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ABSTRACT 

 

 

ISAAC CHO. Stereoscopic bimanual interaction for interactive 3D visualization (Under 

the direction of DR. ZACHARY J. WARTELL) 

 

 

Virtual Environments (VE) are being widely used in various research fields for 

several decades such as 3D visualization, education, training and games. VEs have the 

potential to enhance the visualization and act as a general medium for human-computer 

interaction (HCI). However, limited research has evaluated virtual reality (VR) display 

technologies, monocular and binocular depth cues, for human depth perception of 

volumetric (non-polygonal) datasets. In addition, a lack of standardization of three-

dimensional (3D) user interfaces (UI) makes it challenging to interact with many VE 

systems.  

To address these issues, this dissertation focuses on evaluation of effects of 

stereoscopic and head-coupled displays on depth judgment of volumetric dataset. It also 

focuses on evaluation of a two-handed view manipulation techniques which support 

simultaneous 7 degree-of-freedom (DOF) navigation (x,y,z + yaw,pitch,roll + scale) in a 

multi-scale virtual environment (MSVE). Furthermore, this dissertation evaluates auto-

adjustment of stereo view parameters techniques for stereoscopic fusion problems in a 

MSVE. Next, this dissertation presents a bimanual, hybrid user interface which combines 

traditional tracking devices with computer-vision based ―natural‖ 3D inputs for multi-

dimensional visualization in a semi-immersive desktop VR system. In conclusion, this 

dissertation provides a guideline for research design for evaluating UI and interaction 

techniques.   
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CHAPTER 1: INTRODUCTION 

Virtual Environments (VEs) are being widely used in various research fields, such as 

3D visualizations [28,29], educations [74,174,168,60], trainings [42,135] and games 

[179,50,99]. Stereoscopic VEs have a lot of potential to visualize various types of real 

world datasets and to be a general medium for human-computer interaction (HCI) 

[44,45,102]. Over the last decade, many researchers have employed complex real world 

datasets including scientific and medical 3D volumetric datasets as well as conventional 

polygonal datasets. Furthermore, many researchers have developed a number of 3D user 

interfaces (UIs) to enrich interaction between the user and the computer generated 3D 

world.  

VEs can be categorized as Head-Mounted Displays (HMD), which mount the display 

on a heads-worn apparatus, and Head-Tracked Displays (HTD) [139], which uses 

stationary displays that are attached to a wall, tabletop or desk. Examples of HTD VEs 

are the Cave Automatic Virtual Environment (CAVE) [37], fish tank VR [154], the virtual 

workbench [165] and desktop VR [121]. This dissertation deals with HTD systems, 

mainly semi-immersive desktop VR. A primary component of HTD systems is a 

stereoscopic and head-coupled display which can enhance human depth perception of 

computer generated 3D imagery by providing binocular (retina disparity) and monocular 

(motion parallax) cues [155,160].  

1.1 Immersive Virtual Reality technology 

Much previous research has demonstrated the utility of stereoscopy and head-
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coupled motion parallax for enhancing human perception of complex three-dimensional 

(3D) datasets. For example, studies by Ware et al. examine the effect of stereoscopic 

display and kinetic depth on understanding 3D networks which are represented by tubes 

or lines [155,161,160]. User performance at finding paths in a complex 3D network 

improves when using stereoscopy and structure-from-motion.  

A significant number of visual analytic domains, however, also heavily use 3D 

volumetric data. Examples include medical imaging, weather and environmental 

simulations, and fluid flow. Volumetric data is characterized by large amounts of 

transparency, occlusion and ambiguous spatial structure. There has been a fair amount of 

evaluation of perception of volumetric data under different rendering algorithms and 

different parameterizations such as modifying transfer functions [77]. For a simple 

volume dataset one might find a combination of transfer function settings, rendering 

algorithms and rendering augmentations (such as edge enhancement) such that adding 

VR type displays would do little to further improve depth and shape perception. However, 

for more complex volumetric dataset, even with perceptually optimized transfer functions 

and rendering parameters, VR display capabilities may further improve depth and shape 

perceptions.  

For surface and 3D networks, this type of result is typical. When the 3D geometry is 

relatively simple, well-chosen rendering parameters can maximize shape perception 

causing VR display technologies to have less additional benefit. However, with more 

realistic complex geometry, VR technologies show significant positive effects on shape 

and depth perception. 

One would expect similar results for volumetric data. Further, the addition of VR 
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technologies could be especially important with time-varying volumetric dataset that are 

viewed in real-time where extensive preprocessing for optimized transfer functions and 

volume rendering parameters is not possible. An example would be real-time, streaming 

Doppler weather radar data [164]. With the increasing affordability of semi-immersive 

VR displays and GPUs capable of advanced volume rendering, there is a need to quantify 

the effectiveness of stereopsis and structure-from-motion on volumetric data, and also to 

quantify how these display parameters interact with other volumetric rendering 

conditions.  

Although stereoscopic head-coupled display can enhance depth perception of the 

user in a computer generated 3D world, sometimes the user sees two separate 2D images 

rather than a solid 3D image. Many factors influence fusion problems, but typically these 

translate into a range of distance in front of and behind the screen where a stereo 3D 

image can be comfortably fused. Fusion problems increase eye strain and motion 

sickness especially with a head-tracking display. Ware et al. [151] reduce these problems 

by changing the modeled eye separation value, such as using 3cm instead of 6cm, to 

reduce stereo 3D image depth. However, with the head-tracked stereo, this false eye 

separation causes a distortion with a head-tracked shearing component [163]. Changing 

the view scale factor via cyclopean scale is an alternative way to change image depth 

without a inducing a dynamic, non-linear distortion.  

1.2 3D User Interface and Interaction 

The ubiquitous Windows-Icon-Menu-Pointer (WIMP) UI and its 2D mouse UI 

techniques began with Xerox Parc‘s and others seminal work. Similar to 2D interaction 

techniques (ITs) [22], 3D ITs often require physical devices, such as ChordGloves [92] 

(also pinch gloves), a bat [157] , or a Cubic Mouse [52], to provide full 6 Degree of 
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Freedom (DOF) interaction to the user. Although a significant number of researchers 

have produced 3D UIs, there still is no standard 3D UI while various WIMP standards 

exist. Hence, many researchers still employ the conventional WIMP interfaces for their 

3D applications due to its familiarity even though it does not provide a complete solution 

for 3D ITs because of its limited DOFs (i.e. 2DOF) [22].  

The complexity and size of 3D datasets targeted by 3D visualization applications 

continues to grow rapidly. For example, a real-time scientific visualization generates 

complex geometry in massive datasets [28]. This growths data complication grows the 

complexity of interaction of the application due to heavy mathematical computations for 

the communication between the user and complicated data. Further complication have 

arisen because a significant number of researchers have begun to use 3D volumetric 

datasets to meet the requirements established by a number of application areas. The 3D 

volumetric dataset incorporates a 3D discrete regular grid of voxels and commonly is 

stored in a volume buffer, which is a large 3D array of voxels [73]. Examples of 

applications that employ 3D volumetric datasets include medical imaging, weather, 

environmental simulation, fluid flow, and geospatial visualization (such as deep-ocean 

sonar and ocean current applications). Even though 3D applications have increased in 

their interaction‘s complexity, the traditional WIMP UI remains the most common UI for 

3D volumetric visualizations. 3D volumetric visualizations have an additional complexity 

because raw volumetric data does not provide edge and surface information for selection. 

Also data size can be relatively larger than for non-volumetric datasets. As such, 3D ITs 

for VEs designed for surface (typically polygonal) datasets are not always appropriate for 

3D volumetric data [144]. Addressing these challenges requires evaluation of 3D UIs for 



5 

 

3D volumetric datasets and, potentially, the development of new interaction methods.  

To address these challenges with traditional 3D UIs, researchers introduced various 

UIs and ITs. One example is the hybrid user interface (HUI). Feiner et al. [49] first 

introduced the HUI for their augmented reality (AR) system, which uses a see-through 

HMD unit with a 2D desktop screen for multi-computer interactions. Conventionally, a 

HUI consists of heterogeneous displays and input devices that use multimodal physical 

and natural human input devices. However, previous works generally focused on output 

and simultaneous multiple heterogeneous displays. These previous studies on HUIs rarely 

endorsed hybrid interaction. Rather, they typically encourage developers to use different 

UI techniques individually to control varying heterogeneous displays [10,39].  

Similar to the concept of the HUI, Multimodal User Interaction (MUI) provides 

combined natural human input modes, such as voice, gaze, and body gesture with 

traditional UIs [107,108,109]. No references currently exist that clearly detail the 

differences between HUIs and MUIs. According to previous works, however, MUI tends 

to focus on natural human input modes, particularly ‗speech‘ (or voice), the key 

component of MUI. Several studies use physical input devices (e.g. stylus input) for MUI. 

Conversely, hybrid user interface research tends to focus on both non-traditional input 

and non-traditional output devices. The HUI provides high usability, flexibility, and the 

blended benefits of different UIs and ITs for HCI by combining multimodal input devices. 

Using immersive VR technologies can also pose challenges for 3D UIs. For example, 

some multi-scale virtual environments (MSVEs), which are VEs that contain geometric 

details whose sizes cover several orders of magnitude (i.e. a spatial multi-scale world [53] 

that is 3D), require manipulating of view scale as a separate 7
th

 DOF in the view model 
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[122,123]. This 7
th

 DOF, view scale, is not equivalent to Field-of-View (FOV), travel 

gain factors, or a host of other possible view model parameters. View scale has 

significant effects on usability in systems with head-coupled display [112], stereoscopic 

display [156] or direct 3D manipulation [97]. Many 7DOF object manipulation 

techniques exist including Mapes and Moshell‘s work [92]. Many 3D ITs can be used for 

either object manipulation or travel using the grab-the-world approach [157]. However, 

none of previous works [127,133,176] provide a simultaneous 7DOF (position + 

orientation + scale) object manipulation technique.  

1.3 Summary of Research Challenges 

In summary, this dissertation focuses on several research challenges: 

1) Stereoscopic and head-coupled displays have not been fully evaluated for 3D 

volumetric dataset to determine their effects for human depth perception.  

2) There is yet no simultaneous bimanual 7DOF IT presented and evaluated, 

especially for a MSVE. 

3) Dynamic adjustment of stereo view parameter techniques, which are to reduce 

stereoscopic fusion problems, need to be evaluated to determine their 

effectiveness in head-tracked stereoscopic VE systems.  

4) HUI that supports 2D and 3D physical UIs with natural hands input without an 

acquisition time penalty for multi-dimensional visualization in semi-immersive 

VR has not been presented.  

1.4 Contributions  

The purpose of the research presented in this dissertation is (1) to determine benefits 

of VR technologies for depth perception in 3D volumetric datasets, (2) to develop and 

evaluate bimanual simultaneous 7DOF ITs for navigation in a MSVE, (3) to evaluate 
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dynamic adjustment of stereo view parameter techniques to reduce stereoscopic fusion 

problems and (4) to develop and evaluate a HUI that is a two-handed, hybrid of 3D and 

2D user inputs with human natural hand and finger input for multi-dimensional 

visualization in desktop VR. 

1.5 Thesis Organization 

Chapter 2 broadly reviews previous research and background information concerning 

VR, 3D UIs and various application domains in a VE.  

Chapter 3 presents user experiments to evaluate benefits of fundamental VR 

technologies for depth perception in 3D volumetric datasets. Two user studies on depth 

ordering and depth discrimination were conducted to determine stereo and motion effects 

for 3D volumetric datasets in semi-immersive desktop VR. In addition, the chapter 

compares the results with previous human depth perception studies on other types of data.  

Chapter 4 introduces a simultaneous 7 DOF object manipulation technique and 

presents user studies to show its advantages for view manipulation tasks compared to 

previous one-handed and two-handed object manipulation techniques. The chapter also 

describes an implementation of this technique using a natural hand input and discusses its 

limitations. 

Chapter 5 evaluates several dynamic adjustments of the stereo view in a MSVE to 

reduce stereoscopic problems. The chapter shows different effects of auto-adjustment 

techniques on the user‘s ability to accomplish a task between desktop VR and a CAVE 

with a one-handed, scene-in-hand 7 DOF travel technique.  

Chapter 6 introduces a bimanual HUI for multi-dimensional visualization in a semi-

immersive, desktop VR system. The chapter introduces a cross-dimensional application 

and concept of a two-handed HUI that simultaneously uses both natural hand inputs and 
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traditional physical 3D input devices. This chapter also presents an experimental 

evaluation of the HUI by comparing it with two other traditional UIs.  

Chapter 7 discusses design guidelines that have resulted from this research and 

Chapter 8 summarizes this dissertation and discusses future works.  



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

2.1 Depth Perception 

Prior experiments with surface and 3D network datasets show that stereoscopic 

display can aid depth perception when either the visual stimuli lacks other depth cues, as 

can occur in teleoperator environments and remote sensing or in less sophisticated 

computer graphic presentations, or when the visual stimuli contains a high depth 

complexity as measured by many occlusions [38]. As a specific recent example, Ware et 

al. examine the effect of stereoscopy and the kinetic depth effect on a person‘s 

understanding of a 3D network which is represented by 3D tubes or lines [155,161,160]. 

They demonstrate great benefit for stereoscopic and kinetic depth when a user must find 

paths in between nodes in a complex 3D network. Grossman et al. introduce some 

volumetric aspects, although the focus is on comparing types of stereoscopic and head-

coupled motion parallax display technologies instead of volumetric rendering algorithms. 

They perform three experiments to evaluate the depth perception of 3D scenes with 3 

different types of displays: a volumetric display, a stereoscopic display, a stereoscopic 

display with head-tracking [55]. The participants performed 3 tasks: ranking the depth of 

a sphere, tracing the path in a 3D network, and judging whether an object will collide 

with another object. Their results show the volumetric display has significantly better 

user performance than the others, but their results also show that stereoscopic display 

with head tracking is better than stereoscopy alone.  

The most detailed evaluations of how to improve a user‘s perception and spatial 
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understanding of volumetric data focus on comparing different rendering techniques 

and/or different transfer functions. A. Steward introduces a shading model named 

―vicinity shading‖ which provides shadowing to enhance the perception of surfaces 

within a volume [137]. Svakhine et al. introduce the 2D outline illustration technique 

which can be merged with a 3D volumetric medical dataset to improve the depth 

perception [140]. Bruckner et al. present a volumetric halo drawing technique to 

emphasize depth information of a volumetric medical dataset [25]. Boucheny et al. 

present perceptual studies that examine how transparency affects depth perception in 

Direct Volume Rendering (DVR) [17]. The participant determines the depth ordering of 

two cylinders with semi-transparency, two luminance conditions of cylinders (left 

cylinder dark or left cylinder bright) and three different background images matching to 

the intersection‘s brightness. Overall performance of participants was relatively weak, but 

above chance level.  

A few authors have studied the effectiveness of stereoscopic display for volumetric 

data. Maciejewski et al. introduce the Interactive Volume System which implements 

stereoscopic and haptic rendering with interactive transfer function to provide visual and 

haptic feedback to users [89]. They evaluate depth cues and accuracy of the user‘s 

docking of two proteins using their system. The result shows the benefit of stereoscopy 

for finding the best docking configuration. However, the haptic transfer function did not 

provide any benefit. Hancock evaluates the depth perception of a volumetric dataset 

rendered using DVR on a stereoscopic display [61]. In these experiments, observers 

determine the relative depths of three smaller non-overlapping spheres which are either: 

presented directly; embedded in a large transparent in volumetric sphere; or embedded in 
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a larger transparent sphere enhanced by modulating its opacity based on surface gradient. 

Observers viewed the objects using both a stereo and monoscopic display. Observers 

were most accurate under the transparent sphere condition while stereoscopic display 

improved accuracy only in the ‗presented directly‘ condition. Overall, this indicated a 

dominance of aerial perspective over stereopsis for their scenes.  

Some work examines how stereoscopy and structure-from-motion interact to effect 

perception of volumetric data. Kersten et al. show the effectiveness of stereopsis and 

simulated aerial perspective for the depth perception of a volume dataset of cylinders. 

The data are digitally reconstructed radiographs (DRR) [75]. Their results show that the 

stereoscopic display and stimulated aerial perspective provide depth cue better than 

opacity and spatial frequency for recognizing the rotation direction of the cylinder. Mora 

et al. show the effectiveness of order-independent direct volume rendering (Maximum 

Intensity Projection (MIP) and X-ray projection rendering techniques) [100]. They 

showed advantages of stereoscopy and transfer functions for enhancing the depth 

perception of a volume object rendered by MIP and X-ray projection renderings that lack 

other spatial depth cues. While compelling, their observations regarding stereoscopy‘s 

effectiveness are anecdotal. Finally, Hubbold et al. present a technique named ―tunneling‖ 

which allows users to see internal features and details of volumetric dataset rendered via 

DVR [72]. In their experiments, participants assess patterns of small blobs inside a 

volumetric brain. The experimental conditions include combinations of head-tracking, 

kinetic depth and stereoscopy. The results show that stereoscopy improves the users‘ 

reported understanding of the depth structure and the combination of head-tracking with 

stereo is most preferred.  
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2.2 3D User Interface and Interaction  

Many researchers have introduced 3D UI techniques for VEs. Bowman et al. 

[22,23,20,21] conducted many of the most recent, broad reviews of 3D UIs and ITs and 

have reviewed and evaluated a number of 2D and 3D ITs. They also have identified 

specifications of ITs that will improve the usability of 3D interactions in real-world 

applications and have proposed guidelines for future ITs [19]. Liu et al. explored modern 

ITs for 3D desktop personal computers [87]. A number of other articles also include 

review of physical input devices for 3D UIs [64,81], and ITs for large displays [56]. 

Several taxonomies of spatial input technologies (hardware) [32] have been created 

as well as taxonomies of 3D spatial user interaction techniques (software) [91]. A 

traditional mouse is a 2D held-device with 2 position DOFs. A 2D mouse with the ability 

to yaw perpendicular to the motion plane [91] is referred to here as a planar-3DOF device. 

Multi-touch is a body-tracking, 2D input with roughly 20 DOFs (10 fingers × 2 position 

DOFs). VIDEOPLACE was an early body-tracked 2D interface [90]. Notably the user 

was completely unencumbered (i.e. requiring no worn apparatus of any kind, not even 

fiducial markers).  

3D input interacts in a 3D space. The bat [157] is an isotonic, 3D held-device with 

6DOF pose (position and orientation). A bending-sensing data glove with a 6DOF tracker 

attached is categorized as 3D body-tracking, not a held-device. The ideal implementation 

of body-tracking, of course, is a completely unencumbered system. Wang et al. [150] 

demonstrate unencumbered hand plus finger-tracking. Our operational definition of body-

tracking treats encumbered and unencumbered implementations as sub-categories. 

Various researchers have demonstrated [177,79,65] that having a 3D held-device 

grasped in the hand is beneficial due to the tactile feedback (passive haptics) it provides 
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for 3D manipulation. Such feedback does not exist in hand or finger-tracked 3D UIs, but 

does exist in 2D multi-touch UI‘s or 3D systems augmented with haptics. 

Most ITs for 3D volumetric objects are quite different from ITs for polygonal objects, 

because of the ambiguity of the volumetric objects‘ surface. Many researchers have 

studied such interactions for polygonal datasets. For example, Steed [136] provides a 

literature review of selection methods in VEs, and Rick et al. [120] introduce GPU 

implementation of 3D object selection by the mouse cursor position for desktop 

environments. These studies introduce selection techniques for 3D polygon objects in the 

3D virtual world. With 3D volumetric datasets, however, selection techniques like ray-

selection and selection by volume are not always appropriate for selecting 3D volumetric 

objects because of the unique characteristic of the datasets. Therefore, several selection 

algorithms for 3D volumetric datasets are introduced such as using transfer function 

[120], selection box [144] and 2D interaction with a stylus tip with optical tracking [114]. 

2.2.1 Two-Handed Interaction Techniques 

Bimanual interaction enriches interaction because humans often use two hands to 

accomplish real world tasks. A significant amount of research shows the advantages of 

bimanual interactions [7,8,33,48] based on Guiard‘s Kinetic Chain theory [58] that 

classifies different categories of bimanual actions. 

Early two-handed spatial user interfaces used a 2DOF (degree-of-freedom) puck and 

slider [33], dual mice [14], a puck and stylus [83]. In 3D 6DOF UIs a number of two-

handed interfaces were developed building off of one-handed techniques. These can be 

used for either object manipulation or travel using the grab-the-world approach [157]. 

Many travel techniques exist including those based on both rate control and position 

control [19].  
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Mapes and Moshell [92] develop the two-handed pinch glove based interface for an 

HMD based virtual reality system. Hinckley et al. [66] develop a two-handed interface 

for non-immersive, desktop 3D medical imaging system using hand-held props. Shaw 

and Green [129] present a two-handed interface on a non-immersive desktop system for 

polygon surface design. They add 3 buttons to a pair Polhemus Fastrak receivers [115] 

creating dual button enhanced bats [157]. Zhai [177] presents and studies the FingerBall, 

a small ball with a single button activated by squeezing. The size was selected to allow a 

precision grip and their experiments demonstrate that for a one-hand 6DOF docking task 

the FingerBall is faster than a pinch glove based technique. 

A common form-factor for 6DOF devices is using a joystick handle [19]. This 

power-grip approach has been carried over to two-handed 6DOF systems such as the 

SpaceGripsTM which are used by Schultheis et al. [127]. They add the Spindle visual to 

the IT of Mapes and Moshell based on visual feedback in a two-handed 2D IT of 

Balakrishnan and Hinckley [7]. Experimentally they find the two-handed IT out-performs 

a mouse IT and 6DOF Wanda technique for a 6DOF docking task and an object 

construction task. While the IT allows view scale change, the objects that are docked do 

not need to be re-scaled. Hence, the view scale adjustment is available for the user to 

augment translational travel and to find an ideal view scale for performing the docking 

task, but strictly speaking the docking task does not require a view scale adjustment.  

Ulinski et al. [146,145] explore different two-handed techniques for selecting subsets 

of volume data. The techniques create and manipulate a 3D box which has 9 DOFs total, 

although it can be reduced to 7 if the box is assumed to be a cube. They also develop and 

compare a number of two-handed techniques based on Guiard‘s [58] kinetic chain theory. 
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Similar to Mapes and Moshell, their Two-Corners Technique does not support pitch about 

the axis between the button balls. 

Most recently, Song et al. [133] present a gesture-based 7DOF mid-air two-handed 

object manipulation technique by Microsoft Kinect. However, the IT doesn‘t provide 

continuous 7DOF: it allows simultaneous 6DOF and separate pitch control. Furthermore, 

the free hand mid-air interaction increases arm fatigue rate significantly and fails to avoid 

the ―Gorilla arm‖ problem.  

2.2.2 Hybrid User Interface 

The term hybrid user interface (HUI) refers to a UI with multiple methods for spatial 

input, frequently supporting both bimanual or unimanual interaction and 2D and 3D 

interaction. Benko et al. [10] combine a multi-touch 2D surface with hand and finger 3D 

gestures and 3D interaction in an augmented reality system. They coin the terms HUI and 

cross-dimensional gestures. 

Some earlier devices support a similar notion of cross-dimensional interaction. The 

VideoMouse [67] and the Logitech 2D/6D Mouse [88] are a single device that support 

both 6DOF mode and planar-3DOF mode. However, in neither system was this concept 

extensively developed into a hybrid 2D/3D UI nor was two-handed interaction supported. 

The utility of confining the motion of 6DOF device to a physical plane, such as a held 

tablet, to reduce the physically manipulated DOF‘s has been demonstrated [22]. However, 

these prior works do not use a significant displacement between the physical device and 

its representative 2D or 3D cursor (as in [129]) and neither of these works‘ UI‘s 

implement the 6DOF to planar-3DOF mode switching. 

Massink et al. introduced HyNet, a HUI system for desktop-based navigation [94]. 

This work uses a traditional mouse for navigating the 3D world with a conventional 
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desktop system. However, the system only uses 2D GUIs with 2D UIs and does not 

provide a solution for 3D visualizations and VE systems. The authors also introduce a 

programming abstraction for the HUI, with traditional desktop-based systems that used 

conventional mouse and keyboard inputs. The HUI addresses both theoretical abstraction 

and 3D input modalities.  

Alencar et al. [3] present HybridDesk that combines 2D and 3D interactions with a 

tracked Wiimote and WIMP interface for an oil platform visualization. There are three 

UIs in HybridDesk used to evaluate their HUI techniques: VR-Nav for navigation and 

selection, VR-Manip for manipulation, and the traditional WIMP UI. More recently, 

Magic Desk [15] utilizes multi-touch input, a mouse, and a keyboard within a traditional 

desktop environment for unimanual and bimanual interactions. The authors explore 

suitable physical positions of multi-touch input relative to the user during the experiment.  

Althoff et al. [4] present a multimodal interface for navigation in arbitrary virtual 

VRML worlds, which uses a mouse, keyboard, joystick, and multi-touch input. However, 

their environment was limited to 2D visualizations and 2D interactions. The Slice WIM 

interface [35], which uses a multi-touch table with a head-tracked, stereoscopic wall 

screen display for a medical imaging volumetric dataset, allows multi-touch interaction 

on the table to control 3D data using two widgets. 

Multimodal user interfaces (MUI) generally use more than just spatial input; for 

instance they combine voice and gesture [36,70]. Bolt [16] introduces a system called 

―put-that-there,‖ which uses voice and gaze inputs. Within GIS systems, voice and gaze 

inputs also are popular interaction methods in MUIs [2,119]. The main advantage of 

natural human input modes is that they do not require any held-device and users need less 
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training. 

HUIs and MUIs can be combined with augmented reality as well. ICARE is an 

example of such a mixed environment [18]. Bianchi et al. [13] develop a hybrid AR 

system, which used a hybrid external optical tracker for the user‘s head pose and a 

subsequent visual landmark-based refinement of the pose estimation that uses AR‘s 

overlaying of virtual objects on the user‘s real environment [5]. Other previous works 

include medical volumetric datasets design for use by surgeons [114,126]. 

Many HUI and MUI systems incorporate hand-held, mobile devices. Song et al. [132] 

introduce an application called what-you-see-is-what-you-feel that uses a mobile device 

for input and a wall-mounted display for medical imaging volumetric data visualization. 

Users employ 2D multi-touch input on the handheld device to manipulate the 3D medical 

volume data on the large wall-mounted display through the wireless network.  

Researchers also can use HUIs and MUIs in collaborative systems. Each user can 

handle a different system employing heterogeneous displays with various techniques to 

share the visualization or data with other colleagues. Schmalstieg et al. [126] introduce a 

mixed reality environment that combines AR, ubiquitous computing, and a desktop 

metaphor for a collaborative system used with medical volume data. 

2.2.3 Natural hands input 

In the past few years, the multi-touch input has become a more popular natural input 

mode for direct, intuitive interaction. Much research has revealed the benefits of multi-

touch input through different types of heterogeneous displays, such as tabletops [41], 

desktop-based systems [11] and wall-size displays [110,147]. Benko et al. [11] introduce 

precise multi-touch selection techniques for a desktop-based vertical multi-touch display 

using different type of traditional WIMP 2D GUIs like x-menu, slider, stretch, and offset. 
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Forlines et al. also demonstrate that the benefits of direct touch input outweighed those of 

mouse input. Direct input reduces selection time for many, but not all, selection 

techniques (c.f. docking object by unimanual selection) with a vertical orientation display 

[51]. Unfortunately, these previous studies do not speak to 3D interaction. 

Bradley and Roth [24] demonstrate untethered computer vision tracking of a fist-

sized ball, but occlusion remains a problem, especially for a two-handed scenario. 

Current battery and sensor technology still precludes constructing an accurate, small-

form factor wireless 6DOF ball, but this area of engineering is very active [166]. Finally, 

non-isomorphic rotation techniques [22] can ameliorate cord entanglement during 

rotation operations. 

Multi-touch tabletops also support multi-user collaboration. DiamondTouch [41], for 

example, is designed for multi-user interfaces. Kin et al. [76] explore the benefits of 

direct-touch and multi-finger input with bimanual interaction for the single task of multi-

target selection. Their results show that bimanual multi-direct-touch input provides fewer 

additional benefits than the mouse input. In addition, using more than two fingers can 

reduce the targeting accuracy, and does not provide any additional benefit for multi-target 

selection. Daniel et al. [169] introduce a multi-touch interface with two-sided (bottom 

and top of the surface) interactive table display.  

One of problems with multi-touch input is a lack of owner identification of fingers or 

hands. Westerman [167] describe methods for tracking and identifying multiple fingers 

and hands on multi-touch surface systems that generate X-ray-like images of a hand with 

an opaque sensing surface. Similarly, Marquardt et al. [93] introduce glove-based multi-

touch input, which identified parts of the user‘s hand (fingertip, knuckles, palms, sides, 
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and back of the hand).  

Another approach to user identification is to design special purpose non-planar 

interactive surfaces for the multi-touch and gesture direct input. Benko et al. [9] design 

special displays for direct two-hand touch input, with a 3D volumetric dataset: Sphere, 

which is a spherical multi-touch sensitive system; Pinch-the-Sky Dome, which is an 

above-the-space depth-aware interaction large curved display; and DepthTouch, which is 

a horizontal, depth-aware, multi-touch system. Like the work of Benko et al., Grossman 

et al. [57] introduce a volumetric display with 2D and 3D gestures. 

Several research papers introduce multi-touch systems with stereoscopic display. 

Toucheo [59] interacts with co-located 3D stereoscopic visualization via multi-touch 

input and has two screen layers. The top layer is for the stereoscopic display, and the 

bottom layer is for multi-touch input using a transparency panel to display a 3D image. 

Valkov et al. [147] suggest a 2D input of a vertical wall-size display for 3D stereoscopic 

objects.  

Some approaches provide 3D ITs for 3D objects in multi-touch tabletop systems. 

Wilson [170] presents a 3D tangible tabletop system that uses depth-sensing video 

cameras for a 3D input. Zimmerman and Lanier [178] present a glove-based gesture 

interface for 3D object manipulation. Segen et al. [128] introduce a camera system that 

recognized 3D gestures and postures. Their results show that the system is fast and robust 

enough to compute different poses and provided examples of how to use the system with 

3D graphical editors, VR applications, and video games.  

2.2.4 7DOF Travel and Docking 

View scale has significant effects on usability in systems with head-coupled display 

[112], stereoscopic display [156] or direct 3D manipulation [97]. Therefore, not only is it 
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desirable for MSVE systems to support 7DOF multi-scale 3D UIs—rather than just 

6DOF multi-scale 3D UI‘s—it often is a requirement.  

Many 7DOF multi-scale travel techniques exist including those based on both rate 

control and position control. In general, many IT‘s can be used for either object 

manipulation or travel using the grab-the-world approach [158].  

2.3 Multi-Scale Virtual Environment 

Some 3D UIs for MSVEs do not support view scale as 7
th

 DOF because their 

underlying view model lacks the sophistication of [122]. Instead, ―zooming-in‖ occurs 

through 6DOF view adjustment (dollying) with some auto-adjustment applied to travel 

velocity and possibly to the near/far clipping planes to manage zbuffer precision. 

However, early VR work [122] demonstrate 7DOF travel techniques as well as the 

benefit of view scale differences in multi-user VEs [84]. (This had been observed for 2D 

multi-user environments earlier [79]). 

Various previous works use specific navigation techniques for MSVEs. Pierce and 

Pausch [113] propose a navigation technique for better scalability to large virtual world, 

with visible landmarks allowing users to travel in the vicinity with a single gesture and 

with symbolic place representations allowing users to travel to distant locations with a 

small number of gestures. Kopper et al. [78] present the design and evaluation of two 

navigation techniques for MSVEs. They find that automatic scaling is more efficient than 

manual scaling and target-based navigation performs better than steering-based 

navigation. Wu et al. [172] evaluate way-finding aids interface (view-in-view map, 

animation guide and human system collaboration) in a MSVE. The result of their 

experiment shows the view-in-view map offers the best performance overall. Bacim [6] 

provide understanding and classification of way-finding information (hierarchical and 
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spatial information) needed for travelling in a MSVE. The result shows new techniques 

help users perform better in both travelling and way-finding aid, although from different 

perspective. Trindade et al. [143] propose improvements to two existing interfaces in 

order to assist and facilitate the task of navigating in a 3D VE. For flying they include 

support for collision handling and automatic navigation speed adjustment with respect to 

scale. For exo-centric travel, they use a point-of-interest technique with an automatic 

pivot point based on the construction and maintenance of a depth CubeMap. Their result 

show significant improvement in the execution of navigation tasks. 

Hougast et al. [71] and Wartell et al. [164] develop a virtual workbench application 

which balances interaction and stereoscopic display for a multi-scale volumetric weather 

visualization. They find a trade-off between direct manipulation and stereoscopic display, 

which must be optimized to help users perceive the environment. However, no formal 

evaluations are described.  

Oh and Hua [103] present a user study on three multi-scale visualization interfaces 

on a 3D workbench display: focus plus context, fixed focus plus context, and overview 

plus detail, with the purpose of identifying the differences of these interfaces with two 

tasks (path following and 3D map reading) in large scale information visualization on the 

3D workbench.  

Glueck et al. [54] argue that the design of 3D ITs in VEs is an ill-defined problem. 

They develop an abstract model to illustrate the cyclic relationship between interaction 

and navigation in VEs and argue that navigating and understanding must be evaluated 

simultaneously. Finally, they highlight strategies to support the design of interactions in 

MSVEs and propose general categories of research focus. 
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2.4 Stereoscopic Fusion Limit 

Stereo fusion problems have been studied in stereo media [86] and computer 

graphics [68] and continues to be investigated [130]. Stereo image depth adjustment via 

by deliberate altering the eye separation pre-dates computer graphics [86]. 

Underestimated modeled eye separation (e.g. using 3 cm instead of 6 cm) can compress 

the depth non-linearly of the stereo image to reduce stereo fusion problems. The 

distortion is more specifically a non-affine homology [163]. Setting the modeled to the 

true separation and creating only a virtual-to-physical difference is equivalent to applying 

a uniform scale transform to the image and this technique also predates computer 

graphics [125]. Ware et al. [151] develop the latter into the cyclopean scale, a dynamic 

adjustment where the VE is dynamically scaled with the scale‘s fixed point between the 

stereo frustum‘s center of projections. Wartell et al. [162] classify 9 other prior stereo 

image depth adjustment methods circa 2001. 

Later, Holliman et al [69] propose an approach for stereoscopic image creation which 

allows a defined region of interest in scene depth to have an improved perceived depth 

representation compared to other regions and which can keep this mapping constant even 

if total scene depth is changing. They also present a novel three-region algorithm for 

stereoscopic image capture.  

Lambooij et al. [82] review the concept of visual fatigue to clarify the importance of 

various causes and aspects of visual comfort in relation to stereoscopic display and image 

generation. They indicate that even within the sufficient range allowing for satisfactory 

depth perception provided by one degree limit of disparity, visual discomfort may still 

occur due to the factors: (1) excessive demand of accommodation-convergence linkage, 

(2) 3D artifacts resulting from insufficient depth information in the retinal images 
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yielding spatial and temporal inconsistencies, and (3) unnatural amounts of blur.  

Carvalho et al. [34] propose a technique to dynamically adjust stereo parameters based on 

a CubeMap structure [95] during the usage of two VR tools: fly and examine, in an 

MSVE.  

2.5 Interactive 3D Volume Visualization 

Some researchers have explored the use of VEs for 3D volumetric visualization with 

stereoscopic and head-tracking displays like Stereoscopic Field Analyzer for flow 

visualization [43], ocean flow [31], Virtual WindTunnel for complex fluid flows [29], and 

molecular visualization [12]. However, these previous works use either traditional WIMP 

interfaces or unimodal 3D UIs, and do not explore HUIs.  

Due to the unique characteristics of 3D volumetric datasets, the design of UITs may 

need to differ from UITs for 3D polygonal data. Bruckner et al. [26] introduce 

VolumeShop, which is an interactive system for medical 3D volumetric datasets. 

However, their system does not provide a full solution for 3D interaction because of the 

lack of DOF by 2D GUI. Engelmeier et al. [47] introduce a system for the 3D medical 

volumetric data that allowed medical professionals to navigate through a patient‘s 3D 

scans. This MUI combines natural speech inputs, eye tracking, and glove-based hand 

gesture recognition. Their work leads to considerable enhancements in the speed and 

efficiency of diagnoses for doctors who used the new MUI.  

Ulinski et al. [146] examine asymmetric and symmetric bimanual selection to draw a 

selection box to select a part of 3D temperature volume dataset. Their work demonstrates 

that symmetric bimanual interaction was more efficient than asymmetric methods for 

drawing the selection box. However, their approach focuses only on 3D volumetric 

selection, and did not examine other ITs. Although previous research involving 3D UI 
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primarily involved 3D volumetric datasets, some limited the types of interaction (e.g. 

selection, and GUI) and others were limited to WIMP based interaction with 3D 

volumetric datasets.



CHAPTER 3: EVALUATION EFFECT OF VIRTUAL REALITY TECHNIQUES 

FOR 3D VOLUMETRIC DATASETS 

 
(A) 

 
(B) 

Figure 1: Similarity comparison between our artificial dataset and actual MRI blood 

vessel scan. (A) Maximum Intensity Projection (MIP) rendering of blood vessels [100]. 

(B) Our artificial dataset.  

3.1 Introduction  

This chapter, we present results of two experiments on the benefits of stereoscopy 

and head-tracking for a person‘s correct perception of depth ordering of volumetric 
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objects. The experiment is motivated by dataset such as the MRI scan of blood vessels 

shown in Figure 1A reproduced from [100]. As is typical of volumetric data, this dataset 

is has a heavy presence of transparency, occlusion and a highly ambiguous spatial 

structure. In Figure 1A, it is particularly challenging to determine the depth order of the 

blood vessel inside the red square. As discussed in [89], the volume rendering technique 

used here makes it appear that the square-shaped loop vessel is in front of the diagonal 

one. However, in fact the diagonal one is in front of the square-shaped loop.  

We mimic this type of ambiguity by generating controlled experimental dataset such 

as Figure 1B where the user‘s task is to determine the depth ordering of various 

occluding transparent cylinders. The subjects view the datasets under a variety of display 

conditions including combinations of stereoscopic display, head-tracking, and small 

object rotations. We present a set of cylinders of various size, opacities and depth 

orderings to mimic datasets such Figure 1A but in an experimentally controlled manner. 

To isolate the effect of semi-immersive display conditions the user is not allowed to alter 

that transfer function or other volumetric rendering parameters such as lighting or 

switching between rendering methods. The two experiments include a depth-ordering 

task, in which participants must understand the full depth ordering between six 

volumetric cylinders and a depth discrimination task, in which participants must 

distinguish the relative order of just two cylinders within a limited exposure time (2 sec). 

In addition, the experiments are also designed to differentiate the differences between 

experienced and less-experienced users with respect to experience with 3D games and 

VR related technology. Results from both groups show an overall benefit for stereoscopy 

with head-tracking in enhancing depth perception of volumetric data. More interestingly, 
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our study also suggests that familiarity with 3D games and VR related technology 

significantly affects the user‘s depth perception accuracy.  

3.2 Environment 

Our study tests the effectiveness of a semi-immersive VR display on depth 

perception of volumetric data. We examine the effects of display environment on two 

tasks: a depth ordering task, in which participants determine the general depth ordering 

among six volumetric cylinders with no time limit; and a depth discrimination task, in 

which participants must distinguish the depths of a pair of cylinders within a short time 

limit (2 sec). 

 
Figure 2: Environment system. This picture shows our environment system for 

experiments. A 3D display with shutter glasses, Polhemus tracker, and a chin-rest. 

As shown in Figure 2, both tasks use a desktop VR setup which consists of a stereo 

display (22" Samsung Sync Master 2233RZ) and a tracked pair of stereo glasses. The 

tracker is a Polhemus Fastrak. The glasses are by Nvidia. The display rate is 120 Hz time-

multiplexed to 60 Hz per eye. The subjects sit roughly 60 cm in front of the screen. The 

independent experimental variable is the display condition which a combination of 

stereoscopy, head-tracking and/or a small object rotation for a kinetic depth effect. 
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We informally experimented with using various freely available volumetric dataset 

including an engine block, an orange, a tree and medical data. We considered having 

participants identify a variety of different shape characteristics. Base on pilot test for a 

variety of scenarios, we narrowed our experimental design to depth discrimination and 

ordering tasks. Further, we chose to create an artificially generated dataset loosely based 

on the types of depth ambiguities found in the blood vessel example (Figure 1A). 

 
Figure 3: This figure shows one of our volumetric datasets. It has six-cylinders (three 

horizontal and three vertical). Perlin Noise modulates the 3D texture. In the actual 

experiment, the voxels are far more transparent.  

These decisions are motivated as follows. First, there is a much larger range of 

rendering algorithms and rendering parameters for volumetric data than there are for 

surfaces and 3D networks. The choice of volume rendering technique or transfer function 

can make a huge difference to an observer‘s perceptual understanding of a volumetric 

dataset‘s spatial structure. This complicates creating a controlled experiment on shape or 

depth perception of volumetric data. Second, after testing various datasets with various 

volume rendering techniques and rendering parameters and after considering various 

perceptual questions, we concluded it was necessary to artificially generate a volumetric 

dataset where we could completely control these many factors and in order to present 

different volumetric datasets on each trial to avoid learning effects. At the same time, we 
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wanted the created dataset to roughly mimic perceptual ambiguities found in a real-world, 

volumetric dataset. Therefore, we developed a dataset that contains depth ambiguities 

between volumetric tubes inspired by 3D medical scans of networks of blood vessels. 

As shown in Figure 3, our synthetic volumetric dataset contains six overlapping 

cylinders of varying diameters and transparency. In this image, we decreased the 

transparency levels from that used in the experiment for expository purposes. Three 

cylinders are vertical and three and horizontal. The voxel resolution is 512 × 256 × 256. 

Perlin noise is used for the internal texture of the cylinders and the texture of a large 

background polygon. In the experiment an additional background polygon approximates 

the visual effect of having the cylinders embedded in a more complex volumetric 

environment.  

To minimize a participant‘s knowledge gained from performing perceptual tasks on 

the same dataset over many repeat trials, the synthetic dataset present varies from trial to 

trial. Each cylinder in a trial is assigned a random depth location, a unique noise texture, 

a direction (vertical or horizontal), and a random cylinder size (thin, medium and large). 

A non-randomized dataset might allow a participant to consciously or non-consciously 

pick up and respond to coincidental relationships between these parameters such as ―the 

horizontal cylinders are always further away‖ or ―the thinnest cylinder is always the one 

farthest away.‖ Avoiding such conflating factors is a key reason we use an artificial 

dataset rather than a single real-world data set. 

3.3 Rendering Technique 

We choose a high quality GPU-based ray-casting rendering techniques [80,124]. 

Compared to other rendering techniques, such as per pixel lighting and MIP rendering 

[17,85], the GPU based ray casting technique yields more accurate depth cues [124]. The 
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renderer is available as an OpenSceneGraph plugin [105]. 

We add a black polygon with a square hole in front of the volumetric data to act as a 

window to hide the ends of the cylinders. This was necessary because being able to see 

the cylinder ends made the depth ordering task trivial. In real-world datasets such as the 

blood vessel example (Figure 1A), the complex intertwined paths of the tubes typically 

tend to obscure the tube endpoints. We also tested scaling up the voxel volume‘s rendered 

size (to extend the cylinders‘ ends off screen) but this failed because aliasing artifacts 

were too visible. Attempting to increase the volumetric resolution beyond 512 × 256 × 

256 to counter aliasing problems exceeded the renderer‘s memory limitations.  

Following a previous study [100], we fix the data parameters, such as the Alpha 

gradient and transparency, to represent a reasonably clear outline of each semi-

transparent cylinder (alpha = 0.9, transparency = 0.2, density = 0.025). Note that, to 

isolate the effects of stereo and structure-from-motion, we do not allow users to 

interactively adjust the transfer function in our study even though many previous studies 

demonstrated its utility in depth perception [77,111]. 

3.4 Experiment Design 

Our two experiments examine the effect of stereoscopy and/or head-tracking on the 

perception of volumetric data. Experiment 1 has four display conditions and Experiment 

2 has six. We use a within-subject design with repeated measure. Each subject is 

randomly assigned a sequence of display conditions using Latin squares. The measures in 

our experiment are answering time and error rate. Before each experiment, the participant 

provides demographic information such as gender, academic major and degree being 

sought. A questionnaire inquired regarding their familiarity with stereoscopic display, VR 

technology and gaming. Questions include: how often do you play games on a computer 
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or game console with/without motion capture devices such as Xbox Kinect and Sony 

Playstation Move; how often do you watch 3D movies in the theatre; how often do you 

sue 3D displays for movies or games. After the experiment, each participant fills out a 

post-questionnaire regarding their confidence in their answers to the task‘s spatial 

questions and their opinions on various visual aspects of the volumetric dataset such as 

transparency, the noise background, etc.  

We recruited twenty eight participants, twelve for Experiment 1 and sixteen for 

Experiment 2. Sixteen of them are undergraduate students and twelve are graduate 

students. Fourteen participants major in Computer Science and fourteen participants are 

of other majors including psychology, nursing history and fashion design. All participants 

have (corrected) 20/20 vision. We provide a tutorial to familiarize the participants with 

the stereo display and head-tracking hardware. We designed two experiments. 

Experiment 1 examines the effect of stereoscopy and head-tracking on a depth 

discrimination task. In this task, subjects are exposed to the volumetric dataset for a short 

amount of time (2 sec) so that they do not have time to cognitively reason about the depth 

order based on factors such as transparency, window size, etc. (In many psychophysics 

studies the exposure time is usually in the range of a few hundred of milliseconds but 2 

sec is common in stereoscopic VR studies [152]). Experiment 1 requires the subject to 

first locate an intersection of a pair of cylinders based on a provided instructional cue, 

and to then report on the depth relation of the cylinder pair. The 2 second exposure time 

allows for vergence eye movements [173]. Experiment 2 explores the effect of 

stereoscopy and head-tracking on the task of depth ordering which requires 

distinguishing the depth order of multiple cylinders, not just a single pair. Experiment 2 
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examines the displays‘ effect within the context of an unlimited exposure time.  

3.5 Experiment 1: Depth Discrimination  

 
(A)                  (B)                  (C) 

Figure 4: Three screens displayed in Experiment 1‘s trial. (A) The instructional cue 

indicating the target cylinder pair to examine. (B) The volumetric cylinders seen through 

an aperture. (C) The question the participant answers for the trial. 

Experiment 1 evaluates how stereoscopy and structure-from-motion affect 

performance on a depth discrimination task. The participant determines which of two 

cylinders, one horizontal and the other vertical, is in front of the other. The volumetric 

dataset contains six cylinders, but in each trial a pair of cylinders is designated as the 

target pair for the trial. On each trial, the first screen displays a 2D picture (Figure 4A) 

where a red box designates which of the nine intersections of the six cylinders is the 

target pair. The next screen displays the volumetric dataset for 2 seconds (Figure 4B). The 

final screen displays a menu with three choices (Figure 4C): ―the horizontal cylinder is in 

front‖, ―the vertical cylinder is in front‖, or ―I don‘t know‖. Note, we choose not to use a 

force-choice protocol in this experiment because we want to gather data on how often a 

user feels they cannot determine the depth ordering. A force-choice protocol would have 

conflated results for trials where participants were guessing at the depth order with those 

trials in which they felt they could determine a specific ordering.  

Experiment 1 has six display conditions. The conditions are: non-stereo without no 

motion (NS-NM), stereo with no-motion (S-NM), non-stereo with head-tracking (NS-H), 
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stereo with head-tracking (S-H), non-stereo with kinetic-depth effect (NS-KD) and stereo 

with kinetic-depth effect (S-KD). The last two conditions were added because in pilot 

tests, not all users utilized the head-tracking when limited to the 2 second exposure time. 

In particular, some users did not attempt to use a quick head motion to gain motion 

parallax cues even when we were careful to specifically remind them this was possible. 

Hence, the kinetic-depth effect condition automatically rotates the cylinders left and right 

by 10 degrees. For a small range of motion the visual effect is similar to having the 

participant quickly move her head left and right. In the non-head-tracking conditions, a 

participant uses a chin rest. In this condition, the view frustums are calibrated for this 

fixed head position.  

Each participant performed 324 trials in blocks of 54 where each block used one of 

the 6 display conditions. Display condition block order was counter-balanced using Latin 

squares.  

3.5.1 Result 

Quantitative 

 
Figure 5: Effect of stereoscopic and motion on error rate of Experiment 1. 
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Table 1: Average and standard deviation (SD) of error rate for each condition of 

Experiment 1. 

Display Condition 
Error rate (%) 

Mean SD 

S-H 25.00 15.82 

S-KD 28.86 17.15 

NS-H 29.94 16.12 

S-NM 32.41 16.61 

NS-KD 32.87 15.68 

NS-NM 37.81 17.00 

 

We analyzed the results using a two-way repeated measures (rm) ANOVA (2 × 3) 

followed by Fishers‘ least significant difference (LSD) for pairwise comparisons with 

α=.05 level of significance. Error rate measures the percentage of incorrect depth 

judgments counting ―I don‘t know‖ answers as incorrect. The result shows no significant 

interaction between stereo and motion on error rate (Figure 5). Stereoscopy has a simple 

main effect on error rate (F(1,11)=8.5, p=.014, ηp
2
=.316) decreasing the error rate from 

33.5% to 28.5%. The motion condition simple main effect was not significant. 

Table 1 shows means and standard deviations of error rate for each condition. The 

one-way rm ANOVA shows a main effect of the general display condition (NS-NM, S-

NM, NS-H, S-H, NS-KD, S-KD) on error rate (F(2.512,27.635)=3.549, p=.034, 

ηp
2
=.244). LSD post-hoc tests show the following. The mean error rate of S-KD is 

significantly lower than NS-NM (p=.012) and S-NM (p=.034). The mean error rate of S-

H is significantly lower than S-NM (p=.038), NS-H (p=.038) and NS-NM (p=.009). And 

the mean error rate of S-NM is significantly lower than NS-NM (p=.038). 
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Figure 6: Box plots of error rate by display conditions of depth discrimination experiment. 

We observed that some participants appeared more confident with their task 

performance and more comfortable with using our semi-immersive VR environment. 

Also, our participants came from two pools, a computer science (CS) pool all of whom 

were computer science majors, and a psychology (PSYC) pool, which were psychology 

and liberal arts majors. The one-way between-subjects ANOVA shows a main effect of 

pool: CS pool average error rate is 27% while PSYC pool average is 36% (p=.001).  

Participants from the two pools were randomly assigned a display condition order 

and they participated over the same time period, therefore, we analyzed the pre-

questionnaire. An example question is: ―How often do you play 3D computer games?‖ 

Answers are on a 7 point scale with 1 being ―Never‖ and 7 being ―A Great Deal‖. On a 

number of these questions CS pool scored significantly higher on this scale for game 

playing experience. In particular some results were: 2D game playing (mean 4.8 vs. 2.3 at 

p<.001), gaming on a PC (mean 4.8 vs. 3.2 at p=.017), gaming on a console (mean 4.3 vs. 
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2.7 at p=.001), gaming with motion capture devices (mean 2.5 vs. 1.5 at p=.048), and 

stereoscopic 3D TV usage (2.2 vs. 1.0 at p=.05). 

We apply a mixed three-factor within subjects ANOVA to evaluate the effect of pool 

× motion × stereo (2 × (3 × 2))) on error rate. There is no significant 3-way interaction 

(F(5,20)=1.014). Regarding the two-way interactions, stereo × pool is not significant. 

(The significant main effect of stereo is reported in the prior section). However, motion × 

pool is significant (F(2, 20)=3.690, p=0.043, ηp
2
=.270).  

The simple main effects for motion are as follows. For the PSYC pool motion is not 

significant but for the CS pool the main effect of motion is significant (F(2,10)=4.269, 

p=0.029. ηp
2
=.299). LSD pairwise comparisons for the CS pool show head-tracking 

conditions are better than no-motion conditions, with average error rates 18.8% vs. 32.3% 

(p=0.09), and kinetic-depth-effect is better than no motion, with average error rates are 

18.8% vs. 28.7% (p=0.038). 

Plausibly CS pool subject‘s greater experience with gaming trains a person to better 

attend to various depth cues when viewing computer generated 3D images and increases 

their sense of confidence in using VR type technologies. Alternatively, the CS majors 

might have simply been more interested in the technology employed and hence were 

somewhat more motivated. However, given that participants perform 324 trials, we 

suspect CS pools greater experience played a larger role than interest level.  

In summary, for all participants stereo had a generally positive, significant main 

effect while only for the CS pool does the motion condition have a generally positive 

significant effect. In general, the CS pool participants performed better overall than 

PSYC pool participants. 
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Qualitative 

On a 7-point Likert scale, regarding how confidence the participant is for her answer 

in such conditions (1 not at all through 7 great deal), participants answered they were 

more confidence with S-H (M=4.67) than other conditions (S-NM=4.5, NS-H=4.17, NS-

NM=4.17, S-KD=4.17, and NS-KD=4.08). However, there was no statistical significant 

effect (p=.499). When asked which condition was the most effective, six out of twelve 

answered S-H, three answered S-KD, two answered NS-H, and one answered NS-KD. 

When asked which VR technique was better either motion or stereo, six answered stereo 

was better, five answered motion, and one answered both stereo and motion were same. 

3.6 Experiment 2: Depth Ordering 

 
Figure 7: Single screen used in depth ordering experiment.  

In Experiment 2, participants perform a depth ordering task on the six volumetric 

cylinders. Because the trial duration is unlimited and participants have ample time to use 

head-coupled motion parallax, the kinetic-depth-effect (e.g. auto-rotation) conditions are 

not included. The four display conditions are: non-stereo without head-tracking (NS-NH), 
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stereo without head-tracking (S-NH), non-stereo with head-tracking (NS-H), and stereo 

with head-tracking (S-H). Each cylinder is labeled with a number (1-6). The participant 

must designate which of the six cylinders is at a particular position either: the front, the 

middle, or the back. The particular position queried is randomly determined per trial. 

(Two answers are counted as correct for ‗middle‘). For each trial, the cylinders are 

rendered with random depth ordering. Figure 7 shows the displayed screen.  

The participant designates which cylinder is at the queried position by pressing the 

corresponding number key on the keyboard. In non-head-tracking conditions participants 

use a chin rest as in Experiment 1. Each participant undergoes 36 trials per display 

condition which means 144 trials total. Trials are in blocks by display condition and the 

block ordering uses Latin squares. 

3.6.1 Result 

Quantitative 

 
Figure 8: Error rate of stereoscopy by structure-from-motion of Experiment 2. 

Table 2: Mean and standard deviation (SD) of error rate and answering time for all 

display conditions in Experiment 2 
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Display 

Condition 

Error rate (%) Answering Time (sec) 

Mean SD Mean SD 

S-H 37.15 19.27 13.89 2.46 

S-NH 45.66 14.59 12.61 2.30 

NS-H 53.30 11.08 15.56 4.43 

NS-NH 57.99 12.13 14.11 3.56 

 

We analyze the effect of the display condition on answering time and error rate. Error 

rate is computed as the number of incorrect answers divided by total number of questions 

in each trial (36 questions per condition).  

 

We analyzed the results using a two-way repeated measures (rm) ANOVA (2 × 3) 

followed by Fishers‘ least significant difference (LSD) for pairwise comparisons with 

α=.05 level of significance. Table 2 shows mean and standard deviation of error rate and 

answering time for all display conditions. The results show no interaction effect on error 

rate between stereoscopic and head-tracking display. Head-tracking has a main effect on 

error rate (F(1,15)=6.934, p=.019, ηp
2
=.316). Stereoscopy has a main effect on error rate 

(F(1,15)=23.07, p<.001, ηp
2
=.606). Figure 8 indicates the lack of interaction. There is no 

effect of display order condition and unlike in Experiment 1, no interactions with 

participant pool (CS vs. PSYC) are significant.  
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Figure 9: Box plot of error rate by display conditions of Experiment 2. 

The one-way rm ANOVA shows a main effect of the combined display condition on 

error rate (F(3,45)=11.047, p<. 001, ηp
2
=.424). LSD tests show the mean error rate for 

condition S-H (stereo with head-tracking) is significantly lower than all other three 

display conditions (NS-NH (p<.001), S-NH (p=.012) and NS-H (p=.004)) and S-NH is 

significantly lower than NS-NH (p<.001). Figure 9 illustrates mean error rate across all 

four conditions. Unexpectedly, head-tracking alone (NS-H) does not lead to significant 

improvement in accuracy over the no stereo no head-tracking (NS-NH) condition 

(p=.308).  

Average task completion time across all conditions is 14.4s. We expected the 

addition of stereo to reduce response time. While the stereo means were faster the 

differences were not significant. Further, tests for three-way (including participant pool), 

two-way and one-way ANOVA are not significant. 

Qualitative 

On a 7-point Likert scale, regarding how confidence the participant is for her answer 
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in such conditions (1 not at all through 7 great deal), participants answered they were 

more confidence for their answer with S-H (M=5.31) than other conditions (NS-H=4.38, 

S-NH=4.0 and NS-NH=3.38). The one-way repeated measures ANOVA shows that there 

was a main effect on task confidence of display condition (F(3,45)=19.825, p=.001, 

ηp
2
=.431). LSD pairwise comparisons show confidence rate of S-H (M=5.3, SD=1.1) was 

higher than NS-H (M=4.4, SD=1.1, p=.014), S-NH (M=4.0, SD=0.7, p<.001) and NS-

NH (M=3.4, SD=1.4, p<.001). When asked which condition was the most effective, 

fourteen of sixteen answered S-H, and two answered NS-H. When asked which VR 

technique was better either motion or stereo, nine of participants answered motion, six 

answered stereo, and one answered both stereo and motion were same. 

3.7 Discussion and Conclusion 

The task in Experiment 2 is more difficult than in Experiment 1. Over all display 

conditions error rate range is 37.1% to 58% compared to 25% to 38% in Experiment 1. In 

Experiment 2 chance guessing would be expected to yield an error rate of 77% while 

Experiment 1 would be 50%. This indicates even in the worse condition—no stereo, no 

motion--participants perform better than chance. 

In both the prior report and our current analysis, there is no main effect on response 

time; however, we test and find no three-way nor two-way interactions which could have 

theoretically masked the main effect. Further, we note here that there is a non-significant 

trend for shorter mean response time with stereo and head-tracking. Possibly, a more 

statistically powerful experiment could find a small effect which is being masked by the 

depth ordering task‘s relative difficulty. Another possibility is that with the NS-NH 

condition yielding an average 58% error rate participants are essentially giving up after 

14s thus capping the response time. Perhaps a study that gives user feedback on the 
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correctness of their answer and allows for a limited number of additional attempts to 

answer the depth ordering question correctly might find a larger variation in the response 

time required to obtain a correct answer.  

3.7.1 Prior Work Comparisons 

Ware et al. [155] compared display conditions‘ effect on a participant‘s ability to 

determine whether two nodes in a network are connected. The conditions are 2D 

rendering, 3D rendering (no motion, no stereo), stereo, passive rotation, stereo plus 

passive rotation, hand controlled rotation, stereo plus hand controlled rotation, head-

coupled motion parallax, stereo plus head-coupled motion parallax. The network had 75 

nodes and 100 arcs. The results confirmed stereo plus motion is the most effective and 

show that which method is used for producing motion is not particularly important.  

While the 3D network data and our volume data clearly differ, some useful 

comparisons can be drawn. Our Experiment 1 and Experiment 2 are consistent with 

network study‘s finding that stereo plus motion is most effective. However, in the 

network experiment motion alone showed a greater advantage than stereo alone. In 

contrast, in our experiments, the motion alone conditions did not demonstrate significant 

improvement over the stereo alone conditions. For Experiment 1 this might be explained 

by our shorter exposure time (2s) compared to the network experiment where user 

response time varied from 5 to 15 seconds depending on the node count. With a shorter 

exposure time, there is simply less time to gather structure-from-motion cues. However, 

in our Experiment 2 the average task time is a similar 14.4 seconds. Here motion cues can 

perhaps become more useful. However, again the motion only condition did not exhibit 

significant improvement for depth ordering accuracy. Overall in both our volume data 

experiments, the stereo conditions had more significant pair-wise comparisons which 



43 

 

suggest that for volumetric data, unlike for 3D network data, stereo may be more 

significant than motion while stereo plus motion still yields the best accuracy. 

Ware et al. [161] repeat a modified version of their network experiment comparing 

stereo, the kinect-depth-effect, stereo with the kinect-depth-effect, and plain 3D (no 

stereo or motion) for viewing 3D graphs of varying sizes. A major difference is the use of 

a 3840 × 2400 Wheatstone stereoscope rather than the 1024 × 768 time-multiplexed 

display in the earlier study. This change caused the improvement due to stereo plus 

motion to be roughly an order magnitude, rather than merely the threefold improvement 

found earlier.  

Their participants had up to 5 seconds to view each trial after which the screen went 

blank until the participant responded. Average response time ranged between 1.5 and 3 

seconds. This a similar range to our depth discrimination task‘s limit of 2 seconds, but 

less than our depth ordering tasks average of 14.4 seconds. Note, our Experiment 1‘s 

kinect-depth-effect rotates through 20 degrees in 2 seconds. The 3D network experiment 

rotates 360° per 36 seconds, implying 30° for a 3 second view. In the high-res network 

experiment for inexperienced observers stereo was the most useful cue, while for the 

experienced observers (the experimenters themselves) motion was the most useful (i.e. 

gave greater incremental improvement in accuracy). The former result of inexperienced 

subjects is inline with our Experiment 1 and 2 results where post-hoc comparisons show 

the stereo conditions‘ better performance to be statistically significant. We did not include 

ourselves in our experiments, but as we note earlier in Experiment 1, for the CS pool 

subjects (who had more gaming experience) head-tracking alone did show a significant 

effect, although it was not stronger than stereo. This suggests repeating our study with 
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highly experience observes to see whether motion proves a stronger cue. 

The volume depth discrimination‘s average range of error, 25% to 37%, across 

display condition is similar to the range of error found in the largest tested 3D networks 

(1000 nodes), but is beyond the range in the 33 node network, roughly 5% to 15% error. 

Given the similar error rate range and trial duration, this suggests a similar level of task 

difficulty between the 1000 node task the volumetric depth discrimination task. The 

volume depth ordering task appears even harder given its 37.1% to 58% error rates.  

Our depth ordering task took significantly longer per trial (average 14.4s) than the 

high-res 3D network task (1.5s to 3s) but it still improves in accuracy with stereo. In the 

3D network task, display condition does significantly affect response time, with the 

stereo group performing 15% faster, but in our depth ordering task response time did not 

improve. This further suggests the volume depth ordering task is more difficult and 

possibly the increased difficulty swamp any improvement due to display condition. 

Another possible explanation is subjects are essentially giving up in the worst case 

condition (no stereo, no motion). This hypothesis could be further explored as discussed 

in earlier of this section.  

Finally, the large improvement that the two 3D network studies found when going 

from a 1024 × 768 time-multiplexed stereo display to a 3840 × 2400 Wheatstone display 

(sans cross-talk) strongly suggests one may find similar greater enhancements in 

volumetric depth tasks for the stereo plus motion case with higher resolution systems. 

3.7.2 Qualitative Results  

Some participants in our study noted that the auto-rotation condition that 

approximately simulated the head-tracking condition was not really the same as head-

tracking, because the auto-rotation only rotated about the vertical axis. This roughly 
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corresponds to side-to-side head motion, but does not mimic up-down head motion. In 

the post-questionnaire, most participants state that the background noise image does not 

make the depth judgement difficult. However, they frequently comment that the 

individual cylinders‘ textures did affect their depth judgement. In particular, when the 

overlapping portions of two cylinders happened to be a brighter texture region, is makes 

depth judgement is easier. Typically, participants report that neither cylinder size nor the 

presence of the black window (which hid the cylinders‘ ends) affects their depth 

judgement. Further based on the post-questionnaire, participants‘ confidence in the 

accuracy of their depth judgements is the highest for stereo without head-tracking; the 

third highest for head-tracking alone; and the lowest for non-stereo with head-tracking. 

Interestingly 84% of participants answered that head-tracking gives better depth 

perception than stereo in the Experiment 1 but in Experiment 2 only 56% of participants 

answered this way. Yet, the quantitative results suggest stereo is more important for 

accuracy. 

3.7.3 Conclusion  

In this chapter, we examine the effect of stereoscopy and structure-from-motion on 

depth discrimination and depth ordering tasks for a volumetric dataset. The stereo plus 

motion condition is the most effective in both experiments. And we found that 

stereoscopy by itself improves depth perception in a depth ordering task. In the depth 

discrimination task, head-tracking by itself helps depth judgement for our CS-pool 

participants who report playing more computer games. However, stereoscopy alone does 

not aid depth discrimination and head-tracking alone does not benefit participants overall 

in either experiment.  
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The work of Ware and Mitchell suggest stereoscopy‘s enhancement of depth 

perception of volumetric data may be even greater for display resolutions approaching 

that of the human eye. This is open to further experimentation. 

A challenging area is evaluating how display conditions and volumetric software 

rendering parameters interact to effect perception when both are varied. There are a large 

number of potential independent variables and interactions to evaluate. For all such 

studies, our results indicate we should develop a more robust pre-experiment 

questionnaire that would allow separating participants into groups based on degree of 

experience with gaming, VR type technologies, and expertise in viewing stereoscopic 

volume data. Future work should include a range of more elaborately generated 

volumetric datasets to better mimic real-world data sets while at the same time providing 

randomly varying volumetric structures to avoid spurious learning effects across repeated 

trials. 



CHAPTER 4: BIMANUAL 7DOF OBJECT MANIPULATION 

 
Figure 10: Real world two-handed rotation 

 

 
Figure 11: Button ball input 

4.1 Introduction  

Previous two-handed interaction techniques (ITs) are based on the work of Mapes 

and Moshell [92]. They present an IT using 6DOF tracked pinch gloves for adjusting the 

scale and pose (position + orientation) of an object. The IT is engaged with a pinch 

gesture. Two 3D cursors are displayed corresponding to the user‘s hands. Translating the 

hands rigidly translates the target object. Rotating the hands relative to one-another 

rotates an invisible axis between the two cursors adjusting the target object‘s orientation. 

Expanding or contracting the distance between the hands scales the target up or down. 

The commercial product SmartScene evolved from this work and includes this IT (among 
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others). More, recently Schultheis et al. [127] add a visual representation of the axis (the 

―Spindle‖) drawn between cursors with a small sphere indicating the center point. They 

found this improved the user‘s understanding of the IT. This Spindle IT is implemented 

using power-grasped joystick handles called SpaceGrips
TM

. In prior work, we developed 

various two-handed 6DOF user interfaces (UIs) using precision grasped buttons balls 

(Figure 11) combining the designs of Zhai‘s FingerBall [177] and Shaw and Green‘s [129] 

pair of button enhanced bats [157]. Ulinski et al. use button balls to evaluate techniques 

for manipulating the 9DOFs of a box used for selecting volume data [146,145]. We also 

chose this smaller form-factor button ball to maintain a precision-grasp during interaction. 

 
(A) 

 
(B) 

Figure 12: (A) A power-grasp, and (B) a precision-grasp. 

In this chapter we present the Spindle+Wheel, an IT that extends the Spindle IT by 

using precision-grasped button balls instead of power-grasped joystick handles. The user 

can twist or roll a button ball within her fingers independent of any relative hand 

translation. This allows immediate control of the rotation around the spindle axis or pitch 
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(the rightmost picture in Figure 10). Power-grasped handles do not strongly afford this 

physical manipulation, nor do pinch gloves. With these two earlier input devices the user 

can only perform 20˚ radial deviation and 30˚ ulnar deviation (side bending toward the 

thumb or little finger (Figure 12A)). This is not particularly comfortable and likely for 

this reason prior two-hand ITs do not support rotation around the spindle axis. In contrast, 

when holding a small ball, the fingers can freely rotate the ball in either direction and do 

so continuously with physical clutching (Figure 12B). While our current button balls are 

chorded which does restrict the rotation, wireless technologies have been demonstrated 

and would not have this restriction. Although current wireless 6DOF technologies do not 

fit our desired small ball form factor, we anticipate their future availability.  

 
Figure 13: Spindle+Wheel visual. 

The Spindle+Wheel IT includes a ―Wheel” visual representing the additional pitch 

DOF (Figure 13). We conduct two user studies with twelve participants each for a scaled 

docking task that is implemented as a 7DOF multi-scale travel technique using the scene-

in-hand metaphor. In Experiment 1, we compare Spindle+Wheel and Spindle only IT 

conditions. In Experiment 2, we compare Spindle+Wheel, Spindle+Wheel with separate 

scale and one-handed 6DOF+scale [176] IT conditions. Both experiments demonstrate 

that the Spindle+Wheel IT has better performance than other ITs on completion times and 

button clicks for the 7DOF docking task.  

right cursorleft cursor

wheel

wheel 
axis
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4.1.1 Spindle+Wheel interaction technique 

 

Figure 14: Illustration of 7DOF of the Spindle+Wheel IT. 

 

The Spindle+Wheel IT mode works as follows. In the following description we 

assume that the user is right handed. For a left-handed user the roles of the left and right 

button balls would be reversed. Two 3D sphere cursors are shown corresponding to the 

button balls, but at a comfortable translational offset [129] for our stereoscopic, desktop 

VR setup [40]. Based on Schultheis et al. [127], a cylinder is drawn between the cursors 

with a red sphere at the center point (Figure 13). Pressing and holding a button on the left 

button ball engages the travel technique. As in Mapes and Moshell, translating the hands 

rigidly translates the view point. Moving one hand individually, such as rotating one hand 

about the other—while keeping their distance constant—rotates the view in yaw and roll 

(Figure 10). Moving the hands closer or farther apart scales the view. The precise center 

of scale (or rotation) depends on the hand motion. For instance, holding the left hand still 

and moving the right hand inward or outward scales about the left cursor; whereas, 

moving both hands an equal distance inward or outward scales about the spindle center.  
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The Spindle+Wheel Twist: Spinning or twisting the dominant button ball with the 

fingers around the axis of the wheel rotates the view around the spindle axis (i.e. pitches, 

see rightmost figure in Figure 10). Note that the user need not have the wheel aligned 

perpendicular to the spindle axis to perform this maneuver (Figure 13). We chose this 

design based on initial informal evaluation and pilot testing. When the IT is first engaged 

the wheel axis is reset parallel to the spindle axis and then the wheel axis orientation 

remains fixed relative to the right button ball orientation. During typical yaw and roll 

maneuvers (Figure 10) the orientation of the wheel axis will deviate to varying degrees 

from the spindle axis (Figure 13). Note, in Figure 13 the wheel axis is just shown for 

illustration and not actually displayed by the IT. In our experience the visual feedback of 

the wheel makes it easy to pitch the view regardless of how one has oriented the spindle 

during a maneuver. Figure 14 illustrates how all 7DOF works simultaneously. 

During pilot studies, we observed some users accidentally changing the view scale 

factor while they were manipulating the view position. If a travel task doesn‘t require any 

view scale changes, this may reduce user performance. Hence we added Spindle+Wheel 

with separate scale IT (simultaneous 6DOF pose + scale) in Experiment 2 in order to 

evaluate effects of accidental scale changes to user‘s ability on task accomplishment. 



52 

 

4.2 Experiment Design 

 
Figure 15: Screen capture of virtual environment displayed on desktop VR in Experiment.  

The VE has a checker-board ground-plane (Figure 15). It is 40 cm square with half 

appearing behind the display surface and half appearing in front. In the center of the 

screen is a transparent box of fixed size (white-outlined box) and at a random orientation 

per trial. Each face is a different color. This cube‘s pose remains stationary relative to the 

display screen during travel and is called the objective cube. At each trial, a second target 

cube appears at random location on the ground-plane (red-outlined box). This target 

cube‘s location, size and orientation vary randomly across trials. A timer appears in the 

upper right of the screen. The user must travel to align the target cube with the objective 

cube. This requires view pose and view scale maneuvering to match the cube sizes. The 

size of the target cube varied across 3 sizes (25%, 100% and 400% of the objective cube‘s 

size.) 

When the distance between the target cube‘s corresponding vertices is within a 

tolerance (0.84 cm) of the objective cube‘s vertices, the outline of the target cube turns 

green and a success sound is played. The user must release the IT engagement button to 
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stop the clock. The user then presses a button to advance to the next trial. The user uses 

the dominant hand for the IT engagement button and the less-dominant hand for a pitch 

control. Pilot tests indicated 60 seconds was sufficient for this task.  

The system is a stereoscopic, desktop VR setup [40] using Nvidia 3D Vision glasses 

and a 120Hz LCD 22" monitor. The tracking system is a Polhemus Fastrak. The user sits 

with his torso roughly 1 meter from the display. Software is written in OpenSceneGraph 

[105], VRPN [141], OpenAL [104] and OSGVE [138]. In all IT conditions of both 

experiments, the participant uses the button balls (Figure 11). At the start of a session the 

user is asked to hold the button balls and rest their elbows on the chair‘s arms and the 

experimenter sets a translational offset [129] that places the 3D cursors in the center of 

the screen. 

The 3D cursors and spindle are mapped using absolute position control. However, 

travel is only engaged when a button is pressed. Based on the ground-plane size and a 

typical person‘s arm reach, a user will typically perform several clutching translation 

maneuvers to reach the far side of the ground-plane. Because we are comparing two 

position control ITs (rather than rate control), the target box distance range is restricted to 

the range of the ground plane. In a proper (large) multi-scale virtual environment larger 

ranges of travel would occur inducing either a larger number of translation clutches or 

strategic use of view scale and translation maneuvers. Since our goal is to compare two 

position control ITs within the domain of multi-scale environments, we keep the distance 

short but use the variation in target box size to force the user to change view scale.  

4.2.1 Experiment 1: A Comparison of Spindle and Spindle + Wheel Interaction 

Techniques 

Twelve users performed 90 trials (15 trials × 3 box sizes × 2 IT conditions) each in a 
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within-subject comparison of the Spindle IT vs. the Spindle+Wheel IT for a 7DOF 

docking task. The two IT conditions are presented in counter-balanced order across the 

twelve participants. All participants are from Computer Science Department, ten are 

males and two are females (eight Ph.D. students, one master, and three undergraduate 

students). All participants have (corrected) 20/20 eye vision and no disability using their 

arms and fingers. All participants have high daily computer usage (6.3 out of 7) and 

eleven of them have experience of 3D UI typically using the Microsoft Kinect or 

Wiimote controller.  

4.2.2 Experiment 2: A Comparison of One-handed, Spindle + Wheel with Separate Scale 

Control and Spindle + Wheel Interaction Techniques 

Twelve users performed 90 trials (10 trials × 3 box size × 3 IT condition) each in a 

within-subject comparison of three conditions (one-handed IT, Spindle+Wheel with 

separate scale IT and Spindle+Wheel IT). The three IT conditions are presented in 

counter-balanced order across the twelve participants. In Spindle+Wheel with separate 

scale IT, one button engaged 7DOF manipulation, while a second one only engages 

6DOF manipulation. In the one-handed IT, one button engages 6DOF manipulation using 

the scene-in-hand metaphor. A second engages rate controlled scale. A third engages 

position controlled scale. In both cases the center of scale is determined by the button ball 

location when the scale button is first pressed [122]. 

Eight participants are from the Psychology Department Pool and four are from the 

Computer Science Department, four are males and eight are females (one Ph.D. student 

and eleven undergraduate students). All participants have (corrected) 20/20 or higher eye 

vision and no disability using their arms and fingers. All participants have high daily 

computer usage (6.08 out of 7) and four of them have experience with 3D UI. Three of 
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them had experienced motion sickness before but they were able to finish the experiment 

without motion sickness.  

4.2.3 Data Analysis 

We recorded task completion time and the number of button presses per trial. The 

button press counts indicate the number of clutching maneuvers performed per trial.  

We carefully checked distributions of task completion time for each participant. We 

found that the mean is skewed; further the per-trial sample is too small to trim outliers. 

Therefore, we use the per-trial median of task completion time for further analysis. For 

number of button clicks, we use the per-trial mean. The reported F tests use α=.05 for 

significance and indicate the Geisser-Greenhouse correction to protect against possible 

violation of the sphericity assumption. The post-hoc tests that were conducted were 

Fisher‘s least significant differences (LSD) pairwise comparisons with α=0.05 level for 

significance. 

4.3 Experiment 1: A Comparison of Spindle and Spindle+Wheel Interaction Techniques 

We used a 2 × 3 repeated measures (rm) ANOVA and used IT presentation order as 

the between-subjects factor. IT condition (value set {Spindle+Wheel (S+W), Spindle only 

(SO)}), and target box size (value set {25%, 100%, 400%}) are the two variables 

manipulated within participants. The primary hypotheses are: 

H1. Spindle+Wheel is expected to have faster completion times than Spindle Only.  

H2. Spindle+Wheel is expected to incur fewer buttons clicks than Spindle Only. 
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4.3.1 Result 

Quantitative 

Completion Time 

Table 3: Average completion time and average number of button presses with standard 

deviations of Experiment 1 

 CT (s) SD BC SD 

Spindle (25%)  26.65 4.57 6.71 1.77 

Spindle (100%) 22.59 4.69 5.88 1.41 

Spindle (400%) 20.75 4.23 4.42 1.61 

Spindle+Wheel (25%) 19.05 3.13 4.48 1.74 

Spindle+Wheel (100%) 18.71 4.90 4.41 2.0 

Spindle+Wheel (400%) 16.93 3.91 3.88 1.68 

 

Table 3 shows average completion time and average button clicks of IT condition 

and box size. The three-way rm ANOVA (Order × IT × Size) on completion times shows 

no significant interaction effect of IT representation order on completion time (p=.312) or 

button clicks (p=.418).  

 
Figure 16: Completion time of IT condition and box size of Experiment 1. 

The 3 × 2 rm ANOVA (Box Size × IT) shows an interaction effect of box size and IT 
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condition on completion time (F(2,22)=4.579, p=.022, ηp
2
=.294). This indicates that box 

size had different effects on task completion time depending on which IT condition was 

used. Contrasts reveal that there is an interaction effect when comparing 25% to 400% 

box sizes for SO compared S+W (F(1,11)=19.431, p=.008, ηp
2
=.485) (see Figure 16). 

The results show a simple main effect on task completion time of IT condition in 25% 

box size (F(1,11)=42.835, p<.001, ηp
2
=.796), and 400% box size (F(1,11)=6.001, p=.032, 

ηp
2
=353). Completion time of S+W is significantly faster than SO in both 25% and 400% 

box sizes. However, there is no simple main effect on completion time in 100% box size 

(F(1,11)=4.742, p=.052, ηp
2
=.301). Completion time of S+W was slight better than SO 

but not statistically significant (100% in Figure 16).  

The results show a main effect on task completion time of IT condition 

(F(1,11)=19.431, p=.001, ηp
2
=.639). Overall, task completion time of S+W (M=17.55, 

SD=3.46) is significantly faster than SO (M=22.45, SD=4.61) (Hypothesis H1).  

There is also a main effect of box size on completion time (F(2,22)=12.868, p<.001, 

ηp
2
=.539). LSD tests show completion time of 400% box size (M=18.20, SD=3.59) is 

faster than 25% (M=21.65, SD=5.12, p<.001) and 100% box sizes (M=20.16, SD=4.9, 

p=.022). However, there is no significant difference between 25% and 100% (p=.070).  
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Button Clicks 

 
Figure 17: Number of button clicks of IT condition of Experiment 1. 

Regarding a number of button clicks, there is no interaction effect of box size and IT 

condition (F(2,22)=1.915, p=.171, ηp
2
=148). However, IT condition has a main effect on 

button clicks (F(1,11) = 43.593, p<.001, ηp
2
=.799). Button clicks of S+W (M=4.4, 

SD=0.42) is significantly fewer than that of SO (M=6.1, SD=0.5) (see Figure 17). This is 

consistent with the faster performance of the S+W condition (Hypothesis H2). A strong 

plausible explanation is that because only the S+W allows for immediate control of pitch, 

users had to perform additional yaw-roll (Figure 13) manipulations using the SO IT 

rather than a single pitch maneuver with the S+W IT. This is consistent with participants‘ 

comments in post-survey questionnaires. 

 
Figure 18: Number of button clicks of box size of Experiment 1. 
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The results also show a main effect of box size on button clicks (F(2,22)=14.179, 

p<.001, ηp
2
=.563). LSD tests show button click of 100% box size (M=5.23, SD=1.82) is 

fewer than 25% box size (M=5.75, SD=2.02, p=.008). And button clicks of 400% box 

size (M=4.81, SD=1.77) is significantly fewer than 25% box size (p<.001). However, 

there is no significant difference between 100% and 400% box sizes (p=.071) (see Figure 

18). A possible explanation is the 100% size box required no scale change. However, we 

did not see a similar effect between the 400% and 25% size boxes that requires scale 

changes. This maybe because the 25% box condition generally takes longer time than the 

other size conditions regardless of ITs.  

Qualitative 

Participants took a post-survey questionnaire regarding subjective preferences. All 

(twelve out of twelve) participants preferred the S+W IT over the Spindle IT. When asked 

whether the S+W is better than the SO for rotation, ten of twelve participants agreed; one 

rated the ITs equal and one preferred the SO IT. Nine of twelve participants indicated the 

S+W is more intuitive; two rated the SO IT and one rated both ITs equal.  

On a 7-point Likert scale, regarding whether the S+W‘s pitch control was helpful (1 

not at all through 7 very helpful), the average was 5.8. On the same scale rating regarding 

whether the wheel helped inform them of the rotation axis, the rating was 4.3. On a 7-

point Likert scale, user rating of arm fatigue was not significantly different with 3.67 for 

SO and 3.08 for S+W (1 no fatigue through 7 very painful based on the NASA TLX). 

4.4 Experiment 2: A Comparison of One-Handed, Spindle+Wheel with Separate Scale 

Control and Spindle+Wheel Interaction Technique  

For Experiment 2, we use a 3 × 3 repeated measures (rm) ANOVA and use IT 

presentation order as the between-subjects factor. IT condition (value set {One-handed 



60 

 

(OH), Spindle+Wheel with separate scale (SWS), Spindle+Wheel (S+W)}), and target 

box size (value set {25%, 100%, 400%}) are the two variables manipulated within 

participants. In addition to task completion time and number of button clicks, we analyze 

two different scale control techniques (rate control and position control) for the OH IT. 

The primary hypotheses are: 

H1.  Spindle+Wheel is expected to have faster completion time than others ITs with 

25% and 400% box sizes.  

H2.  Spindle+Wheel is expected to have slower completion times than others ITs with 

100% box size.  

H3.  Spindle+Wheel is expected to incur fewer button clicks than others ITs with 25% 

and 400% box sizes. 

H4.  All IT conditions are expected to incur similar button clicks with 100% box size. 

H5.  In the One-Handed condition, a rate control IT is expected to be preferred to a 

position control IT. 



61 

 

4.4.1 Result 

Quantitative 

Completion Time 

 
Figure 19: Effect on task completion time of IT condition and IT presentation order of 

Experiment 2.  

The three-way rm ANOVA (Order × IT Condition × Box Size) is not significant. The 

two-way rm ANOVA (Order × IT condition) shows a two-way interaction on task 

completion time (F(4,18)=5.226, p=.006, ηp
2
=.537). In Order 3, there is a significant 

effect of IT condition on completion time and SWS is significantly slower than both S+W 

(p=.001) and OH (p=.006) (green plot in Figure 19). However, for Order 1 and 2 there is 

no significant effect of IT condition (red and blue plots in Figure 19).  
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Table 4: Average and standard deviation of task completion time and number of button 

presses by IT condition and box size of Experiment 2. 

 CT (s)  SDCT BC SDBC 

OH (25%) 21.47 6.96 9.1 2.6 

OH (100%) 10.62 2.91 3.8 1.5 

OH (400%) 18.97 3.95 9.6 2.7 

SWS (25%) 22.15 6.40 7.7 2.2 

SWS (100%) 12.10 4.05 3.4 1.3 

SWS (400%) 18.55 4.79 7.0 1.4 

S+W (25%) 18.20 5.03 4.7 1.5 

S+W (100%) 19.46 5.99 4.3 2.0 

S+W (400%) 15.40 3.95 4.5 1.8 

 

 
Figure 20: Completion time of IT condition and box size of Experiment 2. 

Table 4 shows average completion time and button clicks of IT condition by box 

sizes. The results show an interaction effect on completion time (F(4,44)=7.924, p<.001, 

ηp
2
=.419). Contrasts reveal significant interactions when comparing 25% to 100% both 

for OH compared S+W (F(1,11)=13.902, p=.003, ηp
2
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both for OH compared S+W (F(1,11)=18.962, p=.001, ηp
2
=.633) and SWS compared 

S+W (F(1,11)=14.777, p=.003, ηp
2
=.573). These show that completion time of OH and 

SWS ITs are faster than S+W with 100% but slower with 25% and 400% (see Figure 20). 

As expected (hypotheses H1 and H2), completion time of OH or SWS is significantly 

faster than S+W with 100%. The most likely explanation is that accidental scale changes 

with S+W decreases performance in a docking task that requires no scale change, i.e. the 

100% box size. 

There is a simple main effect on completion time of IT condition with 100% box size 

(F(2,22)=7.297, p=.004, ηp
2
=.399). LSD tests show completion time of S+W is 

significantly slower than SWS (p=.036) and OH (p=.004) (100% in Figure 20). However, 

completion time between OH and SWS does not differ (p=.221). With 400% box size, 

there is also a simple effect of IT condition on completion time (F(2,22)=4.687, p=.020, 

ηp
2
=.299). LSD comparisons show completion time of S+W is significantly faster than 

SWS (p=.034) and OH (p=.018) (400% in Figure 20). Completion time between OH and 

SWS does not differ (p=.736). Unexpectedly, there is no significant simple main effect 

on completion time of IT condition with 25% box size (p=.484) (25% in Figure 20). As 

we discuss in the previous paragraph, 100% box size does not require any scale changes. 

OH and SWS have better performance than S+W with 100% box size. Possibly this 

changes the overall significance of performance of IT conditions overall three box sizes.  

Because of this, we break box sizes down into two groups based on whether a scale 

change is required and analyze these groups separately. The 3 × 2 rm ANOVA (IT 

condition × {25%, 400%}) shows no interaction effect on completion time of IT 

condition and box size. However, as expected, there is a main effect of IT condition on 
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completion time (F(2,22)=5.497, p=.012, ηp
2
=.333). LSD tests show completion time of 

S+W (M=16.8, SD=4.65) is significantly faster than both SWS (M=20.35, SD=5.83, 

p=.019) and OH (M=20.22, SD=5.68, p=.009). This clarifies advantages of S+W when a 

task requires a scale change.  

  
Figure 21: Completion time of 25% and 400% box sizes of Experiment 2. 

The results also show a main effect on completion time of box size (F(1,11)=14.598, 

p=.003, ηp
2
=.570). Completion time with 400% (M=17.55, SD=0.74) is significantly 

faster than 25% box size (M=20.61, SD=1.04) (see Figure 21). Interestingly, both box 

sizes require scale changes. However, it seems scaling down is faster than scaling up. We 

suggest this is because of differences in arm movements for scaling. As intended, users 

tend to use their forearms with elbows resting when scaling with S+W. This minimizes 

shoulder flexion, extension, and adduction and abduction. However, the user may feel 

more comfortable to bring the hands together from a neutral posture, technically a 

―medial shoulder rotation‖, compared to separating the hands, a ―lateral shoulder rotation.‖ 
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Button Clicks 

 
Figure 22: Button clicks of box size and IT condition of Experiment 2.  

Regarding button clicks, the 3 × 3 rm ANOVA shows an interaction effect of box size 

(25%, 100%, and 400%) and IT condition (F(4,44)=28.893, p<.001, ηp
2
=.712). This 

indicates that box size has different effects on button clicks depending on IT condition 

has different effects on button clicks depending on which box size is examined. In  

Figure 22, for 100% size, IT condition makes little difference, but for the 25% and 400% 

IT appears to make a larger difference. Contrasts reveal significant interactions when 

comparing 25% to 100% box sizes both for OH compared S+W (F(1,11)=59.108, p<.001, 

ηp
2
=.843) and SWS compared S+W (F(1,11)=40.967, p<.001, ηp

2
=.788). Similarly, for 

the 100% to 400% box sizes, the S+W to SWS relation differs (F(1,11)=79.209, p<.001, 

ηp
2
=.878) as does the S+W to OH relation (F(1,11)=59.108, p<.001, ηp

2
=.861). Further, 

the relation of OH to SWS also changes between 100% and 400% sizes (F(1,11)=23.047, 

p=.001,ηp
2
=.677). The results are not surprising, since in the scaling conditions (400% 

and 25%), the OH and SWS condition requires using two buttons (pose and scale) while 

S+W uses one (pose simultaneous with scale). 

In more detail, for the 25% box size, there is a simple effect on button click of IT 
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condition (F(2,22)=28.244, p<.001, ηp
2
=.720). Contrasts reveal that button click of S+W 

is significantly fewer than both OH (F(1,11)=34.532, p<.001, ηp
2
=.758) and SWS 

(F(1,11)=43.612, p<.001, ηp
2
=.799) (25% in Figure 22). In addition, these also show that 

button click of SWS is significantly fewer than OH (F(1,11)=6.149, p=.031, ηp
2
=.359). 

For the 100% box size, there is a simple effect on button click of IT condition 

(F(2,22)=2.298, p=.044, ηp
2
=.247). Contrasts reveal that button click of S+W is 

significantly fewer than OH (F(1,11)=7.58, p=.019, ηp
2
=.408). However, there are no 

significant differences on button clicks between SWS and OH (p=.132) and between 

SWS and S+W (p=.283) (100% in Figure 22). For the 400% box size, there is a simple 

effect on button click (F(2,22)=30.900, p<.001, ηp
2
=.737). Contrasts reveal that button 

click of SWS is significantly fewer than OH (F(1,11)=20.440, p=.001, ηp2=.650) and 

button click s of S+W is significantly fewer than both OH (F(1,11)=39.745, p<.001, 

ηp
2
=.783) and SWS (F(1,11)=36.331, p<.001, ηp

2
=.768) (400% in Figure 22).  

While the interaction, IT condition × box size, is significant, the main effects are also 

significant. There is a main effect on button clicks of IT condition (F(2,22)=33.384, 

p<.001, ηp
2
=.752). LSD post-hoc tests show that button clicks of S+W (M=5.3, SD=1.8) 

is significantly fewer than OH (M=7.5, SD=3.5, p<.001) and SWS (M=6.0, SD=2.5, 

p<.001). In addition, button click of SWS is significantly fewer than OH (p=.001). A 

good explanation is S+W can change the scale while translating and rotating, and this 

requires fewer button clicks than the other ITs for the 25% and 400% boxes.  

There is also a main effect on button clicks of box sizes (F(2,22)=116.572, p<.001, 

ηp
2
=.914). Number of button clicks of 100% box size (M=3.8, SD=1.6) is significantly 

fewer than 25% (M=7.2, SD=2.8, p<.001) and 400% (M=7.0, SD=2.9, p<.001). 
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However there is no difference on button click between 25% and 400% box sizes 

(p=.609). Intuitively, 25% and 400% box sizes incur more button clicks than 100% box 

size because they require scale changes.  

Rate Control vs. Position Control 

 
Figure 23: Number of button clicks of rate control and position control of Experiment 2. 

Recall, the OH IT has two scale buttons: one for rate control and one for (relative) 

position control. A 2 × 2 rm ANOVA (scale technique {rate control, position control} × 

box sizes {25%, 400%}) shows a main effect of scale techniques on number of clicks 

(F(1,11)=39.701, p<001, ηp
2
=.783) (see Figure 23). Number of clicks for the rate control 

(M=2.94, SD=0.81) is significantly more than the position control (M=0.51, SD=0.63). 

However, there is no interaction effect of scale technique by box size, and no main effect 

on number of clicks of box size. This indicates users tend to use the rate control more 

than the position control. This data alone cannot determine whether this occurs because 

users prefer the rate control, or because the rate control requires more frequent 

adjustment (hence button clicks) due to overshooting the desired scale; however, a user 

survey (see next section) indicates the former. 
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Qualitative 

Participant took a post-survey questionnaire regarding subjective preferences. Six of 

twelve participants preferred the S+W; four rated the OH, one rated the SWS IT, and one 

rated both OH and SWS. When asked whether the S+W is better than the OH for rotation, 

six or twelve participants agreed. For translation, six of twelve participants answered that 

S+W is better than OH. Seven of twelve participants indicated S+W is better than the OH 

for scaling; three rated the SWS, and two rated the OH. Six of twelve participants 

answered the OH is the most intuitive; three answered S+W, and three rated SWS. On a 

7-point Likert scale, regarding whether the S+W pitch control was helpful (1 not at all 

through 7 very helpful), the average was 5.33. On the same scale rating regarding whether 

the wheel helped inform them of the rotation axis, the rating was 3.67. On the same scale 

rating regarding whether separate scale was more helpful than integrated scale, the 

average was 4.25. 

For a scale control technique for the OH IT, eight of twelve participants answered 

they preferred rate control; three rated position control, and one rated no preference. 

4.5 Discussion and Conclusion 

4.5.1 General Discussion 

Experiment 1 demonstrates that the Spindle+Wheel IT performs faster overall then 

the Spindle IT (M=17.55s vs. 22.45s). There is a significant interaction with the target 

box size, however, where the improvement is only significant for the 25% and 400% box 

size conditions. In the 100% box size condition, users perform slower than in the other 

sizes regardless of the IT used. The number of clutches (button clicks) is significantly less 

for Spindle+Wheel compared to Spindle (4.43 vs. 6.08). In subjective questionnaires all 

twelve users prefer the Spindle+Wheel method overall.  



69 

 

Experiment 2 shows that the Spindle+Wheel performs faster for scale change tasks 

(25% and 400%) than one-handed IT and Spindle+Wheel IT with separate scale 

(M=16.8s vs. 20.2s vs. 20.4s) but performs slower for the 100% condition (M=10.6s vs. 

12.1s vs. 19.5s). The number of clutches is significantly fewer for Spindle+Wheel 

compared to one-handed and Spindle+Wheel with separate scale (5.3 vs. 7.5 vs. 6.0). In 

subjective questionnaires six of twelve participants prefer the Spindle+Wheel IT and four 

prefer the one-handed IT.  

Overall, the differences in results for the 25% and 400% versus 100% sizes are 

consistent with prior work on lesser 6DOF manipulations that find that when a task 

requires fewer than 6DOF adjustments adding either physical constraints or virtual 

geometric constraints to an otherwise 6DOF UI can improve performance by constraining 

the DOFs that the user does not desire to change. 

Our results are more nuanced than Schultheis et al. [127] in two respects. Firstly, our 

results distinguish the scaling trials from non-scaling trials and secondly, the one-handed 

IT used in Experiment 2 is a closer one-handed counterpart to our experiment‘s two-

handed ITs. The one-handed IT used in Schultheis et al. is a Wanda device and their UI 

uses both the embedded tracker‘s 6DOFs as well as the Wanda‘s track ball. In contrast 

our one-handed condition uses the exact same device as our two-handed conditions. 

Overall, our experiments complement their results while at the same time we demonstrate 

advantages for the ―+Wheel‖ addition. 

Nowadays, many researchers focus on free hand 3D gesture rather than tracked held-

devices. However, to our knowledge, there has been no free hand bimanual IT that 

supports simultaneous 7DOFs. The work of Song et al. [133] provides 7DOF control in a 
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certain sense, but similar to the original Spindle technique, their work appears to only 

simultaneously support 6DOF (x,y,z + yaw,roll + scale) without simultaneous pitch 

control. To our knowledge, none of the unencumbered hand/finger tracking systems is 

free from occlusion problems. A free-hand implementation of our S+W IT requires robust 

and precise finger and hand tracking, and it has proven difficult to implement robustly. 

We implemented our S+W IT with Leap motion controller [101] which provides 

more precise finger tracking data. We use two hands position for scale, translation, and 

orientation (yaw + roll) controls. For the pitch control, we use the index finger and thumb 

positions. A computed line between the index finger and thumb acts as the diameter of the 

wheel of the S+W IT. In pilot tests of the free-hand S+W IT, we found occlusion 

problems and a comparatively high occurrence of loss of tracking. This makes a 

comparative study to the button ball version difficult.  

4.5.2 Conclusion 

This chapter presents a novel 7DOF interaction technique, Spindle+Wheel. Our 

experiments show a statistically significant advantage of our Spindle+Wheel 

manipulation technique for 7DOF manipulation on both completion time and number of 

button clicks when scale changes are required. However, if the task requires only 6DOF 

(i.e. no scale changes) then Spindle+Wheel interaction technique has worse performance 

than other interaction techniques with separate scale control.  



CHAPTER 5: DYNAMIC ADJUSTMENT OF STEREO VIEW PARAMETERS FOR 

A MULTI-SCALE VIRTUAL ENVIRONMENT 

5.1 Introduction 

Stereoscopic head-coupled display can enhance depth perception of the user in a 

computer generated 3D world [69]. However, sometimes the user sees two separate 2D 

images rather than a solid stereo 3D image or may experience eye strain and headaches. 

Stereo fusion problems increase simulator sickness especially with a head-coupled 

display. Many factors influence stereo fusion problems, but typically these translate into a 

range of distance in front of and behind the screen where a stereo 3D image can be 

comfortably fused. 

Fusion problems are particularly problematic in a multi-scale virtual environment 

(MSVE) which is a virtual environment (VE) that contains geometric details whose sizes 

cover several orders of magnitude. The interaction (stereo × MSVE) occurs because 

viewing the small details in the MSVE often requires scaling up the world to the point 

where the rest of the VE geometry extends far behind and in front of the display screen. 

In non-MSVE environments whose geometry has a simpler geometric distribution [162] 

stereo adjustment techniques are relatively easier. 

A traditional VE usually requires 6 degree-of-freedom (DOF) view control for 3D 

interaction techniques (IT) such as selection, manipulation and travel. In MSVEs, 

however, when a 3D user interface (UI) supports direct 3D manipulation, stereo or head-

coupled display, the 3D UI benefits from an additional a view scale factor in the view 

model [122,123]. Proper choice of view scale--and often its dynamic adjustment--is 
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important for reachability during direct manipulation, for maximizing effective stereopsis 

and for optimizing head-coupled structure-from-motion cues. Adding the 7
th

 DOF, 

however, can complicate user navigation and also increases the chance for novice users to 

produce imagery with stereoscopic fusion problems (for example by abrupt manual 

enlargement of the scale factor). 

This chapter evaluates the effect of three different stereo auto-adjustment conditions 

on a dual stage, multi-scale travel task using a one-handed scene-in-hand [153] travel 

technique. One adjustment condition is an auto-scale adjustment. Ware et al. [165] 

introduces this as cyclopean scale with the scale‘s center between the eyes. A question is 

whether auto-scale adjustment to control fusion problems will interfere with a user‘s 

MSVE travel task when it requires her to reach a particular view scale--not just a 

particular view pose. Two possibilities are: 

P1) Auto-adjusting view scale may help because novice users may find purely 

manual control of 7DOF travel difficult and automation might reduce the difficulty.  

P2) Auto-scale adjusting might hurt by tending to set the view scale to a scale other 

than the one the user desires.  

This question appears to have not been empirically evaluated. 

In addition to comparing auto-scale versus no auto-adjustment, we include a third 

condition an auto-translation based on a modification of Wartell et al. [165]. This 

condition is included because while it does perform some auto-adjustment (which might 

reduce novice user‘s difficulty compared to purely manual 7DOF travel), it does not alter 

the view scale, possibly avoiding interfering with the user control of scale. 

Finally, our experiment uses an extensive MSVE, one whose database requires out-
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of-core paging (see Figure 30 and Figure 31). Such environments have zoomable 

geometry throughout the VE rather than just at a few select locations. Prior authors often 

use the latter to demonstrate multi-scale travel techniques to avoid having to implement 

or leverage an out-of-core renderer. Some of the qualitative observations of our 

experiment appear to only arise in extensive MSVEs where a larger variety of geometric 

viewing situations arise during the many trials of a formal evaluation. 

Our results show benefits of the adjustments for task completion time and for 

reducing fusion problems, but only in certain combinations of display and task stage 

conditions. Further, the auto-adjustments were only beneficial when working at a certain 

range of target view scale, during the first stage zoom-in. Our use of an extensive MSVE 

also reveals view configuration examples that require display system specific 

modifications and demonstrate a further need for more sophisticated adjustment rules for 

extensive MSVEs.  

5.2 Auto-Adjustment Technique 

Table 5: True and modeled eye separations (E.S.) in physical and virtual coordinates. 

 Physical Virtual 

True E.S. 6.0 cm 60 km 

Modeled E.S. 3.0 cm 30 km 

 

This section establishes this chapter‘s terminology. Table 5 illustrates four eye 

separation measurements that can be distinguished using two independent classifications. 

Eye separation can be measured in either physical coordinates or virtual coordinates. The 

latter accounts for the 3D view (isotropic) scale factor. Further, we distinguish the user‘s 

true eye separation versus the modeled eye separation which is used in the view frustum 

geometry. The physical true eye separation is commonly called the inter-ocular distance 
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in psychophysics. The table gives example values for a human subject with an inter-

ocular separation of 6 cm and a physical modeled eye separation of 3 cm. The view scale 

in this example is 1/10
6
 which makes a displayed virtual Earth roughly 1 meter in 

diameter. This yields virtual true separation of 60 km and virtual modeled separation of 

30 km. 

Head-coupled displays display 3D graphics where the generated perspective graphics 

image is dynamically adjusted based on head (or possibly more directly eye pupil) 

position. Head-mounted displays (HMDs) mount the displays on a headset or helmet. In 

contrast in Head-Tracked Displays (HTDs), the display is stationary mounted on a desk 

(desktop VR), a table (the virtual workbench) or one or more walls (the CAVE). 

The Table 5 example is a case of false eye separation. This means the modeled eye 

separation is deliberately set to a value other than the true value for purposes of distorting 

the depth of the presented stereo 3D image. Human interocular distance varies subtly 

with vergence movements, but false eye separation is a technique that assigns modeled 

eye separation a value whose difference from the true value (modeled eye separation – 

true eye separation) is significantly larger than that occurring due to vergence movements. 

False eye separation distorts the 3D stereo image. The modeled 3D image is the displayed 

virtual 3D scene accounting for the view scale. An Earth globe (roughly 10
6
 meters in 

diameter), might appear as a modeled 3D image of 1 m in diameter given a view scale of 

1/10
6
.  

The perceived 3D image is the stereo image the user perceives. There are numerous 

ways to operationally define the perceived image [149,63]. Here perceived image means 

the expected result of performing a registration experiment [46] between the synthetic 
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image and a physical pointer under the further assumption stereopsis works like a 

theoretic range finder. Under this definition the perceived image is calculable for stereo 

cinema [134], HMDs [171], and HTDs [163]. 

5.2.1 Dynamic-Stereo Adjustment Technique 

  
(A)                            (B)  

Figure 24: Illustration of dynamic adjustment steps. 

Our auto-adjustment differs from prior methods. Generally prior methods [162] have 

a static or dynamic model of the near fusible distance (nf) and farthest fusible distance (ff) 

relative to the display screen and then compute a nearest point (np) and/or farthest scene 

point (fp). np and fp are typically the nearest and farthest visible pixels. Dependent on the 

number of free parameters in a given adjustment technique, the adjustment could map np 

to nf and/or fp to ff. Holliman [69] extends this idea to allow mapping multiple depth 

ranges in model space to separate ranges in display space. 

 In this chapter, we only adjust one parameter. Roughly speaking we choose to map 

np to nf or fp to ff, but not both because we rely on adjustment transforms that have only 

one free parameter. If both the near and far points violate the target depth range, we 

adjust the near point only. np is prioritized because while positive screen parallax reaches 

a limit, negative parallax can increase without bound. Figure 24 illustrates our approach. 
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Near Target Distance (TD), is a static approximation of the nearest fusible distance. Far 

TD is a static approximation of a very conservative limit on the far fusible distance. An 

independent near clipping plane distance puts a hard limit on the near rendered geometry. 

It is kept very close to the eye because our 3D UI displays 3D cursors which are allowed 

to appear at any screen parallax. A standard z-buffer method determines the nearest point, 

np, in the scene. If np < NearTD we adjust to bring np to NearTD. Otherwise, if np > 

FarTD we adjust to bring np to FarTD. (Implicitly, if np is in the range [NearTD, FarTD], 

no adjustment occurs). This leads to a ―buffer zone‖ such that if the nearest point of the 

target geometry is in the zone, no auto-adjustment occurs. 

Our choice to not incorporate false eye separation or an additional technique limits 

our fusion control to only adjusting for either near or far point violation but not both. This 

choice is motivated by the larger context of our investigation. 

First, we want to perform an empirical evaluation of comparing a no auto-adjustment 

condition to one or more auto-adjustment conditions within an MSVE travel task. The 

question is whether the auto-adjustments help or hurt based on the issues identified in the 

introduction (P1 and P2). By performing these adjustments alone we avoid potential 

confounds of any effects of false eye separation, etc. 

Second, our travel technique uses a pair of 3D cursors. Best practice applies a fixed 

translation offset between the tracked input device and the 3D cursor [129]. We desire the 

effect of the stereo auto-adjustment technique to not affect the 3D cursor in perceived 

space. Our work is part of a more general investigation in using one and two handed 3D 

UIs for 3D visualization applications with very, rich 3D interactions including a 

multitude of ITs for cursor based direct manipulation and selection. Distorting the 
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perceived 3D image of the 3D cursors via stereo adjustment complicates the specification 

of the offset between the buttonball and the cursor as well as analysis of the effects of 

using different offset values or offset algorithms. By only employing auto-scale or auto-

translation, we implemented the scale and translation adjustments so as to affect the scene 

without affecting the 3D cursor‘s size and location (in perceived space). If we add false 

eye separation avoiding affecting the perceived image of the 3D cursors becomes difficult. 

(To our knowledge, while theoretically possible it had not been demonstrated). 

Auto-Adjustment Condition 

 
Figure 25: Auto-adjustment of the view scale factor  

As explained, our adjustment methods adjust to one of two possible target distances 

with a buffer zone in which no adjustment will be performed. Our auto-scale (AS) 

condition uses a cyclopean scale to map np to NearTD or FarTD using the algorithm of 

Figure 24. The AS technique preserves the retinal angle and projected image size of the 

scene (Figure 25).  
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Figure 26: Auto-adjustment of the view location.  

Our second adjustment condition adjusts view location. We refer to this technique as 

auto-translation (AT). AT translates the view perpendicular to the screen (Figure 26), 

similar to [165] but using the algorithm of Figure 1. This condition is included because 

while it does perform some auto-adjustment (which might reduce novice user‘s difficulty 

compared to purely manual 7DOF travel), it does not alter the view scale, possibly 

avoiding interfering with the user control of scale. This technique preserves 3D view 

scale, but changes retinal visual angle. The translation is performed smoothly over 0.5 s. 

Users typically immediately notice this transition compared to the view scale transition. 

When using a CAVE display, the direction of the translation needs to be changed based 

on the screen on which the user is fixated, or an estimate thereof.  
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5.2.2 Auto-Adjustment Stereo View Technique Problem 

 
(A) 

 
(B) 

 
(C) 

Figure 27: Illustration of the auto-stereo adjustment techniques‘ problem. 

This section discusses cases where auto-stereo adjustment techniques are 

problematic. The first problem is an undesired continuous scale adjustment. In this 
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scenario, the usability issues are (1) the adjustment moves a geometry target that the user 

is trying to advance to away from the user and (2) the adjustment does not switch off in a 

reasonable amount of time. In Figure 27A, the red dot is the nearest point in the view 

frustum. The green polyline is some terrain and the blue box is an object the user desires 

to inspect. The system changes the scale factor to adjust the near point to the Near TD. 

After the first adjustment, the system detects the new nearest point of the scene (the blue 

dot in Figure 27B) and the system does a second adjustment. After the second adjustment, 

the depth buffer detects the new nearest point (the orange dot in Figure 27C) and does a 

third adjustment. Therefore, the system will keep doing the adjustment until no pixel is in 

front of the Near TD and meanwhile the blue box, an object of user interest, keeps getting 

push further away. By itself this can be highly irritating to the user. Further, in an MSVE 

which truly contains large amounts of geometry in both Gigabytes and spatial-extent, 

such as a global terrain, if the algorithm continuously finds a new nearest point, the auto-

adjustment will keep auto-adjusting. Imagine having an infinite surface (green) or a being 

inside an infinite cloud of volumetric data. Under such scenarios, each auto-adjustment 

finds a new non-fusible nearest point.  

Use VEs that are actually very extensive because they do not use rendering engines 

that support out-of-core 3D databases. In contrast, much of our prior MSVE experience, 

including this chapter‘s experiment, uses a global-terrain, out-of-core database. It was 

precisely in designing and informally testing our adjustment conditions in such an 

environment (Figure 30 and Figure 31), that this above scenario arose when the view 

looks over the horizon.  

After experimenting with various approaches, we added the following rule to 
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minimize this problem:  

Rule 1: If the center of the virtual Earth is out of the view frustum, then the auto-

stereo adjustment technique is deactivated.  

Additionally, to handle other special cases there are two other rules: 

Rule 2: If the user’s eye position is inside of the virtual Earth, then the auto-stereo 

adjustment technique is deactivated.  

Rule 3: If the user’s eye position is between the Near TD and Far TD, then the auto-

stereo adjustment technique is deactivated. 

5.3 User Interface 

In both the desktop VR and CAVE applications the user holds a pair of button balls 

(Figure 11 in CHAPTER 4) tracked by a Polhemus Fastrak. For brevity, in our further 

descriptions we assume the user is right handed. However, the UI itself accounts for an 

individual‘s user‘s handedness assigning button functionalities based on the user‘s 

dominant and less-dominant hands. We use a one-handed travel technique. Holding one 

button engages a scene-in-hand technique [153] and holding a second button engages rate 

controlled scaling where the center of scale is the cursor‘s position when the button is 

first pressed [122]. This provides full 7DOF travel. In case the user gets lost, a third 

button resets the view.  

Virtual Environment 

The desktop VR system uses a 22" Samsung 2233RZ display running at 120Hz as 

1680 × 1050 resolution with nVidia 3D Vision glasses. A Polhemus Fastrak provides head 

and input tracking. The user is seated and holds one or two button balls, one per hand. A 

3D cursor is displayed for each button ball at a fixed offset, set by the user at start up. 

This allows the user to rest her elbows on the desk, her lap, or chair arm [129]. Compared 
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to other display environments where the user stands, this can reduce arm fatigue. 

Anecdotally the seated posture tends to reduce the users preferred range of arm motion. 

Based on informal pilot tests, we set the stereo TD to a fixed distance (±8" from the 

screen).  

 

Figure 28: Screen capture of the MSVE application in the CAVE.  

The CAVE consists of three large displays (approx. 8 feet × 6.4 feet physical size and 

1280 × 1024 screen resolution each) and a Polhemus tracker with the wider range emitter. 

It provides wider Field of Regard (FOR), approximately 270˚, than the desktop VR 

system. Figure 28 show a screen capture of the MSVE application in the CAVE. The user 

is stand with no place to rest her elbows or hands in the CAVE.  

Since the CAVE system has three displays for navigation, Shaw and Green‘s offset, 

perpendicular to the screen, must be modified. We implement a non-linear offset 

technique that supports a cursor offset in any directions (360º) based on the Go-Go 

technique [117,116] that provides non-linear offset for the 3D cursor by the user‘s torso 

position in a HMD system 
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Figure 29: Illustration of target distances for three displays in the CAVE. 

The larger screen size causes the user to stand farther from the screen. This changes 

the fusible depth range in a non-linear fashion. For the CAVE, the TD is 48" for the front 

screen and 36" for left and right screens. During the pilot testing, we found that the user 

tend to stand on approximately 6 Ft from the center screen and 4 Ft from right or left 

display (blue circle in Figure 29). When the user changes his view to the left or right, she 

tends not to move her body. With 48" TDs, the AA technique is deactivated because of 

the Rule 2. Hence, we set shorter TDs (38") for left and right displays for the case that the 

user doesn‘t move. Figure 29 illustrates different target distances for three displays of our 

CAVE system. 

For the CAVE system, three displays have separate depth cameras for z-buffer 
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sampling. Only one depth camera is activated based on the position of the center of the 

virtual Earth. For example, if the center of the virtual Earth is in the right screens view 

frustum, only the right screen‘s depth camera is used for auto-stereo adjustment. 

5.3.1 Application 

Our MSVE application is built using OpenSceneGraph [105], osgEarth [106] and 

osgVE [138]. Our experiment is designed for a global, virtual Earth based on the task of 

visiting a place of interest, such as a famous city, country or landmark, and then 

inspecting details of the region. Therefore, we defined the first task as finding a target 

box which is randomly located on the virtual Earth (see Figure 30). The box appears at 

one of four different sizes. This condition tests for any interaction of the auto-adjustment 

condition with the range of view scale change required to reach the target box. To 

motivate participants, we use pre-defined locations of the target box at capitals or famous 

cities in the world. In addition, we divided the world into spatial domains by its distance 

from the start position (America, Africa, Asia, Australia and Europe). This maintains 

similar travel distance across participants and ensures each spatial domain occurs at least 

once per box size. A timer appears in the upper left of the screen. The user can see her 

best time below the timer. The current trial number is shown below the best time. The 

upper right of the screen displays the auto-adjustment‘s engagement status as either ―on‖ 

or ―off‖. A name of the city, which is a target box location, is displayed below the auto-

adjustment engagement status. The view scale factor is displayed on the bottom right of 

the screen. 
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5.3.2 Experiment Design 

  
 (A)                         (B) 

  
(C)                          (D) 

Figure 30: The target box has four different box sizes: (A) box size 1, (B) box size 2, (C) 

box size 3 and (D) box size 4. 

 

`  

(A)                               (B) 

Figure 31: Tasks for experiments. (A) Task 1: target box finding and (B) Task 2: checking 

inside of surrounding boxes. 

Each experimental trial involves two tasks. In Task 1, the user travels to a target box 

which is randomly located on the Earth. The box comes with four different sizes (see 

Figure 30). If a target box is too small to be seen by the user at the start position, then a 

red arrow, whose world coordinate size is dynamic to maintain a roughly constant screen 

space size, indicates the target box location (Figure 30A and Figure 30B). The user must 
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travel (pose and scale) to position the box within a screen centered wireframe box (Figure 

31A). After the user finishes Task 1, the target box disappears and four numbered boxes 

appear that indicate four cardinal directions; they are the same size as the target box 

(Figure 31B). Each box has a small hole on one face and a tiny colored sphere inside. The 

sphere color (red, blue or white) matches the colors of the button ball‘s buttons (see 

Figure 11 in CHAPTER 4). The user must carefully maneuver to see the sphere color 

through the hole. The user indicates the sphere color by pressing the corresponding 

button on the left button ball. The user examines the boxes in order of their number labels. 

A success sound plays when the user presses the correct colored button. After the user 

presses the correct button for all four boxes, a new trial begins. The user can reset the 

view position to the initial position by pressing a button of the right button ball during a 

trial if lost. For Task 1, the initial position is where the user can see the entire virtual 

Earth (Figure 30). For Task 2, the initial position is the last position where the user 

finished Task 1.  

We used a simpler docking-task like navigation task to train participants on how to 

use buttonball input for the travel technique for 10 minutes. After the training, the 

instructor teaches the user about stereoscopic fusion problems by showing a case of 

extreme negative parallax. The instructor also explains how auto-stereo adjustment (AA) 

techniques try to minimize fusion problems. 

We use a within-subject design (AA × BoxSize) repeated measures ANOVA 

(analysis of variance) for each Task and display condition (desktop VR or a CAVE) to 

analyze output of our experiments. Participants need to accomplish two navigation tasks 

with three AA conditions: Auto-Scale (AS), Auto-Translation (AT) and No Auto-stereo 
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Adjustment (NA). Each participant performs 20 trials with each AA condition. In each 

trial, a target box appears in a random city with random size for Task 1. Orientation of 

numbered boxes is also randomized per trial for Task 2. We recorded task completion 

time and number of resets for both Task 1 and Task 2. AA condition order was fully 

counter-balanced between subjects using Latin squares.  

Our primary hypotheses are: 

H1. AS and AT are expected to have faster completion time than NA for the both 

Task 1 and Task 2. This is because they partially reduce the DOFs the user 

must manually adjust. 

H2. AT is expected to have faster completion time than AS for the both Task 1 and 

Task 2. This is because AS auto-scaling may interfere the user desired manual 

scale. 

H3. AS and AT are expected to produce less stereo fusion problems than NA for 

the both Task 1 and 2. 

 
Figure 32: Example of the auto-adjustment techniques‘ problem with box size 3.  

Interestingly, we found that the AA techniques produce another problem during pilot 

studies. In the box size 3, it‘s hard to see the inside of the box if the hole is face to the 
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virtual Earth (see Figure 32). This is because AA techniques change view scale or 

distance when the user tries to rotate the scene to see the downward facing hole. We 

didn‘t define a rule for this problem. Rather, we observed how this problem effect on the 

user‘s ability to accomplish tasks during experiments.  

We use the per-trial mean of task completion time and number of resets. The reported 

F tests use α=.05 for significance and indicate the Geisser-Greenhouse correction to 

protect against possible violation of the sphericity assumption. The post-hoc tests that 

were conducted were Fisher‘s least significant differences (LSD) pairwise comparisons 

with α=.05 level for significance. Error bars in graphs represent 95% confidence interval.  

5.4 Experiment  

For Experiment, we recruited 24 participants (twelve participants for each display 

condition) from the Computer Science department and the Psychology department 

participant pool for the experiment. All participants have (corrected) 20/20 or higher eye 

vision. In the desktop VR group, eight participants are CS major and four are non-CS 

major (Ten undergraduates, one master, and one Ph.D. student). Eight are males, and four 

are females. Participants have highly daily computer usage (6.67 out of 7). Nine 

participants have experience with 3D UIs such as Microsoft Kinect. In the CAVE group, 

six participants are CS major and six are non-CS major (eight are males and four are 

females). Five are undergraduates, two are masters, and five are Ph.D. students. 

Participants have highly daily computer usage (6.42 out of 7). Three participants have an 

experience with 3D UIs. 

5.4.1 Result 

Quantitative 
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Table 6: Average and standard deviation (SD) of task completion time (CT) by AA 

condition and box size of the desktop VR group with the OH IT. 

  NA AS AT 

 Box Size CT SD CT SD CT SD 
T

as
k
 1

 

1 30.25 16.93 25.33 12.11 20.66 5.16 

2 23.04 7.79 17.02 5.28 16.57 4.30 

3 15.86 6.33 11.07 1.83 11.00 3.00 

4 6.91 1.96 6.12 1.06 6.63 1.79 

Overall 19.01 12.96 14.89 9.71 13.71 6.52 

T
as

k
 2

 

1 34.44 12.04 32.08 8.75 34.53 8.18 

2 35.08 12.61 30.68 5.50 31.90 6.83 

3 40.86 12.95 37.11 11.07 37.50 7.56 

4 33.09 12.05 37.19 12.63 33.00 7.26 

Overall 35.87 12.39 34.27 9.99 34.23 7.54 
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Table 7: Average and standard deviation (SD) of task completion time (CT) by AA 

condition and box size of the CAVE group with the OH IT. 

  NA AS AT 

 Box Size CT SD CT SD CT SD 
T

as
k
 1

 

1 37.68 12.86 32.08 9.38 34.85 12.75 

2 33.73 11.83 24.70 4.56 24.46 9.22 

3 21.88 5.59 19.71 6.23 19.13 8.20 

4 8.09 1.91 7.69 2.31 8.23 3.27 

Overall 25.35 14.68 21.05 10.78 21.67 13.05 

T
as

k
 2

 

1 46.48 12.75 64.70 14.40 55.72 17.41 

2 45.53 13.04 60.18 16.36 53.51 17.59 

3 42.64 11.85 57.11 18.03 44.91 11.50 

4 42.47 18.22 43.04 8.02 40.00 12.48 

Overall 44.28 13.84 56.26 16.41 48.53 15.88 

 

 
Figure 33: Task completion time of AA conditions of Task 1 of the desktop VR group 

with the OH IT.  
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Table 6 and Table 7 illustrate averages and standard deviations of task completion 

time of AA conditions by box size in the desktop VR and the CAVE. Results of ANOVA 

for Task 1 of the desktop VR show a main effect on completion time of AA condition 

(F(2,22)=5.871, p=.009, ηp
2
=.348). LSD tests show completion time of NA, 19s, is 

slower than AS (p=.015) and AT (p=.036), 14.9 and 13.7s (see Figure 33). However, 

completion times between AS and AT do not differ (p=.361). In the CAVE, there is no 

significant main effect of AA condition for Task 1 (p=.082).  

 
Figure 34: Task completion time of AA conditions of Task 2 of the CAVE group with the 

OH IT.  

There is a main effect on completion time of AA condition for Task 2 of the CAVE 

(F(2,22)=7.624, p=.003, ηp
2
=.409). LSD pairwise comparisons show completion time of 

AS condition, 56.3s, is significantly slower than NA, 44.3s, (p=.005) and AT, 48.5s, 

(p=.036) (see Figure 34). However, completion times between NA and AT do not differ 

(p=.137). In the desktop VR, there is no main effect on completion time of AA condition 

for Task 2 (p=.132). 
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Figure 35: Completion time of box size of Task 2 (blue) of the desktop VR group, and 

(red) of the CAVE group with the OH IT.  

The a main effect of box size on completion time for Task 2 of the desktop VR is 

significant (F(3,33)=6.294, p=.002, ηp
2
=.364). LSD comparisons show that box size 3 

(M=38.5, SD=10.6) has slower completion time than box size 4 (M=34.4, SD=10.8, 

p=.044), 2 (M=32.6, SD=8.8, p=.003) and 1 (M=33.7, SD=9.6, p=.016). The blue line in 

Figure 35 illustrates different completion time of four box sizes for the Task 1 in the 

desktop VR.  

There is a main effect of box size on completion time for Task 2 in the CAVE 

(F(3,33)=8.918, p<.001, ηp
2
=.448). LSD comparisons show that box size 4 (M=41.8, 

SD=13.2) has faster completion time than box size 3 (M=48.2, SD=15.1, p=.050), 2 

(M=53.1, SD=16.5, p<.001) and 1 (M=55.6, SD=16.4, p=.002). Box size 3 has faster 

completion time than box size 1 (p=.024) (see the red line in Figure 35).  

There are no interaction effects between box size and AA conditions in either VE 

system. The number of resets did not differ significantly across any conditions. 
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Qualitative 

Table 8: Average and standard deviation (SD) of arm fatigue and stereo fusion problem 

rates with the OH IT by AA condition of the desktop VR group.  

 NA SD AT SD AS SD 

Arm Fatigue 3.75 1.48 3.25 1.42 3.67 1.50 

Fusion Problems Task 1 2.50 1.24 2.58 1.56 2.67 1.54 

Task 2 3.17 1.40 2.75 1.29 2.25 0.87 

 

Table 9: Average and standard deviation (SD) of arm fatigue and stereo fusion problem 

rates with the OH IT by AA condition of the CAVE group. 

 NA SD AT SD AS SD 

Arm Fatigue 4.00 1.41 3.67 1.56 3.17 1.75 

Fusion Problems Task 1 2.67 1.44 1.83 0.83 2.08 1.38 

Task 2 3.42 1.88 2.50 1.45 2.67 1.16 

 

 
Figure 36: Stereo fusion problem rate of Task 1 of the Desktop VR group (left) and Task 

2 of the CAVE group (right) with the OH IT. 

We asked how much arm fatigue the user felt after the user finishes the experiment 

for each AA condition (on a 7-point Likert scale, 1=not at all to 7=very frequently). Table 

8 and Table 9 show average arm fatigue rate by AA condition for desktop VR and CAVE 

groups. The one-way repeated measures ANOVA shows no main effect of AA condition 
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on fatigue rate of the desktop VR group (p=.125) and the CAVE group (p=.096). This 

suggests that AT and AS do not induce more arm fatigue than NS for overall trials. 

Participants took a post survey after the experiment. On a 7-point Likert scale 

regarding how frequently the user experienced stereo fusion problems (1=not at all and 

7=very frequently). Table 8 and Table 9 shows average fusion problem rate of Task 1 and 

Task 2 by AA condition of desktop VR and CAVE groups. The result of the desktop VR 

group shows no statistical difference of AA condition on a stereo fusion problem rate for 

Task 1 (p=.693). However, there is a main effect of AA condition on the stereo fusion 

problem rate for Task 2 (F(2,22)=4.529, p=.023, ηp
2
=.292). LSD comparisons show users 

felt stereo fusion problems less with AT than NA (p=.020). However, there is no 

statistical difference on stereo fusion problem rate between NA and AS (p=.175) or 

between AS and AT (p=.111) (see the left graph in Figure 36).  

The result of the CAVE group shows a significant main effect on stereo fusion 

problems rate of AA condition for Task 1 (F(2,22)=4.158, p=.029, ηp
2
=.274). LSD post-

hoc tests show that the user feels more fusion problems with NA than AT (p=.046) and 

AS (p=.025) conditions. There is no difference AT and AS (p=.429) (see the right graph 

in Figure 36). In addition, there is no main effect on stereo fusion problems rate of AA 

condition for Task 2 (p=.221). This indicates AT reduces the stereo fusion problems. We 

expected both AT and AS would reduce the stereo fusion problems for both Task 1 and 

Task 2 (H4). However, the result shows that only AT reduces fusion problems for Task 1 

not for Task 2.  

Regarding whether the AS technique is helpful to accomplish tasks and reduce fusion 

problems (1=not at all through 7=very helpful), the average rate of the desktop VR group 
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is 4.82 and the CAVE group is 3.33. Regarding whether the AT technique is helpful, the 

rating of the desktop VR group is 4.6 and the CAVE group is 4.25. In the desktop VR 

group, six participants answered they prefer the AS condition, five answered the AT 

condition, and one had no preference. In the CAVE group, three participants preferred the 

AS condition, six preferred the AT condition, three had no preference and one disliked 

both.  

5.5 Discussion and Conclusion 

5.5.1 General Discussion 

Our results show that auto-adjustment of stereo view parameters techniques helps to 

reduce stereoscopic fusion problems in both the desktop VR system and CAVE. In the 

subjective questionnaire, the user reports significantly less stereo fusion problems with 

the auto-scale and auto-translation conditions compared to the no adjustment condition 

for target finding tasks when using desktop VR system. In the CAVE, however, the user 

reports significantly less fusion problems with only the auto-translation condition 

compared to the no adjustment condition for the inspection task. That is the auto-

adjustments‘ fusion problem reduction seems to be muted in the CAVE compared to 

desktop VR. 

One possibility of differing results is FOR differences. Wider FOR is known to 

increase simulator sickness. In this sense, the three-screen CAVE could be expected to 

increase general reports of discomfort compared to viewing a single monitor and possibly 

this general simulator sickness would be reported as a stronger experience of stereo 

fusion problems. Also, the two display systems use different technologies for stereo 

image separation (Nvidia 3D Vision active shutter-glasses vs. dual Barco projectors with 

circularly polarized glasses). This generates different lumens and stereo cross-talk for the 
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two display systems. While both display systems reside in the same room the ambient 

lighting conditions were not exactly the same due to differences in overhead lighting. 

Prior work with stereo fusion control indicates that a combination of AT or AS with 

an additional stereo auto-adjustment to allow simultaneous control of both the near and 

far point would further reduce reported fusion problems. However, the goal of this 

experiment is to examine the interaction of auto-translation and auto-scale with travel 

tasks and to merely verify AT and AS alone are reducing (or at least not increasing) 

fusion problems. 

Both auto-translation and auto-scale reduce completion time in the desktop VR for 

the target finding task but show no significant effects for the inspection task. The results 

support hypothesis H1 for Task 1 but not Task 2. A plausible explanation is that auto-

adjustment techniques also automate one of the 7DOFs, leaving the user with a travel 

task similar to the lesser difficulty of a 6DOF task. We observed novice users having 

difficulty manually controlling 7DOF travel in the NA condition. These results suggest: 

(1) in Task 1 auto-adjustment helps, allowing users to complete Task 1, faster, but (2) in 

Task 2, there is less need for further manual scale change so users experience Task 2 

more like a 6DOF task and hence auto-adjustment reduction of DOF complexity becomes 

superfluous. AT did not perform significantly different than AS. This fails to support H2, 

that the auto-scaling of AS would interfere more with the user reaching a desired scale 

than AT would.  

For the CAVE, however, neither auto-translation nor auto-scale helps Task 1. This 

fails to support H1 or H2. We observe that across all conditions CAVE completion times 

are longer. This might wipe out any time improvement from auto adjustment.  
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One potential cause for longer CAVE completion times is that the stereo TD is set 

based on stereo fusion considerations, not on reachability. While in the CAVE the Far TD 

is farther from the screens than the desktop VR‘s Far TD is, in desktop VR the Far TD 

was still closer to the user‘s nominal seated shoulder position, than the CAVE Far TD was 

to the user‘s nominal standing shoulder position. Without any cursor offset this would 

mean that the Earth, auto-adjusted to the Far TD, would be harder to reach with the 3D 

cursor in the CAVE. In turn users might engage the scene-in-hand IT or cursor-centered 

scale IT with the cursor further away from the Earth‘s surface. Being able to place the 

cursor close to the surface or even inside the Earth tends to make rotation and scale 

manipulations more productive. In desktop VR, the combination of the fixed translation 

offset and the Far TD location generally meant one can easily place the cursor close to or 

inside the Earth when auto-adjusted to the Far TD. With the CAVE however, the non-

linear offset mapping gain factor did not allow the cursor to reach the Far TD unless the 

user walked several feet towards the screen. Anecdotal observation indicates CAVE users 

often did not walk much and tended to stay in a central location. Unfortunately, we had 

not anticipated this. 

Another CAVE complication was that the auto-stereo adjustment techniques are 

activated relative to a particular screen‘s TD. Our heuristics for dynamically choosing 

which screen to use for the TD may well be insufficient. They were designed to guess 

what screen the user was fixated on. Possibly, they chose the ‗wrong‘ screen causing the 

auto-adjustment to adjust in an unhelpful direction. This might be contributing to the 

longer CAVE completion times. A good solution is to employ gaze tracking to pick the 

screen to use for the adjustment TDs. 
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We observed an anomalous the effect of box size 3 in Task 2. Through further testing, 

this appears to be due to the relative size of the box to the Earth‘s size and the box‘s 

height above the Earth. The trouble occurs if the hole is facing toward the virtual Earth. 

In order to look in the hole using the scene-in-hand IT one rotates the view in a manner 

than tends to place the surface of the Earth between the user‘s eye and the box, thus 

occluding the box. Avoiding this occlusion requires further view manipulations. 

Additionally with an auto-adjustment technique, the initial view rotation tends to make 

the opposite side of the Earth the near point and the auto-adjustment may push the Earth 

and box farther away. The peculiarity of this situation demonstrates that auto-adjustments 

are quite difficult to ‗get 100% right‘. This scenario would not be uncovered without the 

many trials of formal evaluation done with a variety of travel and inspection tasks on an 

extensive MSVE. A simple solution to the anomaly is to allow the user to disable auto-

adjustment if desired. More generally, it indicates more sophistication is needed for auto-

adjustment to ‗always do the right thing.‘ 

Finally, our experience of testing the auto-adjustment techniques by ourselves is that 

the auto-adjustment techniques did not improve our completion time even in the cases 

where it improved completion time for the study participants (mainly Task 1). Our 

anecdotal observation of participants‘ behavior under the NA condition found they often 

using suboptimal strategies for manipulating 7DOFs during the task. In contrast the AS 

and AT conditions tended to help them by automating adjustment of one of the DOFs. 

This coupled with our own experience of not experiencing a completion time reduction 

under AT or AS may suggest that expert users of 7DOF travel techniques learn to adopt 

7DOF travel strategies that obviate the help provided by auto-adjustments. Hence, it is 
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possible that the AA and AT auto-adjustment methods may be most useful as ‗training 

wheels‘ for novice users of MSVEs that require 7DOF travel. (However, even for experts 

the stereo fusion control aspect of auto-adjustment may remain useful). 

5.5.2 Conclusion 

This chapter evaluates two stereo fusion control techniques in a MSVE. The user 

study demonstrates advantages and disadvantages of auto-stereo adjustment techniques in 

the desktop VR system and CAVE. Our results show that auto-stereo adjustment 

techniques reduce stereo fusion problems in both VE systems for certain tasks. In the 

desktop VR, users report reduced stereo fusion problems during Task 1. In the CAVE, 

users report reduced fusion problems during Task 2 (inspection). The auto-translation or 

auto-scale can only control fusion violations for either the near or far point, but not both. 

A deployed solution would combine auto-translation or auto-scale with false eye 

separation (or related non-linear technique) to allow fusion control for both the near and 

far point. 

More significantly regarding whether fusion driven auto-scale helps or hinders 

7DOF travel in MSVE, in the desktop VR system, both auto-adjustment techniques (auto-

translation and auto-scale) had equally faster completion times than no adjustment for the 

target finding task, but not for the inspection task. This indicates there are two benefits to 

use the described auto-adjustments in desktop VR: fusion control and easier DOF 

management. Anecdotally, these may be of less benefit to users with years of experience 

using 7DOF travel in MSVE on stereo systems. 

In the CAVE, both auto-adjustment techniques failed to help with Task 1 and auto-

scale was detrimental to performance in Task 2. We suspect this is due to the fact that our 

methods for addressing the greater complexity of auto-adjustment for multi-screen 
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displays are inadequate. However, this produced two lessons learned. (1) For multi-

screen displays, it appears gaze tracking maybe necessary for determining which screen 

should be used for the auto-adjustments. (2) Results also suggest that the assumptions 

used to calibrate the gain factor for a CAVE non-linear cursor offset for cursor 

interactions that occur within 10' of the CAVE floor center need to account for whether a 

user prefers to stand in the middle of the CAVE floor or walk within the CAVE to reach 

‗just-out-of-reach‘ objects. Our pilot studies indicated the latter--which drove our design, 

but our larger study‘s results suggest the former--making our design choice sub-optimal 

and possibly explaining the longer CAVE completion times.



CHAPTER 6: HYBRID FINGER BALL FOR MULTI-DIMENSION APPLICATION 

IN DESKTOP VR 

  
(A)               (B)             (C)             (D) 

Figure 37: The HyFinBall UI supports (A) 6DOF isotonic input, (B) planar-3DOF input, 

(C) 3D hand and finger tracking and gesture and (D) multi-touch. 

6.1 Introduction  

In this chapter, we present a minimally immersive, desktop VR [40] interface for a 

visual analytic application that provides two-handed bat (3D mouse) input, two-handed 

2D mouse input, multi-touch and 3D gesture. The primary devices are two 6DOF button 

balls. We used these previously [146], borrowing from the bat, the FingerBall [177], and 

the button-enhanced bat [129]. This chapter presents the HyFinBall (―hybrid-finger-ball‖) 

user interface (UI) described below: 

HyFinBall: The HyFinBall interface starts with a pair 6DOF tracked balls with 

multiple buttons. Each ball is 45 mm in diameter roughly the size of a ping-pong ball. 

The software UI has the following properties. When a button ball is held in the air (Figure 

37A), a 3D cursor is displayed and 6DOF (xyz + yaw,pitch,roll) interactions are active. 

When a button ball is placed on the desktop, the UI automatically switches from treating 
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button ball as 6DOF isotonic device to treating it as a planar-3DOF input device (xy-

position + yaw) and the 3D cursor is replaced by a 2D cursor in the plane of the screen 

(Figure 37B). Each button ball independently switches between a 6DOF and planar-

3DOF mode. During this switch, the UI techniques available for the button ball switch 

from 3D ITs to 2D ITs. There is a translational offset between the physical location of the 

HyFinBall and its displayed 2D and 3D cursors. 6DOF mode uses an elbow-resting 

posture [129] while planar-3DOF mode uses a palm-resting posture. Strong consideration 

is given to stereoscopic display issues in the desktop VR environment when displaying 

the cursors. In particular, certain planar-3DOF ITs use projected 3D cursors.  

HyFinBall + Finger-Tracking: The HyFinBall is small enough to hold in a precision 

grasp [177] and small enough to be held with only the pinky, ring finger and palm in an 

average adult hand. This leaves the thumb, forefinger and (possibly) middle finger free. 

The free fingers can either:  

interact on a horizontal 2D, multi-touch desktop display (Figure 37D) 

OR 

perform three finger 3D interaction and gestures when in 6DOF mode (Figure 37C). 

By design, these 2D and 3D finger-tracking modes can be engaged without incurring 

an acquisition time penalty, i.e. the user does not drop and pick-up the button ball to 

engage and disengage these finger interaction modes.  

The concept of using a single device that switches automatically between 6DOF 

mode and planar 3DOF mode, while not new (such the VideoMouse [67], and Logitech 

2D/6D Mouse [88]) has not, to our knowledge, been integrated into any rich application 

that requires both 3D interaction and 2D interaction across coordinated views. The design 
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space implied by the HyFinBall interface has not been explored with respect to desktop 

VR environments (in particular its stereoscopic 3D component) and this type of interface 

been not been studied for one-handed UIs, let alone two-handed UIs. To our knowledge, 

there has been no demonstration of a hybrid user interface (HUI) where the user uses a 

small form factor 6DOF held-device with a precision grip that can be continuously held 

while allowing the free fingers can engage in 2D multi-touch and/or 3D gesture 

interaction. 

We present the HyFinBall and HyFinBall+Finger-Tracking concept and prototype 

(hardware and software). We present our anecdotal observations and describe the design 

space of the resulting hybrid interaction techniques. This is done in the context of a rich, 

visual analytics interface containing coordinated views with 2D and 3D visualizations 

and with strong consideration of stereoscopic display issues in desktop VR. Finally, we 

present a user study that is focusing on the core HyFinBall concept comparing it to a 

mouse, the planar-3DOF-only mode and 6DOF-only mode across a variety of 2D and 3D 

combination tasks.  
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6.2 User Interface 

 
Figure 38: HyFinBall UI. It consists of head-tracked stereoscopic vertical display, 

projected multi-touch table using PQLab multi-touch frame, dual button balls, and dual 

Kinects for 3D hand and finger-tracking. 

We present the HyFinBall UI in the context of a rich multi-dimensional application 

called DIEM-VR. DIEM-VR is a tool for analyzing terrain meshes from 10 years of 

LIDAR scans of the North Carolina Coast from the NOAA Digital Coast database. We 

extend a linked feature space interface from our prior work [62] that integrates multi-

dimensional, feature space 2D views with 3D terrain views. In the HyFinBall system, the 

user sits at dual screen, desktop VR system. It uses Nvidia 3D vision glasses and a 

Polhemus Fastrak for head-tracking and for tracking the HyFinBall devices. Two 

Windows Kinects view the desk space running 3Gear‘s finger-tracking software [1]. A 

PQ Labs multi-touch screen [118] is placed on the horizontal desktop with an overhead 

projector (Figure 38). A pure 2D display and direct 2D manipulation is performed on the 
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multi-touch horizontal display while 3D content as well as limited 2D content appears on 

the vertical display. For the DIEM-VR application, the images in the vertical and 

horizontal screens in Figure 38 are reproduced as a screen captures Figure 39A and B. 

The vertical screen displays a 3D terrain patch as well as feature space 2D scatter plots. 

The horizontal display shows an interactive Boolean expression tree that controls 

selection of terrain mesh points using a Boolean combination of the highlighted 

selections in the 2D scatter plots. 

 
(A) 

 
(B) 

Figure 39: (A) Scatter-plots with selected regions and interactive, and (B) Boolean 

expression tree. 

As discussed in the introduction, the HyFinBall UI takes particular advantage of the 

small form factor of the button ball to enable a number of 3D and 2D interactions‘ 
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paradigms without having to drop and reacquire the input device. In the DIEM-VR 

application 3D navigation and volumetric selection of the 3D terrain occurs using one or 

both of the button balls held in the air, but with the elbows resting. This 6DOF button ball 

interaction mode is shown in Figure 37A and Figure 40A. Next, interaction with 2D 

objects on the vertical screen, such as the scatter plots in DIEM-VR, occurs with one or 

both of the button balls placed on the desk surface (Figure 37B and Figure 40B) in which 

case planar-3DOF interaction mode is enabled. Third, when the user tucks the button ball 

in his palm (Figure 37D and Figure 40D and E), the free fingers such as the thumb and 

pointer finger interact with the 2D graphics on the horizontal display using multi-touch. 

In DIEM-VR, this multi-touch mode controls the Boolean expression tree mentioned 

earlier and elaborated upon in Section 6.3.4. Finally, although only experimentally 

implemented in our DIEM-VR application (due to tracking limitations), when the user 

tucks a button ball in his palm and makes 3D pointing gestures (Figure 37C and Figure 

40C), 3D hand and finger tracking enables a ray-based 3D selection within DIEM-VR. 

 
(A)          (B)         (C)          (D)           (E) 

Figure 40: (A) Hand off table, 6DOF mode, (B) hand on table, planar-3DOF mode. (C) 

Dual fingers 3D gesture, (D) fingers on table, multi-touch (side view) and (E) fingers on 

table, multi-touch (top x-ray view showing held and hidden button ball). 

6.3 HyFinBall and DIEM-VR Details 

This section discusses the details of the 6DOF, planar-3DOF, and finger-tracking 

interactions within DIEM-VR and how DIEM-VR demonstrates the 6DOF/3DOF auto-
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mode switch.  

Shaw and Green [129] advocate adding a user adjusted translational offset between 

the 6DOF button device and the 3D cursor in their two-handed system. This allows the 

user to keep her elbows resting in her lap, or on the desk or chair arm to combat the 

common arm fatigue problems in VR interfaces. This offset is part of the 6DOF mode in 

our system. However, in our prior experimental work with two-handed 6DOF input [146] 

and in our formative evaluation of the presented HyFinBall interface, we found that while 

keeping elbows resting on a surface reduces fatigue compared to the naïve ‗arms 

outstretched‘ approach of early VR systems, this interface is still more fatiguing than 

using a mouse. With a mouse, the hand and palm—not just the elbow—rests on a surface. 

Rich data visualizations involve coordinated views of both 2D and 3D components such 

as in DIEM-VR. Therefore we developed the HyFinBall UI with auto-mode switching 

between 6DOF and planar-3DOF mode to allow the user to perform one (or two-handed) 

3D interactions as well as 2D interactions with the vertical screen while keeping her 

palm(s) resting on the desk. As we shall explain, in DIEM-VR the 2D scatter plots are 

intimately tied to the 3D terrain therefore we present these 2D elements on the vertical 

screen with the 3D terrain while the purely 2D Boolean expression tree remains on the 

horizontal multi-touch surface. This is a general concept of the HyFinBall UI: pure 2D 

interactions occur on the horizontal display while 3D interactive graphics and, any 2D 

interactive graphics intimately tied to the 3D graphics appear on the vertical display. 

On the vertical screen, DIEM-VR displays a single patch of terrain which can be 

optionally color-coded by height or displayed as a wireframe mesh or point-cloud. A 

series of 2D menu buttons appears on the left of the primary screen. These implement a 
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horizontal, pull ―right‖ menu. All 2D menu items are displayed at zero screen parallax. 

The user can add and delete multiple scatter-plots whose plot points each correspond to a 

terrain point. Each plot point's x-y location is determined by a geometric characteristic of 

the associated terrain point such as the terrain point's average local slope, local degree of 

roughness, etc. In other words, each original terrain point has several additional 

geometric characteristics associated with it and by creating scatter-plots along these 

dimensions, the user can view the terrain in a different feature space such as plotting local 

roughness versus elevation. The scatter-plots are constrained to the zero-parallax plane.  

6.3.1 6DOF 3D Cursors 

In its 6DOF mode, the left HyFinBall implements a scene-in-hand metaphor [157] 

for camera pose manipulation plus separate 3D cursor centered view scaling [30]. In 

6DOF mode the left HyFinBall‘s virtual representation is a transparent, blue sphere with 

a user adjustable translational offset [129]. When the left HyFinBall is placed on the desk, 

planar-3DOF mode is enabled. Now, the HyFinBall‘s cursor is replaced by a transparent, 

2D blue disc that always remains at zero screen parallax. This cursor interacts like a 

standard 2D mouse cursor for selecting the menu bar on the left. From our anecdotal 

observation and several pilot study participants, in the stereo display the switch from the 

3D sphere cursor to the 2D disc cursor is immediately apparent. 
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(A) 

 
(B) 

Figure 41: Points selection (A) 3D selection box of terrain as point cloud. And (B) 

selection of LIDAR points in scatter-plot high-lights house roofs. 

The right HyFinBall‘s 6DOF mode‘s 3D cursor is a transparent, purple sphere with a 

user adjustable translational offset. This 3D cursor implements and initiates 3D selection 

box creation (Figure 41A). The selection box is used to select points on the 3D terrain. 

LIDAR scans have multiple returns and are hence multi-planar (not strict height-fields). 

There are situations where one may want to select points not only within a certain foot-

print but also within a limited height range. For example, the user might want to select 

tree top returns and not the lower layer returns from the underlying ground. While 

selection in these situations is not as complicated as selection within true volumetric data 
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[145], we provide a general 3D selection box interface. Further, this general capability for 

volume selection will be necessary when integrating true volumetric data into the terrain 

systems as we did in [145]. The 3D selection box can be created, moved, rotated and 

resized using a technique that is a combination of the two-handed technique of Ulinski et 

al. [146] and a 3D widget [19]. 

6.3.2 Planar-3DOF 2D Cursors 

When the right HyFinBall is placed on the desk, the 3D cursor is replaced by a 

transparent, 2D purple disc that remains at zero screen parallax. In this mode, the purple 

disc acts like a 2D mouse cursor for interacting with any created scatter-plots. When a 2D 

cursor hovers over a scatter-plot boundary, icons along the x or y axes appear allowing 

selection of the statistic that will be plotted on the given axis. Various statistics such as 

average gradient, maximum gradient, and local standard deviation can be selected. The 

user can move the plot or switch the plot data axis using a button, Button A. The user can 

select a rectangular region of scatter plot points with Button B. With the 2D cursor, the 

user can brush points in the scatter-plot. Brushing occurs by creating a rectangular 

selection region. The selected points are highlighted on the terrain surface using a color 

pre-assigned to the scatter-plot. In Figure 39B, the scatter-plot in the lower-left plots 

elevation versus local gradient. The brown selection region is selecting for relatively low 

elevations with minimal gradient. This causes mostly house roofs to be highlighted in the 

terrain view. 

The user can optionally enable the display of lines connecting the scatter-plot points 

and the terrain points. This gives a strong visual impression of how the brushed scatter-

plot points are spatially distributed on the terrain. (For performance, only a randomly 

chosen subset of the connecting lines is drawn). Understanding the spatial structure of 
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this ―line net‖ is greatly enhanced by the stereoscopic display. It has some conceptual 

similarities with traditional 2D parallel coordinates. Figure 42A shows three scatter-plots 

with line nets connecting their brushed regions to the terrain points. These line nets 

intimately visually tie the 2D scatter-plots to the 3D terrain and hence keeping these 2D 

graphics on the same vertical display as the 3D terrain is important.  

  
(A) 

  
(B) 

Figure 42: (A) Point-cloud rendering of terrain patch and interactive, coordinated scatter-

plot representations of LIDAR points. (B) 2D Lasso Selection. 

We assume that during above described 2D interactions with the 2D menu or scatter 

plots that the user‘s eyes fixate on geometry with zero parallax and that the user is not 
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attempting to fixate on geometry with non-zero parallax. (The latter is the condition 

under which the naïve display of desktop 2D cursor in a stereo 3D system creates 

problems). Our anecdotal experience indicates this is the case, but future experimentation 

using an eye tracker is needed. We render the 2D cursors as slightly transparent discs so 

the user can see through them to any farther 3D geometry. In Figure 42A the left button 

ball disc is transparent blue and the right is purple.  

When displaying these 2D cursors, we automatically reduce the eye separation. If 

one HyFinBall is in planar-3DOF mode and is performing 2D interaction, then the 

modeled eye separation is cut in half. If both HyFinBall‘s are in planar-3DOF mode and 

performing 2D interactions, eye separation is set to zero. The eye separation changes are 

animated over a 2s time period recommended by Ware et al [156]. This reduction is again 

predicated on the assumption that if the user enters planar-3DOF mode they are 

interacting with the 2D zero-parallax objects and hence fixating at the zero-parallax depth. 

We also experimented with enabling a simulation of depth-of-field image blur of the 

3D geometry during planar-3DOF 2D interactions. The design space includes the 

presence/absence of the enabling of depth-of-field simulation and the tradeoff between 

the fidelity of the depth-of-field rendering and its reduction on frame-rate.  

Overall design space issues include presence/absence of the eye separation 

adjustment, the degree of adjustment, the rate of adjustment, the conditions of adjustment 

and interaction with depth-of-field implementation. In general, our anecdotal results 

indicate eye separation reduction is useful when the user is performing planar-3DOF 2D 

interactions.  

6.3.3 Planar-3DOF Projected Cursors 

In its planar-3DOF mode, the right HyFinBall can also be used for 2D lasso selection 
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of the terrain points. In this mode, the purple disc is replaced by a different 3D cursor 

whose 3D position is the intersection of a ray cast from the cyclopean eye through the 2D 

cursor‘s computed position on the frustum projection window. In prior work, we used a 

similar technique where we replaced the display of the desktop 2D mouse cursor with 

projected 3D cursor. This enabled a mouse controlled travel technique option in our exo-

centric, travel technique on stereoscopic virtual workbench [71]. The projected 3D cursor 

can appear at any screen parallax depending on the location of the intersected terrain 

under the GUI cursor position. This approach is sometimes referred as geometry-sliding 

[175].  

We chose for the planar-3DOF mode to perform the lasso operation rather than using 

a 6DOF mode image-plane technique based on the hypothesis the latter would induce 

greater arm fatigue. During 2D lasso selection we assume the user is fixating on the 

terrain surface location under the 3D cursor so the eye separation is set to its default 

setting (see Figure 42B). Our anecdotal experience indicates this assumed fixation point 

is correct. An experimental evaluation with an eye tracker could confirm this. If the user 

needs to select a restricted height range, a 3D selection box can be created as described in 

Section 6.3.1. 

Finally, there is an individual terrain triangle selection mode. In this mode the terrain 

triangle underneath the projected 2D cursor is selected and all other terrain triangles 

within a range of similar height values are also selected. As the 2D cursor is dragged this 

selection is continuously highlighted. (Other criteria for selecting ‗similar‘ terrain 

polygons are, of course, possible).  

All these terrain region selections and scatter-plot selections use brushing-and-
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linking across these coordinated views that are updated in real-time.  

6.3.4 Multi-Touch and Finger-tracking  

As discussed earlier, when the user tucks the button ball in her palm (Figure 37D and 

Figure 40D and E), the free fingers such as the thumb and pointer finger can interact with 

the horizontal multi-touch surface or trigger 3D gestures. 

DIEM-VR uses the multi-touch display for the Boolean expression tree once the user 

creates multiple scatter plots and brushes different regions in each scatter plot. The 

Boolean expression combines the different selections in various ways to make a final 

selection where only the terrain points that satisfy the Boolean expression are highlighted 

in the terrain view. The horizontal multi-touch display shows the tree structure of the 

Boolean expression (visible in Figure 38 and reproduced in Figure 39B). For example, in 

Figure 42B, the Boolean expression shows a logical expression of (1 OR 2) XOR (3 AND 

4). Numeric labels map elements of the expression to the scatter plot. The user can save 

the current expression by the (+) menu icon on the right top and an icon is added on the 

left top. Users can delete, select or modify prior saved expressions. All changes are 

immediately reflected in the terrain vertex highlighting, the line net display and the 

scatter plot highlighting. 

We specifically chose to touch enable the horizontal display rather than the vertical 

one, to maintain a palms-resting posture during the multi-touch interaction rather than 

requiring an outstretched-arm posture that is known in VR to generate user complaints of 

shoulder fatigue. Further, within the DIEM-VR application the Boolean expression UI is 

a separate, purely 2D interface unlike the scatter-plots whose line-nets are visually tied to 

the 3D terrain. Therefore, the Boolean expression UI is highly suited to 2D interaction 

afforded by the horizontal multi-touch surface. 
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Again, we can demonstrate hand+finger-tracking while still holding the button ball 

using 3Gears Kinect based tracking and we integrated a ray-based 3D selection in DIEM-

VR using 3D pointing gestures. However, we found the current tracking range and error 

rate of the hand+finger-tracking to be prohibitively restrictive when trying to pilot test a 

user study that integrates them with the rest of the HyFinBall UI. For instance, the 

Polhemus‘ electromagnetic (EM) tracking of the HyFinBall‘s never drops out the way it 

can with the Kinect based tracking and the ―error rate‖ of detecting mechanical button 

presses is essentially zero. This discrepancy led pilot test participants to want to use the 

button balls instead of 3D finger-tracking for any practical 3D user tasks such as object 

selection or manipulation. Nonetheless, because the concept of enabling 3D hand+finger 

tracking while still holding the button balls is at least demonstrable, we present it as part 

of the overall HyFinBall UI. 

6.4 Design Motivations and Empirical Questions 

This section discusses several of the key design considerations and motivations for 

the HyFinBall interface and as well a number of interesting questions that will require an 

empirical study. The study focuses only on the 6DOF and planar-3DOF combination. The 

three devices device conditions are: 

I. Auto-switching HyFinBall UI 

II. dual planar-3DOF mode only UI 

III. dual 6DOF mode only UI 

This comparison is done across a variety of 2D and 3D tasks in different sequential 

combinations. This study does not use the horizontal multi-touch display and the tasks 

involve 3D terrain manipulation and selection and 2D menu and scatter plot manipulation. 

The goal is to determine to what degree each of the four device conditions is better suited 
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to pure 2D tasks, pure 3D tasks and to combination 2D and 3D tasks. (To details, see 

Section 6.5). 

6.4.1 Fatigue – Elbows-Resting vs. Palms-Resting 

As stated earlier, using the planar-3DOF mode for 2D interactions on the vertical 

display is motivated by the desire to avoid arm fatigue issues that would arise if the user 

had to instead use image-plane techniques with the 6DOF mode. Image-plane techniques 

would require hovering the 3D cursor over the image of the 2D menus or scatter plots to 

manipulate them. Our experiment tests this hypothesis by comparing user subjective 

reports of fatigue when doing purely 2D tasks using condition III, 6DOF image-plane 

techniques, and condition II, planar-3DOF mode. When the user task is a mix of 2D and 

3D tasks, we also expect condition III to be more fatiguing than condition I, the auto-

switching HyFinBall mode, because the auto-switching mode allows the 2D operations to 

be performed with resting palms. Of course, there is a trade-off with condition I, since the 

user must switch between a palm-resting posture and an elbow-only resting posture in 

order to switch between 2D and 3D operations. 

The overall effectiveness of the 6DOF/planar-3DOF auto-switching will undoubtedly 

ultimately depend on the balance between the 2D and 3D interaction operations used in a 

given application and the temporal sequencing and durations of planar-3DOF interactions 

and 6DOF interactions. Our in-progress experiment is a first step in exploring this. Our 

anecdotal observations, indicate that users perform better and very much prefer condition 

I or III over II when the task includes 3D navigation and 3D manipulation of a 3D 

selection box. 

6.4.2 Auto-Switching 2D and 3D Cursors 

Section 6.3 described how the HyFinBall UI uses 3D cursors and several types of 2D 
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cursors within a stereoscopic environment. There has been a fair amount of prior work in 

desktop 2D GUI‘s regarding having the 2D image of the cursors change to indicate 

different application states or interaction modes. There has been interesting work in 

cursors for 3D selection such as Ware and Lowther‘s One-Eyed cursor [159]. Teather and 

Stuerzlinger compared four cursor selection techniques in [142], and more recently 

Bruder et al. [27] explored different offset techniques on a virtual workbench. The 

HyFinBall raises additional questions because the cursor automatically switches between 

a 6DOF 3D cursor, a 2D zero-parallax cursor, and a projected 3D cursor (as in HyFinBall 

2D lasso mode). 

6.4.3 Multi-Touch and Finger-Tracking 

Our current implementation of the HyFinBall UI demonstrates the possibility of 

leveraging the button ball form factor to allow multi-touch and hand+finger tracking 

interaction without dropping the device. The multi-touch UI is robust enough to consider 

formal user studies, but the tracking range limitations and 3D gesture error rates of the 

Kinect-based tracking still need improvement.  

At the moment we can only speculate about design issues and questions that could be 

investigated with more robust 3D hand+finger tracking. If the 3D finger tracking and 

gesture recognition were as robust as the simpler EM tracking and buttons, it would be 

interesting to explore what interactions 3D are best performed with hand+finger tracking 

and what are best performed with the 6DOF button balls. Moehring and Froehlich 

performed a study using very robust and accurate hand and finger tracking (with Vicon 

[148] marked gloves) and compared this with a 6DOF held-device (a Flystick) for a 

series of 3D manipulation tasks [98]. Users preferred the naturalness of finger tracking. 

However, users of the Flystick performed significantly faster than ―bare‖ finger tracking. 
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Adding pinch-sensitive finger tracking improved task performance times to be within 10-

20% of the Flystick condition. This suggests that manipulating a physical object (such as 

a button ball) may prove advantageous for some 3D object manipulation tasks over 3D 

hand+finger tracking within our demonstrated HyFinBall interface. From a practical 

standpoint it is a bit challenging to test this because the systems that provide robust 

hand+finger tracking require wearing gloves or thimbles with fiducial markers which 

may make simultaneously handling a button ball cumbersome. 

6.5 Experiment Design 

Experiment uses a subset of ITs within DIEM-VR. The three IT conditions are 

HyFinBall (with auto-switching), 6DOF-only mode, and 6DOF+mouse (dual 6DOF 

button balls with a mouse). In Experiment 1, DIEM-VR displays five menu icons, and 

one patch of terrain, and a scatter plot. 

Experiment‘s 3D tasks include 7DOF navigation (pose + scale) and creation and 

manipulation of 3D selection boxes [146]. In a trial, the user is prompted with a red 3D 

selection box on the terrain, the user must navigate and create 3D selection box creation 

to make a matching selection box. Considering all three IT conditions use same 6DOF 

button ball UI for the 3D task, we set large tolerance (±10% of the cursor box size) to 

make the 3D task easier to be accomplished. For Experiment 1, both multi-touch and 

gesture interface are disabled.  

2D tasks of Experiment 1 are as follows. Task 1 is selecting a menu icon. A red 

outlined rectangle appears on one of menu icons to prompt the user to select the icon. 

Task 2 is selecting axis icons of a scatter plot. An outline appears on one of a scatter 

plot‘s data axis icons. The user selects this icon to change the variable plotted on that axis. 

Task 3 is relocating a scatterplot. A red outlined scatterplot appears in a random position, 
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and then the user moves the target scatterplot to a position indicated by an objective 

rectangle. Task 4 is brushing points of a target scatterplot. A red rectangle appears inside 

the target scatterplot bounding a set of plot points, the user needs to draw selection 

rectangle matching the red target. Each 2D task trial presents four tasks, one of each of 

the above types, in sequence. The order of 2D task presentation is randomized per trial.  

We also perform a within-subject pilot study with five different UI conditions 

(Mouse only, planar constraint only, 6DOF only, 6DOF+Mouse and HyFinBall). For each 

of the two participants (non-authors), the experiment took slightly over 2 hours. The 

qualitative and quantitative results indicated that 3D task completion times for the 2D UIs 

(mouse (M=65.89) and planar constraint button ball (M=100.88)) are significantly slower 

than 3D UI (i.e. button ball, M=34.94). This is similar to previous 2D UI studies for 3D 

interaction [127,131] that show relatively poor performance of 2D UIs for complex 3D 

interactions. The 2D UI‘s used standard mouse based 3D navigation techniques (Arcball 

[131]). The more difficult task of creating and adjusting a 3D selection box was 

significantly more difficult to perform both with the mouse UI and the dual planar-3DOF 

UI than with the two-handed 6DOF interface. This was despite several iterations of re-

design of the mouse and planar-3DOF 3D selection box interfaces. With a two plus hour 

experiment, users complained of visual and physical fatigue. They complained heavily 

regarding having to perform the 3D selection box task with 2D UI conditions as 

compared to the much more favored 3D UI conditions for the 3D tasks. Due the large 

quantitative reduction in performance for our 3D tasks when using 2D UI conditions and 

due to the empirical difficulties in participants performing all five conditions, we 

therefore removed the 2D UI only conditions from the full Experiment 1. 
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6.6 Experiment 

Twelve participants performed 30 trials each (10 trials (10 × 3D task and 10 × 2D 

task) × 3 UI conditions) in a within-subject comparison through 6DOF+mouse, 6DOF 

only and HyFinBall UIs for 3D and 2D tasks. Eleven participants are from the Computer 

Science department and one from Public Health Sciences; seven are males and five are 

females. All participants have (corrected) 20/20 or higher eye sight, no disability using 

their hands and fingers, and passed a stereopsis test. All participants have high daily 

computer usage (6.25 out of 7). Eleven participants have experience of 6DOF button ball 

UI from a previous 1 hour user study. The three UI conditions were presented in counter-

balanced order across all participants. 

We evaluated four different types of tasks: pure 3D task, pure 2D task, and cross-

dimensional tasks—a 2D task followed by 3D task (3D-to-2D) and 3D task followed by 

2D task (2D-to-3D). For data of cross-dimensional tasks, we averaged all sequential tasks 

that contain 2D to 3D or 3D to 2D tasks.  

We use repeated measures (rm) ANOVA. The F tests that are reported use α=.05 for 

significance and indicate the Geisser-Greenhouse correction to protect against possible 

violation of the assumption of the sphericity. The post-hoc tests that are conducted are 

least significant differences (LSD) tests with α=.05 level for significance.  

The primary hypotheses are: 

H1.  Overall, HyFinBall is expected to have faster task completion time than 

other UIs.  

H2.  HyFinBall and 6DOF+Mouse are expected to have faster completion time 

than 6DOF button ball only for 2D tasks.  

H3.  HyFinBall is expected to have faster completion time for a 3D task than all 
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other UIs. 

H4.  HyFinBall is expected to have faster completion time for cross-dimensional 

tasks than all other UIs  

6.6.1 Result 

Quantitative 

Overall 

Table 10: Average and standard deviation of task completion time of different UIs 

 6DOF+Mouse 6DOF only HyFinBall 

 CT SD CT SD CT SD 

3D 39.3 10.1 39.8 15.7 33.9 7.7 

2D 22.8 1.9 29.3 6.1 21.5 3.7 

3D to 2D 63.8 13.2 68.6 19.7 55.8 9.5 

2D to 3D 63.9 12.3 69.4 17.4 54.9 8.5 

 

 
Figure 43: Task completion time of UI condition by Tasks.  

The 3 × 3 × 2 rm ANOVA (Order × UI × TaskType) for pure 2D and 3D tasks shows 

no interaction effect on completion time of UI condition and UI presentation order 
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(p=.315).  

The 3 × 2 rm ANOVA (UI × TaskType) for pure 2D and 3D tasks shows no 

interaction effect on completion time of UI condition and task type (p=.165). This 

indicates no performance change between 3D and 2D tasks across the three UIs. There is 

a main effect on completion time of UI condition (F(2,22)=7.857, p=.008, ηp
2
=.417). LSD 

post-hoc tests show completion time of HyFinBall (M=27.72, SD=8.66) is faster than 

6DOF+Mouse (M=31.08, SD=11.03, p=.021), and 6DOF only (M=34.57, SD=12.82, 

p=.010). In addition, completion time of 6DOF+Mouse is faster than 6DOF-only 

(p=.049). As expected (hypothesis H1), HyFinBall has the better performance.  

The one-way rm ANOVA for the 3D task shows no main effect on completion time of 

UI condition (p=.088). A possible explanation is that the overhead time of switching 

modes (in HyFinBall) and switching physical devices (in 6DOF+mouse) did not reduce 

performance for the 3D tasks. That is the size of these overheads is relatively small 

compared to the 3D task completion time (3D in Figure 43). 

The one-way rm ANOVA for the 2D task shows a main effect on completion time of 

UI condition (F(1.359,14.944)=11.839, p=.002, ηp
2
=.518). Completion time of 6DOF-

only is slower than HyFinBall (p=.003) and 6DOF+Mouse (p=.005) (see 2D in Figure 

43). This indicates 2D task performance of the planar-3DOF sub-mode in the HyFinBall 

condition and the mouse sub-mode in the 6DOF+mouse condition, are better than the 

6DOF-only condition (hypothesis H2). This also indicates 2D task performance of 

planar-3DOF is no worse than the mouse input. We observed in the 6DOF-only condition, 

most participants had difficulty holding the button ball in a fixed position in the middle of 

the air when they were performing 2D tasks with image-plane ITs despite the fact they 
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could rest their elbows. 

The 3 × 2 rm ANOVA for cross-dimensional tasks (3D-to -2D and 2D-to-3D) shows a 

main effect on completion time of UI condition (F(2,22)=7.606, p=.003, ηp
2
=.409). 

Completion time of HyFinBall (M=55.31, SD=8.82) is faster than both 6DOF+Mouse 

(M=63.96, SD=12.5, p=.010) and 6DOF-only (M=69.02, SD=18.17, p=.007). 6DOF-

only and 6DOF+Mouse do not differ (p=.155).  

The one-way rm ANOVA for the 3D-to-2D task shows a main effect on completion 

time of UI condition (F(1.376,15.131)=6.571, p=.015, ηp
2
=.374). Completion time of 

HyFinBall is faster than both 6DOF+Mouse (p=.010) and 6DOF-only (p=.018). 

However, there is no difference on completion time between 6DOF-only and 

6DOF+Mouse (p=.169).  

The one-way rm ANOVA for the 2D-to-3D task show a main effect on completion 

time (F(2,22)=7.359, p=.004, ηp
2
=.401). Completion time of HyFinBall is faster than 

both 6DOF+Mouse (p=.013) and 6DOF-only (p=.008). Same as the result of the 3D-to-

2D task, there is no difference between 6DOF+Mouse and 6DOF-only (p=.172). The 

HyFinBall UI has the best task performance for cross-dimensional tasks. This supports 

hypothesis H4 that the overhead of switching HyFinBall sub-modes between 3D and 2D 

takes less time than changing physical input devices in the 6DOF+Mouse UI. Even 

though 2D task performance of the mouse input is better than 6DOF-only, the device 

acquisition time penalty may reduce overall performance of 6DOF+Mouse for cross-

dimension tasks.  

We recorded the number of 3D selection boxes create, the number of scatter plot 

moves, the number of button presses for navigation, and the number of button presses for 
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modifying the 3D selection box to evaluate effectiveness of different UIs for the 3D task. 

However, there are no statistical main effects of UI condition on those variables.  

2D tasks 

Table 11: Average and standard deviation (SD) on completion time (CT) of different UIs 

for 2D tasks 

 
6DOF+Mouse 6DOF only HyFinBall 

CT SD CT SD CT SD 

SM 3.5 0.5 2.6 0.4 2.9 0.5 

SA 5.4 1.1 6.0 1.6 5.5 0.6 

RS 6.6 0.9 7.0 1.1 5.3 1.1 

BP 7.3 0.8 13.2 5.6 7.9 2.3 

 

 
Figure 44: Task completion time of UI conditions by 2D tasks 

When considering 2D tasks separately, the 3 × 4 rm ANOVA (UI × Task) shows an 

interaction effect of UI condition and 2D tasks (F(1.533,16.867)=9.773, p=.003, 

ηp
2
=.470). This indicates UI condition has different effects on completion time depending 

on the particular 2D task. Generally, simple tasks (selecting a menu (SM) and selecting 
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axis icons (SA)) have small differences across UIs. However, precise tasks (relocating the 

target scatterplot (RS) and brushing points (BP)) have larger differences across UIs (see 

Figure 44 and Table 11).  

There is a simple main effect on completion time of UI condition for the SM task 

(F(2,22)=9.618, p=.001, ηp
2
=.466). Completion time of the mouse is slower than the 

6DOF (p=.001) and planar-3DOF button balls (p=.011) (see SM in Figure 44). However, 

there is no difference between 6DOF-only and planar-3DOF button balls (p=.289). This 

indicates the benefit of using dual planar-3DOF input rather than a single mouse for the 

2D tasks. This is inline with research comparing dual mice UI‘s to single mouse UI‘s. 

There is no simple main effect on task completion time of UI condition for the SA 

task (p=.352). The position of a scatter plot is random in the SA task. Normally the user 

moves cursors of dual mice from left and right of the display. The distance from the 

cursors of dual mice to a target scatterplot should be similar with single mouse.  

There is a simple main effect on completion time in the RS task (F(2,22)=10.917, 

p=.001, ηp
2
=.498). Completion time of planar-3DOF is faster than both mouse (p=.003) 

and 6DOF button ball (p=.003) (see RS in Figure 44). However, completion time of the 

mouse and 6DOF button ball do not differ (p=.223). This clarifies the benefit of dual 

planar-3DOF button balls over a single mouse and the general advantage of a 2D UI for a 

precise 2D task (3DOF button ball or mouse vs. the 6DOF image-plane ITs). 

The results also show a simple main effect on completion time for the BP task, 

(F(1.257,13.829)=10.437, p=.004, ηp
2
=.487). Completion time of 6DOF-only is slower 

than the mouse (p=.009) and the planar-3DOF (p=.005). However, completion time of 

mouse and planar-3DOF does not differ (p=.453) (see BP in Figure 44). Since the BP 
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task requires relatively precise manipulation, mouse and planar-3DOF have better 

performance than 6DOF-only. 

There is a main effect on 2D task completion time of 2D task types 

(F(1.352,14.873)=69.241, p<.001, ηp
2
=.863). Completion time of SM is faster than other 

2D tasks (p<.001), SA is faster than RS (p=.007) and BP (p<.001), and RS is faster than 

BP (p<.001). This is because BP requires more accurate control and specifying 2 points.  

2D Task precision 

  
Figure 45: Number of task attempts of UI conditions for RS and BP tasks. 

The 3 × 4 rm ANOVA to determine usability of UI condition and 2D task on number 

of task attempts shows an interaction effect on number of task attempt of UI condition 

and 2D task (F(1.415,15.567)=6.862, p=.012, ηp
2
=.384). Similar to the interaction effect 

of completion time between UI condition and 2D tasks, this explains the user tried more 

times to accomplish tasks differently depending on task difficulties.  

The results show a simple effect on number of task attempts in the RS task 

(F(1.308,14.391), p<.001, ηp
2
=.717). LSD tests show number of task attempts of the 

6DOF button ball (M=1.32, SD=0.51) is significantly more than planar constraint button 

ball (M=0.43, SD=0.31, p=.001) and the mouse (M=0.23, SD=0.23, p<.001) (see RS in 
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Figure 45). However, there is no difference on number of task attempts between mouse 

and planar constraint button ball (p=.107).  

The results also show a simple effect on number of task attempts in the BP task 

(F(1.155,12.702)=6.56, p=.021, ηp
2
=.374). Number of task attempts of 6DOF button ball 

(M=1.93, SD=1.75) is significantly more than planar constraint button ball (M=0.65, 

SD=0.53, p=.027) and the mouse (M=0.64, SD=0.14, p=.020). There is no statistical 

difference on number of task attempts between mouse and planar constraint button ball 

(p=.960) (see BP in Figure 45).  

There are no simple effects on task attempts in SM and SA tasks. Evidently 6DOF 

button ball incurred more task attempts then other inputs for precise 2D tasks. 

  
Figure 46: Number of task attempts of 2D UI condition. 

There is a main effect on number of task attempts of UI condition 

(F(1.172,12.894)=13.783, p<.001, ηp
2
=.556). LSD comparisons show number of task 

attempts of 6DOF button ball (M=0.83, SD=1.23) is significantly more than the mouse 

(M=0.23, SD=0.29, p=.001) and 3D planar constraint button ball (M=0.28, SD=0.40, 

p=.006) (see Figure 46). This main effect is because 6DOF button ball caused more task 
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attempts on SM and SA tasks. 

Percentage of pressed wrong button  

Table 12: Average and standard deviation (SD) on 2D task completion time (CT) of 

different UIs 

 
6DOF+Mouse 6DOF only HyFinBall 

CT (%) SD (%) CT (%) SD (%) CT (%) SD (%) 

SM 0.0 0.0 15.8 16.2 19.2 22.7 

SA 7.5 7.5 30.8 24.7 13.3 8.7 

RS 17.5 17.1 13.3 13.0 11.7 14.7 

BP 2.5 4.5 30.0 22.6 7.5 8.7 

 

 
Figure 47: Percentage of wrong button presses of UI conditions by 2D tasks. 

We recorded how many trials the user pressed wrong button for 2D tasks. Table 12 

show average and standard deviation of percentage of pressed wrong button for 2D tasks 

by UI condition. The one-way rm ANOVA for the SM task shows a main effect on 

percentage of trials of pressing wrong button on UI condition (F(2,22)=7.008, p=.004, 

ηp
2
=.389). Contrasts reveal the mouse has significantly less percentage than both 6DOF 

(F(1,11)=8.52, p=.014, ηp
2
=.436) and planar constraint button balls (F(1,11)=11.444, 
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p=.006, ηp
2
=.510) (see SM in Figure 48). However, there is no significant difference 

between 6DOF and planar constraint button balls (p=.517). 

The one-way rm ANOVA for the SA task indicates a main effect on percentage of 

wrong button clicks of UI condition (F(1.284,14.127)=11.629, p=.003, ηp
2
=.514). 

Participants pressed wrong buttons with the mouse in fewer trials than both 6DOF 

(F(1,11)=16.5, p=.002, ηp
2
=.600) and planar constraint button balls (F(1,11)=16.09, 

p=.002, ηp
2
=.594) (see SA in Figure 48). In addition, planar constraint button ball has 

less percentage of pressed wrong buttons than 6DOF button ball (F(1,11)=5.77, p=.035, 

ηp
2
=.344).  

There is no simple effect on percentage of wrong button clicks of UI condition in the 

RS task (p=.294). Interestingly, this is the task which uses a right mouse button. Users 

may be familiar with the left mouse button because it is the main button for most 

computer tasks.  

The one-way rm ANOVA for the BP task shows a main effect on percentage of 

wrong button clicks of UI condition (F(1.333,14.664)=13.329, p=.001, ηp
2
=.548). 

Participants pressed wrong buttons more with 6DOF button ball than planar constraint 

button ball (F(1,11)=12.789, p=.004, ηp
2
=.538) and the mouse (F(1,11)=16.036, p=.002, 

ηp
2
=.593) (see BP in Figure 48). There is no difference on percentage of wrong button 

click between the mouse and the planar constraint button ball (p=.139). 
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Qualitative 

 
(A) 

 
(B) 

Figure 48: (A) Fatigue and (B) confidence rate of the user by different UI and tasks. 

On a 7-point Likert scale, user rating of arm fatigue (1 no fatigue through 7 very 

painful) is significantly different through UI conditions. The one-way ANOVA shows that 

there is a main effect on rating of arm fatigue of UI condition (F(1.289,14.176)=10.333, 

p=.004, ηp
2
=.484). Participants felt more fatigue with 6DOF only condition (M=3.5, 

SD=1.45) than both 6DOF+Mouse (M=2.25, SD=.97, p=.033) and HyFinBall (M=2.0, 

SD=1.04, p=.013) conditions. However, arm fatigue rating is not significantly different 

between 6DOF+Mouse and HyFinBall conditions (p=.537). Figure 48A illustrates fatigue 

rates through UI conditions. Possible explanation is that users could not rest their arms 
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and hands with 6DOF UI condition while they are performing 2D tasks.  

On a 7-point Likert scale, user rating of how accurately perform 2D task (1 no 

accuracy through 7 very accuracy) is significantly different among UI conditions 

(F(2,22)=4.602, p=.021, ηp
2
=.295). Users felt more confidence to perform 2D task more 

accurate with the HyFinBall UI (M=6.0, SD=1.13) than the 6DOF only UI (M=4.58, 

SD=1.08, p=.028). Subjective confidence rating of 6DOF+mouse (M=5.5, SD=1.38) is 

slightly higher than 6DOF only UI but not significant (p=.307). On the same 7-point 

Likert scale, user rating of how accurately perform 2D to 3D and 3D to 2D tasks, are not 

different with 5.67 and 5.25 for 6DOF only, 5.08 and 5.08 for 6DOF+Mouse, and 5.5 and 

4.75 for HyFinBall (see Figure 48B).  

Ten out of twelve participants answered they thought HyFinBall is the easiest UI for 

overall task, two answered 6DOF+Mouse UI. For only 2D task, eight users answered that 

mouse is the easiest and four answered planar constraint button ball is the easiest. For 2D 

task followed by 3D tasks, eight participants answered HyFinBall is the easiest UI, four 

answered 6DOF only. For 3D task followed by 2D tasks, nine answered HyFinBall is the 

easiest UI, three answered 6DOF only.  

When asked whether how much participants prefer planar constraint button ball or 

mouse for 2D tasks (-2: strongly prefer mouse, -1: somewhat prefer mouse, 0: neutral, +1: 

somewhat prefer planar constraint button ball, +2: strongly prefer button ball), four 

participants answered they strongly preferred planar constraint button ball, five answered 

they somewhat preferred planar constraint button balls, one answered strongly preferred 

mouse, and two answered they somewhat preferred mouse input (total score through all 

twelve participants is +9).  
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On a 7-point Likert scale regarding whether switching between holding the mouse 

and holding the button ball affected participant‘s ability to complete task (1 not at all 

through 7 very much), the average rating is 4.25. On the same Likert scale rating 

regarding whether switching between holding the mouse and holding the button ball 

affected participant‘s physical comfort while completing the task, the average rating is 

3.25. On the same Likert scale rating regarding how frustrating is switching between 

holding the mouse and holding the button ball, the rating is 3.58. 

Seven of twelve participants answered that 6DOF only UI is the most difficult to 

learn for overall tasks, two answered HyFinBall, three answered 6DOF+Mouse. For 2D 

tasks, nine answered 6DOF only UI is the most difficult to learn, one answered 

HyFinBall, and two answered 6DOF+Mouse. For 3D task, five answered 6DOF only is 

the most difficult, five answered 6DOF+Mouse and two answered no preference. 

6.7 Discussion and Conclusion  

This chapter presents our two-handed hybrid UI, HyFinBall, for interaction with rich, 

multi-dimensional visualizations that require coordinated 3D and 2D views in semi-

immersive desktop VR. The HyFinBall concept is implemented within a specific 

visualization tool called DIEM-VR for analyzing terrain meshes. These interaction 

techniques can be used with not only geospatial data but also with other scientific or 

medical datasets such as volume datasets with 2D interactive transfer functions or feature 

spaces representations. Potentially more abstract, less physically based 5-dimensional 

datasets could be explored by separating the dimensions to into various linked 3D and 2D 

visualizations. We suggest the HyFinBall UI could be a useful UI approach for multi-

dimensional visualizations whose component data dimensions are each best visualized 

using a different display plus input hardware combination suggesting a cross-dimensional 
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approach. 

HyFinBall with multi-touch works robustly, but we have yet to formulate user 

studies. HyFinBall with 3D hand/finger tracking is not yet robust enough to formally 

evaluate. Future multi-Kinect configurations may solve the problems with gesture 

recognition error rate and limited tracking range. Alternatively robust marker based hand 

and finger tracking could be employed. We believe there is an interesting design space to 

be explored when combining the HyFinBall button balls with robust 3D finger tracking. 

Finally, based on the ALCOVE [96] and Houtgast‘s work in [71], we are in the process of 

configuring our system into a more seamless L-shaped display that also displays stereo 

3D on the horizontal surface. Several of the prior works mentioned in Chapter 2 have 

begun exploring stereo plus multi-touch, but to our knowledge prior work is limited.  

The experiment shows HyFinBall UI performs faster over for cross dimensional 

tasks then 6DOF only and 6DOF+Mouse UIs. Apparently, the device acquisition time 

penalty decreases performance of cross dimensional tasks while the overhead of 

switching input modes does not. In addition, planar constraint button input has similar 

results for 2D tasks to the mouse input because of benefit of dual mice and ability to do 

precise tasks. 6DOF button ball input does not provide good performance for 2D tasks. 

However, there are no differences through UIs for the 3D task. However, the user presses 

wrong button more with HyFinBall UI than the mouse input for 2D tasks. In subjective 

questionnaires ten users prefer the HyFinBall UI and two prefer the 6DOF+Mouse UI. 

Additionally, users prefer the planar constraint button ball input than the mouse input for 

2D tasks.  

Some participants indicate that the ball shape is not good to use as a mouse input. 
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They feel more comfortable when they are holding the button ball for the 3D task. 

Possibly it would be better if the ball has flat back face to be more stable for planar 

constraint input. Future study is needed to evaluate effects of form factor differences for 

both 2D and 3D tasks. Some also mentioned about button layouts. In the planar constraint 

button ball mode, some participants have problems to press the button correctly because 

they try to press buttons with only thumb rather than index and middle fingers. In 

addition, resolution of the planar constraint button ball input is not good as one of the 

mouse input. If the planar button ball has better sensitivity and resolution then 2D 

performance of the planar constraint button ball input would be significantly better.  

Overall, the sequence and duty-cycle of 2D versus 3D tasks is important for the 

usability of HyFinBall. If the user needs to do many 2D tasks and rare 3D tasks, then the 

6DOF+Mouse UI would be better than HyFinBall. However, if the task required frequent 

mode changes, then HyFinBall would dominate other UIs. Furthermore, the HyFinBall 

has a lot of potential to enrich interaction for multi-dimensional visualization due to its 

ability to use finger and hand gestures with advantage of physical 3D and 2D inputs. 

 



CHAPTER 7: DESIGN GUIDELINES 

The following design guidelines have been created based on the evaluation of VR 

displays, user interfaces and interaction techniques. The most important design guidelines 

that have been determined from this body of research are the following: 

 Stereoscopic and head-tracking display can enhance depth perception of 3D 

volume datasets when the user needs to judge the spatial structure of volume 

datasets. Stereopsis alone is more effective than head-tracking alone for depth 

judgment. 

 To minimize completion times and button clutches for 7DOF navigation tasks, 

use a bimanual simultaneous 7DOF interaction technique (Spindle+Wheel). 

In contrast, for 6DOF navigation tasks, use 6DOF (position + orientation) 

interaction techniques to minimize completion times. The 7DOF navigation 

technique should be designed such that the 6DOF IT is available for when the 

task does not require any scale changes to maximize users‘ performance. 

 Auto-stereo adjustment techniques should be considered for reducing 

stereoscopic fusion problems in particular in multi-scale virtual environments. 

In desktop VR, the techniques also can enhance the user‘s performance for 

navigation tasks with the one-handed navigation technique when tasks 

require large amount of scale changes.  

 For multi-dimensional visualization, hybrid user interfaces can enhance 

user‘s performance when tasks require mode changes between 2D and 3D 
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tasks frequently.  

The following are VR display designs that affect depth perception of volumetric data:  

 Head-coupled stereoscopic display is best for depth judgment accuracy for 

volume datasets. 

 Stereopsis alone enhances depth perception for volume datasets in both short 

and unlimited exposure time.  

 Head-tracking alone enhances depth perception if data exposure time is 

unlimited. However, it has no significant effect on depth judgment in short 

exposure time.  

The following are interaction designs that affect navigation task completion times in 

MSVEs:  

 The Spindle+Wheel interaction technique is best for fastest task completion 

times, when the task requires scale changes.  

 Continuous 6DOF interaction techniques are better than a continuous 7DOF 

IT when the task does not require any scale changes.  

The following are user interface designs that affect manipulation task completion 

times in multi-dimensional visualizations:  

 2D input mode (a mouse or planar constraint button ball) are best for fastest 

task completion times for pure 2D tasks. 

 HyFinBall mode is best for fastest task completion times for combination 

tasks (i.e. 3D-to-2D and 2D-to-3D tasks)  

The following are dynamic adjustment of the stereo view parameter technique 

designs that affect navigation task completion times in multi-scale virtual environments:  
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 The dynamic adjustment of the view location technique reduces completion 

time more than the dynamic adjustment of the stereo view scale factor 

technique and no dynamic adjustment in desktop VR with the one-handed 

navigation technique when the task requires large amount of scale changes. 

 The dynamic adjustment of the view scale factor technique increases task 

completion time in a CAVE with the one-handed navigation technique when 

the task only requires small amount of scale changes.  

The following is dynamic adjustment of the stereo view parameter technique designs 

that affect stereoscopic fusion problems in multi-scale virtual environments:  

 Auto-stereo adjustment techniques significantly reduce stereoscopic fusion 

problems when using the one-handed navigation technique in both desktop 

VR and a CAVE.  

 



CHAPTER 8: CONCLUSION AND FUTURE WORK 

This dissertation has addressed various research challenges for stereoscopic HTDs. 

Chapter 3 presented effects of stereoscopic and head-tracking displays for human depth 

perception for 3D volumetric datasets by depth discrimination and depth ordering 

experiments. The results of both experiments showed benefit of stereo displays which 

enhances human depth perception. Still future experiments are needed to evaluate motion 

and stereo with a wider variety of real world volume datasets. 

Chapter 4 presented a simultaneous 7DOF object manipulation technique. We 

conducted two experiments comparing it with a previous two-handed, object 

manipulation technique. The chapter also compared it against a one-handed technique 

and showed benefits of the two-handed IT for 7DOF manipulation. In addition, we 

examined the effect of accidental scale changes and of user‘s preference between rate 

control and position control for the one-handed IT. We are currently testing an additional 

hybrid technique that combines aspects of the unimanual and bimanual ITs for 7 DOF 

manipulation.  

Chapter 5 evaluated stereo auto-adjustment techniques for MSVEs in the desktop VR 

and CAVE. A user study demonstrated the advantages and disadvantages of two auto-

adjustment techniques. The experiments indicated that we need more sophisticated rules 

for dynamic activation of auto-adjustment techniques in order to maximize their positive 

effects and minimize their negative effects during varying types of travel tasks. The 

results also suggest that for multi-screen displays, such as the CAVE, gaze tracking 
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appears necessary for determining which screen should be used for the auto-adjustments. 

Chapter 6 presented a bimanual, hybrid user interface for the semi-immersive 

desktop VR system which combines traditional physical input devices and natural human 

hand input together for a multi-dimensional visualization application. Our experiments 

showed advantages of the hybrid user interface for the cross-dimensional tasks in 

comparison with manually switching between devices and with using only one device. 

Future study should focus on further hybrid interaction techniques which use human 

natural hand and finger inputs with traditional tracking devices. While we demonstrated 

the integration of this technology in our DIEM-VR application, evaluation remains future 

work. 
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APPENDIX A: MATERIALS FROM DEPTH PERCEPTION FOR A VOLUMETRIC 

DATASET EXPERIMENTS 

This appendix contains materials used in depth perception studies for a 3D volume 

dataset, which was reported in Chapter 3. The following materials are included, listed in 

order of appearance: 

1. The informed consent form 

2. Demographics and post questionnaires form 

3. Confidence rate form 

4. Post questionnaires form 
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Informed Consent for 

Perception of volumetric dataset under virtual environment conditions  

 

Project Purpose 

In this study we will test the depth perception of users under virtual environment 

conditions (stereopsis and head-tracking) with scalar volumetric dataset.  

 

Investigators 

Isaac Cho, Computer Science 

Zachary Wartell, Computer Science 

 

Eligibility 

You may participate in this study if you are above 18 and if you have 20/20 vision or 

corrected vision to 20/20 and can comfortably communicate in spoken English. 

 

Overall Description of Participation 

In the first step, we will demonstrate stereoscopic display and head-tracking to make you 

familiar with them. Stereopsis is an important binocular depth cue generated by the 

differences between the two views of a scene seen from a person‘s two eyes. Head-

tracking is a tracking system which tracks the position and the orientation of a 

participant‘s head to generate an optimal perspective image. We will train you on how 

these technologies work by having you view a volumetric medical dataset generated from 

a CT or MRI scan. Then you will take a simple depth perception test. You will be asked 

which virtual object appears in front in the display. Also, we will survey you about your 

experiences with 3D applications (e.g. 3D games and 3D movies) and your familiarity 

with using a computer. 

 

In the next step, you will be asked about depth ordering of cylinders under specific 

conditions (combination of stereopsis and head-tracking). There are two experiments. 

The instructor will tell you in which experiment you will participate. If you participate in 

Experiment 1, then you will be asked which virtual cylinder is in front (or middle or 

behind) from a set of 6 virtual cylinders. You can answer by pressing the number keys on 

the keyboard. This experiment will be repeated 4 times with different conditions. If you 

participate in Experiment 2, then you will be asked which of two target cylinders is in 

front of the other. The two target cylinders will be picked out of a set of 6 cylinders. The 

target pair will be designated by highlighting the pair‘s intersection in a 2D image of the 
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6 cylinder set. First you will see this 2D image for 1 second with the highlighted 

intersection, and then you will see the 3D cylinders for 2 seconds. After the 3D dataset 

disappears, you can answer which is in front by selecting from a menu using a mouse. 

You will have 5 seconds to answer this question. This experiment will be repeated 6 times. 

The whole experiment time is approximately 40 minutes. 

 

Then you will complete a post-experiment questionnaire which focuses on which display 

conditions were most effective for you for perceiving the depth of the cylinders. 

 

Length of Participation 

Participation should take approximately 50-60 minutes.  

 

Risks and Benefits of Participation 

While using virtual environment systems, some people experience slight symptoms of 

disorientation, nausea, or dizziness. These can be similar to "motion sickness" or the 

feeling experienced in wide-screen movies and theme park rides. We do not expect these 

to be strong or to last after participants leave the laboratory. You will be reminded often 

that if you feel uncomfortable and wish to stop the experiment, you are free to do so at 

any time without penalty by simply announcing you desire to stop. 

 

The primary scientific benefit of the study is determine effectiveness of virtual 

environment conditions for medical or scientific volumetric images.  

 

There is a benefit for participants who volunteer via the Psychology Department‘s on-line 

subject pool. Participants will receive 1 credit in their general psychology class. Students 

who do not wish to participate, or who are excluded in the study due to stereoblindness, 

may leave and they are granted participation credit for 15 minutes or one-half a credit. 

 

Students in ITCS 6125/8125 Virtual Environments course must complete an experment as 

part of the course reqruiments. Therefore this experiment will be used and students in 

ITCS 6125/8125 must complete the experiments as part of a course homework 

assignment. However participation in the research study is voluntary and students will be 

given the option of having their data not collected for experimental analysis. The course, 

ITCS 8125/6125, is about virtual environments and virtual reality. The study is a 

perceptual study regarding stereoscopic and head-tracked virtual reality displays. 

Students participating in the experiment will benefit by hands-on learning about a current 

research project in perception in virtual reality systems. The experiment will engage 

students with an additional virtual reality hardware system beyond those used in their 

class projects. The informed consent form below has a special section for ITCS 

8125/6125 students informing them of this option. 

 

Volunteer Statement 

You are a volunteer. The decision to participate in this study is completely up to you. If 

you decide to participate in the study, you may stop at any time. You will not be treated 
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any differently if you decide not to participate in the study or if you stop once you have 

started. You can request to withdraw your segment after the testing is complete. 

 

If you are enrolled in course ITCS6125 or ITCS8125, your participation in this study 

counts as a required homework assignment. However, having your data recorded and 

used for the actual research study is voluntary. 

 

Confidentiality Statement 

Any information about your participation, including your identity, is completely 

confidential. The following efforts will be taken to protect confidentiality and privacy: 

 

1) The informed consent form will be kept in a locked filing cabinet, separate from 

the rest of the data. 

2) All participants will be assigned a random ID consisting two randomly-generated 

initials (initials will not correspont to participants' name). The participants will 

only be referred by assigned alphanumeric codes both in internal communication 

between researchers or in the form of written reports. 

3) The investigator and co-investigators will ask the participants not to mention their 

name or identify themselves during the recordings. The recording is only for 

internal use such as transcription and will not be made available to the public. 

Screenshots from the video recording might be published without disclosing the 

identify of any participants. 

4) All digitally recorded files during the study will be kept in the Charlotte 

Visualization Center (room 437 in Woodward Hall) on password-protected 

NOVELL-powered computers. The files will be destroyed after two years by 

investigators under the guidance of the responsible faculty. 

 

Statement of Fair Treatment and Respect 

UNC Charlotte wants to make sure that you are treated in a fair and respectful manner. 

Contact the university‘s Research Compliance Office (704-687-3309) if you have 

questions about how you are treated as a study participant. If you have any questions 

about the actual project or study, please contact Isaac Cho (icho1@uncc.edu) or Dr. 

Zachary Wartell (zwartell@uncc.edu) at 704-687-8559. 

 

Approval Date 

This form was approved for use on Oct 8, 2009 for use for one year. 

 

Participant Consent  

I have read the information in this consent form. I have had the chance to ask questions 

about this study, and those questions have been answered to my satisfaction. I am at least 

18 years of age, and I agree to participate in this research project. I understand that I will 
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receive a copy of this form after it has been signed by me and the principal investigator of 

this research study. 

 

If you are a student in ITCS 6125/8125, please also complete the following box: 

 

 

 

______________________________________     _______________________ 

Participant Name (PRINT)                   DATE 

 

___________________________________________________ 

Participant Signature 

 

______________________________________     _______________________ 

Investigator Signature                      DATE 

 

 

 

 
 

 

  

     I am a student in ITCS 6125/8125, I understand that while participating in the 

experiment is required as a homework assignment, the collection of my data for use in 

the research study is voluntary and my choice on whether to have the data collected 

will not affect my homework grade.  

 Please circle one option: 

     As a ITCS 6125/8125 student, I [do] | [do not] consent to the collection of my 

data for use in the research study. 
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1. Your given ID number:  

2. Your age: 

3. Your gender: 

4. Occupational Status: Undergraduate student ___ 

                Master Student ___ 

                PhD Student ___ 

                Research Assistant/Fellow ___ 

                Staff-systems, technical ___ 

                Faculty ___  

                Administrative Staff ___ 

                Other : __________________ 

5. Your major:  

6. Are you colorblind? : Yes / No 

7. Do you have 20/20 eyesight (or corrected 20/20)? Yes / No 

8. Are you familiar with using a mouse and keyboard? Yes / No 

9. Have you ever felt cyber sickness such as dizziness or nausea before? Yes / No 
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1. How often do you use a computer in your daily activities? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

2. How often do you play 2D computer games? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

3. How often do you play 3D computer games? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

4. How often do you play computer games on a computer/PC? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

5. How often do you play computer games using a game console, such as Nintendo® , 

XBox® , Sony Playstation® , other? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

6. How often do play computer games using a game console with a motion capture device, 

such as XBox Kinect® , Sony Playstation Move® , other? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

7. How often do you play watch 3D movies for which you have to use shutter glasses in 

the theater? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

8. How often do you play computer games or watch movies using a 3D TV or display 

with shutter glasses? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 
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Experiment 1 

 

1. To what extent do you feel that you were able to accurately answer the question about 

the Stereopsis and Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 

 

2. To what extent do you feel that you were able to accurately answer the question about 

the Stereopsis and Non Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 

 

3. To what extent do you feel that you were able to accurately answer the question about 

the Non Stereopsis and Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 

 

4. To what extent do you feel that you were able to accurately answer the question about 

the Stereopsis and Non Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 
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Experiment 2 

 

1. To what extent do you feel that you were able to accurately answer the question about 

the Stereopsis and Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 

 

2. To what extent do you feel that you were able to accurately answer the question about 

the Stereopsis and Non Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 

 

3. To what extent do you feel that you were able to accurately answer the question about 

the Non Stereopsis and Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 

 

4. To what extent do you feel that you were able to accurately answer the question about 

the Stereopsis and Non Head Tracking condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 

 

5. To what extent do you feel that you were able to accurately answer the question about 

the Stereopsis and Simulation condition?  

(Not At All)                                               (A Great Deal) 

1         2         3          4          5          6          7 

 

6. To what extent do you feel that you were able to accurately answer the question in 

Stereopsis and Simulation condition?  

(Not At All)                                                (A Great Deal) 

1         2         3          4          5          6          7 
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Overall, which combination of conditions was the most effective to make you perceive 

the depth ordering? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

1. Overall, which singular condition was the most effective for your judgment of the 

depth ordering? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

2. Did size of cylinders help or obstruct your depth judgment? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

3. Did the texture of cylinders help or obstruct your depth judgment? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

4. Did the noise background help or obstruct your depth judgment? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

5. Please write any comments if you have something to tell the instructor about this 

experiment.  

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________  
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APPENDIX B: MATERIALS FROM SPINDLE + WHEEL EXPERIMENTS 

This appendix contains materials used in Spindle+Wheel Experiment 1 and 2, which 

was reported in Chapter 4. The following materials are included, listed in order of 

appearance: 

1. Informed consent form for Experiment 1 

2. Demographics and post questionnaires form 

3. Post questionnaires form for Experiment 1 

4. Informed consent form for Experiment 2 

5. Confidence rate form for Experiment 2 

6. Post questionnaires form for Experiment 2 
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Informed Consent for 

Evaluating effectiveness of a two-handed 3D object manipulation technique in desktop 

VR for 3D applications  

 

Project Purpose 

In this study we will determine effectiveness of our two-handed 3D object manipulation 

technique by comparing with other two-handed object manipulation technique in desktop 

VR, which provides stereoscopic and head-tracking displays, for 3D applications.  

 

Investigators 

Isaac Cho, Computer Science 

Zachary Wartell, Computer Science 

 

Eligibility 

You may participate in this study if you are 18 years of age or higher and if you have 

20/20 vision, corrected vision to 20/20 or higher (i.e. you can clearly read text on a computer 

workstation monitor), can comfortably use your arms, hands and fingers for everyday tasks 

and you can communicate in spoken English.  

 

Overall Description of Participation 

In the first step, we will demonstrate stereoscopic display and head-tracking to make you 

familiar with them. Stereopsis is an important binocular depth cue generated by the 

differences between the two views of a scene seen from a person‘s two eyes. Head-

tracking is a tracking system which tracks the position and an orientation of participant‘s 

head to generate an optimal perspective image. We will train you on how these 

technologies work by showing you how to view the 3D application and how to perform a 

navigation task (rotating, translating and scaling) with one-handed or two-handed 6DOF 

buttonballs. Also, we will survey your experiences with 3D applications (e.g. 3D games 

and 3D movies) and your familiarity with using a computer and user interface.  

 

In the next step, you will perform a target-finding task with two-handed buttonballs 

depending on the object manipulation conditions. There are 2 object manipulation 

conditions in the experiment: 1. two-handed ―Spindle Only‖ object manipulation mode 

and 2. Two-handed ―Spindle+Wheel‖ object manipulation mode. The task is to find a 

colored box on gridded ground and place the box between two boxes in the center of the 

screen. The box has to be bigger than the red wired box and smaller than the colored 

outer box. You, also, need to match the colors between the target box and the outer box.  
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After you finish the experiment, you will take a post-experiment questionnaire. 

 

Length of Participation 

Participation should take approximately 50-60 minutes.  

 

Risks and Benefits of Participation 

While using virtual environment systems, some people experience slight symptoms of 

disorientation, nausea, or dizziness. These can be similar to "motion sickness" or the 

feeling experienced in wide-screen movies and theme park rides. We do not expect these 

to be strong or to last after participants leave the laboratory. if you feel uncomfortable and 

wish to stop the experiment, you are free to do so at any time without penalty by simply 

announcing your desire to stop. 

 

The primary scientific benefit of the study is to determine effectiveness of the new two-

handed object manipulation technique for 3D applications in desktop VR.  

 

There is a benefit for participants who volunteer via the psychology department‘s on-line 

subject pool. They will receive 1 credit in their general psychology class. Students who 

do not wish to participate, or who are excluded in the study due to stereoblindness, or 

other exclusion criteria, may leave and will be granted participation credit for 15 minutes 

or one-half a credit. 

 

Volunteer Statement 

You are a volunteer. The decision to participate in this study is completely up to you. If 

you decide to participate in the study, you may stop at any time. You will not be treated 

any differently if you decide not to participate in the study or if you stop once you have 

started. You can request to withdraw your segment after the testing is complete. 

 

Confidentiality Statement 

Any information about your participation, including your identity, is completely 

confidential. The following efforts will be taken to protect confidentiality and privacy: 

1) The informed consent form will be kept in a locked filing cabinet, separate from 

the rest of the data. 

 

2) All participants will be assigned a random ID consisting two randomly-generated 

initials (initials will not correspont to participants' name). The participants will 

only be referred by assigned alphanumeric codes both in internal communication 

between researchers or in the form of written reports. 

 

3) The investigator and co-investigators will ask the participants not to mention their 

name or identify themselves during the recordings. The recording is only for 

internal use such as transcription and will not be made available to the public. 
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Screenshots from the video recording might be published without disclosing the 

identify of any participants. 

 

4) All digitally recorded files during the study will be kept in the Charlotte 

Visualization Center (room 437 in Woodward Hall) on password-protected 

computers. The files will be destroyed after two years by investigators under the 

guidance of the responsible faculty. 

 

Statement of Fair Treatment and Respect 

UNC Charlotte wants to make sure that you are treated in a fair and respectful manner. 

Contact the university‘s Research Compliance Office (704-687-3309) if you have 

questions about how you are treated as a study participant. If you have any questions 

about the actual project or study, please contact Isaac Cho (icho1@uncc.edu) or Dr. 

Zachary Wartell (zwartell@uncc.edu) at 704-687-8442. 

 

Approval Date 

This form was approved for use on April 1st, 2013 for use for one year. 

 

Participant Consent  

I have read the information in this consent form. I have had the chance to ask questions 

about this study, and those questions have been answered to my satisfaction. I am at least 

18 years of age, and I agree to participate in this research project. I understand that I will 

receive a copy of this form after it has been signed by me and the principal investigator of 

this research study. 

 

______________________________________   _______________________ 

Participant Name (PRINT)                            DATE 

 

___________________________________________________ 

Participant Signature 

 

______________________________________  _______________________ 

Investigator Signature                                DATE 
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1. Your given ID number (Instructor only):  

2. Your age: 

3. Your gender: 

4. Occupational Status:   Undergraduate student ___ 

                  Master Student ___ 

                  PhD Student ___ 

                  Research Assistant/Fellow ___ 

                  Staff-systems, technical ___ 

                  Faculty ___  

                  Administrative Staff ___ 

                  Other: __________________ 

5. Your major:  

6. Are you colorblind? : Yes / No 

7. Do you have any problems viewing the computer screen without it blurring if you sit 

30 inches from the screen? Yes / No 

 

8. Do you have any disabilities or injuries that might limit your ability to use either your 

left or right arm, hand and/or fingers in everyday tasks such as writing, painting, using a 

computer mouse or advanced game controller?  Yes / No 

 

9. Are you familiar with using a mouse and keyboard? Yes / No 

10. Have you ever felt motion sick (dizziness or nausea) while playing a computer game 

or viewing a large, screen movie before?  Yes / No 
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1. How often do you use a computer in your daily activities? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

2. How often do you play 2D computer games? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

3. How often do you play 3D computer games? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

4. How often do you play computer games (of any kind) on a computer/PC? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

5. How often do you play computer games using a game console, such as Nintendo® , 

XBox® , Sony Playstation® , other? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

6. How often do play computer games using a game console with a motion capture device, 

such as XBox Kinect® , Sony Playstation Move® , other? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 
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Definition: Stereoscopic 3D 

Stereoscopic 3D refers to a display that creates a true 3D image that appears to pop-out in 

front of and behind the screen. These displays are found in some movie theaters, 

television sets and computer monitors. Most stereoscopic 3D display technologies known 

to consumers require they wear special glasses. 

 

7. How often do you watch stereoscopic 3D movies in the theater? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

8. How often do you play computer games or watch movies on an in-home television 

using stereoscopic 3D? 

(Never)                                                   (A Great Deal) 

1         2         3          4          5          6          7 

 

Definition: 3D User Interface 

A ―3D user interface‖ is a human-computer interface where the user views 3D computer 

graphics and interacts with those graphics by traveling through the 3D environment, 

and/or manipulating and changing the 3d environment. 3D user interfaces may or may 

not use stereoscopic 3D displays. Also 3D user interfaces may or may not use advanced 

3D input devices such as the Microsoft Kinect, PlayStation Move, Nintendo Wii, etc. 

 

9. If you have used any 3D user interfaces before, then describe what 3D user interfaces 

you have used and mention what type of display and input device technology you used 

with them. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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A. Manipulation Technique 1 and B. Manipulation Technique 2 

 

1. Overall, which object manipulation technique (A or B) was better than the others for 

the navigation task? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

2. Which object manipulation technique was better for rotating? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

3. Did the pitch controlling help you to accomplish the task? 

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

3. How much did the wheel on the 3D cursor to control pitch rotation? 

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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4. Which one is more helpful to realize that you accomplished the task, sound or color (or 

both)? 

 

Sound: 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

 

Box Outline Color: 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

5. Which object manipulation technique was more intuitive to perform the task? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

6. Did the line between 3D cursors help you to accomplish the task?  

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

7. Did the sphere on the line connection between 3D cursors help you to accomplish the 

task?  

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

8. Did the box size make the task difficult?   

 

(Not At All)                                            (Very Difficult) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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9. How much arm fatigue did you feel with the object manipulation 1 (A)? 

 

(Not At All)                                              (Very Painful) 

1       2       3        4        5        6        7 

 

10. How much arm fatigue did you feel with the object manipulation 2 (B)? 

 

(Not At All)                                              (Very Painful) 

1       2       3        4        5        6        7 

 

Some people experience difficulty in perceiving a clear 3D stereoscopic image on the 

display. Often if the 3D image extends too far in front or behind the display surface, a 

person may perceive only two separate double images rather than a single 3D image. In 

some circumstances, a person may experience eye strain, visual fatigue or headaches 

when viewing this type of display system. Collectively, these negatives experiences are 

called ―stereoscopic fusion problems‖. 

 

10. How frequently did you feel stereoscopic fusion problems with the object 

manipulation 1 (A)? 

 

(Not At All)                                           (Very Frequently) 

1       2       3        4        5        6        7 

 

11. How frequently did you feel stereoscopic fusion problems with the object 

manipulation 2 (B)?  

 

(Not At All)                                           (Very Frequently) 

1       2       3        4        5        6        7 

 

12. If you have any comments for this study, please give us feedback. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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Informed Consent for 

Evaluating effectiveness of a two-handed 3D navigation technique in desktop VR for 3D 

applications  

 

Project Purpose 

In this study we will determine effectiveness of a two-handed 3D navigation technique by 

comparing with a one-handed navigation technique in desktop VR, which provides 

stereoscopic and head-tracking displays, for 3D applications.  

 

Investigators 

Isaac Cho, Computer Science 

Zachary Wartell, Computer Science 

 

Eligibility 

You may participate in this study if you are 18 years of age or higher and if you have 

20/20 vision, corrected vision to 20/20 or higher (i.e. you can clearly read text on a computer 

workstation monitor), can comfortably use your arms, hands and fingers for everyday tasks 

and you can communicate in spoken English.  

 

Overall Description of Participation 

In the first step, we will demonstrate stereoscopic display and head-tracking to make you 

familiar with them. Stereopsis is an important binocular depth cue generated by the 

differences between the two views of a scene seen from a person‘s two eyes. Head-

tracking is a tracking system which tracks the position and an orientation of participant‘s 

head to generate an optimal perspective image. We will train you on how these 

technologies work by showing you how to view the 3D application and how to perform a 

navigation task (rotating, translating and scaling) with one-handed or two-handed 6DOF 

buttonballs. Also, we will survey your experiences with 3D applications (e.g. 3D games 

and 3D movies) and your familiarity with using a computer and user interface. 

 

In the next step, you will perform a target-finding task with one-handed or two-handed 

buttonballs depending on the navigation technique conditions. There are 3 navigation 

conditions in the experiment: 1. one-handed navigation input mode, 2. two-handed 

―Spindle+Wheel with separate scale‖ navigation input mode and 3. Two-handed 

―Spindle+Wheel‖ navigation input mode. The task is to find a colored box on gridded 
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ground and place the box between two boxes in the center of the screen. The box has to 

be bigger than the red wired box and smaller than the colored outer box. You, also, need 

to match the colors between the target box and the outer box.  

 

After you finish the experiment, you will take a post-experiment questionnaire. 

 

Length of Participation 

Participation should take approximately 50-60 minutes.  

 

Risks and Benefits of Participation 

While using virtual environment systems, some people experience slight symptoms of 

disorientation, nausea, or dizziness. These can be similar to "motion sickness" or the 

feeling experienced in wide-screen movies and theme park rides. We do not expect these 

to be strong or to last after participants leave the laboratory. If you feel uncomfortable 

and wish to stop the experiment, you are free to do so at any time without penalty by 

simply announcing your desire to stop. 

 

The primary scientific benefit of the study is to determine effectiveness of a two-handed 

navigation technique for 3D applications in desktop VR.  

 

There is a benefit for participants who volunteer via the psychology department‘s on-line 

subject pool. They will receive 1 credit in their general psychology class. Students who 

do not wish to participate, or who are excluded in the study due to stereoblindness or 

other exclusion criteria, may leave and will be granted participation credit for 15 minutes 

or one-half a credit. 

 

Volunteer Statement 

You are a volunteer. The decision to participate in this study is completely up to you. If 

you decide to participate in the study, you may stop at any time. You will not be treated 

any differently if you decide not to participate in the study or if you stop once you have 

started. You can request to withdraw your segment after the testing is complete. 

 

Confidentiality Statement 

Any information about your participation, including your identity, is completely 

confidential. The following efforts will be taken to protect confidentiality and privacy: 

1) The informed consent form will be kept in a locked filing cabinet, separate from 

the rest of the data. 

 

2) All participants will be assigned a random ID consisting two randomly-generated 

initials (initials will not correspont to participants' name). The participants will 

only be referred by assigned alphanumeric codes both in internal communication 
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between researchers or in the form of written reports. 

 

3) The investigator and co-investigators will ask the participants not to mention their 

name or identify themselves during the recordings. The recording is only for 

internal use such as transcription and will not be made available to the public. 

Screenshots from the video recording might be published without disclosing the 

identify of any participants. 

 

4) All digitally recorded files during the study will be kept in the Charlotte 

Visualization Center (room 437 in Woodward Hall) on password-protected 

computers. The files will be destroyed after two years by investigators under the 

guidance of the responsible faculty. 

 

Statement of Fair Treatment and Respect 

UNC Charlotte wants to make sure that you are treated in a fair and respectful manner. 

Contact the university‘s Research Compliance Office (704-687-3309) if you have 

questions about how you are treated as a study participant. If you have any questions 

about the actual project or study, please contact Isaac Cho (icho1@uncc.edu) or Dr. 

Zachary Wartell (zwartell@uncc.edu) at 704-687-8442. 

 

Approval Date 

This form was approved for use on May 8th, 2013 for use for one year. 

 

Participant Consent  

I have read the information in this consent form. I have had the chance to ask questions   

about this study, and those questions have been answered to my satisfaction. I am at least 

18 years of age, and I agree to participate in this research project. I understand that I will 

receive a copy of this form after it has been signed by me and the principal investigator of 

this research study. 

 

______________________________________   _______________________ 

Participant Name (PRINT)                            DATE 

 

___________________________________________________ 

Participant Signature 

 

______________________________________  _______________________ 

Investigator Signature                                DATE 
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Your given ID number (instructor only): 

 

1. How much arm fatigue did you feel with the one-handed navigation technique? 

 

(Not At All)                                              (Very Painful) 

1       2       3        4        5        6        7 

 

2. How much arm fatigue did you feel with the Two-handed with separate scale 

navigation technique? 

 

(Not At All)                                              (Very Painful) 

1       2       3        4        5        6        7 

 

3. How much arm fatigue did you feel with the Two-handed with integrated scale 

navigation technique? 

 

(Not At All)                                              (Very Painful) 

1       2       3        4        5        6        7 
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Some people experience difficulty in perceiving a clear 3D stereoscopic image on the 

display. Often if the 3D image extends too far in front or behind the display surface, a 

person may perceive only two separate double images rather than a single 3D image. In 

some circumstances, a person may experience eye strain, visual fatigue or headaches 

when viewing this type of display system. Collectively, these negatives experiences are 

called ―stereoscopic fusion problems‖. 

 

1. How frequently did you feel stereoscopic fusion problems with the One-handed 

navigation technique?  

 

(Not At All)                                          (Very Frequently) 

1       2       3        4        5        6        7 

 

2. How frequently did you feel stereoscopic fusion problems with the Two-handed with 

separate scale navigation technique?  

 

(Not At All)                                           (Very Frequently) 

1       2       3        4        5        6        7 

 

3. How frequently did you feel stereoscopic fusion problems with the Two-handed with 

integrated scale navigation technique?  

 

(Not At All)                                           (Very Frequently) 

1       2       3        4        5        6        7 
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Your given ID number (Instructor only): 

 

1. Overall, which object manipulation technique (One-handed, Two-handed with separate 

scale, or Two-handed with integrated scale) was the best for the navigation task? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

2. Which object manipulation technique (One-handed or Two-handed) was better than 

other for rotating? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

3. Which object manipulation technique (One-handed or Two-handed) was better than 

other for translating? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

4. Which object manipulation technique (One-handed, Two-handed with separate scale, 

or Two-handed with integrated scale) was better for scaling? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

5. In the one-handed mode, which scale technique (rate control or position control) did 

you prefer?  

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

6. In the two-handed techniques, did the pitch control (rotating the ball) help you to 

accomplish the task? 

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________  
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7. When comparing the two-handed with separate scale to two-handed with integrated 

scale, did having scale separated (via a separate button for scaling) help you accomplish 

the docking task? 

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

      
(A)                      (B) 

 

8. In the two-handed techniques, how much did the wheel visual feedback on the 3D 

cursor help to control pitch rotation? 

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

9. Which object manipulation technique was the most intuitive to perform the task, One-

handed, Two-handed with separate scale or Two-handed with integrated scale? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

10. When the docking task is complete a sound is played and the box‘s color changes. 

Which is more helpful to indicate that you accomplished the task? 

 

Sound: 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

Color: 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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11. In the two-handed techniques, did presence of the orange line between the 3D cursors 

help you to accomplish the task?  

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

12-1. In the one-handed technique, did the red sphere, which shows the center of the scale, 

help you to accomplish the task?  

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

12-2. In the two-handed techniques, did the red sphere in the middle of the orange line 

connecting the 3D cursors help you to accomplish the task?  

 

(Not At All)                                              (Very Helpful) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

13. When the target box size differs from the center box size, how much does this add to 

the task difficulty (compared to when the sizes are the same)?   

 

(Not At All)                                             (Very Difficult) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

14. Did the orientation difference between the center box and the target box make the 

task difficult to accomplish?   

 

(Not At All)                                             (Very Difficult) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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15. If you have any comments on this study, the display technologies, or the interaction 

techniques, please give us feedback. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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APPENDIX C: MATERIALS FROM AUTO-STEREO ADJUSTMENT TECHNIQUE 

EXPERIMENTS 

This appendix contains materials used in Auto-adjustment technique Experiment 1 

and 2, which was reported in Chapter 5. The following materials are included, listed in 

order of appearance: 

1. The informed consent form 

2. Confidence rate form  

3. Post questionnaires form  
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Informed Consent for 

Evaluation of a two-handed 3D navigation technique and auto-adjustment of a scale 

factor for a Multi-Scale Virtual Environment 

 

Project Purpose 

This study examines the effectiveness of a several virtual travel techniques in interactive 

3D computer applications. The display systems include two virtual reality systems which 

provide stereoscopic, head-tracked display: a desktop VR system and a CAVE system. 

The navigation techniques include a two-handed 3D navigation technique, a one-hand 

technique and an option for auto-adjustment of the view scale factor.  

 

Investigators 

Isaac Cho, Computer Science 

Zachary Wartell, Computer Science 

 

Eligibility 

You may participate in this study if you are 18 years of age or higher and if you have 

20/20 vision, corrected vision to 20/20 or higher (i.e. you can clearly read text on a 

computer workstation monitor), can comfortably use your arms, hands and fingers for 

everyday tasks and you can communicate in spoken English.  

 

Overall Description of Participation 

In the first step, we will demonstrate the stereoscopic, head-tracked display technology to 

familiarize you with them. Stereopsis is an important binocular depth cue generated by 

the differences between the two views of a scene seen from a person‘s two eyes. Head-

tracking is a tracking system which tracks the position and orientation of a person‘s head 

to generate an optimal perspective image.  

 

We will demonstrate how to navigate through an example 3D virtual environment using 

several input device technologies. The input devices act like 3-dimensional mice where 

the computer can track their position and orientation in 3-dimensional space. The devices 

are shaped like small balls with several buttons on them and are called ―buttonballs.‖ 

 

We will survey your experiences with computers, 3D applications and various display 

technologies. 
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Stereoscopic fusion problem: 

Some people experience difficulty in perceiving a clear 3D stereoscopic image on 3D 

displays. Often if the 3D image extends too far in front or behind the display surface, a 

person may perceive only two separate double 2D images rather than a single 3D image. 

In some circumstances, a person may experience eye strain, visual fatigue or headaches 

when viewing this type of display system. Collectively, these negatives experiences are 

called ―stereoscopic fusion problems‖. 

 

In the experimental trials, you will perform a target-finding task in which you virtually 

travel through a 3D environment to a target location. Specifically, the task is to find a 

small, colored box on a 3D globe and to travel so that this target box is aligned with a 

second box which always remains centered on the display screen. 

 

You will use four different interaction techniques to perform the travel operation. Two of 

the techniques will use a single buttonball while two will use two buttonballs, one in each 

hand. Additionally, two of the techniques will automatically adjust the 3D view scale 

while in the other two techniques you will manually control the 3D scale factor.  

Combining these two factors, the four techniques are: 1) one-handed buttonball input 

with auto scaling, 2) one-handed buttonball input with manual scaling, 3) two-handed 

buttonball input with auto-scaling, and 4) two-handed buttonball input with manual 

scaling. 

 

After you finish the experiment trials, you will answer a post-experiment questionnaire. 

 

Length of Participation 

Participation should take approximately 50-60 minutes.  

 

Risks and Benefits of Participation 

When using virtual environment systems, some people experience slight symptoms of 

disorientation, nausea, or dizziness. These can be similar to "motion sickness" or the 

feeling experienced in wide-screen movies and theme park rides. In this experiment, we 

do not expect these to be strong or to last after participants leave the laboratory. If you 

feel uncomfortable and wish to stop the experiment, you are free to do so at any time 

without penalty by simply announcing your desire to stop. 

 

The primary scientific benefit of the study is to determine effectiveness of a two-handed 

navigation technique and automatic view scaling for 3D applications in virtual reality 

applications.  

 

There is a benefit for participants who volunteer via the psychology department‘s on-line 

subject pool. They will receive 1 credit in their general psychology class. Students who 

do not wish to participate, or who are excluded in the study due to stereoblindness or 

other exclusion criteria, may leave and will be granted participation credit for 15 minutes 

or one-half a credit. 
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Volunteer Statement 

You are a volunteer. The decision to participate in this study is completely up to you. If 

you decide to participate in the study, you may stop at any time. You will not be treated 

any differently if you decide not to participate in the study or if you stop once you have 

started. You can request to withdraw from the experiment even after you complete the 

experiment, in which case your performance data will be deleted and cannot be used to 

support our study. 

 

Confidentiality Statement 

Any information about your participation, including your identity, is completely 

confidential. The following efforts will be taken to protect confidentiality and privacy: 

1) The informed consent form will be kept in a locked filing cabinet, separate from 

the rest of the data. 

 

2) All participants will be assigned a random ID consisting of two randomly-

generated initials (initials will not correspond to participants' name). The 

participants will only be referred by assigned alphanumeric codes both in internal 

communication between researchers or in the form of written reports. 

 

3) The investigator and co-investigators will ask the participants not to mention their 

name or identify themselves during any recordings. The recording is only for 

internal use such as transcription and will not be made available to the public. 

Screenshots from the video recording might be published without disclosing the 

identity of any participants.  

 

5) All digitally recorded files during the study will be kept in the Charlotte 

Visualization Center (room 437 in Woodward Hall) on password-protected 

computers. The files will be destroyed after two years by investigators under the 

guidance of the responsible faculty. 

 

Statement of Fair Treatment and Respect 

UNC Charlotte wants to make sure that you are treated in a fair and respectful manner. 

Contact the university‘s Research Compliance Office (704-687-3309) if you have 

questions about how you are treated as a study participant. If you have any questions 

about the actual project or study, please contact Isaac Cho (icho1@uncc.edu) or Dr. 

Zachary Wartell (zwartell@uncc.edu) at 704-687-8442. 

 

Approval Date 

This form was approved for use on May 24th, 2013 for use for one year. 
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Participant Consent  

I have read the information in this consent form. I have had the chance to ask questions   

about this study, and those questions have been answered to my satisfaction. I am at least 

18 years of age, and I agree to participate in this research project. I understand that I will 

receive a copy of this form after it has been signed by me and the principal investigator of 

this research study. 

 

______________________________________   _______________________ 

Participant Name (PRINT)                            DATE 

 

___________________________________________________ 

Participant Signature 

 

______________________________________  _______________________ 

Investigator Signature                                DATE 
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Your given ID number (Instructor only): 

Stereoscopic fusion Problem: 

Some people experience difficulty in perceiving a clear 3D stereoscopic image on the 

display. Often if the 3D image extends too far in front or behind the display surface, a 

person may perceive only two separate double images rather than a single 3D image. In 

some circumstances, a person may experience eye strain, visual fatigue or headaches 

when viewing this type of display system. Collectively, these negatives experiences are 

called ―stereoscopic fusion problems‖. 

 

Task1: Finding a target box 

Task2: looking inside of surrounding boxes 

 

Condition: No auto-adjustment mode 

 

1.  How much arm fatigue did you feel now? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

1. Overall, how frequently did you feel stereoscopic fusion problems during trials? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

2. How frequently did you feel stereoscopic fusion problem when you were working on 

the task1?  

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

3. How frequently did you feel stereoscopic fusion problem when you were working on 

the task2? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 
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Condition: Auto-adjustment of the view scale factor 

 

1. How much arm fatigue did you feel now? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

2. Overall, how frequently did you feel stereoscopic fusion problems during trials? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

3. How frequently did you feel stereoscopic fusion problem when you were working on 

the task1?  

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

4. How frequently did you feel stereoscopic fusion problem when you were working on 

the task2? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

  



192 

 

Condition: Auto-adjustment of the fusion distance 

 

1. How much arm fatigue did you feel now? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

2. Overall, how frequently did you feel stereoscopic fusion problems during trials? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

3. How frequently did you feel stereoscopic fusion problem when you were working on 

the task1?  

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 

 

4. How frequently did you feel stereoscopic fusion problem when you were working on 

the task2? 

(Not At All)                                          (Very Painful) 

1        2        3        4        5        6        7 
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Your given ID number (Instructor only): 

 

1. How frequently did you feel stereoscopic fusion problems without auto-adjustment 

modes?  

 

(Not At All)                                          (Very Frequently) 

1        2        3        4        5        6        7 

 

2. How much did the auto-adjustment of the view scale factor help to accomplish the 

task and to prevent stereoscopic fusion problems? 

 

(Not At All)                                          (Very Helpful) 

1        2        3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

3. How much did the auto-adjustment of the fusion distance help to accomplish the task 

and to prevent stereoscopic fusion problems? 

 

(Not At All)                                          (Very Helpful) 

1        2        3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

4. Which auto-adjustment mode (the view scale (A) or the fusion distance (B)) was better 

to accomplish the tasks and to prevent the stereoscopic fusion problem? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

5. Did the box size (4 different box sizes and visible/invisible without an arrow) affect 

your ability to accomplish the task? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

If you have any comments for this study, please give us feedback. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________  
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APPENDIX D: MATERIALS FROM HYFINBALL EXPERIMENT 

This appendix contains materials used in HyFinBall Experiment, which was reported 

in Chapter 6. The following materials are included, listed in order of appearance: 

1. The informed consent form  

2. Confidence rate form  

3. Post questionnaires form  
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Informed Consent for 

Evaluating Usability of Hybrid User Interface in Desktop VR for a Visual Analytics 

Application. 

 

Project Purpose 

In this study we will determine usability of a hybrid user interface for combinations of 

2D and 3D computer interaction tasks using a virtual reality computer display system for 

a scientific visualization computer application that displays terrain data. 

 

Investigators 

Isaac Cho, Computer Science 

Zachary Wartell, Computer Science 

 

Eligibility 

You may participate in this study if you are above 18 and if you have 20/20 vision or 

corrected vision to 20/20, can comfortably use your arms and fingers and communicate in 

spoken English.  

 

Overall Description of Participation 

In the first step, we will demonstrate how to use a desktop virtual reality computer system. 

This system uses stereoscopic display and head-tracking to display 3D computer graphics. 

Stereopsis is an important depth cue generated by the differences between the two views 

of a scene seen from a person‘s two eyes. Head-tracking is a tracking system which tracks 

the position and orientation of person‘s head to generate an optimal perspective 3D image. 

We will demonstrate how these technologies can be used with a scientific visualization 

computer program. We will show you how to interact with the program‘s 2D and 3D 

visualizations using several different input devices including a computer mouse and a 

pair of 3D mouse-like devices called 6DOF (―degree-of-freedom‖) buttonballs.  

 

We will survey your past experience with 3D computer programs and 3D media (e.g. 3D 

games and 3D movies) and your familiarity with using a computer and various user 

interfaces. 

 

In next step, you will perform a series of tasks using the visualization software. These 

tasks will require interacting with either 2D only graphics, 3D only graphics or a 
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combination of 2D and 3D graphics. 2D task examples include interacting with 2D 

menus and manipulating a scatter-plot by repositioning the plot, selecting points in the 

plot, or changing the data displayed in the plot. 3D task examples include manipulating 

the view of a 3D object and creating and adjusting a 3D selection box.  

 

You will perform tasks with one of four different input devices. One condition uses a 

single computer mouse. The second condition uses a pair of 6DOF buttonballs each of 

which behaves like a 3D mouse. You hold each device in one hand in the air and can 

freely move or rotate it 3D space. The third condition uses both 6DOF buttonballs, but 

you will hold them while resting yours hands on a desk similar to using two regular 

computer mice. This condition is called ―planar-3DOF mode‖ because your hands move 

on a planar surface (the desk) and each buttonball can be moved in two directions and 

also rotated. In the fourth condition you can switch between using each buttonball in 

either planar-3DOF mode (hand resting on the desk) or 6DOF mode (hand in the air). The 

program will detect which mode is activated and alter how the cursors are displayed and 

how the user interface works. 

 

Participants will be divided in two groups for the experiment and each group will perform 

different types of tasks. Group 1 will perform 2D and combined 2D plus 3D tasks. Group 

2, will perform 3D and combined 3D plus 2D tasks. 

 

After you finish the experiment, you will take a post-experiment questionnaire. 

 

Length of Participation 

Participation should take approximately 50-60 minutes.  

 

Risks and Benefits of Participation 

While using virtual reality display systems, some people experience slight symptoms of 

disorientation, nausea, or dizziness. These can be similar to "motion sickness" or the 

feeling experienced in wide-screen movies and theme park rides. We do not expect these 

to be strong or to last after participants leave the laboratory. If you feel uncomfortable 

and wish to stop the experiment, you are free to do so at any time without penalty by 

simply announcing their desire to stop. 

 

The primary scientific benefit of the study is to compare the usability of several user 

interfaces for a scientific visualization computer program which displays 2D and 3D 

graphical objects and requires 2D and 3D interactions with these graphics.  

 

There is a benefit for participants who volunteer via the psychology department‘s on-line 

subject pool. They will receive 1 credit in their general psychology class. Students who 

do not wish to participate, or who are excluded in the study due to stereoblindness, may 

leave and they are granted participation credit for 15 minutes or one-half a credit. 

 

There is a benefit for participants who are students in ITCS 6125/8125 Virtual 
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Environments. This course is about virtual reality computer software and hardware. This 

study studies a user interface that uses virtual reality display and input devices. Students 

participating in the experiment will benefit by hands-on learning about a current research 

project in virtual reality. The experiment will engage students with an additional virtual 

reality system beyond those used in their class projects. Students will be required either 

to participate as homework credit but will be given the option of having their data not 

collected for experimental analysis. This meets IRB protocol requirements for course 

homeworks that require participation in an experiment. The informed consent form below 

has a special section for ITCS 6125/8125 students informing them of this option. 

 

Volunteer Statement 

You are a volunteer. The decision to participate in this study is completely up to you. If y

ou decide to participate in the study, you may stop at any time. You will not be treated an

y differently if you decide not to participate in the study or if you stop once you have start

ed. You can request to withdraw your segment after the testing is complete. 

 

If you are enrolled in course ITCS 6125 or ITCS 8125, your participation in this study 

counts as a required homework assignment. However, having your data recorded and 

used for the actual research study is voluntary. 

 

Confidentiality Statement 

Any information about your participation, including your identity, is completely 

confidential. The following efforts will be taken to protect confidentiality and privacy: 

1) The informed consent form will be kept in a locked filing cabinet, separate from 

the rest of the data. 

 

2) All participants will be assigned a random ID consisting two randomly-generated 

initials (initials will not correspont to participants' name). The participants will 

only be referred by assigned alphanumeric codes both in internal communication 

between researchers or in the form of written reports. 

 

3) The investigator and co-investigators will ask the participants not to mention their 

name or identify themselves during the recordings. The recording is only for 

internal use such as transcription and will not be made available to the public. 

Screenshots from the video recording might be published without disclosing the 

identify of any participants. 

 

4) All digitally recorded files during the study will be kept in the Charlotte 

Visualization Center (room 437 in Woodward Hall) on password-protected 

computers. The files will be destroyed after two years by investigators under the 

guidance of the responsible faculty. 

 

Statement of Fair Treatment and Respect 
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UNC Charlotte wants to make sure that you are treated in a fair and respectful manner. 

Contact the university‘s Research Compliance Office (704-687-3309) if you have 

questions about how you are treated as a study participant. If you have any questions 

about the actual project or study, please contact Isaac Cho (icho1@uncc.edu) or Dr. 

Zachary Wartell (zwartell@uncc.edu) at 704-687-8442. 

 

Approval Date 

This form was approved for use on May 8th, 2013 for use for one year. 

 

Participant Consent  

I have read the information in this consent form. I have had the chance to ask questions   

about this study, and those questions have been answered to my satisfaction. I am at least 

18 years of age, and I agree to participate in this research project. I understand that I will 

receive a copy of this form after it has been signed by me and the principal investigator of 

this research study. 

 

______________________________________   _______________________ 

Participant Name (PRINT)                            DATE 

 

___________________________________________________ 

Participant Signature 

 

______________________________________  _______________________ 

Investigator Signature                                DATE 
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Your Given ID (Instructor only): 

 

6DOF Buttonballs only: 

 

Fatigue Rate 

 

1. How much arm fatigue did you feel with the 6DOF buttonballs only input? 

 

(Not At All)                                              (Very Painful) 

1       2       3        4        5        6        7 

 

2D tasks 

 

2. To what extent do you feel that you were able to accurately perform the 2D tasks by 

the 6DOF buttonballs input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

2D to 3D tasks 

 

3. To what extent do you feel that you were able to accurately perform the 2D to 3D tasks 

by the 6DOF buttonballs only input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

3D to 2D tasks 

 

4. To what extent do you feel that you were able to accurately perform the 3D to 2D tasks 

with the 6DOF buttonballs only input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

Occlusion Problem 

 

Sometime the occlusion problem that 2D (a scatterplot or menu icons) and 3D (a terrain 

or a selection box) objects overlap each other increases task difficulty.  

 

5. How much did you have the occlusion problem with the 6 DOF buttonballs only input? 

 

(Not At All)                                           (Very frequently) 

1       2       3        4        5        6        7 

 

6DOF and planar constraint DOF buttonballs: 
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Fatigue Rate 

 

1. How much arm fatigue did you feel with the 6DOF and planar constraint DOF 

buttonballs input? 

 

(Not At All)                                              (Very painful) 

1       2       3        4        5        6        7 

 

2D tasks 

 

2. To what extent do you feel that you were able to accurately perform the 2D tasks by 

the planar constraint DOF buttonballs input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

2D to 3D tasks 

 

3. To what extent do you feel that you were able to accurately perform the 2D to 3D tasks 

by the 6DOF and planar constraint DOF buttonballs input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

3D to 2D tasks 

 

4. To what extent do you feel that you were able to accurately perform the 3D to 2D tasks 

with the 6DOF and planar constraint DOF buttonballs input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

Occlusion Problem 

 

Sometime the occlusion problem that 2D (a scatterplot or menu icons) and 3D (a terrain 

or a selection box) objects overlap each other increases task difficulty.  

 

5. How much did you have the occlusion problem with the 6DOF and planar constraint 

DOF buttonballs input? 

 

(Not At All)                                          (Very frequently) 

1       2       3        4        5        6        7  
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6DOF buttonball and mouse: 

 

Fatigue Rate 

 

1. How much arm fatigue did you feel with the 6 DOF buttonballs with mouse input? 

 

(Not At All)                                              (Very painful) 

1       2       3        4        5        6        7 

 

2D tasks 

 

2. To what extent do you feel that you were able to accurately perform the 2D tasks by 

the mouse input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

2D to 3D tasks 

 

3. To what extent do you feel that you were able to accurately perform the 2D to 3D tasks 

by the 6 DOF buttonballs with mouse input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

3D to 2D tasks 

 

4. To what extent do you feel that you were able to accurately perform the 3D to 2D tasks 

with the 6 DOF buttonballs with mouse input?  

 

(Not At All)                                              (A great deal) 

1       2       3        4        5        6        7 

 

Occlusion Problem 

 

Sometime the occlusion problem that 2D (a scatterplot or menu icons) and 3D (a terrain 

or a selection box) objects overlap each other increases task difficulty.  

 

5. How much did you have the occlusion problem with the 6 DOF buttonballs with 

mouse input? 

 

(Not At All)                                          (Very frequently) 

1       2       3        4        5        6        7 
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Your given ID number (Instructor only): 

 

Use the list below for reference when answering the following questions. You may write 

just the letter (A-C) that labels the input mode(s) you want to refer to in your answers. 

 

Conditions: 

6 DOF buttonballs only 

6 DOF + table constrained buttonballs input 

6 DOF buttonballs + mouse input 

 

In the questions below, the term 2D tasks refers to the tasks such as scatter-plot 

manipulation or menu selection, while 3D tasks refers to camera navigation and 3D 

selection box manipulation. 

 

1. Which input mode (A to C) was the easiest to accomplish the overall tasks? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

2. Of the input modes, A,B and C, which is the easiest for performing 2D tasks? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

3. Of all input modes (A to C) which one was the easiest to perform a pair of tasks where 

a 2D task followed by a 3D task? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

4. Of all input modes (A to C) which one was the easiest to perform a pair of tasks where 

a 3D task followed by a 2D task? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

5. Overall, when comparing your experience using the mouse compared to using the pair 

of table constrained buttonballs, which do you prefer: 

 

Strongly 

Prefer 

Mouse 

Somewhat 

Prefer 

Mouse 

Neutral 

Somewhat 

Prefer 

Buttonball 

Strongly 

Prefer 

Buttonball 

-2 -1 0 +1 +2 
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5-1. Regarding your above answer, what reasons led to your preference? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

6. Did the height difference (above or between the terrain) of the target 3D selection box 

effect on your ability to accomplish the 3D task? 

 

(Not At All)                 (Somewhat)                  (Very Much) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

7. When using the combination 6DOF plus the mouse, to what degree do you think the 

time spent switching between holding the mouse and holding the buttonball affected your 

ability to quickly complete the task? 

 

(Not At All)                 (Somewhat)                  (Very Much) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

8. When using the combination 6DOF plus the mouse, to what degree do you think 

switching between holding the mouse and holding the buttonball affected your physical 

comfort while completing the task? 

 

(Not At All)                 (Somewhat)                  (Very Much) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

9. When using the combination 6DOF plus the mouse, how frustrating was switching 

between holding the mouse and holding the buttonball? 

 

(Not At All)                 (Somewhat)                  (Very Much) 

1       2       3        4        5        6        7 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________  
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Learnability 

 

10-1 Of all input modes (A to C) which mode is the most difficult to learn when 

performing both 2D and 3D interaction techniques? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

10-2 Of all input modes (A to C) which mode is the most difficult to learn the 2D 

interaction techniques? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

10-3 Of all input modes (A to C) which mode is the most difficult to learn the 3D 

interaction techniques? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

If you have any comments for this study, please give us feedback. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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