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ABSTRACT 

 

 

MASOUD ARABLU. Polydyne displacement interferometer using frequency-modulated 

light (Under the direction of DR. STUART T. SMITH) 

 

 

A novel multi-frequency (polydyne) optical interferometry method is introduced 

and a prototype developed to evaluate its performance in a Michelson displacement 

interferometer configuration. The polydyne interferometer contains three main parts of 1) 

synchronous Radio-Frequency Frequency-Modulated (RF-FM) electrical signal 

generation, 2) electrical-to-optical signal patching by an Acousto-Optic Modulator 

(AOM), and 3) signal detection and processing unit. Each of these three parts are 

discussed briefly in a separate chapter as well as the basic concept of phase extraction 

from the interference of FM light beams. 

A novel synchronous RF-FM signal generation method is introduced that uses an 

atomic clock for timing all frequency components of the signal. The RF-FM signal 

generator uses a modulated, voltage-controlled time delay to correspondingly modulate 

the phase of a 10 MHz sinusoidal reference from the atomic clock. This modulated 

reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit 

resulting in an FM signal at its output. The modulating signal that is input to the voltage-

controlled time delay circuit is generated by another DDS that is synchronously clocked 

by the same 10 MHz sine wave signal before modulation. Therefore, all the digital 

components are timed from a single sinewave oscillator that forms the basis of all timing. 
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The resultant output electrical signal comprises a center, or carrier, frequency plus a 

series of phase-synchronized sidebands having exact integer harmonic frequency 

separation.  

The RF-FM electric signal is transferred into a He-Ne laser beam by diffraction of 

the beam through an Acousto-Optic Modulator (AOM). The first diffraction side-beam 

emerging from the AOM is selected by a slit to be used in a Michelson interferometer 

topology. Frequency spectra of the interfered FM light beams contains the harmonics of 

modulation frequency. The displacement measurement is derived from the phase 

measurement of selected modulation harmonic pairs. Individual modulation harmonic 

amplitudes are measured using Fourier transform applied to the signal from a single 

photodetector. Lock-in amplifiers were first used to perform Fourier transform on the 

detected signal. Displacement of the moving target was measured by harmonic pairs 

chosen from harmonics 1 to 5 of the modulation signal.  

Since the analog Lock-In amplifiers use low-pass filters to detect the signal of 

interest, they limit the bandwidth of measurement to one-tenth of measured signal 

frequency. This limit reduces the speed of measurement to a few μms-1 in our system. 

Therefore, after validating the feasibility of displacement measurement using the changes 

in the amplitudes of harmonic pairs detected by Lock-in amplifiers, a Discrete Fourier 

Transform (DFT) algorithm was developed on a Field Programmable Gate Array (FPGA) 

microchip to increase the bandwidth and speed of measurement as well as to miniaturize 
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the signal processing unit. The timing of the FPGA microchip was developed from a 

Phase Locked Loop (PLL) synchronous to the same 10 MHz sine wave from the atomic 

clock that is timing all the frequency components of the RF-FM signal. This synchronizes 

all the timings in the signal generation and detection units. The developed synchronous 

DFT provides measurements with speeds up to 10 mms-1, a limit that can be always 

improved using larger FPGA microchips and faster analog-to-digital convertors on the 

photodetector output. In the developed synchronous DFT algorithm, displacement-

related-phase-change is derived from the amplitudes of harmonics 1 and 2 of the 

modulation signal. The measured displacements are compared with a commercial 

heterodyne interferometer being used as a reference for these studies. Displacements of 

the moving mirror of the interferometer over ranges up to 10 μm with speeds up to 10 

mms-1 all show differences of less than 50 nm between the polydyne interferometer and 

the reference interferometer measurements. A drift test is also used to evaluate long-term 

stability and repeatability of measurements with the developed polydyne interferometer. 
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CHAPTER 1 INTRODUCTION 

 

 

This chapter consists of two sections that present a summary of literature about 

displacement measurement interferometers in section 1.1, and objectives of this work in 

section 1.2. 

1.1 Literature Review  

The essential idea behind optical interference is that since light acts as an 

electromagnetic wave, optical interference results from the superposition of the electric 

field of two or more light beams as waves. Optical interference has played a prominent 

role in modern technology. It was first used by Thomas Young to discover the wave 

nature of light via the well-known double-slit experiment [1]. Albert A. Michelson and 

Edward W. Morley used white light interference through the well-known Michelson 

interferometer to show that there was no foundation for the existence of an aether [2]. 

Since then, there have been numerous advances in optics, interferometry, and supporting 

fields like; stabilized long coherence lasers, low-noise photodetectors, and ultrahigh 

speed, ultralow-noise electronic microchips for signal generation, detection and 

processing. All these advances along with Michelson’s technique have produced many 

great technologies such as spectroscopy [3], displacement measuring interferometry [4], 

absolute distance measuring interferometry [5], Light Detection And Ranging (LiDAR) 

velocimetry [6], optical gyroscope [7], and so on.  
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Twyman and Green modified Michelson’s interferometer by collimated light [8]. 

The method used by Twyman and Green is nowadays used in most displacement 

measurement interferometers for measuring the position change of a target object. A 

simple schematic of a displacement measuring interferometer is shown in Figure 1-1. 

 

Figure 1-1- Schematic of a simple displacement measuring interferometer. 

Typically, the fixed arm is called the reference arm and the moving arm is called 

the measurement arm. Any displacement in the measurement arm changes the optical 

path length of the measurement arm causing the intensity of the interfered beam at the 

detector to vary between destructive and constructive patterns. Assuming a wavelength of 

 , displacement of L  results in a phase change of   in the captured intensity of the 

interference: 

2 nN L    .       (1-1) 

where, n  is the refractive index of air, N  the path factor that is the number of times the 

light beam traverses the displacement path. Since the measured phase is a modulus of 2π, 

it should be unwrapped to determine the actual displacement.  

Laser

Detector
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Displacement

Reference

Retroreflector

Moving

RetroreflectorBeam

Splitter
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The primary objective of any displacement measuring system is to perform linear 

and repeatable measurements. Repeatability as the maximum deviation between the 

measurements of a measurand under the same conditions and with the same measuring 

instrument refers to how stable the measurement will be over time. System measurement 

repeatability consists of two parts of short-term and long-term repeatability. Short-term 

repeatability is the measurement stability over a period shorter than one hour; long-term 

repeatability is stability over a period longer than one hour. Repeatability error budgets of 

a displacement measurement interferometer are categorized as intrinsic (laser 

wavelength, electronics error, optics nonlinearity), environmental (atmospheric 

compensation, material thermal expansion, optics thermal drift), and installment (dead-

path error, Abbé error, cosine error). Intrinsic error components are the main focus of 

instrument manufacturers [9]. 

Displacement interferometers, just like any other displacement measurement 

systems, can be classified based on their dynamic range and precision. Some applications 

require high resolution (0.1 nm to 10 nm), low dynamic range interferometers [10] such 

as metrology for semiconductor fabrication [11], large optics fabrication [12], stellar 

interferometry [13], and precision robotics in medicine [14]. Another significant group of 

applications like machine tool metrology [15] require coarser resolutions (about 10 nm to 

50 nm) displacement measurement interferometers with measurement ranges of a few 

meters and speeds of greater than 10 mms-1. 

Through decades of research effort, a wide variety of methods have been 

developed to overcome the challenges on building a robust, repeatable, linear 

interferometer [10]. All of these methods are generally categorized as either homodyne 
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[16] or heterodyne systems [17, 18]. In homodyne interferometers, the phase change is 

measured from DC-level fluctuations of the intensity of the interference. The major 

disadvantages of homodyne interferometers are their inherent lack of directional 

sensitivity and dependence on a constant maximum intensity of signal. The later has been 

solved by automatic compensation of the changes of the signal level [19]. The former 

problem has been solved by two different methods of adding directional sensitivity to the 

homodyne interferometers using: 1) phase quadrature measurement by applying known 

phase shift to the detected signal [20, 21], 2) amplitude demodulation technique by 

modulating the laser intensity with a known carrier frequency [4].  

Heterodyne interferometers use a laser light containing two distinct frequencies 

that have a known frequency difference, i.e. beat/heterodyne frequency. These two 

frequencies are orthogonally polarized so that they can perform direction sensitive 

displacement detection. Each of the orthogonally polarized optical waves construct one of 

the arms, i.e. the reference arm and the measurement arm, of the interferometer. Since 

orthogonally polarized waves do not interfere, the interference is achieved by passing 

orthogonal beams through a polarizer aligned at 45 degrees [4]. Since the heterodyne 

interferometers usually have a heterodyne frequency of a few megahertz, they require a 

high detection bandwidth which is usually achieved by flash photodetectors and other 

ultrahigh-speed electronics. These requirements make the heterodyne systems more 

complex and expensive in comparison with homodyne systems.  

Required bandwidth of homodyne and heterodyne systems are shown in Figure 

1-2. The interferometers detection bandwidth limit is drastically increasing by the 

increase of the electronics microchips speed so that the state-of-the-art miniature 
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retroreflector homodyne interferometers provide 800 mms-1 with 20 pm resolution [22]. 

Moreover, state-of-the-art heterodyne interferometers provide extraordinary low noise of 

7.1 fm∙Hz-1 at 21 MHz [23]. 

  

Figure 1-2- Typical detection bandwidth of homodyne and heterodyne interferometers. 

Commercial laser-based displacement measurement interferometer systems 

typically use tunable [24], Zeeman split [10], or unmodulated Acousto-Optic Modulator 

(AOM) Doppler shifted lasers [25] to provide a frequency shifted light source. Rapidly 

tunable lasers are widely used for communication applications, typically with wavelength 

of 1550 nm, and controlled tuning frequencies up to 1.2 kHz. Consequently, this limits 

the measurement bandwidth to below 1 kHz [24, 26, 27]. Zeeman split and AOM 

Doppler shift methods provide only two frequencies thereby providing heterodyne 

sources. 

A new generation of interferometers have recently been introduced that modulate 

the frequency of the laser beam by a sinusoidal phase. In this method, the phase 

information of interest is extracted from the harmonics of the modulation frequency as 

the beats. The sinusoidal phase can be injected into the laser beam by different methods. 

In the first method [28], the beam propagates in an optical fiber and a piezo applies a 

×10 MHz to 1 GHz
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sinusoidal motion to the optical fiber; this method is called deep phase modulation 

interferometry. In the second method [29, 30], an electro-optical amplitude modulator 

modifies the laser frequency with a sinusoidal signal; this method is called deep 

frequency modulation interferometry. Highly compact extrinsic Fabry-Perot 

interferometers [26, 27] is another example of dynamic sinusoidal frequency modulation 

technique that uses the same method of deep frequency modulation interferometry for 

injecting the sinusoidal phase into the laser beam.  

The dynamic frequency modulation technique is different from that of phase-

shifting interferometry [31-33]. The phase-shifting interferometry applies a sequence of 

static phase shifts into the light beam to generate a sequence of phase-shifted fringe 

patterns to measure the profile of smooth surfaces [33]. Since the applied phase-shift is 

quasi-static, it does not change the frequency band of the measurement. Contrarily, the 

dynamic frequency modulation techniques change the temporal frequency of the laser 

beam continuously so that the optical phase of interest is measured in the beat frequencies 

that are resulted from this dynamic frequency change. This later technique is not as 

sensitive to low frequency environmental noise as the phase-shifting interferometry.  

Deep frequency modulation-based interferometers combine strong sinusoidal 

laser frequency modulation in unequal arm length interferometers with a non-linear fit 

algorithm for phase extraction. The demodulation algorithm or the non-linear fit is 

implemented in a FPGA to miniaturize the system [28]. Extrinsic Fabry-Perot 

interferometer uses self-homodyning (also used in our method) by sinusoidal frequency 

modulation of the laser source wavelength to achieve sub-nanometer resolution 

displacement measurement in a compact sensing volume. Application of compact 
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interferometers in simple position sensors and high-resolution inertial sensors has been 

recently reviewed in Ref. [34]. This review provides a summary of variety of optical 

interferometry techniques and their pros and cons in terms of measurement linearity and 

resolution, compactness of the interferometer, cost, and finally their inherent 

susceptibility to shot noise and length noise that couples to their readout [34]. 

Two methods to generate frequency or phase modulated laser light are: 1) by 

applying a modulation directly to the light source (direct method), 2) by passing the beam 

through a frequency shifter (indirect method). Optical serrodyne frequency translation 

[35] used in LiDAR velocimetry [6] and in optical gyroscopes [7] are examples of an 

indirect frequency shifting method, whereas changing the drive current through a laser 

diode to produce FM light is a direct method [36, 37]. 

1.2 Objectives of this research 

There is always need for low cost, portable displacement measurement 

interferometers. The main objective of this research is to design and implement a low 

cost, portable displacement measurement interferometer with sub 50 nm resolution and 

measurement speed of about 10 mms-1 for metrology applications. This is achieved by 

generating a stabilized FM light source for interferometry. This method combines the 

homodyne and heterodyne interferometry detection bandwidth to extract the phase 

information from harmonics of modulation frequencies at an update rate of a few hundred 

kHz. Therefore, it does not require ultrafast flash photodetectors and ultrahigh-speed 

electronics resulting in a substantial drop in the final cost of the system.  

We have developed a new method to transfer the precision of atomic clocks to 

dynamic frequency modulation interferometry. This method that is being named as 
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polydyne interferometry technique comprises three main parts: 1) generating a 

synchronous RF-FM electrical signal, 2) transferring the FM signal into a laser beam 

using an AOM, and 3) signal detection and processing. The advantages of this approach 

are that measurement for any single degree of freedom requires only one detector, 

ultrahigh-speed ultrafast flash detectors and polarization optics are unnecessary, and all 

the frequency components are synchronous and they all follow the same path around the 

interferometer paths. More broadly the ability to create multiple, phase-synchronous 

reference beams enables an arbitrary large number of synchronous interference 

measurements. Using only a single AOM, multiple diffraction orders are relatively 

straightforwardly extracted. Each of these diffraction orders contain the same modulation 

frequency harmonics. 
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CHAPTER 2 INTERFERENCE OF FM LIGHT BEAMS 

 

 

Interference of FM waves are the foundation of the polydyne interferometry 

technique presented in this thesis. In unequal arm length interferometers such as a 

Michelson interferometer, the resultant optical signal at the photo diode incorporates the 

superposition of the beams travelling through the short and the long arm that have an 

optical path difference of L  (corresponding to a time delay of L c   , where c is the 

speed of light in the medium). Assuming an FM light with carrier frequency 0 , 

amplitude 0E , and modulation frequency m  that is split by a 50/50 beam splitter to 

produce the signals of each arm of a Michelson interferometer, 1u  and 2u : 

 
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where,   is the modulation depth, 0  is the initial phase of light, phase @ 0t  , at the 

photo diode. The intensity of optical signal produced in the photo diode,  ,I t  , is 
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Assuming the initial phase equal to zero, 0 0  , the intensity of optical signal is 
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The intensity equation (2-4) represents some fluctuations at frequencies of 

02 mp  , in which p  is an integer number, and other fluctuations at harmonics of m . 

In practice, fluctuations at 02 mp   occur too fast to measure so that they average out 

to zero, after which the measured intensity reduces to 
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.   (2-5) 

For typical metrology applications, the length of both arms of the interferometer 

is, at most, of the orders of a meter, from which 
92997924581m 1 3.3 10c      s. 
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Therefore, for 510m   Hz, 43.3 10 1m      so that  sin 2 2m m     and 

    sin 2 sinm mt t    ; this leads to the simplified form of measured irradiance: 
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.       (2-6) 

Setting    as the effective modulation depth, 0    as displacement-

related optical phase change, and using Jacobi-Anger expansion [38, 39] for 

  sin sin mt   and   cos sin mt   gives 
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.   (2-7) 

In which,  pJ   are the Bessel functions of first kind, 2

0 0 2I E  is the average intensity 

on the detector,    0 0 cosI J    is the homodyne equivalent intensity that will be equal to 

 0 cosI   for 0   as it is expected from the intensity of unmodulated signals 

interference,     2 1

1

cos 2 1p m

p

J p t 






  is the odd harmonics of the modulation 

frequency whose amplitude changes with odd part of the phase, and 

   2

1

cos 2p m

p

J p t 




  is the even harmonics of the modulation frequency whose 

amplitude changes with even part of the phase. Equivalent expressions have been 

presented in different studies [30, 40] in which all of them have used the same 
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simplifications to derive an expression for the harmonics signals. Increasing the effective 

modulation depth,  , spreads the energy of interference among the harmonics of 

modulation frequency. This can be observed in the absolute value of Bessel functions of 

first kind,  iJ  , for i = 0, 1, … , 8, see Figure 2-1. 

 

Figure 2-1- Absolute value of Bessel functions of first kind,  iJ  , for i = 0, 1, … , 8 in 

a normalized scale. 

The amplitudes of the odd and even harmonics are commonly called in-phase, 

2 1pI 
, and quadrature, 2 pI , signals, respectively. Applying Fourier transform to the 

measured intensity, equation (2-7), results in following expressions for the in-phase and 

quadrature signals from which phase can be extracted [41, 42]: 
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In order to extract the phase from the measured in-phase and quadrature signals, 

these signals are first normalized and phase-adjusted to fit in a unity circle after which the 

phase is calculated as 

2 1,1

2 ,

tan
p u

p u

I

I



 

   
 

,                     (2-9) 

where, 
2 1,p uI 

 and 
2 ,p uI  are the normalized, phase adjusted 

2 1pI 
 and 

2 pI , respectively. 

Finally, the displacement of the moving arm of the interferometer is derived from the 

measured phase as 

2
L

nN




   .                        (2-10) 

All the equations presented in this chapter represent the ideal condition of perfect 

FM signals interference. If the interfering beams are not perfect FM waves, the 

distribution of energy in different frequency components will be different from equation 

(2-7). In such circumstances, each of the odd and even harmonics of the modulation 

frequency might carry both  0sin    and  0cos   . This provides the opportunity to 

calculate the optical phase information, 0   , by extracting the amplitude of sine and 

cosine of each of the modulation signal harmonics. The proof of this hypothesis is left as 

a suggestion for future work.   
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CHAPTER 3 SYNCHRONOUS FM SIGNAL GENERATION 

 

 

This chapter consists of four sections that present a summary of literature about 

digital FM signal generation methods in section 3.1, the principle operation mechanism 

of a new FM signal generation method introduced in this work in section 3.2, the new FM 

circuit design in section 3.3, and the testing and results of spectrum of generated FM 

signals by different prototypes of the new FM signal generator in section 3.4. 

3.1 Digital FM signal generation background  

Frequency modulation in instrumentation and communication include a broad 

range of sensing strategies and information transmission methods. Such strategies range 

from single frequency transmission and reception with amplitudes representing the DC 

value, through to phase/frequency modulation and phase locking and, ultimately, multiple 

phase and frequency transmission for synchronous, parallel, digital data transfer. All of 

the modulation techniques share the main concept through which signals are mixed to 

operate at more conveniently measured harmonic frequencies and intermediates as is the 

case for heterodyne and super-heterodyne techniques [43]. Such processes find 

applications in both optical processes and radio transmission [43-45]. Of particular recent 

interest is the implementation of these modulation techniques for development of optical 

interferometric instrumentation [24, 26, 46]. In these techniques, the interferometric 

phase is extracted using multiple sidebands which has led to novel sensing methods. 
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Until the last few decades, most radio frequency modulators were implemented by 

analog circuits. Since digital phase/frequency modulators are compact and often provide 

superior frequency stability, they have now evolved as replacements for the bulky analog 

circuits. One such, digital approach, are Direct Digital Synthesizers (DDS) that provide 

low distortion signals with frequencies exceeding 400 MHz, a limit that is continuously 

increasing [47]. The method used in commercial DDS chips to generate modulated 

signals is based on regularly updating a phase offset word in a look-up table via a serial 

port [48-50] and is limited by the speed of the port. Furthermore, this method does not 

necessarily lead to synchronous FM signals, since the serial port is not necessarily timed 

with the main clock of the system. Recent studies have been focused on high speed DDS 

technology with FM capabilities over GHz frequencies [51-57]. One such development is 

the DDS that has been manufactured in Ref. [58] as the first DDS that generates FM 

signals at frequencies above 1 GHz. The aim reported in Ref. [58] is to provide all 

functionality of over-GHz FM signal generation in a single microchip. Their DDS 

architecture uses carry-look-ahead or ripple-carry-adder to boost the speed of registering 

frequency control word of a precursor design that uses bipolar plus negative metal oxide 

semiconductor adder architecture [59], and uses a 5 GHz clock to time the data transfer 

buses. This DDS has been designed to be used in radar technology where the best 

spurious free dynamic range at higher frequencies, i.e. over-GHz frequencies, is the main 

functional figure of merit. Also, this DDS provides 38 dBc Nyquist band and 83 dBc 

narrowband spurious-free dynamic range for over GHz carrier frequencies, see Figure 3-1 

[59]. 
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Another research group has produced an all-digital, direct frequency synthesizer 

that provides direct modulation capabilities at 20 Mbps with 3 µs startup latency [60]. In 

this work, they have claimed that a synthesizer can generate desired frequencies over a 

wide range by digitally manipulating time-shifted copies of a temperature-compensated 

film bulk acoustic resonator signal based on the outputs from a sigma-delta modulator. 

Performance of a working circuit has not been reported yet. 

 

Figure 3-1- Frequency spectrum of DDS output with a 469.360351 MHz output showing 

a 38 dBc Nyquist band spurious-free dynamic range [59]. 

In principle, it is possible to generate a phase modulated signal by dynamically 

updating the phase offset control of some commercial DDS chips (such as AD9834, and 

the AD9951 used in our design). Phase Shift Keying (PSK) and Frequency Shift Keying 
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(FSK) are two common data encoding methods that are used in these DDS architectures 

for modulating the phase and frequency of the desired output signal, respectively. In 

PSK, the phase of the transmitted signal is changed, while the frequency of the carrier 

remains constant. FSK allows a binary shifting of the frequency of a continuous carrier to 

one or the other of two discrete frequencies. Two frequency registers are required to 

achieve a fast tuning into these two frequencies as it is used in AD9834 [50]. The range 

and precision of modulation by FSK and PSK is inherently limited, primarily by the 

speed of the serial peripheral interface and the accuracy of timing for triggering FSK and 

PSK registers. This limits the achievable values of the modulation depth so that side-band 

amplitudes of only about -40 dB are achievable for different modulation frequencies, 

while the noise level is about -70 dB to -80 dB.  

Early attempts to create frequency modulated signals using the methods outlined 

in the previous paragraph experienced numerous problems in dynamically updating the 

phase accumulator of commercial DDS boards to generate phase/frequency modulated 

electric signal so that our efforts resulted in a synchronous FM signal with spurious 

glitches that could not be removed. Therefore, we designed and manufactured a novel 

digital FM signal generator that produces electrical FM signal in which the modulation 

frequency is phase synchronized with the carrier frequency. This has the benefit of phase 

synchronization in all generated frequencies using an atomic clock. This method uses two 

DDS chips, one for generating the carrier frequency and the other one for producing the 

modulation through an analog time-delay circuit. This removes the necessity to update 

the phase offset word and eliminates the limitation of serial data transfer speed, though 

the modulation and carrier frequencies are limited by the frequency limits of the 
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corresponding DDS chips. This FM signal generator also solves another common 

problem of noise spikes in the generated signals caused by dynamic effects of the register 

updates. Using this particular method, frequencies of carrier and harmonics are not 

influenced by the analog circuit variations; however, drifts in the delay circuit frequency 

will affect relative amplitudes of the harmonics either side of the carrier, i.e. the 

modulation depth. Since the electrical FM signal is aimed to drive AOMs with 60 and 70 

MHz operation frequencies, the manufactured FM signal generator was designed to 

provide an output frequency band of 1 Hz to 80 MHz. This is achieved by two stages of 

passive and active low-pass filters at the output of the board outlined in section 3.3.  

3.2 Principle of operation 

3.2.1 Modulated clocking of the high bandwidth DDS 

DDS microchips comprise a processor that uses a pointer to increment through a 

Look-Up Table (LUT) to determine values that are sent to a Digital to Analog Converter 

(DAC) through which the analog signal is generated. Regularly clocking the pointer at 

equal time intervals as it steps through a LUT of sinewave values results in a digital 

output equivalent to the function represented in the LUT. Dependent on the values in the 

LUT and the frequency of the clock, periodic shapes of any function can be produced. 

Consequently, to produce a sinewave, a DDS is implemented using a reference clock, an 

address counter, a digital sine LUT, and a DAC. An amplitude word is picked from the 

sine LUT by the address counter and is sent to the DAC to generate the equivalent analog 

sinewave. The output frequency depends on the clock frequency and the LUT jumper 

value set by the user.  
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Figure 3-2- Digital Phase Wheel with corresponding normal and modulated clock. 

A “phase wheel” representation shown in Figure 3-2 illustrates the DAC transfer 

process in a DDS. As shown, generation of sinewave oscillation can be visualized as a 

vector rotating around a circle containing values for the DAC. Each designated point on 

the phase wheel corresponds to data that transforms to an equivalent point on a cycle of a 

sinewave. Each revolution of the vector around the phase wheel, at a constant speed, 

generates one complete cycle of the sinewave the frequency of which is determined by 

the basic tuning equation 

   2Qf M CLCK  .     (3-1) 

where, f  is the output frequency; M , the register vector jump size; Q  is the bit 

resolution of the LUT; 2Q  is the number of data-points in the LUT and SCLCK is the 

system clock frequency inside the DDS. In some DDS microchips, the external clock is 

first multiplied by an integer value through a multiplier to generate higher frequency 

clocks for processing the data inside the DDS structure. In such DDS architectures, the 

SCLCK is the frequency of clock signal after multiplier.  

Modulated 

SCLCK

SCLCK
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The main idea behind the electrical FM signal generator presented in this study is 

that a DDS will output frequency/phase modulated sinewave if the phase of its clock 

signal is dynamically being adjusted. The FM signal generator developed here uses two 

DDS processors: one for adjusting the phase of the clock signal and the other one for 

generating the FM signal from the modulated clock. To do this, a voltage-controlled 

time-delay circuit is adopted to modulate the reference clock frequency before feeding it 

into the high frequency DDS, DDS2, also indicated in Figure 3-2. Figure 3-3 shows a 

block diagram indicating the major components of this method.  DDS1 is used to 

generate a sinusoidal voltage that controls the time-delay circuit. Importantly, the clock 

for both DDS1 and DDS2, are derived from the same source, in our experiments a 10 

MHz rubidium oscillator (SRS model PRS10 [61]). 

 

Figure 3-3- Block diagram of the circuit containing the signal path from reference clock 

to the DDS2. 

As seen in Figure 3-3, the reference clock is simultaneously timing both DDS 

circuits. Being directly timed from the clock source, the DDS1 output signal is used to 

modulate the reference clock signal via the time-delay sub-circuit. The output of the time-

delay circuit is then used as a clock for the DDS2 circuit. Definitions of the mathematical 

parameters in this figure are discussed in more detail in the following section. To achieve 

clock speeds suitable for RF generation, the 10 MHz clock signal is multiplied by 20 (or 

Ref. Clock

(Atomic Clock)

DDS2

DDS1

Time Delay

fCLK

fm

fCLK +  sin(2πfmt)

FM 
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any integer from 4 to this value) through a Phase Locked Loop (PLL) multiplier within 

the DDS2 chip. Because the multiplier output, SCLCK, follows the phase of the input 

clock through the PLL, it is assumed that the phase modulations, being substantially 

slower than the 10 MHz clock signal, will be similarly transmitted. 

3.2.2 Theory of Synchronous FM Signal Generation 

As shown in Figure 3-2 (page 19), each rising edge of the clock signal triggers the 

LUT to send a digital value to the DAC through which an analog equivalent is generated. 

For a constant clocking speed, this results in a perfect sine wave. Under such an 

assumption, the sine wave at the DDS output is 

     0 0 0sin sinr c r cV t V t V r t    ,         (3-2) 

where, 0V  is the amplitude of the output signal; c , the angular frequency of the signal 

that is equal to 2 cf ; r , an integer number increasing by each pulse of the SCLCK (i.e. a 

clock count); and 0t  is the clock timing interval. For the modulated reference clock, the 

instantaneous timing interval reads as: 

 0 0sin m

c

t t r t
r





     ,              (3-3) 

where, m  is the angular modulation frequency, and   is the modulation depth. 

Substituting 0t  in (3-2) with t  gives 

   0 0 0sin sinr c mV t V r t r t         ,         (3-4) 
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where, 0r t  is the quantized time approximating to a continuous parameter, rt , as 0t  

approaches zero. Equation (3-4) represents an FM signal with corresponding carrier 

frequency of / 2c cf   , modulation frequency of / 2m mf   , and modulation depth 

 . For the purpose of computing frequency content, this FM signal,  V t , can be 

represented in the complex exponential form: 

          sin sin

0 sin sin 2c m c mi t t i t t

c mV t V t t i e e
     

  
      

 
.     (3-5) 

Equation (3-5) can be rewritten in terms of Jacobi-Anger expansions in the form 

of following series [38, 39] 

             
sin

0

1

1c m c m c mc
pi t t i p t i p ti t

p

p

e e J e e J
        


     



    ,     (3-6) 

             
sin

0

1

1c m c m c mc
pi t t i p t i p ti t

p

p

e e J e e J
        


  



    ,         (3-7) 

If the signal phase is subject to a single modulation frequency, the modulation depth is a 

constant. Hence the output comprises the original carrier frequency plus an infinite series 

of sidebands at integer multiples of the modulation frequency. In practice, the number of 

significant modulation sidebands in the output spectrum is a function of the modulation 

depth [43, 62]. By taking the Fourier transform of (3-6) and (3-7), a discrete FM output 

spectrum with magnitude coefficients as a function of   is seen as presented in the 

equation below. 

      0

0

2FM p c m

p

x V J f f pf 




    ,                 (3-8) 

where, ( )   is the Dirac delta. 
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3.3 Modulator Circuit Design 

As stated, the modulation process requires a voltage-controlled time-delay circuit 

to generate controlled delays in the phase of a sinusoidal signal from a 10 MHz oscillator 

that is subsequently used to time a high frequency DDS circuit. The controlling voltage 

signal, which acts to modulate the time delay, is generated by a second DDS that is 

synchronously timed by the same, but unmodulated, 10 MHz carrier signal.Both the 

carrier and modulation harmonics are consequently timed by the same clock signal. The 

time-delay circuit is shown in Figure 3-4. This consists of a wide bandwidth JFET input 

operational amplifier model LF353 [63], an ultrafast precision comparator model LT1016 

[64], and a retriggerable mono-stable multi-vibrator model SN74LS123 [65].  

 

Figure 3-4- Details of the phase delay circuit in conjunction with major blocks of other 

DDS1 and DDS2 circuits. 

The modulation signal coming from DDS1 is amplified to the desired amplitude 
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impedance mismatch between them. The harmonically varying delay results in a dynamic 

shift in the reference clock going into the comparator. The net result of this is to produce 

a voltage-controlled pulse width generator where the pulse width is proportional to the 

modulation voltage from the DDS1. Finally, the output signal of the comparator is used 

to trigger the multi-vibrator. Since the commercial atomic clocks typically generate 10 

MHz signal, the phase delay is designed to be linear with input voltage at this frequency. 

 

Figure 3-5- Schematic of the DDS1 circuit with a digital amplitude control. 

The DDS1 circuit is shown in Figure 3-5. In the first prototype of the FM board, a 

potentiometer was used to control the amplitude of the modulation signal, mV . This 

potentiometer was replaced with a digital rheostat, model AD5270 [66], to provide full-

digital control over all the characteristics of the generated FM signal, see Figure 3-5. Due 

to the linear relationship between the delay generated in the time-delay circuit and mV , 

this will subsequently control the modulation depth,  , equation (3.3). The modulation 
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depth changes the energy distribution among the sidebands of the FM signal. This can be 

observed in the frequency content and relative side-band amplitudes based on Jacobi-

Anger expansion. The high-pass filter between DDS1 and the time-delay circuit, shown 

in Figure 3-4, is a simple first-order RC filter located at the output of the DDS1 circuit in 

Figure 3-5. This filter eliminates the DC offset at the output of the DDS1 circuit so as to 

make it compatible with the input voltage range of the time-delay circuit as it is discussed 

in the testing section of the sub-circuits of the board. This also provides an AC-couples 

modulation signal that is compatible with the reference inputs of lock-in amplifiers. 

The DDS2 circuit is shown in Figure 3-6. The DDS2 chip, AD9951, requires two 

separate 1.8 V supplies for analog and digital parts that were provided by small surface-

mount, fixed-voltage regulators, model MCP1825S, made by Microchip Technology Inc 

[67]. Acceptable signal qualities were achieved by a two-layer board with separate digital 

and analog ground plates, and separate power supplies via fixed-voltage regulators. To 

decrease the noise in the circuit, the impedance of the traces used in the Printed Circuit 

Board (PCB) is matched to the required impedance for VHF signals (50 Ω). To further 

eliminate impedance mismatching that can attenuate and distort the signal and introduce 

noise, SubMiniature version A (SMA) connectors are used. For the best spectral purity 

possible, two stages of filtering are included on the output of the DDS2 circuit, shown in 

Figure 3-6. The first stage is a shunt-connected, 7th order, elliptic low-pass filter with a 

cutoff frequency of 160 MHz with component values based on a commercial DDS2 

evaluation board [68]. The second stage of filtering is a π configuration, 5-pole, 

Butterworth low-pass filter with a cutoff frequency of 73 MHz [69].  
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Figure 3-6- Schematic of the DDS2 circuit. 
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3.4 FM signal generator testing and results 

3.4.1 Experimental apparatus and test procedure 

Since the modulator combines three main circuits of DDS1, time-delay, and 

DDS2 circuits, prior to evaluating the complete modulator, it is necessary to evaluate the 

performance of each of these individual sub-circuits. To determine time delay as a 

function of the input voltage, the DDS1 was bypassed and a DC voltage applied to pin 3 

of the LF353 microchip shown in Figure 3-4. With a 10 MHz signal going into the 

circuit, the delay through the comparator versus different voltages was measured using an 

oscilloscope, see Figure 3-7. As observed in Figure 3-7, the generated delay varies 

linearly with the input voltage. Furthermore, it is seen that the delay circuit becomes 

nonlinear for input-voltages outside the range -2 V to 2 V, thereby limiting the amplitude 

of the modulation signal generated by DDS1.  Over this range the response of the time 

delay circuit is -5.207 ns.V-1 with a coefficient of determination of 0.9994. 

 

Figure 3-7 Variation of the generated delay from the LT1016 comparator as a function of 

the voltage applied to the LF353 amplifier. 
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The amplitude frequency responses of the DDS1 and DDS2 circuits as they are 

clocked by constant 10 MHz signal are shown in Figure 3-8 and Figure 3-9, respectively. 

The magnitude of DDS1 output attenuates at frequencies greater than 1 MHz. It also has 

a DC offset of about 2V. To eliminate this DC offset, a high-pass filter with a cutoff 

frequency of 1 kHz is used at its output, as shown in Figure 3-5. The two stages of low 

pass filters shown in Figure 3-6 provide a cut-off frequency of about 73 MHz. This cut-

off frequency is shown in Figure 3-9. 

 

Figure 3-8- Frequency response of the DDS1 circuit over a 2 MHz band. 

 

Figure 3-9- Frequency response of the DDS2 circuit from 1 to 80 MHz. 
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3.4.2 Performance tests on first prototype of FM board  

Having designed and implemented the FM circuit, see Figure 3-10, an experiment 

was set up using an Arduino Mega™ microcontroller to program the microchips, and a 

rubidium oscillator (SRS model PRS10) for the clock, see Figure 3-11. This rubidium 

frequency standard provides a low phase noise of <-130 dBc/Hz at 10 MHz and a short-

term stability of <2×10-11 s. Because this provides the clock signal for both DDS chips, 

the frequency components of all generated FM signals are synchronized to this reference. 

The frequency components of the FM signals are measured using a spectrum analyzer 

(Agilent CSA model N1996A-506). This analyzer has a frequency range up to 6 GHz 

with resolutions settable from 10 Hz to 5 MHz. The Arduino code used for controlling 

the DDS microchips are listed in APPENDIX A.  

 

Figure 3-10- First prototype of the FM board. 
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The FM board shown in Figure 3-10 has only one high-pass filter between the 

atomic clock and the clock input of the board without any non-inverting amplifier. It also 

uses a potentiometer instead of a digital rheostat. Furthermore, this board uses a power 

regulator at its power input section to generate ±5 V DC lines from the supplied 5 V DC 

power. These are the main differences between this first prototype of the FM board and 

the final prototype which is presented in the next section. The reason for modifying the 

first prototype of the board to implement the final prototype is presented hereinafter. 

 

Figure 3-11- Experimental setup to test the first prototype FM signal generator 

performance. 

Two samples of frequency spectra of the generated FM signals by the first 

prototype FM board are shown in Figure 3-12 and Figure 3-13. As seen in these figures, 

there is an instability in the distribution of energy in the harmonics of the modulation 

frequency so that the noise level is about -50 dBm.  
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Figure 3-12- Frequency spectrum of FM signal of 60cf   MHz and 100mf   kHz 

generated by the first prototype board.  

 

Figure 3-13- Frequency spectrum of FM signal of 60cf   MHz and 250mf   kHz 

generated by the first prototype board. 
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The tests performed on the board revealed that this instability is due to loading of 

both the comparator and the DDS1 clock input. To solve this issue, a non-inverting 

amplifier was used between the atomic clock output and the clock input port of the board. 

Also, to protect the atomic clock from signals reflecting from the modulator, a buffer was 

added between the DDS1 clock input and the atomic clock output. These modifications 

were implemented in the final prototype of the board presented in the next section. 

3.4.3 Final prototype FM board  

The final prototype of the FM board is shown in Figure 3-14. Since the ground 

plate of the clock line buffer was the same as the DDS sub-circuits analog ground, it was 

adding substantial noise to the signal. To solve this issue, the buffer was separated from 

the PCB as shown in Figure 3-15. The adjustable gain non-inverting amplifier provides 

control on the amplitude of the clock signal to set it to the required level for the DDS1. 

Experiments showed that these are the necessary circuits between the atomic clock and 

the FM board input to achieve the highest signal-to-noise ratio without loading the atomic 

clock. To test the spectral purity and precision of the frequency components of the final 

prototyped FM board, the experiment shown in Figure 3-11 was set up for this new 

board, see also Figure 3-16. A CXA signal analyzer model N9000B (9 kHz – 7.5 GHz) is 

used in this experiment and the resolution is set to 1 Hz for all the spectra presented in 

this chapter, except for those that are mentioned specifically. 
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Figure 3-14- Photograph of the final prototype PCB with different sub-circuits 

components; A) power input and regulators, B) digital input, C) clock input, D) omitted 

clock-line buffer layout, E) time-delay, F) high-pass filter, G) DDS1 circuit, H) digital 

rheostat to control modulation signal amplitude, I) modulation signal output, J) DDS2, K) 

transformer, L) low-pass filter with 160 MHz cutoff, M) low-pass filter with 75 MHz 

cutoff, N) FM output. 
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Figure 3-15- The FM board with separated buffers in the clock line; a) non-inverting 

adjustable gain amplifier; b) buffer between DDS1 and clock line. 

There are three parameters in the final prototyped FM signal generator that can be 

varied, these being the modulation depth   (which is a linear function of mV ), the carrier 

frequency cf  and the modulation frequency mf . To study the effects of   on the shape 

of the spectra, mV  is changed by setting different values of resistance for the digital 

rheostat in the last version board —that is identical to the manual potentiometer in the 

first version board— and the spectra captured for a variety of carrier and modulation 

frequencies.  
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Figure 3-16- Experimental setup to test the final prototype FM signal generator 

performance. 

The frequency spectra of signals with 30cf   MHz, 250mf   kHz, and various 

mV  values are plotted in Figure 3-17 and Figure 3-18. For the data presented in these 

figures, the resolution of the spectrum analyzer was set to 100 Hz and frequency 

components of the spectra spanning 27 to 33 MHz with frequency steps of 6 kHz were 

captured. The reason for setting the resolution higher than 10 Hz, which is the finest 

possible resolution in the Agilent CSA spectrum analyzer used in this study, is to 
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generate more visible (broader) sidebands for visualization in these 3D figures. The lines 

plotted on top of the sidebands if Figure 3-17 represent the absolute value of Bessel 

function of first kind of integer orders -6 to 6 at the same decibel magnitude (dBm) scale 

used in 3D spectra. To further illustrate the Bessel function dependence of amplitude with 

modulation depth, the absolute values of Bessel functions of the first kind for integer 

orders of 0 to 8 are compared with the sidebands magnitudes in Figure 3-18. 

 

Figure 3-17- Measured frequency spectra of signals of 30cf   MHz and 250mf   kHz 

with varying (0 3.7)   indicated by (0 2)mV  , compared with modulation amplitude 

resulted from Jacobi-Anger expansion. 



37 

 

 

 

Figure 3-18- Measured frequency spectra of signals with 30cf   MHz and 250mf   

kHz with varying mV  values of 0 to 2 V compared with the absolute value of Bessel 

functions of first kind,  iJ  , for i = 0, 1, … , 8 in a dBm scale. 

As seen in Figure 3-17 and Figure 3-18, the generated signals are consistent with 

the characteristic predicted by the Jacobi-Anger expansion for the relationship between 
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  and mV . The same behavior was observed for signals with other cf  and mf  values 

ranging from 10 MHz to 70 MHz and 10 kHz to 300 kHz, respectively.  

 

Figure 3-19- Schematic of the mixer, AD835, circuit. 

Theoretically, successive modulation frequency harmonics have alternating 

parity with respect to the carrier of the FM signal, i.e. successive sidebands should 

have 90 phase difference. To evaluate this phase difference, a mixer (AD835) [70] with 

two lock-in amplifiers (SRS model SR850) were used to detect the phase difference 

between the sidebands. Schematic diagrams of the AD835 mixer is shown in Figure 3-19 

and the experimental setup to measure the phase difference between different harmonics 

of mf  is shown in Figure 3-20. Both lock-in amplifiers were externally referenced by 

locking to the mf  output of the FM board. One of the lock-in amplifiers is locked to the 

first harmonic at mf  and the other to the second harmonic at 2 mf . The phase difference 

between these harmonics was measured for different mf  values. The DSP lock-in 

amplifiers used here can measure any of the first to the tenth harmonics of the reference 

signal as long as the frequency is smaller than 100 kHz. Therefore, this measurement was 

limited to 50mf   kHz. 
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Figure 3-20- Schematic diagram of the experimental setup for measuring the phase 

difference between odd and even sidebands. 

Table 3-1- Measured phase differences between sidebands. 

mf   

(kHz) 

Harmonic I 

phase (deg.) 

Harmonic II 

phase (deg.) 

Phase difference  

(deg.) 

10 -8.31 83.39 91.7 

20 0.48 86.88 87.36 

30 3.48 91.46 87.98 

30 3.09 91.20 88.11 

30 2.63 95.94 93.31 

35 3.2 92.71 89.51 

40 2.87 89.71 86.84 

50 -8.41 78.25 86.66 

 

The measured phase differences between the first and second harmonics of 

different mf  values are presented in Table 3-1. The measurements show phase 

differences of 90º ± 4º for different frequencies and connecting cables. A practical 

challenge with this measurement was caused by the reactance of the cables necessary to 

connect the output of the mixer to the lock-in amplifiers. Because the frequencies of the 

signals being measured are also different (i.e., one frequency is twice that of the other), it 

is expected that this also causes small phase shifts of the signals arriving at each lock-in. 

FM Modulator

FM            fm

Mixer

Lock-in amplifier I

Ext. Clock      Signal Input

Lock-in amplifier II

Ext. Clock     Signal Input
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Consequently, to verify that these phase variations can be caused by cables, for the 30 

kHz modulation frequency, three measurements were made; the second is the same 

measurement as the first but with the cables to the lock-in amplifiers switched, and the 

third was the measurement using different cables. For these three measurements at the 30 

kHz modulation frequency, it is observed that phase variations of 6º or more can occur. 

Notwithstanding this cabling issue, the harmonic pairs appear to have the expected phase 

difference of 90º to within uncertainties due to capacitance of the cables and possible 

variations of the mixers circuit at different frequencies. 

Precision of the generated signal in terms of coherent frequency components with 

stability governed by that of the atomic clock has been the main motivation of developing 

the polydyne interferometry technique in this study. Therefore, the spectra of signals with 

different carrier and modulation frequencies were measured with the analyzer set to its 

limiting resolution to evaluate the quality, i.e. high signal to noise ratio and spurious free 

FM signal, of frequency components in the generated FM signals. For the rest of the 

spectral measurements presented in this chapter, the experimental conditions were: 1) 

2mV   V which translates to different   values for different cf  and mf  values; 2) the 

resolution bandwidth of the spectrum analyzer was set to the finest value of 10 Hz and 

the spectra were measured with frequency steps of 1 Hz. To illustrate the coherence of 

the frequency components, the spectra of signals of 10cf   MHz, and mf  of 50 kHz, 100 

kHz, and 150 kHz are plotted in Figure 3-21. Inset in this figure are two sidebands and 

the carrier frequency enlarged to illustrate the linewidth of the sidebands and the carrier.  
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Figure 3-21- Spectra of signals of 10cf   MHz and mf   50, 100, and 150 kHz 

measured with frequency steps of 1 Hz. 

The sidebands shown in Figure 3-21 are supposed to occur at multiple integers of 

mf  and have been measured to be within 1 or 2 Hz at most which is due to the difference 

between the timing of the internal clock of the spectrum analyzer and the atomic clock. 

Although the spectrum analyzer does not use an atomic clock, it has quite acceptable 

short-term stability that might be inferred from the constant shift in all of the harmonics. 

However, the captured data are adequate to demonstrate that the harmonics are occurring 

at exact integer multiples of mf . Also, the amplitude of the sidebands can be changed by 

the potentiometer used in the DDS1, as seen in Figure 3-5, to provide the user with the 
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desired modulation depth values. Comparing the frequency spectrum of the Ref. [59] 

DDS shown in Figure 3-1 with the spectra presented in Figure 3-21 reveals the 

superiority of our novel FM signal generation method to the digital FM generators. As 

seen in Figure 3-21, our FM board provides greater than 70 dBc Nyquist band spurious-

free dynamic range over its entire operating range. This low level of noise improves the 

resolution of phase measurements in polydyne interferometer. 

Table 3-2- Simulation of AD9951 DDS with PLL multiplier of 20 and AD9833 DDS 

with clock frequency of 10 MHz 

AD9951 DDS AD9833 DDS 

Target 

frequency (Hz) 

Actual 

frequency (Hz) 

Target 

frequency (Hz) 

Actual 

frequency (Hz) 

10000000.0000 10000000.0090 50000.000000 49999.9895690 

20000000.0000 20000000.0190 100000.000000 100000.016391 

30000000.0000 29999999.9810 150000.000000 150000.005960 

40000000.0000 39999999.9910 200000.000000 199999.995530 

50000000.0000 50000000.0000 250000.000000 249999.985099 

60000000.0000 60000000.0090 300000.000000 300000.011921 

70000000.0000 70000000.0190 312500.000000 312500.000000 

 

Since any DDS uses a finite look-up table, there will be a truncation error 

associated with the conversion of digital data to analog values at the output DAC of the 

DDS architecture. This results in a small difference between the target frequencies and 

the frequency of the signal that is generated. The difference between programmed 

frequency and that of the generated signal with the AD9951 and AD9833 are provided by 

Analog Devices. Examples of these values are presented in Table 3-2. Therefore, 

knowing the truncation error values for any target frequency, systematic errors in the 

uncertainty budget of precision measurements that are using this FM modulator can be 
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determined. Alternatively, frequencies may be selected to minimize or, in some cases, 

remove this error. If one of the harmonics of the modulation frequency intersects with the 

clock frequency, the image of the Digital to Analog Convertor (DAC) used in the 

AD9833 will not add spurs to the output mf  signal, i.e. the programmed frequency will 

be exactly generated without any error due to truncation of the lookup table as seen for 

frequency of 312.5 kHz in Table 3-2. Since this frequency is 
1

10
32

  MHz, 
1

32
 of the 

atomic clock frequency, it is a perfect match for detection by 32 sample discrete Fourier 

transform algorithm timed by any harmonic of the same atomic clock signal. This is the 

scenario used in the discrete Fourier transform algorithm developed in FPGA microchip   

in CHAPTER 5. 

Spectral responses of signals with cf  of 10, 30, 60, and 70 MHz under different 

mf  values of 50, 100, 150, 200, 250, and 300 kHz have been measured, see APPENDIX 

B. The results of the captured spectra in the form of relative magnitude and frequency of 

the first ten harmonies showed that the repeatability and precision of the atomic clock is 

transferred into all the frequency components of the generated signals. To within the 

precision and accuracy of the spectrum analyzer, CXA N9000A, the sidebands are 

located at the programmed frequencies that are the harmonics of modulation frequency 

either side of the carrier. Another point about these spectra is the low coherence and 

noise. Apparent in these figures, the level of noise in the spectra is less than -80 dBm. 

Finally, the spectra of signal of different carrier and modulation frequencies presented in 

APPENDIX B validate the conclusions presented above based on the spectra shown in 

Figure 3-21 and lookup table truncation errors shown in Table 3-2 
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CHAPTER 4  FM LIGHT GENERATION BY AOM 

 

 

This chapter consists of three sections that present a summary of literature about 

AOMs in section 4.1, diffraction of light by FM acoustic waves through an AOM in 

section 4.2, and the experimental results of diffraction of light by FM waves through an 

AOM in section 4.3. 

4.1 Acousto-Optic Modulators  

Acousto-optics is a field of study that investigates the interaction of optical waves 

with acoustic waves in material media. Research began in 1922 with Brillouin predicting 

the diffraction of light by an acoustic wave that is being propagated through a 

transmitting medium [71]. A decade later, in 1932 the acousto-optic effect was 

experimentally verified by Debye and Sears [72], and Lucas and Biquard [73]. Since 

then, this phenomenon has been extensively investigated in terms of differing conditions: 

a) the angle of incidence of light into the acoustic wave, b) the wavelength of the 

ultrasonic wave, c) the wavelength of incident light, d) the amplitude of the ultrasonic 

wave, and e) the width of the ultrasonic beam [74].  

In general, there are two types of diffraction, commonly referred to as normal and 

abnormal. In 1936, Raman and Nath designed a general model of the interaction between 

optical and acoustic waves that included multiple order diffraction [75]. Normal 

diffraction generates multiple order side-beams each of comparable intensity (also called 

https://en.wikipedia.org/wiki/C._V._Raman
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Raman-Nath diffraction), whereas for abnormal diffraction the intensity of first 

diffraction orders are dominant (also called Bragg diffraction). In 1937, David followed 

Brillouin’s power series-based analysis for the first and second diffraction orders and 

gave explicit expressions for the intensities of the two beams on the assumption that the 

intensities of the higher orders are negligible [76].  

In practice, a piezoelectric actuator coupled to an AOM crystal is used to excite it, 

typically using radio-frequency excitation. To achieve the required stress amplitudes, the 

piezoelectric actuator and driving circuits are designed to drive the PZT in either its 

fundamental mode or one of the harmonics of its fundamental mode [77, 78]. This causes 

the AOMs having an operational frequency band that is dependent on the designed 

actuator, and the size, geometry, and mechanical properties of the crystal. The frequency 

of the excitation controls the spatial wavelength of the refractive index variation in the 

crystal and angle of diffraction in the light wave, whereas the acoustic power controls the 

optical power distribution in the diffraction orders. 

The polarization of the light beam traversing through the AOM medium is 

affected by the specific crystal used. This is due to different strain-optic coefficients in 

crystals with different symmetry in their structures [79]. The AOM used in this study 

(IntraAction model AOM-602AF1) uses dense flint glass for the acousto-optic material 

[80]. Since glass is an amorphous material, its modulus of elasticity is the same in all 

directions. This leads to a polarization insensitive AOM, i.e. the diffraction will not affect 

the polarization of the light.  

All the experimental and theoretical models derived so far have considered pure 

sinusoidal acoustic waves for diffraction of light through AOMs. To the best of our 
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knowledge, there is no experiment or theoretical model in available literature related to 

diffraction of light by AOMs using FM waves; therefore, the current work is the first 

study that uses FM acoustic waves to produce FM light by an AOM. A synoptic 

theoretical model of FM wave propagation through the AOM and its impact on the 

diffracted light is presented to demonstrate the source of harmonics in the optical signal. 

4.2 Diffraction of Light by FM Waves using an AOM  

The polydyne interferometer is a single-detector system that uses light from a He-

Ne laser diffracted through an AOM that is being driven by an FM signal. A block 

diagram indicating major components of this system is shown in Figure 4-1. The FM 

signal generator was discussed in CHAPTER 3. The interaction of the laser beam with 

the FM signal in the AOM crystal is discussed in this section. Finally, the photodetector 

and signal processing unit, i.e. the Fourier transform, will be discussed in CHAPTER 5. 

To study interaction between the light transmitted through an AOM excited with an FM 

signal, an isotropic homogeneous medium traversed by a plane compression wave 

propagating in x  direction is modeled in Figure 4-2. 

 

Figure 4-1- Block diagram of the major components of the polydyne interferometer. 
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Figure 4-2- Acoustic waves diffracting light beam like a diffraction grating. 

As seen in Figure 4-2, the light beam traverses through a particular path due to 

refraction and diffraction inside the AOM crystal. Refraction bends the light beam at the 

interfaces of the crystal and air with angles equal to ( )   or ( )  ; whereas, 

diffraction adds specific angular shifts to the output beam if the following condition is 

satisfied [74]: 

      sin sin , 0, 1, 2,...q q q        .         (4-1) 

where, q  represents the diffraction orders,   is the acoustic wavelength. Therefore, as it 

has been explained by Debye and Sears [72] for the angular separation between 

successive orders equation (4-1) can be approximated by 

   1 1sin sinq q q q           .         (4-2) 

The photo-elastic effect in material couples the mechanical strains caused by 

acoustic waves (i.e. pressure waves) to the refractive index of the material [79]. 

Assuming the refractive index,  , variations of the AOM medium due to FM signal 

propagation through it are described by: 



x

y





Acoustic wave 

propagation 

direction

Light beam with 

wavelength   



1q  

0q 

1q 



z
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0 1 cos sinc m

x x x
t t t

V V V
     

       
            

       
 ,      (4-3) 

where, V  is the velocity of acoustic wave inside the AOM crystal, and 0  and 1  are the 

average and the amplitude of changes of the refractive index of the medium, respectively. 

Setting 
c c

x
t

V
 

 
  

 
 and 

m m

x
t

V
 

 
  

 
, equation (4-3) can be simplified as: 

  0 1 cos sinc m

x
t

V
     
 

    
 

 .          (4-4) 

Using the Jacobi-Anger expansion the cosine term in (4-4) can be expressed by 

         
1

cos sin
2

c m c mi n i n

c m n

n

e e J
   

   


  



   ,     (4-5) 

and 

      1
0

2

c m c mi n i n

n

n

x
t e e J

V

   
  


  



 
    

 
 .        (4-6) 

Substituting the refractive index variations in Maxwell’s equation for a linearly (

z  axis) polarized monochromatic plane electromagnetic wave gives: 

      
2 2 2

1
02 2 2 2

0
2

c m c mi n i nz z
n z

n

E E
e e J E

x y c t

   
 


  



     
      

     
 .  (4-7) 

Following David’s analysis [76] a form of solution can be considered for the z  

component of the electric field: 

    
,

c mi q n

z z i

q n

E E y e
   

 ,             (4-8) 

where,  ,qzE y  is the amplitude of the z component of the electric field in the qth 

diffraction order and will vary as a function of propagation distance y through the AOM 

crystal. Substituting (4-8) into equation (4-7) yields the series 
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       

    

          

          

2
2

0 , ,

2

,q,

2

2 11
,q,2

2 11
,q,2

sin

1
2

1
2

c m

c m

c m

c m

i q ncnm
cnm z q n

q n

i q nz n

q n

i q n

n z n cnm

q n

i q n

n z n cnm

q n

q
k qK E y e

c

d E y
e
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J E y q e
c

J E y q e
c

  

  
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  

 
 


  


  

 

 
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  

  
      



   

  









.  (4-9) 

where, 
2 2

cnm c m

c m

V V
K K nK n

 

 
    . Equating the coefficients of each exponential 

term in equation (4-9), the following recurrence relation can be obtained for  ,q,z nE y :  

 
    

 
          

22
2,q,

0 ,q,2

2 21

,q 1, ,q 1,2

sin

1 1
2

z n cnm
cnm z n

n

cnm z n cnm z n

d E y q
k qK E y

dy c

J
q E y q E y

c

 
 

 
    

   
    

   

      

, (4-10) 

in which, cnm c mn    . Equation (4-8) represents a superposition of waves of 

frequencies ,q n cnmq     for ( , 0, 1, 2,...)q n    . Moreover, the x-component of the 

wave vector for the wave of frequency q,n  is  sin cnmk qK  . Therefore, the sine of 

the angle 
q,n  which the wave of frequency 

q,n  makes with the y axis beyond the 

scattering medium is given by 

 
  

 q,

sin
sin sin 1

cnm cnm
n

cnm cnm

c k qK
q

q

 
 

  


  

 
.    (4-11) 

Assuming 
,q 0 ,q 1 ,q 2 ...z z zE E E      and 

   

 

,q 0

, ,

0 0

0 0 1

z z

z q n

E y E y B

E y for q





    


  

 as the 

proper boundary condition [74], a solution to equation (4-10) is as follows: 
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For 0q  : 

 
   

22

,q 0 2 2

0 ,q 02
sin 0

z

z

d E y
k E y

dy c


 





   
    

   

.         (4-12)  

A general solution for equation (4-12) is sought in the form 

   2
0 sin

,q 0

iky

zE y Be
 

  .         (4-13) 

For 1q   : 
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    
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22
2, 1,

0 ,q 1,2

21
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d E y
k K E y

dy c

J k E y
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

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

  
    

   

 

,  (4-14) 

the general solution becomes 
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 

 
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2 2

0 1 sin

1 ,q 0

, 1, 2 2
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4 4
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 

 

   
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   




 
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 
 

    
      

     

.   (4-15) 

Equations (4-13) and (4-15) are the first step of David’s method for an 

approximate solution from which a further trial and error solution can be developed. 

These solutions can be corrected by putting equation (4-15) into equation (4-10) and 

resolving for , 0z qE   and also repeating the solution for , 1z qE  . This procedure can be 

used iteratively to derive the exact solutions for the intensity and frequency components 

of higher orders of diffraction by FM waves. A similar procedure is presented by David 

[76] for diffraction by a single frequency sine wave. Equation (4-15) shows that the 

diffraction side-beams, 1q  , contain all the frequency components of the FM signal. 
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Therefore, each of these diffracted beams can be extracted using a slit and utilized as an 

independent FM light source in interferometry. 

4.3 Experimental Results of Diffraction 

An experiment was implemented to test the effects of angle of incidence of light 

into the acoustic wave,  , and modulation frequency and depth of the FM acoustic wave 

on the diffraction of the light through an AOM. The experimental apparatus for these test 

comprised, an IntraAction power amplifier model PA-4, an IntraAction AOM model 

602AF1, a single pivot angle-adjustment notch-hinge flexure stage, and a He-Ne laser, 

see Figure 4-3. 

 

Figure 4-3- Experimental setup to test the light diffraction by FM waves via an AOM. 
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Figure 4-4- Different diffraction patterns resulted from different incident angles. 

Distribution of energy among the diffraction side-beams is dependent on the angle 

of incidence of the light entering into the AOM crystal. To demonstrate the effects of 

incident angle on the diffraction pattern, the diffracted light beam is directed on a screen 

2 meters away from the AOM output. The intensity distribution in the side-beams is 

determined while changing the angle of incidence of light into the AOM crystal. The 

diffraction patterns for an FM signal of 10m   kHz and 60a   MHz are shown in 
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Figure 4-4. All the different regimes of diffraction shown in Figure 4-4 occur within 1  

of incidence angle change.  

Figure 4-4-a belongs to Raman-Nath diffraction which contains multiple orders of 

side-beams with comparable intensities. Figure 4-4-b to Figure 4-4-e show the Bragg 

diffraction where the angle into the AOM is varied over a relatively large range of 

approximately ±1 degree. Existence of weak higher order side-beams in Bragg diffraction 

as well as finite angular range for generating constructive interference that produces 

diffraction has been previously demonstrated by other researchers in Refs. [72, 73]. Since 

diffraction side-beam number -1 shown in Figure 4-4-e has the highest intensity among 

all the diffraction side-beams, it was extracted using a slit for use during interferometric 

measurements. The extracted diffraction side-beam is shown in Figure 4-5. 

 

Figure 4-5- Diffraction side-beam extraction by a slit; a) before using slit; b) after passing 

through the slit.  
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Figure 4-6- Experimental setup to evaluate the frequency spectra of diffraction side-

beams. 

To evaluate the frequency content of each of the diffraction side-beams, they were 

extracted by a slit and used in a Michelson interferometry stage, see Figure 4-6. In this 

experimental set-up, a He-Ne laser is diffracted through the AOM that is being driven by 

an electrical FM signal. The non-polarizing 50/50 beam splitter divides the diffracted 

light into two parts. One part is used in Michelson stage and the other part can be later 

used for different goals like stabilizing the laser or assuring that the diffraction side-

beams are stable throughout the measurements. One of the diffraction side-beams is 

extracted by a slit from all the diffraction side-beams. This side-beam is also divided into 

two parts by another non-polarizing 50/50 beam splitter to construct the reference and 

moving arm of the Michelson interferometer topology. These beams traverse through 

different arms of the interferometer and reflect back to interfere with each other on the 
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point they reach the splitting surface of the beam splitter. The interferometry stage is 

explained in more detail in CHAPTER 6. The interfered light launch into a photodetector 

and the photodetector output was monitored in an oscilloscope and a spectrum analyzer. 

The retroreflector of the moving arm is implemented on a linear stage that is actuated by 

a piezo-electric actuator. The photodetector used in this experiment is explained as the 

first prototype photodetector in CHAPTER 5.   

 

Figure 4-7- FM light interference resulted from a) experimental setup shown in Figure 

4-6 monitored in an oscilloscope, and b) theoretical FM waves interference. 
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The output of the photodetector is monitored in an oscilloscope, see Figure 4-7-a. 

This signal is similar to the theoretical FM waves interference signal shown in Figure 

4-7-b. The theoretical FM wave interference is simulated by accounting first 10 orders of 

the modulation harmonics with different amplitudes as  

   
10

1

sin 2k m k

k

V t V kf t 


        (4-16) 

where, kV  and k  are the thk  harmonics amplitude in volts and phase in radians that are 

considered to be constant with values 

1 2 3 4 5

6 7 8 9 10

1 2 3 10

1, 0.7, 0.48, 0.32, 0.28,

0.2, 0.15, 0.05, 0.2, 0.2,

, 0.5, ,..., 1.5

V V V V V

V V V V V

   

     
 

      
     

. 

To demonstrate that the interference of each of the diffraction side-beams in the 

Michelson stage results in stable harmonics of the modulation frequency of the acoustic 

FM waves, the frequency spectra of the photodetector signal was studied for different 

modulation frequencies. Examples of these spectra are shown in Figure 4-8 for mf  of 5 

kHz and 25 kHz. As seen in Figure 4-8, the interfered signal contains multiple harmonics 

of the modulation frequency as it was expected from the theoretical analysis of frequency 

content of FM signals interference. Results shown in Figure 4-7 and Figure 4-8 reveal 

that each of the diffraction side-beams contains the frequency components of the electric 

FM signal that is driving the AOM. Thus, the main goal of patching the electric FM 

signal into a laser beam has been achieved.  
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Figure 4-8- Frequency spectra of the photodetector signal for a) 5mf   kHz, and b) 

25mf   kHz. 
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CHAPTER 5 SIGNAL DETECTION 

 

 

This chapter consists of three sections. Section 5.1 presents the design of two 

photodetector circuits each of which with different detection bandwidth and noise 

characteristics. Section 5.1 presents the extraction of modulation harmonics from the 

interfered FM light by analog lock-in and demodulation techniques. Section 5.2 presents 

the application of FPGA-based synchronous discrete Fourier transform algorithm for 

extraction of modulation harmonics in the interfered FM light beams. 

5.1 Photodetector Design 

Photodiodes are high impedance sensors used to detect the intensity of light that 

operate either in photovoltaic mode (with zero bias) or in photoconductive mode (with a 

reverse bias). These two operation modes are presented in Figure 5-1. Photovoltaic mode 

provides the most precise linear operation, while the photoconductive mode results in 

higher switching speeds at the expense of linearity. Under reverse bias conditions, a small 

amount of dark current flows even when there is no illumination. The dark current 

leakage can be compensated by a second photodiode of the same type in the noninverting 

input of the op-amp, see Figure 5-2. 

Three factors influence the response time of a photodiode: 1) the charge collection 

time of the carriers in the depleted region, 2) the charge collection time of the carriers in 

the un-depleted region, and 3) the RC time constant of the diode circuit combination. 
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Because photodiode junction capacitance is dependent on its diffused area and the 

applied reverse bias, faster rise times are obtained with smaller diffused area photodiodes 

and larger applied reverse biases.  

 

Figure 5-1- Photovoltaic and photoconductive modes. 

 

Figure 5-2- Dark current compensation in photoconductive mode [81]. 

There are several important amplifier characteristics that should be considered for 

achieving a desirable high signal to noise ratio when the incident light contains 

substantial noise. Such characteristics are: gain bandwidth, input offset voltage, input 

noise voltage, input bias current, input offset current, and input noise current [82]. There 

are two general amplifier circuits for photodetectors: pre-amplifier and transimpedance 

+

VBIAS

Photoconductive

+

Photovoltaic

+5 V

RF

VBIAS

-5 V

+

CF

0
.1

 μ
F

RF
-5 V



60 

 

 

amplifiers [82], see Figure 5-3. The current to voltage conversion mechanisms in these 

two amplifier configurations are different. The pre-amplifier circuit converts the current 

to voltage through the resistor to ground, SR , and since the op-amp is amplifying the 

voltage it is called a voltage amplifier. In the transimpedance circuit, the amplifier itself 

acts as a current-to-voltage convertor and this is why the circuit is often called current 

amplifier. Bipolar Junction Transistors (BJT) op-amps provide a better performance for 

pre-amplifier configuration because this configuration is less sensitive to current noise 

and highly sensitive to voltage noise. Contrary to the pre-amplifier circuit, the 

transimpedance configuration is sensitive to current noise. Therefore, Field Effect 

Transistor (FET) op-amps are a better choice for the transimpedance setup. In general a 

photoconductive transimpedance circuit provides the highest detection speed among all 

of the four possible configurations, i.e. photoconductive pre-amplifier, photoconductive 

transimpedance, photovoltaic pre-amplifier, and photovoltaic transimpedance 

configurations. 

 

Figure 5-3- Pre-amplifier and transimpedance configuration of photodetector circuits. 
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Different harmonic detection methods, i.e. lock-in amplifiers and FPGA-based 

discrete Fourier transform, require different bandwidths. This leads to different 

photodetector design requirements. At the start of this project, two Stanford lock-in 

amplifiers model SR850 [83] were used for harmonics extraction from the detected 

signal; the photodetector designed for this step of the project is discussed in section 5.1.1. 

As discussed in detail in section 5.2, the lock-in amplifiers limit the speed of the 

displacement measurement because of their detection bandwidth limits. To overcome this 

bandwidth limitation a synchronous Fourier transform algorithm in an FPGA microchip 

was developed to boost the speed of measurement substantially. The FPGA-based 

harmonics extraction needed a photodetector with specific characteristics that are 

discussed in section 5.1.2. 

5.1.1 First photodetector  

The first photodetector was implemented by modifying different photovoltaic and 

photoconductive transimpedance configurations discussed in Refs. [84, 85], see Figure 

5-4. All the prototypes that are shown in Figure 5-5 are based on the circuits presented in 

Figure 5-4 with different photodiodes and op-amps. Among all the photodetectors 

prototyped based on the circuits in Figure 5-4, the photovoltaic transimpedance 

photodetector with BPX61 photodiode [86] provided the best signal to noise ratio. The 

photodiode of this circuit is followed by a high-pass filter with cut-off frequency of 100 

Hz to decrease the DC-level fluctuations that resulted from homodyne part of the light 

intensity from the Michelson interferometer experiments. Reducing the DC-level 

fluctuations enables the subsequent amplification stage to dedicate a greater portion of its 

gain to higher frequency components, including the harmonics of modulation frequency, 
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which consequently increases the sensitivity of the photodetector circuit to fluctuations at 

harmonics of modulation frequency.  

 

Figure 5-4- The photovoltaic and photoconductive transimpedance photodetector circuits. 

 

Figure 5-5- Different prototypes of the first photodetector. 

R1
+

+5 V

-5 V

LT1028

R2

C1

R3

R4

Photovoltaic Transimpedance

+

-5 V

R2

+5 V

-5 V

LT1028

C2

R3

C1
+5 VR1

Photoconductive Transimpedance



63 

 

 

5.1.2 Second photodetector 

To achieve the desired displacement measurement speed of 10 mms-1 with 50 nm 

resolution, the phase signal should be detectable at a bandwidth greater than 200 kHz 

which requires the modulation frequencies of about 200 kHz. Furthermore, to extract the 

phase information from 10 harmonics of the modulation frequency, this requires 200 kHz 

detection bandwidth centered around 2 MHz. Therefore, the photodetector should be 

designed to provide a detection bandwidth of up to 2.1 MHz. This goal can be achieved 

by a preamp photodetector circuit using a photodiode with small junction capacitance 

followed by an op-amp with picoamps of input bias current and low input offset voltage 

to minimize the error. The output of the photodetector circuit should be fed into an 

Analog-to-Digital Convertor (ADC) with conversion speed of greater than 20 MHz to 

provide at least 10 samples per period for 2 MHz signal. 

Looking for characteristics of different photodiodes, OSRAM Opto 

Semiconductors SFH 2701 PIN photodiode seems very promising as it has a small 

junction capacitance of 3 pF typical, 5 pF maximum for 0 V bias. The typical capacitance 

is 1.7 pF for 5 V reverse bias. Measurements in the circuit were all taken with a reverse 

bias of 5 V. The AD8065 op-amp with a very small input bias current and offset voltage 

of 2 pA and 400 µV, respectively, satisfies the required bandwidth and input 

characteristics. The AD9629-20 is a good candidate for a 20 MHz sampling rate ADC 

with 12 bits of resolution. This photodetector circuit followed by the ADC is shown in 

Figure 5-6. Detailed analysis of the noise and resolution matching for this photodetector 

is presented in [81]. The circuit presented in this study is a modified version of the circuit 

presented in [81] to cancel the DC part of the signal for preventing the ADC from 
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overflowing by the unnecessary DC part of the detected signal. A photo of the modified 

photodetector is shown in Figure 5-7. 

 

Figure 5-6- Photodiode preamp system with dark current compensation [81]. 

 

Figure 5-7- Modified photodetector for use with FPGA board. 
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5.2 Harmonics detection by analog lock-in amplifiers 

As mentioned in CHAPTER 2, the phase information is extracted from the 

amplitudes of the harmonics of modulation frequency in the interfered FM light intensity 

measured by the detector. To this end, the detected signal is transferred to the frequency 

domain using Fourier transform. Lock-in amplifiers use analog demodulators to mix the 

harmonics of any particular frequency that is connected to their external clock to extract 

the Fourier coefficients of those harmonics in a signal. In fact, these analog demodulators 

apply fast Fourier transform to the signal. A schematic of this demodulation technique is 

represented in Figure 5-8. The low-pass filter, in Figure 5-8, after the mixer has a cut-off 

frequency of one-tenth of the reference input, i.e. desired frequency to be extracted. This 

limits the bandwidth of analog lock-in / demodulation circuits to one-tenth of the 

frequency to be extracted. 

 

Figure 5-8- Schematic of Fourier transform implementation through analog 

demodulators. 
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see Figure 5-9. These lock-in amplifiers have a detection bandwidth of 1 mHz to 102 kHz 

for detection of any first 10 harmonics of the reference input. In an effort to increase 

demodulation bandwidth, AD630 demodulators [87] were used to create a compact lock-

in amplifier, see Figure 5-10. This lock-in circuit provides 350 kHz bandwidth for 

extraction of amplitude of the reference signal frequency component present in the 

demodulation signal input. The results of measurements with these lock-in amplifiers are 

discussed in CHAPTER 6. 

 

Figure 5-9- DSP lock-in amplifiers model SR850 [83]. 

 

Figure 5-10- Compact lock-in amplifier circuit using AD630 microchip [87]. 
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5.3 Harmonics detection by FPGA-based Fourier transform 

FPGA technology provides a vehicle for ultrafast parallel signal processing. 

Computationally the special orthogonality property of Fourier transform over singular or 

multiple complete period/s of detection frequency [88] provides a unique opportunity to 

substantially increase the detection bandwidth in our system. Combination of 

orthogonality property of synchronous discrete Fourier transform and the unprecedented 

speed of parallel signal processing in FPGAs has been the main incentive to develop an 

FPGA-based synchronous discrete Fourier transform code to extract the harmonics of 

modulation frequencies in our system. Furthermore, as it was explained in section 3.4.3, 

the AD9833 DDS can generate modulation frequency of 710 32 312500mf    Hz 

without any truncation error due to its look-up table limits. Therefore, if a 32 sample 

Fourier transform is implemented in FPGA that is synchronously being timed with the 

same 10 MHz atomic clock, then this number of samples used in the Fourier transform 

covers exact periods of the modulation frequency. This guarantees the compatibility of 

the implemented Fourier transform in FPGA with the orthogonality feature of Fourier 

transform.  

To calculate displacement from an interferometer sensor, the temporal phase of 

selected modulation harmonic pairs should be extracted from the measured interference 

intensity. Individual harmonic frequency amplitudes are measured by applying discrete 

Fourier transform algorithm to the signal from the photodetector. The discrete Fourier 

transform is developed by a VHDL code on an FPGA microchip that is being timed with 

the same atomic clock that is timing the FM signal generator to synchronize all the 
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timings in the system. The discrete Fourier transform algorithm has been developed on 

the commercial FPGA board model NEXYS4 DDR [89], see Figure 5-11. 

 

Figure 5-11- NEXYS 4 DDR board. 

The idea behind Fourier transforms is that if  x t  is a periodic function with 

period, T , it is possible to expand this into a series of harmonics with integer multiple 

frequencies: 
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If we use complex notation, equations (5-2) can be combined into a single 

equation using 
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to give 
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Now, if the continuous time-series  x t  is not known and only equally spaced 

samples are available as    , 0,1,2,..., 1rx r N  , where t r  , and T N  . In such 

case, the integral in equation (5-4) may be approximated by summation 
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Figure 5-12- Riemann sum approximation involved in calculation of Fourier coefficients 

from a discrete series, rx , rather than a continuous function,  x t . 
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Assuming the equations (5-4) and (5-5) result in equal values for kX  is identical 

to assuming that the total area under the curve shown in Figure 5-12 is given by the sum 

of all the shaded strips [90]. Substituting T N   into (5-5) gives the approximate 

formula for the Fourier transform, i.e. discrete Fourier transform, as 

 
1

2

0

1 N
i kr N

k r

r

X x e
N








                  (5-6) 

The discrete Fourier transform that is implemented in the FPGA microchip uses 

the equation (5-6) at each time point and sweeps through the measured data, rx  to 

calculate the Fourier coefficients through the time. This means the coefficients calculated 

from the series 0 1 1, ,..., Nx x x   are considered to be at 0t t , those calculated from the 

series 1 2, ,..., Nx x x  belong to 1 0t t  , and those calculated from the series 

2 2 1, ,..., Nx x x   belong to 2 1t t  . This algorithm gives a method to calculate the Fourier 

coefficients with time interval of   if the FPGA microchip is fast enough to execute all 

the calculations for equation (5-6) in   timeframe. Schematic of the detected signal, rx , 

path through different signal processing units of FPGA to extract the first harmonic of mf

, 1R , is shown in Figure 5-13. 

In the schematic shown in Figure 5-13, the numbers  0,1,2,...,15  represent 

 0,1,2,..., 1r N   in equation (5-6). Also, the harmonic frequency in this algorithm is 

determined by the update rate of rx  divided by the number of samples used in Fourier 

transform, N . For example, if the photodetector ADC output rate is 10 MHz and a 32 

sample Fourier transform algorithm is implemented, the detection frequency will be equal 
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to 312.5 kHz. Averaging the measured signal before applying the Fourier transform can 

reduce the high-frequency content of the signal in cost of a small time delay in the 

processed signal. Also averaging the calculated coefficients through the time can reduce 

some of the noise in the calculated Fourier coefficients. 

 

Figure 5-13- Schematic of FPGA-based, 16 sample, discrete Fourier transform for 

extraction of the amplitude of first harmonic in the detected signal, rx . 
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Figure 5-14- Experimental setup to measure the frequency response of discrete Fourier 

transform. 

To verify that the Fourier transform algorithm that is being implemented in the 

NEXYS 4 DDR board’s FPGA is correct, different VHDL codes for different sampling 

rates and numbers of Fourier transform algorithm were programmed in Xilinx Vivado 

software [91]. To evaluate the performance of the implemented Fourier transform 

algorithms, an experiment was set up, see Figure 5-14. Two important characteristics of 

the discrete Fourier transform algorithm are evaluated with this experimental setup: 1) 

frequency dependency of the detection bandwidth, 2) phase extraction speed limit. The 

frequency-dependency of the Fourier transform detection bandwidth is assessed by 

programming the on-board 1 MHz ADC of the FPGA to detect the amplitude of the 

signal that is connected to the analog Pmod pins of the NEXYS 4 DDR board. The 

frequency and amplitude of the signal are changed and the detected values are 

demonstrated in the 7-segment LEDs of the FPGA board. Results of this experiment are 
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shown in Figure 5-15 and Figure 5-16 for detection frequencies of 25 kHz and 80 kHz, 

respectively. 

 

Figure 5-15- FPGA-based Fourier transform spectrum response for 25 kHz signal. 

 

Figure 5-16- FPGA-based Fourier transform spectrum response for 80 kHz signal. 
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Figure 5-15 and Figure 5-16. As seen in these figures, the measured frequency response 

is compatible with theory. Also, the detection bandwidth of the discrete Fourier transform 

is highly dependent upon the detection frequency. The averaging after calculation of the 

Fourier coefficients affect the detection bandwidth if the number of averaging is higher 

than number of samples, N , as well. This averaging affects the phase of the detected 

frequency that can be determined from Lissajous curves showing the Fourier coefficients 

of first and second harmonic of modulation frequency versus each other, see Figure 5-17 

to Figure 5-24. To evaluate the phase extraction speed limit of the Fourier transform, the 

simulation modules of the Vivado software was used as it is discussed here. First a 12-

point sampling, 12-point averaging, 960 kHz sampling rate Fourier transform algorithm 

was programmed in Vivado software to detect two frequencies of 80 kHz and 160 kHz as 

the first and second harmonics of the desired modulation frequency, 960 12 80mf    

kHz. Then, the ADC part of the code was deactivated and a “.txt” formatted simulation 

file was generated to mimic the detected signal inside the FPGA microchip. This signal 

contains a series of data generated by 

       
3 3

1 1

sin 8 sin cos cosr m r m r

p p

x p t p t Noise    
 

       ,   (5-7) 

where,   is the displacement related optical phase that is a sinusoidal function of time 

represented by    sin rA t    , m  is the angular modulation frequency, and Noise  

is a random noise with maximum signal-to-noise amplitude ratio of 0.1, i.e. -20 dBm. 

Results of this on-chip simulation for maximum speeds of 15 μms-1, 1 mms-1, 5 mms-1, 

7 mms-1, and 10 mms-1 are shown in Figure 5-17 to Figure 5-21, respectively. 
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Figure 5-17- Lissajous of Fourier transform coefficients of first and second harmonics, 

and displacement calculated from these harmonics coefficients, compared with the 

applied displacement for maximum displacement speed of 15 μms-1. 
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Figure 5-18- Lissajous of Fourier transform coefficients of first and second harmonics, 

and displacement calculated from these harmonics coefficients, compared with the 

applied displacement for maximum displacement speed of 1 mms-1. 
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Figure 5-19- Lissajous of Fourier transform coefficients of first and second harmonics, 

and displacement calculated from these harmonics coefficients, compared with the 

applied displacement for maximum displacement speed of 5 mms-1. 
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Figure 5-20- Lissajous of Fourier transform coefficients of first and second harmonics, 

and displacement calculated from these harmonics coefficients, compared with the 

applied displacement for maximum displacement speed of 7 mms-1. 
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Figure 5-21- Lissajous of Fourier transform coefficients of first and second harmonics, 

and displacement calculated from these harmonics coefficients, compared with the 

applied displacement for maximum displacement speed of 10 mms-1. 
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As seen in Figure 5-17 to Figure 5-21, the Lissajous curves transfer from an 

ellipse to an annulus by increasing the speed of displacement. Since the accuracy of the 

calculated phase from the Lissajous curves decreases by the growth of the annulus width, 

the calculated displacements show larger deviations from the applied displacement at 

higher speeds. These simulation reveal that the detection speed limit of the implemented 

Fourier transform to be around 7 mms-1 for 1 MHz ADC sampling rate. The speed of 

phase calculation by the Fourier transform can be boosted by either using lower numbers 

of samples per period of modulation frequency or by increasing the sampling rate of the 

ADC. The prior method results in a wider detection bandwidth and in its ultimate limit 

causes aliasing issues if the sampling frequency is less than 2 times the detection 

frequency.  

In this research the second method was used to increase speed of measurement. 

To this end, the second photodetector was used to provide sampling rates up to 20 MHz. 

However, the digital signal processing unit that calculates square root of the amplitudes 

of the harmonics inside the FPGA microchip limits the phase calculation speed to 10 

MHz. Therefore, to evaluate the speed of displacement measurement in the FPGA board 

a 10 MHz sampling rate Fourier transform algorithm with 32 samples per period 

followed by 32 points averaging was implemented and the on-chip simulations were 

conducted for this code as well. The range of error vs. the speed resulted from 

simulations by the 12-sample, 80 kHz bandwidth Fourier transform and 32-sample, 312.5 

kHz bandwidth Fourier transform are shown in Figure 5-22. Also, the results of on-chip 

simulations of 32-sample Fourier transform for speeds of 20 mms-1 and 30 mms-1 are 

presented in Figure 5-23 and Figure 5-24, respectively. As seen in these three figures, the 
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speed limit has increased up to 20 mms-1 with phase-unwrapping-related displacement 

errors of less than 20 nm. The 32-sample Fourier transform is used in real measurements. 

The main module of the VHDL code for 32-sample Fourier transform is presented in 

APPENDIX C. Also, the VHDL code that was developed in Vivado 2018.3, the 

LabVIEW code that was generated in LabVIEW 2017, and all the Arduino codes are 

attached to this document for future use. 

 

Figure 5-22- Error of 12-sample and 32-sample Fourier transforms vs. different speeds. 
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Figure 5-23- Lissajous of 32-sample, 32-averaged Fourier transform coefficients of first 

and second harmonics, and displacement calculated from these harmonics coefficients, 

compared with the applied displacement for maximum displacement speed of 20 mms-1. 
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Figure 5-24- Lissajous of 32-sample, 32-averaged Fourier transform coefficients of first 

and second harmonics, and displacement calculated from these harmonics coefficients, 

compared with the applied displacement for maximum displacement speed of 30 mms-1. 
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CHAPTER 6 DISPLACEMENT MEASUREMENT 

 

 

This chapter consists of four sections that present the displacement measurements 

by standard laboratory equipment and analog demodulator circuits in section 6.1, 

displacement measurement results using FPGA-based discrete Fourier transform in 

section 6.2, synchronization issues between LabVIEW FPGA and the NEXYS4 DDR 

board in section 6.3, and suggestions for future works in section 6.4. 

6.1 Measurements by analog lock-in amplifiers  

The first experimental setup to evaluate displacement measurement by different 

pairs of modulation harmonics extracted by DSP lock-in amplifiers is shown in Figure 

6-1. This setup comprises a piezoelectrically actuated translation stage with a moving 

mirror that is monitored by the polydyne interferometer. To evaluate the displacement 

measured by the polydyne interferometer, a commercial heterodyne laser interferometer 

(Hewlett Packard model 5529A [92]) is used to simultaneously measure the moving 

mirror as shown in Figure 6-1. The output of the photodetector shown in Figure 6-1 is 

connected to the signal input of the DSP lock-in amplifiers shown in Figure 5-9. Also, the 

modulation signal output from the FM board shown in Figure 5-13 is connected to the 

reference input of the lock-in amplifiers. Since the DSP lock-in amplifiers provide 

detection bandwidth up to 102 kHz, modulation frequencies of less than 10 kHz were used 

for this experiment so that up to 10 modulation harmonics can be measured. The lock-in 
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amplifiers are set to different harmonics of the modulation frequency and the amplitude 

of the detected harmonics are collected using a LabView program. An example of 

amplitude variation of detected modulation signal harmonics while a sinusoidal 

displacement is injected to the moving arm of the interferometer is shown in Figure 6-2. 

Plotting these amplitudes versus each other results in a Lissajous curve, see Figure 6-3 

for Lissajous loci of different harmonic pairs from different measurements. The spin of 

the Lissajous curve is dependent on the direction of the displacement. 

 

Figure 6-1- Apparatus for interferometric displacement measurement, a) polydyne 

interferometer setup, b) added optics for the reference interferometer. 
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Figure 6-2- Modulation harmonics amplitude variations due to a sinusoidal displacement. 

To extract the phase variations on the Lissajous curve, the elliptic curves is first 

normalized into a circle of unit radius, see Figure 6-4, then the phase is calculated using 

the quadrature method explained in CHAPTER 2. After unwrapping the measured phase, 

the displacement is extracted using equation (2-10). Among all the possible combinations 

of harmonic pairs from harmonics 1 to 5, the harmonics pair 2 and 5 (H2-H5 pair) were 

in-phase and did not lead to a smooth unwrapped phase. Therefore, the phase difference 

between them was not detectable for the unwrapping algorithm. 
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Figure 6-3- Lissajous curves from different harmonic pairs of 10mf   kHz. 

To illustrate displacement measurement from the unwrapped phase, Figure 6-5 

shows an example of the measured displacement with harmonic pairs (H1-H2) for FM 

signal of 60cf   MHz and 5mf   kHz. The displacement measured by the HP 

interferometer, and the difference between the HP interferometer and H1-H2 

measurements (labelled deviation in this study) are also shown in this figure. The 

displacement measured by the reference interferometer has been artificially shifted +0.5 
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µm to make both the HP interferometer and the H1-H2 measurements visible in the plot. 

Similar data is obtained for all other harmonic pairs and the RMS of deviations for these 

measurements are presented in Table 6-1. These results show deviations within ±40 nm. 

The deviations, which contains both drift and noise, are most probably due to different 

metrology loops determined by the different locations of beam splitters and light sources 

used in the HP and polydyne interferometers. As seen in Figure 6-1, the moving arm of 

the HP interferometer is longer and consequently more exposed to the ambient variations 

than that of the polydyne interferometer. Also, the detector of the HP interferometer is 

located on the ground that is separated from the vibrational isolated basement of the 

optics table. This causes the HP interferometer to be more susceptible to environmental 

vibrations. All these differences between the HP and the polydyne optics setup as well as 

the resolution limit of the HP interferometer that is about 9 nm contribute in deviations 

between the measurements by these interferometers. 

 

Figure 6-4- Normalized Lissajous curve. 
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Figure 6-5- Displacement measured by reference interferometer and H1-H2. 

Table 6-1- RMS of deviations between reference interferometer and harmonics pairs 

measurements. 

Harmonic 

pairs 
RMS of deviations (m) for 

measurements by 5mf   kHz 

RMS of deviations (m) for 

measurements by 10mf   kHz 

H1-H2 0.009 0.013 

H1-H3 - 0.012 

H1-H4 0.011 0.011 

H1-H5 0.012 0.011 

H2-H3 0.013 0.009 

H2-H4 0.009 0.011 

H2-H5 0.011 - 

H3-H4 0.012 0.012 

H3-H5 0.010 0.008 

H4-H5 0.011 0.009 

 

To evaluate the temporal stability of the system, a drift test was conducted by 

monitoring interferometer outputs while all components remained stationary. The optical 

path lengths for the reference and polydyne interferometers were 50 mm and 20 mm, 

respectively. In these tests the metrology loops were different and there was a small Abbe 
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error of about 10 mm with misalignment between axes of two interferometers of up to 0.1 

radians. However, for drifts of less than 1 µm these effects are likely to be insignificant. 

Temperature, pressure and humidity of the laboratory were monitored during the drift 

test. Optical path length changes due to variations of these parameters can be calculated 

using a modified Edlen equation [93]: 

          
1 2 3

20 760 50 4c m m T P H

A A A

L L L K T K P K RH A         ,     (6-1) 

where, cL
 
is the corrected optical path length, mL  the measured optical path length, 

79.5 10TK    (ºC-1), T  the temperature in (ºC), 
73.6 10PK    (mmHg-1), P  the 

atmospheric pressure in (mmHg), 
85.0 10HK    (RH-1), and RH  is the relative 

humidity. The correction factors 1A , 2A , 3A , and 4A  based on the measured temperature, 

pressure, and humidity are shown in Figure 6-6. Also, the drift test results are presented 

in Figure 6-7. 

 

Figure 6-6- Length correction coefficients for temperature, 1A , pressure, 2A , humidity, 

3A , and total, 4A . 
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Figure 6-7- Drift test results for HP and polydyne interferometer. 

From Figure 6-7, it can be seen that the displacement variations are comparable 

and of the order of 0.6 µm. A simple calculation for an optical path length of 20 mm and 

Edlen correction of 9 × 10-6 indicates a deviation of 0.18 µm. Assuming a thermal 

expansion of the setup comparable to aluminum (24 × 10-6 ºC-1) indicates a deviation of 

0.58 µm. These two effects predict 0.76 µm variation compared with an observed drift of 

0.6 µm over a twenty four hour period. These calculations ignore the complexity of the 

translation stage and alignment mechanism that can also move during the drift test. 

Although the optical path length of the reference interferometer was longer, its measured 

drift was around 0.5 µm. During this drift experiment the laser, the AOM, and all other 

system components of the polydyne interferometer were mounted on an aluminum 

breadboard plate; this plate was, in turn, mounted onto a rigid table. For the reference 

interferometer, the beam splitter was mounted directly onto the rigid table, while only its 

moving mirror was connected onto the moving stage of the apparatus. Hence, the 

metrology loops for these two systems were considerably different. However, we believe 
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that the majority of the observed deviations were due to refractive index and thermal 

expansion effects. Notwithstanding this, it is clear that the drift and temperature, pressure, 

and humidity effects are clearly correlated. 

 

Figure 6-8- Lissajous measured by AD630 circuits at speeds of 1, 2, 14, and 15 μms-1. 

Displacement measurement from different modulation harmonics and the drift test 

results showed the feasibility of phase measurement by polydyning technique. However, 

the speed of measurement was limited to a few hundred nm.s-1 because of the low 

bandwidth of the DSP lock-in amplifiers. To increase this speed limit, an experiment 

similar to the one shown in Figure 6-1 was set up using AD630 circuits instead of DSP 

lock-ins. Results of this experiment in the form of Lissajous curves for different speeds 
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are shown in Figure 6-8. As shown in Figure 6-8, increasing the displacement speed from 

1 μms-1 to 15 μms-1 changes a reasonably precise elliptic Lissajous to a very wide 

annulus Lissajous. Increasing the speed further deteriorates the Lissajous shape and 

increases the phase unwrapping error drastically. Results of measurements by the analog 

circuits showed that the AD630 demodulators limit the speed of measurement to 15 μms-

1. Based on discussions with industry users, it was desirable that this limit be increased to 

10 - 20 mms-1. To address this issue the synchronous FPGA-based Fourier transform is 

used and the results are show in the following section. 

6.2 Measurements by FPGA-based discrete Fourier transform  

To test the performance of the discrete Fourier transform algorithm developed in a 

NEXYS 4 DDR board, an experiment was setup as shown in Figure 6-9. This experiment 

also uses the same HP interferometer to evaluate polydyne interferometer measurements. 

The phase unwrapping algorithm of this experiment is somewhat different from the 

previous measurements. Due to the limits in the number of digital signal processing and 

memory units of the FPGA microchip of the NEXYS 4 DDR board, we could not 

implement the discrete Fourier transform and phase unwrapping algorithm together inside 

the FPGA microchip. Therefore, the amplitude of two harmonics are extracted by the 32-

sample Fourier transform in the FPGA and sent to a LabVIEW through the DAQ, see 

Figure 6-9. The digital data transfer from the FPGA to the LabVIEW uses a shared clock 

signal to time the data transformation. In the LabVIEW, an ellipse is fitted to the 

Lissajous that is developed by the amplitude of the detected harmonics through a 

calibration procedure. Then, the ellipse parameters are used to calculate the real-time 

phase of the Lissajous in a LabVIEW FPGA-code. The LabVIEW codes and the VHDL 
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code are available in an external memory that is attached to the hard-copy of this 

document. All the codes are commented thoroughly to be self-explanatory for the users. 

Because the LabVIEW could not read 16 bit data at rising and falling edge of 20 MHz, 

the sampling rate of the ADC was reduced to 10 MHz that showed more stable Lissajous. 

 

Figure 6-9- Experimental setup of polydyne interferometer with FPGA-based Fourier 

transform. 

Displacements with different amplitudes and frequencies were injected to the 

moving arm of the interferometer and were measured by the setup shown in Figure 6-9. 

Examples of these Lissajous for speeds of 2 mms-1, 4 mms-1, 7 mms-1, and 11 mms-1 

are shown in Figure 6-10. As seen in this figure for 7 mms-1 and 11 mms-1 Lissajous 
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curves, the averaging in the Fourier transform algorithm causes the detected harmonics 

amplitudes to construct two distinct Lissajous. The displacements measured at maximum 

speed of 2 mms-1 and the corresponding deviations between HP and polydyne 

measurements results are presented in Figure 6-11 and Figure 6-12, respectively. 

 

Figure 6-10- Lissajous and fitted ellipse to the results of measurements by 32-sample, 32-

point-averaged Fourier transform with 10 MHz ADC sampling rate and different 

maximum displacement speeds of 2, 4, 7, and 11 mms-1. 

The deviations depicted in Figure 6-12 contains a variety of error components 

including an Abbe error due to different metrology loops and a systematic error due to 

non-synchronous measurements with the HP and polydyne interferometers. 

Notwithstanding all these error sources, the polydyne and HP interferometers provide a 

maximum point to point deviations with ±50 nm and RMS of 20 nm for displacement 

measurements up to 11 mms-1, see Table 6-2. 
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Figure 6-11- Sinusoidal displacement with maximum speed of 2 mm.s-1 measured by 

polydyne (H1-H2) and HP interferometers. 

 

Figure 6-12- Deviations between HP and polydyne (H1-H2) displacement measurements 

at maximum speed of 2 mms-1. 
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Table 6-2- Span and RMS of deviations between HP and polydyne interferometers 

measurements. 

Maximum speed Deviations span RMS of deviations 

2 mms-1 -35 nm to 25 nm 15 nm 

4 mms-1 -35 nm to 25 nm 15 nm 

7 mms-1 -40 nm to 30 nm 18 nm 

11 mms-1 -45 nm to 40 nm 21 nm 

 

 

6.3 Synchronization issues 

Due to limits in the size and memory of the Artix 7 FPGA microchip that is used 

in NEXYS 4 DDR board, in the current experimental setup, the measured modulation 

harmonics amplitude is transferred from the NEXYS 4 DDR board into a National 

Instruments PXIe module, model NI7851R, to conduct real-time phase unwrapping on 

the phase of the measured harmonics amplitude. On one hand, the NI7851R does not 

provide external clocking option and its operation is not synchronous to the atomic clock. 

On the other hand, the data transfer speed between the NEXYS 4 DDR board and this NI 

module is very high, 320 Mbits-1. This results in a high possibility of systematic error 

occurrence due to non-synchronous operation of the NI module and the NEXYS 4 DDR 

board, i.e. some of the transferred digital data from the NEXYS 4 DDR board are skipped 

by the NI module. Also, the LabVIEW program that is storing data in the PXIe module 

operates in a real time system that has a speed limit of 1 MHz. All these parameters can 

cause systematic errors in the measurements by the current setup. To demonstrate effects 

of these systematic errors in the measurements, a specific displacement measurement at 

the maximum speed of 11 mms-1 and the corresponding deviations between the HP and 
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polydyne measurements in this experiment are shown in Figure 6-13 and Figure 6-14, 

respectively. 

 

Figure 6-13- Displacement measurement at maximum speed of 11 mms-1. 

 

Figure 6-14- Deviations between HP and polydyne measurements shown in Figure 6-13. 
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Measurements presented in Figure 6-13 and Figure 6-14 show deviations of about 

-1.2 μm to 0.3 μm between HP and polydyne interferometers. These figures demonstrate 

not only that the polydyne setup is not synchronous to the HP measurement but also the 

time intervals that they capture the data do not have the same repeatability. To further 

demonstrate the existence of systematic error in this measurement, theoretical sine 

equations were fit to each measurement using Excel solver for minimizing the least 

square method. These fit equations were plotted versus each other, see Figure 6-15. As 

seen in this figure, there is a phase difference between these two fit sine waves. Since this 

phase difference is smaller than the resolution of the captured data, it results in a 

systematic error when comparing HP and polydyne measurements. Furthermore, the 

amplitudes of the fit sine waves has about 20 nm difference that is due to the 

measurement resolution in both HP and polydyne systems. For the results presented in 

Table 6-2, all these systematic errors have been compensated and the best measurements 

at highest stable conditions have been used. 

 

Figure 6-15- Lissajous generated by depicting fit sine waves to displacement 

measurements by HP and polydyne interferometers. 
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6.4 Future work 

According to the issues explained in this section, here are a few suggestions for 

future work to both improve the repeatability and accuracy of the measurements by the 

polydyne interferometer, and to investigate different applications of the polydyning 

technique: 

1. Replace the NEXYS 4 DDR board with another evaluation board that has larger 

FPGA microchip to implement the phase unwrapping in the same FPGA board. This 

eliminates the need for NI PXIe module resulting in elimination of synchronization 

issues between the NI module and the atomic clock as well as increasing the speed 

and bandwidth of the measurement if a loock-up table approach is adopted for the 

new phase extraction method. NEXYS Video evaluation board [94] looks promising 

for this application, since it uses an FPGA microchip that provide digital signal 

processing units and other resources as twice as the one that is used in NEXYS 4 

DDR board. 

2. To miniaturize the system into a portable device operating based on a battery power, 

the Acousto-Optic Modulator should be replaced with another modulation technique. 

Optical phase modulation techniques like changing the optical path length of a laser 

beam in its traverse direction by applying oscillations into a quartz crystal seems to be 

a reasonably feasible and promising approach to solve this issue. Furthermore, the 

He-Ne laser diode and the PRS 10 atomic clock can be respectively replaced by a 

VBG-stabilized diode laser and a miniature atomic clock.  

3. Design and manufacture of a photodetector circuit board with 4 MHz band-width 

followed by an on-board FPGA unit will be the best approach to improve the 
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accuracy of the system along with reducing its size substantially. If this approach is 

adopted, the signal generation and processing units can be manufactured in a compact 

size to fit in a portable box. 

4. Applied Fourier transform on the measured signal to extract the phase and amplitude 

of the harmonics showed that the optical phase can be extracted from the sine and 

cosine terms of each harmonics as well. This reveals the existence of small non-linear 

terms in the FM light beam. A small perturbation analysis can provide more detailed 

insight and more relevant equations for the result of interference of each of the 

diffraction side beams. 

5. In the current interferometer set up, only one of the diffraction side beams is extracted 

via a mechanical slit for constructing polydyne interferometer. Since all the 

diffraction side beams contain the harmonics of modulation signal, the diffraction 

side beams that are currently being blocked by the slit can be used to implement a 

wide variety of interesting experiments just like multi-axis displacement 

measurement by a single AOM and multiple photodetectors. Also, multiple AOMs 

with different modulation frequencies can construct a multi-axis displacement 

measurement interferometer with a single photodetector.  

6. Primary measurements for a two-axis displacement measurement polydyne 

interferometer with a single photodetector [95] proved the existence of modulation 

harmonics of both axes in the measured signals spectra. However, simultaneous 

displacement measurement of both axes did not result in accurate measurements. This 

was most probably due to the high amount of noise that was injected from the moving 

arm of each of these axes to the other one as well as the interaction of two FM signal 
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generators through long cables. Implementing a more elaborate interferometry stage 

that can guide the beams from two AOMs properly can provide a better insight to this 

experiment. 

7. The polarization effects were neglected through all these experiments by using a 

linearly polarized He-Ne laser beam and non-polarization optics. However, the AOM 

and the beam splitters has a small polarization non-linearity that can affect the 

accuracy of the measurements. A comprehensive study on the polarization effects in 

the polydyne system can provide further insight to the extent of these effects and 

finally these nonlinearities can be compensated just like the study conducted on 

heterodyne interferometers in Ref. [96]. 
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APPENDIX A. ARDUINO CODE FOR FM BOARD 

 

 

The Arduino code used to program the FM board is presented here. This code is 

the modified version of the simple separate codes used for each microchip. It is 

developed in a library format for Arduino. Users should copy the codes 

“FMGenerate.CPP”, “FMGenerate.h” and “keywords” in separate “.txt” formatted files 

and keep the title of the files as “FMGenerate”, “FMGenerate”, and “keywords”. Then, 

these files should be copied to a folder with title “FMGenerate” inside the library 

directory of the Arduino. Finally, the code “FMGenerate_Arduino” can be executed in an 

Arduino software to program the DDS chips and the rheostat of the FM board. The code 

contains comments to guide the users to choose proper Arduino digital pins to be 

connected to the digital pins of the board.  

Appendix A.1 FMGenerate_Arduino 

/* 

This code was created on May 2017 for one FM board and expanded on Sept 2018 to program two FM 

boards and a Saji board for multi-axis polydyne interferometry. 

 

Created by Masoud Arablu. 

 

The FMGenerate.h includes the library and the values should be sent via a function like  

fmGenerate(long clk_,double PLLM_,long fm_1,long fc_1,double RPot_1,int ss3_1,int ss2_1,int IOU_1,int 

OSK_1,int SDIO_1,int SCLK_1,int ss1_1,int IOSync_1,int RESET_1,int PDCtl_1,... 

           long fm_2,long fc_2,double RPot_2,int ss3_2,int ss2_2,int IOU_2,int OSK_2,int SDIO_2,int 

SCLK_2,int ss1_2,int IOSync_2,int RESET_2,int PDCtl_2,... 

           long dfm,int SCLK_Saji,int DATA_Saji,int SS_Saji) 

  

This is a function that programms two FM boards and a Saji board separately for a two-axis polydyne 

interferometer. 

Digital ground of Arduino should be connected to one of the GND digital pins on the FM boards. 
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The parameters ending to _1 are for FM board one, _2 for FM board 2, and _ are for both FM boards. 

*/ 

 

#include <FMGenerate.h> 

 

long clk_, fm_1, fm_2, fc_1, fc_2, dfm; 

double PLLM_, RPot_1, RPot_2; 

int ss2_1,ss3_1,IOU_1,OSK_1,SDIO_1,SCLK_1,ss1_1,IOSync_1,RESET_1,PDCtl_1; 

int ss2_2,ss3_2,IOU_2,OSK_2,SDIO_2,SCLK_2,ss1_2,IOSync_2,RESET_2,PDCtl_2; 

int SCLK_Saji,DATA_Saji,SS_Saji; 

 

void setup()  

  { 

    clk_     = 10000000; // External Clock frequency. 10 MHz for the PRS10 atomic clock. 

    PLLM_    = 20;       // An integer between 4 and 20 to be multiplied in the multiplexer of the PLL in 

DDS2. 

    // Set Values for the FM board 1 

    RPot_1   = 20000;    // This is the resistance value of the rheostat of the FM board 1. Can vary from 0 to 

20000.   

    fm_1     = 312500;   // Modulation frequency of the FM board 1. 

    fc_1     = 60000000; // Carier frequency of the FM board 1. 

    PDCtl_1  = 12;       // Arduino digital pin number that is connected to the PwrDwnCtl pin of the FM 

board 1. 

    RESET_1  = 11;       // Arduino digital pin number that is connected to the Reset pin of the FM board 1. 

    IOSync_1 = 10;       // Arduino digital pin number that is connected to the IOSync pin of the FM board 1. 

    ss1_1    = 9;        // Arduino digital pin number that is connected to the SS1 pin of the FM board 1. 

    SCLK_1   = 8;        // Arduino digital pin number that is connected to the SCLK pin of the FM board 1. 

    SDIO_1   = 7;        // Arduino digital pin number that is connected to the SDIO pin of the FM board 1. 

    OSK_1    = 6;        // Arduino digital pin number that is connected to the OSK pin of the FM board 1. 

    IOU_1    = 5;        // Arduino digital pin number that is connected to the IOU pin of the FM board 1. 

    ss2_1    = 4;        // Arduino digital pin number that is connected to the SS2 pin of the FM board 1. 

    ss3_1    = 3;        // Arduino digital pin number that is connected to the SS3 pin of the FM board 1. 

 

    // Set Values for the FM board 2 

    RPot_2    = RPot_1;  // This is the resistance value of the rheostat of the FM board 2. Can vary from 0 to 

20000. 

    fm_2      = fm_1;    // Modulation frequency of the FM board 2.  

    fc_2      = fc_1;    // Carier frequency of the FM board 2. 

    PDCtl_2   = 25;      // Arduino digital pin number that is connected to the PwrDwnCtl pin of the FM 

board 2. 

    RESET_2   = 27;      // Arduino digital pin number that is connected to the Reset pin of the FM board 2. 

    IOSync_2  = 29;      // Arduino digital pin number that is connected to the IOSync pin of the FM board 2. 

    ss1_2     = 31;      // Arduino digital pin number that is connected to the SS1 pin of the FM board 2. 

    SCLK_2    = 33;      // Arduino digital pin number that is connected to the SCLK pin of the FM board 2. 

    SDIO_2    = 35;      // Arduino digital pin number that is connected to the SDIO pin of the FM board 2. 

    OSK_2     = 37;      // Arduino digital pin number that is connected to the OSK pin of the FM board 2. 

    IOU_2     = 39;      // Arduino digital pin number that is connected to the IOU pin of the FM board 2. 

    ss2_2     = 41;      // Arduino digital pin number that is connected to the SS2 pin of the FM board 2. 

    ss3_2     = 43;      // Arduino digital pin number that is connected to the SS3 pin of the FM board 2. 

 

    // Set Values for Saji board 

    dfm       = (fm_1-fm_2); // Frequency that should be generated by Saji board for beat detection. 

    SCLK_Saji = 44;      // Arduino digital pin number that is connected to the CLK pin of the Saji board. 

    DATA_Saji = 45;      // Arduino digital pin number that is connected to the DATA pin of the Saji board. 

    SS_Saji   = 46;      // Arduino digital pin number that is connected to the SS pin of the Saji board.  
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  FMGenerate 

fmGenerate(clk_,PLLM_,fm_1,fc_1,RPot_1,ss3_1,ss2_1,IOU_1,OSK_1,SDIO_1,SCLK_1,ss1_1,IOSync_

1,RESET_1,PDCtl_1,fm_2,fc_2,RPot_2,ss3_2,ss2_2,IOU_2,OSK_2,SDIO_2,SCLK_2,ss1_2,IOSync_2,R

ESET_2,PDCtl_2,dfm,SCLK_Saji,DATA_Saji,SS_Saji); 

  } 

 

void loop()  

{ 

} 

 

 

 

Appendix A.2 keywords 

FMGenerate KEYWORD1 

Transfer KEYWORD2 

 

 

 

Appendix A.3 FM_Generate.h 

// This is the Header file. 

 

#ifndef FMGenerate_h 

#define FMGenerate_h 

 

class FMGenerate 

{ 

 public: 

    FMGenerate(long clk_,double PLLM_,long fm_1,long fc_1,double RPot_1,int ss3_1,int ss2_1,int 

IOU_1,int OSK_1,int SDIO_1,int SCLK_1,int ss1_1,int IOSync_1,int RESET_1,int PDCtl_1,long 

fm_2,long fc_2,double RPot_2,int ss3_2,int ss2_2,int IOU_2,int OSK_2,int SDIO_2,int SCLK_2,int 

ss1_2,int IOSync_2,int RESET_2,int PDCtl_2,long dfm,int SCLK_Saji,int DATA_Saji,int SS_Saji); 

    void Pot(int ssp,double RPot,int SCLK,int SDIO); 

    void Transfer(int ControlWord, long FrequencyReg,int SCLK,int SDIO,int sst); 

    void DDS1(long fm,int SCLK,int SDIO,int ss2,long clk); 

    void DDS2(long fc,int SCLK,int SDIO,double PLLM,int ss1,int PDCtl,int RESET,int IOSync,int 

OSK,int IOU,long clk); 

 private: 

    int i; 

}; 

 

#endif 
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Appendix A.4 FM_Generate.CPP 

// This is the main CPP file. 

 

#include "Arduino.h" 

#include "FMGenerate.h" 

#include <math.h> 

 

FMGenerate::FMGenerate(long clk_,double PLLM_,long fm_1,long fc_1,double RPot_1,int ss3_1,int 

ss2_1,int IOU_1,int OSK_1,int SDIO_1,int SCLK_1,int ss1_1,int IOSync_1,int RESET_1,int 

PDCtl_1,long fm_2,long fc_2,double RPot_2,int ss3_2,int ss2_2,int IOU_2,int OSK_2,int SDIO_2,int 

SCLK_2,int ss1_2,int IOSync_2,int RESET_2,int PDCtl_2,long dfm,int SCLK_Saji,int DATA_Saji,int 

SS_Saji){ 

 // For FM board 1: 

 Pot(ss3_1,RPot_1,SCLK_1,SDIO_1);      //calling Pot  (AD5270) function 

        DDS1(fm_1,SCLK_1,SDIO_1,ss2_1,clk_);      //calling DDS1 (AD9883) function for 

cos(2.pi.fm1.t) 

 DDS2(fc_1,SCLK_1,SDIO_1,PLLM_,ss1_1,PDCtl_1,RESET_1,IOSync_1,OSK_1,IOU_1,clk_);

 //calling DDS2 (AD9951) function for cos(2.pi.fc1.t) 

  

 // For FM board 2: 

 Pot(ss3_2,RPot_2,SCLK_2,SDIO_2);             //calling Pot  (AD5270) function 

        DDS1(fm_2,SCLK_2,SDIO_2,ss2_2,clk_);      //calling DDS1 (AD9883) function for 

cos(2.pi.fm2.t) 

 DDS2(fc_2,SCLK_2,SDIO_2,PLLM_,ss1_2,PDCtl_2,RESET_2,IOSync_2,OSK_2,IOU_2,clk_);

 //calling DDS2 (AD9951) function for cos(2.pi.fc2.t) 

 

 // For Saji board: 

 DDS1(dfm,SCLK_Saji,DATA_Saji,SS_Saji,clk_);     //calling DDS1 (AD9883) function for 

cos(2.pi.dfm.t)      

} // end of FMGenerate configuration 

 

// defining Pot function here 

void FMGenerate::Pot(int ssp,double RPot,int SCLK,int SDIO){ 

 int DIN[16] = {0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0}; 

 unsigned long y1, z1; 

 pinMode(ssp, OUTPUT); 

 digitalWrite(ssp, 1); 

 pinMode(SCLK, OUTPUT); 

 digitalWrite(SCLK, 0); 

 pinMode(SDIO, OUTPUT); 

 digitalWrite(SDIO, 0); 

 digitalWrite(ssp, 0);// Enable the chip by taking ssp to logic LOW 

 delayMicroseconds(1);   

 // WRITING DIN 

 for (i = 0; i < 16; i++) { 

  digitalWrite(SCLK, 1); 

  digitalWrite(SDIO, DIN[i]); 

  digitalWrite(SCLK, 0);       

 } 

 digitalWrite(ssp, 1); // Disabling the chip by taking ssp to logic HIGH. 

 delayMicroseconds(1); 

 DIN[3] = 0; 

 DIN[4] = 0; 

 //Calculating correct ratio of potentiometer and bit-reading it to DIN[15:6] 
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 z1 = RPot*1023/20000; 

 y1 = (unsigned long)ceil(z1); 

 for (i = 0; i < 10; i++) { 

  DIN[15-i] = bitRead(y1, i); 

 } 

 digitalWrite(ssp, 0); // Enable the chip by taking ssp to logic LOW 

 delayMicroseconds(1);   

 // WRITING DIN 

 for (i = 0; i < 16; i++) { 

  digitalWrite(SCLK, 1); 

  digitalWrite(SDIO, DIN[i]); 

  digitalWrite(SCLK, 0);       

 } 

 digitalWrite(ssp, 1); // Disabling the chip by taking ssp to logic HIGH. 

 delayMicroseconds(1); 

} // end of Pot function 

 

// defining DDS1 function here 

void FMGenerate::DDS1(long fm,int SCLK,int SDIO,int ss2,long clk){ 

 int cw; 

 char _type = 's'; 

 //fm = fm*(268435456/(10*clk)); // Value which goes to the Freq Register 

        fm = long(fm*26.8435456); 

 pinMode(SDIO,OUTPUT); 

 pinMode(SCLK,OUTPUT); 

 pinMode(ss2,OUTPUT); 

    switch (_type){ 

  case 's': // s for Sine wave 

   cw = 0; 

  break; 

  case 't': // t for Triangle 

   cw = 16384; 

  break; 

  case 'p': // p for Sawtooth 

   cw = 5120; 

  break; 

    } //end of switch  

    Transfer(cw,fm,SCLK,SDIO,ss2); 

    digitalWrite(ss2,1); 

    Serial.println(); 

    delay(100); 

} // End of DDS1 function 

 

// defining Transfer function here 

void FMGenerate::Transfer(int ControlWord, long FrequencyReg,int SCLK,int SDIO,int sst){ 

  // writing Control Word: 

  digitalWrite(SCLK,0); 

  digitalWrite(sst,1); 

  digitalWrite(SCLK,1); 

  delayMicroseconds(1); 

  digitalWrite(sst,0); 

  for (byte i=0; i<16; i++) { 

    byte cwState = bitRead(ControlWord, i); 

    digitalWrite(SDIO,cwState); 

    delayMicroseconds(1); 

    digitalWrite(SCLK,0); 
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    delayMicroseconds(1); 

    digitalWrite(SCLK,1); 

  } 

  //writing Fine Tune: 

  digitalWrite(SCLK,0); 

  digitalWrite(sst,1); 

  digitalWrite(SCLK,1); 

  delayMicroseconds(1); 

  digitalWrite(sst,0); 

  // writing 01 to fm: 

  digitalWrite(SDIO,0); 

  delayMicroseconds(1); 

  digitalWrite(SCLK,0); 

  delayMicroseconds(1); 

  digitalWrite(SCLK,1); 

  digitalWrite(SDIO,1); 

  delayMicroseconds(1); 

  digitalWrite(SCLK,0); 

  delayMicroseconds(1); 

  digitalWrite(SCLK,1); 

  // Fine Tune to fm: 

  for (byte i=0; i<14; i++) { 

    byte ftState = bitRead(FrequencyReg, 13-i); 

    digitalWrite(SDIO,ftState); 

    delayMicroseconds(1); 

    digitalWrite(SCLK,0); 

    delayMicroseconds(1); 

    digitalWrite(SCLK,1); 

  } 

  // writing Control Word: 

  digitalWrite(SCLK,0); 

  digitalWrite(sst,1); 

  digitalWrite(SCLK,1); 

  delayMicroseconds(1); 

  digitalWrite(sst,0); 

  for (byte i=0; i<16; i++) { 

    byte cwState2 = bitRead(ControlWord+8, i); 

    digitalWrite(SDIO,cwState2); 

    delayMicroseconds(1); 

    digitalWrite(SCLK,0); 

    delayMicroseconds(1); 

    digitalWrite(SCLK,1); 

  } 

  // writing Coarse Tune: 

  digitalWrite(SCLK,0); 

  digitalWrite(sst,1); 

  digitalWrite(SCLK,1); 

  delayMicroseconds(1); 

  digitalWrite(sst,0); 

  // writing 01 to fm: 

  digitalWrite(SDIO,0); 

  delayMicroseconds(1); 

  digitalWrite(SCLK,0); 

  delayMicroseconds(1); 

  digitalWrite(SCLK,1); 

  digitalWrite(SDIO,1); 
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  delayMicroseconds(1); 

  digitalWrite(SCLK,0); 

  delayMicroseconds(1); 

  digitalWrite(SCLK,1); 

  // Coarse Tune to fm: 

  for (byte i=0; i<14; i++) { 

    byte state = bitRead(FrequencyReg, 27-i);    

    Serial.print(state); 

    digitalWrite(SDIO,state); 

    delayMicroseconds(1); 

    digitalWrite(SCLK,0); 

    delayMicroseconds(1); 

    digitalWrite(SCLK,1); 

  } 

} 

 

// defining DDS2 function here 

void FMGenerate::DDS2(long fc,int SCLK,int SDIO,double PLLM,int ss1,int PDCtl,int RESET,int 

IOSync,int OSK,int IOU,long clk){ 

 unsigned long y; 

 unsigned long z; 

 double x; 

 

        // CFR, ASF, ARR, FTW, and POW are the values that should be sent to the registers of the AD9951 

to program it properly. 

 // These values are available in AD9951 datasheet. 

 

 int CFR1[40] = {0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,  0,0,1,0,0,0,1,0,  0,0,0,0,0,0,1,0}; 

 int CFR2[32] = {0,0,0,0,0,0,0,1,  0,0,0,1,1,0,0,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,1,1}; 

 int ASF[24]  = {0,0,0,0,0,0,1,0,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0}; 

 int ARR[16]  = {0,0,0,0,0,0,1,1,  0,0,0,0,0,0,0,0}; 

 int FTW[40]  = {0,0,0,0,0,1,0,0}; 

 int POW[24]  = {0,0,0,0,0,1,0,1,  0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0}; 

 

   pinMode(PDCtl, OUTPUT);  // PwrDwnCtrl Pin 

 pinMode(RESET, OUTPUT);  // RESET Pin 

 pinMode(IOSync, OUTPUT); // IOSync Pin 

 pinMode(ss1, OUTPUT);    // Chip Select Pin 

 pinMode(SCLK, OUTPUT);   // CLOCK Pin 

 pinMode(SDIO, OUTPUT);   // Data Pin 

   pinMode(OSK, OUTPUT);    // OSK Pin 

   pinMode(IOU, OUTPUT);    // IOUPDATE Pin 

  

 // Initialize the pins to inactive mode 

 digitalWrite(PDCtl, 0); 

   delayMicroseconds(1); 

   digitalWrite(RESET, 0); 

   delayMicroseconds(1); 

   digitalWrite(IOSync, 0); 

   delayMicroseconds(1); 

   digitalWrite(ss1, 1); 

  delayMicroseconds(1); 

   digitalWrite(SCLK, 0); 

   delayMicroseconds(1); 

   digitalWrite(SDIO, 0); 

   delayMicroseconds(1); 
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   digitalWrite(OSK, 0); 

   delayMicroseconds(1); 

   digitalWrite(IOU, 1); 

   delayMicroseconds(1); 

   

 // Bitreading PLLM to CFR2<7:3> which is equivalent to CFR2[24:28] 

 z = (unsigned long)ceil(PLLM); 

 for (i = 0; i < 5; i++){ 

  CFR2[28-i]= bitRead(z, i); 

 } 

 // Calculating the frequency tuning word according to the desired frequency and external clock in the 

form of a float number x,  

 // ceiling it and then bitReading it into FTW[i] for 8<= i <=39  

 x = (4294967296.000/PLLM)*(fc/clk); 

 if ( x > 2147483648.0 ) { 

  x = 4294967296.000*(1-(fc/(PLLM*clk))); 

 } 

 y= (unsigned long)ceil(x); 

  for (i = 0; i < 32; i++) { 

 FTW[39-i]=bitRead(y,i); 

 } 

 //Toggle RESET: 

 digitalWrite(RESET, 1);  

 delayMicroseconds(1); 

 digitalWrite(RESET, 0);  

 delayMicroseconds(1); 

 // Taking the IOU Low: 

 digitalWrite(IOU, 0); 

 delayMicroseconds(1); 

 //Toggle IOSync: 

 digitalWrite(IOSync, 1);  

 delayMicroseconds(1); 

 digitalWrite(IOSync, 0);  

 delayMicroseconds(1); 

 // Enable the chip by taking ss1 to logic LOW: 

 digitalWrite(ss1, 0); 

 delayMicroseconds(1); 

 // WRITING CFR1: 

 digitalWrite(SCLK, 0); 

 for (i = 0; i < 40; i++) { 

  delayMicroseconds(1); 

  digitalWrite(SDIO, CFR1[i]); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 1); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 0); 

 } 

 // Toggle IOU: 

 digitalWrite(IOU, 1); 

 delayMicroseconds(1); 

 digitalWrite(IOU, 0); 

 delayMicroseconds(1); 

 //Toggle IOSync: 

 digitalWrite(IOSync, 1);  

 delayMicroseconds(1); 

 digitalWrite(IOSync, 0);  
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 delayMicroseconds(1); 

 // WRITING CFR2: 

 for (i = 0; i < 32; i++) { 

  delayMicroseconds(1); 

  digitalWrite(SDIO, CFR2[i]); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 1); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 0); 

 } 

 // Toggle IOU: 

 digitalWrite(IOU, 1); 

 delayMicroseconds(1); 

 digitalWrite(IOU, 0); 

 delayMicroseconds(1); 

 //Toggle IOSync: 

 digitalWrite(IOSync, 1);  

 delayMicroseconds(1); 

 digitalWrite(IOSync, 0);  

 delayMicroseconds(1); 

 // WRITING ASF: 

 for (i = 0; i < 24; i++) { 

  delayMicroseconds(1);   

  digitalWrite(SDIO, ASF[i]); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 1); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 0); 

 } 

 // Toggle IOU: 

 digitalWrite(IOU, 1); 

 delayMicroseconds(1); 

 digitalWrite(IOU, 0); 

 delayMicroseconds(1);  

 //Toggle IOSync: 

 digitalWrite(IOSync, 1);  

 delayMicroseconds(1); 

 digitalWrite(IOSync, 0);  

 delayMicroseconds(1); 

 // WRITING ARR: 

 for (i = 0; i < 16; i++) { 

  delayMicroseconds(1); 

  digitalWrite(SDIO, ARR[i]); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 1); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 0); 

 } 

 // Toggle IOU: 

 digitalWrite(IOU, 1); 

 delayMicroseconds(1); 

 digitalWrite(IOU, 0); 

 delayMicroseconds(1); 

 //Toggle IOSync: 

 digitalWrite(IOSync, 1);  

 delayMicroseconds(1); 
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 digitalWrite(IOSync, 0);  

 delayMicroseconds(1); 

 // WRITING FTW: 

 for (i = 0; i < 40; i++) { 

  delayMicroseconds(1); 

  digitalWrite(SDIO, FTW[i]); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 1); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 0); 

 } 

 // Toggle IOU: 

 digitalWrite(IOU, 1); 

 delayMicroseconds(1); 

 digitalWrite(IOU, 0); 

 delayMicroseconds(1); 

 //Toggle IOSync: 

 digitalWrite(IOSync, 1);  

 delayMicroseconds(1); 

 digitalWrite(IOSync, 0);  

 delayMicroseconds(1); 

 // WRITING POW: 

 for (i = 0; i < 24; i++) { 

  delayMicroseconds(1); 

  digitalWrite(SDIO, POW[i]); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 1); 

  delayMicroseconds(1); 

  digitalWrite(SCLK, 0); 

 }  

 // Take IOU to logic HIGH: 

 delayMicroseconds(1); 

 digitalWrite(IOU, 1); 

 // Disabling the Chip by taking ss1 HIGH. 

 delayMicroseconds(1); 

 digitalWrite(ss1, 1); 

}// end of DDS2 function. 
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APPENDIX B. SPECTRA OF ELECTRICAL FM SIGNALS  

 

 

Spectra of signals of 10cf  , 30, 60, and 70 MHz with two different modulation 

frequency sets of (50, 100, and 150 kHz) and (200, 250, and 300 kHz) are presented: 

 

Figure Appendix B-1- Spectra of signals of 10cf   MHz and mf   50, 100, and 150 

kHz measured with frequency steps of 1 Hz. 
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Figure Appendix B-2- Spectra of signals of 30cf   MHz and mf   50, 100, and 150 

kHz measured with frequency steps of 1 Hz. 
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Figure Appendix B-3- Spectra of signals of 60cf   MHz and mf   50, 100, and 150 

kHz measured with frequency steps of 1 Hz. 
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Figure Appendix B-4- Spectra of signals of 70cf   MHz and mf   50, 100, and 150 

kHz measured with frequency steps of 1 Hz. 
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Figure Appendix B-5- Spectra of signals of 10cf   MHz and mf   200, 250, and 300 

kHz measured with frequency steps of 1 Hz. 
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Figure Appendix B-6- Spectra of signals of 30cf   MHz and mf   200, 250, and 300 

kHz measured with frequency steps of 1 Hz. 



128 

 

 

 

Figure Appendix B-7- Spectra of signals of 60cf   MHz and mf   200, 250, and 300 

kHz measured with frequency steps of 1 Hz. 
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Figure Appendix B-8- Spectra of signals of 70cf   MHz and mf   200, 250, and 300 

kHz measured with frequency steps of 1 Hz. 
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APPENDIX C. VHDL code for 32-sample Fourier transform 

 

 

The main module of the VHDL code for 32-sample Fourier transform is presented 

here. However, there are more than hundred submodules in this code that makes it 

infeasible to represent them in an appendix. Therefore, a complete version of the 32-

sample Fourier transform VHDL code and the LabVIEW program that are used for phase 

extraction and unwrapping are attached to this document. Each of the codes are self-

explanatory so that the readme file inside the codes navigate the users to operate the 

system easily.  

------------------------------------------ Code Description ------------------------------ 

-- Company: UNC Charlotte 

-- Student: Masoud Arablu 

--  

-- Create Date: 10/17/2018 08:06:14 AM 

-- Design Name: Discrete Fourier Transform 

-- Module Name: Top - Behavior 

-- Project Name: Digital Methods for Phase Extraction in Interferometry 

-- Target Devices: NEXYS 4 DDR 

-- 

-- Description: This VHDL code is developed in Vivado 2018.3. It uses add/sub,  

-- multiplier, Clock Wizard, CORDIC, and ILA IPs for implementation and debugging 

-- DFT. Also, component bin2bcd converts binary to decimal and component DigitToSeg  

-- monitors values in the 7-segment LEDs. 

--  

-- Revision 16 - Algorithm was expanded to two harmonics of 312.5 kHz. 

-- Additional Comments: This algorithm reads 12 bit digital data in 

-- parallel mode at 10 MHz speed and applies 32 sample digital DFT followed 

-- by 32-points averaging. 

----------------------------------------------- Libraries ----------------------------------1 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

-----------------------------------------------------------------------------------------end1 

----------------------------------------------- Entity -------------------------------------2 

entity Top is 
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    Port (  

CLK    : in  std_logic; 

CLK_Reset : in  std_logic; 

D     : in  std_logic_vector(11 downto 0); 

Photo_CLK : out std_logic := '0'; 

Dp    : out std_logic; 

Seg    : out std_logic_vector(6 downto 0); 

an               : out std_logic_vector(7 downto 0); 

LED    : out std_logic_vector(15 downto 0); 

--sw    : in  std_logic_vector(1 downto 0):=( others=> '0'); 

D_Out   : out std_logic_vector(15 downto 0) := ( others=> '0'); 

Dec_CLK : out std_logic := '0' 

    ); 

end Top; 

-----------------------------------------------------------------------------------------end2 

------------------------------------------- Architecture ----------------------------------3 

architecture Behavior of Top is 

---------- Declaring variables and IPs ----------------------------------3.1-to-3.20 

    signal count   : integer range 0 to 10000; 

    signal count2  : integer range 0 to 10000; 

    signal dig0   : std_logic_vector(3 downto 0); 

    signal dig1   : std_logic_vector(3 downto 0); 

    signal dig2   : std_logic_vector(3 downto 0); 

    signal dig3   : std_logic_vector(3 downto 0); 

    signal dig4   : std_logic_vector(3 downto 0); 

    signal dig5   : std_logic_vector(3 downto 0); 

    signal dig6   : std_logic_vector(3 downto 0); 

    signal Bin_Data : std_logic_vector(15 downto 0); 

    -------------------------------------------------------- 

    signal MAIN_CLK   : std_logic; 

    signal CLK_100MHz  : std_logic; 

    signal reset_bcd    : std_logic; 

    signal counter1    : integer range 0 to 511 := 0; 

    signal counter2    : integer range 0 to 511 := 0; 

    signal counter3    : integer range 0 to 511 := 0; 

    signal probe_0     : std_logic_vector(11 downto 0) := ( others=> '0'); 

    signal probe_1     : std_logic_vector(0 downto 0)   := ( others=> '0'); 

    signal probe_2     : std_logic_vector(0 downto 0)   := ( others=> '0'); 

    signal probe_3     : std_logic_vector(0 downto 0)   := ( others=> '0'); 

    signal probe_4     : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal MMCM_Locked : std_logic; 

    signal D_In_Ready   : std_logic := '0'; 

    signal D_Out_Ready  : std_logic := '0'; 

    signal data      : std_logic_vector(11 downto 0) := ( others=> '0'); 

    -------------------------------------------------------- 

    type mem32_12 is array (31 downto 0) of std_logic_vector (11 downto 0); 

    signal data_1 : mem32_12 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem32_16 is array (31 downto 0) of std_logic_vector (15 downto 0); 

    -- C1 is a 32-sample cosine LUT that contains 1 complete period, i.e. for first harmonic 

    signal C1 : mem32_16 :=  

("0111111111111111","0111110110001010","0111011001000010","0110101001101110", 

                                 

"0101101010000010","0100011100011101","0011000011111100","0001100011111001", 

                                 

"0000000000000000","1110011100000111","1100111100000100","1011100011100011", 
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"1010010101111110","1001010110010010","1000100110111110","1000001001110110", 

                                 

"1000000000000000","1000001001110110","1000100110111110","1001010110010010", 

                                 

"1010010101111110","1011100011100011","1100111100000100","1110011100000111", 

                                 

"0000000000000000","0001100011111001","0011000011111100","0100011100011101", 

                                 

"0101101010000010","0110101001101110","0111011001000010","0111110110001010"); 

    -- S1 is a 32-sample sine LUT that contains 1 complete period, i.e. for first harmonic                              

    signal S1 : mem32_16 :=  

   ("0000000000000000","0001100011111001","0011000011111100","0100011100011101", 

                                 

"0101101010000010","0110101001101110","0111011001000010","0111110110001010", 

                                 

"0111111111111111","0111110110001010","0111011001000010","0110101001101110", 

                                 

"0101101010000010","0100011100011101","0011000011111100","0001100011111001", 

                                 

"0000000000000000","1110011100000111","1100111100000100","1011100011100011", 

                                 

"1010010101111110","1001010110010010","1000100110111110","1000001001110110", 

                                 

"1000000000000000","1000001001110110","1000100110111110","1001010110010010", 

                                 

"1010010101111110","1011100011100011","1100111100000100","1110011100000111"); 

    -- C2 is a 32-sample cosine LUT that contains 2 complete periods, i.e. for second harmonic 

    signal C2 : mem32_16 :=  

   ("0111111111111111","0111011001000010","0101101010000010","0011000011111100", 

                                 

"0000000000000000","1100111100000100","1010010101111110","1000100110111110", 

                                 

"1000000000000000","1000100110111110","1010010101111110","1100111100000100", 

                                 

"0000000000000000","0011000011111100","0101101010000010","0111011001000010", 

                                 

"0111111111111111","0111011001000010","0101101010000010","0011000011111100", 

                                 

"0000000000000000","1100111100000100","1010010101111110","1000100110111110", 

                                 

"1000000000000000","1000100110111110","1010010101111110","1100111100000100", 

                                 

"0000000000000000","0011000011111100","0101101010000010","0111011001000010"); 

    -- S2 is a 32-sample sine LUT that contains 2 complete periods, i.e. for second harmonic 

    signal S2 : mem32_16 :=  

   ("0000000000000000","0011000011111100","0101101010000010","0111011001000010", 

                                 

"0111111111111111","0111011001000010","0101101010000010","0011000011111100", 

                                 

"0000000000000000","1100111100000100","1010010101111110","1000100110111110", 

                                 

"1000000000000000","1000100110111110","1010010101111110","1100111100000100", 

                                 

"0000000000000000","0011000011111100","0101101010000010","0111011001000010", 
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"0111111111111111","0111011001000010","0101101010000010","0011000011111100", 

                                 

"0000000000000000","1100111100000100","1010010101111110","1000100110111110", 

                                 

"1000000000000000","1000100110111110","1010010101111110","1100111100000100"); 

    -------------------------------------------------------- 

    type mem32_28 is array (31 downto 0) of std_logic_vector (27 downto 0); 

    signal X1_1  : mem32_28 := (others => ( others=> '0')); 

    signal Y1_1  : mem32_28 := (others => ( others=> '0')); 

    signal X2_1  : mem32_28 := (others => ( others=> '0')); 

    signal Y2_1  : mem32_28 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem16_29 is array (15 downto 0) of std_logic_vector (28 downto 0);                                   

    signal X1_2  : mem16_29 := (others => ( others=> '0')); 

    signal Y1_2  : mem16_29 := (others => ( others=> '0')); 

    signal X2_2  : mem16_29 := (others => ( others=> '0')); 

    signal Y2_2  : mem16_29 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem8_30 is array (7 downto 0) of std_logic_vector (29 downto 0);                                   

    signal X1_3  : mem8_30 := (others => ( others=> '0')); 

    signal Y1_3  : mem8_30 := (others => ( others=> '0')); 

    signal X2_3  : mem8_30 := (others => ( others=> '0')); 

    signal Y2_3  : mem8_30 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem4_31 is array (3 downto 0) of std_logic_vector (30 downto 0);                                   

    signal X1_4  : mem4_31 := (others => ( others=> '0')); 

    signal Y1_4  : mem4_31 := (others => ( others=> '0')); 

    signal X2_4  : mem4_31 := (others => ( others=> '0')); 

    signal Y2_4  : mem4_31 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem2_32 is array (1 downto 0) of std_logic_vector (31 downto 0);                                   

    signal X1_5  : mem2_32 := (others => ( others=> '0')); 

    signal Y1_5  : mem2_32 := (others => ( others=> '0')); 

    signal X2_5  : mem2_32 := (others => ( others=> '0')); 

    signal Y2_5  : mem2_32 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem2_33 is array (1 downto 0) of std_logic_vector (32 downto 0);                                   

    signal X1_6  : mem2_33 := (others => ( others=> '0')); 

    signal Y1_6  : mem2_33 := (others => ( others=> '0')); 

    signal X2_6  : mem2_33 := (others => ( others=> '0')); 

    signal Y2_6  : mem2_33 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    signal X1    : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal Y1    : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal X2    : std_logic_vector(15 downto 0) := ( others=> '0');  

    signal Y2    : std_logic_vector(15 downto 0) := ( others=> '0'); 

    -------------------------------------------------------- 

    type mem32_33 is array (31 downto 0) of std_logic_vector (32 downto 0); 

    signal Ave1_X1 : mem32_33 := (others => ( others=> '0')); 

    signal Ave1_Y1 : mem32_33 := (others => ( others=> '0')); 

    signal Ave1_X2 : mem32_33 := (others => ( others=> '0')); 

    signal Ave1_Y2 : mem32_33 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem16_34 is array (15 downto 0) of std_logic_vector (33 downto 0); 

    signal Ave2_X1 : mem16_34 := (others => ( others=> '0')); 
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    signal Ave2_Y1 : mem16_34 := (others => ( others=> '0')); 

    signal Ave2_X2 : mem16_34 := (others => ( others=> '0')); 

    signal Ave2_Y2 : mem16_34 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem8_35 is array (7 downto 0) of std_logic_vector (34 downto 0); 

    signal Ave3_X1 : mem8_35 := (others => ( others=> '0')); 

    signal Ave3_Y1 : mem8_35 := (others => ( others=> '0')); 

    signal Ave3_X2 : mem8_35 := (others => ( others=> '0')); 

    signal Ave3_Y2 : mem8_35 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem4_36 is array (3 downto 0) of std_logic_vector (35 downto 0); 

    signal Ave4_X1 : mem4_36 := (others => ( others=> '0')); 

    signal Ave4_Y1 : mem4_36 := (others => ( others=> '0')); 

    signal Ave4_X2 : mem4_36 := (others => ( others=> '0')); 

    signal Ave4_Y2 : mem4_36 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem2_37 is array (1 downto 0) of std_logic_vector (36 downto 0); 

    signal Ave5_X1 : mem2_37 := (others => ( others=> '0')); 

    signal Ave5_Y1 : mem2_37 := (others => ( others=> '0')); 

    signal Ave5_X2 : mem2_37 := (others => ( others=> '0')); 

    signal Ave5_Y2 : mem2_37 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    type mem2_38 is array (1 downto 0) of std_logic_vector (37 downto 0); 

    signal Ave6_X1 : mem2_38 := (others => ( others=> '0')); 

    signal Ave6_Y1 : mem2_38 := (others => ( others=> '0')); 

    signal Ave6_X2 : mem2_38 := (others => ( others=> '0')); 

    signal Ave6_Y2 : mem2_38 := (others => ( others=> '0')); 

    -------------------------------------------------------- 

    signal Ave_X1         : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal Ave_Y1         : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal Ave_X11       : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal Ave_Y11       : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal Ave_XY1      : std_logic_vector(31 downto 0) := ( others=> '0');  

    signal Ave_X2         : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal Ave_Y2         : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal Ave_XY2   : std_logic_vector(31 downto 0) := ( others=> '0');  

    signal Ave_PHI1      : std_logic_vector(15 downto 0) := ( others=> '0');  

    signal Ave_PHI2      : std_logic_vector(15 downto 0) := ( others=> '0'); 

    signal sqr_Ave_X1    : std_logic_vector(31 downto 0) := ( others=> '0'); 

    signal sqr_Ave_Y1    : std_logic_vector(31 downto 0) := ( others=> '0'); 

    signal sqr_Ave_X2    : std_logic_vector(31 downto 0) := ( others=> '0');  

    signal sqr_Ave_Y2    : std_logic_vector(31 downto 0) := ( others=> '0'); 

    signal sqr_Ave_R1    : std_logic_vector(32 downto 0) := ( others=> '0'); 

    signal sqr_Ave_R2    : std_logic_vector(32 downto 0) := ( others=> '0');  

    signal sqr_Ave_R1_2  : std_logic_vector(39 downto 0) := ( others=> '0'); 

    signal sqr_Ave_R2_2  : std_logic_vector(39 downto 0) := ( others=> '0');  

    signal Ave_R1         : std_logic_vector(23 downto 0) := ( others=> '0'); 

    signal Ave_R2         : std_logic_vector(23 downto 0) := ( others=> '0'); 

    -------------------------------------------------------------------------------------end3.1 

    component mult_gen_0 

    port ( A       : in    std_logic_vector(11 downto 0); 

           B       : in    std_logic_vector(15 downto 0); 

           CLK  : in    std_logic; 

           P        : out  std_logic_vector(27 downto 0)    ); 

    end component mult_gen_0; 

    -------------------------------------------------------------------------------------end3.2 
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    component mult_gen_1 

    port ( A       : in    std_logic_vector(15 downto 0); 

           B       : in    std_logic_vector(15 downto 0); 

           CLK  : in    std_logic; 

           P        : out  std_logic_vector(31 downto 0)    ); 

    end component mult_gen_1; 

    -------------------------------------------------------------------------------------end3.3 

    component c_addsub_0 

    port ( A       : in    std_logic_vector(27 downto 0); 

           B       : in    std_logic_vector(27 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(28 downto 0)    ); 

    end component c_addsub_0; 

    -------------------------------------------------------------------------------------end3.4 

    component c_addsub_1 

    port ( A       : in    std_logic_vector(28 downto 0); 

           B       : in    std_logic_vector(28 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(29 downto 0)    ); 

    end component c_addsub_1; 

    -------------------------------------------------------------------------------------end3.5 

 component c_addsub_2 

    port ( A       : in    std_logic_vector(29 downto 0); 

           B       : in    std_logic_vector(29 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(30 downto 0)    ); 

    end component c_addsub_2; 

    -------------------------------------------------------------------------------------end3.6 

    component c_addsub_3 

    port ( A       : in    std_logic_vector(30 downto 0); 

           B       : in    std_logic_vector(30 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(31 downto 0)    ); 

    end component c_addsub_3; 

    -------------------------------------------------------------------------------------end3.7 

    component c_addsub_4 

    port ( A       : in    std_logic_vector(31 downto 0); 

           B       : in    std_logic_vector(31 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(32 downto 0)    ); 

    end component c_addsub_4; 

    -------------------------------------------------------------------------------------end3.8 

    component c_addsub_5 

    port ( A       : in    std_logic_vector(32 downto 0); 

           B   : in    std_logic_vector(32 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(33 downto 0)    ); 

    end component c_addsub_5; 

    -------------------------------------------------------------------------------------end3.9 

    component c_addsub_6 

    port ( A       : in    std_logic_vector(33 downto 0); 

           B       : in    std_logic_vector(33 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(34 downto 0)    ); 

    end component c_addsub_6; 

    -------------------------------------------------------------------------------------end3.10 
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    component c_addsub_7 

    port ( A       : in    std_logic_vector(34 downto 0); 

           B       : in    std_logic_vector(34 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(35 downto 0)    ); 

    end component c_addsub_7; 

    -------------------------------------------------------------------------------------end3.11 

    component c_addsub_8 

    port ( A       : in    std_logic_vector(35 downto 0); 

           B       : in    std_logic_vector(35 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(36 downto 0)    ); 

    end component c_addsub_8; 

    -------------------------------------------------------------------------------------end3.12 

    component c_addsub_9 

    port ( A       : in    std_logic_vector(36 downto 0); 

           B       : in    std_logic_vector(36 downto 0); 

           CLK  : in    std_logic; 

           S        : out  std_logic_vector(37 downto 0)    ); 

    end component c_addsub_9; 

    -------------------------------------------------------------------------------------end3.13 

    component c_addsub_10 

    port ( A       : in    std_logic_vector(15 downto 0); 

           CLK  : in    std_logic; 

           S        : out   std_logic_vector (15 downto 0)    ); 

    end component c_addsub_10; 

    -------------------------------------------------------------------------------------end3.14 

    component ila_0 

    port ( clk         : in   std_logic; 

           probe0  : in   std_logic_vector(11 downto 0); 

           probe1  : in   std_logic_vector(0 downto 0); 

           probe2  : in   std_logic_vector(0 downto 0); 

           probe3  : in   std_logic_vector(0 downto 0); 

           probe4  : in   std_logic_vector(15 downto 0)    ); 

    end component ila_0; 

    -------------------------------------------------------------------------------------end3.15 

    component cordic_0 

    port ( aclk         : in    std_logic; 

           s_axis_cartesian_tvalid : in    std_logic; 

           s_axis_cartesian_tdata  : in    std_logic_vector(39 downto 0); 

           m_axis_dout_tvalid   : out  std_logic; 

           m_axis_dout_tdata   : out  std_logic_vector(23 downto 0)  ); 

    end component; 

    -------------------------------------------------------------------------------------end3.16 

    component cordic_1 

    port ( aclk                        : in   std_logic; 

           s_axis_cartesian_tvalid  : in   std_logic; 

           s_axis_cartesian_tdata  : in   std_logic_vector(31 downto 0); 

           m_axis_dout_tvalid       : out  std_logic; 

           m_axis_dout_tdata        : out  std_logic_vector(15 downto 0)  ); 

    end component; 

    -------------------------------------------------------------------------------------end3.17 

    component clk_wiz_0  

    port ( clk_out1 : out  std_logic; 

           clk_out2 : out  std_logic; 

           clk_out3 : out  std_logic; 
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           reset   : in    std_logic; 

           locked  : out  std_logic; 

           clk_in1  : in    std_logic  ); 

    end component; 

    -------------------------------------------------------------------------------------end3.18 

    component DigitToSeg  

    port ( in1          : in   std_logic_vector(3 downto 0); 

           in2          : in   std_logic_vector(3 downto 0); 

           in3          : in   std_logic_vector(3 downto 0); 

           in4          : in   std_logic_vector(3 downto 0); 

           in5          : in   std_logic_vector(3 downto 0); 

           in6          : in   std_logic_vector(3 downto 0); 

           in7          : in   std_logic_vector(3 downto 0); 

           in8          : in   std_logic_vector(3 downto 0); 

           mclk   : in   std_logic; 

           an    : out  std_logic_vector(7 downto 0); 

           dp    : out  std_logic; 

           seg   : out  std_logic_vector(6 downto 0)  );   

    end component DigitToSeg; 

    -------------------------------------------------------------------------------------end3.19 

    component bin2bcd 

    port ( mclk, reset : in std_logic; 

           binary_in   : in std_logic_vector(15 downto 0); 

           bcd0, bcd1, bcd2, bcd3, bcd4, bcd5, bcd6 : out std_logic_vector(3 downto 0) ); 

    end component bin2bcd; 

    -------------------------------------------------------------------------------------end3.20 

---------------------------------- start of DFT processes ----------------------------------- 

begin 

    -- multiplying sine and cosine arrays to the signal, the outputs are 28 bit -- 3.21 

    multiplier0: for i in 0 to 31 generate -- generates 28 bit data 

        gives_X1_1 : component mult_gen_0 

        port map ( CLK  => MAIN_CLK, 

                 A     => data_1(i), 

                 B     => C1(i), 

                 P     => X1_1(i)    ); 

        ----------------------------    

        gives_Y1_1 : component mult_gen_0 

        port map ( CLK  => MAIN_CLK, 

                 A    => data_1(i), 

                 B     => S1(i), 

                 P     => Y1_1(i)    ); 

        ---------------------------- 

        gives_X2_1 : component mult_gen_0 

        port map ( CLK  => MAIN_CLK, 

                 A     => data_1(i), 

                 B     => C2(i), 

                P     => X2_1(i)    ); 

        ----------------------------    

        gives_Y2_1 : component mult_gen_0 

        port map ( CLK  => MAIN_CLK, 

                 A     => data_1(i), 

                 B     => S2(i), 

                 P     => Y2_1(i)    ); 

    end generate multiplier0; 

    -------------------------------------------------------------------------------------end3.21 

    ------------------ summing 28 bit data results in 29 bit data ------------------- 3.22 
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    adder0: for i in 0 to 15 generate -- generates 29 bit data 

        gives_X1_2 : component c_addsub_0 

        port map ( CLK  => MAIN_CLK, 

                 A     => X1_1(i), 

                 B     => X1_1(i+16), 

                 S     => X1_2(i)    ); 

        ---------------------------- 

        gives_Y1_2 : component c_addsub_0 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y1_1(i), 

                 B     => Y1_1(i+16), 

                 S     => Y1_2(i)    ); 

        ---------------------------- 

        gives_X2_2 : component c_addsub_0 

        port map ( CLK  => MAIN_CLK, 

                 A     => X2_1(i), 

                 B     => X2_1(i+16), 

                 S     => X2_2(i)    ); 

        ---------------------------- 

        gives_Y2_2 : component c_addsub_0 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y2_1(i), 

                 B     => Y2_1(i+16), 

                 S     => Y2_2(i)    ); 

    end generate adder0;   

    -------------------------------------------------------------------------------------end3.22 

    ------------------ summing 29 bit data results in 30 bit data ------------------- 3.23 

    adder1: for i in 0 to 7 generate -- generates 30 bit data 

        gives_X1_3 : component c_addsub_1 

        port map ( CLK  => MAIN_CLK, 

                 A     => X1_2(i), 

                 B     => X1_2(i+8), 

                 S     => X1_3(i)    ); 

        ---------------------------- 

        gives_Y1_3 : component c_addsub_1 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y1_2(i), 

                 B     => Y1_2(i+8), 

                 S     => Y1_3(i)    ); 

        ---------------------------- 

        gives_X2_3 : component c_addsub_1 

        port map ( CLK  => MAIN_CLK, 

                 A     => X2_2(i), 

                 B     => X2_2(i+8), 

                 S     => X2_3(i)    ); 

        ---------------------------- 

        gives_Y2_3 : component c_addsub_1 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y2_2(i), 

                 B     => Y2_2(i+8), 

                 S     => Y2_3(i)    ); 

    end generate adder1; 

    -------------------------------------------------------------------------------------end3.23 

    ------------------ summing 30 bit data results in 31 bit data ------------------- 3.24 

 

    adder2: for i in 0 to 3 generate -- generates 31 bit data 
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        gives_X1_4 : component c_addsub_2 

        port map ( CLK  => MAIN_CLK, 

                 A     => X1_3(i), 

                 B    => X1_3(i+4), 

                 S     => X1_4(i)    ); 

        ----------------------------   

        gives_Y1_4 : component c_addsub_2 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y1_3(i), 

                 B     => Y1_3(i+4), 

                 S     => Y1_4(i)    ); 

        ---------------------------- 

        gives_X2_4 : component c_addsub_2 

        port map ( CLK  => MAIN_CLK, 

                 A     => X2_3(i), 

                 B     => X2_3(i+4), 

                 S     => X2_4(i)    ); 

        ----------------------------   

        gives_Y2_4 : component c_addsub_2 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y2_3(i), 

                 B     => Y2_3(i+4), 

                 S     => Y2_4(i)    ); 

    end generate adder2; 

    -------------------------------------------------------------------------------------end3.24 

    ------------------ summing 31 bit data results in 32 bit data ------------------- 3.25 

    adder3: for i in 0 to 1 generate -- generates 32 bit data 

        gives_X1_5 : component c_addsub_3 

        port map ( CLK  => MAIN_CLK, 

                 A     => X1_4(i), 

                 B     => X1_4(i+2), 

                 S     => X1_5(i)    ); 

        ----------------------------    

        gives_Y1_5 : component c_addsub_3 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y1_4(i), 

                 B     => Y1_4(i+2), 

                 S     => Y1_5(i)    ); 

        ---------------------------- 

        gives_X2_5 : component c_addsub_3 

        port map (  CLK  => MAIN_CLK, 

                 A     => X2_4(i), 

                 B     => X2_4(i+2), 

                 S     => X2_5(i)    ); 

        ----------------------------    

        gives_Y2_5 : component c_addsub_3 

        port map ( CLK  => MAIN_CLK, 

                 A     => Y2_4(i), 

                 B     => Y2_4(i+2), 

                 S     => Y2_5(i)    ); 

    end generate adder3; 

    -------------------------------------------------------------------------------------end3.25 

    ------------------ summing 32 bit data results in 33 bit data ------------------- 3.26 

    gives_X1_6_0 : component c_addsub_4 -- generates 33 bit data 

    port map (  CLK  => MAIN_CLK, 

              A     => X1_5(0), 
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              B     => X1_5(1), 

              S     => X1_6(0)    ); 

    ----------------------------    

    gives_Y1_6_0 : component c_addsub_4 -- generates 33 bit data 

    port map (  CLK  => MAIN_CLK, 

              A     => Y1_5(0), 

              B     => Y1_5(1), 

              S     => Y1_6(0)    ); 

    -------------------------------------------------------------------------------------end3.26 

    --------------- Divide to ((half the # of samples)*(LUT amp.)) --------------- 3.27 

    -- X1_6(0) is divided to (16*2^15) and saved into 16-bit X1. Divide less to amplify it. 

    X1_6(1)  <= std_logic_vector(shift_right(signed(X1_6(0)), 12));  

    X1        <= X1_6(0)(32) & X1_6(1)(14 downto 0); 

    -- Y1_6(0) is divided to (16*2^15) and saved into 16-bit Y1. Divide less to amplify it. 

    Y1_6(1)  <= std_logic_vector(shift_right(signed(Y1_6(0)), 12));  

    Y1        <= Y1_6(0)(32) & Y1_6(1)(14 downto 0); 

    ---------------------------- 

    gives_X2_6_0 : component c_addsub_4 -- generates 33 bit data 

    port map ( CLK  => MAIN_CLK, 

             A    => X2_5(0), 

             B     => X2_5(1), 

             S     => X2_6(0)     ); 

    ----------------------------    

    gives_Y2_6_0 : component c_addsub_4 -- generates 33 bit data 

    port map ( CLK  => MAIN_CLK, 

             A     => Y2_5(0), 

             B     => Y2_5(1), 

             S     => Y2_6(0)     ); 

    ---------------------------- 

    -- X2_6(0) is divided to (16*2^15) and saved into 16-bit X2. Divide less to amplify it. 

    X2_6(1)  <= std_logic_vector(shift_right(signed(X2_6(0)), 12));  

    X2        <= X2_6(0)(32) & X2_6(1)(14 downto 0); 

    -- Y2_6(0) is divided to (16*2^15) and saved into 16-bit Y2. Divide less to amplify it. 

    Y2_6(1)  <= std_logic_vector(shift_right(signed(Y2_6(0)), 12));  

    Y2        <= Y2_6(0)(32) & Y2_6(1)(14 downto 0); 

    -------------------------------------------------------------------------------------end3.27 

    ----------------------------- Average 32 values and report as Ave_Q values ------- 

    adder5: for i in 0 to 15 generate -- generates 34 bit data 

        gives_Ave2_X1 : component c_addsub_5 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave1_X1(i), 

                 B     => Ave1_X1(i+16), 

                 S     => Ave2_X1(i)  ); 

        ---------------------------- 

        gives_Ave2_Y1 : component c_addsub_5 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave1_Y1(i), 

                 B     => Ave1_Y1(i+16), 

                 S     => Ave2_Y1(i)  ); 

        ---------------------------- 

        gives_Ave2_X2 : component c_addsub_5 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave1_X2(i), 

                 B     => Ave1_X2(i+16), 

                 S     => Ave2_X2(i)  ); 

        ---------------------------- 
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        gives_Ave2_Y2 : component c_addsub_5 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave1_Y2(i), 

                 B     => Ave1_Y2(i+16), 

                 S     => Ave2_Y2(i)  ); 

    end generate adder5; 

    -------------------------------------------------------------------------------------end3.28 

    adder6: for i in 0 to 7 generate -- generates 35 bit data 

        gives_Ave3_X1 : component c_addsub_6 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave2_X1(i), 

                 B     => Ave2_X1(i+8), 

                 S     => Ave3_X1(i)  ); 

        ---------------------------- 

        gives_Ave3_Y1 : component c_addsub_6 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave2_Y1(i), 

                 B     => Ave2_Y1(i+8), 

                 S     => Ave3_Y1(i)  ); 

        ---------------------------- 

        gives_Ave3_X2 : component c_addsub_6 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave2_X2(i), 

                 B     => Ave2_X2(i+8), 

                 S     => Ave3_X2(i)  ); 

        ---------------------------- 

        gives_Ave3_Y2 : component c_addsub_6 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave2_Y2(i), 

                 B     => Ave2_Y2(i+8), 

                 S     => Ave3_Y2(i)  ); 

    end generate adder6; 

    -------------------------------------------------------------------------------------end3.29 

    adder7: for i in 0 to 3 generate -- generates 36 bit data 

        gives_Ave4_X1 : component c_addsub_7 

        port map ( CLK  => MAIN_CLK, 

                 A    => Ave3_X1(i), 

                 B     => Ave3_X1(i+4), 

                 S     => Ave4_X1(i)  ); 

        ---------------------------- 

        gives_Ave4_Y1 : component c_addsub_7 

        port map ( CLK  => MAIN_CLK, 

                 A    => Ave3_Y1(i), 

                 B     => Ave3_Y1(i+4), 

                 S     => Ave4_Y1(i)  ); 

        ---------------------------- 

        gives_Ave4_X2 : component c_addsub_7 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave3_X2(i), 

                 B     => Ave3_X2(i+4), 

                 S     => Ave4_X2(i)  ); 

        ---------------------------- 

        gives_Ave4_Y2 : component c_addsub_7 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave3_Y2(i), 

                 B     => Ave3_Y2(i+4), 
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                 S     => Ave4_Y2(i)  ); 

    end generate adder7; 

    -------------------------------------------------------------------------------------end3.30 

    adder8: for i in 0 to 1 generate -- generates 37 bit data 

        gives_Ave5_X1 : component c_addsub_8 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave4_X1(i), 

                 B     => Ave4_X1(i+2), 

                 S     => Ave5_X1(i)  ); 

        ---------------------------- 

        gives_Ave5_Y1 : component c_addsub_8 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave4_Y1(i), 

                 B     => Ave4_Y1(i+2), 

                 S     => Ave5_Y1(i)  ); 

        ---------------------------- 

        gives_Ave5_X2 : component c_addsub_8 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave4_X2(i), 

                 B     => Ave4_X2(i+2), 

                 S     => Ave5_X2(i)  ); 

        ---------------------------- 

        gives_Ave5_Y2 : component c_addsub_8 

        port map ( CLK  => MAIN_CLK, 

                 A     => Ave4_Y2(i), 

                 B     => Ave4_Y2(i+2), 

                 S     => Ave5_Y2(i)  ); 

    end generate adder8; 

    -------------------------------------------------------------------------------------end3.31    

    gives_Ave6_X1_0 : component c_addsub_9 -- generates 38 bit data 

    port map ( CLK  => MAIN_CLK, 

             A     => Ave5_X1(0), 

             B     => Ave5_X1(1), 

             S     => Ave6_X1(0)   ); 

    ---------------------------- 

    gives_Ave6_Y1_0 : component c_addsub_9 -- generates 38 bit data 

    port map ( CLK  => MAIN_CLK, 

             A     => Ave5_Y1(0), 

             B     => Ave5_Y1(1), 

             S     => Ave6_Y1(0)   ); 

    ---------------------------- 

    gives_Ave6_X2_0 : component c_addsub_9 -- generates 38 bit data 

    port map ( CLK  => MAIN_CLK, 

A     => Ave5_X2(0), 

             B     => Ave5_X2(1), 

             S     => Ave6_X2(0)   );         

    ---------------------------- 

    gives_Ave6_Y2_0 : component c_addsub_9 -- generates 38 bit data 

    port map ( CLK  => MAIN_CLK, 

             A     => Ave5_Y2(0), 

             B     => Ave5_Y2(1), 

             S     => Ave6_Y2(0)   ); 

    -------------------------------------------------------------------------------------end3.32 

    ---- Divide to ((half the # of samples)*(# of averaging)*(LUT amp.)) ----- 3.33 

    -- Ave6_X1(0) is divided to 2^24 and saved into Ave_X1. Divide less to amplify it. 

    Ave6_X1(1) <= std_logic_vector(shift_right(signed(Ave6_X1(0)), 17));  
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    Ave_X11     <= Ave6_X1(0)(37) & Ave6_X1(1)(14 downto 0); 

    givesAve_X1: component c_addsub_10 

    port map(  A     => Ave_X11, 

             CLK  => MAIN_CLK, 

             S     => Ave_X1     ); 

    -- Ave6_Y1(0) is divided to 2^24 and saved into Ave_Y1. Divide less to amplify it. 

    Ave6_Y1(1) <= std_logic_vector(shift_right(signed(Ave6_Y1(0)), 17));  

    Ave_Y11     <= Ave6_Y1(0)(37) & Ave6_Y1(1)(14 downto 0); 

    givesAve_Y1: component c_addsub_10 

    port map(  A     => Ave_Y11, 

             CLK  => MAIN_CLK, 

             S     => Ave_Y1     ); 

    Ave_XY1    <= Ave_X1(15 downto 0) & Ave_Y1(15 downto 0); 

    ---------------------------- 

    -- Ave6_X2(0) is divided to 2^24 and saved into Ave_X2. Divide less to amplify it. 

    Ave6_X2(1) <= std_logic_vector(shift_right(signed(Ave6_X2(0)), 17));  

    Ave_X2     <= Ave6_X2(0)(37) & Ave6_X2(1)(14 downto 0); 

    -- Ave6_Y2(0) is divided to 2^24 and saved into Ave_Y2. Divide less to amplify it. 

    Ave6_Y2(1) <= std_logic_vector(shift_right(signed(Ave6_Y2(0)), 17));  

    Ave_Y2     <= Ave6_Y2(0)(37) & Ave6_Y2(1)(14 downto 0); 

    Ave_XY2    <= Ave_X2(15 downto 0) & Ave_Y2(15 downto 0); 

    -------------------------------------------------------------------------------------end3.33 

    gives_Ave_PHI1 :component cordic_1 

    port map ( aclk                        => MAIN_CLK, 

             s_axis_cartesian_tvalid  => D_In_Ready, 

             s_axis_cartesian_tdata  => Ave_XY1, 

             m_axis_dout_tvalid       => open, 

             m_axis_dout_tdata        => Ave_PHI1   ); 

    ---------------------------- 

    gives_Ave_PHI2 :component cordic_1 

    port map ( aclk                        => MAIN_CLK, 

             s_axis_cartesian_tvalid  => D_In_Ready, 

             s_axis_cartesian_tdata   => Ave_XY2, 

             m_axis_dout_tvalid       => open, 

             m_axis_dout_tdata        => Ave_PHI2   ); 

    -------------------------------------------------------------------------------------end3.34 

    gives_sqr_Ave_X1 : component mult_gen_1  

    port map ( CLK  => MAIN_CLK, 

             A     => Ave_X1, 

             B     => Ave_X1, 

             P    => sqr_Ave_X1         ); 

    ---------------------------- 

    gives_sqr_Ave_Y1 : component mult_gen_1  

    port map ( CLK  => MAIN_CLK, 

             A    => Ave_Y1, 

             B     => Ave_Y1, 

             P     => sqr_Ave_Y1         ); 

    ---------------------------- 

    gives_sqr_Ave_X2 : component mult_gen_1  

    port map ( CLK  => MAIN_CLK, 

             A     => Ave_X2, 

             B     => Ave_X2, 

             P     => sqr_Ave_X2         ); 

    ---------------------------- 

    gives_sqr_Ave_Y2 : component mult_gen_1  

    port map ( CLK  => MAIN_CLK, 
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             A     => Ave_Y2, 

             B    => Ave_Y2, 

             P     => sqr_Ave_Y2         );   

    -------------------------------------------------------------------------------------end3.35 

    -- calculate sqr_Ave_R1= sqr_Ave_X1+sqr_Ave_Y1 

    gives_sqr_Ave_R1 : component c_addsub_4  

    port map ( CLK  => MAIN_CLK, 

             A     => sqr_Ave_X1, 

             B     => sqr_Ave_Y1, 

             S     => sqr_Ave_R1         ); 

    sqr_Ave_R1_2 <= "0000000" & sqr_Ave_R1(32 downto 0); 

    ---------------------------------------------------- 

    -- calculate sqr_Ave_R2= sqr_Ave_X2+sqr_Ave_Y2 

    gives_sqr_Ave_R2 : component c_addsub_4  

    port map ( CLK  => MAIN_CLK, 

             A     => sqr_Ave_X2, 

             B     => sqr_Ave_Y2, 

             S     => sqr_Ave_R2         ); 

    sqr_Ave_R2_2 <= "0000000" & sqr_Ave_R2(32 downto 0); 

    -------------------------------------------------------------------------------------end3.36 

    -- calculate Ave_R1= sqrt(sqr_Ave_R1) 

    gives_Ave_R1 :component cordic_0  

    port map ( aclk                        => MAIN_CLK, 

             s_axis_cartesian_tvalid  => D_In_Ready, 

             s_axis_cartesian_tdata   => sqr_Ave_R1_2, 

             m_axis_dout_tvalid       => D_out_Ready, 

             m_axis_dout_tdata        => Ave_R1    ); 

    ---------------------------------------------------- 

    -- calculate Ave_R2= sqrt(sqr_Ave_R2) 

    gives_Ave_R2 :component cordic_0  

    port map ( aclk                        => MAIN_CLK, 

             s_axis_cartesian_tvalid  => D_In_Ready, 

             s_axis_cartesian_tdata   => sqr_Ave_R2_2, 

             m_axis_dout_tvalid       => open, 

             m_axis_dout_tdata        => Ave_R2    ); 

    -------------------------------------------------------------------------------------end3.37 

    -- take 10 MHz external clock and generate sync 100, 200, and 10 (MHz) 

    Clock : clk_wiz_0 

    port map ( clk_out1         => CLK_100MHz, 

             clk_out2         => MAIN_CLK, 

             clk_out3         => Photo_CLK, 

             reset             => CLK_Reset, 

             locked           => MMCM_Locked, 

             clk_in1          => CLK         ); 

    -------------------------------------------------------------------------------------end3.38 

    -- show results in 7 segment LEDs 

    segment1: DigitToSeg  

    port map(  in1  => dig0, 

              in2     => dig1, 

              in3     => dig2, 

              in4     => dig3, 

              in5     => dig4, 

              in6     => dig5, 

              in7     => dig6, 

              in8     => "0000", 

              mclk    => MAIN_CLK, 
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              an      => an, 

              dp      => open, 

              seg     => seg             ); 

    dp <= '1'; 

    -------------------------------------------------------------------------------------end3.39   

    -- Read digital inputs 

    process(MAIN_CLK, MMCM_Locked) 

    begin 

          if rising_edge(MAIN_CLK) then 

              if (CLK_Reset = '1') then 

                  counter1  <= 0; 

                  counter2  <= 0; 

                  counter3  <= 0; 

              end if; 

              counter1   <= counter1 + 1; 

              counter2   <= counter2 + 1; 

              counter3   <= counter3 + 1; 

 

              -- generate 10 MHz clock from 200 MHz MAIN_CLK 

              if (counter1 = 82) then  

                  counter1                   <= 63; 

                  probe_0(11 downto 0)     <= D(11 downto 0); 

                data_1(0)(11 downto 0)   <= D(11 downto 0); 

                  Ave1_X1(0)                <= X1_6(0); 

                  Ave1_Y1(0)                <= Y1_6(0); 

                  Ave1_X2(0)                <= X2_6(0); 

                  Ave1_Y2(0)                <= Y2_6(0); 

                  C1(0)                      <= C1(31); 

                  S1(0)                       <= S1(31); 

                  C2(0)                      <= C2(31); 

                  S2(0)                       <= S2(31); 

                  My_loop0: for i in 31 downto 1 loop 

                      data_1(i)       <= data_1(i-1); 

                      C1(i)           <= C1(i-1); 

                      S1(i)           <= S1(i-1); 

                      Ave1_X1(i)     <= Ave1_X1(i-1); 

                      Ave1_Y1(i)     <= Ave1_Y1(i-1); 

                      C2(i)           <= C2(i-1); 

                      S2(i)           <= S2(i-1); 

                      Ave1_X2(i)     <= Ave1_X2(i-1); 

                      Ave1_Y2(i)     <= Ave1_Y2(i-1); 

                  end loop My_loop0;      

              end if; 

                         

              if (counter2 = 113) then 

                  counter2      <= 94; 

                  D_In_Ready   <= '1'; 

                  probe_1       <= "1"; 

              else 

                  D_In_Ready   <= '0'; 

                  probe_1       <= "0"; 

              end if; 

             

              if (D_out_Ready = '1') then 

                  probe_2    <= "1"; 

              else 
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                  probe_2    <= "0"; 

              end if; 

  

              -- Send data to LabVIEW @ 5 MHz speed based on a 200 MHz clock 

              if (counter3 > 127 and counter3 < 138) then    

                  Dec_CLK    <= '1'; 

                  D_Out       <= Ave_R1 (15 downto 0); 

                  probe_4     <= Ave_R1 (15 downto 0); 

                  probe_3   <= "1"; 

              elsif (counter3 > 137 and counter2 < 148) then 

                  Dec_CLK    <= '0'; 

                  D_Out     <= Ave_R2 (15 downto 0); 

                  probe_4   <= Ave_R2 (15 downto 0); 

                  probe_3   <= "0"; 

                  if (counter3 = 147) then 

                      counter3 <= 128; 

                  end if; 

              end if; 

          end if; 

    end process; 

    -------------------------------------------------------------------------------------end3.40 

    -- binary to decimal conversion 

    reset_bcd <= NOT MMCM_Locked;  

    gives_digis : component bin2bcd  

    port map ( mclk    => MAIN_CLK, 

             reset        => reset_bcd, 

             binary_in  => Bin_Data, 

             bcd0         => dig0     , 

             bcd1         => dig1     , 

             bcd2         => dig2     , 

             bcd3         => dig3     , 

             bcd4         => dig4     , 

             bcd5         => dig5     , 

             bcd6         => dig6    ); 

    -----------------     

    process(MAIN_CLK)  

    begin             

       if rising_edge(MAIN_CLK) then --Show data_1(0) in LEDs and 7 Segments 

        count <= count + 1; 

        if (count = 999) then 

          count <= 0; 

          count2 <= count2+1; 

                 if(count2 = 4899)then 

           count2    <= 0; 

           Bin_Data  <= data_1(0)(11) & "0000" & data_1(0)(10 downto 0); 

                    LED    <= data_1(0)(11) & "0000" & data_1(0)(10 downto 0); 

        end if; 

    end if; 

   end if; 

 end process; 

    -------------------------------------------------------------------------------------end3-42 

    -- ILA core for probing the processes 

    ILA: ila_0 

    port map ( clk       => MAIN_CLK, 

             probe0   => probe_0, 

             probe1   => probe_1, 
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             probe2   => probe_2, 

             probe3   => probe_3, 

             probe4   => probe_4   ); 

    -------------------------------------------------------------------------------------end3-43 

end Behavior; 

-----------------------------------------------------------------------------------------end3 


