
ROBUST AND RELIABLE REAL-TIME ADAPTIVE MOTION PLANNING

by

Sterling McLeod

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2019

Approved by:

Dr. Jing Xiao

Dr. Srinivas Akella

Dr. Bojan Cukic

Dr. Min Shin

Dr. James Conrad

ii

c©2019
Sterling McLeod

ALL RIGHTS RESERVED

iii

ABSTRACT

STERLING MCLEOD. Robust and Reliable Real-time Adaptive Motion Planning.
(Under the direction of DR. JING XIAO)

A key goal in robotics is to enable autonomous motion for mobile robots in a real-

world dynamic environment with unknown obstacles. This problem requires bringing

together state-of-the-art algorithms in path planning, robot control, and perception.

An additional challenge is that systems that implement these algorithms must be

carefully implemented with sophisticated software techniques.

This dissertation addresses the problem by expanding the Real-time Adaptive Mo-

tion Planning (RAMP) framework to enable real-time generation and execution of

non-holonomic robot motion based on real-time perception of unknown dynamic ob-

stacles in the presence of sensing and robot motion uncertainties. This dissertation

further addresses how to systematically and rigorously test the implemented, in-

tegrated RAMP system to ensure robustness and reliability using state-of-the-art

techniques in software testing.

iv

ACKNOWLEDGMENTS

First and foremost, I need to thank my advisor, Dr. Jing Xiao. Dr. Xiao took me

in as an undergraduate student that knew nothing about robotics, and through many

years of guidance, support, and patience she helped me become someone that can fill

a dissertation with state-of-the-art solutions to robotics problems.

I would like to thank Dr. Akella, Dr. Cukic, Dr. Shin, and Dr. Conrad for serving

on my committee and providing helpful feedback along the way.

I am grateful to Graduate Assistance in Areas of National Need (GAANN) fellow-

ship for funding my research for several years of my PhD, and for providing valuable

pedagogical training during that time. I am also grateful for the support from the

NSF Industry University Cooperative Research Center (I/UCRC) Robots and Sensors

for the Human Well-Being (ROSEHUB) and from Shanghai mRobot via ROSEHUB.

I want to thank Mahmoud Abdelgawad and Dr. Anneliese Andrews for our collab-

orations on software testing for RAMP.

Thank you to all of my labmates, current and former, for all of the encouragement,

conversations, advice, and fun over all the years spent in the lab.

I’m thankful to my family for their support throughout the PhD program, and for

their efforts to adapt to the changes in my life that doing a PhD brought on.

Finally, I have to thank my fiancée, Samantha, for unwavering emotional support

since day 1 of my PhD.

v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES x

CHAPTER 1: INTRODUCTION 1

1.1. Collision-free Motion Planning 2

1.2. Motion Planning Algorithms 4

1.3. Real-time Motion Planning 6

1.4. Non-holonomic Motion Planning 11

1.5. Localization, Mapping, and Simultaneous Localization and
Mapping

13

1.6. Real-time Detection and Tracking of a Moving Object 14

1.7. Software Testing 16

1.8. Software Testing for Autonomous Robotics 18

1.9. Model-based Testing 19

CHAPTER 2: MOTIVATION AND OBJECTIVES 21

CHAPTER 3: REAL-TIME ADAPTIVE NON-HOLONOMIC MOTION
PLANNING IN DYNAMIC ENVIRONMENTS WITH UNKNOWN
OBSTACLES

24

3.1. Real-time Adaptive Non-holonomic Motion Planning in Unfore-
seen Dynamic Environments

24

3.1.1. Hybrid Trajectory Representation 24

3.1.2. Overview 28

3.1.3. Smooth Trajectory Transition and Adaptive Control
Cycles

31

3.1.4. Trajectory Evaluation 34

vi

3.1.5. Improvement of Trajectories Based on Sensing 35

3.2. Real-time Sensing and Perception of Unknown Obstacles 37

3.2.1. Overview 39

3.2.2. Algorithm for Real-Time Perception 40

3.3. Implementation, Results, and Discussion 42

3.3.1. Implementation and Experimental Setup 42

3.3.2. Visualization of Experiments 43

3.3.3. Records of Cycle Periods 44

3.3.4. Description of Test Cases and Results 46

3.3.5. Discussion of Performance 51

CHAPTER 4: LEVERAGING PAST EXPERIENCE IN RAMP 55

4.1. Review of Hilbert maps 56

4.2. RAMP Using Learned Information 57

4.2.1. Combining Real Sensor Data with Learned Data 58

4.2.2. Trajectory Evaluation Using Real and Learned
Information

59

4.2.3. Initialization Using Learned Information 60

4.3. Experimental Results 60

4.3.1. Improving Initial Population 60

4.3.2. Real-time Execution with Learned Information 65

CHAPTER 5: SYSTEM-LEVEL TESTING OF A REAL-TIME ADAP-
TIVE MOTION PLANNING SYSTEM

73

5.1. Model-based Testing Approach 73

vii

5.2. System-level Testing for RAMP 75

5.2.1. Interacton with Obstacles 75

5.2.2. Phase 1: Obstacle Test Model 76

5.2.3. Phase 2: Obstacle Internal Test Paths 78

5.2.4. Phase 3: Obstacle Interaction Test Paths 78

5.2.5. Phase 4: Obstacle Input-Space Partitioning 81

5.3. Test Execution and Evaluation 82

5.4. Extended System Level Behavioral Model 85

5.4.1. Obstacle Internal Test Paths 87

5.4.2. Obstacle Interaction Test Paths 87

5.4.3. Test Execution 88

5.4.4. Test Execution Results 89

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 91

6.1. Contributions 92

6.2. Future Work 94

6.2.1. Learning 94

6.2.2. Testing 95

6.2.3. Implementation 96

6.3. Applications 97

REFERENCES 98

viii

LIST OF TABLES

TABLE 1: Performance data for five runs of case 1 50

TABLE 2: Performance data for five runs of case 2 51

TABLE 3: Performance data for five runs of case 3 51

TABLE 4: Performance data for five runs of case 4 52

TABLE 5: Performance data for real-robot tests with two dynamic ob-
stacles (Section 4.3.1.3). Two sets of tests were run: one that did
not use any learned information, and one that improved trajectory
initialization using learned information (Section 4.2.3). For each set,
5 tests were run.

67

TABLE 6: Performance data for tests that combine real and probabilistic
data during runtime in the environment shown in Fig. 26(a). Two
sets were run: one that did not use any learned information, and one
that used probabilistic data to improve trajectory initialization and
real-time execution. For each set, 5 tests were run.

69

TABLE 7: Performance data for tests that combine real and probabilistic
data during runtime in the environment shown in Fig. 26(c). Two
sets were run: one that did not use any learned information, and
one that used probabilistic data to improve the initialization and
real-time execution. For each set, 5 tests were run.

69

TABLE 8: Performance data for real tests that combine real and proba-
bilistic data during runtime in the environment shown in Fig. 26(e).
Two sets were run: one that did not use any learned information,
and one that used probabilistic data to improve the initialization
and real-time execution. For each set, 5 tests were run.

70

TABLE 9: Performance data for real tests that combine real and proba-
bilistic data during runtime in the environment shown in Fig. 27(a).
Two sets were run: one that did not use any learned information,
and one that used probabilistic data to improve the initialization
and real-time execution. For each set, 5 tests were run.

71

TABLE 10: Input domains and blocks of values of a mobile obstacle 81

ix

TABLE 11: For each ABTC, 100 test cases were executed. Each column
shows the results for the specific ABTC.

83

TABLE 12: Input domains and blocks of values of a dynamic obstacle 86

TABLE 13: Results for the first 8 ABTCs. For each ABTC, 100 test cases
were executed. Each column shows the results for the specific ABTC.

90

TABLE 14: Results for the second 8 ABTCs. For each ABTC, 100 test
cases were executed. Each column shows the results for the specific
ABTC.

90

x

LIST OF FIGURES

FIGURE 1: Three common robot models 3

FIGURE 2: Roadmap examples 4

FIGURE 3: An example of a probabilistic roadmap build in a 2D C-space
that can be used for path planning queries

5

FIGURE 4: An example of RRT exploring a C-space with circle obstacles.
The red line highlights the path to the goal.

5

FIGURE 5: A visualization of an artificial potential function in a 2D
space. The direction and size of the arrows show how the force will
move the robot at each location.

7

FIGURE 6: A visualization of a population in RAMP. Many trajectories
give the robot options on how to move to the goal. If the current
trajectory becomes blocked, the robot can easily switch to a different
trajectory.

9

FIGURE 7: A non-holonomic vehicle is shown. Its velocity is constrained
to be in the direction of the back wheel angle θ.

11

FIGURE 8: An occupancy grid, where the black shapes are obstacles,
grey pixels are occupied, and white pixels are free space.

15

FIGURE 9: V-Model for software development 17

FIGURE 10: Overview of the Model-based Testing approach 19

FIGURE 11: Hybrid trajectory examples 25

FIGURE 12: A quadratic Bezier curve connecting two straight line
segments

26

FIGURE 13: Switching trajectories 33

FIGURE 14: Example motion from start to finish 37

FIGURE 15: The sensing module receives an occupancy grid based on
depth data and outputs a list of circles representing position and
size, and predicted linear velocities for each obstacle.

39

xi

FIGURE 16: Case 1: One dynamic obstacle (human) and two static ob-
stacles. The Turtlebot 2 platform runs RAMP-H.

45

FIGURE 17: Case 2: Two dynamic obstacles come into view sequentially
and two static obstacles. The Turtlebot 2 platform runs RAMP-H.

46

FIGURE 18: Case 3: Two dynamic obstacles moving in different direc-
tions and two static obstacles. The Turtlebot 2 platform runs RAMP-
H.

47

FIGURE 19: Case 4: Two dynamic obstacles moving in the same direction
and two static obstacles. The Turtlebot 2 platform runs RAMP-H.

48

FIGURE 20: Visualization of cycle frequencies 49

FIGURE 21: Applying the Hilbert map approach to an environment of
size 5m x 3m with one static obstacle (lower right) and one dynamic
obstacle that repeatedly moves through the environment. The value
at each location is the probability of that location being occupied.

57

FIGURE 22: A Turtlebot 2 is positioned in front of a large static obstacle
that occludes most of the environment. The visible locations have
values corresponding to the real sensing data (0 or 255), and the pix-
els that the robot cannot sense are replaced with a value representing
the probability of the location being occupied. Lower values corre-
spond to higher probability. The pixel values change to correspond
to real data when the robot can sense them (Figs. 22(b) and 22(c)).

59

FIGURE 23: Hilbert map of an environment with one dynamic obstacle
moving with straight line motion, and the result of one instance of
running 500 pre-planning cycles using learned information.

62

FIGURE 24: Hilbert map of an environment with one static obstacle and
one dynamic obstacle moving in a 1m line, and the result of one in-
stance of running 500 pre-planning cycles using learned information.

63

FIGURE 25: Hilbert map of an environment with two dynamic obstacles,
and the result of one instance of running 500 pre-planning cycles
using learned information.

65

FIGURE 26: Three 5m square environments for testing the effect of incor-
porating probabilistic information, and their associated occupancy
grids generated by the Hilbert maps model. The static obstacles are
removed when recording training data.

66

xii

FIGURE 27: Real environment (3.5m square) for experiments combining
real and probabilistic sensing data with one static obstacle and one
moving obstacle. The robot’s initial position is (1.5, 0) and the goal
is (1.0, 3.5).

71

FIGURE 28: Model-based test generation process 74

FIGURE 29: Structural model for a dynamic obstacle 77

FIGURE 30: Robot (square) and obstacles (circles) in an example test
area, and the obstacle behavioral test model on the right.

77

FIGURE 31: Illustration of ABTCs for system-level testing involving 3
obstacles. Obstacles are shown transitioning from a stopped state
(S) to a moving state (M). The delays correspond to the number of
state changes of the prior moving obstacles. The bottom obstacle is
always the obstacle that begins first, i.e. its delay is 0. The 2nd and
3rd obstacles begin at their respective delays after the first obstacle.

80

FIGURE 32: Overall performance of a RAMP system dealing with three
mobile obstacles

84

FIGURE 33: Obstacle behavioral model that accounts for speed changes 86

FIGURE 34: Overall performance of a RAMP system dealing with three
dynamic obstacles

89

CHAPTER 1: INTRODUCTION

Enabling autonomous robots to work seamlessly in real-world environments has

long been a goal in the research of robot motion planning. Significant progress can

benefit many applications and industries, such as material-handling, janitorial ser-

vices, self-driving cars, and package delivery. Despite decades of research, however,

there are still challenges to achieving an autonomous robot in many real-world envi-

ronments. Three key reasons are:

• Many real-world environments are unpredictable.

• Robots are subject to uncertainty from sensors and motors.

• Robots require sophisticated software to accomplish tasks autonomously.

Many real-world environments are unpredictable, e.g. air-ports, hospitals, and

schools. These environments are mostly populated by humans and objects (includ-

ing those that can be moved by humans), and humans can change their motion in

whatever ways they want. Because of this, a robot must be able to detect unforeseen

changes in an environment and adapt to those changes at real-time in order to prevent

collision and accomplish tasks.

Additionally, a robot must account for uncertainty while planning and moving.

Both sensors and motors introduce uncertainty into a robotic system. If uncertainty

2

is ignored, it is possible that a robot can collide with obstacles in the environment

because the perception about the environment is inaccurate.

A method to validate and verify robotic systems is necessary to ensure that robots

acting in real-world environments will be safe and effective. However, real-time

robotic software systems pose several challenges that make them hard to test: they

are concurrent systems, their environments contain many unknowns, and the algo-

rithms are often non-deterministic to tackle the unpredictable environments. These

challenges must be addressed to effectively test robotic software systems.

Addressing all of the above issues laid out above to enable autonomous robots

requires building on a large amount of existing research. In the remainder of this

chapter, I will survey the existing literature relevant to these research problems, in-

cluding collision-free motion planning, motion planning algorithms, real-time motion

planning, non-holonomic planning, localization and mapping, obstacle detection and

tracking, software testing for autonomous robotics, and model-based testing.

1.1 Collision-free Motion Planning

A fundamental task in robotics is enabling a robot to move from an initial state

to a goal state via a collision-free trajectory. This is achieved by planning a path

or trajectory in the configuration space, or C-space, of a robot. Given the geometric

information of a robot and its environment, the C-space of a robot is the set of all

possible configurations that a robot may achieve.

A common type of mobile robot is a differential-drive robot (Figure 1(a)) These

robots are driven by two wheels that have independent motors, and this type of motion

3

(a) Differential drive mobile
robot

(b) Manipulator with seven
degrees of freedom

(c) Mobile manipulator that
combines a mobile robot and
a manipulator

Figure 1: Three common robot models

allows them to translate on a plane and change orientation. The C-space of such a

robot is three-dimensional. Robot manipulators have more complicated geometry

and typically have high-dimensional configuration spaces. The manipulator in Figure

1(b), for example, has seven joints, seven degrees of freedom, and therefore its C-space

has seven dimensions. Mobile robots and manipulators can be combined as shown in

Figure 1(c), and the C-space of such robots considers the dimensionality of both the

mobile base and the manipulator.

Finding a path in a robot’s C-space is the first step of motion planning. The next

step is to consider the physical constraints of a robot, such as maximum acceleration,

turning radius, etc. These constraints are considered when planning a trajectory to

move the robot along a given path. The trajectory will generate full motion states

(position, velocity, and acceleration) for the robot. A separate module for control is

responsible for moving the robot along a trajectory.

4

1.2 Motion Planning Algorithms

Motion planning algorithms attempt to find a collision-free path in the robot’s C-

space. There are many variations of motion planning algorithms, and many differences

in the approaches. A very general categorization of motion planning algorithms is

deterministic and non-deterministic algorithms.

Deterministic methods refer to approaches that build a structure of the environ-

ment that does not rely on random sampling, such as a roadmap structure, and

subsequently use graph-search algorithms to find a path [52]. These methods are also

considered complete algorithms.

(a) Visibility graph connect-
ing qinit and qgoal

(b) Voronoi graph connecting
start and goal

(c) Cell decomposition con-
necting qI and qG

Figure 2: Roadmap examples

Roadmap methods include building visibility graphs [27], voronoi graphs [9], and

cell decomposition [19]. The goal of these methods is roughly the same: build a

roadmap of the environment, and then apply graph-search techniques to find the

final path. They differ in the method used to build a roadmap, see Figure 2. The

graph-search techniques can be Dijkstra’s algorithm [29], A* algorithm, etc. These

techniques can work well for low-dimensional and static environments, but they do

5

Figure 3: An example of a probabilistic roadmap build in a 2D C-space that can be
used for path planning queries

Figure 4: An example of RRT exploring a C-space with circle obstacles. The red line
highlights the path to the goal.

not scale to higher-dimensional problems or working in dynamic environments.

The problem with deterministic methods is that they need to explicitly compute

the robot’s C-space. When a robot’s C-space becomes high-dimensional, it is far

too expensive to build a deterministic representation of the space. Computing the

C-space requires the algorithm to compute the obstacle regions in the C-space, which

scales exponentially with the number of dimensions.

Non-deterministic methods revolve around random sampling of a robot’s C-space.

These algorithms are effective at solving motion planning problems for robots that

have a high-dimensional C-space, such as a 6-DOF manipulator. The Probabilistic

Roadmap (PRM) algorithm [40] samples a C-space and builds an undirected graph

of the sampled points. After building a graph, the initial and goal states can be

6

added to the graph, and a graph-search algorithm can be used to find a path. The

Rapidly-exploring Random Trees (RRT) algorithm [53] samples a robot’s C-space

and iteratively builds an n-ary tree until the goal state is connected to the tree. The

initial state is the root of the tree, and the path from the tree’s root to the goal state

is used as the planned path. Figures 3 and 4 show examples of the structures used to

represent the C-space using PRM and RRT.

Non-deterministic methods face issues with narrow passages in environments, and

most variations on those approaches try to address this problem by improving the

sampling method [3][92][12][96] or improving the edge connections [72][11][39]. PRM

has been extended to dynamic environments by applying the algorithm to kinody-

namic motion planning [36].

1.3 Real-time Motion Planning

Real-time Motion Planning refers to algorithms that operate in environments that

can change. These algorithms need to adjust the path while the robot is moving in

order to react to changes in an environment.

Non-deterministic algorithms have been extended to work in dynamic environ-

ments. Extended RRT (ERRT) [16] is an iteration on RRT aimed at dynamic en-

vironments. ERRT maintains a waypoint cache that stores the nodes of the path

found by RRT. As the environment changes, RRT must re-plan a new path and

starts by sampling from the waypoint cache to find nodes that are likely to lead to

the goal. Although the waypoint cache speeds up path-planning queries, re-planning

paths entirely can be too expensive to achieve robust real-time planning.

7

Figure 5: A visualization of an artificial potential function in a 2D space. The
direction and size of the arrows show how the force will move the robot at each
location.

Artificial potential functions (APF) [43] generate motion by defining attractive and

repulsive functions in a robot’s task space (for basic motion planning, this would be

Euclidean space) to guide the robot to the goal. The robot is pulled towards the goal,

and if the robot approaches obstacles, then the APF repels the robot away. Figure

5 shows a visualization of this. The APF approach is suitable for real-time motion

planning because the functions are easy to update when the environment changes.

However, potential functions are subject to local minima.

The Elastic Strip algorithm [15] is an approach to planning that combines local

artificial potential functions and decomposition path planning [14] to move a high-

dimensional robot in an unstructured dynamic environment while satisfying task

constraints. The decomposition planning approach generates a path for the robot

to follow, and as the environment changes, the robot’s C-space path is modified by

local potential functions to avoid obstacles while maintaining the path’s homotopy.

This framework was extended to Elastic Roadmaps [95] to utilize global planning

that can find new homotopic paths as the robot moves. This framework works well

8

for task-constrained motion, but maintaining many types of constraints can decrease

the performance of obstacle avoidance. The experiments shown have limited obstacle

avoidance needs. Additionally, experiments with this framework only used a holo-

nomic mobile base, so it has not been shown to work with non-holonomic robots.

The D* algorithm [81][82] is a graph-search algorithm that handles changes in an

environment by updating edge costs on-the-fly. As a robot moves around an envi-

ronment, new information is obtained and changes to the edge costs are propagated

throughout the graph. The D* algorithm, unlike many other real-time algorithms,

is complete and optimal. D*-lite [45] has all the same properties as D* (complete,

optimal, handles dynamic environments), but is a simpler algorithm. D* and D*-lite

work well for low-dimensional spaces, such as 2 or 3 dimensions. However, they do

not scale to higher dimensions well, and the performance is heavily affected by the

resolution of the grid that represents the environment.

Real-time Adaptive Motion Planning (RAMP) [89] is a motion planning frame-

work that plans and moves the robot simultaneously, and is designed to operate in

environments that have unforeseen moving obstacles. It utilizes evolutionary compu-

tation for real-time trajectory modification [94] and evaluation to efficiently adapt to

changes. RAMP maintains a set of trajectories (called a population) that are possible

trajectories for the robot to move on. As the robot moves, the population is modified

with simple operators that allow both small improvements and drastic alterations of

paths. The RAMP framework has been shown to allow autonomous mobile manipu-

lators to move in the presence of moving obstacles with unforeseen motion. However,

it has only been shown to work in simulation, the mobile bases are holonomic [89], the

9

Figure 6: A visualization of a population in RAMP. Many trajectories give the robot
options on how to move to the goal. If the current trajectory becomes blocked, the
robot can easily switch to a different trajectory.

geometry of obstacles is known, and obstacle locations are broadcast to the planner.

Thus, the existing work does not consider the uncertainty inherent in real robots, it

does not consider mobile bases that are subject to non-holonomic constraints, and

it does not consider using real-time sensing and perception to handle any unknown

obstacles in the environment.

Human-aware motion planning models pedestrian behavior to perform well in

human-centered environments. This work uses probabilistic models to more accu-

rately predict pedestrian trajectories and improve planning decisions. Leveraging this

knowledge helped to remove a robot from being ”frozen” when in dense environments

[87] by modeling joint collision avoidance among multiple pedestrians. The joint col-

lision prediction model was used to predict behavior between a robot and a human,

and help a robot move in densely crowded pedestrian environments. Optimization

approaches have also been explored for human-aware motion planning [42].

This type of planning can enable mobile robots to conform to social norms created

by pedestrians. However, they do not generalize to dealing with arbitrary obstacles.

Further, the work explored in [74] shows that behavior from human-human interac-

tions cannot be transferred to robot-human interactions until robots are a normal

10

presence in pedestrian environments.

Recent work in motion planning has been based around learning various aspects of

the motion planning problems. Typically, deep learning and reinforcement learning

techniques are utilized to learn obstacle behavior, collision avoidance, or an end-to-end

model. Diffusion maps, a dimensionality-reduction machine learning technique, has

been used in motion planning to reduce the space complexity of storing the shortest-

path betweenN pairs of points fromO(|N |2) toO(N) by developing a parametrization

of a 2D map’s pairwise potentials [21]. This allows shortest-path information to be

obtained and used for very large maps, and can be extended to work in real-time. Deep

reinforcement learning [20] was used to learn a cost function to evaluate trajectories

that respect social norms among pedestrians. Inverse reinforcement learning has

been employed to learn collision avoidance behavior for mobile robots [46] based on

demonstrated behavior with the goal of generating socially acceptable behavior from

robots in such environments. End-to-end learning approaches use raw sensor data

(such as images, laser scans, or point clouds) for training and learn control commands

for mobile robots [73][83].

These methods have been shown to work well for mobile robots, but have not been

considered for use in high-dimensional problems, such as manipulator or mobile-

manipulator planning. Further, learning-based methods require large amounts of

offline training (both in the time it takes to train and the number of data points needed

to train), and after training the obstacle avoidance is tuned only for human obstacles

and it is unclear how the deep learning results can be generalized to environments

with different kinds of moving obstacles. These methods also suffer from a lack of

11

Figure 7: A non-holonomic vehicle is shown. Its velocity is constrained to be in the
direction of the back wheel angle θ.

interpretability.

1.4 Non-holonomic Motion Planning

One of the most common constraints on a robot’s motion are non-holonomic con-

straints. These are differential constraints that restrict the possible velocities a robot

can obtain. Common non-holonomic robots are car-like robots and differential drive

robots. A car-like robot model is shown in Figure 7, and its velocity is constrained

with the following equation:

ẏcos(θ)− ẋsin(θ) = 0 (1)

These constraints typically arise when the number of controllable inputs for a robot

system is less than the number of degrees of freedom a robot has. For instance, a

car-like robot has three degrees of freedom (x, y, θ), but only two controllable inputs

(speed and turning angle).

Early work on this type of motion planning focused on control systems for the

constraints and kinematic models of non-holonomic robots [49][50][10][71]. The al-

gorithm proposed in [50] begins by planning a collision-free holonomic path. Then,

12

it subdivides the path until each endpoint can be connected with a non-holonomic

curve. Because this work is focused on defining the controllibility of non-holonomic

systems, they do not consider dynamic obstacles or real-time planning. Later work

approached the control problem with genetic algorithms [22][31][33], but they also

leave out dynamic obstacles as a consideration.

When planning non-holonomic paths for a robot, it is common to utilize a specific

type of curve to move the robot on. Reeds and Shepp defined optimal paths for a

non-holonomic vehicle that can drive forwards and backwards [77]. These curves,

commonly called Reeds and Shepp curves, assume that the robot’s velocity is con-

stant throughout the curve. Using polynomial spirals for non-holonomic planning

was proposed in [41] by defining a parametric control system. The advantages of

these curves are that 1) variable curvature throughout the curve can be obtained by

using higher-order polynomials and 2) they can be planned quickly (usually within 1

millisecond). Bézier curves are another type of curve to satisfy non-holonomic con-

straints [55][23]. They are preferred in many cases because they can be analytically

computed by a set of control points, which makes them even faster to compute than

polynomial spirals.

The work in [55] updates non-holonomic motion at real-time based on new sensing

information about the environment, but the environment does not contain dynamic

obstacles. Using B-spline curves for optimized motion in aerial robots was shown in

[37], but this work assumes that a higher-level planner provides a path, and it does not

consider dynamic obstacles with unpredictable motion. A deformation approach to

non-holonomic motion in dynamic environments was shown in [48], but this method

13

requires an initial collision-free path and global information about an environment

to perform deformation. Bézier curves have been used to generate motion around

dynamic obstacles in [23], but the motion of the dynamic obstacles was known.

Nearly all real-world mobile robots are subject to non-holonomic constraints. Thus,

generating motion that can satisfy such constraints is a critical piece of enabling real-

world autonomous robots.

1.5 Localization, Mapping, and Simultaneous Localization and Mapping

Three important and related areas of mobile robot navigation are localization,

mapping, and simultaneous localization and mapping (SLAM). Localization is the

problem of estimating a robot’s pose in an environment based on sensing information

and typically a known map of the environment. Localization typically requires a

map of the environment because dead reckoning (estimating position without using

environment landmarks) becomes less and less accurate as the robot drives further and

accumulates motion error. Mapping is the problem of establishing the representation

of a robot’s environment based on sensing and typically localization information.

Mapping typically requires good localization because landmark positions can only be

estimated from the robot’s pose so error in the robot’s pose will result in error in

the map. Simultaneous Localization and Mapping (SLAM) is the problem of both

estimating a robot’s pose and building a map of a robot’s environment simultaneously

to produce a map of an unknown environment. Since neither a map or the robot’s

location is known, SLAM must perform each task without the aid of the other task,

i.e., mapping without the aid of localization and localization without the aid of a

14

map.

Each of these problems are essentially state estimation problems. For localization,

typically the robot’s pose is the state being estimated. For mapping, typically a set

of landmark positions is the state, and the SLAM problems includes both a set of

landmark positions and the robot’s pose in the state.

Two common approaches to this are Kalman filters [38][78][85] [66] and particle fil-

ters [67][70][85] [34]. Kalman filters model the uncertainty by maintaining a Gaussian

distribution to represent the belief distribution, which encodes the most likely state

of the object and the uncertainty about the belief. Particle filters model uncertainty

by maintaining a set of estimates that represents a belief distribution approximation,

and updating that set as time goes on based on the uncertainty.

1.6 Real-time Detection and Tracking of a Moving Object

Detection and tracking of moving objects is a necessary task for autonomous robots.

Avoiding unknown obstacles depends on a robot’s ability to sense the environment,

detect the obstacles, and track them to predict their future motion. Detection and

Tracking of a Moving Object (DATMO) involves several aspects: 1) sensor selection,

2) object representation, and 3) accounting for sensing uncertainty.

Common sensors for obstacle avoidance are range-finding sensors, such as laser-

based sensors or RGB-D cameras. Two-dimensional laser sensors perform a ”scan”

on a single plane in a cone shape, and return the depth that the laser reached for

each direction that is scanned. LIDAR sensors are 3D laser-based sensors that return

points clouds instead of only a single scan. RGB-D cameras emit infra-red patterns

15

Figure 8: An occupancy grid, where the black shapes are obstacles, grey pixels are
occupied, and white pixels are free space.

to detect the distance of objects in view [97]. The maximum distance for laser-based

sensors is in the magnitude of hundreds of meters, whereas the maximum distance

for RGB-D cameras is roughly 5 meters.

Self-driving cars are typically equipped with a suite of laser-based sensors [86][88][69]

that together allow for real-time obstacle detection and tracking. These sensors scan

the road ahead and return point clouds for perception algorithms to act on. In

off-road environments, the sensors are used to identify obstacle regions, which are

regions that exceed a critical vertical height, and classify terrain. In urban environ-

ments, depth information is used to identify terrain, stop lights, static obstacles, and

dynamic obstacles (pedestrians and other cars) [54]. Unfortunately, performing so

many complicated tasks requires very expensive sensors. The authors in [54] claim

that hundreds of thousands of US dollars were used to equip their car with sensors.

Low-cost robots, such as the Turtlebot platform [25], typically use either 2D laser

scanners or RGB-D cameras to navigate indoor environments.

Common features extracted from 2D depth data are lines, corners, and circles.

Fast leg detection is done in [93] by extracting lines and circular arcs from laser data.

Lines and L-segments were used in [66] to detect moving obstacles. An alternative to

16

extracting features from range data is to build an occupancy grid, which represents

obstacles as occupied cells in a grid. Detecting occupancy was proposed in [30] by

building a grid where each cell represents the probability of a cell being occupied.

This approach has been simplified for modern applications by setting each cell to be

one of three discrete values to represent if a cell is occupied, unoccupied, or unknown

[62] (Figure 8). An occupancy grid approach [58] is used as the default local mapping

method for the ubiquitous ROS navigation stack [75][61].

Object tracking requires a method to deal with the inherent uncertainty present

in sensors. This task requires a system to estimate the state of the object given

sensor information. Since this problem is essentially a state estimation, approaches

described in Section 1.5 can be used for object tracking.

Some approaches are specific to tracking common objects in robotics environments,

such as humans or vehicles. Autonomous vehicle applications utilize LIDAR sensors

for tracking obstacles when the sensor itself is moving [60][66]. Human-aware appli-

cations learn general human motion [90] or the cooperative behavior of humans [46].

One recent tracking approach focused on fusing LIDAR and cameras to detect and

classify obstacles [68] so that only the pedestrians are tracked, and used clustering

techniques for point cloud data to do the tracking [18].

1.7 Software Testing

Software testing is an integral part of the software development process. The well-

known V-model of software development can be seen in Fig. 9. The right side of the

model outlines the levels of testing needed to thoroughly test a System Under Test

17

Figure 9: V-Model for software development

(SUT). Effective testing of a SUT involves creating a set of test cases (test suite) to

run on the SUT for each testing level, identifying the expected output of these cases,

running the system against the generated tests, and measuring the results of the test

suite. Generating a test suite depends on several factors, such as the testing level,

domain-specific knowledge, and maintaining a reasonable amount of test cases.

One of the biggest problems facing software test generation of any system is that

the possible input to any computer program is nearly infinite. Consider that a 64-bit

CPU can accept up to 264 − 1 different possible values, and that both the sequential

and temporal order of values can be significant. However, most input is irrelevant

for the system based on domain knowledge of the SUT. Test engineers must use do-

main knowledge to identify meaningful blocks of input and input behavior (sequential

and/or temporal order) to a system in order to create an effective test suite.

A common method to reduce the number of tests in a test suite is by using test

coverage criteria. test coverage criteria is a collection of rules that define requirements

for a test set in order to adequately test a System Under Test (SUT) [4]. In other

words, test coverage criteria define what input to use when testing software. The

most effective coverage criteria for a system will depend on the model used to struc-

18

ture the software (graphs, data flow, logical expressions, etc.), the type of coverage

desired (statement coverage, branch coverage, etc.), the various qualities of software

(concurrent, synchronized, etc.), and the level of testing one wishes to perform on a

SUT (unit, system-level, etc.).

1.8 Software Testing for Autonomous Robotics

The literature of testing autonomous robots and evaluating their performance

mostly covers field trials/test arenas and computer-based simulation.

Field trials were performed to test autonomous robots [59][84][17]. While it is

possible to generate many states during field trials, the lack of a systematic approach

can lead to two limitations: 1) fewer scenarios being encountered and the testers hand-

picking scenarios, and 2) not generating many significantly different types of scenarios,

i.e., the test cases may not provide sufficient coverage of the possible scenarios.

Dynamics simulators [26][44] can produce high fidelity simulations for robotics.

These simulators reproduce three-dimensional dynamic environments to re-create var-

ious scenarios that a robot may encounter. However, creating many different scenarios

is still something that must be manually done by a user. Dynamic simulators them-

selves do not provide a practical method to enumerate many different test cases.

Laval et al. [51] present guidelines to robot system-level testing, and they recog-

nize that tests should be repeatable, reusable, and automated as much as possible.

However, the tests involved human intervention, which do not scale to systems with

a large input space to cover with specific coverage-criteria.

19

Figure 10: Overview of the Model-based Testing approach

1.9 Model-based Testing

Model-Based Testing (MBT) uses various models to systematically generate tests

[28], and has been well accepted as the state-of-the-art for system-level testing due

to its potential for systematic and automatic test generation. Figure 10 shows an

overview of how executable test cases are generated with an MBT approach. MBT in-

cludes three key elements: models that describe software behaviors (i.e., test models),

coverage criteria that guide the test generation algorithms, and tools that generate

supporting infrastructure for the test cases.

Guan and Offutt introduced a MBT technique for testing component integration in

real-time embedded systems (RTES) [35]. However, they do not address concurrency,

and they assume a static world.

MBT for dynamic environments was first proposed in [5] by using the Communi-

cating Extended Finite State Machine (CEFSM) model [13] to model a set of discrete

interactions (such as converse, listen, assist, greet, and guide) between a robot and

a human, and to generate world states for system-level testing. Petri Nets were also

used for this same application [7]. Coloured Petri Nets (CPNs) were used to build

20

a test model for testing factory robots that carry a load from one place to another

in [56]. While all of this work utilizes MBT for robotics applications in dynamic

environments, none of them address the interactions between an autonomous mobile

robot and unknown moving obstacles. Further, none of them provide test execution

and validation of the technique.

CHAPTER 2: MOTIVATION AND OBJECTIVES

The previous chapter surveyed existing work for autonomous robots in dynamic

environments, and highlighted that each approach has significant shortcomings, does

not consider non-holonomic bases, and/or only exists in simulation without consider-

ing real-world uncertainties. Furthermore, nearly all methods are validated only by a

handful of experiments, rather than being rigorously validated via systematic testing

techniques.

This dissertation focuses on extending the Real-time Adaptive Motion Planning

(RAMP) framework to address these issues by developing a RAMP framework for real

non-holonomic robots that is robust to unknown obstacles, and verify its reliability

by rigorous and automatic software testing.

This dissertation specifically addresses the following problem. Given a 2D pla-

nar environment, a rigid body mobile robot subject to non-holonomic constraints,

an initial position, and a goal position, a real-time motion planner must generate

motion that will move the robot from its initial position to the goal position in the

environment while avoiding unknown obstacles that move in arbitrary ways.

The obstacles in the environment are not known beforehand to the robot. The size,

shape, and velocity of the obstacles must be inferred by real-time perception based

on real sensing data. The motion of the obstacles is not limited by speed or direction,

and an obstacle’s velocity may change at any time. The obstacles may enter or leave

22

the environment at any time.

The environment considered in experiments is a small 2D environment. The size

of the environment is small enough to allow dead reckoning for localization, rather

than more sophisticated localization and mapping techniques.

The robot is modeled as a disc moving in the environment with configuration

(x, y, θ), where θ is the yaw rotation of the robot. The robot’s velocity is subject to

the non-holonomic constraint:

ẋsin(θ)− ẏcos(θ) = 0 (2)

The robot’s motion is further limited by dynamic constraints which enforce maxi-

mum acceleration and velocity values on the robot.

The dissertation introduces approaches to address the following aspects of this

problem:

• RAMP extended to planning non-holonomic motion in the presence of obstacles

that move in unforeseen ways [63].

• RAMP extended to planning in the presence of unknown obstacles by incorpo-

rating real-time perception using real sensors [64].

• RAMP extended to leverage past experience when navigating in the presence

of unknown obstacles [65].

• A software test generation framework to validate the effectiveness of an imple-

mented RAMP system [1][2].

23

The following chapters detail these approaches extending RAMP and the validation

of the approaches on real robot systems as well as the software testing framework

applied to testing RAMP.

CHAPTER 3: REAL-TIME ADAPTIVE NON-HOLONOMIC MOTION
PLANNING IN DYNAMIC ENVIRONMENTS WITH UNKNOWN OBSTACLES

This chapter introduces an approach to achieve real-time non-holonomic motion

planning in the presence of unknown obstacles.

3.1 Real-time Adaptive Non-holonomic Motion Planning in Unforeseen Dynamic

Environments

We introduce an approach for real-time adaptive non-holonomic motion planning in

unforeseen dynamic environments that progressively converts holonomic segments to

non-holonomic segments on the fly for execution by the robot. This real-time hybrid

planner, called RAMP-H, enables smooth and adaptive non-holonomic motion of the

robot towards its goal while avoiding dynamic obstacles of unforeseen motion in the

environment.

3.1.1 Hybrid Trajectory Representation

A mobile robot can be either holonomic or non-holonomic. Its configuration can

be expressed as (x, y, θ). Its state can be expressed as a point (x, y, θ, t) in its

configuration-time (CT) space. A trajectory is represented as a set of states in the

robot’s CT space. A non-holonomic trajectory satisfies the non-holonomic constraint:

−ẋ sin θ + ẏ cos θ = 0 (3)

25

(a) Full hybrid trajectory (b) Robot cannot execute the
trajectory

(c) A new curve is formed so
that the robot can execute the
trajectory.

Figure 11: Hybrid trajectory examples

which is necessary for a non-holonomic robot and is desirable for a holonomic robot

(if it is not omnidirectional) to conduct smooth motion. A non-holonomic segment is

any set of continuous points on a trajectory that satisfy equation (1). Such a segment

may consist of curves and straight lines, as long as all points satisfy the non-holonomic

constraint. Any segments that require the robot to stop and rotate in place are not

non-holonomic segments.

Given a holonomic path consisting of straight-line segments (generated by the

RAMP-H planner, detailed in Section III), the algorithm converts the first two straight-

line segments to a non-holonomic segment by creating a Bezier curve to connect the

two straight-line segments, as shown in Fig. 11. Velocity and acceleration values that

satisfy the robot’s motion constraints are generated for each point on the curve, as

detailed below.

Each Bezier curve for connecting two straight-line segments is defined by three con-

trol points (X0, Y0), (X1, Y1), and (X2, Y2), as shown in Fig. 12, and can be expressed

in terms of a parameter u [55]:

x = (1− u)2X0 + 2u(1− u)X1 + u2X2

y = (1− u)2Y0 + 2u(1− u)Y1 + u2Y2

(4)

26

Figure 12: A quadratic Bezier curve connecting two straight line segments

The velocity and acceleration along the curve can be further derived as functions of

u̇ and ü:

ẋ = (Au+ C)u̇

ẏ = (Bu+D)u̇

(5)

ẍ = (Au+ C)ü+ Au̇2

ÿ = (Bu+D)ü+Bu̇2
(6)

where A = 2(X0 − 2X1 + X2), B = 2(Y0 − 2Y1 + Y2), C = 2(X1 − X0), and D =

2(Y1 − Y0). (X0, Y0) is chosen on the first straight-line segment. (X1, Y1) is the knot

point connecting the two straight-line segment, and (X2, Y2) is chosen on the second

straight-line segment, such that A, B, C, and D are not zero.

The Reflexxes Type II library [47] is used to generate smooth motion for a hybrid

path. For each straight-line segment, we apply Reflexxes to generate the trajectory

for x and then compute the corresponding trajectory for y as the linear function

of x. For the Bezier curve, Reflexxes is used to generate u, u̇, and ü values for a

trajectory of u and those values are substituted into the above equations to obtain

the corresponding non-holonomic trajectory.

There are two u̇ values that are necessary to specify to generate a trajectory using

27

Reflexxes - the initial and maximum u̇. The initial u̇ can be found when u is zero:

u̇0 =
ẋ0
C

=
ẏ0
D

(7)

where ẋ0 and ẏ0 are the velocities at the start of the curve (i.e., at the curve’s first

control point).

The maximum velocity u̇max can be decided by setting ü = 0. If a maximum of u̇

exists, it can be obtained by:

u̇max = min(

√
ẍmax
A

,

√
ÿmax
B

) (8)

where ẍmax and ÿmax are determined by the robot’s velocity limits. Otherwise, the

value of u̇0 is used for u̇max.

Note that if a Bezier curve makes too sharp of a turn, i.e., one with large curvature

values, the robot may not be able to follow it. The maximum angular velocity on a

curve occurs at the point ur, which is the point of minimum radius Rmin along the

curve, as derived in [55]:

ur = −AC +BD

A2 +B2
(9)

Rmin =

√
[(A2 +B2)u2r + 2(AC +BD)ur + (C2 +D2)]3

(BC − AD)2
. (10)

For a given Bezier curve, we can use the values of ur and u̇max and equation (5)

to make a conservative (i.e., worst-case) estimation of the robot’s linear and angular

velocities, vr and ωr respectively, required at ur. If the robot’s maximum angular

velocity is not large enough, i.e. ωmax < ωr, then the robot cannot follow the Bezier

28

curve.

If a robot’s starting orientation is not aligned with the beginning straight-line por-

tion of the non-holonomic trajectory segment (converted from the first two straight-

line segments of a holonomic path, as described above), as shown in Fig. 11(b), the

robot cannot readily execute the non-holonomic trajectory segment. That often hap-

pens when trajectory switching is needed. In such a case, a straight-line segment

aligned with the robot’s starting orientation and a Bezier curve are added to form

a non-holonomic transition trajectory, as shown in Fig. 11(c), to enable the robot

smoothly get on the original non-holonomic segment.

The result is a hybrid trajectory, consisting of up to two Bezier curves followed by

straight-line holonomic segments, allowing smooth transition of the robot from one

straight-line segment to the next.

3.1.2 Overview

RAMP-H conducts planning and execution of motion simultaneously via planning,

control, and sensing cycles. Planning cycles modify a set of trajectories, called a

population, to find a better trajectory for the robot to move on. Unlike the other

cycles, planning cycles are not set to occur at specified intervals. When one planning

cycle finishes, a new one begins immediately. At each control cycle, the robot will

switch to the best trajectory in the population. As the robot moves, changes in the

environment are captured and updated in each sensing cycle and conveyed to the

planner to facilitate adaptation.

Algorithm 1 outlines our method. Our planner starts from generating an initial

29

population of holonomic trajectories that all start from the same initial state of the

robot, and each trajectory consists of straight-line segments and self-rotations, where

the knot configurations connecting the straight-line segments can be generated ran-

domly. The procedure convert is then called to add a non-holonomic segment at the

beginning of each trajectory to enable a smooth transition of the robot to the first

straight-line segment of that trajectory and also convert the first two straight-line

segments of the trajectory into a non-holonomic segment (as described in Section II).

The result is a population of hybrid trajectories starting from two non-holonomic

segments followed by holonomic segments. Section III-B provides more details of

convert. Next, The procedure evaluate is called to evaluate and rank the fitness of

the hybrid trajectories, as detailed in Section III.C. The best trajectory is obtained

for the robot to move on.

During the first control cycle, the robot moves along the best trajectory, τ1, as

long as its portion within the first control cycle, τ1,c, is collision-free. Note that the

duration of a control cycle ∆tc is set to ensure that τ1,c is non-holonomic. While

the robot moves along τ1,c, the planner is simultaneously improving the population

of trajectories so that at the next control cycle, the robot can switch to a better

trajectory if available. For that purpose, at the beginning of the current control

cycle, the planner updates the starting states of all other trajectories (except for the

currently being executed one) to be the state at the beginning of the next control cycle

and converts the updated trajectories to be hybrid ones. Note that the conversion can

change the starting time of the next control cycle because different hybrid trajectories

require different starting times (Section III-B).

30

Algorithm 1 RAMP-H overview

1: Set control and sensing cycle time ∆tc and ∆ts respectively;
2: i← 1; //index of control cycle
3: initialize a population P1 of holonomic trajectories;
4: convert P1 to hybrid trajectories PH

1 ;
5: evaluate PH

1 and obtain the best trajectory τ1
6: and the portion τ1,c within the first ∆tc of τ1;
7: t1 ← 0; //beginning time of 1st control cycle
8: t2 ← ∆tc; //beginning time of 2nd control cycle
9: τbest ← τ1;

10: while goal is not reached do
11: simultaneously do Move, Plan, and Sense:
12: Move:
13: if τi,c is feasible or collision on τi,c is not expected
14: within time period tthresh then
15: move along τbest;
16: else
17: pause motion;

18: Plan:
19: if beginning of ith control cycle then
20: ti+1 ← ti + ∆tc;
21: obtain Pi+1 by updating the starting state of Pi;
22: convert Pi+1 to PH

i+1 and find the earliest
23: starting time ti+1,e in P h

i+1;
24: ti+1 ← ti+1,e

25: adjust Pi+1 and PH
i+1;

26: evaluate PH
i+1;

27: modify Pi+1;
28: if end of ith control cycle then //reaching time ti+1

29: i← i+ 1;
30: τbest ← τi //update best trajectory

31: Sense:
32: if new sensing cycle then
33: evaluate PH

i+1;
34: collision-check τi,c;

31

The planner improves the trajectories by calling adjust, evaluate, and modify

repeatedly in multiple planning cycles (i.e., the while loop), detailed in Section III-C.

During robot motion and planning, sensory updates of the environment are conducted

every sensing cycle, and the trajectories are re-evaluated and re-ranked to reflect the

changes in the environment. Re-evaluating is necessary because the previous best

trajectory may no longer be the best after changes occur in the environment. If the

best non-holonomic trajectory segment τi,c is not collision-free and the collision is

expected to occur within time period, tthresh, then the robot’s motion will be paused

to wait for the planner to find a collision-free trajectory through more planning cycles.

The value of tthresh is chosen such that the robot stops early enough to allow for a

non-holonomic motion around a stopped obstacle. If the obstacle moves away from

τi,c before ti+1, then the robot will resume its motion along τbest.

3.1.3 Smooth Trajectory Transition and Adaptive Control Cycles

Given a population P of holonomic trajectories, where each is in terms of knot

configurations connecting straight-line segments, the procedure convert obtains a

population of hybrid trajectories PH from P by adding a non-holonomic transition

trajectory segment, if necessary, followed by converting the first two straight-line

segments to a non-holonomic trajectory segment, as described in Section II, for each

trajectory in P . At each control cycle, after the starting states of trajectories are

updated to be the states at the next control cycle, convert is called on the new

population to prepare non-holonomic segments.

Note that a transition trajectory segment has to occur before the next control cycle

32

in order for the robot to smoothly switch to the intended trajectory by the time

of the next control cycle. Thus, a transition trajectory consists of a Bézier curve

to connect the straight-line segment of the current trajectory before transition and

the first straight-line segment of the new trajectory. The segment points (X0, Y0),

(X1, Y1), and (X2, Y2) for a transition curve are the robot’s current position, the

future position at the next control cycle, and the first control point of the target

trajectory’s Bézier curve, respectively.

The control points of the transition curve for a trajectory, however, depend on the

robot’s kinematic constraints and the sharpness of the curve needed for transition.

We divide the control cycle period ∆tc into m steps. Starting at the time of the

mth step, our system assigns the (future) position of the robot at that time as the

first control point and attempts to plan a kinematically feasible transition trajectory.

If such a trajectory cannot be found, the position at the m-1th step is used. Our

system continues this process until either it finds a kinematically feasible transition

trajectory or the possible positions at all steps are exhausted so that no switching

will be possible to that trajectory. Different trajectories are likely to have different

first control points.

Fig. 13 shows an example. In Figure 13(a), the robot is moving on the best trajec-

tory, T , at the current time and wants to compute a transition trajectory to switch

to trajectory T ′. The next control cycle is expected to occur in ∆tc seconds and is

at point pcc. The trajectories’ curves between their first two segments are labelled as

C and C ′. The motion states at pc and p′c are the initial states of their respective

curves.

33

(a) Robot wants to switch from
T to T ′

(b) Transition trajectory shown
in blue

(c) Full switch shown in blue

Figure 13: Switching trajectories

The transition trajectory can be seen in 13(b) as the solid blue line. It consists

of a Bézier curve, Cs, that begins at one of the future time steps and a straight-line

segment that ends at the first control point of C ′. Once the transition trajectory,

Ttrans, has been created, the curve from the target trajectory, C ′, and the remaining

points on T ′ are concatenated onto Ttrans to form Tnew. In Figure 13(c), Tnew is shown

in blue.

It is unlikely that all trajectories in the transition population will begin at the same

time. Therefore, the starting time of the next control cycle is set to be the earliest

starting time among all transition trajectories in Algorithm 1, i.e., the frequency

of control cycles is determined both by the need of non-holonomic conversion of

trajectories for the robot to follow and the need for the robot to switch to a better

trajectory. Thus, the interval of an actual control cycle is adaptive, unlike in the

previous RAMP design [89].

34

3.1.4 Trajectory Evaluation

Procedure evaluate calls an evaluation function to measure the fitness of each

hybrid trajectory so that trajectories can be ranked based on their fitness. The

evaluation utilizes a cost function to determine fitness and the function depends on

a trajectory’s feasibility.

3.1.4.1 Feasible trajectories

Feasible trajectories are defined as those with no predicted collision in their non-

holonomic portion and are kinematically feasible for the robot to move on. The cost

evaluation function for a feasible trajectory is:

f = w1
T

η1
+ w2

∆θ

η2
+ w3

(
D

η3

)−1
(11)

where T is the execution time of a trajectory, ∆θ is the orientation change needed to

move on the trajectory, and D is the minimum distance to any obstacles along the

trajectory, wi is a weight, and ηi is a normalization value. Note that if there is no

obstacle, the third term is zero.

3.1.4.2 Infeasible trajectories

Infeasible trajectories are defined as those with collision in the non-holonomic por-

tion or are not kinematically feasible for the robot to move on. The cost equation is

also a weighted sum:

g = ρT + ρθ (12)

35

ρT =
δT
Tcoll

and ρθ = δθ
∆θ

ηθ
(13)

where δT and δθ are large constant values, Tcoll is the duration before the first pre-

dicted collision in the trajectory, ∆θ is the orientation change needed to move on the

trajectory, and ηθ is a normalization term.

The penalty ρT ensures that trajectories with collisions expected earlier will be

penalized more than trajectories with collision expected later. ρθ ensures that tra-

jectories with larger orientation change are penalized more. δT and δθ are set such

that the penalty for a large orientation change will not be larger than for collision.

No infeasible trajectory will ever be fitter than a feasible one.

Procedure evaluate only checks for collision in the non-holonomic segments of a

trajectory to take into account the fact that the environment may change in unpre-

dictable ways, trajectories are constantly evolved, and thus non-holonomic conversion

occurs later for later segments and will be checked for collision then. This saves a lot

of time. Collision checking is conducted between the robot’s non-holonomic trajec-

tory segment and the predicted trajectory segment for the same time period of every

obstacle.

3.1.5 Improvement of Trajectories Based on Sensing

The RAMP-H planner improves hybrid trajectories through the following opera-

tions.

3.1.5.1 Adjust

At each control cycle, the new population Pi+1 is obtained by updating the starting

state of Pi. The updated state is the robot’s intended future state at the next control

36

cycle based on its current trajectory. However, this update assumes perfect motion

of the robot. Due to motion error, the robot may not reach this state and may

encounter unpredicted collision as a consequence. The adjust procedure is called in

each planning cycle (i.e., the while loop in Algoritm 1) to address this issue.

The procedure adjust polls the robot’s internal sensors to obtain the robot’s cur-

rent motion state. The difference between the robot’s current position and the ex-

pected position along the current trajectory at the time of the planning cycle is added

to the position of the state scc at the beginning of the next control cycle as an offset.

The positions in all the trajectories of the population starting at scc are offset accord-

ingly. Although the act of offsetting is quite simple, the significance of this method

is that it relies on the interaction of planning and control cycles to treat specific time

cycles as clear, unambiguous landmarks in time to perform the adjustment.

If the robot is stopped indefinitely by imminent collision, then the adjust procedure

allows the planner to plan alternative trajectories for the robot from where the robot

is stopped.

3.1.5.2 Modify

In each planning cycle, the planner also calls the procedure modify to hopefully

improve the population of trajectories. In procedure modify, a subset of trajectories

are randomly selected, and next the knot configurations (i.e., the holonomic paths)

are altered by common genetic operators as used in the RAMP planner [89]: Insert,

Delete, or Change a knot configuration, Swap the order of two knot configurations,

and Crossover two trajectories. New trajectories are converted again into hybrid

37

Figure 14: Example motion from start to finish

ones (if necessary) and evaluated. They are then used to replace some randomly se-

lected trajectories except for the best trajectory in the previous population. However,

an infeasible trajectory will not replace a feasible one and a trajectory will not be

added if its fitness is less than the minimum fitness in the population. This approach

mixes elitism and diversity in evolving a trajectory population over generations (i.e.,

planning cycles).

Note that our planner continuously improves trajectories through planning cycles

while interacting with sensing cycles to adapt trajectories to changes in the environ-

ment. The planner also interacts with control cycles to allow the robot to switch

to trajectories best adapt to the environment. Therefore, the actual motion that

the robot executes is most likely a concatenation of non-holonomic segments from

different hybrid trajectories along the way, as shown in Fig. 14.

3.2 Real-time Sensing and Perception of Unknown Obstacles

In order for a RAMP planner to effectively adapt to unknown or unpredictable

obstacles in real environments, it must use real sensors to detect and track obstacles

at real-time. In this section, we describe how to achieve real-time perception using

depth data in 2D environments.

38

Algorithm 2 Real-time perception

1: H0 ← most recent depth data
2: I0 ← binary occupancy grid based on H0

3: I0 ← I0|I1|...|IN // ameliorate noise
4: N ← contour points(I0) // vertices of a polygon for each connected component
5: Oi ← ∅ // initialize set of obstacles in most recent grid
6: for each polygon ni ∈ N do
7: ci ← bounding circle for pixels in ni
8: si ← packed circles into ni
9: oi ← new obstacle created from ci and si

10: Oi ← Oi ∪ oi
11: Perform data association between Oi and previous set O of obstacles
12: Perform Kalman filter update on each obstacle’s position and predict obstacle

velocity
13: Publish obstacle list O

Algorithm 3 Obstacle circle packing

1: G←polygon bounding an obstacle
2: E ←edges of G
3: L←cells inside G
4: S ← ∅ // initialize list of circles
5: while L.length > 0 do
6: PQ←priority queue of cells
7: for each cell l ∈ L do
8: di ← min∀e∈E dist(l, e)
9: dj ← min∀c∈C dist(l, c)

10: cl ← circle centered on l with radius min(di, dj)
11: insert cl into PQ with value min(di, dj)

12: M ← PQ.pop()
13: Move M to S
14: Remove all cells from L whose center is in M
15: return S

39

(a) Example occupancy grid built by the
costmap 2d package. Occupied pixels are black,
and unoccupied pixels are grey. The grid’s res-
olution is 5cm.

(b) Representation of an obstacle is a hierarchy
of a bounding circle and set of packing circles
(with a size threshold). The numeric values and
arrows represent the predicted velocity.

Figure 15: The sensing module receives an occupancy grid based on depth data and
outputs a list of circles representing position and size, and predicted linear velocities
for each obstacle.

3.2.1 Overview

Arbitrary obstacles in a 2D environment are approximated by a collection of simpler

2D shapes. Ideally, the approximation should have two qualities: it enables fast

collision detection and it is efficient to build. Computing circles to bound an obstacle

and to fill an obstacle is efficient, and circles provide fast collision checking. Thus,

the goal of the sensing module is to build obstacle approximations using circles, and

subsequently predict obstacle speeds and headings.

The input to the sensing module is an occupancy grid (Fig. 15(a)) obtained by

passing depth data to the costmap 2d ROS package [58], and the output is a list of

obstacles that have position and size (based on circle center and radius), heading, and

speed (Fig. 15(b)). After obstacles are found, they are sent to the planning module

to use for collision detection.

The system represents each obstacle as a 2-level hierarchy of circles. The top-level

40

circle bounds the obstacle region, and its center is on the obstacle’s centroid position

with a radius proportional to the size of the obstacle region. The bottom-level circles

are inner circles packed into the obstacle. The top-level bounding circle is used to

represent the obstacle’s position, and the bottom-level inner circles are used to detect

collision with the robot.

Kalman filters are used to model uncertainty in obstacle position. In addition to

modeling uncertainty, noise is further reduced by accumulating occupancy grids and

averaging speed values. Linear velocities are predicted based on position displacement

and radius change between sensing scans.

3.2.2 Algorithm for Real-Time Perception

Algorithm 2 outlines the operations of the sensing and perception module. The

robot is equipped with a sensor that returns depth data at fixed intervals as the

robot moves. The depth data are projected onto a local occupancy grid through

the costmap 2d ROS package [58] which is then used to update a global grid of the

environment.

Once the global grid is updated, it is combined with recent grids (e.g., all grids in

the last 0.25 seconds) by using the OR bitwise operation on corresponding pixels of

the grids (line 3, Alg. 2). This ameliorates the effects of noise that cause boundary

pixels of an obstacle on the grid disappear.

Since the world is represented as a grid, image processing techniques are lever-

aged for identifying obstacle regions. The contour points can be found by using the

OpenCV library (line 4, Alg. 2) and the results are the vertices of arbitrary polygons

41

that represent obstacle regions.

A bounding circle ci computed for a polygon (line 7, Alg. 2) has center σ = (xi, yi),

which is the centroid point of the pixels in the polygon, and radiusR = maxi{dist(zi ∈

Z, σ)}, where Z is the set of all obstacle pixels in the polygon. Circles can be packed

into the polygon using Algorithm 3. This algorithm builds a list of inner circles by

iteratively computing the largest circle that will fit into the polygon and adding that

circle to the list until all space within the polygon is filled.

Each obstacle is represented as a circle group, which is an n-ary tree with max-

imum depth 1 where the root node is a bounding cicle and its children are all the

inner circles that can be packed into the polygon representing the obstacle region.

Operations pertaining to the obstacle’s identification, such as data association and

velocity prediction, are performed on the bounding circle in the circle group, whereas

the inner circles are used when performing collision detection with the robot.

Once a circle group has been computed for each obstacle, data association is per-

formed to relate the latest set of obstacles Oi to the previous set of obstacles O (line

11, Alg. 2). Data association is done by marching bounding circles in Oi to bounding

circles (called targets) in the previous set O. Each circle is matched with its closest

target, unless 1) the distance between the circles is larger than a threshold, 2) the

change in radius is larger than a threshold. If an obstacle in Oi cannot be matched

to a target, then a new obstacle is created. If a target has no matched obstacle in Oi,

then the corresponding obstacle in O is deleted.

A Kalman filter is maintained for each obstacle to estimate its position (the cen-

ter of its bounding circle). The result of the Kalman filter update step gives the

42

obstacle’s final position. Obstacle speed is predicted based on an obstacle’s position

displacement and the radius change of the bounding circle (line 12, Alg. 2). These

two values are summed to find the total distance covered by an obstacle since the

last iteration. Once the speed has been predicted, it is averaged with previous speed

values to help stabilize the speeds. An obstacle’s direction is computed based on the

change in position of the obstacle’s bounding circle.

Once the circle groups and linear velocities of each obstacle have been computed,

the obstacle information is sent to the planning module to initiate a sensing cycle.

In physical experiments performed for this work, the sensing module maintains a

publishing rate of 10Hz.

3.3 Implementation, Results, and Discussion

The RAMP-H system has been incorporated with real-world, real-time perception

and tested in real experiments. Its effectiveness is verified by experiments where a

robot running RAMP-H moves among a walking human and moving robot obstacles

as well as static obstacles. The following subsections detail our implementation,

experimental environments, and results.

3.3.1 Implementation and Experimental Setup

Our planner is implemented using C++ and utilizes the ROS framework [75] for

communication among the different modules. Each module (i.e., RAMP-H planner,

trajectory generation, path modification, trajectory evaluation, and trajectory fol-

lowing) runs on its own ROS node. All nodes (other than trajectory following and

on-board control of the robot) were run on an Intel i7 8-core CPU at 3.4GHz. The

43

robot platform used for exprimentation was a Turtlebot 2 [25]. Depth data is obtained

from the robot’s RGB-D camera.

In all experiments, the environment is a 3.5m square with a flat floor and carpet.

The robot running RAMP-H begins at location (0, 0) and is oriented towards the

goal (3.5, 3.5). Predicted obstacle information (position, size, and linear velocity) is

published from the sensing node at 10Hz. The robot’s pose is obtained from odometry

information calculated by the Turtlebot 2’s internal gyroscope and wheel encoders.

The maximum linear and angular accelerations of the RAMP-H robot (Turtlebot

2) are set to 1m/s2 and π
2
rad/s2 respectively and the maximum linear speed is set

to 33cm/s. The maximum angular speed for the RAMP-H robot is set to π
4
rad/s.

The radius of 21cm is used to represent the robot’s size when performing collision

detection and verifying dynamics constraints for non-holonomic curves.

In the following, we show results for four different scenarios with two unknown static

obstacles and different unknown dynamic obstacles: Case 1: one moving obstacle,

Case 2: a moving robot followed by a human obstacle, Case 3: both a human and

moving robot moving in different directions, and Case 4: both a human and moving

robot moving in similar directions.

3.3.2 Visualization of Experiments

Figures 16, 17, 18, and 19 show snapshots of a test from each case. In these figures,

the rviz window is attached to the real-life image of the test. This visualization

shows the position of the robot and obstacles and various other important details. The

positions and sizes of obstacles are shown as bounding circles (slightly transparent) in

44

the visualization, and the estimated speeds (in m/s) are shown as the numeric values

inside the bounding circles. The estimated direction of an obstacle is shown by an

arrow emitting from its bounding circle (the size of the arrow scales with the obstacle’s

speed, but has a minimum length). The opaque circles inside the obstacle cells are the

results of the circle-packing (Algorithm 3) for each obstacle. In addition to obstacle

information, the population of trajectories is also displayed. The trajectories are color

coded as: blue - feasible, red - infeasible, and green - the current best trajectory in the

population (regardless of feasibility). If the obstacles have nonzero speed, then their

predicted trajectories are displayed in red emitting from the center of the obstacle.

The long black arrows emitting from the robot represent the field of view for the

robot’s RGB-D camera. This is shown to highlight the limits of the robot’s ability to

sense the environment. The black arrow emitting from the center of the robot shows

its current orientation.

3.3.3 Records of Cycle Periods

Figure 20 helps visualize RAMP-H’s cycles (planning, sensing, and control) that

occur while the robot is moving in each unknown and dynamic environment. These

charts record real data from the experiments. In each of the subfigures, the horizontal

axis is the time in seconds and each tick mark shows when a cycle occurred.

For each test, a fixed number of planning cycles occur before any control and

sensing cycles. This is done to improve the optimality of the population. In all tests

run for this paper, 50 planning cycles are run in this way. After those 50 planning

cycles, control and sensing cycles begin running. The frequency charts reflect this

45

(a) (b)

(c) (d)

Figure 16: Case 1: One dynamic obstacle (human) and two static obstacles. The
Turtlebot 2 platform runs RAMP-H.

- one can see an extremely dense amount of planning cycles before the control and

sensing cycles begin. Once the other cycles begin, the planning cycle periods slow

down.

All of the cycles use shared resources and involve inter-process communication with

other modules, e.g. sensing cycles involve communication between the planning and

sensing modules. The synchronization between modules and resources is handled by

ROS.

Planning cycles occur as often as possible, i.e. they do not occur at regular intervals.

As such, they are the most frequently occurring cycles during RAMP’s execution time.

Sensing cycles are set to occur at fixed intervals by the planning module subscribing

to obstacle information published by the sensing module at the specified rate. The

frequency of control cycles changes (see Section 3.1.3) and is generally much longer

46

(a) (b)

(c) (d)

Figure 17: Case 2: Two dynamic obstacles come into view sequentially and two static
obstacles. The Turtlebot 2 platform runs RAMP-H.

than planning and sensing cycles.

The length of a planning cycle depends on the computational load on the system

and the availability of resources that the planning cycles need (e.g. the memory

holding the population of trajectories). Sensing cycles are also affected by the com-

putational load on the system. Some gaps in the planning and sensing cycles that are

caused by waiting for resources throughout the run, but generally the planning cycles

are very dense throughout a run and the sensing cycles are close to the desired rate.

Many of these gaps occur right after a control cycle occurs. This is due to control

cycles using a large amount of resources and having a longer execution time than the

other cycles.

3.3.4 Description of Test Cases and Results

We now explain each case in more detail.

47

(a) (b)

(c) (d)

Figure 18: Case 3: Two dynamic obstacles moving in different directions and two
static obstacles. The Turtlebot 2 platform runs RAMP-H.

3.3.4.1 Case 1: One Dynamic Obstacle and Two Static Obstacles

Figure 16(a) shows the environment as the human obstacle moves towards the robot

and comes into view. The predicted direction of the obstacle is far from its actual

direction (Fig. 16(a)). However, as the obstacle gets closer, its predicted velocity

becomes more accurate and the robot switches to a new trajectory to avoid the

obstacle (Fig. 16(b)). The robot then continues to move farther from the obstacle

until past it, and switches trajectories to move to the goal.

3.3.4.2 Case 2: Two dynamic obstacles interacting sequentially and two static

obstacles

This case is meant to show that the RAMP-H system can handle obstacles in a

sequential manner, which is something that happens very often in real-world environ-

48

(a) (b)

(c) (d)

Figure 19: Case 4: Two dynamic obstacles moving in the same direction and two
static obstacles. The Turtlebot 2 platform runs RAMP-H.

ments, such as moving down a hallway.

At the start of the tests, two static obstacles are placed in the environment (only

one can be viewed by the robot due to being on the edge of the field of view), one

dynamic obstacle (a robot that will move with constant velocity) is initially positioned

several meters away from the robot with orientation directed at the robot, and the

other dynamic obstacle (human) is positioned out of the robot’s view.

The first dynamic obstacle moves toward the robot in a straight-line and the

RAMP-H planner is forced to adapt to this obstacle early in the run (Figs. 17(a),

17(b)). After this first obstacle is avoided, a human obstacle approaches the robot by

walking in its path (Fig. 17(c)). The RAMP-H planner detects the new obstacle and

switches trajectories to avoid the obstacle and move to the goal (Figs. 17(c), 17(d)).

49

(a) Visualization of cycles for test 1 of case 1 (b) Visualization of cycles for test 1 of case 2

(c) Visualization of cycles for test 1 of case 3 (d) Visualization of cycles for test 1 of case 4

Figure 20: Visualization of cycle frequencies

3.3.4.3 Case 3: Two dynamic obstacles moving in different directions, and two

static obstacles

Case 3 places two static obstacles in the environment and has two dynamic obstacles

that will be in the robot’s view concurrently (as opposed to sequentially in Case 2).

In this case, the dynamic obstacles move in significantly different directions.

When the robot begins moving, the two dynamic obstacles start to move. One of

those obstacles moves towards the robot, and the other dynamic obstacle (the human)

moves away from the robot’s initial path (Fig. 18(a)). The robot switches trajectories

to avoid the dynamic obstacle moving towards it, but in doing so it turns towards

the human dynamic obstacle. The robot switches trajectories again to move between

the two dynamic obstacles and then move towards the goal (Figs. 18(b)-18(d)).

50

3.3.4.4 Case 4: Two dynamic obstacles moving in similar directions, and two

static obstacles

Case 4 is similar to Case 3 in that there are two dynamic obstacles that the robot

can sense concurrently. However, in this case, the dynamic obstacles move in a similar

direction. The distinction between these two cases was made because it typically

elicits different behavior from the robot. In Case 3, the robot moves between the

two dynamic obstacles, but in Case 4 the robot must move around both dynamic

obstacles as if they are one unit.

When the robot begins moving, the two dynamic obstacles start to move towards

the robot (Fig. 19(a)). The robot switches trajectories to avoid both of the obstacles

with one large curve (Fig. 19(b)). As the obtacles get closer, they become one con-

nected component on the occupancy grid (Fig. 19(b)), and the robot switches to a

wider curve to provide more clearance while avoiding the obstacles (Fig. 19(c)). After

moving around the dynamic obstacles, the robot switches trajectories again to avoid

one of the the static obstacles and move towards the goal (Fig. 19(d)).

Table 1: Performance data for five runs of case 1

Run Number 1 2 3 4 5 Average
Runtime (s) 19.03 25.15 18.01 21.31 18.90 20.48
Min. Dist. from Obstacles (m) 0.75 0.66 0.65 0.32 0.77 0.63
Number of Trajectory Switches 9 12 8 17 9 11
Distance Travelled (m) 8.06 7.31 7.02 6.51 7.03 7.19
Time in Imminent Collision (s) 0.65 0.00 0.00 1.00 0.00 0.33
Number of Planning Cycles 331 416 325 402 355 365.8
Number of Sensing Cycles 162 226 151 203 170 182.4
Number of Control Cycles 27 33 29 24 21 26.8

51

Table 2: Performance data for five runs of case 2

Run Number 1 2 3 4 5 Average
Runtime (s) 27.56 25.40 21.62 27.88 18.50 24.19
Min. Dist. from Obstacles (m) 0.35 0.38 0.50 0.43 0.72 0.48
Number of Trajectory Switches 13 15 13 18 13 14.4
Distance Travelled (m) 7.19 7.68 6.76 8.24 6.81 7.34
Time in Imminent Collision (s) 2.00 0.00 0.10 0.75 0.30 1.17
Number of Planning Cycles 506 461 405 486 333 438.2
Number of Sensing Cycles 253 239 195 246 159 218.4
Number of Control Cycles 34 33 24 33 23 29.4

Table 3: Performance data for five runs of case 3

Run Number 1 2 3 4 5 Average
Runtime (s) 26.32 23.28 27.42 19.26 19.25 23.11
Min. Dist. from Obstacles (m) 0.64 0.39 0.98 0.65 0.81 0.69
Number of Trajectory Switches 17 8 19 15 14 14.6
Distance Travelled (m) 6.18 7.49 7.05 6.21 6.24 6.63
Time in Imminent Collision (s) 0.00 2.15 0.00 0.00 0.00 0.43
Number of Planning Cycles 461 412 483 336 372 412.8
Number of Sensing Cycles 235 201 251 163 176 205.2
Number of Control Cycles 30 31 29 29 22 28.2

3.3.5 Discussion of Performance

As RAMP-H is a stochastic algorithm, the results from different test runs are

different. The most significant difference between the tests is which direction the

robot moves to avoid the obstacles. The other differences include the optimality of

the trajectory and slight differences in the obstacle predicted speed and direction.

After moving away from obstacles, the robot’s motion is determined by how quickly

RAMP can find a new and better trajectory to the goal.

Tables 1-4 show performance data from the five runs of each case. In Tables 1,

the number of times the robot switches trajectories for Case 1 ranges from 9 to 17.

52

Table 4: Performance data for five runs of case 4

Run Number 1 2 3 4 5 Average
Runtime (s) 19.11 18.78 20.15 22.96 21.69 20.54
Min. Dist. from Obstacles (m) 0.86 0.78 0.48 0.46 0.61 0.64
Number of Trajectory Switches 10 10 9 18 18 13
Distance Travelled (m) 5.99 7.14 7.45 7.16 6.47 6.84
Time in Imminent Collision (s) 0.10 0.00 0.00 0.70 0.00 0.16
Number of Planning Cycles 312 324 368 417 366 357.4
Number of Sensing Cycles 155 153 181 202 191 176.4
Number of Control Cycles 23 29 29 33 32 29.2

Note that switching trajectories is influenced by the need to both avoid obstacles and

optimize motion. It can also be influenced by the time spent in imminent collision

because the best trajectory in the population can change with each new control cycle

during or soon after an imminent collision state.

The number of trajectory switches for Case 2 increases from Case 1 and some runs

have double the amount of trajectory switches. This is likely due to the robot twice

avoiding dynamic obstacles. Avoiding dynamic obstacles twice can also be the cause

of Case 2 having the largest average time spent in imminent collision, as shown in

Table 2. Case 2 has the longest average runtime which is a result of both having

the largest average time spent in imminent collision and the largest average distance

travelled.

The performance data for Case 3 and 4 can be seen in Tables 3 and 4. These

cases are similar because they have multiple dynamic obstacles in the robot’s view

concurrently. Table 3 shows that Case 3 has significantly longer runtime for two of

the runs. This can be due to the stochasticity of RAMP - the robot motion could

have been a very sub-optimal trajectory to avoid obstacles. Aside from the runtime,

53

the performance results for Cases 3 and 4 are similar.

The number of planning, sensing, and control cycles depends largely on the runtime.

As shown in Tables 1-4, the number of these cycles increases as the runtime increases.

Small discrepancies in these numbers (such as planning cycles in runs 4 and 5 for Case

3) are due to the computational load throughout a run being larger than others. For

instance, this can happen if more obstacles are in view throughout the run, which

depends on the motion the robot takes.

Some of the tests have differences in what the robot can initially see. For example,

in the test shown in Figure 16, the first snapshot shows that the robot can detect both

static obstacles in the initial position. In case 2 shown in Figure 17, the robot can

only see one of the static obstacles. This is due to the static obstacles being moved

outside of the robot’s field of view. In the tests where the robot cannot initially see

one of the static obstacles, the static obstacles are detected as the robot moves around

the environment.

Although measures are taken to reduce large and rapid changes in the predicted

velocities of the obstacles, the sensing module can still generate large differences on

new sensing cycles. This is largely due to noise in the depth data. The RGB-D sensor

being used in our experiments has a limited range. The maximum recommended range

is 3.5m [57]. When obstacles are beyond or near that limit, the noise can cause nonzero

speeds and directions that may significantly differ from the real velocity. However, as

obstacles get closer to the robot, the predicted velocities become reasonable and the

robot is able to avoid the obstacles.

In all of the experiments, only the internal sensors of the Turtlebot 2 (wheel en-

54

coders and gyroscope) were used for the RAMP-H localization. This method is suf-

ficient for our experimental environment. Other better localization methods can be

used if needed. For instance, a large map of unknown static obstacles can be obtained

through running a Simultaneous Localization and Mapping (SLAM) algorithm [85],

and then a localization algorithm based on the map from SLAM can be run in parallel

with RAMP to obtain the robot’s pose as it moves through the environment. This

may be necessary for large environments that contain different rooms, for instance.

More sophisticated feedback sensors or localization methods can decrease the amount

of motion error to adjust for. However, some motion error will always exist and need

to be accounted for. By addressing the issue of adapting to the motion error, our

method puts planning and control in sync regardless of how much error has accumu-

lated and if the sensing means are limited, e.g. if a camera cannot be used due to a

dimly lit environment.

The experiments carried out cover a variety of cases that an autonomous robot

may encounter and illustrate how a RAMP-H system effectively handles them. In

addition to the high-level behavior, low-level performance data are provided from the

experiments. It should be noted that our experiments were done on a low-cost robot

with limited sensing rather than more sophisticated mobile robots that can utilize

LIDAR sensing and/or higher speeds. With more accurate and faster sensors, the

RAMP-H framework can be more effective in dealing with faster moving obstacles.

CHAPTER 4: LEVERAGING PAST EXPERIENCE IN RAMP

Many real-world applications require robots to navigate in unknown dynamic envi-

ronments, such as robots serving people in crowded public space, autonomous rescue

or security robots, and autonomous self-driving cars, and real-time robot motion

planning is required in those environments. Real-time motion planning approaches

include, for example, re-planning algorithms [45, 32], Elastic Roadmaps framework

[95], velocity obstacle modelling [80], and the Real-time Adaptive Motion Planning

(RAMP) framework [89]. While those approaches are based on different algorithms

and have different assumptions about the environments, they share one common char-

acteristic: they guide a robot navigating an environment as if it never navigated the

environment before; no past experience is incorporated.

However, a person navigates an environment utilizing past experience even though

the environment has new dynamic obstacles with unknown motion each time the

person visits. For example, inside a food court, a shopper navigates among many

unknown people with unknown motion (i.e., without knowing where people are going)

but can still utilize past experience (for instance, chairs at a table are likely to be

pulled away from the table when people sit down) to navigate more efficiently without

collision in such an environment.

The work presented in this chapter is inspired by the above observation and com-

bines learning from past experience and real-time motion planning.

56

Our approach is to use the Hilbert maps framework [76] to learn a probabilis-

tic occupancy map of a dynamically unknown environment from the observation data

collected in previous visits of the environment and incorporate the learned probabilis-

tic map in the RAMP framework for guiding the robot navigation more effectively.

Each new visit of the environment by the robot will also add new observation data

to improve the Hilbert map of the environment.

4.1 Review of Hilbert maps

The Hilbert maps framework [76] is an approach to learning the occupancy of an

environment from depth information to predict the occupancy of a location in the en-

vironment. The approach is based on projecting depth data into a high-dimensional

Hilbert space defined by an approximate kernel function, and then learning a linear

logistical regression model in that high-dimensional space. The result is a sigmoid

likelihood discriminative model that can predict the probability of a point in Eu-

clidean space being occupied. The probability that a point is not occupied is defined

by the sigmoid function,

P(y = −1|x,w) =
1

1 + exp(wTΦ(x))
(14)

where w is a parametric vector to be learned and Φ(x) computes a feature vector

for location x. The algorithm described in [79] uses a Bayesian approach to learn the

w vector.

A robot equipped with a depth sensor can build time-indexed occupancy grids of

a dynamic environment based on sensing. These occupancy grids act as observations

57

Figure 21: Applying the Hilbert map approach to an environment of size 5m x 3m
with one static obstacle (lower right) and one dynamic obstacle that repeatedly moves
through the environment. The value at each location is the probability of that location
being occupied.

on the environment. The grids can be used as training data for the Hilbert maps

algorithm, i.e., the model can be trained based on the real sensing observations from

a robot. Once the model has been trained, it can be polled with a position to obtain

the probability of the position being occupied.

4.2 RAMP Using Learned Information

Given a dynamically unknown environment, RAMP normally initializes a popu-

lation of robot trajectories randomly, and then it guides a robot navigating in the

environment through sensing and real-time motion planning.

Now, as the robot moves in the environment guided by RAMP, it also collects

observations of the environment. After a sufficient number of observations are col-

lected over time, we use them to build a Hilbert map of the environment. After that,

when the robot is going to navigate in the dynamic environment again, RAMP can

incorporate the Hilbert map information to obtain a population of trajectories more

suited for that environment.

58

4.2.1 Combining Real Sensor Data with Learned Data

As the robot starts moving in a dynamically unknown environment, only part of the

environment can be viewed by its sensors. The occupancy information is unknown to

the robot for the non-visible areas until they are within range of the robot’s sensors.

A trained Hilbert map model can provide useful information for those occluded areas

of the environment. Our approach combines the learned Hilbert map information

and the real sensed obstacle information for RAMP to use in guiding the robot’s

movement.

Specifically, an occupancy grid is created that replaces unknown pixel values with

probabilistic information. Figure 22 shows an example of this. In this Figure, the

robot has an RGB-D camera that can view an environment in a cone. In Fig. 22(a),

a large obstacle occludes most of the environment. The cells that the robot can sense

have a value of either 0 (occupied) or 255 (free). The value of each occluded cell is

replaced by a value corresponding to the probability of occupancy for the location

from the Hilbert map. Lower values correspond to higher probabilities of occupancy,

i.e., the top-left region has obstacles moving in it more often than the other regions

of the environment. As the robot moves, the newly sensed locations have their values

on the occupancy grid replaced with real-data values (Figures 22(b) and 22(c)). The

probability value of each cell in the unseen region that a robot trajectory passes is

used in trajectory evaluation.

59

(a) Initial grid that combines
real and probabilistic data.
The static obstacle occludes
most of the environment.

(b) As the robot moves in
the environment, areas of the
map that the robot can sense
change to real data.

(c) A second obstacle is de-
tected and more of the envi-
ronment is revealed.

Figure 22: A Turtlebot 2 is positioned in front of a large static obstacle that occludes
most of the environment. The visible locations have values corresponding to the real
sensing data (0 or 255), and the pixels that the robot cannot sense are replaced with
a value representing the probability of the location being occupied. Lower values
correspond to higher probability. The pixel values change to correspond to real data
when the robot can sense them (Figs. 22(b) and 22(c)).

4.2.2 Trajectory Evaluation Using Real and Learned Information

In evaluating a trajectory, our approach uses both sensed real obstacles and learned

information in unseen regions based on the Hilbert map by adding an additional term

to the evaluation functions f and g as follows:

Costfe = f + w4 ∗ pmax (15)

Costin = g + pmax ∗Qcoll (16)

where pmax is the maximum probability of occupancy over the cells passed by the

trajectory that the robot has not sensed, Qcoll is a large constant, and f and g are

the evaluation functions from Section 3.1.4.

60

4.2.3 Initialization Using Learned Information

The learned Hilbert map information of an environment can be used to initialize

the population of trajectories before the RAMP robot starts moving and observing

the environment. Instead of using a randomly generated population of trajectories

directly to start the robot, the RAMP now runs pre-planning cycles to improve the

initial population based on the Hilbert map, and uses the evaluation function Eq.(15)

to rank trajectories; note that the third term in f is now zero because no sensing and

detecting real obstacles happens yet.

4.3 Experimental Results

Two types of experiments were performed to examine the effect of improving the

initial population and incorporating learned information into the real-time execution

of RAMP. The following subsections detail these experiments and results.

4.3.1 Improving Initial Population

Improving the initial population of RAMP was tested on several different environ-

ments. For each environment, a robot equipped with an RGB-D camera is placed

at the origin of a 3.5m square environment. The robot remains stationary while dy-

namic obstacles move around the environment. The obstacle motion is captured by

the robot and an occupancy grid is created for each set of depth data. The occupancy

grids are indexed by time and used as training data to train a Hilbert Map model

of the environment occupancy. Once the model has been trained, 500 pre-planning

cycles (Section 4.2.3) are run before sensing and control cycles begin so that the ini-

61

tial population can be improved. During these pre-planning cycles, all trajectories

are treated as feasible since there is no real obstacle information. The expectation of

these experiments is that after running the pre-planning cycles the initial population

will have only a small number of trajectories in the regions with high probability of

occupancy. This results in many options to avoid these regions while also preserving

diversity in the population.

The remainder of this subsection will cover three cases used to experiment with

Hilbert maps: one dynamic obstacle moving in a straight line, one static and one

dynamic obstacle moving in a straight line, and two dynamic obstacles moving in a

straight line. In all cases, the RAMP robot does not know how the dynamic obstacles

will move.

4.3.1.1 One Dynamic Obstacle Moving in a Straight Line

The first case examined is one with a single dynamic obstacle commanded to move

in a straight line back and forth. The obstacle moves at roughly 0.33m/s and stops for

1 second before changing directions (forward or backward). It is initially positioned

near a corner in the environment (Fig. 23(a)) and moves along a diagonal through

the environment to roughly simulate walking along a common walking path that a

human agent may take.

Time-indexed occupancy grids for this experiment (2570 in total) were collected

and used to train a Hilbert map model. The occupancy grid generated from the model

can be seen in Fig. 23(c). The results of one experiment is shown in Figure 23(d).

The population shown is the population after running 500 pre-planning cycles. The

62

(a) Initial location of environ-
ment

(b) The moving robot obstacle
moves on a straight line towards
the robot and then reverses back
to its initial position.

(c) The occupancy grid generated
from the Hilbert map model

(d) Initial population of RAMP
after incorporating learned infor-
mation

Figure 23: Hilbert map of an environment with one dynamic obstacle moving with
straight line motion, and the result of one instance of running 500 pre-planning cycles
using learned information.

majority of trajectories avoid the area with high probability of occupancy while one

trajectory travels through a high occupancy region.

4.3.1.2 One Static Obstacle and One Dynamic Obstacle Moving in a Line

Another dynamic environment was examined that contained one static obstacle

and one dynamic obstacle moving in a small line (Fig. 24). There were 1,179 total

time-indexed occupancy grids used to train the model for this case. The occupancy

information generated from the Hilbert map model shows two areas with large prob-

ability of occupancy. Because the dynamic obstacle moves in a small space, the area

63

(a) Initial setup of environment (b) The moving robot obstacle
moves 1m towards origin. The
other obstacle (grey box) is static.

(c) The occupancy grid generated
from the Hilbert map model

(d) The population after 500 pre-
planning cycles

Figure 24: Hilbert map of an environment with one static obstacle and one dynamic
obstacle moving in a 1m line, and the result of one instance of running 500 pre-
planning cycles using learned information.

is nearly always occupied so it has similar probability to the static obstacle.

Figure 24 shows an example of a population after 500 pre-planning cycles using the

Hilbert map trained on this environment. Most of the trajectories go between the

two obstacle regions, but the population still maintain two trajectories that cover the

obstacle regions.

4.3.1.3 Two Dynamic Obstacles Moving in Straight Lines

A case with two dynamic obstacles was designed with a human obstacle walking in a

line with size roughly 1.5m and a moving robot driving in a line with size roughly 1m.

In this environment, the Hilbert map shows a long streak where the human walked

64

and a smaller area for the moving robot (similar to the moving robot in case 3). A

total of 1,439 occupancy grids were used to train the Hilbert map model for this case.

The population seen in 25(d) shows that most trajectories are concentrated in moving

along the diagonal of the environment to avoid both regions with high probability of

occupancy, while two trajectories travel within the high probability regions.

Experiments on real robots were performed for this environment to show that the

performance of RAMP can be improved when the initial population is improved.

The robot is initially positioned at (0m, 0m) with orientation 0.785rad and its goal is

(3.5m, 3.5m). While the robot moves, the obstacles move in straight lines back and

forth to simulate many obstacles moving in these regions. Ten total tests were carried

out: five tests that used no prior information in RAMP, and five tests that performed

100 pre-planning cycles using the probabilistic obstacles generated from the Hilbert

map data (Fig. 25(d)).

The performance data for these tests can be seen in Table 5. The tests utilizing the

learned information perform better in all categories except the time spent in imminent

collision and minimum distance to obstacles. However, for these two categories the

results are similar. Note that for the minimum distance to obstacles metric, larger

values are better. For all categories, the standard deviation is lower when improving

the initialization step with learned information. The benefits of utilizing the Hilbert

map model can be mostly seen in the runtime and number of trajectory switches.

For those categories, the mean is significantly lower and the standard deviation is far

lower. This implies that utilizing the Hilbert map model to generate trajectories that

avoid areas of high probability allows the robot to move to the goal faster because it

65

(a) Initial setup of environment (b) The moving robot obstacle
moves 1m towards origin. The hu-
man obstacle moves roughly 1.5m
towards the origin.

(c) The occupancy grid generated
from the Hilbert map model

(d) The population after 500 pre-
planning cycles

Figure 25: Hilbert map of an environment with two dynamic obstacles, and the result
of one instance of running 500 pre-planning cycles using learned information.

is more likely to avoid obstacles, and the robot will not need to switch trajectories as

often to avoid obstacles (although it may still switch to a more optimal trajectory).

4.3.2 Real-time Execution with Learned Information

Experiments were performed incorporating the learned information both in the

initialization and in the real-time simultaneous moving, sensing, and planning process

of the RAMP robot.

Three 5m square environments were created in Gazebo [44]. They can be seen in

Figure 26. Each environment contains 1-4 dynamic obstacles. When collecting data

to train the Hilbert map model (one for each environment), the robot is positioned

66

(a) Environment with one static
obstacle (dumpster) and one mov-
ing obstacle (cardboard box). The
goal is (1.0, 5.0).

(b) Occupancy grid generated from
Hilbert Map model trained on 771
occupancy grids where the dynamic
obstacle moves on a 1m diagonal
path repeatedly.

(c) Environment with one static
obstacle (rectangle box) and
two moving obstacles (cardboard
boxes). The goal is (5.0m, 3.0m).

(d) Occupancy grid generated from
Hilbert Map model trained on 741
occupancy grids where the dynamic
obstacles move on a 1m diagonal
path repeatedly.

(e) Environment with one static
obstacle (rectangle box) and
four moving obstacles (cardboard
boxes). The goal is (5.0m, 2.5m).
The two bottom dynamic obstacles
move at twice the speed of the top
two dynamic obstacles.

(f) Occupancy grid generated from
Hilbert Map model trained on 1682
occupancy grids where the dynamic
obstacles move on a 1m horizontal
path repeatedly.

Figure 26: Three 5m square environments for testing the effect of incorporating prob-
abilistic information, and their associated occupancy grids generated by the Hilbert
maps model. The static obstacles are removed when recording training data.

67

so that it can view the dynamic obstacles’ motion. The obstacle motion is captured

by the robot’s RGB-D camera sensor and an occupancy grid is created for each set

of depth data. The occupancy grids are indexed by time and used as training data

to train the Hilbert map models. Next, two sets of five robot navigation runs are

performed on each environment: one set does not use any learning, and the other set

uses learning to both improve the initial trajectory population and real-time RAMP

execution.

The first environment can be viewed in Figure 26(a). The robot’s starting position

is (2.0m, 0.0m), and its goal position is (1.0m, 4.5m). The environment contains a

moving obstacle (cardboard box) that repeatedly moves on a 1 meter straight line

path. A large static obstacle is placed in front of the robot’s initial position to occlude

most of the environment. The first set of runs do not incorporate any probabilistic

information and only considers the time to execute a trajectory, i.e., w1 = 1 in Eq. 15

and all other weights are 0. This will cause the robot to move to the left side of the

environment more often because it leads to a faster trajectory. However, this leads

the robot to the moving obstacle, and it has to maneuver around in a tight space.

Table 5: Performance data for real-robot tests with two dynamic obstacles (Section
4.3.1.3). Two sets of tests were run: one that did not use any learned information,
and one that improved trajectory initialization using learned information (Section
4.2.3). For each set, 5 tests were run.

Mean without learning Mean with learning
Runtime (seconds) 28.77± 7.41 21.12± 2.36
of trajectory switches 14± 10.89 12.8± 3.83
Time in imminent collision (s) 0.44± 0.72 0.5± 0.58
Distance traveled (m) 6.05± 1.16 5.80± 0.48
Min. dist. from obstacles (m) 0.71± 0.28 0.66± 0.14

68

The second set of navigation runs incorporates the probabilistic information to

improve the initial robot trajectory population and to consider the probability of

occupancy for unseen locations during real-time execution. The grid generated from

the Hilbert map model is shown in Figure 26(b). The expectation is that using

the probabilistic information will cause the robot to move to the right of the static

obstacle more often despite trajectories in this direction having a significantly longer

distance to the goal. Essentially, the planner is choosing to avoid the region of the

map with high probability of occupancy, despite the longer execution time, to more

easily reach the goal.

Table 6 shows the results of these experiments. Utilizing the probabilistic informa-

tion about the occupancy of the environment improves the performance of the robot

in each metric. Surprisingly, it resulted in a lower execution time and only a slightly

longer distance travelled. The reason is that, without using the learned information

about unseen areas, the robot might need to stop, turn around, or move away from

the goal at some point to navigate around the moving obstacle when it went into

the region with high probability of occupancy. When avoiding the region with high

probability of occupancy, however, the robot could go to the goal with very little need

to navigate around the obstacle.

The second environment is shown in Figure 26(c). It contains two dynamic obsta-

cles and a more elongated static obstacle. The robot’s starting position is (0.0m, 3.5m)

and the goal position is (5.0m, 3.0m). In this environment, the increased time of

avoiding of the high probability of occupancy region is more severe because the static

obstacle is larger. However, the region with high probability of occupancy now con-

69

Table 6: Performance data for tests that combine real and probabilistic data during
runtime in the environment shown in Fig. 26(a). Two sets were run: one that did
not use any learned information, and one that used probabilistic data to improve
trajectory initialization and real-time execution. For each set, 5 tests were run.

Mean without learning Mean with learning
Runtime (seconds) 29.744± 4.76 26.29± 5.01
of trajectory switches 20± 4.06 17.4± 5.13
Time in imminent collision (s) 0.77± 1.07 0.00± 0.00
Distance traveled (m) 10.94± 3.13 11.21± 1.56
Min. dist. from obstacles (m) 0.84± 0.24 1.03± 0.40
Traversed high occupancy region 4 of 5 runs 0 of 5 runs

Table 7: Performance data for tests that combine real and probabilistic data during
runtime in the environment shown in Fig. 26(c). Two sets were run: one that did
not use any learned information, and one that used probabilistic data to improve the
initialization and real-time execution. For each set, 5 tests were run.

Mean without learning Mean with learning
Runtime (seconds) 32.69± 7.66 35.26± 7.32
of trajectory switches 19± 4.92 19± 9.15
Time in imminent collision (s) 0.04± 0.09 0.00± 0.00
Distance traveled (m) 10.22± 2.68 12.25± 0.66
Min. dist. from obstacles (m) 0.61± 0.18 1.01± 0.22
Traversed high occupancy region 4 of 5 runs 0 of 5 runs

tains multiple dynamic obstacles so that navigating this area is more challenging and

unsafe. The results of tests in this environment are shown in Table 7. In this en-

vironment, the most significant performance difference is in the minimum distance

to obstacles. When using learned information, the robot maintains a significantly

larger clearance to the obstacles. The tests without using prior information perform

better in runtime and distance travelled, but that is expected since the robot needs to

travel farther to go around the static obstacle. This trade-off is worthwhile because

maintaining a larger distance from obstacles results in safer motion.

The third environment is shown in Figure 26(e). It contains four dynamic obstacles

and one static obstacle. The robots starting position is (0.0m, 2.5m) and the goal

70

Table 8: Performance data for real tests that combine real and probabilistic data
during runtime in the environment shown in Fig. 26(e). Two sets were run: one that
did not use any learned information, and one that used probabilistic data to improve
the initialization and real-time execution. For each set, 5 tests were run.

Mean without learning Mean with learning
Runtime (seconds) 33.07± 8.34 26.3± 2.66
of trajectory switches 15.00± 6.48 12.6± 3.78
Time in imminent collision (s) 0.00± 0.00 0.00± 0.00
Distance traveled (m) 9.64± 1.53 9.26± 0.83
Min. dist. from obstacles (m) 2.05± 1.39 1.98± 0.92
Traversed high occupancy region 5 of 5 runs 0 of 5 runs

position is (5.0m, 2.5m). The two dynamic obstacles at the bottom of the environment

move at roughly twice the speed of the obstacles at the top of the environment. This

is captured in the occupancy grid generated by a Hilbert map model in Figure 26(f).

The bottom region has a much higher probability of occupancy due to the faster

obstacles being at various positions along their path more often. This is interesting

because incorporating the probabilistic data allows the robot to capture the effect of

obstacle speeds in a region. The results of tests in this environment are also shown in

Table 8. All performance metrics are improved with the incorporation of the Hilbert

map information. The most significant improvement is the improved robot runtime

to avoid the faster obstacles.

Experiments were performed on a real environment that utilized the probabilistic

data during real-time execution. The environment can be seen in Figure 27(a). This

environment is a 3.5m square containing one static obstacle and one dynamic obstacle.

The robots starting position is (1.5m, 0.0m) and the goal position is (1.0m, 3.5m).

The static obstacle occludes the dynamic obstacle in the environment when the robot

is in its initial configuration. Data was collected to train a Hilbert maps model by

71

(a) Initial configuration of the en-
vironment. The obstacle (blue)
moves on a 1m line repeatedly.

(b) Occupancy grid generated
from Hilbert Map model trained
on 1642 occupancy grids where a
human obstacle moves randomly
in roughly a 1.5m square.

Figure 27: Real environment (3.5m square) for experiments combining real and prob-
abilistic sensing data with one static obstacle and one moving obstacle. The robot’s
initial position is (1.5, 0) and the goal is (1.0, 3.5).

a human obstacle walking randomly in a small region in the top-left corner of the

environment. During tests, the dynamic obstacle moves on a 1m line repeatedly.

Table 9 shows the results of tests in this environment. Utilizing the probabilistic data

during real-time execution and when improving the initial population led to better

results in each category except distance travelled. When the robot avoids the region

with the dynamic obstacle, it is able to reach the goal in less time despite the longer

travel time because it does not have to spend time navigating around the dynamic

Table 9: Performance data for real tests that combine real and probabilistic data
during runtime in the environment shown in Fig. 27(a). Two sets were run: one that
did not use any learned information, and one that used probabilistic data to improve
the initialization and real-time execution. For each set, 5 tests were run.

Mean without learning Mean with learning
Runtime (seconds) 31.78± 10.11 27.32± 4.28
of trajectory switches 20± 9.25 13.6± 5.32
Time in imminent collision (s) 1.16± 1.29 0.16± 0.32
Distance traveled (m) 7.11± 1.55 6.34± 0.87
Min. dist. from obstacles (m) 1.39± 0.55 2.37± 0.84
Traversed high occupancy region 5 of 5 runs 0 of 5 runs

72

obstacle. It also leads to a significantly higher minimum distance to obstacles which

makes the overall motion much safer. The number of trajectory switches is less which

is likely due to the robot not needing to adapt to a nearby dynamic obstacle, so the

trajectory switches are largely done to make the robot’s motion more optimal.

CHAPTER 5: SYSTEM-LEVEL TESTING OF A REAL-TIME ADAPTIVE
MOTION PLANNING SYSTEM

This chapter introduces an approach to generate executable test cases for a Real-

time Adaptive Motion Planning (RAMP) system.

5.1 Model-based Testing Approach

Our objective is to apply a systematic Model-based Testing (MBT) approach [5,

6, 7, 8] to testing RAMP by generating test cases for system-level testing. The MBT

approach addresses the system under test (SUT) and the objects that SUT interacts

with, called actors. In system-level testing, the SUT is the robot, and the obstacles

that this robot interacts with are actors. The actors can be modelled structurally

and behaviorally as test models.

As shown in Figure 28, the process is decoupled into four phases:

• Phase 1: Create the test models of actors (i.e., obstacles) by constructing a

single structural test model that represent all actors together and a behavioral

test model for actors.

• Phase 2: Select proper graph-based coverage criteria to generate internal test

paths that cover behaviors of each actor separately.

• Phase 3: Use proper graph-based concurrent coverage criteria (i.e., Combination

Coverage Criteria) to combine the internal test paths into interaction test paths

74

Figure 28: Model-based test generation process

(namely Abstract Behavioral Test Cases (ABTCs)) to represent the behavioral

test model.

• Phase 4: Select proper input-space partitioning coverage criteria to generate

test data from the structural test model in order to transform the generated

ABTCs into executable behavioral test cases.

Once a behavioral test model has been created, graph-based testing criteria from

[4] can be used to generate internal test paths. Next, the internal test paths are com-

bined to represent the possible interactions among actors. For system-level testing,

the ABTCs are generated using a novel coverage procedure. The ABTCs need test

data to be executable. The test data are generated from the structural test model ’s

properties and functions’ parameters by using input-space partitioning [4]. The gen-

erated ABTCs are then transformed into executable behavioral test cases with each

selection from the generated test data assigned to an ABTC to produce an executable

75

test case, and so forth.

5.2 System-level Testing for RAMP

System testing level involves generating world states as inputs to the RAMP plan-

ner as a System Under Test (SUT) and evaluating the RAMP’s output. In the RAMP

system, testing is focused on interactions between the RAMP robot and obstacles in

close spatial and temporal proximity, as described in more detail below. A world

state for RAMP includes the robot’s current state and the set of obstacle positions

and velocities in a small spatial and temporal neighborhood of the robot’s current

state. The output is a motion trajectory that is expected to avoid obstacles and lead

the robot to its goal.

5.2.1 Interacton with Obstacles

A robot guided by the RAMP system operates in environments that contain dy-

namic obstacles moving with unforeseen motion. RAMP uses the sensed information

of obstacle poses to predict the future motion of obstacles. As the robot is moving

towards its goal, the RAMP system continuously plans and adapts the robot motion

to obstacle motion based on the latest sensing information.

Since RAMP must adapt to unknown trajectories, the system-level tests need to

evaluate RAMP by considering any possible motion from the obstacle. However,

modeling long-range and long-term obstacle trajectories is not only infeasible be-

cause there are countlessly possible obstacle trajectories but also not very useful in

evaluating RAMP’s performance because obstacles far from the robot do not affect

the robot’s short-term motion in significant ways until they become close to the robot.

76

Hence, instead of modeling obstacle trajectories, our approach is to focus on inter-

action between the RAMP robot and obstacles by modeling the behaviors of obstacles

that are both spatially and temporally close to the robot. An obstacle is temporally

close to the robot if its motion will likely lead to a collision with the robot in a short

time period. Taking advantage of spatial and temporal coherence, we thus only model

obstacle behaviors within a small spatial and temporal neighborhood of the robot’s

current state in configuration-time space. Evaluating RAMP’s performance in guid-

ing the robot move towards its goal while avoiding obstacles in such a neighborhood

significantly reduces the total number of possible obstacle behaviors necessary for

testing.

For obstacles within a spatially and temporally very small neighborhood around the

robot, they are reasonably modeled as moving with arbitrary but constant linear and

angular velocities towards the robot, and the RAMP system runs to produce robot

motion that both avoids the obstacles and leads the robot to its goal. Note that

maintaining the global task of moving towards a goal is important because RAMP is

a real-time global motion planner. Otherwise, the tests would only evaluate obstacle

avoidance.

5.2.2 Phase 1: Obstacle Test Model

The obstacle structural test model describes the data structures used for repre-

senting the behaviors of a dynamic obstacle interacting with the RAMP robot. The

obstacle behavioral test models describe those behaviors as states and transitions.

The structural test model is constructed using a UML class diagram shown in

77

Figure 29: Structural model for a dynamic obstacle

Figure 29. The obstacles are assumed to be moving in a 2-D space, and all obstacles

are assumed identical. The TestArea class describes a small 2-D region to place

obstacles to ensure that the obstacles will have a significant impact on the robot’s

motion in the region. The robot’s initial position will be at one corner, and the goal

position will be at the opposite corner along the diagonal of the test area.

In such a small spatial and temporal neighborhood, obstacle motion can be reason-

ably modeled as having constant linear and angular velocity, and the linear velocity

direction is set towards the robot. Therefore, the Obstacle class consists of current

position, velocity values, and the ID of an obstacle. The parameters initial position,

linear speed, angular speed, stop duration, and move duration are input domains [4],

which are exploited to generate test data.

Figure 30: Robot (square) and obstacles (circles) in an
example test area, and the obstacle behavioral test model
on the right.

78

As shown in Figure 30, each obstacle is modeled as an EFSM. The obstacles have

two behaviors: move and stop. The behaviors transition the obstacles into one of two

states: stopped and moving. These states are translated as test messages and sent to

the RAMP system.

The RAMP system will receive this information, predict obstacle movement, and

then attempt to find a trajectory for the robot to avoid obstacles and reach its goal

at the opposite corner of the test area. Thus, the functionality of RAMP can be eval-

uated by running the RAMP system with sequences of messages containing different

obstacle EFSM states and different parameter values.

5.2.3 Phase 2: Obstacle Internal Test Paths

Each ith obstacle’s EFSM is associated with a set of transitions, Pi, as illustrated

in Figure 30. They are ordered as sequences of method invocations (i.e., function

calls) to represent an internal test path that shows an obstacle’s motion pattern as

{stop()→ move(v, ω)→ stop()}, where v is linear speed, and ω is angular speed.

The obstacle behavioral test model can be defined as a collection of concurrent

processes, OBTM = {Proc1, P roc2, . . . , P roci} where 1 ≤ i ≤ M , and M is the

number of obstacles. Each process Proci is covered by an internal test path.

5.2.4 Phase 3: Obstacle Interaction Test Paths

Since the obstacles interact concurrently, their internal test paths are considered

concurrent as well. Therefore, the internal test paths need to be combined to rep-

resent all possible interactions of the obstacles. Since all obstacles have the same

behavioral model, they are considered identical and indistinguishable to the robot.

79

Only the obstacle locations and velocities matter. That is, from the perspective of

the robot, if an obstacle is closer to the robot than the other obstacles, there is no

difference whether the closer obstacle is obstacle 1 or obstacle 2. However, there is no

existing coverage criterion that addresses indinstinguishable and concurrent internal

test paths.

Hence, we have developed a novel and systematic method that enumerates all

kinds of concurrency, i.e., ABTCs, among m identical obstacles, where each obstacle’s

internal test path has three nodes as stopped −→ moving −→ stopped. The effect is

similar to what partial order reduction [24] achieves. We define the starting time

of each obstacle in terms of a number indicating the delay from the earliest moving

obstacle: 0 (to mean no delay), 1 (to mean delay by 1 node), 2 (to mean delay by

2 nodes), and so on. If we denote the 1st obstacle as the obstacle that first starts

moving in the test region, and the 2nd obstacle as the obstacle that moves next, and

so on, then we can describe the possible values of starting time for every obstacle as

follows:

1st obstacle: 0

2nd obstacle: 0, 1, 2

ith obstacle: 0, 1, 2, ..., (i− 1)th obstacle starting time + 2, 3 ≤ i ≤ m.

Note that if two or more obstacles have the same starting time value, say 0, it means

they start moving simultaneously. If the 2nd obstacle has starting time 1, it means

that when the 2nd obstacle starts moving, the 1st obstacle is already moving. If the

2nd obstacle has starting time 2, it means that when the 2nd obstacle starts moving,

80

(a) ABTC < 0, 1, 2 > (b) ABTC < 0, 1, 3 >

Figure 31: Illustration of ABTCs for system-level testing involving 3 obstacles. Ob-
stacles are shown transitioning from a stopped state (S) to a moving state (M). The
delays correspond to the number of state changes of the prior moving obstacles. The
bottom obstacle is always the obstacle that begins first, i.e. its delay is 0. The 2nd
and 3rd obstacles begin at their respective delays after the first obstacle.

the 1st obstacle has already finished moving.

Now we can express every kind of concurrency, i.e., every ABTC, amongm obstacles

as an m-tuple of values: < d1, d2, ..., dm >, such that:

• di, 1 ≤ i ≤ m is the starting time (as defined above) of the ith obstacle,

• di ≥ dk,∀k < i.

With this expression and together with the value ranges of obstacle starting time,

all possible ABTCs for m obstacles can be enumerated automatically. For m = 2,

there are 3 ABTCs: < 0, 0 >, < 0, 1 >, and < 0, 2 >.

For m = 3, there are 9 ABTCs: < 0, 0, 0 >, < 0, 0, 1 >, < 0, 0, 2 >, < 0, 1, 1 >,

< 0, 1, 2 >, < 0, 1, 3 >, < 0, 2, 2 >, < 0, 2, 3 >, and < 0, 2, 4 >. Each tuple represents

a unique concurrency case. For example, < 0, 1, 3 > means that the 2nd obstacle

starts moving when the 1st obstacle is already moving, and the 3rd obstacle starts

81

moving when the 2nd obstacle has finished moving. Note that the largest value of d3

(the last number in the 3-tuple) depends on the value of d2 in the same tuple. For

example, if d2 = 1, then 3 is the largest value of d3, i.e., < 0, 1, 4 > is not a valid

tuple. On the other hand, < 0, 2, 4 > is valid, meaning that the 2nd obstacle moves

when the 1st obstacle has finished moving, and the 3rd obstacle moves when the 2nd

obstacle has finished moving. For m = 4, ABTCs can be enumerated in the similar

way, and there are 27 ABTCs.

5.2.5 Phase 4: Obstacle Input-Space Partitioning

The input domains of each obstacle represent obstacle parameters (initial position,

linear velocity, angular velocity, stop duration, and move duration). We partition the

input domains into blocks of values and randomly chose values from each of the blocks

based on the Each Choice Criterion (ECC) [4] to generate test data for converting

the generated ABTCs into executable test cases. As shown in Table 10, the input

domains for a single obstacle are partitioned into 12 total blocks.

Table 10: Input domains and blocks of values of a mobile obstacle

Parameter Input Domains Blocks of Values

initial position x = [0.5, 2]m
y = [0.5, 2]m

[0.5, 1],(1, 1.5],(1.5, 2]
[0.5, 1],(1, 1.5],(1.5, 2]

linear speed v = (0, 0.5)m
s

[0, 0.25],(0.25, 0.5]

angular speed w = (−π
2
, π
2
) [−π

2
, 0],(0, π

2
]

stop duration durs = [0, 10]s [0, 10]

move duration durm = [0, 10]s [0, 10]

The initial position parameter includes two input domains x and y. These input

domains, x and y, consist of values for initial positions with range [0.5, 2]m. Based

on the initial distance from the robot, the range of x and y, are partitioned into three

82

blocks of values respectively. The blocks are to ensure that obstacles in different

distance ranges from the robot in the test region are covered, and there will be

obstacles close to the robot to affect significantly the population of robot trajectories.

The linear speed consists of one input domain, v, which represents the obstacle’s

speed. The input domain v is partitioned into two blocks of values: one block of

values that are less than the robot’s maximum speed 0.25m
s

, and the other block of

values that are greater than the robot’s maximum speed. The angular speed also

consists of one input domain, w, with the range of values (−π
2
, π
2
) rad
s

. Similar to the

linear speed, the angular speed is partitioned into two blocks of values for negative

and positive directions of rotation respectively. Based on the maximum speed of

each obstacle and the test area size, the input domains for the two duration values,

durs and durm that represent stop duration and move duration parameters, are set

to [0, 10]s. Each of those input domains has one block of values. For m obstacles,

the number of test-data sets needed to satisfy ECC is 3m. Note that a full tuple

representing a test case considers all obstacles and makes sure that each obstacle’s

position will be unique for a test case.

5.3 Test Execution and Evaluation

We have generated test cases and conducted testing at the system level for a RAMP-

H system.

First, a small test area of 2m× 2m is generated. As stated before, the size of the

test area is small enough to focus on interactions between the robot and obstacles

but is also large enough to allow the robot and obstacles space to maneuver. The

83

RAMP system tested is the version described in [63]. The initial position and the

goal position of the robot are at two diagonal corners of the test area (as shown in

Figure 6). The initial orientation of the robot is set to face its goal position.

For testing, m=3 obstacles are considered so that there are 9 ABTCs, which can

be enumerated/scripted automatically. For a scripted ABTC, test cases are also gen-

erated automatically by assigning test data based on ECC (Each Choice Criterion).

Each test case runs for a maximum of 20 seconds, and the results are collected after-

wards.

At the start of each test case, the obstacle initial positions are chosen randomly

from the blocks of the corresponding input domains and made sure that they are at

least a minimum distance of 0.2m apart from each other to avoid overlap. The initial

orientation of each obstacle is set to be pointing to the robot. All obstacles remain

stopped for one second so that RAMP can build a trajectory population based on the

static obstacles as planning history. This is necessary because, unlike a purely reactive

planner, RAMP is a global and goal-oriented planner that constantly improves and

adapts the robot’s motion to changes in the environment as the robot moves from

a start location to a goal location. The trajectory population is also seeded with a

trajectory in the direction of the robot’s orientation.

After that initial delay time has passed, the obstacles begin to move concurrently

according to the ABTC for testing. All 9 ABTCs were used for automatically gener-

ating test data, and a total of 900 test cases were executed (100 test cases for each

ABTC).

After each test case, the following results are recorded: Reached goal, a boolean

84

Table 11: For each ABTC, 100 test cases were executed. Each column shows the
results for the specific ABTC.

ABTC 1 2 3 4 5 6 7 8 9
Tuple <0,0,0> <0,0,1> <0,0,2> <0,1,1> <0,1,2> <0,1,3> <0,2,2> <0,2,3> <0,2,4>
% Reached Goal 59 62 55 45 45 52 43 44 46
% Feasible Traj 34 31 37 47 45 39 44 45 47
Mean Remaining Time 3.6s 4.4s 3.4s 5.4s 6.2s 3.3s 4.7s 5.0s 4.1s
% Infeasible Traj 0 5 0 1 5 2 0 1 0
% Stuck in I.C. 7 2 8 7 5 7 13 10 7

Figure 32: Overall performance of a RAMP system dealing with three mobile obsta-
cles

(a) RAMP system performance (b) Histogram of Remaining Time on feasible
trajectories

value indicating that the robot has reached its goal within the test period, Feasible

trajectory, a boolean value to indicate if the robot is moving on a feasible trajectory

(see Section 3.1.4), Remaining time, the remaining time until the robot reaches the

goal if the robot is moving on a feasible trajectory, Stuck in imminent collision, a

boolean value to indicate that the robot stopped indefinitely, and Infeasible trajectory,

a boolean value to indicate if the robot is moving on an infeasible trajectory.

Table 10 shows results for each ABTC, and Figure 32 shows the results for all exe-

cuted test cases. Figure 32 shows that in 7% of the cases, the robot stops indefinitely,

which is undesirable. In all other cases, which include cases when the robot pauses

85

for imminent collision and then moves again, the robot either reaches its goal, is on

a feasible trajectory to reach its goal in due time, as shown in Figure 32, or is on an

infeasible trajectory, trying to get on a feasible one.

One reason that the robot gets stuck in an imminent collision state is due to an

unexpected communication delay in the tested implementation of RAMP to command

the robot to stop for imminent collision. This can cause the robot to stop too late

and too close to the obstacle, i.e. within some inflated collision radius. If the obstacle

is stopped, then RAMP will never find a new trajectory that is considered safe to

move on.

Another reason is due to one or more obstacles stopped too close to the robot’s goal

position. In that case, the robot may not be able to get around them to reach the goal.

Note that obstacle behavior models used in our testing cases are much harsher to the

robot than in most real-world situations: on the one hand, our obstacle models move

in constant linear and angular speeds and do not slow down when the robot gets close,

and on the other hand, once they stop, they do not move away if they are blocking

the robot. However, most moving obstacles in human-centered real environments,

such as humans, would not behave this way.

5.4 Extended System Level Behavioral Model

The effectiveness of system-level testing depends on the ability to generate realistic

world states to be used as executable test cases. This requires designing behavioral

models that are both efficient and expressive. The obstacle behavioral model for

system-level testing described in chapter 5 assumes that an obstacle keeps constant

86

speed throughout an entire test case. While this model is efficient, it ignores that

real-world obstacles change speed. This section shows how to extend the extended

behavioral test model to account for a change in speed during a test case and shows

test execution results on a RAMP system.

An extended system-level behavior model is shown in Figure 33. Compared to the

model used in Section 5.2.2, the number of states for an obstacle has increased from

2 to 3, and the number of transitions has increased from 2 to 4. The structural model

for dynamic obstacles is the same as described in Section 5.2.2. The obstacle internal

test paths will be based on a new behavioral model (Figure 33), and the obstacle

interaction test paths are systematically generated based on the method described in

Section 5.2.4. The input data for a single obstacle can be seen in Table 12.

Figure 33: Obstacle behavioral model that accounts for speed changes

Table 12: Input domains and blocks of values of a dynamic obstacle

Parameter Input Domains Blocks of Values

initial position x = [0.5, 1.75]m
y = [0.5, 1.75]m

[0.5, 1],(1, 1.5],(1.5, 1.75]
[0.5, 1],(1, 1.5],(1.5, 1.75]

linear speed initial vi = (0, 0.5)m
s

[0, 0.25],(0.25, 0.5]

linear speed final vf = (0, 0.5)m
s

[0, 0.25],(0.25, 0.5]

angular speed initial wi = (−π
2
, π
2
) [−π

2
, 0],(0, π

2
]

87

5.4.1 Obstacle Internal Test Paths

Each obstacle has an Extended Finite State Machine (EFSM) that is a set of

transitions that cover the obstacle behavioral test model (Figure 33). These EFSMs

define an obstacle’s internal test path. Each ith obstacle will have an internal test path

that is stop()→ move(v, w)→ move(v′, w′)→ stop(), where (v, w) is a pair of initial

linear and angular speeds and (v′, w′) is a different pair of linear and angular speeds.

This internal test path will satisfy node coverage of the behavioral test model shown

in Figure 33. Each internal test path will have nodes Stopped → Initial Speed →

Changed Speed→ Stopped.

Note that there is only one speed change in the internal test path of an obstacle.

Allowing a variable number of speed changes creates a variable number of values in

input domain since a new input variable is required for each speed change. Limiting

the number of speed changes to one avoids this issue, and is likely more realistic since

the obstacles will not have much time to change speeds many times while interacting

with the robot within the small spatial and temporal neighborhood of the robot.

5.4.2 Obstacle Interaction Test Paths

Obstacle internal test paths are considered concurrent because obstacles interact

concurrently. Generating interaction test paths, or Abstract Behavioral Test Cases

(ABTCs), is performed with the systematic method described in Section 5.2.4. Given

4 nodes in each obstacle’s internal test path (Section 5.4.1) and m = 3 obstacles, there

are 16 ABTCs for three obstacles with this behavior model based on the method of

systematically generating ABTCs described in Section 5.2.4.

88

Two assumptions about obstacle behavior are being made when generating ABTCs

from the model shown in Figure 33. One assumption is that the obstacles can have

infinite acceleration, i.e, they can instantly switch from an initial speed to a different

target speed. When they are not switching states, they have zero acceleration. The

second assumption is that an obstacle will not complete two states in the time it

takes previous obstacles to complete one state. For example, if the first obstacle that

moves is in the Initial Speed state, the next obstacle that moves will at most be in the

Initial Speed state when the first obstacle moves to its next state. To maintain this

third assumption, a random duration, dstates, is generated to represent the maximum

time each obstacle will remain in the Initial Speed, and Changed Speed states. This

ensures that an obstacle will not complete multiple states in the amount of time that

another obstacle completes one state while both obstacles are moving.

5.4.3 Test Execution

Test Execution is performed in mostly the same manner as in Section 5.3. ABTCs

are manually programmed due to not having an automatic generator. For each ABTC,

test-data is randomly selected and combined with the ABTC to form an executable

test case. A full test-data tuple is a 1 tuple of values for the input shown in Table 12

per obstacle, and a value for dstates (Section 5.4.2) in range [0.5s, 4s].

Obstacle positions and velocities is simulated and passed to the planner throughout

the duration of a test while the robot executes its motion. The robot’s motion is

simulated by the Stage simulator. Similar to Section 5.3, when a test begins the

obstacles are placed into their initial positions and the RAMP-H planner will initialize

89

Figure 34: Overall performance of a RAMP system dealing with three dynamic ob-
stacles

(a) (b)

a population and perform planning cycles for one second. After that initial time

has passed, the obstacles begin concurrently executing their behavior (based on the

ABTC) and the RAMP-H planner begins to move the robot. Results are collected

after each test.

5.4.4 Test Execution Results

The first tier of tests were run with the robot moving in the Stage simulator [91]

while obstacle information is published during runtime. All 16 ABTCs were manually

scripted: < 0, 0, 0 >,< 0, 0, 1 >,< 0, 0, 2 >,< 0, 0, 3 >,< 0, 1, 1 >,< 0, 1, 2 >,<

0, 1, 3 >,< 0, 1, 4 >,< 0, 2, 2 >,< 0, 2, 3 >,< 0, 2, 4 >,< 0, 2, 5 >,< 0, 3, 3 >,<

0, 3, 4 >,< 0, 3, 5 >,< 0, 3, 6 >. For each ABTC, 100 tests were executed. Tables

13 and 14 show the results for each ABTC, and Figure 34 shows the results for all

executed test cases combined.

90

Table 13: Results for the first 8 ABTCs. For each ABTC, 100 test cases were executed.
Each column shows the results for the specific ABTC.

ABTC 1 2 3 4 5 6 7 8
Tuple <0,0,0> <0,0,1> <0,0,2> <0,0,3> <0,1,1> <0,1,2> <0,1,3> <0,1,4>
% Reached Goal 50 41 39 32 45 42 47 35
% Feasible Traj 42 48 49 49 45 47 42 52
Mean Remaining Time 2.70s 3.64s 4.13s 4.42s 3.32s 3.00s 3.71s 3.57s
% Infeasible Traj 0 0 1 2 2 0 0 0
% Stuck in I.C. 8 11 11 17 8 11 11 13

Table 14: Results for the second 8 ABTCs. For each ABTC, 100 test cases were
executed. Each column shows the results for the specific ABTC.

ABTC 9 10 11 12 13 14 15 16
Tuple <0,2,2> <0,2,3> <0,2,4> <0,2,5> <0,3,3> <0,3,4> <0,3,5> <0,3,6>
% Reached Goal 22 36 17 26 26 31 19 22
% Feasible Traj 64 48 59 59 58 88 65 62
Mean Remaining Time 6.06s 4.02s 5.85s 4.96s 5.44s 4.71s 5.33s 4.67s
% Infeasible Traj 4 3 3 2 2 4 1 5
% Stuck in I.C. 10 13 21 13 14 8 15 11

Compared with the results presented in Section 5.3, the most significant change is

that the number of test cases resulting in the robot reaching the goal is significantly

fewer than the number from Section 5.3. This is likely related to the increase in tests

that end with the robot moving on a feasible trajectory. If the robot has to change

trajectories due to the obstacles changing speeds, then the robot may not have time

to reach the goal. In these scenarios, the test ends with the robot moving on a feasible

trajectory rather than reaching the goal before the test ends. Figure 34(b) shows a

large amount of test cases ending with only a few seconds remaining in the trajectory,

which indicates that the robot is close to the goal.

Another significant change is the increase in the number of test cases that end

with the robot stuck in imminent collision. Although the obstacle’s direction will

not change when its speed changes, the feasibility of a trajectory can change if an

91

obstacle’s change in speed is large enough. This can cause the robot to stop for

imminent collision, but not quickly finding a better trajectory.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Autonomous robot navigation is a fundamental problem in robotics that combines

research issues in path and trajectory planning, motion control, and sensing and per-

ception. Solving the problem in an unknown and uncertain environment is to enable

a robot to sense changes in an environment and adapt its path/trajectory accord-

ingly on the fly while executing a motion smoothly that satisfies various optimization

constraints.

Much existing research is focused on addressing certain aspects of the problem,

but not the whole problem. This dissertation has presented a general and holistic ap-

proach for autonomous non-holonomic robot navigation in an unknown environment

with arbitrary static or dynamic obstacles, and a novel model-based approach for

system-level test generation to measure the effectiveness of a system that implements

autonomous robot motion in the presence of obstacles that move in unforeseen ways.

While other recent approaches to motion planning focus on learning about the

specific obstacles in the environment, the RAMP-H approach maintains generality

when representing obstacles. It assumes very little about the obstacles that the

robot may need to avoid, and represents them all in a generic way. It bypasses

computationally expensive object classification in order to focus on adapting the

robot’s motion to avoid whatever oncoming obstacle it senses.

93

6.1 Contributions

The RAMP approach has been extended to enable non-holonomic motion and to

incorporate real-time sensing and perception from real sensing data. The presented

planner, RAMP-H, converts holonomic trajectories to non-holonomic motion on-the-

fly. It utilizes Bézier curves to connect straight-line segments along a trajectory, and

to generate motion to switch trajectories via smooth non-holonomic curves. Control

cycle frequency was modified so that it adapts to the robot’s dynamics and the need to

avoid obstacles. A method to sync control and planning at real-time was introduced

into a RAMP system to account for motion error during execution.

Real-time sensing and perception was achieved by modeling dynamic obstacles with

efficient circle representations to allow for fast collision detection and the ability to

represent any arbitrary shape. This real-time sensing and perception module allows

RAMP-H to detect and track unknown obstacles that may be any shape, move at

any speed, and may enter or leave the environment throughout execution.

The Hilbert maps framework [76] was utilized to learn the occupancy of an environ-

ment and incorporate the knowledge of past executions into the real-time execution

of RAMP-H. During runtime, the learned information is combined with real sensing

data, and both are considered in the evaluation of trajectories. Essentially, this work

embeds high-level decision making about navigating an environment into the eval-

uation function of RAMP-H to avoid regions of high likelihood of occupancy which

leads to smoother and safer motion.

The RAMP-H framework has been validated with physical robot experiments. The

94

experiments demonstrate that the framework is capable of reaching a goal position

while adapting to unknown arbitrary static and dynamic obstacles whose changes are

only known by real-time detection and tracking based on real sensing data. Details

about the frequencies and duration of various procedures in RAMP-H have been

presented. Further, leveraging past experience in motion planning was validated by

both simulation and physical robot experiments showing that regions with a high

likelihood of occupancy in an environment can be avoided by incorporating learned

data about an environment’s occupancy into RAMP-H’s evaluation function.

An approach to generate system-level test cases for a robot motion planning system

that moves a robot in the presence of dynamic obstacles with unforeseen motion was

introduced, and test execution was performed on a RAMP-H system. The approach

models the interactions between a robot and obstacles so that the number of possible

Abstract Behavior Test Cases (ABTCs) is drastically reduced. System-level testing

of a RAMP system offers insight for evaluating an implementation that cannot be

obtained otherwise. First, system-level tests help assess issues in overall system per-

formance, such as getting stuck in an imminent collision state. Secondly, these tests

can identify bottlenecks in a system to show how often a certain problem occurs.

Third, system-level tests can measure exact performance differences after changes in

a system’s implementation, such as GPU optimization. Lastly, the tests systemati-

cally validate that specific system-level requirements are satisfied by a system. For

instance, before putting a robot in a real environment with dynamic obstacles moving

in unpredictable ways, the system-level test suite can check if the robot can reach its

goal some percentage of the time in a simulated version of the environment.

95

6.2 Future Work

The RAMP-H framework is a powerful modular system that can be extended and

built upon both on the theoretical level and the implementation. Different methods

for perception, collision checking, and trajectory generation can be used in the frame-

work. Additionally, more learning-based methods can be utilized in the framework

to improve the overall performance.

6.2.1 Learning

Incorporating more learning into the framework is an area with much future work.

Currently the evaluation function is set empirically after viewing the planner’s perfor-

mance in an environment. However, utilizing machine learning techniques to optimize

the evaluation function for different environments can likely provide an optimized and

more effective set of coefficients.

Currently, obstacle trajectories are predicted as maintaining constant velocity for a

small period of time (one sensing cycle). This naive approach works well in practice,

but it is likely that the overall performance can be improved by learning the motion

patterns for an obstacle type and using that to more accurately predict obstacle

motion, as some of the human-aware motion planning literature does.

Learning the occupancy of an environment can be researched further. One open

question is how to update our model of the environment with sensor reading from

navigation. Currently the model is trained on data covering the entire environment

so it cannot handle occlusions in the training data. Updating the model on only the

regions a robot can view at a certain point in time can allow the model to be updated

96

and trained based on actual navigation results rather than needing to view the entire

environment to obtain training data.

6.2.2 Testing

An extremely time-consuming component of system-level testing for a robot motion

system is test execution. In order to reduce the time it takes to do test execution, a

fewer number of executable test cases should be run. Test cases that are considered

edge cases are ones where the system has a high chance of failing, such as a test case

where the obstacles breach a clearance radius for the robot. These cases should be

identified so that only those test cases can be run, and other cases can be assumed to

either pass or fail. This can significantly reduce the time spent in test execution while

maintaining reasonably accurate results. However, identifying edge cases is nontrivial

due to the deterministic nature of RAMP.

The obstacle behavioral models should be extended further. One aspect of obstacle

behavior not considered here is acceleration. Considering acceleration in the behavior

model may tie the ABTCs to the input data because the values for acceleration will

affect when an obstacle transitions between states that are classified by speed, such

as Constant Speed, Increased Speed, etc. Another limitation of the behavior model

is the assumption that all transitions have equal likelihood of occurring. Using a

probabilistic model to determine how likely an obstacle is to change states may lead

to more accurate behaviors.

The number of ABTCs for an obstacle will grow as the obstacle behavior models

become more complex. Currently, all ABTCs are manually scripted because there has

97

been a low number. However, an automatic scripting tool for implementing ABTCs

will be necessary to achieve test execution when the number of ABTCs grows too

large.

6.2.3 Implementation

There are many identical tasks that are run in the RAMP framework that can

be sped up with parallel computing techniques. For instance, each control cycle

requires that each trajectory in the population be updated with a new current state

and requires some trajectory re-planning. Currently the trajectories are updated

sequentially, but it can almost certainly be sped up with parallel computing. Further,

it may be possible to maintain many populations of trajectories in parallel in order

to increase a robot’s number of options and diversity in those options.

The RAMP-H framework was implemented as a ROS metapackage. Each compo-

nent (planner, control, trajectory generation, trajectory evaluation, path modifica-

tion, and sensing and perception) runs in a separate ROS node, which is a separate

process. The advantage of this method is that it allows components to be easily

replaced with other components. The disadvantage is that it introduces network la-

tency to pass data between all these processes. This latency can have a significant

effect on the overall performance of the system, so future work can attempt to remove

this issue. One option is to couple some of these nodes to remove the message passing

between them. Another option is to migrate the system to ROS 2.0 and make use

of the nodelet concept, which allows nodes on the same computer to pass pointers to

data rather than the data itself to significantly speed up message passing.

98

6.3 Applications

This dissertation presented a general approach for robot motion planning in the

presence of unknown obstacles. This approach is potentially useful for any appli-

cation in an unstructured environment where a robot does not know how the other

entities in an environment will behave. Common unstructured indoor environments

include homes, restaurants, hospitals, and airports. All of these environments require

a robot to navigate around human obstacles that can move in unpredictable ways.

This work may also be used in environments where robots and humans collaborate to

achieve tasks, such as in warehouse environments, or even environments containing

only robots if the robots do not move on fixed paths. Outdoor environment applica-

tions, such as delivery robots, may make use of this work since the outside world is

usually unstructured.

Measuring the effectiveness of an autonomous robotic system’s effectiveness has

many applications. For example, one can measure a system’s reliability in a specific

environment to verify that strict performance requirements can be met before a robot

is introduced into the environment. Another application is measuring the change in

performance after modifying part(s) of the code, such as implementing optimization

or replacing modules. Further, system-level tests can elicit areas of improvement

and/or identify bottlenecks in a system.

99

REFERENCES

[1] M. Abdelgawad, S. McLeod, A. Andrews, and J. Xiao. Model-based testing of
Real-time Adaptive Motion Planning (RAMP). In IEEE International Confer-
ence on Simulation, Modeling, and Programming for Autonomous Robots (SIM-
PAR), 2016.

[2] M. Abdelgawad, S. McLeod, A. Andrews, and J. Xiao. Model-based testing of
a real-time adaptive motion planning system. Advanced Robotics, 31(22):1159–
1176, 2017.

[3] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM: An
obstacle-based PRM for 3D workspaces, 1998.

[4] P. Ammann and J. Offutt. Introduction to software testing. Cambridge University
Press, 2016.

[5] A. Andrews, M. Abdelgawad, and A. Gario. Active world model for testing
autonomous systems using CEFSM. In Workshop on Model-Driven Engineering,
Verification and Validation, 2015.

[6] A. Andrews, M. Abdelgawad, and A. Gario. Towards world model-based test
generation in autonomous systems. In International Conference on Model-Driven
Engineering and Software Development, pages 1–12. SciTePress Digital Library,
2015.

[7] A. Andrews, M. Abdelgawad, and A. Gario. World model for testing autonomous
systems using Petri nets. In 2016 IEEE 17th International Symposium on High
Assurance Systems Engineering (HASE), pages 65–69, Jan 2016.

[8] A. Andrews, M. Abdelgawad, and A. Gario. World model for testing urban
search and rescue (USAR) robots using Petri nets. In Proceedings of the 4th In-
ternational Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pages 663–670, 2016.

[9] F. Aurenhammer. Voronoi diagrams a survey of a fundamental geometric data
structure. Association of Computing Machinery Computing Surveys (CSUR),
23(3):345–405, 1991.

[10] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. Algorithmica,
10(2-4):121–155, 1993.

[11] R. Bohlin and L. E. Kavraki. Path planning using lazy PRM. In Proceedings
of the IEEE International Conference on Robotics and Automation, 2000., vol-
ume 1, pages 521–528.

100

[12] V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sam-
pling strategy for probabilistic roadmap planners. In Proceedings of the IEEE
International Conference on Robotics and Automation, 1999.

[13] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of the Association of Computing Machinery, 30(2):323–342, Apr. 1983.

[14] O. Brock and E. Kavraki. Decomposition-based motion planning: A frame-
work for real-time motion planning in high-dimensional configuration spaces. In
Proceedings of the IEEE International Conference on Robotics and Automation,
2001, volume 2, pages 1469–1474.

[15] O. Brock and O. Khatib. Elastic strips: A framework for motion generation in hu-
man environments. The International Journal of Robotics Research, 21(12):1031–
1052, 2002.

[16] J. Bruce and M. Veloso. Real-time randomized path planning for robot naviga-
tion. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2002., volume 3, pages 2383–2388.

[17] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide
robot. Artificial Intelligence, 114(1-2):3–55, Oct. 1999.

[18] T. Campbell, M. Liu, B. Kulis, J. P. How, and L. Carin. Dynamic clustering via
asymptotics of the dependent Dirichlet process mixture. In Advances in Neural
Information Processing Systems, pages 449–457, 2013.

[19] B. Chazelle. Approximation and decomposition of shapes. Algorithmic and
Geometric Aspects of Robotics, 1:145–185, 1985.

[20] Y. F. Chen, M. Everett, M. Liu, and J. P. How. Socially aware motion planning
with deep reinforcement learning. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and System, 2017.

[21] Y. F. Chen, S.-Y. Liu, M. Liu, J. Miller, and J. P. How. Motion planning with
diffusion maps. In Proceedings of IEEE/RSJ International Conference on Robots
and Systems, 2016.

[22] W. Cheng, Z. Tang, C. Zhao, L. Tang, and Z. Guo. Path planning for nonholo-
nomic car-like mobile robots using genetic algorithms. In 2006 8th International
Conference on Signal Processing, volume 4, 2006.

[23] J.-W. Choi and K. Huhtala. Constrained path optimization with Bézier curve
primitives. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014, pages 246–251.

[24] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

101

[25] ClearpathRobotics. Turtlebot 2 Platform. https://www.clearpathrobotics.

com/turtlebot-2-open-source-robot/.

[26] E. Coumans et al. Bullet physics library. Open source: bulletphysics. org, 15,
2013.

[27] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Visibility
graphs. In Computational Geometry, pages 307–317. Springer, 2000.

[28] A. Dias-Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. A survey on
model-based testing approaches: A systematic review. In Association of Com-
puting Machinery International Workshop on Empirical Assessment of Software
Engineering Languages and Technology, WEASELTech ’07, pages 31–36, New
York, NY, USA, 2007.

[29] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[30] A. Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, 1989.

[31] G. Erinc and S. Carpin. A genetic algorithm for nonholonomic motion planning.
In Proceedings of IEEE International Conference on Robotics and Automation,
2007, pages 1843–1849, April.

[32] D. Ferguson, N. Kalra, and A. Stentz. Replanning with RRTs. In Proceedings of
IEEE International Conference on Robotics and Automation, 2006, pages 1243–
1248.

[33] X.-S. Ge, H. Li, and Q.-Z. Zhang. Nonholonomic motion planning of space
robotics based on the genetic algorithm with wavelet approximation. In Proceed-
ings of IEEE International Conference on Control and Automation, 2007, pages
1977–1980, May 2007.

[34] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping
with Rao-Blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–
46, 2007.

[35] J. Guan and J. Offutt. A model-based testing technique for component-based
real-time embedded systems. In IEEE International Conference on Software
Testing, Verification, and Validation Workshops, 2015.

[36] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic
motion planning with moving obstacles. The International Journal of Robotics
Research, 21(3):233–255, 2002.

[37] D. Jung and P. Tsiotras. On-line path generation for small unmanned aerial
vehicles using B-spline path templates. In American Institute of Aeronautics
and Astronautics Guidance, Navigation and Control Conference, volume 7135,
2008.

102

[38] R. E. Kalman et al. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, 1960.

[39] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[40] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

[41] A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via para-
metric optimal control. The International Journal of Robotics Research (IJRR),
22(7-8):583–601, 2003.

[42] H. Khambhaita and R. Alami. Viewing robot navigation in human environment
as a cooperative activity. In International Symposium on Robotics Research
(ISRR), 2017.

[43] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
The International Journal of Robotics Research, 5(1):90–98, 1986.

[44] N. Koenig and A. Howard. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systemse, 2004.

[45] S. Koenig and M. Likhachev. Fast replanning for navigation in unknown terrain.
IEEE Transactions on Robotics, 21(3):354–363, 2005.

[46] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard. Socially compliant
mobile robot navigation via inverse reinforcement learning. The International
Journal of Robotics Research, 35(11):1289–1307, 2016.

[47] T. Kröger and F. M. Wahl. Online trajectory generation: Basic concepts for
instantaneous reactions to unforeseen events. IEEE Transactions on Robotics,
26(1):94–111, 2010.

[48] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for
nonholonomic mobile robots. IEEE Transactions on Robotics, 20(6):967–977,
2004.

[49] J.-P. Laumond. Feasible trajectories for mobile robots with kinematic and envi-
ronment constraints. In Proceedings of International Conference on Intelligent
Autonomous Systems, pages 346–354, 1986.

[50] J.-P. Laumond, P. Jacobs, M. Taix, and R. Murray. A motion planner for
nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,
10(5):577–593, Oct 1994.

103

[51] J. Laval, L. Fabresse, and N. Bouraqadi. A methodology for testing mobile
autonomous robots. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013.

[52] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge,
U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[53] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The Inter-
national Journal of Robotics Research, 20(5):378–400, 2001.

[54] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, et al. Towards fully autonomous driving: Systems
and algorithms. In Proceedings of Intelligent Vehicles Symposium (IV), 2011
IEEE, pages 163–168.

[55] Y. Li and J. Xiao. On-line planning of nonholonomic trajectories in crowded
and geometrically unknown environments. In Proceedings of IEEE International
Conference on Robotics and Automation, 2009, pages 3230–3236.

[56] R. Lill and F. Saglietti. Testing the cooperation of autonomous robotic agents.
In Proceedings of IEEE International Conference on Software Engineering and
Applications (ICSOFT-EA), 2014, pages 287–296.

[57] A. X. P. LIVE. Specifications. https://www.asus.com/us/3D-Sensor/Xtion_

PRO_LIVE/specifications/.

[58] D. V. Lu, D. Hershberger, and W. D. Smart. Layered costmaps for context-
sensitive navigation. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014, pages 709–715.

[59] J. MacDougall and G. Tewolde. Tour guide robot using wireless based lo-
calization. In Proceedings of the IEEE International Conference on Elec-
tro/Information Technology (EIT), pages 1–6, May 2013.

[60] R. MacLachlan and C. Mertz. Tracking of moving objects from a moving vehicle
using a scanning laser rangefinder. In 2006 IEEE Intelligent Transportation
Systems Conference, pages 301–306.

[61] E. Marder-Eppstein. ROS navigation stack, 2017. https://github.com/

ros-planning/navigation.

[62] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige. The office
marathon: Robust navigation in an indoor office environment. In Proceedings of
IEEE International Conference on Robotics and Automation, 2010.

[63] S. McLeod and J. Xiao. Real-time adaptive non-holonomic motion planning in
unforeseen dynamic environments. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016.

104

[64] S. McLeod and J. Xiao. Autonomous robot navigation in unknown dynamic
environments. Submitted to IEEE Transactions on Robotics, 2018.

[65] S. McLeod and J. Xiao. Navigating dynamically unknown environments lever-
aging past experience. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2019.

[66] C. Mertz, L. E. Navarro-Serment, R. MacLachlan, P. Rybski, A. Steinfeld,
A. Suppe, C. Urmson, N. Vandapel, M. Hebert, C. Thorpe, et al. Moving object
detection with laser scanners. Journal of Field Robotics, 30(1):17–43, 2013.

[67] N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

[68] J. Miller, A. Hasfura, S.-Y. Liu, and J. P. How. Dynamic arrival rate estimation
for campus mobility on demand network graphs. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2016, pages 2285–2292.

[69] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al. Junior: The Stanford
entry in the urban challenge. Journal of Field Robotics, 25(9):569–597, 2008.

[70] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al. Fastslam: A factored
solution to the simultaneous localization and mapping problem. In Association
for the Advancement of Artificial (AAAI) Intelligence Innovative Applications of
Artificial Intelligence Conference (IAAI), pages 593–598, 2002.

[71] R. Murray and S. Sastry. Nonholonomic motion planning: steering using sinu-
soids. IEEE Transactions on Automatic Control, 38(5):700–716, May 1993.

[72] C. Nissoux, T. Siméon, and J.-P. Laumond. Visibility based probabilistic
roadmaps. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1999., volume 3, pages 1316–1321.

[73] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena. From per-
ception to decision: A data-driven approach to end-to-end motion planning for
autonomous ground robots. In Proceedings of IEEE International Conference on
Robotics and Automation, 2017, page 15271533.

[74] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart. Pre-
dicting actions to act predictably: Cooperative partial motion planning with
maximum entropy models. In Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2016, pages 2096–2101.

[75] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. ROS: an open-source Robot Operating System. In Proceedings of
IEEE International Conference on Robotics and Automation Workshop on Open
Source Software, volume 3, page 5. Kobe, 2009.

105

[76] F. Ramos and L. Ott. Hilbert maps: Scalable continuous occupancy mapping
with stochastic gradient descent. The International Journal of Robotics Research,
35(14):1717–1730, 2016.

[77] J. Reeds and L. Shepp. Optimal paths for a car that goes both forwards and
backwards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

[78] M. I. Ribeiro. Kalman and extended Kalman filters: Concept, derivation and
properties. Institute for Systems and Robotics, 43, 2004.

[79] R. Senanayake and F. Ramos. Bayesian Hilbert maps for dynamic continuous
occupancy mapping. In 1st Annual Conference on Robot Learning (CoRL), 2017.

[80] J. Snape, J. van den Berg, S. Guy, and D. Manocha. The hybrid reciprocal
velocity obstacle. IEEE Transactions on Robotics, 27(4):696–706, Aug 2011.

[81] A. Stentz. Optimal and efficient path planning for partially-known environments.
In Proceedings of IEEE International Conference on Robotics and Automation,
1994., pages 3310–3317.

[82] A. Stentz et al. The focussed D* algorithm for real-time replanning. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, 1995,
volume 95, pages 1652–1659.

[83] L. Tai, G. Paolo, and M. Liu. Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017,
pages 31–36.

[84] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D. Hah-
nel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: a second-
generation museum tour-guide robot. In Proceedings of the IEEE International
Conference on Robotics and Automation, 1999, volume 3, pages 1999–2005 vol.3.

[85] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.

[86] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, et al. Stanley: The robot that won the
DARPA grand challenge. In The 2005 DARPA Grand Challenge, pages 1–43.
Springer, 2007.

[87] P. Trautman and A. Krause. Unfreezing the robot: Navigation in dense, inter-
acting crowds. In Proceedings of IEEE/RSJ International Conference on Robots
and Systems, 2010, pages 797–803.

[88] C. Urmson, J. A. Bagnell, C. R. Baker, M. Hebert, A. Kelly, R. Rajkumar, P. E.
Rybski, S. Scherer, R. Simmons, S. Singh, et al. Tartan racing: A multi-modal
approach to the DARPA urban challenge. Technical report, 2007.

106

[89] J. Vannoy and J. Xiao. Real-time Adaptive Motion Planning (RAMP) of mobile
manipulators in dynamic environments with unforeseen changes. IEEE Trans-
actions on Robotics, 24(5):1199–1212, 2008.

[90] A. Vasquez, M. Kollmitz, A. Eitel, and W. Burgard. Deep detection of people
and their mobility aids for a hospital robot. In 2017 European Conference on
Mobile Robots (ECMR), pages 1–7. IEEE, 2017.

[91] R. Vaughan. Massively multi-robot simulation in Stage. Swarm intelligence,
2(2-4):189–208, 2008.

[92] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In Pro-
ceedings of IEEE International Conference on Robotics and Automation, 1999.,
volume 2, pages 1024–1031.

[93] J. Xavier, M. Pacheco, D. Castro, A. Ruano, and U. Nunes. Fast line, arc/circle
and leg detection from laser scan data in a Player driver. In Proceedings of IEEE
International Conference on Robotics and Automation, 2005., pages 3930–3935.

[94] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski. Adaptive evolution-
ary planner/navigator for mobile robots. IEEE Transactions on Evolutionary
Computation, 1(1):18–28, 1997.

[95] Y. Yang and O. Brock. Elastic roadmaps motion generation for autonomous
mobile manipulation. Autonomous Robots, 28(1):113–130, 2010.

[96] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle. Dynamic-domain RRTs:
Efficient exploration by controlling the sampling domain. In Proceedings of IEEE
International Conference on Robotics and Automation, 2005, pages 3856–3861.

[97] Z. Zhang. Microsoft Kinect sensor and its effect. IEEE multimedia, 19(2):4–10,
2012.

