world attacks, there are some attacks proposed in some re-

search papers to act proactively before they take place. Mclaughlin and Zonouz [42]

proposed a new type of false data injection (FDI) attack where limited knowledge is

enough for creating predictable malicious output in a large SCADA based controlled

system. The authors claimed that prior works on FDI attack needed the attackers

to have vast knowledge on the network topology and whole system for making an at-

tack successful. Moreover, the attackers had no guarantee that their launched attack

would have predictable consequences. Due to these restrictions, the authors present

CaFDI (controller-aware false data injection) attack against any cyber-physical plat-

form especially those which are controlled by PLC. The attack targets individual

18

monitoring and control substations where a limited knowledge about the substation

configuration and control over a few sensors are enough. It is important to note that

CaFDI attacks do not need any code upload to the PLC. The attack is carried out in

two steps. The first step is to create an abstract formal finite state machine, Buchi

Automaton, representing the controller code. CaFDI generally needs direct access to

the PLC code to complete the Buchi Automaton. If not found, the state machine

is completed through the observation of the target PLC’s I/O behavior. The sec-

ond step of CaFDI is to explore the generated automaton in order to find whether a

malicious objective is satisfiable. Once a satisfiable state of a malicious objective is

found, CaFDI calculates the malicious input values and sends them to PLC. In this

way, the PLC generates malicious outputs as expected by the attack. In this paper,

the authors discussed some remedies against such attacks. Undoubtedly, securing all

sensors and channels between the sensors and PLC is the best way. However, due

to the distributed nature, it is not always feasible. Physical tamper detection and

redundant sensor deployments are some other ways to work against this attack. The

best way is to verify the safety properties of PLC’s code to make sure no malicious

behavior will take place given any input vector.

McLaughlin and McDaniel [43] discussed a different type of attack based on the

vulnerability that is possible with the uploading of malicious code to the PLC. This

research proposed a proof-of-concept tool for generating PLC payloads based on de-

vice behavior in the target system. The authors argued that an adversary with no

knowledge of the PLC’s interface to the control system could not do much damage

to that system. Moreover, in an attack like Stuxnet PLC version strings and device

metadata are needed to verify the correct target. If the appropriate metadata or

strings are not found in the PLC, it was ignored by the virus. In SABOT, it is not

necessary to match the adversary control logic to the system control logic. Hence, the

adversary need not know any version strings or vendor metadata a priori. SABOT

19

is capable of correctly identifying a target control logic out of some candidate con-

trol logic. Firstly, SABOT decompiles the PLC logic bytecode to an intermediate

set of constraints on local, output, and timer variables. Then these constraints are

translated into a process model using the NuSMV model checker. As the next step,

SABOT attempts to find a variable to device mapping (VTDM). Whenever an adver-

sary wishes to cause malicious activity, it does not know which device is referred by

which memory. VTDM finds the mapping from the names in the adversary’s specifi-

cation/policy to the names of control logic model. The specifications are written using

computational tree logic (CTL) formulas. The CTL formulas are given after the key-

words of the logic. VDTM finds the mapping of these keywords to the control input

and output memory address. It is important to note that while mapping from control

input to output memory address, conflicts are possible. The authors attempted to

solve that issue by introducing additional properties to the specification. In the last

step, SABOT maps the names of adversary’s generic payload to the control logic.

The instantiated payload is recompiled into bytecode and later uploaded to PLC. For

evaluating the accuracy, adaptability, performance, and scalability of SABOT, the

experiments were conducted on container filling [44], motor control, traffic signal, pH

Neutralization [45], and railway switching [46]. This research does not propose any

counter measures against these attacks.

A similar type of attack on PLC is found in Garcia et al., [47]. They developed

a rootkit, HARVEY for PLC that is capable of generating physics-aware stealthy

attacks. The rootkit is capable of intercepting the PLCs’ input and output values

and generating semantically correct system states towards the control unit. How-

ever, the actual system states are unchanged. More precisely, the rootkit sits in the

firmware layer and intercepts the input from sensor measurement. Then, it sends

fake, but legitimate-looking sensor measurements to the HMI. The operator gets no

clue on the real malicious sensor measurement. When legitimate commands come

20

from a non-compromised control unit, the rootkit simply discards it and issues actu-

ation commands on its own. Actuations are performed in such a way that malicious

behavior remains optimal. As an easy example, an attack on the pump system has

been discussed in the paper. The goal of the malware is to increase the pressure

in a pipe to damage it. If the rootkit changes the pressure arbitrarily, it would get

caught because the sensor is sending an increase of pressure to the operator. This

may even trigger an automatic safety mechanism. Hence, the malware must ensure

that sensor readings, presented to operators are not suspicious. In doing so, HARVEY

runs malicious code in parallel to the legitimate control logic. The outputs from both

executions are calculated from the dynamic model as given in equation 2.1.

f(x, u) = Ax+Bu+ ω

y = Cx+ ε

(2.1)

As mentioned earlier, HARVEY intercepts the output module write request and

replaces them with malicious control output. The malicious output is calculated with

manipulating minimum actuation in order to get maximum damage to the plant.

HARVEY, at the same time, fabricates the sensor measurement as well. It calculates

the sensor measurement as if the real control logic has been sent to the plant. At

the same time, it runs malicious control commands to the plant and gets sensor

measurements from that. However, it sends fake measurement to the operators only.

The whole implementation was done by reverse engineering methods and only for

PLCs manufactured by Allen Bradly which is the most common ICS suppliers in the

United States. This research evaluated the effectiveness of HARVEY in a real-world

power grid system.

Code injection in bytecode of a PLC firmware is proposed in [48]. The authors

proposed a tool PLCinject in devising additional malicious code in the firmware.

PLCinject works at any PLC if the bytecode is of MC7 format. The authors argued

21

that the lack of authentication in the PLCs can let the attackers gain access to

those. An adversary with proper knowledge about the operational functionalities

can download and upload code to it. The attacker is then capable of gaining access

to other PLCs as well as other devices in a business network. That is, a network

administrator has to be cautious when securing a business network not only from

outside but also from inside. The PLCs can be used as a gateway by the attackers.

With PLCinject, the adversary compromises the PLC in two steps. First, an SNMP

(Simple Network Management Protocol) is implemented in order to get an overview

of the network behind the PLCs. The second and last is step is to inject SOCK proxy

to the PLC logic code in order to gain access of all PLCs via the compromised one.

The authors noted that SOCK protocol is quite lightweight and easy to implement

with respect to MC7 bytecode.

At this point, readers may wonder that patching the firmware of PLC can instantly

solve the issue. The authors argued that firmware is not very often patched. One of

the reasons behind this is that patching would interrupt the production process which

has monetary impacts on the production. Another reason is that it may lead to a

loss of production certificate or other kinds of quality assurance of the manufacturing

company. The injection of malicious code was performed in Siemens S7-300 PLC

that use Statement List (ST) as the native programming language. This source code

generates MC7 bytecode in PLC. This research evaluated their attack by comparing

the execution cycle times of three scenarios: 1) benign control program, 2) malicious

control program with SNMP implemented, however without SOCK proxy loaded, 3)

malicious code with SOCK proxy implemented. It takes more time on the second

and third scenario than the first one. The authors noted that the upload of the code

should not exceed 150 ms of time for a successful attack.

Li et al., [49] proposed a different type of attack that is possible in the controller’s

source program. The goal of the paper was to investigate a potential attack that

22

can trouble the basic operation of a controlled system (IoT, Industrial System). The

authors argue that attacks like Stuxnet were totally out of everyone’s knowledge.

Therefore, research on potential attacks should bear equal importance with a recently

occurred attack. In their paper, the authors defined the sequential logic as the physical

process as the transitions between the different control commands executed by the

actuators. Obviously, control commands are issued by the controller to the actuators.

The false sequential logic attacks is the violation of the sequential order of the control

command. There are lots of ways to interchange between any two control commands.

However, the authors limited their work to two adjacent control commands. They

provided a water pump system as an example of this attack. There are two pumps

P1 and P2 from two different tanks T1 and T2, successively to a tank T3. It is

designed that only one pump will run at a time. P1 will start first and P2 will start

as soon as P1 finishes. In this case, a false sequential attack is visible when P2 starts

before P1 finishes. There is a valve to drain liquid from T3. The authors defined

six sequential logic attack with state-based modeling and showed the consequences

of the attack through a MATLAB Simulink based environment. The attacker was

capable of not draining liquid from tank T1, T2, and T3. Moreover, the attacker

was capable of overflowing T3 before draining it properly. The authors pointed out

that modification of sensor values can affect the control actuation through feedback.

However, the question still remains how attackers are capable of getting access to a

controller’s code. Recent research [48] indicates an attacker can replicate a PLC's

code through an insider or through preceding information gathering attack.

Last but not least, stealthy or covert attacks on a PLC-based system are discussed

in Trcka et al., [50] where a smart building was considered as a case study. A stealthy

attack is a common type of attack in a cyber physical system (CPS) like water and gas

distribution centers, transportation network systems, etc. Networked control systems

like smart buildings are a special form of cyber-physical system. Here, a network is

23

composed of sensors and actuators and those are controlled by a central controller.

Security analysis or risk assessment is an important task to identify vulnerabilities

and possible exploits in CPS. Sometimes, a predefined set of attack models are used

to evaluate system vulnerabilities. Trcka et al., [50] proposed a model-based security

analysis technique for the networked control system and chose a smart building en-

vironment as a case study. In a stealthy attack, an adversary drives the system into

a bad state while staying undetected at the same time. For this work, the authors

did not consider any specific detection scheme. Rather, they focused on a general

method where an attack can be detected by the difference between the abnormal (at-

tacked) and nominal measurement. That scheme is automated via formal verification.

Typically, formal verification is an automatic technique that ensures whether or not

the safety property is maintained throughout the operation. When any of the safety

properties are violated, the authors used simulink to generate a counterexample. This

counterexample determines the initial point of violation. The undetectability of an

attack is defined with four rules. Firstly, the injected signal should be in an accept-

able range. Secondly, the last state attack should follow the same relation to the

current one. Thirdly, the measurement of a sensor with the injected signal must not

cross the threshold. Lastly, the attack should not be any safe state of the system. In

this work, safe states of a system have been defined based on the controlled system’s

dynamic. In this research, Simulink Design Verifier has been used as a formal veri-

fication tool. If no counterexample is generated during its operation, the controlled

system can be declared safe. As a test case, a three-room home environment was

chosen. There were two sensors and two actuators (thermostat) shared by all three

rooms. The authors ran three experiments by making one sensor not secured, by

making one communication channel from a controller to sensor compromised, and

lastly, by devising one of the actuators to be compromised. In all the experiments, it

was shown that the attacker was capable of compromising the system, yet remained

24

undetected with a variable attack length. However, the dynamic nature of the system

was not discussed in this paper. The authors claimed that their approach is applica-

ble to other monitoring and diagnostic systems as well. However, scalability will be

an issue if this approach is applied to a large controlled system. The paper lacks this

analysis and discussion. Moreover, in their test case, any actions taken on actuators

were allowed that can creating conflicting situations. This can be avoidable through

formal verification that ensures no known conflicts would occur.

2.4 Automation and Verification of PLC-based System

The automation and verification of PLC-based systems have drawn the attention

of the research community. There have been several attempts to deploy policies

that ensure safe behaviors of the PLC-based system. These can be divided into two

categories: static and dynamic. Basically, static analysis does verification before the

PLC program is released for operation, while the dynamic analysis contributes to

checking for violations of security properties of a system at run-time.

2.4.1 Static Checking

Mclaughlin [26] introduced an enforcement mechanism for safety policies in a PLC-

based system. When a PLC issues a command to an actuator, the current states of

the system are checked and then decisions are made whether or not the command

should be issued. The author named the enforcement mechanism C2. It is placed

in the control lines between a PLC and physical devices. The principal motivation

behind this work is that most control systems do not have the architecture for storing

state information of devices. C2 mediates this limitation by acting as a middleware

in a PLC-based system. It contains a set of declared conflicts among the devices of

a system. The conflicts are checked when a device goes from one state to another

depending on the command it receives from PLC. The author defined the states of the

device as discrete and continuous. A single step motor can be considered a discrete

25

state device having three states namely, forward, reverse, and off. On the other hand,

a continuous device (i.e., stepper motor) has a range bounded by an upper and a lower

limit. When a device has issued a command, it has a minimum time allowed for the

transition of states. During this time, the other devices that have conflicts with this

device, are checked with their current state. When a conflict is found, the command

is dealt with. In order to handle the situation, their framework devises TAP (Ternary

Access Point) which allows C2 to monitor as well as inject traffic between the control

room and PLC. The control room has an operator that receives a notification when

a conflicting situation arises. The PLC is issued a command thereafter. There are

four ways to deny the command. The command can be totally dropped. Secondly,

approximation can be done for continuous devices in order to determine the feasibility

for truncating the command in some specific interval. Thirdly, retry can be done to

replay the command. Lastly, notification can be sent to the PLC for further action.

The authors developed a prototype that was tested in motor control, saw mill, pH

neutralization, assembly line, and traffic light environment.

A similar type of work is found in McLaughlin et al.,[18] where a middle-ware

ensures the safety of a PLC-based system sitting between the PLC and the devices.

They named it TSV (Trusted Safety Verifier). The authors pointed out that a control

system has a large trusted computing base (TCB) of commodity machines, firewalls,

networks, and embedded systems. These large TCB introduces more vulnerabilities

that can lead to more unsafe behaviors of the whole system. The patches for these

vulnerabilities are not applied regularly. The operation of the plant should not be

stopped due to these. Hence, this research tends to minimize the TCB to a verifier

(TSV). TSV verifies the safety behavior of the code executed on PLC before it goes

to actuation. The safety properties are written in temporal logic. In fact, TSV uses

model checking to perform the verification. As model checking suffers from state

explosion, TSV performs a symbolic execution to generate a mapping from path

26

predicates to symbolic outputs. Path predicates are basically a boolean expression

that characterizes a set of input values that will cause a path to be traversed. This

creates all possible executions of a single scan cycle. After this step, the model

checking component of TSV is invoked. A set of temporal properties, combined with

temporal qualifiers are inputted to TSV as the safety specification. These are verified

across a state-based model of the PLC code. The authors named that model as

Temporal Execution Graph (TEG). When a safety property is violated, TSV provides

a counterexample to system operators. The code with no safety property violation

will be given permission to execute from the PLC. The authors implemented TSV

on a Raspberry Pi computer and put it in a way that it is capable of intercepting all

controller-bound code. Traffic light, Assembly way, Sorter and Stacker of a conveyor

belt, Rail interlocking, and PID (i.e., temperature controlling in a room) were taken

as the testbed for this research. The performance, in terms of time requirements, were

measured for all cases. The state space size due to model checking steps was shown

for all the cases in order to validate the model’s scalability. However, this research

did not explain how symbolic execution can capture all input-output mapping. The

more the possible number of inputs, the more chances there are for state-explosion in

the model checking component of TSV.

As minimizing the trusted computing base(TCB) and state explosion in model

checking were concerns in implementing TSV, the same research group presented

a work [27], where TCB was minimized significantly. The author pointed out two

of their previous works, TSV, and C2 as static and dynamic enforcement of security

policies in PLC logic, successively. Now, a new policy enforcement system is proposed

as a small TCB. In order to understand the framework better, a brief explanation of

how PLC works might be necessary. A PLC program consists of chains of Functions

Blocks that are very similar to functions of traditional programming language. Each

scan cycle of a PLC starts with the execution of an Organization Block (OB) which

27

invokes other FBs based on the sensor measurement found in the input memory region.

A subset of PLC’s function blocks is considered as the Guard Blocks (GBs) in this

research. A set of run-time and upload-time checks are performed to ensure that only

highly privileged users have access to GBs. The size of GBs is way less compared to

the total number of function blocks in the PLCs. Hence, it contributes to minimizing

the TCB for a system. Furthermore, GBs are the only code blocks for static analysis

by TSV. This is how the state space can be reduced significantly. Now, this GB-based

policy enforcement takes account of three critical components of any security policy

the subjects, objects, and operations. Each function block will have a label as the

subject. Username and password verification are done to check whether a personnel

is highly privileged to create or change a function block of the program. The object

label helps to identify who has created or changed the code and on what program

blocks when the code is uploaded to the PLC. Lastly, there are operations that define

what actions are performed on an object. This model is useful in preventing untrusted

blocks from outputting memory modifications. A guard block does not write to any

region by adversaries when the GB-based approach is applied. However, this research

did not make clear how they distinguished an important functional block from the

others. An attacker can gain access to a function block which is not considered as

GB. The attacker can perform a malicious activity from that code region.

The work of McLaughlin et al., [18] was extended by Zonouz et al., [28] with an

effort to find malicious PLC programs. The same trusted safety verifier TSV was

used to verify across the state-based model Temporal Execution Graph (TEG) [18].

Here, a formal predicate for each safety property is negated and a state-based model,

UR, was generated that satisfies the negated formal predicate. Now, a state-based

Cartesian product model from TEG and UR is generated and named as P . Now,

each state in P has two substates that refer to corresponding TEG and UR states. If

a path is found in P from the initial state, the PLC program has an execution trace

28

in the model based on negated safety requirements. Safety policy violating counter-

example with path condition and input vector are generated from their developed

framework. However, the state explosion possibility for this case was not discussed

as it creates three different state spaces (TEG, UR, and P).

As can be seen from the discussion in this section, verification of PLC programs

has been taken with great importance in the research community. Hence, we focus

on some recent works on the formalization or transformation of PLC (IEC 61131-3)

programming languages. Markovic et al,. [24] classified them in the following three

categories:

• XML-based transformation

• compiler-based formalization

• model-checking transformation

The XML-based transformation of a PLC program was first introduced in Younis

et al., [51]. The main motivation for this work was to develop a technique for vi-

sualizing PLC program by reverse engineering. This work contributes to being an

intermediate step for the formalization of a PLC program in order to perform verifi-

cation and validation of its system properties. XML (eXtensible Markup Language)

is a flexible meta-language for describing other languages. Analysis of any code needs

a scanner (lexical analyzer) to generate a set of terminal symbols and a parser that

checks the grammatical structure of the code. The lexical specification is already an

invariant component of XML. Moreover, an XML-parser is capable of transferring an

XML document to an abstract interpretation named Document Object Model (DOM)

without using a grammar. In order for this to happen, the first step is to transfer a

PLC program to a well-formed XML document. XSLT, the transformation language

of XML performs this step. Then, this XML file is validated against the XML schema

to conform the syntactical rules defined in the context of PLC programming language.

29

The next step is the identification of the instructions of the transformed XML doc-

ument. This proves the semantics of the XML document is in accordance with the

operation types of the PLC programming language. XSL, another transformation

language of XML, is used here to visualize XML in a two column table in HTML.

The two columns are instructions and instruction Id, found from the previous step.

There has been some XML-based PLC program transformation. One of the most

notables works is done by Marcos et al., [52]. They discussed three approaches to

transform a PLC program using the XML-based approach. XML Schema Technology

is one of them. An XML schema contains the lexical and syntactical constraints that

define a new language. The PLCopen TC6 software uses XML schema that contains

the elements and their relations of the PLC program. XML stylesheet transformation

is another way that helps in exporting or importing PLC code. The derived data

types or user-derived program organization units (POUs) are imported through this

way. Lastly, the XML interface helps in the interoperability of different types of the

programming language of the PLC. It helps in transferring a code, or a complete

project from one development environment to another without loss of information.

However, this research did not indicate how these types of XML technology can help

in verification directly.

At this point of this work, it is important to note that Structured Text (ST)

programming language, one of the most used languages for PLC, is our point of in-

terest for automation and verification purpose. Readers may wonder why we have

chosen ST over the other four languages of PLC. Firstly, it is a high-level program-

ming language that is easily readable and writable due to its similarity with a once

well-used programming language Pascal. Secondly, the European Organization for

Nuclear Research (CERN) writes most of their PLC programs in ST. Lastly and

most importantly, ST can be used as a pivot language to represent all five standard

PLC language [53]. Darvas et al., [53] have shown that all other PLC programming

30

languages (Functional Block Diagram, Ladder Logic, Sequential Functional Chart,

and Instruction List) can be mapped to Structured Text (ST) language, specifically

Siemens ST’ language. Therefore, the rest of the section explores some verification

techniques on ST language verification and test case generation.

Compiler-based PLC program transformation for ST language was done by Rzonca

et al., [54]. They created an ST language compiler which produces universal code to

be executed in different machines. They named the tool as CPDev. They have

described the scanner, parser, and code generator of the tool they have developed.

This research can be used as a good starting point for verifying ST programs. Some

other attempts to convert the ST program to other languages have been made by

Sadolewski where the ST program was converted to Why[19] and ANSI C [20] program

respectively. Then verification lemmas have been used to correct the program with

coq prover. However, these approaches have the limitation on data type declarations

and specification language. Therefore, researchers in CERN made an attempt to

generate formal models automatically from ST code [22]. It has three main phases:

• Parsing ST source code with the help of Xtext, an open-source Eclipse-based

framework.

• Transforming the parsed ST source code to an intermediate automata model.

This is done with EMF (Eclipse Modeling Framework) in order to hide some

difficulties from the developers

• Creating NuSMV formal models from the model found from the previous step.

Some real-life case study with this tool was conducted in [23]. The case studies

depicted that model checking can be included for a PLC even though the automation

engineers are not experts of the formal verification. This work contributed to reducing

the intermediate model of [22] and counterexample analysis. Moreover, the tool was

extended to be capable of creating formal models for other model checkers. The

31

tool has later been extended in [55] and named as PLCverif with an editor for PLC

programs. It has full support for Structured Text (ST) language and partial for SFC

(Sequential Function Chart). One can write a ST program directly in the editor

of the PLC and then verify it across the safety requirements. An already existing

program can also be imported into PLCverif for verifying. The users can define safety

requirement policies in English sentences after following the guidelines to write those.

This is helpful because all users do not need to be experts on CTL (Computational

Tree Logic) or LTL (Linear Temporal Logic). Policy specifying directly with LTL or

CTL was also given as a choice nevertheless.

One notable work in this regard was found in the work of Markovic [24] where

the framework has three main components, Control Template, Read Input Unit,

and Function/ FB unit. The basic idea of control template is adopted from [25]

where Functional Block Diagram (FBD), another PLC language, was converted to

UPPAAL environment. This is actually an automata representing the actions in

the ST program. The second component was the Read Inputs Unit that contains

the input templates for the input variables for the ST program. The last unit is the

Function Unit that implements the behavior of the transformed functions of original

ST program. With these three components, an ST program is converted to UPPAAL

acceptable format. After UPPAAL executes this upon the temporal logic property,

an execution path for testing is generated.

Last but not least, we want to mention the work of Biallas et al., [21] where they

developed a tool to verify the safety properties of PLC that are written in the ST

programming language. This tool takes an ST program as input. A user can specify

the safety and liveness properties in LTL or CTL formulas. The names of the variables

of these formulas must be the same as those in the ST program we want to verify.

Once it is run to verify a property, the tool outputs whether the formula is satisfied for

the ST program. If it is not satisfied, a counterexample is formed with the variables

32

that have caused this violation.

2.4.2 Dynamic Checking

Nicolson et al., [29] proposed a novel approach for verifying a formal specification of

ICS components during run-time. They have used the Interval Temporal Logic(ITL)/

Tempura framework in doing so. It is capable of providing an early warning system

in a PLC-based environment. ITL is flexible for both propositional and first-order

reasoning with respect to a period of time, found in the description of a hardware

and software system [56]. It offers a powerful proof technique for reasoning about

properties that involve safety, liveness, and projected time. ITL has a matured exe-

cutable subset named Tempura. It has been used extensively for hardware simulation

and other areas where timing is important. In this research, Tempura was extended

to include notation for PLC. In order to test Tempura, two attacks were launched

against Siemens S7 PLC. The first exploit was detected before entering the next ex-

pected state in the duration of time expected. However, the same attack could be

detected with regular signature-based IDS. The second attack was based on upload-

ing a slightly modified malicious code. This is not detected by an existing system as

the signature matches normal behavior. Tempura detected this attack as the state

transition does not match the Tempura formula with time constraints. However, this

work did not mention how they have specified safety and liveness properties with

time constraints for Tempura. Later, the same research group extended this work in

[30] where ITL/ Tempura definition of a Siemens S7-1200 PLC ladder logic was pre-

sented. They have shown the operators like And, Or, Xor, In, Out, Set, Reset,

Latches, Triggers, etc are converted in ITL specification. Their developed moni-

toring methodology captures a snapshot of the current state (with values for markers,

input, output, counters, and timers) of the PLC. Tempura was implemented to ex-

ecute directly on the Arduino Yun that uses MIPS. This is connected with PLC.

This is how they ensured that PLC does not need a high power computing device to

33

perform this task.

2.5 Conflicts in Smart Building and Solution Approaches

We have discussed in a previous section that conflicting actions in a PLC-based

system can lead to an unsafe condition. In this section, we discuss what type of

conflicting situations are possible in a smart building environment and what is the

current state of the art for solving those. As of now, there is no prototype or for-

malism that is considered complete in terms of defining conflict in the smart building

environment. Nevertheless, Sun et al., [15] made an effort in classifying conflicts in

some finite categories. They classified the relation among all building management

rules into 11 categories. Based on these relations, they classified all types of rule con-

flicts into five categories and claimed that any type of rule conflict can be classified

into at least one of those categories. The first type of conflict, the authors talked

about, is shadow conflict. When one rule for an actuator cannot be triggered due to

the prior engagement of that actuator by another rule, this is called shadow conflict.

The second type of conflict is the execution conflict where two contrary actions are

directed for execution at the same actuator. Then, environment mutual conflict was

mentioned where two contrary actions are made possible to take place by two different

actuators (i.e., cooler and heater). The last two types of conflicts are direct depen-

dence conflict and indirect dependence conflict, where two and more than two rules

create a loop for the actuators, successively. Thus, it is likely to create an anomaly

in the smart building environment. All the conflict classifications have been defined

by formal rules. That is, the classification can be implemented in any formal verify-

ing or model checking tool. More than 30,000 rules have been implemented to test

their conflict scheme. For implementing the rules in a real building, the researches

employed the sensors and actuators through wireless sensor and actuator network

[57]. Though the rule conflict space is claimed to be complete, this work did not have

any soundness and completeness proof. Moreover, the policies they have provided as

34

examples, are very simple. The detection and resolving of complex rules were left as

future works in their research.

It is worth noting that one of the important reasons behind the emergence and

growth of highly integrated and intelligent buildings is reducing energy consumption.

But after looking at the real world implementation, the reduction in energy consump-

tion has not been kept out of questions. The automation itself utilizes energy. The

sensors are sending the status of the lights, temperature, humidity, pressure, doors,

windows, and amount of smoke to the controlled system at regular intervals. In the

work of [5], the data collection rate from the sensors has been reduced based on differ-

ent time period of the day and environment status. The authors provided an example

where the temperature of the building in winter can be set within a threshold. The

sensors do not need to report about the temperature at a small interval. Setting the

appropriate time interval for reporting data from the sensor can be an interesting

research direction in conflict resolution. Based on the sensor measurement, an event

occurs and that event triggers the actuation. The more events in a limited time frame,

the more the chances for possible conflicts of the actions. However, limiting the event

occurrence in order to avoid conflicts is not a smart idea. Overlapping events should

be dealt with to provide the best operation of a smart building. Analysis of event

logs can help to find the allowable time frame for event overlapping.

Kumar et al., [58] pointed out some reasons why automation should be considered

with great importance for smart buildings. They have explained those with some

real-world examples. The building occupants are not necessarily the programmers.

Nor they do know the overall infrastructure of the building. The less the interaction

between the occupants and the sensors/ actuators, the more comfortable and safe

the system becomes for the occupants. However, it is obvious that a machine cannot

deal with a conflicting situation as efficiently as a human can, especially when con-

flicting situations occur. The authors studied how a change of policy in one device

35

triggers others. Trigger-action programming and SMT based logic have been pro-

posed by Nacci et al., [59] for detecting conflicts in the policies automatically. The

authors formalized the rules in propositional formulas by prioritizing them and ana-

lyzed the formalization using the SMT solver Z3. Their proposed tool BuildingRules

uses their previously developed web service for building management system, named

BuildingDepot [60] for implementing the whole system in a building. However, one

can easily argue about the basic assumption of this paper. The authors stated that

conflict detections will be done automatically by their model. It has not been made

clear what different types of conflict are possible for a smart building environment.

Unless the conflict detection problem has been specified in a finite space, the deploy-

ment of an automation system is not possible. In addition to that, their solution

approach is more or less dependent on trigger action based approach (IF something

happens, THEN do something). This approach needs a stateful policy enforcement

mechanism, especially in the smart building environment. As for example, we can

say that both a cooler can turn on and off at the same time in terms of a conflicting

situation. If the trigger-action based approach is implemented, the cooler will be turn-

ing on and off simultaneously and cause major damage. Finally, this research work

lacks the scalability of the model in detecting and resolving conflicts as real-world

implementation has not been shown there.

At this stage, we want to point out that there are some other states of the arts

for developing defeasible logic programming. The framework, developed by Lam and

Governatori [61] is considered as one of the robust approaches to handle the conflict-

ing situation. In fact, their developed tool SPINdle to write defeasible logic, form

theory database, and answer queries is well explained and user-friendly. Answering

queries or concluding whether a query is true in the underlying theory, is the most

important aspect of defeasible logic. Unlike classical logic programming, defeasible

logic programming is capable of proving a theory from contradiction, though defea-

36

sibly. Any classical logic programming tool would have disproved that theory in the

very first place. It can reason with incomplete and contradictory information. A

defeasible theory is defined by Lam and Governatori [61] as a triple (F,R,>) where

facts and rules are denoted by F and R, respectively. The sign > is used to assign

superiority relation among the conflicting rules. The definition of facts is as same as it

is for classical logical programming. However, rules are classified into strict rules and

defeasible rules. Strict rules (represented by =⇒) bear the same functionality and

representation as it is for rules in logic programming. The most interesting thing in

the framework is the introduction of defeasible rules. Those are the rules that can be

defeated by contrary evidence. The important contribution of this work is that they

have introduced superiority relation among the rules. We will discuss this more in the

domain of our smart home environment. Another component of their model is the

defeaters (represented by ∼>). The defeater is used to prevent any conclusion from

being drawn. As for example, one can put directly that if the bird is a penguin, it

must not fly. Generally, any logic programming outputs whether a theory is provable

or not. In addition to that, SPINdle outputs whether a theory is defeasibly provable

or not. Decision making can change a lot if a policy maker finds a rule defeasibly

provable.

At this point, we want to note that although SPINdle is being considered as a

robust solution approach for some domains like smart building, stock market, bat-

tlefield modeling, it lacks a theory grounding mechanism. That is, no variable can

be used as a predicate. For a smart home environment, this characteristic gave more

advantages. We will talk about this later when we discuss the research proposed by

Stavropoulos et al. [3]. Another shortcoming is the absence of a probabilistic feature.

Here, superiority is assigned among the rules in the very first place. But this may

change from time to time. A dynamic framework can be developed with probabilistic

modeling in assigning superiority.

37

Recent research of Stavropoulos et al., [3] made a proper use of defeasible logic

programming tool SPINdle that had been proposed by [61]. They modeled a multi-

agent system with each agent having an energy saving policy for each room in an

intelligent building. A middleware was proposed that connects the hardware layer at

one end and the logic engine on the other end through a semantic web service. The

policies can be edited by authorized personnel. The basic goal of the paper was to

model the system so that energy saving is achieved. The authors confirmed that 4%

of energy savings was achieved when it had been implemented in a Greek University.

The numerical value of 4% may sound small, but, if all commercial or industrial

buildings are brought under such a model, the cumulative effects of energy saving

will contribute significantly to achieving energy saving. Later, they extended their

model to have a defeasible logic engine in it for detecting and resolving rule conflicts.

The overall architecture is shown in Figure 2.3. The sensors sense the components

of ambient and there are indirect many to many relationships among the sensors and

the actuators via the middleware. That means there is no direct feeding of data from

sensors to actuators. The sensed data is sent to the database and the database updates

the knowledge base according to its measurement. The conclusion of a rule can serve

as a condition for a further rule and thereby SPINdle enables complex reasoning. It

is to be noted that defeasible logic is capable of reaching an agreement after solving

conflicts and inconsistencies among knowledge items. However, in the proposed work,

the authors did not secure the communication from and to the middleware. It is also

to be noted that the authors claimed the deployment of their model in a smart home

environment is far richer (with ZigBee, Z-Wave, and RF) with a communication

protocol. However, they did not state any of the security issues that are possible

in those communication protocols. The aggregative vulnerability can lead to life-

threatening states of the system. Furthermore, a malicious attacker can act as the

man in the middle and rewrite policies. The automation system, proposed in this

38

paper, defines a series of actions. But it was not defined when to take the series of

events. The authors left this work out of the scope of this paper. We know that

SMT solver is a well-established way to get a satisfiable solution for a system with

constraints and policies. We believe that an SMT solver, embedded with defeasible

logic, can come forward with more fine-grained solutions. Because time plays an

important role in the smart home environment, the policies are likely to get changed

at a different time. Simulink with SMT solver YICES can be used to ensure safe

action of the actuators at varying time periods.

Figure 2.3: Defeasible Logic Agent Architecture for Smart Building [3]

The dealing of conflicting evidence can be better understood from the work of [62].

They chose the stock market as the domain to show how defeasible logic can help in

solving the conflicting situation. In the stock market, the information keeps changing

continuously. There are plenty of rules devised there to help the decision maker to

decide when is a good time to buy a stock. Rather than thinking about a human in

39

the place of a decision maker, the authors proposed a multi-agent system that is able

to monitor stock market, extract information and use defeasible logic programming

(DeLP) to achieve the desired goal. By using defeasible logic programming, the multi-

agent system can formulate arguments and counterarguments in deciding whether or

not it will buy the stock. It is to be noted that DeLP is the extension of traditional

logic programming and developed based on Prolog programs. DeLP has facts and

strict rules the same as logic programming. In addition, it has presumption and

defeasible rules. A presumption is similar to fact but it associates uncertainty on

the evidence. When some rules are triggered based on presumptions, the rules are

named as defeasible rules. In this paper [62], the authors gave an example where

conflicting situations occurred while buying a stock. The multi-agent system was

devised with different personality levels (e.g., very safe, safe, aggressive, risk-taker,

brave) in taking a decision. The authors concluded that when the conclusions are

derived from facts, the safe agents would buy the stock when it gets the conclusion

to buy. If the multi-agent system is aggressive or risk taker, it would even buy the

stock when the decision of buying the stock comes from presumptions. Though this

work gives a basis in deciding with a different threshold of personalities, it does not

give a clear idea which conflicting rule is winning over which and what is the basis

for such a conclusion. The same research group later published a work [63] where a

dialectical tree was proposed to show how an argument can defeat another to reach

a conclusion.

It is noted by [63] a defeasible rule represents a weak connection between the head

and body of a rule. Rather than going through any particular check, the knowledge

base keeps changing with belief. This feature is the main contribution of defeasible

logic. In fact, when contradictory goals are achieved, but defeasibly, DeLP provides

argumentation formalism to validate the goal. Arguments are minimal and non-

contradictory set of rules to reach a conclusion. The main point in their formalism is

40

that despite being the contradictory nature of DeLP, answer to a query must be sup-

ported by a non-contradictory set of rules. Moreover, they signified the importance

of changing facts or knowledge base for which defeasible derivation takes place. They

clearly mentioned that a conclusion from strict rules is more preferred than a conclu-

sion from defeasible rules. Due to the nature of incomplete or changing knowledge, it

is not easy to derive to a conclusion easily from strict rules. In order to explain which

arguments defeat which arguments they proposed a dialectical tree. This type of tree

is helpful for a better understanding of the conclusion that comes from a large pool of

arguments and counter-arguments. The arguments and counter-arguments are also

derived from sub-arguments when the rule base is large for a problem. Except for

the root node, each parent node is the defeater of its child nodes. Two types of de-

featers were introduced there: proper defeater and blocking defeater. An argument

is a proper defeater of a counter-argument when that argument has higher priority

over the counter argument or at least one sub-argument of the counter-argument.

On the other hand, the concept of blocking defeater comes when both arguments

and counter-arguments do not have a preference relation over each other. When the

rule base is large, the authors showed that this type of situation is possible. It is

important to observe that in this research, the priority relation of the rules is kept

fixed. With the change of facts or knowledge-base, it is also possible the priority

relationship among the rules can be changed. The priority change in rule base can

be an interesting research direction.

Later, Martinez et al., [64] made an effort to make DeLP robust by full integration

of presumption in reasoning. In that work, the authors defined presumption as a

piece of information which is not fact or true always, but for the sake of reasoning,

it will be considered as true tentatively. The main motivation of this research was

that when evidence is gathered from multiple sources, it is not easy to scrutinize

them as all are considered as facts. They explored a new idea where some evidence

41

is considered as presumptions, not facts. The proposed framework comprises of two

model, environmental model (EM) and analytical model (AM). An environmental

model describes the preferences of the evidence in the knowledge bases. On the

other hand, an analytical model is what we call queries in typical logic programming.

It analyzes competing hypotheses for a scenario. Generally, the analytical model

gives the framework the capability to reason out a conclusion of a given query. It is

important to note that both EM and AM share the same variables and constants. In

EM, the authors defined a formula that is built by predicates and boolean operators.

Then, for each formula, the probability is assigned to each formula with an error

tolerance. AM, on the other hand, helps the framework to warrant a conclusion based

on the comparison given in EM. In this work, the probability to statements in EM is

assigned either by a knowledge engineer or an automated system. However, it was not

clear how an automated system can reason out for such probability assignment. The

work of [65] can help in this regard. The main contribution of that will be discussed

later in this dissertation. However, that work does not talk about the scalability

issue as the search space for probability assignment would grow larger and larger

with the number of evidence. The number of pieces of evidence increases the size of

the knowledge base. Hence, the modeling of an automated system should consider

the freshness of facts in the knowledge base.

2.6 Data Provenance in Security

Data provenance is defined as the “history of data transformed by a system” [66].

The provenance of a piece of data describes what the inputs and outputs of each

process are, what processes were executed, and who had control of those processes

during execution. Provenance is often represented as a directed acyclic graph (DAG)

with nodes representing the data, processes, and controlling entities. The edges repre-

sent causal relationships between these nodes. For example, we provide a provenance

graph in Figure 2.4 that represents the relationship and workflow among different

42

components of a smart building that are responsible for changing the status of a

light. This is a simple example with three agents, two activities, and three enti-

ties. As can be seen from the figure, there are nodes of three different shapes. The

agents are represented with pentagons, activities with rectangles, and entities with

ovals. The workflow explains how a Motion Sensor changes the status of a light.

An Occupant can also turn on/off the same light, which is explained in the graph as

well. The Motion Sensor is associated with the activity Motion Sensing (represented

by wasAssociatedWith). This activity generates Motion Status which is connected

by the edge wasGeneratedBy. This Motion Status is used by another activity Light

Actuating. This activity is associated with Light agent. Whenever Light Actuating

activity finds motion from the Motion Status entity, it turns on the light and changes

the Light Status activity. It is interesting to notice that the same Light Actuating

activity is associated with another agent Occupant and uses the entity Switch. This

Switch is operated by the occupant to change the Light Status entity.

Motion Sensing

Light Actuating

Room Occupancy

Motion
Sensor

Light

Motion Status

Light Status

wasAssociatedWith

wasAssociatedWith

wasAssociatedWith

wasGeneratedBy

wasGeneratedBy

used

used

Occupant

Switch

used

Figure 2.4: Notional Provenance Graph for a Light Actuation in a Smart Building

Provenance was first introduced in databases and computational sciences for tracing

and debugging. However, more recently it has been proposed as a primitive for

43

building secure and resilient systems [67] that can “fight through” attacks. In order

to provide such capabilities, novel collection, storage, and analysis mechanisms have

been proposed to enable near-real-time analysis of provenance to support security

and resilience decisions [68]. These mechanisms are being used to provide forensic

analysis and intrusion detection capabilities [69].

As discussed in this chapter, conflicts in smart environment are dealt with deliber-

ately by the research community. Defeasible reasoning is used for nearly two decades

to resolve conflicts among information and policies. Though smart buildings have not

been under cyber attacks so far, the PLCs used there were under some notable cyber

attacks. As of now, static analysis approaches have been the most used methods to

secure a PLC-based system. Recently, data provenance has been well-accepted to se-

cure domains where the change of information needs to be tracked in runtime. It will

be interesting to observe how provenance and defeasible reasoning can be combined

to secure a PLC-based system, smart building.

CHAPTER 3: Detecting Conflicts in Smart Buildings

3.1 Introduction

3.1.1 Problem Statement

The distributed nature of a smart building leaves devices and communication chan-

nels exposed to attackers and many of these devices and protocols are resource-

constrained. Moreover, thousands of policies in a building can lead to misconfig-

uration. An attacker is capable of triggering an event that leads to conflicting actions

in the building and can achieve his goal by shortening devices'lifespan. Moreover, it

is also possible for an attacker to leverage these conflicts and vulnerabilities to gain

physical access to a smart building. Additionally, a series of attacks can be launched

(cascading attack) [70].

Even with smart building technology in the early stages of development and deploy-

ment, the guarantees of maintaining the safe and secure operation of an environment

in a smart building domain can attract more users. Even legacy, or dumb devices can

be attached to the system and have effects on actions or environmental features.

Moreover, although the additional energy usage due to a single device’s conflict

may look negligible, the cumulation of excess energy usage of the whole system over

a certain period can have a significant financial impact. Reduction of energy usage is

one of the essential smart building technology contributions.

3.1.2 Contribution

In this chapter, we propose IoTC2, a formal methods approach to ensure safety

properties for the controllers and actuators in an IoT system. The main contributions

of this research are:

45

• a formal approach to defining the safety properties of an IoT system

• a technique for detecting conflicts within the rulesets of the IoT system that

violate the safety properties of the system

• an implementation of IoTC2 that can be used in real-time to ensure the safety

and energy efficiency of the IoT system

An IoT system provider, or the application developer, can leverage our framework

while writing rules for an IoT system. We prove that the classification of safety prop-

erties, is sound and complete. Once the conflict creating actuators/controllers are

distinguished by our framework, the application developer can modify operational

rules to avoid conflicts as much as possible. If conflicts are unavoidable due to the

uncertain nature of events, it is possible to manage them with the help of data prove-

nance and defeasible reasoning.

Furthermore, IoT vendors can instrument the controller or application with our

policies to monitor how many safety property violations have occurred and their

impacts on environment and energy usage. This helps in classifying and differentiating

anomalies in an IoT system. It should also be noted that actuation commands are

issued from the controllers. Hence, multiple controllers that try to command the same

actuator are in scope for this work. IoTC2 contains all the rules for the IoT system so

that when events trigger a rule or a set of rules, IoTC2 makes sure the safety properties

are maintained. When a violation of the safety properties occurs, it is due to conflicts

in the rules defined for the system. The framework is also capable of detecting conflicts

that are caused by misconfiguration of operational rules. The conflicts are detected

even before the conflicting actions take place. IoTC2 can identify the specific type of

violation that has occurred. We have implemented an IoT environment simulation

in Matlab’s Simulink environment to understand the impact of conflicts in an IoT

system.

46

3.2 Background

A basic IoT system is comprised of a number of sensors, actuators, and controllers

sometimes combined into single devices. The sensors collect measurements of the

current state of the environment or the system. There are operational rules stored

in the controller. These rules are triggered based on events collected by the sensors.

The rules define what actions should be taken by the various actuators connected to

the controller. Simply put, an event triggers a rule and the rule triggers an action

within the IoT system. The controller decides what action or set of actions to take,

as defined by the rules installed in the controller. The controller issues commands to

the actuator for performing the most appropriate action. The devices are connected

through wired or wireless networks. While several components of an IoT system are

interacting with one another as soon as an event occurs, it becomes challenging for

the system itself to function without making conflicts. Conflicts, in this case, refer

to the situations when more than one rule (triggered by an event) try to access the

same actuator or affect the same environment feature at the same time. When the

rules are written for automation, it is difficult to consider all potential conflicts. They

occur when multiple events trigger at the same time. Conflicts are regarded as the

most common, yet unsafe situations for a cyber-physical system [71, 15, 72, 73]

3.3 IoTC2 Framework

The architecture of the IoTC2 is given in figure 3.1. All rules/logic used for opera-

tion in each controller of the IoT system are the input for IoTC2. Whenever there is

a change in any rule, or a new rule needs to be added to the controller, the change

needed is input to IoTC2. The second type of input for our framework is the sensor

measurement with timestamps. These two types of input act as the facts for Prolog

logic. Three types of safety properties are defined in IoTC2 namely controller safety

policies, action trigger policies, and event handling policies. Regardless of the sen-

47

sor measurements and operational rules input to IoTC2, it can find safety property

violation in a complete and sound way (more about the proof is discussed in Section

3.4). To start, our framework receives copies of the traffic from the sensors to the

controllers. As soon as IoTC2 receives a sensor measurement, by using the rules/logic

from the controller, IoTC2 determines what actions the controller will emit for the

actuators. Next, IoTC2 determines the list of actuators, affected features, and issuing

controllers. Using these lists, IoTC2 determines whether or not these activities violate

the safety properties (by creating conflicts) within the IoT system. IoTC2 has the

capability to output the number of conflicts and their type within the IoT system. In

addition to conflict creating events, misconfiguration of rules within an IoT system

can lead to a set of commands that can violate the safety properties of the system,

which IoTC2 is also capable of detecting.

Figure 3.1: IoTC2 Framework for Conflict Detection

While it is feasible to detect safety policy violations through formal methods, it

is not easy to estimate the real world impact of conflicts with such techniques. The

input to a system is important. Moreover, the cumulative effect on the environment

features impact the energy usage. Hence, IoTC2 needs to be implemented in a real

world or a simulation test bed to characterize the real world impact of conflicts. When

any of the safety properties are violated (controller safety policies, multiple action

48

trigger policies, multiple event handling policies), they affect the actuator states or

environment features, which in turn cause different types of events and trigger the

controller to issue conflicting commands to actuators. To calculate the impact of

these commands„ the measurement from sensors and the actions from the actuators

are necessary. The architecture for measuring impact of conflicts that are detected

by the safety properties of IoTC2 are given in Figure 3.2. The solid lines refer to the

flow when no conflicts are assumed to occur at the system. However, in reality when

conflicts occur it is captured by IoTC2. Sensor measurement, actuator action, and

controller’s commands are monitored by IoTC2. From these, energy usage overhead is

calculated. The flow is represented by dotted lines. If safety property violations hold

more frequently or for a long period of time, energy usage will differ notably from the

expectation.

Figure 3.2: IoTC2 Framework for Energy Usage Calculation due to Conflicts

3.4 Formal Method for Detecting Conflicts

In this section, we present our formal method for detecting safety property viola-

tions in IoT systems. In the following description, we rely on the notation defined

in Table 3.1. We start by defining some general properties of the IoT system model,

events, triggers, and actions.

Definition 1 If there are features fx and fy such that changes in fx affect fy, then

49

Table 3.1: Notation used

Notation Explanation

eti Event i generated at time t

al,fm,n(t) Actuator m taking action n on feature f at location l

cp Controller p

x′ Object x′ can be the same or different from object x

x̄ Object x̄ must be different from x

these features are dependent. It can be the case that feature fx and feature fy are not

directly dependent, however feature fx affects fz and fz affects fy. In this case, fy is

indirectly dependent on fx. Regardless, they are noted as:

fx
d
= fy (3.1)

Example: Temperature and humidity can be considered as two dependent fea-

tures. Change in the temperature of a room leads to the change in humidity of that

room [74]. Additionally, if a thermostat is shared between two rooms and corridors,

change of temperature alone in one room can lead to temperature changes in the

other room and corridor.

Definition 2 If there are two events that are the same or similar by their character-

istics and functionality and they occur within a bounded time frame, these events are

called overlapping events. They are noted as:

e1
o
= e2 (3.2)

Whenever two events are not overlapping, they are considered disjoint events.

50

3.4.1 Controller Safety Policies

The controller is a crucial component of an IoT system that receives measurements

from sensors and based on those measurements, it generates actuation commands for

the appropriate actuators. We define the controller safety policies as follows:

• There are no two rules where two or more controllers can trigger the same

actuator at the same time.

C1 : ¬((eti ⇒ al,fm∈cp,n) ∧ (eti′ ⇒ al,f
′

m∈cp̄,n′)) (3.3)

An IoT system has a number of rules for operating where the same actuator

m is controlled by more than one controller cp and cp̄. If the same actuator is

accessed at the same time t, a conflict occurs. The actions (denoted by subscript

n and n′) on the actuators can be same or different, which does not change this

policy. The affected features in this case are made different (superscript f and

f ′) because the difference does not impact the safety policy. The impact of

the potentially different features in creating conflicts is discussed in Section 4.4.

The following are examples of conflict scenarios that can be captured by this

rule.

– A smoke detector and a water-leak detector can each trigger an alarm. We

assume that the smoke detector and water-leak detectors are controlled

by different controllers. But if the same alarm sounds at the same time,

it will be hard to distinguish which event triggered the alarm. The pol-

icy formalized here restricts multiple controllers from triggering the same

action at the same time.

– Motion detected inside an elevator triggers the controller to prevent the

elevator door from locking. On the other hand, an alarm in the building

51

will lock the door of the elevator so that no one can use it during the

alarm. Here, the door of the elevator is the actuator while the action on

it is operated by two controllers.

• There are no two rules where two controllers can trigger actions that affect the

same, or dependent features at the same time.

C2 : ¬((eti ⇒ al,fm∈cp,n) ∧ (eti′ ⇒ al,f
′

m′∈cp̄,n′)

∧ (f = f ′ ∨ f d
= f ′))

(3.4)

There can be more than one rule that can trigger different actions (the subscript

m and m′ denote different actuators). However, these different actuators can

impact the same, or dependent features. The same features are identified with

’=’ . On the other hand, the notion d
= denotes the dependency among two

features f and f ′. An example of such a violation is:

– A window opener and a thermostat are two actuators in a room which can

be controlled by different controllers. However, their actuations can affect

the same feature (temperature) of that room.

3.4.2 Multiple Action Trigger Policies

When an actuator is issued commands to perform multiple actions at the same

time, conflicts can occur. In order to prevent conflicts, we have the following safety

property:

• There are no two rules where two or more overlapping events (from any sensor)

can trigger multiple actions on the same actuator.

– Different action n′

– Opposite action n̄

52

– Dependent action n̂

C3 : ¬((eti ⇒ al,fm,n) ∧ (eti′ ⇒ (al,f
′

m,n̂ ∧ a
l,f ′

m,n∗ ∧ a
l,f ′

m,¯̄n))

∧(eti
o
= eti′))

(3.5)

In this formula, two events are differentiated by the subscript i and i′. The

measurement of a sensor can trigger an event depending on whether that mea-

surement is ’more than’ or ’less than’ or ’equal to’ a set value. We define over-

lapping events as two or more events that occur within a specific time frame, or

are related by their signature. The overlapping relation between two events eti

and eti′ is denoted by eti
o
= eti′ . These overlapping events can trigger different ac-

tions (e.g. increase temperature or decrease temperature), opposite action (e.g.

open the door and close the door), dependent action (beeping and flashing light

on an alarm) and the same but overlapping action (increase temperature on a

thermostat twice within 5 second). An action n on actuator m is the reference

action and any action (n′, n̄, or n̂) other than n is considered as the conflicting

action on the same actuator m. An example of this safety policy violation is

given below:

– Both room one and room two have temperature sensors but no thermostat.

The corridor that joins both rooms has a thermostat, but no sensor. Tem-

perature decreases in room one and temperature increases in room two can

trigger the same thermostat. Hence, the thermostat can be triggered to

increase the temperature and decrease the temperature at the same time.

• There are no two rules where overlapping events can trigger actions that affect

53

the same or dependent features.

C4 : ¬((eti ⇒ al,fm,n) ∧ (eti′ ⇒ al,f
′

m,n̄)

∧(eti
o
= eti′) ∧ ((f = f ′) ∨ (f

d
= f ′)))

(3.6)

When an action is performed by an IoT device, it may affect one or more

features (e.g. temperature, humidity, or luminance). There are some features

the actuators affect directly while some features are impacted indirectly. As an

example, humidity and temperature are considered as dependent features [75].

When the temperature goes up, it affects the humidity of a room if no moisture

is added. This is because warm air can hold more water vapor than cool air. We

differentiate two features by f and f ′. There can be two rules that get activated

at the same time by two overlapping events, resulting in two different actions,

n and n̄. These two actions affect features f and f ′ which are either the same

or dependent. The following are examples of conflicts when this safety policy is

violated:

– Room one and room two have a shared thermostat in room one. Hence,

room one gets hotter than room two when the thermostat is turned on.

Based on the temperature reading from room one, the thermostat is asked

to turn off. However, the temperature measurement from room two will

ask the controller to turn on the thermostat again. As mentioned earlier,

temperature and humidity are dependent and therefore it is possible that

humidity in two rooms will vary. If both rooms share a humidifier that

is placed in room 2, the overlapping events can turn the humidifier on

or off simultaneously. Apart from depending environment features being

affected, more energy is needed for additional actuations.

– Luminance levels can be impacted by overlapping events. Window blind

54

and room lights are two different actuators that impact luminance.

• No two or more completely disjoint events can trigger multiple action on the

same actuators

C5 : ¬((eti ⇒ al,fm,n) ∧ (eti′ ⇒ (al,f
′

m,n̂ ∨ a
l,f ′

m,n∗ ∨ a
l,f ′

m,¯̄n))

∧¬(eti
o
= eti′)))

(3.7)

In a large IoT system, it is not easy to distinguish overlapping events. Hence, we

turn our attention to modeling the safety properties that are based on disjoint

events. It is possible that these disjoint events are overlooked when devising

the IoT operational rules, yet these rules can create conflicts within a single

actuator. Examples for such conflicts are:

– Management can impose a rule stating that when it is after 6 pm, the

temperature need not be controlled. This means that the temperature

of a smart building will follow the basic thermal model of the building.

On the other hand, movement in a room will trigger the thermostat to

increase/decrease the temperature for better occupant comfort.

– Smoke detection and carbon monoxide detection can be two completely

disjoint events that trigger multiple alarms to sound at the same time.

• No two completely disjoint events can trigger multiple actions that affect the

same, or dependent features.

C6 : ¬((eti ⇒ al,fm,n) ∧ (eti′ ⇒ al,f
′

m,n̄) ∧ ¬(eti
o
= eti′)

∧((f = f ′) ∨ (f
d
= f ′)))

(3.8)

Two rules can be triggered by completely disjoint events at the same time. The

actuator and its location are kept unchanged by notation m and l, respectively.

55

The actions are differentiated by n and n′. At the same location and with the

same actuator, two features f and f ′ got affected. When these two features are

dependent, f d
= f ′ will return true.

– A window opening or closing and a thermostat turning on or off are two

completely disjoint events that impact the temperature of the room

– Management can impose a rule that when it is after 6 pm, the thermostat

and the humidifier should not be adjusted. On the other hand, movement

in a room will trigger the thermostat to increase/decrease the temperature

for better comfort. This has affect on humidity as these two features are

dependent.

3.4.3 Multiple Event Handling Policies

A controller actuates an IoT device when an event occurs. There is relatively little

control over how and when an event is generated. However, the way multiple events

are handled, can be controlled. Therefore, we focus on formalizing event handling

policies. The formalization is as follows:

• No single sensor with single objective can create more than one event within a

specific time limit.

C7 : ¬((eti ⇒ al,fm,n) ∧ (et̄j ⇒ al,fm,n)) (3.9)

Here, two events i and i′ are prohibited from same sensor j within a time limit

t′. A sensor might send the same measurement to the controller more than once

due to any physical or communication issue. This should be handled in a proper

way so that same actions are not taken by the same actuator.

A sensor can send the same temperature measurement (e.g. 60F) twice to

the controller within a 30 second interval. The controller would instruct the

56

thermostat to increase the temperature by 10F each time it receives the input

from the sensor. Therefore, the temperature of the room is increased to 80F.

3.4.4 Completeness of IoT Safety Properties

Definition 3 If an IoT system, comprised of sensors s1...m, controllers cntrl1...n, and

actuators a1...o, violates any safety properties c1...p, a conflict c∗ ∈ Conflict has oc-

curred (Here, ∈ denotes belongs to).

Completeness is the property of being able to prove all true things. That is, in or-

der to declare our formal method complete, we have to make sure that existence of all

conflicts can be found through IoTC2. In order to analyze the safety policies formal-

ized above in terms of controllers, triggered actions, and event handling, the policies

were implemented using Prolog. If there exists a conflict c∗ ∈ Conflict in the IoT

system operations, IoTC2 finds it using the backward chaining. Prolog querey evalu-

ation employs Selective Linear Definite-clause with Negation as Failure SLDNF [76].

However, the Depth First Search (DFS) strategy of Prolog makes it logically incom-

plete. With this strategy, the search begins from one node and traverses a single path

to find the query answer, i.e. looking for conflicts. Whenever a conflict is found in

the search space, Prolog does not traverse that branch to find another conflict even

if another one exists. Our approach solves this limitation.

We followed the way proposed by [77] where the built-in dept-first search of Prolog

was overruled. Rather, the implementation was based on iterative deepening of the

query where each recursive call takes place at the top level of a conditional. In doing

so, we have used tail-recursion. In each recursive call, the number of actions triggered,

or the controllers associated with it, or the events that triggered the actions are stored

in separate lists. In this way, the search space is being completed in lists. Then this

list is traversed to find the conflicts in the system. Whenever, a resolution refutation

is found, our Prolog implementation finds it and adds 0 (zero) to the accumulator

57

rather than stopping the search process on that node.

The iterative deepening strategy is potentially inefficient. One could argue that the

size of lists will grow unbounded. However, we want to point out that the formulation

for conflicts is dependent on the specific time the event has occurred. Say two actions

a1 and a2 are triggered at the same actuator x at time t1 and t2. A conflict C occurs if

and only if t1 = t2. These two actions cannot create conflicts on the same actuator if

they are triggered at different times. If there are a total of m automation/operational

rules in all the controllers of an IoT system, there can be at most n rules that are

triggered at time t and it is obvious that n << m. Simply put, the search space for

finding all conflicts in a given time is certainly limited.

3.4.5 Soundness of IoT Safety Properties

Definition 4 The safety properties of IoTC2 are sound, if for all sensors s1...m, con-

trollers cntrl1...n, and actuators a1...o, all possible operations in the system are a subset

of the authorized operations allowed by IoTC2.

Soundness is the property of being able to identify the existence of something (con-

flict in our case) if that is proved by the system. In our case, if IoTC2 finds a conflict it

must exist in the system. If there exists a conflict in the IoT system, yet IoTC2 cannot

detect it, we call it unsound. As mentioned earlier, IoTC2 is implemented in Prolog

where it searches all safety property violations until it finds the ground truth. The

ground truth are provided in the form of sensor measurement and operational rules.

If there exists any resolution refutation, our implementation must find it because tail

recursion is used there to avoid the built-in DFS of Prolog.

With the definition of soundness from 4, we can postulate that all safety properties,

expressed in conjunctive normal form (CNF) make it logically sound as given in 3.10.

Cf : C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 (3.10)

58

If the soundness and completeness conditions fail for IoTC2, the negation of Cf

in 3.10 will provide us an example of unsafe situation of the IoT system. More

simply, a conflict has occurred.

3.5 Threat Modeling

An attacker can compromise an IoT system in different ways. As mentioned ear-

lier, the IoT sensors have no or few security features in them. An attacker can target

sensors and spoof it with falsified data. Additionally, an adversary can record sensor

data and launch a replay attack to impact actuators and environmental features dif-

ferently. However, our formal framework is not capable of detecting the availability of

the devices, For example, a Denial of Service attack can take place whenever control

and non-control traffic of IoT systems mix up in the network and some IoT commu-

nication packets drop. Our framework, in this case, is not capable of detecting such

behavior of a network. It only detects attacks that are associated with actuations on

the same devices/ environment features and the events that trigger those actuations.

In this section, we focus on the threats that are associated with the policy violations

that are discussed with respect to the seven safety policies we have formalized. An

attacker succeeds in creating conflicts if he is capable of violating any of the safety

properties. We define the situation as follows:

• An attacker (A) succeeds to compromise an IoT system if he violates ci, where

i = 1, .., 7. Formally,

A =
∨

i=1..7

(¬Ci) (3.11)

The ways for compromisation is discussed as follows:

Reconnaissance of Physical World: An attacker can gather information by

observing the physical components and environment around the IoT domain. The

conflict between management rules and occupancy detection can be discussed in this

context as explained under equation 3.7. An attacker can gather temperature sensor

59

data and figure out that after 6 pm the temperature of the rooms does not increase at

all. This information entices an attacker to inject false information that motion has

been detected in the building. This will force the controller to turn on the thermostat

and control the temperature. In doing so, the attacker succeeds in causing additional

energy usage in the smart building.

Reconnaissance of Smart Home Applications: Smart home users employ a

number of applications for their home automation. Some applications (e.g., Smart-

Things mobile application) are self-published and do not go through an official review

process. Most importantly, the source code is shared in a community forum [78]. An

attacker can gather information from multiple application’s source code and create

conflicts from there. For example, consider a water leak and smoke detector who

use the same alarm system. An attacker gathers this information after reviewing

the corresponding applications. He can compromise the water leak detector to turn

on the alarm. When the alarm keeps running for a long time, another application

asks the sprinkler to turn on, having assumed that smoke is detected for such a long

period of time. Water from the sprinkler can damage some important documents and

electronics.

Random Compromise of Sensors: Due to resource limitations, sensors have few

or almost no security features in them. An attacker can target some random sensors

with the aim that the forged data will have chaining effects in creating conflicts.

Moreover, because the same network is used for IoT and non-IoT traffic, it is also

possible to affect the availability of some sensors and initiate replay attacks on the

system. This would cause property damage or more energy usage in the long run.

3.6 Implementation

In order to evaluate the efficiency of our approach, we created an IoT environ-

ment using Matlab’s Simulink. The basic purpose was to observe the interaction

among the sensors, actuators, and controllers. Simulink is a robust and widely ac-

60

cepted simulation tool for power electronics, nuclear energy, manufacturing produc-

tion, aerospace, transportation, supply chain management, etc. IoTC2 was imple-

mented in the Simulink testbed to monitor the testbed and detect conflicts. We

designed a smart house with three rooms with corridors attaching each of the rooms.

The thermal model of the house was adapted from [74]. The rooms have facilities

for smoke detection, carbon monoxide detection, smart lights, smart window shutters

and blinds, smart doors, etc. Operational rules for automating these IoT devices are

implemented using appropriate Simulink blocks. The changes in the temperature and

humidity of the smart house are designed using the same thermal model of the house

to get reasonable heat transfer from the outside environment [74]. We ran each sim-

ulation five times and took the average to observe how accurately IoTC2 can detect

conflicts in the smart house successfully. We have used the built-in model verification

blocks (e.g., Assertion, Check Dynamic Gap, Check Dynamic Range, etc) of Simulink

to help our detection. IoTC2 outputs the total count of each different type of detected

conflict in a given simulation step regardless of how many events have occurred during

that step. Not only are the detected conflicts shown, but also their effects on features

or actuators. The Simulink model for the testbed is available in [79].

3.7 Evaluation

The evaluation section is divided in three parts.

• Can our approach measure the impacts of conflicts on environment features?

• Is there additional energy usage due to conflicts and can our approach estimate

that?

• How many conflicts can our model can capture over varying simulation time?

For our evaluation, we created an IoT environment using Matlab’s Simulink. The

thermal model of the house was adapted from [74]. The rooms have facilities for

61

smoke detection, carbon monoxide detection, smart lights, smart window shutters

and blinds, smart doors, etc. We ran each simulation several times to observe whether

IoTC2 can detect conflicts in the smart house successfully. We have used the built-

in model verification blocks (e.g., Assertion, Check Dynamic Gap, Check Dynamic

Range, etc) of Simulink to help our detection. IoTC2 outputs the total count of each

different type of detected conflict in a given simulation step. Not only are the detected

conflicts shown, but also their effects on features or actuators.

3.7.1 Conflict Impact on Environment Feature

First, we evaluate the effects of conflicts on actuators or the environment feature.

Our first experiment was conducted to observe whether two different actions on dif-

ferent actuators affect the same environmental feature. A smart window shutter is

sometimes operated by the occupant with the help of an app from a tablet or smart

phone. Similarly, the shutter is operated to keep open at different times of the day.

On the other hand, the smart home is automated to turn the smart lights on whenever

it finds movement in a room. In our setup, the probability of both the opening up

the window shutter and turning on smart light was set as 0.10. The conflict occurs

during a split second of time when both the window shutter and smart light turns on

or off together given that someone is in the room. The luminance of the room then

gets out of the range (> 450 or < 200) compared to a comfortable luminance range.

The simulation was run for 500 units of time. Results of this experiment are shown

in Figure 3.3. As can be seen from the figure, the luminance of the room exceeds the

set bounds for a comfortable luminance level.

The second experiment measures the change in temperature of a room when a

smart window shutter is opened or closed at the occupant’s preference. As with the

previous experiment, the window shutter can be opened from the occupant’s smart

phone or tablet. In addition to that, if the carbon monoxide of the house increases

beyond a certain level, the smart home is instructed to open the windows immediately

62

Figure 3.3: Luminance range of a room when smart window blinder and smart light
are considered

for fresh air. This changes the temperature and humidity of the inside of the house.

We designed this scenario in our Simulink environment and used the same thermal

model of the house to get reasonable heat transfer from the outside environment [74].

The results of this experiment are shown in Figure 3.4. The blue line indicates the

expected temperature reading. However, the red line in this figure indicates how

much the temperature reading deviates due to conflicts between the window shutter

opening and the thermostat operating rules. This can result in more actuation of the

thermostat which will be discussed later in Figure 3.10.

Figure 3.4: Effect on Temperature when thermostat and window shutter works at the
same time

The third experiment captures the impact on temperature of a shared corridor

63

between two rooms. The two rooms are set to have different temperature based on

the occupants’ preferences. Let us assume the corridor has the thermostat, but no

temperature sensor. On the other hand, both rooms have individual sensors. We also

assume that room one has the window open which affects the normal temperature

of the room by lowering the ambient temperature of room one. On the other hand,

room two has no influence from the outside environment, i.e., the window in room

two is closed. However, due to two different sensor measurements, the thermostat is

instructed to turn on and off more frequently than expected. The temperature, as

shown by the red line in Figure 3.5, is the temperature of the corridor, calculated by

Simulink. The blue line is the temperature reading during different times from room

two. Our intuition says this blue line is supposed to be the temperature reading of

the corridor, but it is impacted by the temperature from the other room.

0 10 20 30 40 50 60 70 80 90 100

 Time

45

50

55

60

65

70

75

T
e

m
p

e
ra

tu
re

Figure 3.5: Effect on temperature of the corridor when it is connected by two rooms
of different temperature

The fourth experiment characterizes how changes in one environment feature can

influence the another environment. Here, we consider the fact that the temperature

in a smart home is dependent on thermal radiation and humidity as it is mentioned

in [75]. The humidity changes with the temperature of the room. The temperature

changes with thermostat and humidifier. Also, the window shutter opening changes

the temperature and humidity of the room. The scenario described above is tested

64

and shown in Figure 3.6. The expected humidity reading is shown by the blue line,

while the real humidity reading is shown by the red line. Events like the window

shutters opening and the humidifier running have caused the temperature of the room

to fluctuate. This deviation is overlooked, yet creates discomfort for the occupants

and more energy usage due to additional actuation.

Figure 3.6: Effect on Humidity when thermostat and window shutter combinedly
changes the temperature and humidity

3.7.2 Conflict Impact on Energy Usage

To this point, we have observed how the environment features change due to con-

flicts. Now, we conduct the second type of experiments to observe the difference

of energy usage due to conflicts. For this experiment, we choose a test case where

temperature in a room is affected by two factors, the state of a window, and outside

temperature variation. It should be noted that other factors like humidity, lighting

condition, and occupancy level were ignored for this experiment. We keep those pa-

rameters constant in order to find how window shutter and outside temperature affect

the energy usage by varying the values. The observation is shown in Figure 3.7. For

better understanding, our simulation test bed measures the energy usage as shown by

blue line. Later, we run the experiment with IoTC2 employed in the test bed. As can

be seen from the figure, even with only 7% chance of a window being opened, and

5F temperature variation outside the smart home, our system captures considerable

65

overhead energy usage. Apparently, both values are reasonably low to mimic a real

world scenario. We increased both the probability of the window being opened and

temperature variation slightly more for the next two runs of our experiments and

found the energy usage is getting higher.

Figure 3.7: IoTC2 Calculates Energy Usage Overhead due to Conflicts

The above experiment was conducted only on the actuation on the thermostat of

a room. The next experiment is conducted to observe total energy usage of a smart

home. The line shown in Figure 3.8, is the difference between observed and expected

energy usage over simulated time. The observed energy usage is calculated with IoTC2

monitoring each actuation. On the other hand, the expected energy usage assumes

that energy usage due to conflicts is negligible. Unfortunately, the figure 3.8 clearly

shows that conflicts have affects on energy usage. Due to the conflicts, there are

additional count of actuations to devices. Some actuations continue for longer time

in addition to their frequencies.

3.7.3 Conflict Count with IoTC2

To this point, we have conducted our experiments to characterize how different

types of conflicts can impact the actuators or the environment features. Now, we

move our focus on counting the number of conflicts in a given time by varying different

parameters. First, we consider the case where the same alarm (actuator) is triggered

when smoke is detected or a water leak is detected. The rules for triggering an alarm

66

Figure 3.8: IoTC2 Calculates Energy Usage Overhead Over Time

in those cases are installed in two different controllers. We consider the probability

of smoke detection = 5% and water leak detection = 7% in each time unit. The

simulation was run for 2000 time units which is a large number compared to the

experiments conducted to get the impacted environment features. The reason for

using such a large number is to get more data points about conflicts. It is shown

in Figure 3.9 that the same alarm is triggered by different events at the same time

with the increase of simulation time. Next, we increase both smoke detection and

water leak detection to 10% and find the increase in total conflict count. This type of

conflict should be considered as an attacker can compromise only the water system,

yet convince the occupants of the smart home that the alarm is due to a fire. That

eventually can lead the occupants/target of a smart home to evacuate.

Figure 3.9: Conflict count when the same alarm is triggered by multiple events

In the next experiment, we count the number of conflicts when the window shutters

of the smart home are open and the thermostat turns on at the same time. The impact

67

of such conflicts is shown in Figure 3.4. As can be seen from Figure 3.10, the number

of conflicts increases when the window shutter is opened more frequently.

Figure 3.10: Frequency of thermostat being actuated more than usual due to the
window being opened

Next, we considered humidity as a dependent feature of temperature. The thermal

model of the house is kept the same. The humidity changes based on the temperature

which triggers the humidifier. The effect of conflicts in such cases are discussed

in Figure 3.6. First, we run the simulation as if the humidity is not affected by

temperature. Next, we re-run the simulation with humidity being dependent on

temperature. We count the number of times the humidifier is turned on due to

conflicts. As can be seen in Figure 3.11 when there is more temperature variation

outside the smart home, the humidifier inside the house is turned on more often.

Figure 3.11: Additional actuation count on the humidifier due to temperature differ-
ence in two adjacent rooms

We have observed in Figure 3.3 how conflicting actions can affect the same feature.

68

We have seen that the luminance of the room can exceed a comfortable range due to

conflicting actions between the smart lights and the smart window blinds. We next

count how many times this conflict happens over a specific period of time. We set

the probability of the window blinds being opened to 2%. This is a very low number

which indicates that only 2 out of 100 unit times a window blinder is opened. We

then increased this probability while keeping the probability of turning the light on

constant (at 10%) which is reasonably low because if there is an occupant and the

window blinds are closed, then the smart lights will turn on immediately. However,

the purpose of this experiment is to show that the luminance can get out of range even

though there is a low probability of conflicts. Figure 3.12 shows that the luminance

of the room is out of range more frequently when there is a greater chance of the

window blinds being opened, given that the smart light is turned on at the same

moment. Similarly, some incidents were observed where a room is too dark when

both the window blinds and the smart lights turn off.

Figure 3.12: Total count of the luminance range exceeding the comfortable range due
to conflicts

The next experiment measures the number of conflicts between management rules

and operational rules for an IoT system. For a smart building, the management

rules may state that the thermostat is not active after 6pm. However, if there are

lots of people in a room with their mobile devices or computers on, the temperature

of the room will increase. The regular operational rules will then tend to actuate

69

the thermostat to cool the room. Here, we run the simulation for a room in two

different ways simultaneously while keeping all parameters same. In the first run,

we consider that the occupancy of a room has an effect on temperature and the

thermostat is actuated by following basic operational rules. The second run assumes

that room occupants and electronic devices do not have a measurable impact on

the temperature of the room and that the management rules dictate the operation

of the thermostat. Our goal is to observe whether conflicting events cause more

actuation of the thermostat. As expected, more actuations of the thermostat are

needed when conflicts occur. The building management authorities either overlook

this additional actuation, or ignore the comfort of the occupants. The additional

number of actuations is shown on Y-axis of Figure 3.13. This number increases when

the simulation is executed for a longer time.

Figure 3.13: Additional count of the thermostat being actuated due to conflicts be-
tween management rules and operational rules

The last experiment conducted, is very similar to the previous one. Here, the

count of humidifier actuations is measured due to conflicts between operational rules

and management rules. We counted the number of additional actuations needed for

the humidifier in the smart home. When there are more occupants, the air quality

degrades and the temperature of the room changes as well. The humidifier turns on to

make the environment of the room more comfortable. However, the management rule

stipulates not turning on the humidifier after a certain time of the day (say 6 pm).

70

There can be conflicts between management rules and regular operational rules based

on the occupancy of a room. Similar to the previous experiment, we ran simultaneous

experiments with different assumptions. During the first run, we assume that room

occupancy has negligible impact on the humidity and that the smart building will be

operated based on the management rules. For the other run, we make the opposite

assumption, namely that the occupants in the room will have a measurable impact

on the humidity of the room. The results are shown in Figure 3.14.

Figure 3.14: Additional frequency of humidifier being actuated due to conflicts be-
tween management rules and random occupancy

3.8 Related Work

Most of the research efforts in IoT has been on management, efficiency, interop-

erability, and deployment of these systems in the real world. Recently, confidential-

ity, access control, privacy, and trust issues of IoT technology have been discussed

in [80, 81, 82]. In IoTSAT [83], a formal framework was proposed for security analy-

sis based on device configurations, network topologies, user policies, and IoT-specific

attack surface. Recently, the work by [84] proposes a verification framework with

satisfiable module theory (SMT) for a smart environment with respect to event-

condition-action (ECA). However, this research did not propose either safety proper-

ties or address conflicts for the smart environment. The work by [15] made an effort

to specify the relation among all building management rules and classified all type

of rule conflicts into five categories. Our approach is quite different. Rather than

71

classifying conflicts, we specified safety properties for the components of IoT and the

violation of those properties leads to conflicts. CityGuard [73] proposed an approach

to intercept actions for a smart service to detect and resolve conflicts for smart cities.

The authors argued that safety requirements vary under different contexts with differ-

ent granularity and therefore the safety requirements do remain the same for different

domains. We claim that our formal methods approach covers a complete set of basic

safety properties to detect conflicts, thereby applicable to any cyber-physical domains

(e.g., smart home, smart building, smart city, smart transportation).

Some preliminary work in the areas of formal modeling and verification for IoT

driven domains has been done [85, 86]. The closest to this work in terms of detecting

conflicts are Depsys [71], and HomeOS [87]. Depsys specified and detected conflicts

after collecting the functionalities of 35 smart apps used in smart home. It detects

the conflicts after they have occurred and in order to address the conflicts priorities

have been set to the apps so that no two apps can access the same actuator. HomeOS

is a large-scale application running on a centralized server that enables devices to talk

to one another. That is, it acts as an event handler which aids in resolving device

conflicts. Our approach, on the other hand, detects conflicts as soon as an event is

generated which may immediately cause an action or a set of actions that result in

conflicts. We have left the automated resolution of conflicts as future work.

3.9 Discussion

The conflicts that are possible in IoT systems are often overlooked both in the

design phase and during operations. IoT is an automated system and hence the ac-

cumulated effects of conflicts on an environment feature or actuator can have more

effects than initially anticipated. The safety and security of IoT systems is largely

dependent of its conflict-less behavior. Hence, the safety properties we formalized

in IoTC2 consider conflicts as the preeminent threat to the safety and security of

IoT system. Furthermore, our model has shown how conflicts can lead to additional

72

actuations which in turn resulted in more energy consumption. In addition to the con-

tributions mentioned above, we believe our proposed framework will have significant

impacts when employed in the policy monitor block of ProvThings [32]. However, the

enforcement of the proposed safety policies for a system is an open challenge. The

implementation of an inlined reference monitor (IRM) [88] for enforcing the safety

policies of our framework is another interesting research direction. IoT systems are

emerging more and more in our daily life, and mechanisms are needed to ensure that

these systems are safe, secure, and energy efficient if IoT systems are to be widely

deployed and accepted.

CHAPTER 4: Detecting Safety and Security Faults in PLC Systems with Data

Provenance

4.1 Introduction

4.1.1 Problem Statement

One of the biggest problems with smart building networks is that the security

of these control networks is limited at best. The communication protocols used in

these control networks lack authentication and integrity checking for messages [17].

These weaknesses make it possible to initiate many commonly-known attacks such

as man-in-the-middle attacks, denial of service attacks, memory corruption attacks,

replay attacks, and spoofing attacks. While enterprise networks can rely on a wide-

range of security mechanisms including IPsec, transport layer security (TLS), and

virtual private networks (VPNs) to secure their communications, such mechanisms

are difficult to deploy on these control networks, leaving them vulnerable to network-

based attackers. Furthermore, many of the commonly applied mitigations fail to cover

PLC-based systems [89].

What is needed are mechanisms that can monitor the inputs and outputs of the

ICS and ensure that critical safety properties are not violated. This requires an

understanding of the desired safety properties, a way to track inputs and outputs,

and a mechanism to model the evolution of the system from inputs to outputs. With

these mechanisms in place, it becomes possible to ensure that the PLCs do not send

commands to actuators (i.e., the devices that interact with the physical environment)

that violate the safety and security policies of the system.

74

4.1.2 Contribution

In this chapter, we propose PLC-PROV, a mechanism to track the inputs and outputs

of the system and compare them against the specified safety and security properties.

PLC-PROV relies on tracking data provenance for the PLCs and using that provenance

to determine if a violation has occurred. Provenance, in short, is the “history of data

transformed by a system”, and has been proposed as a building block for systems

that require the ability to reason about the context in which an action is taken. Since

PLCs are entirely event-driven, context is vitally important, and as such provenance

is a natural fit for this sort of analysis.

4.2 Background

4.2.1 Data Provenance

Data provenance is defined as the “history of data transformed by a system” [66].

The provenance of a piece of data describes what the inputs and outputs of each pro-

cess are, what processes were executed, and who had control of those processes during

execution. Provenance is often represented as a directed acyclic graph (DAG) with

nodes representing the data, processes, and controlling entities. The edges represent

causal relationships between these nodes.

Provenance was first introduced in databases and computational sciences for tracing

and debugging. However, more recently it has been proposed as a primitive for

building secure and resilient systems [67] that can “fight through” attacks. In order

to provide such capabilities, novel collection, storage, and analysis mechanisms have

been proposed to enable near-real-time analysis of provenance to support security

and resilience decisions [68]. These mechanisms are being used to provide forensic

analysis and intrusion detection capabilities [69].

75

4.3 Design

Due to the distributed nature of PLC systems an attacker can trigger an event that

leads to conflicting actions for the same object or feature of the plant/environment.

Let us consider a smart building as an example where PLC is used [16, 33, 35, 38,

39]. An attacker can compromise a carbon monoxide detector and trigger a false

alarm by indicating an unsafe carbon monoxide level. This sends a command to the

windows to open allowing fresh air into the building and trigger an audible alarm.

Occupants will evacuate the building and a thief can use the open windows to enter

the building. Another example is creating multiple events that trigger a thermostat

to increase and decrease the temperature of a room at the same time. Sending two

different commands in the thermostat at the same time continuously can damage

it, by artificially shortening the device’s lifespan. In this way, the attacker not only

damages an asset but also may drive the occupants of the room to leave due to

fluctuations in the comfort level of the room. In addition to the attacks described

above, an attacker can create a series of attacks or a cascading attack [70]. Moreover,

misconfiguration in the smart building operation is possible as there are numerous

rules or policies for taking actions by the controllers after events have occurred.

4.3.1 PROV Modeling

Our approach to addressing the requirements in PLC-PROV is to identify the common

concepts present in smart building systems as shown in Figure 4.1 and define a unified

provenance model for smart building based on the W3C PROV-DM [90].

Figure 4.1 is a notional example of the type of graph that is generated. Let us

consider a conference room in a smart building which has two temperature sensors and

one thermostat as the actuator. Therefore, we have three agents Temperature Sensor

1, Temperature Sensor 2, and Thermostat in the system. Two Sensing activities are

associated with two separate sensors and one Actuating activity is associated with

76

Sensing

Actuating

Room Temperature

Sensing

Temperature
Sensor 1

Thermostat

Temperature: Sensor 1
Temperature: Sensor 2

Thermostat Status

wasAssociatedWith

wasAssociatedWith

wasAssociatedWith

wasGeneratedBy

wasGeneratedBy

used used

used used

wasGeneratedBy

Temperature
Sensor 2

wasDerivedFrom

Figure 4.1: Notional provenance model of a PLC-based system for the change in
temperature of a room

Thermostat agent. The Sensing uses the room temperature entity for performing their

activities. Similarly, Actuating uses two separate entities of temperature to change

the Thermostat status. The sensors send the measurements to the PLC. Based on

the rules programmed into the PLC, it issues commands to the Thermostat actuator

for necessary action. Because more than two entities are used for Actuating activity,

it can create conflict on changing the thermostat status. (Please refer to 4.4 for a

detailed conflict detection scenario).

As much as the example in Figure 4.1 explains how provenance captures the flow

of a smart building system, we need a generic provenance model to capture whatever

is happening with the automation of smart building systems. With such models, we

are able to utilize provenance data that are collected from Codesys Traces. A unified

model with causal relation enables the same terminology for provenance to be used

on any PLC-based system. The general model is shown in Table 4.1. We map each

concept to the PROV model to capture the overall behavior of the system. For exam-

ple, a motion detector (sensor agent) senses the environment condition (environment

condition entity) and sends that to a PLC by performing the sensing activity. The

77

Table 4.1: Model for Representing Provenance of a PLC System (Smart Building)

Concept Description Prov
Model

Example

Sensor A device to collect specific envi-
ronment condition

Agent motion detector,
temperature sen-
sor

Actuator A device that changes environ-
ment condition

Agent light, thermostat

User A person that changes environ-
ment condition by actuating a
switch

Agent Occupants of a
building

Management A person/ group of persons who
imposes automation and emer-
gency rules on devices

Agent operator

Action A command issued by the con-
troller to change the state of a de-
vice

Activity Turning Light
on/off

Sensing Activity to capture the environ-
ment condition

Activity Motion detection

Environment
Condition

Measurement of sensor about the
environment condition

Entity Temperature,
motion state

Actuator
State

Current state of an actuator Entity Light state (on
or off)

PLC sends an actuation command which is performed by turning on/off (actuating

activity) a light (actuator agent). That is, the turning on/off uses the environment

condition entity to produce a new light state (actuator status entity). Eventually,

this action affects the ambient condition (environment condition entity) again.

In order to understand the graph in a better way, let us go through the notations

used there. An agent for a device d is expressed as d_agent:x, where x is the data

sample index. For the same data index x, the notation for an activity for the device

d is d_activity:x. Entity has a slightly different notation as d:x for the same device.

The value y for an entity is given as ex:value y.

78

PLC

Engineering
Workstation

Sensors Actuators

PROV Graphs PLC-PROV

Safety & Security
Policies

Alerts

ICS System

PLC-PROV System

Figure 4.2: PLC-PROV architecure

4.3.2 PLC-PROV Architecture

A formal methods approach for detecting conflicts in IoT systems is presented in

[91]. A PLC-based system (e.g., smart home, power supply, water supply, wastewater

management, and traffic control system) works on the same sensor-actuator-controller

functionalities. Therefore, we adopted the safety policies defined in [91] as the ba-

sic policies to analyze using the collected provenance graphs. PLC-PROV will check

whether there is any violation of the defined safety and security properties. If found,

it is reported as an anomaly in the system, which also provides the administrator

with the detailed traces that are needed to understand the impact of the anomaly

and aid in root-cause analysis. The basic architecture is shown in Figure 4.2.

To start, our framework traces the variables designated for the sensors and actua-

tors that are connected to a PLC. The controller issues commands to the actuators

based on these sensor measurements. These variables map sensor inputs and actua-

tor actions, enabling interaction between the various components. A PLC contains

the core rules/logic, written in any of the five programming languages of IEC-611131

standard, for controlling the plant/environment.

A PLC has to be operated with software that provides interaction with the sensors

and actuators. In our research, we use CODESYS1 which is a development system

for PLC applications. Variable values are collected by CODESYS with timestamps

into traces of system execution.
1https://www.codesys.com/

79

These traces are the input for our developed provenance management tool where

we have used an open source provenance management library, prov [92]. This library

minimizes integration complexity for the application developers. It is also capable of

integrating provenance the multiple abstraction levels, a feature that enables reason-

ing about provenance both at the sensor reading level (micro) and at the environ-

ment/plant level (macro). As prov is targeted for a microservice-based system, it fits

well for our case where we collect traces from disparate components of the system,

similar to microservices. Moreover, prov has incorporated the use of NetworkX [93]

which provides more flexibility for researchers and developers to traverse through a

complex network of provenance data. With the help of prov, a provenance graph is

generated, showing the evolution of the system from sensor readings through the PLC

and finally to the actuators. The steps for provenance recording and graph genera-

tion are given in Algorithm 1. Initially, our provenance graph is empty (line 2). It is

generated while parsing the Traces, collected from Codesys. The Traces contain the

labeling that reveals active agents in each time-slice (line 3). The automation rules

are input so as to find the relation mapping Map of sensors and actuators for each

command (line 4-6). These steps generate activities (i.e., sensing, and actuating) and

put them into Map. With the help Traces, the entities (e.g., sensor measurement,

actuator action) are recorded for each device in a given timestamp. Map has the re-

lationship stored among different components of a system (i.e., wasAssociatedWith,

wasGeneratedBy, used, wasDerivedFrom). Traces and Map together contribute in

generating the provenance graph. Finally, data in Traces are stored in the provenance

graph P (line 7- line 15).

The provenance graphs collected by PLC-PROV enable an administrator to answer

the following questions:

• Has an actuator been actuated more than once at the same time?

• If an actuator receives multiple commands at the same time, are these same or

80

Algorithm 1 Provenance Recording and Graph Generation
0: procedure RecordProvenance(Traces, Rules)
0: ∅ ← ProvenanceGraph P
0: agent(1, .., i)← labels of Traces
0: for each rule r in Rules do
0: Map(1, ..,m)← sensor(r) ∪ actuator(r)
0: end for
0: for each timestamp t in Traces do
0: entity(1, .., j)← Traces(t) ∪Map {sensors’}
0: entity(1, .., k)← Traces(t) ∪Map {actuators’}
0: activity(1, .., l)← Traces(t) ∪Map
0: p(t).wasAssociatedWith(agent(i), activity(l))
0: p(t).used(activity(l), entity(l))
0: p(t).wasGeneratedBy(entity(m), activity(l))
0: p(t).wasDerivedF (entity(m), entity(m− 1))
0: P ← P ∪ (p(t))
0: end for
0: return P
0: end procedure=0

different?

• What are the reasons behind conflicting actions?

• Which are the sensors influencing conflicting commands?

• Has any sensor measurement gone beyond normal range? If yes, how many

times did that happen and how long did it last?

• Are there more than two actions affecting the same environment feature?

In order to detect conflicts in a PLC-based system, we propose Algorithm 2. The

goal of this algorithm is to count the conflicts as well as determine the affected

actuators, affected environment features, and the sensors behind these conflicts. We

initialize these parameters from line 2- line4. According to our provenance graph

generation, the status of a feature or actuator state is derived from the its prior state.

That is, when we find a feature (an entity in the graph) is changed, we traverse

through the provenance graph to find which activity has generated this entity. Then,

81

we search more in the graph to see whether more than one entities were used by this

activity. If we see that is the case, our next step is to find the value of the entities. If

we see that there are more than one entities with value 1, we can conclude that the

actuation was conducted by two entities which were generated by two different agents.

Our algorithm reports a conflict and appends the affected feature and actuator in a

list, featureList deviceList, successively.

Algorithm 2 Conflict Detection with Data Provenance
0: procedure Detection(ProvenanceP)
0: ∅ ← deviceList
0: ∅ ← featureList
0: 0← conflictCount
0: for each actuation activity a in graph P do
0: entities enk ← used by(a)
0: if

∑K
k=1 enk > 1 then

0: value(n) ← entityGeneratedBy a
0: value(m) ← entityWasDerivedTo n
0: if value(n) 6= value(m) then
0: get agent ag(1,...,i) wasAssociatedWith a
0: List entity e(1,...,j) wasUsedBy a
0: conflictCount← conflictCount+ 1
0: deviceList← deviceList ∪ ag(1, ..., i)
0: featureList← featureList ∪ e(1, ..., j)
0: else
0: get agent ag(1,...,i) wasAssociatedWith a
0: conflictCount← conflictCount+ 1
0: deviceList← deviceList ∪ ag(1, ..., i)
0: end if
0: end if
0: end for
0: return conflictCount, deviceList, featureList
0: end procedure=0

4.4 Evaluation

In order to evaluate how our system works, we designed a testbed for a smart

building system. A smart building is an exclusive example of a PLC-based controlled

system. Our evaluation is based on a number of safety property violations. Even-

82

tually, we define these violations as conflicts. At first, we describe the conflict type

and their description as per [94]. We map safety property violations of a smart build-

ing to the conflicts. PLC-PROV captures these conflicts which we represent with two

provenance graphs of two different safety property violations. Lastly, we demonstrate

how efficiently PLC-PROV captures these conflicts with respect to collected samples

and conflict count. The testbed design is described as below:

4.4.1 Testbed

Our testbed provides a flexible platform to connect sensors and actuators to our

PLCs. We have used Wago 2 controllers with several input, output, and end modules.

The input and output modules support only 24V power through the Wago 787-612

power unit. Because we have used some devices that operate on 5V and some on

250V, we used a relay switches and optocouplers to complete the system. These

devices enable our testbed to support devices at multiple voltage levels. To include

a variety of sensors and actuators, we have used a Raspberry PI 3 (RPI3), and an

Arduino Uno. These devices act as remote terminal units (RTU) to collect sensor

measurement for the Wago PLC. Arduino has the capability of including a good

number of digital and analog sensors in the most cost-effective way compared to

Wago digital and analog modules. Apart from connecting a good number of digital

sensors, RPI3 can host a server to send all the sensor measurements, collected from

both Arduino and RPI3, to the Wago PLC. The Arduino was connected to the RPI3

through a serial port. A webserver in RPI3 sends collected sensor measurements to

the Wago PLC using the WagoLibHTTP library. In this way, the Wago PLC is still

our primary controller to execute the rules and therefore, does not change the impact

of the work. The testbed is shown in Figure 4.3. The devices that are used in this

testbed are given in Table 4.2:
2https://www.wago.com/us/building-technology

83

Figure 4.3: Smartbuilding testbed

4.4.2 Safety Property Violations

We identify some potential safety property violations which are derived according

to our testbed as designed in 4.4.1. These are the properties that are checked for

violation over some variable period of time. Whenever these violations occur, they

create conflicts. These property violations are proposed in such a way that they refer

to conflicts only as proposed in [94]. That is, all the safety property violations are

categorized among those seven conflict creating scenarios. The conflict types and

corresponding descriptions are given in 4.3.

For our testbed, we have defined 27 safety policies as described in Table 4.4. Vio-

lation of any leads to a conflict. The traces we collect from our testbed comprise of

all the variables that store the measurement and states of sensors and actuators. If

we collect data of only 1 sample size, at the most extreme case, it is possible that all

27 safety policies are violated. That is, there are 27 conflicts in the system for that

collected data. It is also possible that no conflicts are found in that collected sample.

84

Table 4.2: Testbed for PLC-PROV Evaluation

Manufacturer Device
Wago 750-881 controller, PFC 200 controller
Wago 750-1405 â 16 channel digital input module
Wago 750-461 - 2 channel analog input module
Wago 750- 1504- 16 channel digital output module
Wago 750-600 end module
Wago 750-612 power unit
Wago optocouplers 859-795
Wago optocouplers 859-796
Wago optocouplers 859-702
Wago optocouplers 750-461
Adafruit Raspberry Pi 3
Adafruit Arduino Uno
Parallax, Keyestudio PIR motion sensor
T-pro DS18b20, PT100 temperature sensor
Keyestudio LM35 temperature sensor
Keyestudio, Jekewin DHT11 temperature humidity sensor
Keyestudio Ks0349 active/ passive buzzer module
Keyestudio, HiLetgo TEMT6000 ambient light sensor
Keyestudio Ks0349 steam sensor
Keyestudio Ks0349 water sensor
Keyestudio Ks0349 sound sensor
Keyestudio Ks0349 vibration sensor
Keyestudio push button module
Adafruit, Keyestudio MQ2 gas sensor
Adafruit, Keyestudio MQ3 alcohol sensor
Adafruit, Keyestudio stepper motor, servo motor
Gowoops, Keyestudio HC-SR04 liquid measure sensor
eBoot led lights
Elonco breadboard

Table 4.5 refers to the relations between safety property violations in smart building

systems and corresponding conflict types that are described in [94]. When a safety

property is violated, it falls under one or more conflict categories. For example, when

policy p1 is violated, it falls under conflict type c1, and c3. When the flame and water

sensors from a different controller trigger the same alarm, it is classified as c1. On

the other hand, when they are part of the same controller, they still create a conflict

on the same alarm and this is categorized as c3.

Detection of safety property violation p1 is shown in Figure 4.4. Notice that the

graph is based on two samples only. Sensor water1 and flame1 can trigger the same

85

Table 4.3: Conflict Description

Conflict Type Description
c1 No two or more controllers can trigger the same actuator at

the same time
c2 No two or more controllers can trigger actions that affect the

same, or dependent features at the same time
c3 No two or more overlapping events can trigger multiple actions

on the same actuator
c4 No two overlapping events can trigger actions that affect the

same or dependent features
c5 No two or more completely disjoint events can trigger multiple

action on the same actuators
c6 No two or more completely disjoint events can trigger multiple

actions that affect the same, or dependent features
c7 No single sensor with single objective can create more than

one event within a specific time limit

alarm1 at the same time. We represent this scenario in the provenance graph.

For the safety property p1, there are three agents, water1_agent, flame1_agent

and alarm1_agent. These agents are associated with three activities, flame1_sensing,

water1_sensing, and alarm1_actuating, respectively. The two sensing activities sense

the environment and generate entities flame1 and water1. These two entities are used

by alarm1_actuating to generate the status of the alarm as alarm1 entity. When

flame1 and water1 have the same value 1, it is referred as a conflict to the device

alarm1. That is, alarm1 is actuated at the same time. In this example, there was no

conflicts for first set of data. This is shown with a dashed green line. However, for

the second sample data, PLC-PROV detects conflict which are represented by red solid

box. As can be seen, the same activity was influenced by two activities (both entities

have value 1) at the same time. A similar example of whether p6 is violated in our

collected sample, is illustrated below.

As can be seen in Figure 4.5, both motion detection motion1 and a light switch

switchLight1 are capable of actuating the same light light1 at the same time. For

the first sample, the conflict did not take place which is shown with a dashed green

86

Table 4.4: Violation of Safety Properties that Lead to Conflicts

Safety Violations
p1 Flame sensors and water detectors sensor actuate the same alarm
p2 Gas sensors and flame sensors actuate the same alarm
p3 Flame sensors have different rules (operational and management) to

access the same elevator door
p4 Gas sensor and motion detection access the same elevator door
p5 Gas sensor and management rule access the same window shutter
p6 Motion detector and switch light access the same light
p7 Two or more motion detectors access the same light continuously
p8 Flame and gas sensor actuate the same window shutter differently
p9 Temperature sensor and flame sensor actuate a sprinklers differently

in case of fire
p10 Temperature sensors with variety of measurements triggers a sprin-

kler differently
p11 Shared temperature sensors access a single thermostat differently
p12 Multiple humidity sensors access a common fan/humidifier
p13 Temperature sensor and humidity sensor regulate the same thermo-

stat/fan
p14 motion detectors in corridors access the same light in opposite ways
p15 Management rule and occupantâs preference affect the same ther-

mostat
p16 Management rule and occupantâs preference affect the same window

shutter
p17 Management rule and occupantâs preference affect the same lights
p18 Management rule of Window blind and occupantâs preference on a

roomâs blinder affect light sensitivity
p19 Emergency rule and human presence conflict on a light
p20 Emergency rule and human presence conflict on the same door
p21 Emergency rule (shut down thermostat) and human presence (regu-

lar rule on thermostat) conflict on thermostat operations
p22 Management rule and motion detection affect temperature in a room

and corridor
p23 Management rule and emergency rule with different logic actuate

the main entrance
p24 The same corridor light is turned off (management rule) and turned

on (emergency rule) with different logic to access the corridor light
p25 Management rule (turning on) and emergency rule (turning off) with

different logic actuate the same thermostat
p26 Management rule and emergency rule with different logic (emergency

triggers camera to turn on, management rule asks camera to turn
off after office hour) actuate the same camera

p27 An elevator is kept operational (management rule) and shut down
(emergency rule)

87

Table 4.5: Relationship between IoTC2 and Safety Property Violations in the testbed

C1 C2 C3 C4 C5 C6 C7

p1 X X
p2 X X
p3 X X
p4 X X
p5 X X
p6 X X X
p7 X X X
p8 X X
p9 X X
p10 X X
p11 X X X X
p12 X X X X
p13 X X X X
p14 X X
p15 X X X X
p16 X X X X
p17 X X X X
p18 X X X X
p19 X X X
p20 X X
p21 X X
p22 X X X X X
p23 X X
p24 X X X
p25 X X X X
p26 X X
p27 X X X X

88

Figure 4.4: detects p1 violation

box. However, for the second sample, the light is switched at the same time of motion

detection. Both entities have the same value 1 (as marked with red solid box). That is,

the lighting activity is triggered at the same time by two different agents. Therefore,

it creates conflicts on light1. PLC-PROV reports it as conflict.

The conflict detection algorithm of PLC-PROV was evaluated for Figure 4.4 and 4.5

on a dataset of size 2. With our testbed, we have collected up to 8000 sample of data

in order to observe which sensors are causing the most conflicts and what actuators

are affected the most in our testbed. The evaluation result is given in Table 4.6.

Because an event is not predictable, the occurrence of conflicts on a device cannot be

mapped linearly. The same goes with the conflict creating sensors. We cannot depict

their frequency with the size of data. However, note that with PLC-PROV, we can find

the conflict creating sensors affected actuators with frequency of occurrences. In this

way, we know which devices need the most attention by the smart building authority

in order to resolve conflicts. The resolution of conflict is left as our future work.

89

Figure 4.5: PLC-PROV detects p6 violation

4.4.3 PLC-PROV Execution Time

In this section, we summarize our finding on the execution time of PLC-PROV.

We have a total 27 policies for our testbed. We have collected sensor and actuator

measurements for 1000 time-stamps. For experimental purpose, we ran our system for

5 policies only in the first experiment. Then, we incremented the number of policies

by 5 for each subsequent experiment. As can be seen from Figure 4.6, it takes more

time for the machine when there are more policies. This is an expected behavior

because more policies includes more sensor and actuator states, and thereby adds

more nodes and edges in the graph. Therefore, it takes more time to traverse a bigger

graph. However, it should be noted that each policy does not add the same number

of nodes in the graph. For example, p8 does not add any new nodes for flame and gas

as the corresponding nodes for agents, entities, and activities were already included

with p1 and p2. However, necessary edges are added to the graph for representing

the actuation to take place on the window shutter.

For our next experiment setup, we observe the execution time of our system with

different size of collected samples from Codesys traces. As can be seen from Table

90

Table 4.6: Some Selected Sensors (causing conflicts) and Actuators (affected by con-
flicts in our testbed)

Data Size
Devices 1000 2000 3000 4000 5000 6000 7000 8000

temperature sensor 1 86 67 125 148 202 295 298 280
motion sensor 1 61 149 221 233 349 240 471 462
flame sensor 1 21 46 103 85 122 124 152 162
gas sensor 1 20 43 88 79 114 133 134 143

humidity sensor 1 37 13 43 67 61 89 81 71
thermostat 1 48 51 63 87 118 131 215 204

light 1 32 44 74 69 139 140 111 214
window blinder 1 55 21 63 100 110 81 85 154

sprinkler 1 4 7 18 24 24 27 13 31
door 1 18 43 77 89 80 118 143 135

Figure 4.6: PLC-PROV Execution time with increase in policy count

4.2, we have variety of devices for our evaluation. We run the testbed to collect

samples and then evaluate whether any of the safety properties, given in Table 4.4,

are violated. At first, our collected sample size was smaller, and hence we get a

small number of conflicts. When we increase the size of the sample, as expected more

conflicts are detected. When the sample size is increased, there are more nodes in

the provenance graph to be traversed PLC-PROV to detect conflicts. The observation

is shown in Figure 4.7 with two y-axis, left for time and right for conflict count.

91

Figure 4.7: PLC-PROV Execution Time with Increase of Collected Sample and Conflict

4.5 Related Work

The closest work to PLC-PROV is PROV-CPS [31] where provenance was collected

from resource-constrained embedded devices of the cyber-physical system. However,

this research collects provenance from sensors only to identify anomalous measure-

ments. On the contrary, apart from collecting provenance from the sensor measure-

ment, our work covers the actions of the actuators and the dependencies among the

PLCs in finding malicious activities. Our approach is complete in expressing the

causality and dependencies among the data objects through the provenance graph.

Another notable work in this area is ProvThings [32] where a provenance collection

framework is proposed for IoT apps and devices. ProvThings presents an automated

instrumentation mechanism for IoT apps and device APIs. The collected provenance

is then used to generate explanations for “why” a particular action occurred. Our

work captures provenance data for all sensors and actuators in order to detect safety

and security policy violations.

There have been several other attempts to deploy security policies with static veri-

fication, dynamic verification, and the hybrid of these two approaches. Static verifica-

tion (model checking) is proposed in TSV [18] where a middleware ensures the safety

92

of a PLC-based system sitting between PLC and the devices. TSV verifies the safety

behavior of the code executed on PLC before commands reach the actuators. The

safety properties are written in temporal logic which is verified using model checking.

While this work verifies the system’s behavior, there are some other works that started

the verification from PLCs’ source program [19, 20]. Later, others proposed mecha-

nism to automatically generate formal models from PLC programs [21, 22, 23, 24, 25].

While static analysis performs the verification before the PLC program is released

for operation (i.e. compile-time), dynamic analysis ensures that policies are not vio-

lated at run-time. C2 [26] introduced an enforcement mechanism for safety policies in

PLC-based system. When a PLC issues a command to an actuator, the current states

of the system are checked and then decisions are made whether or not the command

should be issued through their enforcement mechanism, C2. In this work, concerns

about the size of the trusted computing base (TCB) and state explosion in the model

checking were expressed. The reduction of the size of the TCB size was addressed

considerably in [27]. This work merges the static and dynamic analysis of TSV and

C2. The works by McLaughlin, et. al. focus specifically on safety properties. This

was subsequently extended in [28] with an effort to find malicious PLC programs. An-

other approach to dynamic analysis is proposed in [29] using Interval Temporal Logic

(ITL) and the Tempura framework, which aims to provide early alerts in PLC-based

systems.

Later, this work was extended in [30] where an ITL/Tempura definition of a Siemens

S7-1200 PLC ladder logic was presented. Their developed monitoring methodology

captures a snapshot of the current state (with values for markers, input, output,

counters, and timers) of the PLC. Tempura was implemented to execute on an Ar-

duino Uno connected to the PLC, ensuring that the PLC does not need a powerful

computing node to perform the computations.

While static analysis has proven promising, the number of possible inputs and out-

93

puts for a PLC system can lead to a state explosion. Furthermore, dynamic analysis

suffers from a coverage problem, where only executed code paths are verified. Sym-

bolic execution can minimize the state space, but cannot guarantee complete verifi-

cation of outputs (actuation command) from input sets (sensor measurement). For

these reasons, what is needed is a mechanism that can provide high-level safety and

security policy descriptions that can be enforced at run-time where the appropriate

context can be considered.

4.6 Discussion

This chapter focuses on the integration of data provenance in PLC controlled sys-

tems in order to detect safety policy violations there. We have modeled data prove-

nance that considers user input (through switches), actuators’ state (through the

controller), and sensors’ measurement (to the controller). Therefore, we claim that

our model is complete in expressing the causality and dependencies among the data

objects in a PLC-controlled system. We evaluated our model with a smart build-

ing testbed. With our developed tool, we can know the most vulnerable sensors to

create conflicts. The actuators that are affected by a good number of conflicts can

get major attention too. The execution time for our developed tool is very nominal

compared to the large size of data it handles. It turns out that data provenance has

great potential applicability in PLC controlled systems where the change of sensor

measurement and actuator actions take place very frequently. Despite being used in

critical infrastructures, PLCs have little or almost no security. The integration of

PLC-PROV is capable of enforcing adequate safety and security policies.

CHAPTER 5: Conflict Resolution in Smart Buildings

5.1 Introduction

5.1.1 Problem Statement

Due to the limited computational and memory capacities of the end devices of a

smart building, it is not possible to have all the devices programmable. Hence, an

end device itself does not know whether it is impacted by or contributing to conflicts.

A smart building connects a myriad of devices. The more the number of devices,

the more exposed the system becomes for misconfiguration in terms of conflicts. Fur-

thermore, some policies need to be enforced due to emergency or management rules

which can conflict the regular operations. Conflict verification is designed to prevent

a conflict from occurring. However, events can occur any time or an attacker can force

specific events to happen. Hence, apart from checking whether a recently triggered

event causes a conflict, the resolution of conflicts is equally, if not more important.

Defeasible reasoning is a robust approach to resolving conflicts apart from detecting

them in some areas (e.g., stock market, cyber attribution) where the information

received are incomplete or contradictory. While classical logic requires the complete

state of all information before beginning the reasoning process, defeasible logic, on

the other hand, provides the competence that new information can abandon the

previously established conclusions and adopt new ones. In doing so, apart from

detecting conflicts, defeasible logic resolves conflicts by enforcing a relationship among

the rules that create conflicts. It also devises an approach to prevent a conclusion

from being drawn. It should be noted that a formal methods approach for detecting

conflicts in IoT system is presented in IoTC2 [91]. In our research, we replaced the

95

conflict detection component of defeasible reasoning with IoTC2, because it is more

fine-grained and comprehensive for PLC-based systems.

5.1.2 Contribution

In this chapter, we propose DEFEASIBLE-PROV, a mechanism to resolve the con-

flicts as detected by IoTC2. In doing so, we use PLC-PROV [95] to track the data

(as inputs and outputs) of the smart building system. DEFEASIBLE-PROV relies on

tracking data provenance to compare the information against the specified safety and

security properties as defined in IoTC2. If a policy violation is found, it provides

the administrator with the detailed traces that are needed to understand the impact

of the violation (i.e., conflicts). Next, it traces the rules that are triggered by these

conflict creating sensors. These rules are given less priority for execution to resolve

conflicts in the system. In order to enforce the superiority relation among the rules,

we develop a compiler for PLC source programs (IEC-61131). Our tool is capable of

enforcing defeasible reasoning in PLC programs for conflict resolution in the system.

The contributions of the chapter are as follows:

• Develop an approach to generate an abstract syntax tree (AST) with necessary

information about event triggering and actuation assignment location of a PLC

program (IEC-61131 Structured Text)

• Implement a methodology that identifies the rules/logic that are responsible for

conflicts in smart building systems

• Implement a systematical approach to devise defeasible reasoning for generating

a secure PLC program

96

5.2 Background

5.2.1 Defeasible Logic Programming

Defeasible logic deals with conflicts among the information that are used as knowl-

edge items for reasoning purposes. As a simple example, a piece of new information

arrives in smart building systems for which two rules get triggered, and the conclusion

of these rules negate each other.

Unlike classical logic programming, defeasible logic programming is capable of prov-

ing a theory from contradiction and incompletion, though defeasibly. Any classical

logic programming tool would have disproved that theory in the very first place. A

defeasible theory is defined by Lam and Governatori [61] as a triple (F,R,>) where

facts and rules are denoted by F and R, respectively. The sign > is used to assign

superiority relation among the conflicting rules. The definition of facts is the same as

it is for classical logical programming. However, rules are classified into two separate

criteria: strict rules and defeasible rules. Strict rules (represented by − >) bear the

same functionality and representation as it is for rules in logic programming. For

example, we can consider a strict rule like the following:

bird(X)− > fly(X)

That is, when we have any input as a bird, the rule ensures it flies. What if this is

not true always? However, we want to note that penguins are considered as bird too.

When the input is penguin in our knowledge base, it is represented as:

bird(penguin)

This piece of knowledge makes our previous rule a wrong one. Therefore, we make

this rule as a defeasible rule (represented by =⇒). These defeasible rules are the

rules that can be defeated by contrary evidence (e.g., penguin). With defeasible rule,

97

we relax our previous rule where we impose all birds can fly. Rather, we would like

to denote that if the creature is a bird there it may fly. The rule can be written by

defeasible logic as follows:

bird(X) => fly(X)

This gives us the flexibility that despite being a bird, a penguin cannot fly.

One may wonder how can we impose a penguin to not fly. Defeasible reasoning

framework introduces defeaters (or exceptions) (represented by ∼>) for this purpose.

A defeater is used to prevent any conclusion from being drawn. A new rule is added

as such:

bird(penguin) ∼> ¬fly(X)

It is interpreted as: if the bird is a penguin, it must not fly. In other words, defeaters

can be seen as exceptions in the knowledge base.

Another important aspect of defeasible reasoning is devising superiority relations

among the automation rules. Generally, any logic programming provides an output

on whether a rule in the form of theory is provable or not in the system. When a rule

is not strictly provable, it may be defeasibly provable if it is conflicted by another rule.

Let us adopt an example from [3], which was used in a smart environment context.

For a room X, two rules r1, and r2 exist. r1 turns on the cooler when it finds the

temperature is high. On the other hand, r2 turns off the same cooler when it does

not find anybody in the room. These two rules can trigger opposite actuations to the

same cooler at the same time. In order to solve this, r2 is given more priority so that

r1 will not trigger in the case when both rules are triggered at the same time.

r1 : tempHigh(X) =⇒ switchOnCooler(X) (5.1)

r2 : ¬motion(X) =⇒ switchOffCooler(X) (5.2)

98

r2 ≥ r1 (5.3)

5.3 DEFEASIBLE-PROV Design

Due to the distributed nature of smart buildings, it is possible that a number of

sensors try to actuate one actuator. For example, there can be more than one temper-

ature sensor to regulate the temperature of a hallway of a smart building. Consider a

rule which triggers a thermostat to turn on when the temperature is below 60F. In the

same system, there is another rule which asks the same thermostat to turn off when

the temperature is above 80F. An attacker can leverage this type of miscofiguration

to create conflict and make the thermostat dysfunctional. Moreover, if the room has

two temperature sensors, but one thermostat, an attacker can compromise the sensors

and send two different values, 81F and 59F, to the controller. In this way, both of

the rules, as mentioned above, will be triggered to decrease and increase temperature

at the same time. Based on the conflict impacted devices, rules should be prioritized,

and exceptions should be made for the conflict creating sensors.

Figure 5.1: Architecture of DEFEASIBLE-PROV

The architecture of DEFEASIBLE-PROV with the flow is given in Figure 5.1.A basic

smart building system is comprised of a number of sensors, actuators, and PLCs. The

sensors collect measurements of the current state of the environment or the system

99

(1a). The operational rules are programmed in the PLCs. These rules are triggered

based on events collected by the sensors. The rules define what actions should be

taken by the actuators that are connected to the PLCs. Simply put, an event triggers

a rule, and the rule triggers an action in the system. The controller decides what

action or set of actions to take, as defined by the rules installed in the controller.

The controller issues commands to the actuator for performing the most appropriate

action (1b). This flow is given in the upper portion of Figure 5.1. As can be seen

from the figure, the above-mentioned flow is captured by a framework, PLC-PROV [96],

as the first step to track inputs and outputs and to model the evolution of the system

from inputs to outputs. We use CODESYS, a development system for most PLC

applications, which emits traces for sensor measurement and actuator states of the

system (1c). PLC-PROV traces the variables designated for sensors and actuators with

timestamps during a system execution, which is eventually the provenance collection

scheme. The provenance recorder compiles collected provenance from CODESYS

traces and converts them into the smart building provenance model as described

in [95]. From there, the provenance graph is generated, depicting the evolution of the

system from sensor readings through the PLC and controller to the actuators (2). In

the next step, this provenance graph is traversed to determine if a safety property

violation, as described in IoTC2, has occurred (3). When found, they are regarded

as conflicts (4). The conflict detector module of PLC-PROV outputs the sensors which

create conflicts and the actuators who are impacted by those conflicts (5). The next

step is where DEFEASIBLE-PROV starts. The conflict impacted devices are searched in

a smart building ruleset (6). These rules become subject to the defeasible reasoning

framework (7). Finally, a secured PLC program is generated. More details on the

(6),(7), and (8) steps are given in Algorithm 3.

As can be seen from Algorithm 3, a list of conflict creating sensors and conflict

impacted actuators that are outputted from PLC-PROV, the rules of a smart build-

100

ing are traced. Therefore, the algorithm takes a list of sensors, a list of actuators,

and the PLC source program for a smart building. In searching for rules of a PLC

program, an abstract syntax tree (AST) is generated using IEC-61131 grammar (line

2). DEFEASIBLE-PROV traverses the AST to find where those actuators are assigned

values. If there are emergency rules, DEFEASIBLE-PROV does not pick up that rule

(line 5). Other rules are blocked (line 6). The conflict creating actuators are iden-

tified in this step. It should be noted that all rules but the emergency rules are

marked as defeasible rules. The emergency rules are noted as the strict rules. Simply

put, emergency rules cannot be defeated by any other rules in our defeasible logic

framework. When some sensors create a large number of conflicts, our framework

ensures that no rule triggers from those sensors (line 8,9). This, in other words, is the

implementation of defeaters of defeasible logic programming. We make exceptions

for these sensors by not triggering any action out of them. DEFEASIBLE-PROV traces

the rules in AST to search the associated with conflict creating/ impacted devices.

Now, DEFEASIBLE-PROV imposes a superiority relation in the PLC source program to

prohibit the conflict creating rules to trigger (line 10, 11). Finally, the instrumented

PLC source program is regenerated from AST (line 15). The output of this algorithm

is a secured ST program, which can be seen as the last block in Figure 5.1 .

As an example, there are two rules r1 and r2 which are triggered by sensor mea-

surement m1 and m2, respectively. Let us assume that both rules try to issue different

commands to device d at the same time. At this point, it should be noted that de-

feasible reasoning detects conflicts first before resolving them (e.g., SPINdle [61]).

In this research, we have adopted the conflict resolution component of the defeasible

reasoning framework only. For conflict detection, we have used IoTC2 for formally

design conflict creating safety property violations and later PLC-PROV to detect those

on runtime. PLC-PROV provides us with a list of devices that are the most impacted

by conflicts. By using the list, our framework traces the rules that are associated

101

with the conflict creating sensors and impacted actuators. As we revisit the example

again, PLC-PROV identifies m1 as anomalous. Therefore, DEFEASIBLE-PROV enforces

that r1 would have less priority than r2 in terms of execution. In this way, the conflict

gets resolved.

10

Algorithm 3 Conflict Resolution with Defeasible Reasoning
0: procedure Resolution(SensorS,ActuatorA, ProgP)
0: AST ← P
0: for each actuator a in A do
0: find rule r from AST where a is assigned
0: if r is an emergency rule then
0: block all other rules where a is assigned
0: else
0: arrange S in descending order
0: pick the n sensors s(1,..,n)
0: find actuation a in AST triggered by sn
0: get rule r where a is assigned
0: block rule r
0: end if
0: end for
0: P ← AST
0: return P
0: end procedure=0

5.4 Evaluation

In order to evaluate how our system works, we built a testbed for a smart building

system. Details of the testbed are given in 4.4.1. Conflicts in the system are defined

based on the safety property violations as described in [94]. We identify some potential

safety property violations which are derived according to our testbed. Whenever

these violations occur, they are referred as conflicts. These property violations are

proposed in such a way that they refer to conflicts only as proposed in [94]. That is,

all the safety property violations are categorized among those seven conflict creating

scenarios. Details about safety property violations are given in 4.4.2.

102

5.4.1 DEFEASIBLE-PROV Implementation

DEFEASIBLE-PROV takes a PLC source program that is programmed in Structured

Text (ST) programming language as an input. ST is the only high level programming

language for PLC [97]. Moreover, ST programing language is preferable for research

purposes. CERN (European Organization for Nuclear Research) has been conducting

exclusive research on instrumenting ST programs of PLC [23]. However, we also

want to note that our tool has the capability of parsing other PLC programming

languages. DEFEASIBLE-PROV adopted the grammar file and tokenizer from an open

source project, iec2xml [98]. We developed a new parser on top of this project to

parse a ST program into an Abstract Syntax Tree (AST). Finding all assignments of

a device with their line numbers in the source program was made possible with our

implementation.

5.4.2 DEFEASIBLE-PROV Efficiency

The efficacy of DEFEASIBLE-PROV is determined by the number of conflicts it can

eliminate from a smart building system. One can aim for 100% resolution of conflicts.

However, in a real-world setting, it is hard to achieve because we do not have control

over events that trigger actions in the system. Blocking all the conflict creating rules

at once can resolve almost all conflicts in the system. However, it hinders the basic

automation rules of a system. For example, a motion detector and a switch can turn

the same light at the same time. Blocking one of these associated operational rules

can resolve conflict on the light. However, both rules are important for smart building

operations. Rather, the focus of this research is resolving conflicts on the light if it is

impacted the most. If we observe that to be true, DEFEASIBLE-PROV finds the rules

that are associated with changing light status and then make priority in command

execution.

As mentioned before in the design section, DEFEASIBLE-PROV receives information

103

Figure 5.2: DEFEASIBLE-PROV Efficiency with Increase in Dealt Actuators

about most conflict creating/impacted devices from PLC-PROV. From there, we

vary the device count, which is used by DEFEASIBLE-PROV to resolve conflicts. In the

first experiment, we increase the count of handled actuators to observe the efficacy

of our tool. There can be more than one smart building rule associated with the

most conflict impacted actuator. In such a case, only one rule is allowed to operate.

DEFEASIBLE-PROV blocks other rules as per devising the superiority relationship of

defeasible reasoning. We conducted this experiment with 3 sets of data where each

set has a different combination of impacted actuators. Therefore, conflict resolution

efficacy is not the same for the same count of dealt actuators. However, it is important

to notice from Figure 5.2 that when our tool handles more actuators, more conflicts

are resolved.

In our next experiment, we consider only conflict-creating sensors to resolve con-

flicts. That is, we implement the idea of a defeater of defeasible reasoning. Whenever

a sensor creates the most conflicts, we make an exception that any rules which are

triggered by this sensor will be blocked. We increase the count of the handled sensors

to observe how many conflicts DEFEASIBLE-PROV can resolve. We conducted this ex-

periment with 3 sets of data with a variety of conflict-creating sensors received from

PLC-PROV. As can be seen from Figure 5.3, the more sensors that are considered,

the more conflicts that are resolved.

104

Figure 5.3: DEFEASIBLE-PROV Efficiency with Increase in Dealt Sensors

The last experiment on DEFEASIBLE-PROV efficacy is conducted to observe the im-

pact of dealing with the combination of sensors and actuators to resolve conflicts.

That is, both defeaters and superiority relationships are implemented to observe the

efficacy of our tool. Like the previous two experiments, we have used 3 sets of data

with a variety of conflict creating/impacted devices. As we see from Figure 5.4, a

slightly better conflict resolution is achieved compared to the previous two exper-

iments when the same number of devices are dealt with. More conflicts could be

resolved if the most conflict creating sensors were not correlated with the most con-

flict impacted actuators. For example, a motion detector creates conflict in a light.

Therefore, when both the motion detector and light are used for resolving conflicts,

only a limited number of conflicts are resolved. However, some sensors have one to

many mapping. For example, a motion detector sensor can actuate a light and a

door. In this case, more conflict resolution is possible if DEFEASIBLE-PROV considers

that motion detector.

It is very important to observe how scalable DEFEASIBLE-PROV is. The number

of sensors and actuators can vary from building to building. It is possible that a

high number of smart building devices contribute to conflict creation. Therefore, it is

important to observe how time efficient DEFEASIBLE-PROV is in the conflict resolution

process. In doing so, we vary the number of devices that DEFEASIBLE-PROV handles

105

Figure 5.4: DEFEASIBLE-PROV Efficiency with Increase in Dealt Devices

for resolving conflicts. At first, our experiment is conducted to handle the actuators

only and shown in Figure 5.5. That is, DEFEASIBLE-PROV resolves conflicts that are

associated with the most conflict impacted actuators only. At first, we take only

one actuator into consideration to see how much time DEFEASIBLE-PROV needs to

execute. Then, we increase the number of actuators to see the impact of execution

time. As can be seen from the figure, there is a very marginal increase in time as

we increase the actuator count. Also, notice that DEFEASIBLE-PROV needs very little

time (1 second) to execute.

The next experiment was conducted in a way so that DEFEASIBLE-PROV resolves

conflicts based on the conflict creating sensors only. That is, we have not examined

the impact of actuators in resolving conflicts in this experimental setup. We increase

the sensor count to observe the behavior of execution time. It is interesting to notice

that the DEFEASIBLE-PROV takes almost the same time with the sensors as it takes

with the actuators. The execution time does not increase much, with an increase in

the number of sensors (shown in Figure 5.5).

The last experiment is conducted when both sensors and actuators are considered

by DEFEASIBLE-PROV to resolve conflicts. Like the previous two experiments, we

increase the count by 1 in each run to observe how timing differs for DEFEASIBLE-PROV

execution. As can be seen from Figure 5.5, DEFEASIBLE-PROV takes a little bit more

106

Figure 5.5: DEFEASIBLE-PROV Execution time

time (0.25 seconds) than the previous two experiments for each experimental run.

This is reasonable because DEFEASIBLE-PROV has to explore the abstract syntax tree of

a PLC program for sensors and actuators separately, which adds more time complexity

in the execution. However, the increment pattern for all three experiments is more

or less the same.

5.5 Related Work

Conflicts are common in a smart environment where several components are ex-

changing information to make an operation. One important way of dealing with

conflicts in automation is by using planning techniques. Rules were organized hierar-

chically for execution [99]. The learning phase for the knowledge base accompanied

by planning was proposed in [100] for resolving conflicts in the ambient intelligence

domain. This research work was improved with a scheduling algorithm where priority

values were assigned among conflicting rules [101].

Defeasible reasoning has been successfully applied to several fields (e.g., smart

cities, smart building, stock market) where interoperability and data sharing are

fundamental for their services [102, 103, 104]. For example, in smart cities, when data

is shared by multiple stakeholders, their policies conflict on a regular basis. Defeasible

logic is used to build a trust model among all parties in an effort to resolve these

conflicts [105]. Another research attempt applies the concept of agent negotiations for

107

deciding which of the conflicting rules to trigger in a smart environment context [106].

Defeasible logic has been successfully used for UAVs navigation system’s simulation,

for solving conflictual rules [107]. Business processes also use defeasible logic or

some variation of it to impose exception in the received knowledge and to propose

regulation of policies [62, 63, 108, 109, 110].

There have been several research efforts to deal with the uncertainty, ambiguity,

and conflicts in a smart building/smart home environment. One of the significant

approaches was made by [111], where logical rules were distributed among agents.

Agents were distributed smart environment rules in such a way that they don’t cre-

ate conflicts. However, when merged globally, defeasible reasoning is applied to avoid

conflicts. The preferences among the rules are assigned based on an agent’s require-

ment at a certain moment. There are some other research where defeasible reasoning

was used for smart building/ home environment [99, 100, 101]. Some proposed agent-

based systems [3] with a specific defeasible logic reasoner SPINdle [61]. All these

works focus on achieving a certain goal (i.e., energy saving) while imposing a superi-

ority relationship among the rules. Our approach is different in this way. We tend to

devise the defeasible logic framework based on the root cause behind the conflicts.

5.6 Discussion

This research focuses on the integration of defeasible reasoning in PLC controlled

systems in order to resolve safety policy violations there. The proposed framework

uses data provenance to investigate the root cause behind conflicts. Data provenance

suits the smart buildings domain very well in expressing the causality and dependen-

cies among the data objects to detect conflict there. To the best of our knowledge,

this is the first-ever approach where conflict detecting or impacted devices are consid-

ered for devising defeasible reasoning in appropriate places of a PLC source program.

We evaluated our model with a real-world smart building testbed. We observe the

promising efficacy of our tool to resolve conflicts. The execution time of the tool is

108

very nominal as well. It turns out that defeasible reasoning combined with data prove-

nance has high potential applicability in PLC controlled systems where the change of

sensor measurement and actuator actions take place very frequently. Despite being

used in critical infrastructures, PLCs have little or almost no security. The integration

of DEFEASIBLE-PROV is capable of enforcing adequate safety and security policies.

CHAPTER 6: Conclusions and Future Work

Smart building technology is growing to achieve energy efficiency, sustainability,

and maximizing worker productivity. However, the vulnerabilities associated with

PLC can impact smart buildings the same or even worse way as in other domains (e.g.,

train signaling system, pipeline system, telecommunication system). Despite being

used widely in many critical infrastructures (e.g., smart building management, power

generation, water and wastewater management, traffic control systems, oil and natural

gas, chemical, pharmaceutical, pulp and paper, food and beverage, automotive, and

aerospace), PLCs use protocols which make these control systems vulnerable to many

common attacks, including man-in-the-middle attacks, denial of service attacks, and

memory corruption attacks (e.g., array, stack, and heap overflows, integer overflows,

and pointer corruption). With these attacks, it is possible to create conflicts on

certain devices of smart buildings, thereby disrupting functionality.

To this point, very few research efforts have been made to detect conflicting situ-

ations using formal methods in smart building systems. Moreover, conflicts can lead

to additional actuation of devices, which eventually can increase the energy usage of

a smart building beyond a desired threshold. We provide a formal method approach,

IoT Conflict Checker (IoTC2), to ensure the safety of device behavior concerning con-

flicts. While other works have their safety policies [112, 73, 113, 78] similar to the ones

shown in Table 4.4, our formal method approach provides a general framework that

fits for any IoT/smart building safety property violations that lead to conflicts. Any

of our proposed policy violations result in conflicts. We defined the safety policies for

controller, actions, and triggering events and implemented those with Prolog to prove

the logical completeness and soundness. In addition to that, we have implemented

110

the detection policies in Matlab Simulink Environment with its built-in Model Veri-

fication blocks. We created a smart-home environment in Simulink and showed how

the conflicts affect actions and corresponding features. We have also experimented

with our method’s scalability, efficiency, and accuracy in a simulated environment.

Later, we integrated data provenance in smart building systems to detect safety

policy violations on runtime. Our provenance modeling considers sensing, actuat-

ing, user input, controller’s command, actuators’ state, and sensors’ measurement to

collect provenance and generate a graph from there. We claim that our model is com-

plete in expressing the causality and dependencies among the data objects in a smart

building system. We evaluated our model with a testbed that mimics a real-world

smart building system. With our developed tool, we know the most vulnerable sen-

sors to create conflicts. Moreover, most conflict impacted actuators can be identified

for further attention. Our tool is capable of processing a large size of data within a

satisfactory time range.

Our research concludes that data provenance has great potential applicability in

smart buildings. The integration of PLC-PROV is capable of enforcing adequate safety

and security policies in a smart building system. PROV-CPS [31] is the closest to our

work, where sensor measurements are used to identify malicious data. Conflicts can

occur without even inserting malicious data. Therefore, we modeled provenance with

more causalities, actuation status, and change in environment features to capture

provenance in smart building systems.

Apart from detecting conflicts, our research also aims to resolve them. We pro-

pose another framework, DEFEASIBLE-PROV, which uses data provenance to resolve

conflicts. The root cause behind conflicts, found from PLC-PROV, are well accom-

modated for defeasible reasoning framework to resolve conflicts. To the best of our

knowledge, ours is the first-ever approach to consider impacted devices in a defeasible

reasoning framework. While other works focus on theoretical or analytical frame-

111

works with defeasible reasoning [114, 100, 101, 72], our work is more on the im-

plementation paradigm, which is instrumenting a PLC program for smart building.

That is, we can adopt their algorithms and instrument them in smart buildings with

DEFEASIBLE-PROV. The execution time the tool is very nominal as well. It turns out

that defeasible reasoning combined with data provenance is a promising approach to-

wards a secure smart building system. Our approach shows great efficacy in resolving

conflicts.

6.0.1 Challenges

Because formal method approaches suffer from state explosion problems, it will

be interesting to observe if our model is challenged with a bigger smart building

environment. The scalability of our method is important to make its feasibility in the

real world. Moreover, our testbed for evaluating PLC-PROV and DEFEASIBLE-PROV

consists of the PLCs that could be instrumented by ourselves. For a real smart

building, this flexibility may not be present. Therefore, the accessibility of PLCs in

a smart building can be an intriguing challenge. Another implicit challenge is the

execution time needed for PLC-PROV to traverse the provenance graph. As the graph

size gets larger with time and the increase of devices, the computation needs to be

distributed in real-world implication.

6.0.2 Future Work

As the execution time of PLC-PROV is a concern, we plan to implement parallel

computing approaches for provenance graphs [115]. The linear dependencies among

the subgraphs, especially when dynamic integration of devices are possible, will be an

interesting research direction. It should be noted that PLC-PROV provides us with the

list of conflict impacted devices. It will be compelling to use this data for designing

automated temporal logic for safety and security purposes in smart buildings. We

also tend to observe how our tool behaves when dynamic changes in safety policies

112

are possible in the system. Another vital research direction can be predicting what

devices would be conflicted in a certain period using deep learning techniques.

The enhancement of DEFEASIBLE-PROV with a multi-agent system will be a com-

pelling future research direction. Each agent should be responsible for enforcing

security policies for each subdomain of the provenance graph. The agents should

be communicating with each other to achieve a larger goal (e.g., resilience, energy

efficiency) of the system. Moreover, we have developed a parser for PLC programs.

The development of a program analysis tool from DEFEASIBLE-PROV can contribute

to the safety and security of smart buildings significantly.

113

REFERENCES

[1] G. Lilis, G. Conus, N. Asadi, and M. Kayal, “Towards the next generation of
intelligent building: An assessment study of current automation and future iot
based systems with a proposal for transitional design,” Sustainable cities and
society, vol. 28, pp. 473–481, 2017.

[2] S. A. Milinković and L. R. Lazić, “Industrial plc security issues,” in Telecom-
munications Forum (TELFOR), 2012 20th, pp. 1536–1539, IEEE, 2012.

[3] T. G. Stavropoulos, E. Kontopoulos, N. Bassiliades, J. Argyriou, A. Bikakis,
D. Vrakas, and I. Vlahavas, “Rule-based approaches for energy savings in an
ambient intelligence environment,” Pervasive and Mobile Computing, vol. 19,
pp. 1–23, 2015.

[4] D. Clements-Croome et al., “Master planning for sustainable liveable cities,” in
6th International Conference on Green and Efficient Building and New Tech-
nologies and Products Expo, vol. 29, 2009.

[5] S. Folea, D. Bordencea, C. Hotea, and H. Valean, “Smart home automation sys-
tem using wi-fi low power devices,” in Automation Quality and Testing Robotics
(AQTR), 2012 IEEE International Conference on, pp. 569–574, IEEE, 2012.

[6] G. Fortino, A. Guerrieri, G. M. O’Hare, and A. Ruzzelli, “A flexible build-
ing management framework based on wireless sensor and actuator networks,”
Journal of Network and computer applications, vol. 35, no. 6, pp. 1934–1952,
2012.

[7] D. Clements-Croome, “Sustainable intelligent buildings for people: a review,”
Intelligent Buildings International, vol. 3, no. 2, pp. 67–86, 2011.

[8] A. Fensel, S. Tomic, V. Kumar, M. Stefanovic, S. V. Aleshin, and D. O. Novikov,
“Sesame-s: Semantic smart home system for energy efficiency,” Informatik-
Spektrum, vol. 36, no. 1, pp. 46–57, 2013.

[9] TechNavio, “Global Industrial Control Systems (ICS) security market 2014-
2018,” 2014.

[10] C. Interactive, “Teen hacker faces federal charges: Worcester regional airport
caused computer crash that disabled massachusetts airport,” 1998.

[11] T. Smith, “Hacker jailed for revenge sewage attacks,” 2001.

[12] C. News, “Virus disrupts train signals,” 2003.

[13] M. Abrams and J. Weiss, Bellingham, Washington, control system cyber security
case study. publisher not identified, 2008.

114

[14] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper,
Symantec Corp., Security Response, vol. 5, p. 6, 2011.

[15] Y. Sun, X. Wang, H. Luo, and X. Li, “Conflict detection scheme based on
formal rule model for smart building systems,” Human-Machine Systems, IEEE
Transactions on, vol. 45, no. 2, pp. 215–227, 2015.

[16] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Communi-
cation systems for building automation and control,” Proceedings of the IEEE,
vol. 93, no. 6, pp. 1178–1203, 2005.

[17] J. L. Rrushi, SCADA Protocol Vulnerabilities, pp. 150–176. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

[18] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel, “A trusted
safety verifier for process controller code.,” in NDSS, vol. 14, 2014.

[19] J. Sadolewski, “Automated conversion of st control programs to why for veri-
fication purposes,” in Computer Science and Information Systems (FedCSIS),
2011 Federated Conference on, pp. 849–854, IEEE, 2011.

[20] J. Sadolewski, “Conversion of st control programs to ansi c for verification pur-
poses.,” e-Informatica, vol. 5, no. 1, pp. 65–76, 2011.

[21] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade. plc: A verification platform
for programmable logic controllers,” in Proceedings of the 27th IEEE/ACM In-
ternational Conference on Automated Software Engineering, pp. 338–341, ACM,
2012.

[22] D. Darvas, E. Blanco, and B. Fernández Adiego, “Transforming plc programs
into formal models for verification purposes,” tech. rep., 2013.

[23] B. F. Adiego, D. Darvas, J.-C. Tournier, E. B. Vinuela, and V. M. G. Suárez,
“Bringing automated model checking to plc program developmentâa cern case
studyâ,” IFAC Proceedings Volumes, vol. 47, no. 2, pp. 394–399, 2014.

[24] F. Markovic, “Automated test generation for structured text language using
uppaal model checker,” 2015.

[25] E. P. Enoiu, A. Čaušević, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and
P. Pettersson, “Automated test generation using model checking: an industrial
evaluation,” International Journal on Software Tools for Technology Transfer,
vol. 18, no. 3, pp. 335–353, 2016.

[26] S. McLaughlin, “Cps: Stateful policy enforcement for control system device us-
age,” in Proceedings of the 29th Annual Computer Security Applications Con-
ference, pp. 109–118, ACM, 2013.

115

[27] S. McLaughlin, “Blocking unsafe behaviors in control systems through static
and dynamic policy enforcement,” in Design Automation Conference (DAC),
2015 52nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2015.

[28] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control malware
using automated plc code analytics,” IEEE Security & Privacy, vol. 12, no. 6,
pp. 40–47, 2014.

[29] A. Nicholson, H. Janicke, and A. Cau, “Position paper: Safety and security
monitoring in ics/scada systems.,” in ICS-CSR, pp. 61–66, BCS, 2014.

[30] H. Janicke, A. Nicholson, S. Webber, and A. Cau, “Runtime-monitoring for
industrial control systems,” Electronics, vol. 4, no. 4, pp. 995–1017, 2015.

[31] E. Nwafor, Trace-Based Data Provenance For Cyber-Physical Systems. PhD
thesis, Howard University, 2018.

[32] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in the
internet of things,” in ISOC NDSS, 2018.

[33] W. Granzer, F. Praus, and W. Kastner, “Security in building automation sys-
tems,” IEEE Transactions on Industrial Electronics, vol. 57, no. 11, pp. 3622–
3630, 2010.

[34] Modbus Organization, “Modbus Application Protocol Specification V1.1b3.”
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.
pdf.

[35] C. Barz, S. Deaconu, T. Latinovic, A. Berdie, A. Pop-Vadean, and M. Horgos,
“Plcs used in smart home control,” in IOP Conference Series: Materials Science
and Engineering, vol. 106, p. 012036, IOP Publishing, 2016.

[36] G. A. Dunning, Introduction to programmable logic controllers. Cengage Learn-
ing, 2005.

[37] D. Popescu, “Automate programabile. construcÈie, funcÈionare, programare Èi
aplicaÈii,” Matrix, Bucharest, Romania, 2011.

[38] T. Sysala, M. Pospíchal, and P. Neumann, “Monitoring and control system for
a smart family house controlled via programmable controller,” in Carpathian
Control Conference (ICCC), 2016 17th International, pp. 706–710, IEEE, 2016.

[39] N. Skeledzija, J. Cesic, E. Koco, V. Bachler, H. N. Vucemilo, and H. Dzapo,
“Smart home automation system for energy efficient housing,” in Information
and Communication Technology, Electronics and Microelectronics (MIPRO),
2014 37th International Convention on, pp. 166–171, IEEE, 2014.

[40] U.-C. V. N. 362332, “Wind river systems vxworks debug service enabled by
default,” 2012.

116

[41] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control systems (ics)
security,” NIST special publication, vol. 800, no. 82, pp. 16–16, 2011.

[42] S. McLaughlin and S. Zonouz, “Controller-aware false data injection against
programmable logic controllers,” in Smart Grid Communications (SmartGrid-
Comm), 2014 IEEE International Conference on, pp. 848–853, IEEE, 2014.

[43] S. McLaughlin and P. McDaniel, “Sabot: Specification-based payload generation
for programmable logic controllers,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, (New York, NY, USA),
pp. 439–449, ACM, 2012.

[44] K. T. Erickson and J. L. Hedrick, Plant-wide process control, vol. 4. John Wiley
& Sons, 1999.

[45] A. Falcione and B. H. Krogh, “Design recovery for relay ladder logic,” IEEE
Control Systems, vol. 13, no. 2, pp. 90–98, 1993.

[46] N. G. Ferreira and P. S. M. Silva, “Automatic verification of safety rules for
a subway control software,” Electronic Notes in Theoretical Computer Science,
vol. 130, pp. 323–343, 2005.

[47] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. Mohammed, and S. A.
Zonouz, “Hey, my malware knows physics attacking plcs with physical model
aware rootkit,” in Proceedings of the Network & Distributed System Security
Symposium, San Diego, CA, USA, pp. 26–28, 2017.

[48] J. Klick, S. Lau, D. Marzin, J.-O. Malchow, and V. Roth, “Internet-facing plcs
as a network backdoor,” in Communications and Network Security (CNS), 2015
IEEE Conference on, pp. 524–532, IEEE, 2015.

[49] W. Li, L. Xie, Z. Deng, and Z. Wang, “False sequential logic attack on scada sys-
tem and its physical impact analysis,” Computers & Security, vol. 58, pp. 149–
159, 2016.

[50] N. Trcka, M. Moulin, S. Bopardikar, and A. Speranzon, “A formal verification
approach to revealing stealth attacks on networked control systems,” in Proceed-
ings of the 3rd international conference on High confidence networked systems,
pp. 67–76, ACM, 2014.

[51] M. B. Younis and G. Frey, “Visualization of plc programs using xml,” in Amer-
ican Control Conference, 2004. Proceedings of the 2004, vol. 4, pp. 3082–3087,
IEEE, 2004.

[52] M. Marcos, E. Estevez, F. Perez, and E. Van Der Wal, “Xml exchange of control
programs,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, 2009.

117

[53] D. Darvas, I. Majzik, and E. B. Viñuela, “Generic representation of plc pro-
gramming languages for formal verification,” in Proc. of the 23rd PhD Mini-
Symposium, pp. 6–9.

[54] D. Rzońca, J. Sadolewski, A. Stec, Z. Świder, B. Trybus, and L. Trybus, “Pro-
gramming controllers in structured text language of iec 61131-3 standard,” Jour-
nal of Applied Computer Science, vol. 16, no. 1, pp. 49–67, 2008.

[55] D. Darvas, E. Blanco Vinuela, and B. Fernández Adiego, “Plcverif: A tool to
verify plc programs based on model checking techniques,” 2015.

[56] S. Zhou, H. Zedan, and A. Cau, “Run-time analysis of time-critical systems,”
Journal of Systems Architecture, vol. 51, no. 5, pp. 331–345, 2005.

[57] H. Salarian, K.-W. Chin, and F. Naghdy, “Coordination in wireless sensor–
actuator networks: A survey,” Journal of Parallel and Distributed Computing,
vol. 72, no. 7, pp. 856–867, 2012.

[58] V. Kumar, A. Fensel, and P. Fröhlich, “Context based adaptation of semantic
rules in smart buildings,” in Proceedings of International Conference on Infor-
mation Integration and Web-based Applications & Services, p. 719, ACM, 2013.

[59] A. A. Nacci, B. Balaji, P. Spoletini, R. Gupta, D. Sciuto, and Y. Agarwal,
“Buildingrules: a trigger-action based system to manage complex commercial
buildings,” in Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM Inter-
national Symposium on Wearable Computers, pp. 381–384, ACM, 2015.

[60] Y. Agarwal, R. Gupta, D. Komaki, and T. Weng, “Buildingdepot: an extensible
and distributed architecture for building data storage, access and sharing,” in
Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings, pp. 64–71, ACM, 2012.

[61] H.-P. Lam and G. Governatori, “The making of spindle,” in Rule Interchange
and Applications, pp. 315–322, Springer, 2009.

[62] A. J. Garcıa, D. Gollapally, P. Tarau, and G. R. Simari, “Deliberative stock
market agents using jinni and defeasible logic programming,” in Proceedings of
esawâ00 engineering societies in the agentsâ world, workshop of ecai 2000, 2000.

[63] A. J. García and G. R. Simari, “Defeasible logic programming: An argumen-
tative approach,” Theory and practice of logic programming, vol. 4, no. 1+ 2,
pp. 95–138, 2004.

[64] V. Martinez et al., “On the use of presumptions in structured defeasible reason-
ing,” 2012.

118

[65] S. Parsonsa, K. Atkinsonb, K. Haighc, K. Levittd, P. M. J. Rowed, M. P. Singhf,
and E. Sklara, “Argument schemes for reasoning about trust,” Computational
Models of Argument: Proceedings of COMMA 2012, vol. 245, p. 430, 2012.

[66] World Wide Web Consortium and others, “PROV-Overview: an overview of
the PROV family of documents.” https://www.w3.org/TR/prov-overview/,
2013.

[67] T. Moyer, K. Chadha, R. Cunningham, N. Schear, W. Smith, A. Bates, K. But-
ler, F. Capobianco, T. Jaeger, and P. Cable, “Leveraging data provenance
to enhance cyber resilience,” in Cybersecurity Development (SecDev), IEEE,
pp. 107–114, IEEE, 2016.

[68] X. Han, T. Pasquier, and M. Seltzer, “Provenance-based intrusion detection:
Opportunities and challenges,” in 10th USENIX Workshop on the Theory and
Practice of Provenance (TaPP 2018), (London), USENIX Association, 2018.

[69] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection and foren-
sic analysis via provenance awareness,” Future Generation Computer Systems,
vol. 61, pp. 26–36, 2016.

[70] S. COBB, “10 things to know about the october 21 iot ddos attacks,” 2016.

[71] S. Munir and J. A. Stankovic, “Depsys: Dependency aware integration of cyber-
physical systems for smart homes,” in Cyber-Physical Systems (ICCPS), 2014
ACM/IEEE International Conference on, pp. 127–138, IEEE, 2014.

[72] M. Ma, J. A. Stankovic, and L. Feng, “Cityresolver: A decision support system
for conflict resolution in smart cities,” in 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS), pp. 55–64, IEEE, 2018.

[73] M. Ma, S. M. Preum, and J. A. Stankovic, “Cityguard: A watchdog for safety-
aware conflict detection in smart cities,” in Proceedings of the Second Interna-
tional Conference on Internet-of-Things Design and Implementation, pp. 259–
270, ACM, 2017.

[74] M. Simulink, “Thermal model of a house.” https://www.mathworks.com/help/
simulink/examples/thermal-model-of-a-house.html. Accessed: 2018-07-
27.

[75] R. J. De Dear and G. S. Brager, “Thermal comfort in naturally ventilated
buildings: revisions to ashrae standard 55,” Energy and buildings, vol. 34, no. 6,
pp. 549–561, 2002.

[76] M. Triska, “Theorem proving with prolog.” https://www.metalevel.at/
prolog/theoremproving. Accessed: 2018-07-27.

[77] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “Swi-prolog,” Theory
and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–96, 2012.

119

[78] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety and
security analysis,” arXiv preprint arXiv:1805.08876, 2018.

[79] A. A. Farooq, “Iot testbed for iotc2,” Dec. 2018.

[80] Y. Fathy, P. Barnaghi, and R. Tafazolli, “Distributed spatial indexing for the
internet of things data management,” in Integrated Network and Service Man-
agement (IM), 2017 IFIP/IEEE Symposium on, pp. 1246–1251, IEEE, 2017.

[81] F. Alsubaei, A. Abuhussein, and S. Shiva, “Quantifying security and privacy in
internet of things solutions,” in NOMS 2018-2018 IEEE/IFIP Network Opera-
tions and Management Symposium, pp. 1–6, IEEE, 2018.

[82] H. Kinkelin, V. Hauner, H. Niedermayer, and G. Carle, “Trustworthy config-
uration management for networked devices using distributed ledgers,” arXiv
preprint arXiv:1804.04798, 2018.

[83] M. Mohsin, Z. Anwar, G. Husari, E. Al-Shaer, and M. A. Rahman, “Iotsat: A
formal framework for security analysis of the internet of things (iot),” in Com-
munications and Network Security (CNS), 2016 IEEE Conference on, pp. 180–
188, IEEE, 2016.

[84] C. Vannucchi, M. Diamanti, G. Mazzante, D. Cacciagrano, R. Culmone,
N. Gorogiannis, L. Mostarda, and F. Raimondi, “Symbolic verification of event–
condition–action rules in intelligent environments,” Journal of Reliable Intelli-
gent Environments, vol. 3, no. 2, pp. 117–130, 2017.

[85] F. Corno and M. Sanaullah, “Design-time formal verification for smart envi-
ronments: an exploratory perspective,” Journal of Ambient Intelligence and
Humanized Computing, vol. 5, no. 4, pp. 581–599, 2014.

[86] A. Coronato and G. De Pietro, “Formal design of ambient intelligence applica-
tions,” Computer, vol. 43, no. 12, pp. 60–68, 2010.

[87] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and P. Bahl,
“An operating system for the home,” in Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation, pp. 25–25, USENIX
Association, 2012.

[88] F. B. Schneider, G. Morrisett, and R. Harper, “A language-based approach to
security,” in Informatics, pp. 86–101, Springer, 2001.

[89] J. Pincus and B. Baker, “Mitigations for low-level coding vulnerabilities: In-
comparability and limitations.”

[90] P. Groth and L. Moreau, “Prov-overview. an overview of the prov family of
documents,” 2013.

120

[91] A. A. Farooq, E. Al-Shaer, T. Moyer, and K. Kant, “Iotc2: A formal method
approach for detecting conflicts in large scale iot systems,” in Integrated Network
and Service Management (IM), 2017 IFIP/IEEE Symposium on, IEEE, 2019.

[92] Trung Dong Huynh, “A library for W3C Provenance Data Model support-
ing PROV-JSON, PROV-XML and PROV-O (RDF).” https://pypi.org/
project/prov/.

[93] A. Hagberg, D. Schult, P. Swart, D. Conway, L. Séguin-Charbonneau, C. El-
lison, B. Edwards, and J. Torrents, “Networkx. high productivity software for
complex networks,” Webová strá nka https://networkx. lanl. gov/wiki, 2013.

[94] A. Al Farooq, E. Al-Shaer, T. Moyer, and K. Kant, “Iotc 2: A formal method
approach for detecting conflicts in large scale iot systems,” in 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), pp. 442–447,
IEEE, 2019.

[95] A. Al Farooq, J. Marquard, K. George, and T. Moyer, “Detecting safety and
security faults in plc systems with data provenance,” in 2019 IEEE International
Symposium on Technologies for Homeland Security (HST), pp. 1–6, 2019.

[96] A. Al Farooq, J. Marquard, K. George, and T. Moyer, “Detecting safety and
security faults in plc systems with data provenance,” in 2019 IEEE International
Symposium on Technologies for Homeland Security (HST), pp. 1–6, IEEE, 2019.

[97] R. Ramanathan, “The iec 61131-3 programming languages features for industrial
control systems,” in 2014 World Automation Congress (WAC), pp. 598–603,
IEEE, 2014.

[98] V. Birk, “pypeg â a peg parser-interpreter in python,” 2014.

[99] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri, “What planner for am-
bient intelligence applications?,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 35, no. 1, pp. 7–21, 2004.

[100] M. Cristani, E. Karafili, and C. Tomazzoli, “Energy saving by ambient intel-
ligence techniques,” in 2014 17th International Conference on Network-Based
Information Systems, pp. 157–164, IEEE, 2014.

[101] M. Cristani, E. Karafili, and C. Tomazzoli, “Improving energy saving tech-
niques by ambient intelligence scheduling,” in 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications, pp. 324–
331, IEEE, 2015.

[102] G. Antoniou, M. J. Maher, and D. Billington, “Defeasible logic versus logic
programming without negation as failure,” The Journal of Logic Programming,
vol. 42, no. 1, pp. 47–57, 2000.

121

[103] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni, “An abstract,
argumentation-theoretic approach to default reasoning,” Artificial intelligence,
vol. 93, no. 1-2, pp. 63–101, 1997.

[104] H. Prakken, Logical tools for modelling legal argument: a study of defeasible
reasoning in law, vol. 32. Springer Science & Business Media, 2013.

[105] E. Daga, A. Gangemi, and E. Motta, “Reasoning with data flows and policy
propagation rules,” Semantic Web, vol. 9, no. 2, pp. 163–183, 2018.

[106] E. Sierra, A. Hossian, D. Rodríguez, M. García-Martínez, P. Britos, and
R. García-Martínez, “Intelligent systems applied to optimize buildingâs environ-
ments performance,” in IFIP International Conference on Artificial Intelligence
in Theory and Practice, pp. 237–244, Springer, 2008.

[107] H.-P. Lam and G. Governatori, “Towards a model of uavs navigation in urban
canyon through defeasible logic,” Journal of Logic and Computation, vol. 23,
no. 2, pp. 373–395, 2013.

[108] G. Governatori, F. Olivieri, A. Rotolo, S. Scannapieco, and M. Cristani, “Pick-
ing up the best goal,” in International Workshop on Rules and Rule Markup
Languages for the Semantic Web, pp. 99–113, Springer, 2013.

[109] G. Governatori, F. Olivieri, S. Scannapieco, A. Rotolo, and M. Cristani, “The
rationale behind the concept of goal,” Theory and Practice of Logic Program-
ming, vol. 16, no. 3, pp. 296–324, 2016.

[110] F. Olivieri, G. Governatori, S. Scannapieco, and M. Cristani, “Compliant busi-
ness process design by declarative specifications,” in International Conference
on Principles and Practice of Multi-Agent Systems, pp. 213–228, Springer, 2013.

[111] A. Bikakis, G. Antoniou, and P. Hasapis, “Strategies for contextual reasoning
with conflicts in ambient intelligence,” Knowledge and Information Systems,
vol. 27, no. 1, pp. 45–84, 2011.

[112] V. Nagendra, A. Bhattacharya, V. Yegneswaran, A. Rahmati, and S. Das, “An
intent-based automation framework for securing dynamic consumer iot infras-
tructures,” in Proceedings of The Web Conference 2020, pp. 1625–1636, 2020.

[113] Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: Dynamic enforcement of
security and safety policy in commodity iot.,” in NDSS, 2019.

[114] T. G. Stavropoulos, E. Kontopoulos, N. Bassiliades, J. Argyriou, A. Bikakis,
D. Vrakas, and I. Vlahavas, “Rule-based approaches for energy savings in an
ambient intelligence environment,” Pervasive and Mobile Computing, vol. 19,
pp. 1–23, 2015.

[115] A. Al Farooq, “Probabilistic modeling of erroneous human response to in-vehicle
route guidance systems: A domain decomposition-based algorithm,” 2013.

