

POLYDYNE DISPLACEMENT INTERFEROMETER USING FREQUENCY-

MODULATED LIGHT

by

Masoud Arablu

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Mechanical Engineering

Charlotte

2019

Approved by:

Dr. Stuart T. Smith

Dr. Jimmie Miller

Dr. Joshua Tarbutton

Dr. Konstantinos Falaggis

Dr. Tsinghua Her

ii

©2019

Masoud Arablu

ALL RIGHTS RESERVED

iii

ABSTRACT

MASOUD ARABLU. Polydyne displacement interferometer using frequency-modulated

light (Under the direction of DR. STUART T. SMITH)

A novel multi-frequency (polydyne) optical interferometry method is introduced

and a prototype developed to evaluate its performance in a Michelson displacement

interferometer configuration. The polydyne interferometer contains three main parts of 1)

synchronous Radio-Frequency Frequency-Modulated (RF-FM) electrical signal

generation, 2) electrical-to-optical signal patching by an Acousto-Optic Modulator

(AOM), and 3) signal detection and processing unit. Each of these three parts are

discussed briefly in a separate chapter as well as the basic concept of phase extraction

from the interference of FM light beams.

A novel synchronous RF-FM signal generation method is introduced that uses an

atomic clock for timing all frequency components of the signal. The RF-FM signal

generator uses a modulated, voltage-controlled time delay to correspondingly modulate

the phase of a 10 MHz sinusoidal reference from the atomic clock. This modulated

reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit

resulting in an FM signal at its output. The modulating signal that is input to the voltage-

controlled time delay circuit is generated by another DDS that is synchronously clocked

by the same 10 MHz sine wave signal before modulation. Therefore, all the digital

components are timed from a single sinewave oscillator that forms the basis of all timing.

iv

The resultant output electrical signal comprises a center, or carrier, frequency plus a

series of phase-synchronized sidebands having exact integer harmonic frequency

separation.

The RF-FM electric signal is transferred into a He-Ne laser beam by diffraction of

the beam through an Acousto-Optic Modulator (AOM). The first diffraction side-beam

emerging from the AOM is selected by a slit to be used in a Michelson interferometer

topology. Frequency spectra of the interfered FM light beams contains the harmonics of

modulation frequency. The displacement measurement is derived from the phase

measurement of selected modulation harmonic pairs. Individual modulation harmonic

amplitudes are measured using Fourier transform applied to the signal from a single

photodetector. Lock-in amplifiers were first used to perform Fourier transform on the

detected signal. Displacement of the moving target was measured by harmonic pairs

chosen from harmonics 1 to 5 of the modulation signal.

Since the analog Lock-In amplifiers use low-pass filters to detect the signal of

interest, they limit the bandwidth of measurement to one-tenth of measured signal

frequency. This limit reduces the speed of measurement to a few μms-1 in our system.

Therefore, after validating the feasibility of displacement measurement using the changes

in the amplitudes of harmonic pairs detected by Lock-in amplifiers, a Discrete Fourier

Transform (DFT) algorithm was developed on a Field Programmable Gate Array (FPGA)

microchip to increase the bandwidth and speed of measurement as well as to miniaturize

v

the signal processing unit. The timing of the FPGA microchip was developed from a

Phase Locked Loop (PLL) synchronous to the same 10 MHz sine wave from the atomic

clock that is timing all the frequency components of the RF-FM signal. This synchronizes

all the timings in the signal generation and detection units. The developed synchronous

DFT provides measurements with speeds up to 10 mms-1, a limit that can be always

improved using larger FPGA microchips and faster analog-to-digital convertors on the

photodetector output. In the developed synchronous DFT algorithm, displacement-

related-phase-change is derived from the amplitudes of harmonics 1 and 2 of the

modulation signal. The measured displacements are compared with a commercial

heterodyne interferometer being used as a reference for these studies. Displacements of

the moving mirror of the interferometer over ranges up to 10 μm with speeds up to 10

mms-1 all show differences of less than 50 nm between the polydyne interferometer and

the reference interferometer measurements. A drift test is also used to evaluate long-term

stability and repeatability of measurements with the developed polydyne interferometer.

vi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my professor Dr. Stuart T. Smith. It has

been a great honor to be his student. His idiosyncratic approach toward his research was

contagious and motivational for me, even during tough times in my Ph.D. pursuit. Not

only he educated me in different subjects of mechatronics, but also reshaped my

personality to be eternally passionate to learn new technologies. I appreciate all his

contributions of time, ideas, and funding to make my Ph.D. experience productive.

I gratefully acknowledge the funding sources that made my Ph.D. work possible. I

was funded by the Graduate Assistantship Program for all my five years of education at

UNC Charlotte and was honored to conduct a fruitful research at the Center for Precision

Metrology (CPM) that funded my project for about three years. The professors of the

CPM have contributed immensely to my personal and professional time at UNC

Charlotte. The center has been a source of friendships as well as good advice and

collaboration. I am especially grateful to Dr. Jimmie Miller who helped me with his

laboratory facilities as well as his insightful comments especially on the drift test setup

and results that were very crucial for evaluating long-term stability of the instrument

developed in my thesis. Thanks to Jennifer Chastain for her extensive helps to procure

the required material used in my setup. I would like to acknowledge Dr. Christopher

Evans who has supported my project as the head of the center. I would like to thank Mr.

John Brien for his valuable advice during the development of the frequency-modulator

vii

circuit. I also thank Dr. Thomas Weldon from electrical engineering department at UNC

Charlotte, for use of his laboratory facilities to test my electronic boards. For this

dissertation I would like to thank my reading committee members: Dr. Falaggis, Dr. Her,

Dr. Miller, Dr. Smith, and Dr. Tarbutton for their time, interest, and helpful comments.

My time at UNC Charlotte was enjoyable especially due to many friends who

have become a part of my life. I am grateful for time spent with friends, for our

memorable trips to the mountains, for Farid Javidpour, Amirreza Sahami, Faraz

Hedayati, Vahid Hemmati, Saeed Heysiattalab, Fatemeh Mirzaee’s hospitality. Many

thanks to my great lab-mates, Jeffery Thousand, Kumar Arumugam, and Sajad Kafashi

who helped me in programming a lot of codes. I would like to thank Pedram Poshtiban

from IUST for teaching me the VHDL language for programming FPGAs.

Last but not least, I am grateful to my family for all their love and encouragement.

For my parents who raised me with a love of science and supported me in all my pursuits.

Special thanks to my dad for assigning me tough tasks as a kid to prepare me for the rainy

days of my life. For my beloved mom who has truly devoted herself to our family. For

my elder brothers Yousef and Naser who shed a light into the path that I took as an

engineer as well as my lovely sister, Nahid, who has always supported me as her little

brother. Thank you all.

Masoud Arablu

UNC Charlotte

May 2019

viii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 Literature Review 1

1.2 Objectives of this research 7

CHAPTER 2 INTERFERENCE OF FM LIGHT BEAMS 9

CHAPTER 3 SYNCHRONOUS FM SIGNAL GENERATION 14

3.1 Digital FM signal generation background 14

3.2 Principle of operation 18

3.2.1 Modulated clocking of the high bandwidth DDS 18

3.2.2 Theory of Synchronous FM Signal Generation 21

3.3 Modulator Circuit Design 23

3.4 FM signal generator testing and results 27

3.4.1 Experimental apparatus and test procedure 27

3.4.2 Performance tests on first prototype of FM board 29

3.4.3 Final prototype FM board 32

CHAPTER 4 FM LIGHT GENERATION BY AOM 44

ix

4.1 Acousto-Optic Modulators 44

4.2 Diffraction of Light by FM Waves using an AOM 46

4.3 Experimental Results of Diffraction 51

CHAPTER 5 SIGNAL DETECTION 58

5.1 Photodetector Design 58

5.1.1 First photodetector 61

5.1.2 Second photodetector 63

5.2 Harmonics detection by analog lock-in amplifiers 65

5.3 Harmonics detection by FPGA-based Fourier transform 67

CHAPTER 6 DISPLACEMENT MEASUREMENT 84

6.1 Measurements by analog lock-in amplifiers 84

6.2 Measurements by FPGA-based discrete Fourier transform 93

6.3 Synchronization issues 97

6.4 Future work 100

REFERENCES 103

APPENDIX A ARDUINO CODE FOR FM BOARD 112

Appendix A.1 FMGenerate_Arduino 112

x

Appendix A.2 keywords 114

Appendix A.3 FM_Generate.h 114

Appendix A.4 FM_Generate.CPP 115

APPENDIX B SPECTRA OF ELECTRICAL FM SIGNALS 122

APPENDIX C VHDL code for 32-sample Fourier transform 130

xi

LIST OF TABLES

Table 3-1- Measured phase differences between sidebands. 39

Table 3-2- Simulation of AD9951 DDS with PLL multiplier of 20 and

AD9833 DDS with clock frequency of 10 MHz

42

Table 6-1- RMS of deviations between reference interferometer and

harmonics pairs measurements.

89

Table 6-2- Span and RMS of deviations between HP and polydyne

interferometers measurements.

97

xii

LIST OF FIGURES

Figure 1-1- Schematic of a simple displacement measuring interferometer. 2

Figure 1-2- Typical detection bandwidth of homodyne and heterodyne

interferometers. 5

Figure 2-1- Absolute value of Bessel functions of first kind,  iJ  , for i =

0, 1, … , 8 in a normalized scale. 12

Figure 3-1- Frequency spectrum of DDS output with a 469.360351 MHz

output showing a 38 dBc Nyquist band spurious-free dynamic range [59]. 16

Figure 3-2- Digital Phase Wheel with corresponding normal and modulated

clock. 19

Figure 3-3- Block diagram of the circuit containing the signal path from

reference clock to the DDS2. 20

Figure 3-4- Details of the phase delay circuit in conjunction with major

blocks of other DDS1 and DDS2 circuits. 23

Figure 3-5- Schematic of the DDS1 circuit with a digital amplitude control. 24

Figure 3-6- Schematic of the DDS2 circuit. 26

xiii

Figure 3-7 Variation of the generated delay from the LT1016 comparator as

a function of the voltage applied to the LF353 amplifier. 27

Figure 3-8- Frequency response of the DDS1 circuit over a 2 MHz band. 28

Figure 3-9- Frequency response of the DDS2 circuit from 1 to 80 MHz. 28

Figure 3-10- First prototype of the FM board. 29

Figure 3-11- Experimental setup to test the first prototype FM signal

generator performance. 30

Figure 3-12- Frequency spectrum of FM signal of 60cf  MHz and

100mf  kHz generated by the first prototype board. 31

Figure 3-13- Frequency spectrum of FM signal of 60cf  MHz and

250mf  kHz generated by the first prototype board. 31

Figure 3-14- Photograph of the final prototype PCB with different sub-

circuits components; A) power input and regulators, B) digital input, C)

clock input, D) omitted clock-line buffer layout, E) time-delay, F) high-pass

filter, G) DDS1 circuit, H) digital rheostat to control modulation signal

amplitude, I) modulation signal output, J) DDS2, K) transformer, L) low-

pass filter with 160 MHz cutoff, M) low-pass filter with 75 MHz cutoff, N)

FM output. 33

xiv

Figure 3-15- The FM board with separated buffers in the clock line; a) non-

inverting adjustable gain amplifier; b) buffer between DDS1 and clock line. 34

Figure 3-16- Experimental setup to test the final prototype FM signal

generator performance. 35

Figure 3-17- Measured frequency spectra of signals of 30cf  MHz and

250mf  kHz with varying (0 3.7)  indicated by (0 2)mV  , compared

with modulation amplitude resulted from Jacobi-Anger expansion. 36

Figure 3-18- Measured frequency spectra of signals with 30cf  MHz and

250mf  kHz with varying mV values of 0 to 2 V compared with the

absolute value of Bessel functions of first kind,  iJ  , for i = 0, 1, … , 8 in

a dBm scale. 37

Figure 3-19- Schematic of the mixer, AD835, circuit. 38

Figure 3-20- Schematic diagram of the experimental setup for measuring the

phase difference between odd and even sidebands. 39

Figure 3-21- Spectra of signals of 10cf  MHz and mf  50, 100, and 150

kHz measured with frequency steps of 1 Hz. 41

xv

Figure 4-1- Block diagram of the major components of the polydyne

interferometer. 46

Figure 4-2- Acoustic waves diffracting light beam like a diffraction grating. 47

Figure 4-3- Experimental setup to test the light diffraction by FM waves via

an AOM. 51

Figure 4-4- Different diffraction patterns resulted from different incident

angles. 52

Figure 4-5- Diffraction side-beam extraction by a slit; a) before using slit; b)

after passing through the slit. 53

Figure 4-6- Experimental setup to evaluate the frequency spectra of

diffraction side-beams. 54

Figure 4-7- FM light interference resulted from a) experimental setup shown

in Figure 4-6 monitored in an oscilloscope, and b) theoretical FM waves

interference. 55

Figure 4-8- Frequency spectra of the photodetector signal for a) 5mf  kHz,

and b) 25mf  kHz. 57

Figure 5-1- Photovoltaic and photoconductive modes. 59

Figure 5-2- Dark current compensation in photoconductive mode [81]. 59

xvi

Figure 5-3- Pre-amplifier and transimpedance configuration of photodetector

circuits. 60

Figure 5-4- The photovoltaic and photoconductive transimpedance

photodetector circuits. 62

Figure 5-5- Different prototypes of the first photodetector. 62

Figure 5-6- Photodiode preamp system with dark current compensation [81]. 64

Figure 5-7- Modified photodetector for use with FPGA board. 64

Figure 5-8- Schematic of Fourier transform implementation through analog

demodulators. 65

Figure 5-9- DSP lock-in amplifiers model SR850 [83]. 66

Figure 5-10- Compact lock-in amplifier circuit using AD630 microchip [87]. 66

Figure 5-11- NEXYS 4 DDR board. 68

Figure 5-12- Riemann sum approximation involved in calculation of Fourier

coefficients from a discrete

series, rx

, rather than a continuous

function,

 x t . 69

xvii

Figure 5-13- Schematic of FPGA-based, 16 sample, discrete Fourier

transform for extraction of the amplitude of first harmonic in the detected

signal, rx . 71

Figure 5-14- Experimental setup to measure the frequency response of

discrete Fourier transform. 72

Figure 5-15- FPGA-based Fourier transform spectrum response for 25 kHz

signal. 73

Figure 5-16- FPGA-based Fourier transform spectrum response for 80 kHz

signal. 73

Figure 5-17- Lissajous of Fourier transform coefficients of first and second

harmonics, and displacement calculated from these harmonics coefficients,

compared with the applied displacement for maximum displacement speed

of 15 μms-1. 75

Figure 5-18- Lissajous of Fourier transform coefficients of first and second

harmonics, and displacement calculated from these harmonics coefficients,

compared with the applied displacement for maximum displacement speed

of 1 mms-1. 76

Figure 5-19- Lissajous of Fourier transform coefficients of first and second

harmonics, and displacement calculated from these harmonics coefficients, 77

xviii

compared with the applied displacement for maximum displacement speed

of 5 mms-1.

Figure 5-20- Lissajous of Fourier transform coefficients of first and second

harmonics, and displacement calculated from these harmonics coefficients,

compared with the applied displacement for maximum displacement speed

of 7 mms-1. 78

Figure 5-21- Lissajous of Fourier transform coefficients of first and second

harmonics, and displacement calculated from these harmonics coefficients,

compared with the applied displacement for maximum displacement speed

of 10 mms-1. 79

Figure 5-23- Lissajous of 32-sample, 32-averaged Fourier transform

coefficients of first and second harmonics, and displacement calculated from

these harmonics coefficients, compared with the applied displacement for

maximum displacement speed of 20 mms-1. 82

Figure 5-24- Lissajous of 32-sample, 32-averaged Fourier transform

coefficients of first and second harmonics, and displacement calculated from

these harmonics coefficients, compared with the applied displacement for

maximum displacement speed of 30 mms-1. 83

xix

Figure 6-1- Apparatus for interferometric displacement measurement, a)

polydyne interferometer setup, b) added optics for the reference

interferometer. 85

Figure 6-2- Modulation harmonics amplitude variations due to a sinusoidal

displacement. 86

Figure 6-3- Lissajous curves from different harmonic pairs of 10mf  kHz. 87

Figure 6-4- Normalized Lissajous curve. 88

Figure 6-5- Displacement measured by reference interferometer and H1-H2. 89

Figure 6-6- Length correction coefficients for temperature, 1A , pressure, 2A ,

humidity, 3A , and total, 4A . 90

Figure 6-7- Drift test results for HP and polydyne interferometer. 91

Figure 6-8- Lissajous measured by AD630 circuits at speeds of 1, 2, 14, and

15 μms-1. 92

Figure 6-9- Experimental setup of polydyne interferometer with FPGA-

based Fourier transform. 94

Figure 6-10- Lissajous and fitted ellipse to the results of measurements by

32-sample, 32-point-averaged Fourier transform with 10 MHz ADC 95

xx

sampling rate and different maximum displacement speeds of 2, 4, 7, and 11

mms-1.

Figure 6-11- Sinusoidal displacement with maximum speed of 2 mm.s-1

measured by polydyne (H1-H2) and HP interferometers. 96

Figure 6-12- Deviations between HP and polydyne (H1-H2) displacement

measurements at maximum speed of 2 mms-1. 96

Figure 6-13- Displacement measurement at maximum speed of 11 mms-1. 98

Figure 6-14- Deviations between HP and polydyne measurements shown in

Figure 6-13. 98

Figure 6-15- Lissajous generated by depicting fit sine waves to displacement

measurements by HP and polydyne interferometers. 99

Figure Appendix B-1- Spectra of signals of 10cf  MHz and mf  50, 100,

and 150 kHz measured with frequency steps of 1 Hz. 122

Figure Appendix B-2- Spectra of signals of 30cf  MHz and mf  50, 100,

and 150 kHz measured with frequency steps of 1 Hz. 123

Figure Appendix B-3- Spectra of signals of 60cf  MHz and mf  50, 100,

and 150 kHz measured with frequency steps of 1 Hz. 124

xxi

Figure Appendix B-4- Spectra of signals of 70cf  MHz and mf  50, 100,

and 150 kHz measured with frequency steps of 1 Hz. 125

Figure Appendix B-5- Spectra of signals of 10cf  MHz and mf  200,

250, and 300 kHz measured with frequency steps of 1 Hz. 126

Figure Appendix B-6- Spectra of signals of 30cf  MHz and mf  200,

250, and 300 kHz measured with frequency steps of 1 Hz. 127

Figure Appendix B-7- Spectra of signals of 60cf  MHz and mf  200,

250, and 300 kHz measured with frequency steps of 1 Hz. 128

Figure Appendix B-8- Spectra of signals of 70cf  MHz and mf  200,

250, and 300 kHz measured with frequency steps of 1 Hz. 129

xxii

LIST OF ABREVIATIONS

AOM Acousto-Optic Modulator

ADC Analog to Digital Convertor

BJT Bipolar Junction Transistor

CLCK Clock frequency, (Hz)

DAC Digital to Analog Converter

dBm decibel milliwatts

DDS Direct Digital Synthesizer

DSP Digital Signal Processing

FET Field Effect Transistor

FPGA Field Programmable Gate Arrays

FM Frequency Modulated

FSK Frequency Shift Keying

HP Hewlett-Packard

LiDAR Light Detection And Ranging

LUT Look-Up Table

xxiii

PCB Printed Circuit Board

PLL Phase Locked Loop

PSK Phase Shift Keying

PZT Lead Zirconate Titanate

RF Radio Frequency

SCLCK System clock frequency inside the DDS after multiplier, (Hz)

SFDR Spurious-Free Dynamic Range

SMA SubMiniature version A

VHDL Very high speed integrated circuit Hardware Description Language

VHF Very High Frequency

1

CHAPTER 1 INTRODUCTION

This chapter consists of two sections that present a summary of literature about

displacement measurement interferometers in section 1.1, and objectives of this work in

section 1.2.

1.1 Literature Review

The essential idea behind optical interference is that since light acts as an

electromagnetic wave, optical interference results from the superposition of the electric

field of two or more light beams as waves. Optical interference has played a prominent

role in modern technology. It was first used by Thomas Young to discover the wave

nature of light via the well-known double-slit experiment [1]. Albert A. Michelson and

Edward W. Morley used white light interference through the well-known Michelson

interferometer to show that there was no foundation for the existence of an aether [2].

Since then, there have been numerous advances in optics, interferometry, and supporting

fields like; stabilized long coherence lasers, low-noise photodetectors, and ultrahigh

speed, ultralow-noise electronic microchips for signal generation, detection and

processing. All these advances along with Michelson’s technique have produced many

great technologies such as spectroscopy [3], displacement measuring interferometry [4],

absolute distance measuring interferometry [5], Light Detection And Ranging (LiDAR)

velocimetry [6], optical gyroscope [7], and so on.

2

Twyman and Green modified Michelson’s interferometer by collimated light [8].

The method used by Twyman and Green is nowadays used in most displacement

measurement interferometers for measuring the position change of a target object. A

simple schematic of a displacement measuring interferometer is shown in Figure 1-1.

Figure 1-1- Schematic of a simple displacement measuring interferometer.

Typically, the fixed arm is called the reference arm and the moving arm is called

the measurement arm. Any displacement in the measurement arm changes the optical

path length of the measurement arm causing the intensity of the interfered beam at the

detector to vary between destructive and constructive patterns. Assuming a wavelength of

 , displacement of L results in a phase change of  in the captured intensity of the

interference:

2 nN L    . (1-1)

where, n is the refractive index of air, N the path factor that is the number of times the

light beam traverses the displacement path. Since the measured phase is a modulus of 2π,

it should be unwrapped to determine the actual displacement.

Laser

Detector

Assessed

Displacement

Reference

Retroreflector

Moving

RetroreflectorBeam

Splitter

3

The primary objective of any displacement measuring system is to perform linear

and repeatable measurements. Repeatability as the maximum deviation between the

measurements of a measurand under the same conditions and with the same measuring

instrument refers to how stable the measurement will be over time. System measurement

repeatability consists of two parts of short-term and long-term repeatability. Short-term

repeatability is the measurement stability over a period shorter than one hour; long-term

repeatability is stability over a period longer than one hour. Repeatability error budgets of

a displacement measurement interferometer are categorized as intrinsic (laser

wavelength, electronics error, optics nonlinearity), environmental (atmospheric

compensation, material thermal expansion, optics thermal drift), and installment (dead-

path error, Abbé error, cosine error). Intrinsic error components are the main focus of

instrument manufacturers [9].

Displacement interferometers, just like any other displacement measurement

systems, can be classified based on their dynamic range and precision. Some applications

require high resolution (0.1 nm to 10 nm), low dynamic range interferometers [10] such

as metrology for semiconductor fabrication [11], large optics fabrication [12], stellar

interferometry [13], and precision robotics in medicine [14]. Another significant group of

applications like machine tool metrology [15] require coarser resolutions (about 10 nm to

50 nm) displacement measurement interferometers with measurement ranges of a few

meters and speeds of greater than 10 mms-1.

Through decades of research effort, a wide variety of methods have been

developed to overcome the challenges on building a robust, repeatable, linear

interferometer [10]. All of these methods are generally categorized as either homodyne

4

[16] or heterodyne systems [17, 18]. In homodyne interferometers, the phase change is

measured from DC-level fluctuations of the intensity of the interference. The major

disadvantages of homodyne interferometers are their inherent lack of directional

sensitivity and dependence on a constant maximum intensity of signal. The later has been

solved by automatic compensation of the changes of the signal level [19]. The former

problem has been solved by two different methods of adding directional sensitivity to the

homodyne interferometers using: 1) phase quadrature measurement by applying known

phase shift to the detected signal [20, 21], 2) amplitude demodulation technique by

modulating the laser intensity with a known carrier frequency [4].

Heterodyne interferometers use a laser light containing two distinct frequencies

that have a known frequency difference, i.e. beat/heterodyne frequency. These two

frequencies are orthogonally polarized so that they can perform direction sensitive

displacement detection. Each of the orthogonally polarized optical waves construct one of

the arms, i.e. the reference arm and the measurement arm, of the interferometer. Since

orthogonally polarized waves do not interfere, the interference is achieved by passing

orthogonal beams through a polarizer aligned at 45 degrees [4]. Since the heterodyne

interferometers usually have a heterodyne frequency of a few megahertz, they require a

high detection bandwidth which is usually achieved by flash photodetectors and other

ultrahigh-speed electronics. These requirements make the heterodyne systems more

complex and expensive in comparison with homodyne systems.

Required bandwidth of homodyne and heterodyne systems are shown in Figure

1-2. The interferometers detection bandwidth limit is drastically increasing by the

increase of the electronics microchips speed so that the state-of-the-art miniature

5

retroreflector homodyne interferometers provide 800 mms-1 with 20 pm resolution [22].

Moreover, state-of-the-art heterodyne interferometers provide extraordinary low noise of

7.1 fm∙Hz-1 at 21 MHz [23].

Figure 1-2- Typical detection bandwidth of homodyne and heterodyne interferometers.

Commercial laser-based displacement measurement interferometer systems

typically use tunable [24], Zeeman split [10], or unmodulated Acousto-Optic Modulator

(AOM) Doppler shifted lasers [25] to provide a frequency shifted light source. Rapidly

tunable lasers are widely used for communication applications, typically with wavelength

of 1550 nm, and controlled tuning frequencies up to 1.2 kHz. Consequently, this limits

the measurement bandwidth to below 1 kHz [24, 26, 27]. Zeeman split and AOM

Doppler shift methods provide only two frequencies thereby providing heterodyne

sources.

A new generation of interferometers have recently been introduced that modulate

the frequency of the laser beam by a sinusoidal phase. In this method, the phase

information of interest is extracted from the harmonics of the modulation frequency as

the beats. The sinusoidal phase can be injected into the laser beam by different methods.

In the first method [28], the beam propagates in an optical fiber and a piezo applies a

×10 MHz to 1 GHz

Homodyne detection bandwidth

Heterodyne detection bandwidth

Frequency

A
m

p
li

tu
d

e

DC to ×100 MHz

6

sinusoidal motion to the optical fiber; this method is called deep phase modulation

interferometry. In the second method [29, 30], an electro-optical amplitude modulator

modifies the laser frequency with a sinusoidal signal; this method is called deep

frequency modulation interferometry. Highly compact extrinsic Fabry-Perot

interferometers [26, 27] is another example of dynamic sinusoidal frequency modulation

technique that uses the same method of deep frequency modulation interferometry for

injecting the sinusoidal phase into the laser beam.

The dynamic frequency modulation technique is different from that of phase-

shifting interferometry [31-33]. The phase-shifting interferometry applies a sequence of

static phase shifts into the light beam to generate a sequence of phase-shifted fringe

patterns to measure the profile of smooth surfaces [33]. Since the applied phase-shift is

quasi-static, it does not change the frequency band of the measurement. Contrarily, the

dynamic frequency modulation techniques change the temporal frequency of the laser

beam continuously so that the optical phase of interest is measured in the beat frequencies

that are resulted from this dynamic frequency change. This later technique is not as

sensitive to low frequency environmental noise as the phase-shifting interferometry.

Deep frequency modulation-based interferometers combine strong sinusoidal

laser frequency modulation in unequal arm length interferometers with a non-linear fit

algorithm for phase extraction. The demodulation algorithm or the non-linear fit is

implemented in a FPGA to miniaturize the system [28]. Extrinsic Fabry-Perot

interferometer uses self-homodyning (also used in our method) by sinusoidal frequency

modulation of the laser source wavelength to achieve sub-nanometer resolution

displacement measurement in a compact sensing volume. Application of compact

7

interferometers in simple position sensors and high-resolution inertial sensors has been

recently reviewed in Ref. [34]. This review provides a summary of variety of optical

interferometry techniques and their pros and cons in terms of measurement linearity and

resolution, compactness of the interferometer, cost, and finally their inherent

susceptibility to shot noise and length noise that couples to their readout [34].

Two methods to generate frequency or phase modulated laser light are: 1) by

applying a modulation directly to the light source (direct method), 2) by passing the beam

through a frequency shifter (indirect method). Optical serrodyne frequency translation

[35] used in LiDAR velocimetry [6] and in optical gyroscopes [7] are examples of an

indirect frequency shifting method, whereas changing the drive current through a laser

diode to produce FM light is a direct method [36, 37].

1.2 Objectives of this research

There is always need for low cost, portable displacement measurement

interferometers. The main objective of this research is to design and implement a low

cost, portable displacement measurement interferometer with sub 50 nm resolution and

measurement speed of about 10 mms-1 for metrology applications. This is achieved by

generating a stabilized FM light source for interferometry. This method combines the

homodyne and heterodyne interferometry detection bandwidth to extract the phase

information from harmonics of modulation frequencies at an update rate of a few hundred

kHz. Therefore, it does not require ultrafast flash photodetectors and ultrahigh-speed

electronics resulting in a substantial drop in the final cost of the system.

We have developed a new method to transfer the precision of atomic clocks to

dynamic frequency modulation interferometry. This method that is being named as

8

polydyne interferometry technique comprises three main parts: 1) generating a

synchronous RF-FM electrical signal, 2) transferring the FM signal into a laser beam

using an AOM, and 3) signal detection and processing. The advantages of this approach

are that measurement for any single degree of freedom requires only one detector,

ultrahigh-speed ultrafast flash detectors and polarization optics are unnecessary, and all

the frequency components are synchronous and they all follow the same path around the

interferometer paths. More broadly the ability to create multiple, phase-synchronous

reference beams enables an arbitrary large number of synchronous interference

measurements. Using only a single AOM, multiple diffraction orders are relatively

straightforwardly extracted. Each of these diffraction orders contain the same modulation

frequency harmonics.

9

CHAPTER 2 INTERFERENCE OF FM LIGHT BEAMS

Interference of FM waves are the foundation of the polydyne interferometry

technique presented in this thesis. In unequal arm length interferometers such as a

Michelson interferometer, the resultant optical signal at the photo diode incorporates the

superposition of the beams travelling through the short and the long arm that have an

optical path difference of L (corresponding to a time delay of L c   , where c is the

speed of light in the medium). Assuming an FM light with carrier frequency 0 ,

amplitude 0E , and modulation frequency m that is split by a 50/50 beam splitter to

produce the signals of each arm of a Michelson interferometer, 1u and 2u :

 
       0 0 0 0cos cos1

0 0

0

sin cos
2 2

m mi t t i t t

m

u t i
t t e e

E

       
   

                , (2-1)

 
     

          0 0 0 0

2

0 0

0

cos cos

sin cos
2

2

m m

m

i t t i t t

u t
t t

E

i
e e

           

     

              

    

  

, (2-2)

where,  is the modulation depth, 0 is the initial phase of light, phase @ 0t  , at the

photo diode. The intensity of optical signal produced in the photo diode,  ,I t  , is

10

            
  

2
2

0 02 1

2 2

0 0 0 0

sin cos,

4 4 sin cos

m

m

t tu t u tI t

E E t t

     

   

    
  
    

. (2-3)

Assuming the initial phase equal to zero, 0 0  , the intensity of optical signal is

 
    

          
    

          

0 0

0 0

0 0

0 0

0

2
cos cos

2 cos cos
0

2 cos 2 cos2 2

2 cos 2 cos2 2

2

2
,

2 2

2 4

2 4

m m

m m

m m

m m

i t t i t t

i t t i t t

i t i ti t i t

i t i ti t i t

i t i

e e
I t

E e e

e e e e

e e e e

e e

     

         

    

        




        

            

 

    



 
 

  
   

 

 

  




          
          

0 0 0

0 0

cos coscos cos2

cos coscos cos

2

2

m mm m

m mm m

i t i ti t i ti t i

i t i ti t i ti i

e e e e e e

e e e e e e

            

           

   

   

 
 
 
 
 
 
 
   
 

. (2-4)

The intensity equation (2-4) represents some fluctuations at frequencies of

02 mp  , in which p is an integer number, and other fluctuations at harmonics of m .

In practice, fluctuations at 02 mp  occur too fast to measure so that they average out

to zero, after which the measured intensity reduces to

             

     

     

0 0

2
cos coscos cos0

2

0
0

2

0
0

, 1 2
2

1 cos cos cos
2

1 cos sin 2 sin 2
2

m mm mi t i ti t i ti i

m m

m m

E
I t e e e e e e

E
t

E
t

           

      

      

   
  

     
 

    
 

. (2-5)

For typical metrology applications, the length of both arms of the interferometer

is, at most, of the orders of a meter, from which
92997924581m 1 3.3 10c     s.

11

Therefore, for 510m  Hz, 43.3 10 1m     so that  sin 2 2m m    and

    sin 2 sinm mt t    ; this leads to the simplified form of measured irradiance:

    

         

2

0
0

2

0
0 0

, 1 cos sin
2

1 cos cos sin sin sin sin
2

m

m m

E
I t t

E
t t

    

       

    

    

. (2-6)

Setting   as the effective modulation depth, 0   as displacement-

related optical phase change, and using Jacobi-Anger expansion [38, 39] for

  sin sin mt  and   cos sin mt  gives

 

       

      

0 2

1

0

2 1

1

1 cos 2 cos 2

,

sin 2 cos 2 1

p m

p

p m

p

J J p t

I t I

J p t

   



  











  
   

  
 
   
  





. (2-7)

In which,  pJ  are the Bessel functions of first kind, 2

0 0 2I E is the average intensity

on the detector,    0 0 cosI J   is the homodyne equivalent intensity that will be equal to

 0 cosI  for 0  as it is expected from the intensity of unmodulated signals

interference,     2 1

1

cos 2 1p m

p

J p t 






 is the odd harmonics of the modulation

frequency whose amplitude changes with odd part of the phase, and

   2

1

cos 2p m

p

J p t 




 is the even harmonics of the modulation frequency whose

amplitude changes with even part of the phase. Equivalent expressions have been

presented in different studies [30, 40] in which all of them have used the same

12

simplifications to derive an expression for the harmonics signals. Increasing the effective

modulation depth,  , spreads the energy of interference among the harmonics of

modulation frequency. This can be observed in the absolute value of Bessel functions of

first kind,  iJ  , for i = 0, 1, … , 8, see Figure 2-1.

Figure 2-1- Absolute value of Bessel functions of first kind,  iJ  , for i = 0, 1, … , 8 in

a normalized scale.

The amplitudes of the odd and even harmonics are commonly called in-phase,

2 1pI 
, and quadrature, 2 pI , signals, respectively. Applying Fourier transform to the

measured intensity, equation (2-7), results in following expressions for the in-phase and

quadrature signals from which phase can be extracted [41, 42]:

   

   

2 1 0 2 1 0

2 0 2 0

sin

cos

p p

p p

I I J

I I J

  

  

 


. (2-8)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
ed

 A
m

p
li

tu
b

e

Modulation Depth

ABS(J0) ABS(J1) ABS(J2)

ABS(J3) ABS(J4) ABS(J5)

ABS(J6) ABS(J7) ABS(J8)

13

In order to extract the phase from the measured in-phase and quadrature signals,

these signals are first normalized and phase-adjusted to fit in a unity circle after which the

phase is calculated as

2 1,1

2 ,

tan
p u

p u

I

I



 

   
 

, (2-9)

where,
2 1,p uI 

 and
2 ,p uI are the normalized, phase adjusted

2 1pI 
 and

2 pI , respectively.

Finally, the displacement of the moving arm of the interferometer is derived from the

measured phase as

2
L

nN




  . (2-10)

All the equations presented in this chapter represent the ideal condition of perfect

FM signals interference. If the interfering beams are not perfect FM waves, the

distribution of energy in different frequency components will be different from equation

(2-7). In such circumstances, each of the odd and even harmonics of the modulation

frequency might carry both  0sin   and  0cos   . This provides the opportunity to

calculate the optical phase information, 0   , by extracting the amplitude of sine and

cosine of each of the modulation signal harmonics. The proof of this hypothesis is left as

a suggestion for future work.

14

CHAPTER 3 SYNCHRONOUS FM SIGNAL GENERATION

This chapter consists of four sections that present a summary of literature about

digital FM signal generation methods in section 3.1, the principle operation mechanism

of a new FM signal generation method introduced in this work in section 3.2, the new FM

circuit design in section 3.3, and the testing and results of spectrum of generated FM

signals by different prototypes of the new FM signal generator in section 3.4.

3.1 Digital FM signal generation background

Frequency modulation in instrumentation and communication include a broad

range of sensing strategies and information transmission methods. Such strategies range

from single frequency transmission and reception with amplitudes representing the DC

value, through to phase/frequency modulation and phase locking and, ultimately, multiple

phase and frequency transmission for synchronous, parallel, digital data transfer. All of

the modulation techniques share the main concept through which signals are mixed to

operate at more conveniently measured harmonic frequencies and intermediates as is the

case for heterodyne and super-heterodyne techniques [43]. Such processes find

applications in both optical processes and radio transmission [43-45]. Of particular recent

interest is the implementation of these modulation techniques for development of optical

interferometric instrumentation [24, 26, 46]. In these techniques, the interferometric

phase is extracted using multiple sidebands which has led to novel sensing methods.

15

Until the last few decades, most radio frequency modulators were implemented by

analog circuits. Since digital phase/frequency modulators are compact and often provide

superior frequency stability, they have now evolved as replacements for the bulky analog

circuits. One such, digital approach, are Direct Digital Synthesizers (DDS) that provide

low distortion signals with frequencies exceeding 400 MHz, a limit that is continuously

increasing [47]. The method used in commercial DDS chips to generate modulated

signals is based on regularly updating a phase offset word in a look-up table via a serial

port [48-50] and is limited by the speed of the port. Furthermore, this method does not

necessarily lead to synchronous FM signals, since the serial port is not necessarily timed

with the main clock of the system. Recent studies have been focused on high speed DDS

technology with FM capabilities over GHz frequencies [51-57]. One such development is

the DDS that has been manufactured in Ref. [58] as the first DDS that generates FM

signals at frequencies above 1 GHz. The aim reported in Ref. [58] is to provide all

functionality of over-GHz FM signal generation in a single microchip. Their DDS

architecture uses carry-look-ahead or ripple-carry-adder to boost the speed of registering

frequency control word of a precursor design that uses bipolar plus negative metal oxide

semiconductor adder architecture [59], and uses a 5 GHz clock to time the data transfer

buses. This DDS has been designed to be used in radar technology where the best

spurious free dynamic range at higher frequencies, i.e. over-GHz frequencies, is the main

functional figure of merit. Also, this DDS provides 38 dBc Nyquist band and 83 dBc

narrowband spurious-free dynamic range for over GHz carrier frequencies, see Figure 3-1

[59].

16

Another research group has produced an all-digital, direct frequency synthesizer

that provides direct modulation capabilities at 20 Mbps with 3 µs startup latency [60]. In

this work, they have claimed that a synthesizer can generate desired frequencies over a

wide range by digitally manipulating time-shifted copies of a temperature-compensated

film bulk acoustic resonator signal based on the outputs from a sigma-delta modulator.

Performance of a working circuit has not been reported yet.

Figure 3-1- Frequency spectrum of DDS output with a 469.360351 MHz output showing

a 38 dBc Nyquist band spurious-free dynamic range [59].

In principle, it is possible to generate a phase modulated signal by dynamically

updating the phase offset control of some commercial DDS chips (such as AD9834, and

the AD9951 used in our design). Phase Shift Keying (PSK) and Frequency Shift Keying

17

(FSK) are two common data encoding methods that are used in these DDS architectures

for modulating the phase and frequency of the desired output signal, respectively. In

PSK, the phase of the transmitted signal is changed, while the frequency of the carrier

remains constant. FSK allows a binary shifting of the frequency of a continuous carrier to

one or the other of two discrete frequencies. Two frequency registers are required to

achieve a fast tuning into these two frequencies as it is used in AD9834 [50]. The range

and precision of modulation by FSK and PSK is inherently limited, primarily by the

speed of the serial peripheral interface and the accuracy of timing for triggering FSK and

PSK registers. This limits the achievable values of the modulation depth so that side-band

amplitudes of only about -40 dB are achievable for different modulation frequencies,

while the noise level is about -70 dB to -80 dB.

Early attempts to create frequency modulated signals using the methods outlined

in the previous paragraph experienced numerous problems in dynamically updating the

phase accumulator of commercial DDS boards to generate phase/frequency modulated

electric signal so that our efforts resulted in a synchronous FM signal with spurious

glitches that could not be removed. Therefore, we designed and manufactured a novel

digital FM signal generator that produces electrical FM signal in which the modulation

frequency is phase synchronized with the carrier frequency. This has the benefit of phase

synchronization in all generated frequencies using an atomic clock. This method uses two

DDS chips, one for generating the carrier frequency and the other one for producing the

modulation through an analog time-delay circuit. This removes the necessity to update

the phase offset word and eliminates the limitation of serial data transfer speed, though

the modulation and carrier frequencies are limited by the frequency limits of the

18

corresponding DDS chips. This FM signal generator also solves another common

problem of noise spikes in the generated signals caused by dynamic effects of the register

updates. Using this particular method, frequencies of carrier and harmonics are not

influenced by the analog circuit variations; however, drifts in the delay circuit frequency

will affect relative amplitudes of the harmonics either side of the carrier, i.e. the

modulation depth. Since the electrical FM signal is aimed to drive AOMs with 60 and 70

MHz operation frequencies, the manufactured FM signal generator was designed to

provide an output frequency band of 1 Hz to 80 MHz. This is achieved by two stages of

passive and active low-pass filters at the output of the board outlined in section 3.3.

3.2 Principle of operation

3.2.1 Modulated clocking of the high bandwidth DDS

DDS microchips comprise a processor that uses a pointer to increment through a

Look-Up Table (LUT) to determine values that are sent to a Digital to Analog Converter

(DAC) through which the analog signal is generated. Regularly clocking the pointer at

equal time intervals as it steps through a LUT of sinewave values results in a digital

output equivalent to the function represented in the LUT. Dependent on the values in the

LUT and the frequency of the clock, periodic shapes of any function can be produced.

Consequently, to produce a sinewave, a DDS is implemented using a reference clock, an

address counter, a digital sine LUT, and a DAC. An amplitude word is picked from the

sine LUT by the address counter and is sent to the DAC to generate the equivalent analog

sinewave. The output frequency depends on the clock frequency and the LUT jumper

value set by the user.

19

Figure 3-2- Digital Phase Wheel with corresponding normal and modulated clock.

A “phase wheel” representation shown in Figure 3-2 illustrates the DAC transfer

process in a DDS. As shown, generation of sinewave oscillation can be visualized as a

vector rotating around a circle containing values for the DAC. Each designated point on

the phase wheel corresponds to data that transforms to an equivalent point on a cycle of a

sinewave. Each revolution of the vector around the phase wheel, at a constant speed,

generates one complete cycle of the sinewave the frequency of which is determined by

the basic tuning equation

   2Qf M CLCK  . (3-1)

where, f is the output frequency; M , the register vector jump size; Q is the bit

resolution of the LUT; 2Q is the number of data-points in the LUT and SCLCK is the

system clock frequency inside the DDS. In some DDS microchips, the external clock is

first multiplied by an integer value through a multiplier to generate higher frequency

clocks for processing the data inside the DDS structure. In such DDS architectures, the

SCLCK is the frequency of clock signal after multiplier.

Modulated

SCLCK

SCLCK

20

The main idea behind the electrical FM signal generator presented in this study is

that a DDS will output frequency/phase modulated sinewave if the phase of its clock

signal is dynamically being adjusted. The FM signal generator developed here uses two

DDS processors: one for adjusting the phase of the clock signal and the other one for

generating the FM signal from the modulated clock. To do this, a voltage-controlled

time-delay circuit is adopted to modulate the reference clock frequency before feeding it

into the high frequency DDS, DDS2, also indicated in Figure 3-2. Figure 3-3 shows a

block diagram indicating the major components of this method. DDS1 is used to

generate a sinusoidal voltage that controls the time-delay circuit. Importantly, the clock

for both DDS1 and DDS2, are derived from the same source, in our experiments a 10

MHz rubidium oscillator (SRS model PRS10 [61]).

Figure 3-3- Block diagram of the circuit containing the signal path from reference clock

to the DDS2.

As seen in Figure 3-3, the reference clock is simultaneously timing both DDS

circuits. Being directly timed from the clock source, the DDS1 output signal is used to

modulate the reference clock signal via the time-delay sub-circuit. The output of the time-

delay circuit is then used as a clock for the DDS2 circuit. Definitions of the mathematical

parameters in this figure are discussed in more detail in the following section. To achieve

clock speeds suitable for RF generation, the 10 MHz clock signal is multiplied by 20 (or

Ref. Clock

(Atomic Clock)

DDS2

DDS1

Time Delay

fCLK

fm

fCLK + sin(2πfmt)

FM

21

any integer from 4 to this value) through a Phase Locked Loop (PLL) multiplier within

the DDS2 chip. Because the multiplier output, SCLCK, follows the phase of the input

clock through the PLL, it is assumed that the phase modulations, being substantially

slower than the 10 MHz clock signal, will be similarly transmitted.

3.2.2 Theory of Synchronous FM Signal Generation

As shown in Figure 3-2 (page 19), each rising edge of the clock signal triggers the

LUT to send a digital value to the DAC through which an analog equivalent is generated.

For a constant clocking speed, this results in a perfect sine wave. Under such an

assumption, the sine wave at the DDS output is

     0 0 0sin sinr c r cV t V t V r t    , (3-2)

where, 0V is the amplitude of the output signal; c , the angular frequency of the signal

that is equal to 2 cf ; r , an integer number increasing by each pulse of the SCLCK (i.e. a

clock count); and 0t is the clock timing interval. For the modulated reference clock, the

instantaneous timing interval reads as:

 0 0sin m

c

t t r t
r





     , (3-3)

where, m is the angular modulation frequency, and  is the modulation depth.

Substituting 0t in (3-2) with t gives

   0 0 0sin sinr c mV t V r t r t         , (3-4)

22

where, 0r t is the quantized time approximating to a continuous parameter, rt , as 0t

approaches zero. Equation (3-4) represents an FM signal with corresponding carrier

frequency of / 2c cf   , modulation frequency of / 2m mf   , and modulation depth

 . For the purpose of computing frequency content, this FM signal,  V t , can be

represented in the complex exponential form:

          sin sin

0 sin sin 2c m c mi t t i t t

c mV t V t t i e e
     

  
      

 
. (3-5)

Equation (3-5) can be rewritten in terms of Jacobi-Anger expansions in the form

of following series [38, 39]

             
sin

0

1

1c m c m c mc
pi t t i p t i p ti t

p

p

e e J e e J
        


     



    , (3-6)

             
sin

0

1

1c m c m c mc
pi t t i p t i p ti t

p

p

e e J e e J
        


  



    , (3-7)

If the signal phase is subject to a single modulation frequency, the modulation depth is a

constant. Hence the output comprises the original carrier frequency plus an infinite series

of sidebands at integer multiples of the modulation frequency. In practice, the number of

significant modulation sidebands in the output spectrum is a function of the modulation

depth [43, 62]. By taking the Fourier transform of (3-6) and (3-7), a discrete FM output

spectrum with magnitude coefficients as a function of  is seen as presented in the

equation below.

      0

0

2FM p c m

p

x V J f f pf 




    , (3-8)

where, ()  is the Dirac delta.

23

3.3 Modulator Circuit Design

As stated, the modulation process requires a voltage-controlled time-delay circuit

to generate controlled delays in the phase of a sinusoidal signal from a 10 MHz oscillator

that is subsequently used to time a high frequency DDS circuit. The controlling voltage

signal, which acts to modulate the time delay, is generated by a second DDS that is

synchronously timed by the same, but unmodulated, 10 MHz carrier signal.Both the

carrier and modulation harmonics are consequently timed by the same clock signal. The

time-delay circuit is shown in Figure 3-4. This consists of a wide bandwidth JFET input

operational amplifier model LF353 [63], an ultrafast precision comparator model LT1016

[64], and a retriggerable mono-stable multi-vibrator model SN74LS123 [65].

Figure 3-4- Details of the phase delay circuit in conjunction with major blocks of other

DDS1 and DDS2 circuits.

The modulation signal coming from DDS1 is amplified to the desired amplitude

and then applied to the voltage-controlled delay. There is a buffer between the DDS1 and

the comparator of the time-delay circuit to eliminate possible loading effects due to

FM output

CLCK In

DDS2

0
.1

 µ
F

10 MHz Sine In

1 8

2 7

3 6

4 5

L
T

1
0

1
6

+5 V

-5 V

0.1 µF
0.1 µF

1
0

0
 p

F

+5 V

1 16

2 15

3 14

4 13

5 12

6 11

7 10

8 9

L
S

1
2

3

+5 V

+5 V

+5 V

4
6
4
 Ω

1
0

 p
F

CLCK In

DDS1

10 MHz

Sine In

High-pass filter

1 8

2 7

3 6

4 5

L
F

3
5

3

0.1 µF
-5 V

0
.1

 µ
F

+5 V

2
x

1
0

 k
Ω

7
5
0
 Ω

24

impedance mismatch between them. The harmonically varying delay results in a dynamic

shift in the reference clock going into the comparator. The net result of this is to produce

a voltage-controlled pulse width generator where the pulse width is proportional to the

modulation voltage from the DDS1. Finally, the output signal of the comparator is used

to trigger the multi-vibrator. Since the commercial atomic clocks typically generate 10

MHz signal, the phase delay is designed to be linear with input voltage at this frequency.

Figure 3-5- Schematic of the DDS1 circuit with a digital amplitude control.

The DDS1 circuit is shown in Figure 3-5. In the first prototype of the FM board, a

potentiometer was used to control the amplitude of the modulation signal, mV . This

potentiometer was replaced with a digital rheostat, model AD5270 [66], to provide full-

digital control over all the characteristics of the generated FM signal, see Figure 3-5. Due

to the linear relationship between the delay generated in the time-delay circuit and mV ,

this will subsequently control the modulation depth,  , equation (3.3). The modulation

CS : Chip Select

SCLK : Data Clock Input

SDATA : Digital Data Input

C2 = 1 µF C3 = 0.1 µF

C14 = 10 µF R4 = 12 kΩ

R5 = 3 kΩ

1 10

2 9

3 8

4 7

5 6

A
D

9
8
3
3

C
3 C

3

C
2

+5 V

CLCK In
SDATA

SCLK

CS

R
5

R4

1 8

2 7

3 6

4 5

IN
A

3
3
1

C
2

C
3

+5 V

R
5

1 10

2 9

3 8

4 7

5 6

A
D

5
2
7
0

C
3

C
1

4

+5 V

C

SDATA

SCLK

CS

C2

2
.2

 k
Ω

Modulation

signal

output

1
0

 k
Ω

C3

Highpass

filter

25

depth changes the energy distribution among the sidebands of the FM signal. This can be

observed in the frequency content and relative side-band amplitudes based on Jacobi-

Anger expansion. The high-pass filter between DDS1 and the time-delay circuit, shown

in Figure 3-4, is a simple first-order RC filter located at the output of the DDS1 circuit in

Figure 3-5. This filter eliminates the DC offset at the output of the DDS1 circuit so as to

make it compatible with the input voltage range of the time-delay circuit as it is discussed

in the testing section of the sub-circuits of the board. This also provides an AC-couples

modulation signal that is compatible with the reference inputs of lock-in amplifiers.

The DDS2 circuit is shown in Figure 3-6. The DDS2 chip, AD9951, requires two

separate 1.8 V supplies for analog and digital parts that were provided by small surface-

mount, fixed-voltage regulators, model MCP1825S, made by Microchip Technology Inc

[67]. Acceptable signal qualities were achieved by a two-layer board with separate digital

and analog ground plates, and separate power supplies via fixed-voltage regulators. To

decrease the noise in the circuit, the impedance of the traces used in the Printed Circuit

Board (PCB) is matched to the required impedance for VHF signals (50 Ω). To further

eliminate impedance mismatching that can attenuate and distort the signal and introduce

noise, SubMiniature version A (SMA) connectors are used. For the best spectral purity

possible, two stages of filtering are included on the output of the DDS2 circuit, shown in

Figure 3-6. The first stage is a shunt-connected, 7th order, elliptic low-pass filter with a

cutoff frequency of 160 MHz with component values based on a commercial DDS2

evaluation board [68]. The second stage of filtering is a π configuration, 5-pole,

Butterworth low-pass filter with a cutoff frequency of 73 MHz [69].

26

Figure 3-6- Schematic of the DDS2 circuit.

2nd stage filter

C2C1

Input:

+5 V

1 2 3

MCP1825S-1802E

Output:

+1.8 V (A)

C2C1

Input:

+5 V

1 2 3

MCP1825S-3302E

Output:

+ 3.3 V

C2C1

Input:

+5 V

1 2 3

MCP1825S-1802E

Output:

+1.8 V (D)

3
.9

 k
Ω

C
2

(A)

(A)

1

2

3

4

5

6

7

8

9

10

11

12

48 47 46 45 44 43 42 41 40 39 38 37
36

35

34

33

32

31

30

29

28

27

26

25

13 14 15 16 17 18 19 20 21 22 23 24

AD9951

(A)

(A)
(D)

1.8 V (D)
PwrDwnCtl

Reset

1.8 V (A)

IO
S

y
n

cS
S

1
S

C
L

K
S

D
IO3

.3
 V

O
S

K

(D)
IO/Update

1.8 V (D)

(A)

CLCK In

1.8 V (A)

1
 k
Ω

C3

1.8 V (A)

(A)

C3

50 Ω
1.8 V (A)

50 Ω

1.8 V (A)

1.8 V (A)
NC

5
0

 Ω

Mini-Circuits

T1-1T-KK81

(A)

FM Output
110 nH

6
8

 p
F

1
5

0
 p

F

6
8

 p
F

(A)

3
.3

 k
Ω

110 nH

47 Ω

5
0

 Ω

1
2

 p
F

3
9

 n
H

6
8

 n
H

5
6

 n
H

2
.2

 p
F

6
.8

 p
F

22 pF

33 pF

27 pF

12 pF

50 Ω

33k Ω

33k Ω

1 8

2 7

3 6

4 5

A
D

8
0

0
7

C
2

C
3

+5 V

(A)

10 nF

1
0

 n
F

499 Ω56.2 Ω

C3

PwrDwnCtl, Reset, IOSync, SCLK,

SS1, SDIO, OSK, and IO/Update

are digital inputs based on AD9951

datasheet.

(A): belongs to analog part.

(D): belongs to digital part.

C1 = 4.7 μF

C2 = 1 μF

C3 = 0.1 μF

(A)

(A)

+5 V

(A)

First stage filter

27

3.4 FM signal generator testing and results

3.4.1 Experimental apparatus and test procedure

Since the modulator combines three main circuits of DDS1, time-delay, and

DDS2 circuits, prior to evaluating the complete modulator, it is necessary to evaluate the

performance of each of these individual sub-circuits. To determine time delay as a

function of the input voltage, the DDS1 was bypassed and a DC voltage applied to pin 3

of the LF353 microchip shown in Figure 3-4. With a 10 MHz signal going into the

circuit, the delay through the comparator versus different voltages was measured using an

oscilloscope, see Figure 3-7. As observed in Figure 3-7, the generated delay varies

linearly with the input voltage. Furthermore, it is seen that the delay circuit becomes

nonlinear for input-voltages outside the range -2 V to 2 V, thereby limiting the amplitude

of the modulation signal generated by DDS1. Over this range the response of the time

delay circuit is -5.207 ns.V-1 with a coefficient of determination of 0.9994.

Figure 3-7 Variation of the generated delay from the LT1016 comparator as a function of

the voltage applied to the LF353 amplifier.

-12

-8

-4

0

4

8

12

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

D
el

ay
 (

n
s)

Input Voltage (V)

28

The amplitude frequency responses of the DDS1 and DDS2 circuits as they are

clocked by constant 10 MHz signal are shown in Figure 3-8 and Figure 3-9, respectively.

The magnitude of DDS1 output attenuates at frequencies greater than 1 MHz. It also has

a DC offset of about 2V. To eliminate this DC offset, a high-pass filter with a cutoff

frequency of 1 kHz is used at its output, as shown in Figure 3-5. The two stages of low

pass filters shown in Figure 3-6 provide a cut-off frequency of about 73 MHz. This cut-

off frequency is shown in Figure 3-9.

Figure 3-8- Frequency response of the DDS1 circuit over a 2 MHz band.

Figure 3-9- Frequency response of the DDS2 circuit from 1 to 80 MHz.

-27

-24

-21

-18

-15

-12

-9

-6

-3

0

1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7

A
m

p
li

tu
d
e

(d
B

)

Frequency (Hz) 800 kHz

-7

-6

-5

-4

-3

-2

-1

0

1

2

1 10 100

A
m

p
li

tu
d

e
(d

B
)

Frequency (MHz)
73 MHz

29

3.4.2 Performance tests on first prototype of FM board

Having designed and implemented the FM circuit, see Figure 3-10, an experiment

was set up using an Arduino Mega™ microcontroller to program the microchips, and a

rubidium oscillator (SRS model PRS10) for the clock, see Figure 3-11. This rubidium

frequency standard provides a low phase noise of <-130 dBc/Hz at 10 MHz and a short-

term stability of <2×10-11 s. Because this provides the clock signal for both DDS chips,

the frequency components of all generated FM signals are synchronized to this reference.

The frequency components of the FM signals are measured using a spectrum analyzer

(Agilent CSA model N1996A-506). This analyzer has a frequency range up to 6 GHz

with resolutions settable from 10 Hz to 5 MHz. The Arduino code used for controlling

the DDS microchips are listed in APPENDIX A.

Figure 3-10- First prototype of the FM board.

30

The FM board shown in Figure 3-10 has only one high-pass filter between the

atomic clock and the clock input of the board without any non-inverting amplifier. It also

uses a potentiometer instead of a digital rheostat. Furthermore, this board uses a power

regulator at its power input section to generate ±5 V DC lines from the supplied 5 V DC

power. These are the main differences between this first prototype of the FM board and

the final prototype which is presented in the next section. The reason for modifying the

first prototype of the board to implement the final prototype is presented hereinafter.

Figure 3-11- Experimental setup to test the first prototype FM signal generator

performance.

Two samples of frequency spectra of the generated FM signals by the first

prototype FM board are shown in Figure 3-12 and Figure 3-13. As seen in these figures,

there is an instability in the distribution of energy in the harmonics of the modulation

frequency so that the noise level is about -50 dBm.

31

Figure 3-12- Frequency spectrum of FM signal of 60cf  MHz and 100mf  kHz

generated by the first prototype board.

Figure 3-13- Frequency spectrum of FM signal of 60cf  MHz and 250mf  kHz

generated by the first prototype board.

32

The tests performed on the board revealed that this instability is due to loading of

both the comparator and the DDS1 clock input. To solve this issue, a non-inverting

amplifier was used between the atomic clock output and the clock input port of the board.

Also, to protect the atomic clock from signals reflecting from the modulator, a buffer was

added between the DDS1 clock input and the atomic clock output. These modifications

were implemented in the final prototype of the board presented in the next section.

3.4.3 Final prototype FM board

The final prototype of the FM board is shown in Figure 3-14. Since the ground

plate of the clock line buffer was the same as the DDS sub-circuits analog ground, it was

adding substantial noise to the signal. To solve this issue, the buffer was separated from

the PCB as shown in Figure 3-15. The adjustable gain non-inverting amplifier provides

control on the amplitude of the clock signal to set it to the required level for the DDS1.

Experiments showed that these are the necessary circuits between the atomic clock and

the FM board input to achieve the highest signal-to-noise ratio without loading the atomic

clock. To test the spectral purity and precision of the frequency components of the final

prototyped FM board, the experiment shown in Figure 3-11 was set up for this new

board, see also Figure 3-16. A CXA signal analyzer model N9000B (9 kHz – 7.5 GHz) is

used in this experiment and the resolution is set to 1 Hz for all the spectra presented in

this chapter, except for those that are mentioned specifically.

33

Figure 3-14- Photograph of the final prototype PCB with different sub-circuits

components; A) power input and regulators, B) digital input, C) clock input, D) omitted

clock-line buffer layout, E) time-delay, F) high-pass filter, G) DDS1 circuit, H) digital

rheostat to control modulation signal amplitude, I) modulation signal output, J) DDS2, K)

transformer, L) low-pass filter with 160 MHz cutoff, M) low-pass filter with 75 MHz

cutoff, N) FM output.

34

Figure 3-15- The FM board with separated buffers in the clock line; a) non-inverting

adjustable gain amplifier; b) buffer between DDS1 and clock line.

There are three parameters in the final prototyped FM signal generator that can be

varied, these being the modulation depth  (which is a linear function of mV), the carrier

frequency cf and the modulation frequency mf . To study the effects of  on the shape

of the spectra, mV is changed by setting different values of resistance for the digital

rheostat in the last version board —that is identical to the manual potentiometer in the

first version board— and the spectra captured for a variety of carrier and modulation

frequencies.

35

Figure 3-16- Experimental setup to test the final prototype FM signal generator

performance.

The frequency spectra of signals with 30cf  MHz, 250mf  kHz, and various

mV values are plotted in Figure 3-17 and Figure 3-18. For the data presented in these

figures, the resolution of the spectrum analyzer was set to 100 Hz and frequency

components of the spectra spanning 27 to 33 MHz with frequency steps of 6 kHz were

captured. The reason for setting the resolution higher than 10 Hz, which is the finest

possible resolution in the Agilent CSA spectrum analyzer used in this study, is to

36

generate more visible (broader) sidebands for visualization in these 3D figures. The lines

plotted on top of the sidebands if Figure 3-17 represent the absolute value of Bessel

function of first kind of integer orders -6 to 6 at the same decibel magnitude (dBm) scale

used in 3D spectra. To further illustrate the Bessel function dependence of amplitude with

modulation depth, the absolute values of Bessel functions of the first kind for integer

orders of 0 to 8 are compared with the sidebands magnitudes in Figure 3-18.

Figure 3-17- Measured frequency spectra of signals of 30cf  MHz and 250mf  kHz

with varying (0 3.7)  indicated by (0 2)mV  , compared with modulation amplitude

resulted from Jacobi-Anger expansion.

37

Figure 3-18- Measured frequency spectra of signals with 30cf  MHz and 250mf 

kHz with varying mV values of 0 to 2 V compared with the absolute value of Bessel

functions of first kind,  iJ  , for i = 0, 1, … , 8 in a dBm scale.

As seen in Figure 3-17 and Figure 3-18, the generated signals are consistent with

the characteristic predicted by the Jacobi-Anger expansion for the relationship between

38

 and mV . The same behavior was observed for signals with other cf and mf values

ranging from 10 MHz to 70 MHz and 10 kHz to 300 kHz, respectively.

Figure 3-19- Schematic of the mixer, AD835, circuit.

Theoretically, successive modulation frequency harmonics have alternating

parity with respect to the carrier of the FM signal, i.e. successive sidebands should

have 90 phase difference. To evaluate this phase difference, a mixer (AD835) [70] with

two lock-in amplifiers (SRS model SR850) were used to detect the phase difference

between the sidebands. Schematic diagrams of the AD835 mixer is shown in Figure 3-19

and the experimental setup to measure the phase difference between different harmonics

of mf is shown in Figure 3-20. Both lock-in amplifiers were externally referenced by

locking to the mf output of the FM board. One of the lock-in amplifiers is locked to the

first harmonic at mf and the other to the second harmonic at 2 mf . The phase difference

between these harmonics was measured for different mf values. The DSP lock-in

amplifiers used here can measure any of the first to the tenth harmonics of the reference

signal as long as the frequency is smaller than 100 kHz. Therefore, this measurement was

limited to 50mf  kHz.

+5 V-5 V

Y1 X1

Y2 X2

VN VP

Z W

A
D

8
3

5

1
0

 n
F

4
.7

 µ
F

1
0

 n
F

4
.7

 µ
F

OutputFM input
F

errite

b
ead

F
errite

b
ead

39

Figure 3-20- Schematic diagram of the experimental setup for measuring the phase

difference between odd and even sidebands.

Table 3-1- Measured phase differences between sidebands.

mf

(kHz)

Harmonic I

phase (deg.)

Harmonic II

phase (deg.)

Phase difference

(deg.)

10 -8.31 83.39 91.7

20 0.48 86.88 87.36

30 3.48 91.46 87.98

30 3.09 91.20 88.11

30 2.63 95.94 93.31

35 3.2 92.71 89.51

40 2.87 89.71 86.84

50 -8.41 78.25 86.66

The measured phase differences between the first and second harmonics of

different mf values are presented in Table 3-1. The measurements show phase

differences of 90º ± 4º for different frequencies and connecting cables. A practical

challenge with this measurement was caused by the reactance of the cables necessary to

connect the output of the mixer to the lock-in amplifiers. Because the frequencies of the

signals being measured are also different (i.e., one frequency is twice that of the other), it

is expected that this also causes small phase shifts of the signals arriving at each lock-in.

FM Modulator

FM fm

Mixer

Lock-in amplifier I

Ext. Clock Signal Input

Lock-in amplifier II

Ext. Clock Signal Input

40

Consequently, to verify that these phase variations can be caused by cables, for the 30

kHz modulation frequency, three measurements were made; the second is the same

measurement as the first but with the cables to the lock-in amplifiers switched, and the

third was the measurement using different cables. For these three measurements at the 30

kHz modulation frequency, it is observed that phase variations of 6º or more can occur.

Notwithstanding this cabling issue, the harmonic pairs appear to have the expected phase

difference of 90º to within uncertainties due to capacitance of the cables and possible

variations of the mixers circuit at different frequencies.

Precision of the generated signal in terms of coherent frequency components with

stability governed by that of the atomic clock has been the main motivation of developing

the polydyne interferometry technique in this study. Therefore, the spectra of signals with

different carrier and modulation frequencies were measured with the analyzer set to its

limiting resolution to evaluate the quality, i.e. high signal to noise ratio and spurious free

FM signal, of frequency components in the generated FM signals. For the rest of the

spectral measurements presented in this chapter, the experimental conditions were: 1)

2mV  V which translates to different  values for different cf and mf values; 2) the

resolution bandwidth of the spectrum analyzer was set to the finest value of 10 Hz and

the spectra were measured with frequency steps of 1 Hz. To illustrate the coherence of

the frequency components, the spectra of signals of 10cf  MHz, and mf of 50 kHz, 100

kHz, and 150 kHz are plotted in Figure 3-21. Inset in this figure are two sidebands and

the carrier frequency enlarged to illustrate the linewidth of the sidebands and the carrier.

41

Figure 3-21- Spectra of signals of 10cf  MHz and mf  50, 100, and 150 kHz

measured with frequency steps of 1 Hz.

The sidebands shown in Figure 3-21 are supposed to occur at multiple integers of

mf and have been measured to be within 1 or 2 Hz at most which is due to the difference

between the timing of the internal clock of the spectrum analyzer and the atomic clock.

Although the spectrum analyzer does not use an atomic clock, it has quite acceptable

short-term stability that might be inferred from the constant shift in all of the harmonics.

However, the captured data are adequate to demonstrate that the harmonics are occurring

at exact integer multiples of mf . Also, the amplitude of the sidebands can be changed by

the potentiometer used in the DDS1, as seen in Figure 3-5, to provide the user with the

42

desired modulation depth values. Comparing the frequency spectrum of the Ref. [59]

DDS shown in Figure 3-1 with the spectra presented in Figure 3-21 reveals the

superiority of our novel FM signal generation method to the digital FM generators. As

seen in Figure 3-21, our FM board provides greater than 70 dBc Nyquist band spurious-

free dynamic range over its entire operating range. This low level of noise improves the

resolution of phase measurements in polydyne interferometer.

Table 3-2- Simulation of AD9951 DDS with PLL multiplier of 20 and AD9833 DDS

with clock frequency of 10 MHz

AD9951 DDS AD9833 DDS

Target

frequency (Hz)

Actual

frequency (Hz)

Target

frequency (Hz)

Actual

frequency (Hz)

10000000.0000 10000000.0090 50000.000000 49999.9895690

20000000.0000 20000000.0190 100000.000000 100000.016391

30000000.0000 29999999.9810 150000.000000 150000.005960

40000000.0000 39999999.9910 200000.000000 199999.995530

50000000.0000 50000000.0000 250000.000000 249999.985099

60000000.0000 60000000.0090 300000.000000 300000.011921

70000000.0000 70000000.0190 312500.000000 312500.000000

Since any DDS uses a finite look-up table, there will be a truncation error

associated with the conversion of digital data to analog values at the output DAC of the

DDS architecture. This results in a small difference between the target frequencies and

the frequency of the signal that is generated. The difference between programmed

frequency and that of the generated signal with the AD9951 and AD9833 are provided by

Analog Devices. Examples of these values are presented in Table 3-2. Therefore,

knowing the truncation error values for any target frequency, systematic errors in the

uncertainty budget of precision measurements that are using this FM modulator can be

43

determined. Alternatively, frequencies may be selected to minimize or, in some cases,

remove this error. If one of the harmonics of the modulation frequency intersects with the

clock frequency, the image of the Digital to Analog Convertor (DAC) used in the

AD9833 will not add spurs to the output mf signal, i.e. the programmed frequency will

be exactly generated without any error due to truncation of the lookup table as seen for

frequency of 312.5 kHz in Table 3-2. Since this frequency is
1

10
32

 MHz,
1

32
 of the

atomic clock frequency, it is a perfect match for detection by 32 sample discrete Fourier

transform algorithm timed by any harmonic of the same atomic clock signal. This is the

scenario used in the discrete Fourier transform algorithm developed in FPGA microchip

in CHAPTER 5.

Spectral responses of signals with cf of 10, 30, 60, and 70 MHz under different

mf values of 50, 100, 150, 200, 250, and 300 kHz have been measured, see APPENDIX

B. The results of the captured spectra in the form of relative magnitude and frequency of

the first ten harmonies showed that the repeatability and precision of the atomic clock is

transferred into all the frequency components of the generated signals. To within the

precision and accuracy of the spectrum analyzer, CXA N9000A, the sidebands are

located at the programmed frequencies that are the harmonics of modulation frequency

either side of the carrier. Another point about these spectra is the low coherence and

noise. Apparent in these figures, the level of noise in the spectra is less than -80 dBm.

Finally, the spectra of signal of different carrier and modulation frequencies presented in

APPENDIX B validate the conclusions presented above based on the spectra shown in

Figure 3-21 and lookup table truncation errors shown in Table 3-2

44

CHAPTER 4 FM LIGHT GENERATION BY AOM

This chapter consists of three sections that present a summary of literature about

AOMs in section 4.1, diffraction of light by FM acoustic waves through an AOM in

section 4.2, and the experimental results of diffraction of light by FM waves through an

AOM in section 4.3.

4.1 Acousto-Optic Modulators

Acousto-optics is a field of study that investigates the interaction of optical waves

with acoustic waves in material media. Research began in 1922 with Brillouin predicting

the diffraction of light by an acoustic wave that is being propagated through a

transmitting medium [71]. A decade later, in 1932 the acousto-optic effect was

experimentally verified by Debye and Sears [72], and Lucas and Biquard [73]. Since

then, this phenomenon has been extensively investigated in terms of differing conditions:

a) the angle of incidence of light into the acoustic wave, b) the wavelength of the

ultrasonic wave, c) the wavelength of incident light, d) the amplitude of the ultrasonic

wave, and e) the width of the ultrasonic beam [74].

In general, there are two types of diffraction, commonly referred to as normal and

abnormal. In 1936, Raman and Nath designed a general model of the interaction between

optical and acoustic waves that included multiple order diffraction [75]. Normal

diffraction generates multiple order side-beams each of comparable intensity (also called

https://en.wikipedia.org/wiki/C._V._Raman

45

Raman-Nath diffraction), whereas for abnormal diffraction the intensity of first

diffraction orders are dominant (also called Bragg diffraction). In 1937, David followed

Brillouin’s power series-based analysis for the first and second diffraction orders and

gave explicit expressions for the intensities of the two beams on the assumption that the

intensities of the higher orders are negligible [76].

In practice, a piezoelectric actuator coupled to an AOM crystal is used to excite it,

typically using radio-frequency excitation. To achieve the required stress amplitudes, the

piezoelectric actuator and driving circuits are designed to drive the PZT in either its

fundamental mode or one of the harmonics of its fundamental mode [77, 78]. This causes

the AOMs having an operational frequency band that is dependent on the designed

actuator, and the size, geometry, and mechanical properties of the crystal. The frequency

of the excitation controls the spatial wavelength of the refractive index variation in the

crystal and angle of diffraction in the light wave, whereas the acoustic power controls the

optical power distribution in the diffraction orders.

The polarization of the light beam traversing through the AOM medium is

affected by the specific crystal used. This is due to different strain-optic coefficients in

crystals with different symmetry in their structures [79]. The AOM used in this study

(IntraAction model AOM-602AF1) uses dense flint glass for the acousto-optic material

[80]. Since glass is an amorphous material, its modulus of elasticity is the same in all

directions. This leads to a polarization insensitive AOM, i.e. the diffraction will not affect

the polarization of the light.

All the experimental and theoretical models derived so far have considered pure

sinusoidal acoustic waves for diffraction of light through AOMs. To the best of our

46

knowledge, there is no experiment or theoretical model in available literature related to

diffraction of light by AOMs using FM waves; therefore, the current work is the first

study that uses FM acoustic waves to produce FM light by an AOM. A synoptic

theoretical model of FM wave propagation through the AOM and its impact on the

diffracted light is presented to demonstrate the source of harmonics in the optical signal.

4.2 Diffraction of Light by FM Waves using an AOM

The polydyne interferometer is a single-detector system that uses light from a He-

Ne laser diffracted through an AOM that is being driven by an FM signal. A block

diagram indicating major components of this system is shown in Figure 4-1. The FM

signal generator was discussed in CHAPTER 3. The interaction of the laser beam with

the FM signal in the AOM crystal is discussed in this section. Finally, the photodetector

and signal processing unit, i.e. the Fourier transform, will be discussed in CHAPTER 5.

To study interaction between the light transmitted through an AOM excited with an FM

signal, an isotropic homogeneous medium traversed by a plane compression wave

propagating in x direction is modeled in Figure 4-2.

Figure 4-1- Block diagram of the major components of the polydyne interferometer.

He-Ne laser

Photodetector

FM Generator

Michelson

Interferometer

Stage

Slit

Fourier Transform

AOM

Power

Amplifier

Transducer

47

Figure 4-2- Acoustic waves diffracting light beam like a diffraction grating.

As seen in Figure 4-2, the light beam traverses through a particular path due to

refraction and diffraction inside the AOM crystal. Refraction bends the light beam at the

interfaces of the crystal and air with angles equal to ()  or ()  ; whereas,

diffraction adds specific angular shifts to the output beam if the following condition is

satisfied [74]:

      sin sin , 0, 1, 2,...q q q        . (4-1)

where, q represents the diffraction orders,  is the acoustic wavelength. Therefore, as it

has been explained by Debye and Sears [72] for the angular separation between

successive orders equation (4-1) can be approximated by

   1 1sin sinq q q q          . (4-2)

The photo-elastic effect in material couples the mechanical strains caused by

acoustic waves (i.e. pressure waves) to the refractive index of the material [79].

Assuming the refractive index,  , variations of the AOM medium due to FM signal

propagation through it are described by:



x

y





Acoustic wave

propagation

direction

Light beam with

wavelength



1q  

0q 

1q 



z

48

0 1 cos sinc m

x x x
t t t

V V V
     

       
            

       
 , (4-3)

where, V is the velocity of acoustic wave inside the AOM crystal, and 0 and 1 are the

average and the amplitude of changes of the refractive index of the medium, respectively.

Setting
c c

x
t

V
 

 
  

 
 and

m m

x
t

V
 

 
  

 
, equation (4-3) can be simplified as:

  0 1 cos sinc m

x
t

V
     
 

    
 

 . (4-4)

Using the Jacobi-Anger expansion the cosine term in (4-4) can be expressed by

         
1

cos sin
2

c m c mi n i n

c m n

n

e e J
   

   


  



   , (4-5)

and

      1
0

2

c m c mi n i n

n

n

x
t e e J

V

   
  


  



 
    

 
 . (4-6)

Substituting the refractive index variations in Maxwell’s equation for a linearly (

z axis) polarized monochromatic plane electromagnetic wave gives:

      
2 2 2

1
02 2 2 2

0
2

c m c mi n i nz z
n z

n

E E
e e J E

x y c t

   
 


  



     
      

     
 . (4-7)

Following David’s analysis [76] a form of solution can be considered for the z

component of the electric field:

    
,

c mi q n

z z i

q n

E E y e
   

 , (4-8)

where,  ,qzE y is the amplitude of the z component of the electric field in the qth

diffraction order and will vary as a function of propagation distance y through the AOM

crystal. Substituting (4-8) into equation (4-7) yields the series

49

       

    

          

          

2
2

0 , ,

2

,q,

2

2 11
,q,2

2 11
,q,2

sin

1
2

1
2

c m

c m

c m

c m

i q ncnm
cnm z q n

q n

i q nz n

q n

i q n

n z n cnm

q n

i q n

n z n cnm

q n

q
k qK E y e

c

d E y
e

dy

J E y q e
c

J E y q e
c

  

  

  

  

 
 


  


  

 

 

  

  

  
      



   

  









. (4-9)

where,
2 2

cnm c m

c m

V V
K K nK n

 

 
    . Equating the coefficients of each exponential

term in equation (4-9), the following recurrence relation can be obtained for  ,q,z nE y :

 
    

 
          

22
2,q,

0 ,q,2

2 21

,q 1, ,q 1,2

sin

1 1
2

z n cnm
cnm z n

n

cnm z n cnm z n

d E y q
k qK E y

dy c

J
q E y q E y

c

 
 

 
    

   
    

   

      

, (4-10)

in which, cnm c mn    . Equation (4-8) represents a superposition of waves of

frequencies ,q n cnmq    for (, 0, 1, 2,...)q n    . Moreover, the x-component of the

wave vector for the wave of frequency q,n is  sin cnmk qK  . Therefore, the sine of

the angle
q,n which the wave of frequency

q,n makes with the y axis beyond the

scattering medium is given by

 
  

 q,

sin
sin sin 1

cnm cnm
n

cnm cnm

c k qK
q

q

 
 

  


  

 
. (4-11)

Assuming
,q 0 ,q 1 ,q 2 ...z z zE E E     and

   

 

,q 0

, ,

0 0

0 0 1

z z

z q n

E y E y B

E y for q





    


  

 as the

proper boundary condition [74], a solution to equation (4-10) is as follows:

50

For 0q  :

 
   

22

,q 0 2 2

0 ,q 02
sin 0

z

z

d E y
k E y

dy c


 





   
    

   

. (4-12)

A general solution for equation (4-12) is sought in the form

   2
0 sin

,q 0

iky

zE y Be
 

  . (4-13)

For 1q   :

 
    

   

22
2, 1,

0 ,q 1,2

21
,q 0

sin

2

z q n cnm
cnm z n

n z

d E y
k K E y

dy c

J k E y

 
 










  
    

   

 

, (4-14)

the general solution becomes

 

 
 

 

 

2 2

0 1 sin

1 ,q 0

, 1, 2 2

0
0

4 4
2 sin 2

cnm cnmK
iky

k

n z

z q n

cnm cnm cnm cnm

J Be E y

E y
K K

k k


 

 

  
 

 

   
     

   




 
 
 
 

    
      

     

. (4-15)

Equations (4-13) and (4-15) are the first step of David’s method for an

approximate solution from which a further trial and error solution can be developed.

These solutions can be corrected by putting equation (4-15) into equation (4-10) and

resolving for , 0z qE  and also repeating the solution for , 1z qE  . This procedure can be

used iteratively to derive the exact solutions for the intensity and frequency components

of higher orders of diffraction by FM waves. A similar procedure is presented by David

[76] for diffraction by a single frequency sine wave. Equation (4-15) shows that the

diffraction side-beams, 1q  , contain all the frequency components of the FM signal.

51

Therefore, each of these diffracted beams can be extracted using a slit and utilized as an

independent FM light source in interferometry.

4.3 Experimental Results of Diffraction

An experiment was implemented to test the effects of angle of incidence of light

into the acoustic wave,  , and modulation frequency and depth of the FM acoustic wave

on the diffraction of the light through an AOM. The experimental apparatus for these test

comprised, an IntraAction power amplifier model PA-4, an IntraAction AOM model

602AF1, a single pivot angle-adjustment notch-hinge flexure stage, and a He-Ne laser,

see Figure 4-3.

Figure 4-3- Experimental setup to test the light diffraction by FM waves via an AOM.

FM Signal

θ

AOM

He-Ne Laser

Input:

amplified FM signal

Power

Amplifier

Output:

amplified

FM signal

Input:

from FM

board

for angle

adjustment

52

Figure 4-4- Different diffraction patterns resulted from different incident angles.

Distribution of energy among the diffraction side-beams is dependent on the angle

of incidence of the light entering into the AOM crystal. To demonstrate the effects of

incident angle on the diffraction pattern, the diffracted light beam is directed on a screen

2 meters away from the AOM output. The intensity distribution in the side-beams is

determined while changing the angle of incidence of light into the AOM crystal. The

diffraction patterns for an FM signal of 10m  kHz and 60a  MHz are shown in

53

Figure 4-4. All the different regimes of diffraction shown in Figure 4-4 occur within 1

of incidence angle change.

Figure 4-4-a belongs to Raman-Nath diffraction which contains multiple orders of

side-beams with comparable intensities. Figure 4-4-b to Figure 4-4-e show the Bragg

diffraction where the angle into the AOM is varied over a relatively large range of

approximately ±1 degree. Existence of weak higher order side-beams in Bragg diffraction

as well as finite angular range for generating constructive interference that produces

diffraction has been previously demonstrated by other researchers in Refs. [72, 73]. Since

diffraction side-beam number -1 shown in Figure 4-4-e has the highest intensity among

all the diffraction side-beams, it was extracted using a slit for use during interferometric

measurements. The extracted diffraction side-beam is shown in Figure 4-5.

Figure 4-5- Diffraction side-beam extraction by a slit; a) before using slit; b) after passing

through the slit.

54

Figure 4-6- Experimental setup to evaluate the frequency spectra of diffraction side-

beams.

To evaluate the frequency content of each of the diffraction side-beams, they were

extracted by a slit and used in a Michelson interferometry stage, see Figure 4-6. In this

experimental set-up, a He-Ne laser is diffracted through the AOM that is being driven by

an electrical FM signal. The non-polarizing 50/50 beam splitter divides the diffracted

light into two parts. One part is used in Michelson stage and the other part can be later

used for different goals like stabilizing the laser or assuring that the diffraction side-

beams are stable throughout the measurements. One of the diffraction side-beams is

extracted by a slit from all the diffraction side-beams. This side-beam is also divided into

two parts by another non-polarizing 50/50 beam splitter to construct the reference and

moving arm of the Michelson interferometer topology. These beams traverse through

different arms of the interferometer and reflect back to interfere with each other on the

Retro-

reflectors

Actuator

Linear

Stage

50/50

Beam

Splitter

Capacitance Probe

FM signal

Light beam launches to the detector

55

point they reach the splitting surface of the beam splitter. The interferometry stage is

explained in more detail in CHAPTER 6. The interfered light launch into a photodetector

and the photodetector output was monitored in an oscilloscope and a spectrum analyzer.

The retroreflector of the moving arm is implemented on a linear stage that is actuated by

a piezo-electric actuator. The photodetector used in this experiment is explained as the

first prototype photodetector in CHAPTER 5.

Figure 4-7- FM light interference resulted from a) experimental setup shown in Figure

4-6 monitored in an oscilloscope, and b) theoretical FM waves interference.

-2.3

0

2.3

A
m

p
li

tu
d
e

(V
)

time

Theoretical FM waves interference b

a

56

The output of the photodetector is monitored in an oscilloscope, see Figure 4-7-a.

This signal is similar to the theoretical FM waves interference signal shown in Figure

4-7-b. The theoretical FM wave interference is simulated by accounting first 10 orders of

the modulation harmonics with different amplitudes as

   
10

1

sin 2k m k

k

V t V kf t 


  (4-16)

where, kV and k are the thk harmonics amplitude in volts and phase in radians that are

considered to be constant with values

1 2 3 4 5

6 7 8 9 10

1 2 3 10

1, 0.7, 0.48, 0.32, 0.28,

0.2, 0.15, 0.05, 0.2, 0.2,

, 0.5, ,..., 1.5

V V V V V

V V V V V

   

     
 

      
     

.

To demonstrate that the interference of each of the diffraction side-beams in the

Michelson stage results in stable harmonics of the modulation frequency of the acoustic

FM waves, the frequency spectra of the photodetector signal was studied for different

modulation frequencies. Examples of these spectra are shown in Figure 4-8 for mf of 5

kHz and 25 kHz. As seen in Figure 4-8, the interfered signal contains multiple harmonics

of the modulation frequency as it was expected from the theoretical analysis of frequency

content of FM signals interference. Results shown in Figure 4-7 and Figure 4-8 reveal

that each of the diffraction side-beams contains the frequency components of the electric

FM signal that is driving the AOM. Thus, the main goal of patching the electric FM

signal into a laser beam has been achieved.

57

Figure 4-8- Frequency spectra of the photodetector signal for a) 5mf  kHz, and b)

25mf  kHz.

-160

-140

-120

-100

-80

-60

-40

-20

0 10 20 30 40 50 60 70 80 90 100

P
o
w

er
 s

p
ec

tr
u
m

 (
d
B

)

-160

-140

-120

-100

-80

-60

-40

-20

0 25 50 75 100

P
o
w

er
 s

p
ec

tr
u
m

 (
d
B

)

Frequency (kHz)

a

b

58

CHAPTER 5 SIGNAL DETECTION

This chapter consists of three sections. Section 5.1 presents the design of two

photodetector circuits each of which with different detection bandwidth and noise

characteristics. Section 5.1 presents the extraction of modulation harmonics from the

interfered FM light by analog lock-in and demodulation techniques. Section 5.2 presents

the application of FPGA-based synchronous discrete Fourier transform algorithm for

extraction of modulation harmonics in the interfered FM light beams.

5.1 Photodetector Design

Photodiodes are high impedance sensors used to detect the intensity of light that

operate either in photovoltaic mode (with zero bias) or in photoconductive mode (with a

reverse bias). These two operation modes are presented in Figure 5-1. Photovoltaic mode

provides the most precise linear operation, while the photoconductive mode results in

higher switching speeds at the expense of linearity. Under reverse bias conditions, a small

amount of dark current flows even when there is no illumination. The dark current

leakage can be compensated by a second photodiode of the same type in the noninverting

input of the op-amp, see Figure 5-2.

Three factors influence the response time of a photodiode: 1) the charge collection

time of the carriers in the depleted region, 2) the charge collection time of the carriers in

the un-depleted region, and 3) the RC time constant of the diode circuit combination.

59

Because photodiode junction capacitance is dependent on its diffused area and the

applied reverse bias, faster rise times are obtained with smaller diffused area photodiodes

and larger applied reverse biases.

Figure 5-1- Photovoltaic and photoconductive modes.

Figure 5-2- Dark current compensation in photoconductive mode [81].

There are several important amplifier characteristics that should be considered for

achieving a desirable high signal to noise ratio when the incident light contains

substantial noise. Such characteristics are: gain bandwidth, input offset voltage, input

noise voltage, input bias current, input offset current, and input noise current [82]. There

are two general amplifier circuits for photodetectors: pre-amplifier and transimpedance

+

VBIAS

Photoconductive

+

Photovoltaic

+5 V

RF

VBIAS

-5 V

+

CF

0
.1

 μ
F

RF
-5 V

60

amplifiers [82], see Figure 5-3. The current to voltage conversion mechanisms in these

two amplifier configurations are different. The pre-amplifier circuit converts the current

to voltage through the resistor to ground, SR , and since the op-amp is amplifying the

voltage it is called a voltage amplifier. In the transimpedance circuit, the amplifier itself

acts as a current-to-voltage convertor and this is why the circuit is often called current

amplifier. Bipolar Junction Transistors (BJT) op-amps provide a better performance for

pre-amplifier configuration because this configuration is less sensitive to current noise

and highly sensitive to voltage noise. Contrary to the pre-amplifier circuit, the

transimpedance configuration is sensitive to current noise. Therefore, Field Effect

Transistor (FET) op-amps are a better choice for the transimpedance setup. In general a

photoconductive transimpedance circuit provides the highest detection speed among all

of the four possible configurations, i.e. photoconductive pre-amplifier, photoconductive

transimpedance, photovoltaic pre-amplifier, and photovoltaic transimpedance

configurations.

Figure 5-3- Pre-amplifier and transimpedance configuration of photodetector circuits.

+

Pre-amplifier
+5 V

R1
R2

Rs

+

Transimpedance

+5 V

RF

CF

RG

61

Different harmonic detection methods, i.e. lock-in amplifiers and FPGA-based

discrete Fourier transform, require different bandwidths. This leads to different

photodetector design requirements. At the start of this project, two Stanford lock-in

amplifiers model SR850 [83] were used for harmonics extraction from the detected

signal; the photodetector designed for this step of the project is discussed in section 5.1.1.

As discussed in detail in section 5.2, the lock-in amplifiers limit the speed of the

displacement measurement because of their detection bandwidth limits. To overcome this

bandwidth limitation a synchronous Fourier transform algorithm in an FPGA microchip

was developed to boost the speed of measurement substantially. The FPGA-based

harmonics extraction needed a photodetector with specific characteristics that are

discussed in section 5.1.2.

5.1.1 First photodetector

The first photodetector was implemented by modifying different photovoltaic and

photoconductive transimpedance configurations discussed in Refs. [84, 85], see Figure

5-4. All the prototypes that are shown in Figure 5-5 are based on the circuits presented in

Figure 5-4 with different photodiodes and op-amps. Among all the photodetectors

prototyped based on the circuits in Figure 5-4, the photovoltaic transimpedance

photodetector with BPX61 photodiode [86] provided the best signal to noise ratio. The

photodiode of this circuit is followed by a high-pass filter with cut-off frequency of 100

Hz to decrease the DC-level fluctuations that resulted from homodyne part of the light

intensity from the Michelson interferometer experiments. Reducing the DC-level

fluctuations enables the subsequent amplification stage to dedicate a greater portion of its

gain to higher frequency components, including the harmonics of modulation frequency,

62

which consequently increases the sensitivity of the photodetector circuit to fluctuations at

harmonics of modulation frequency.

Figure 5-4- The photovoltaic and photoconductive transimpedance photodetector circuits.

Figure 5-5- Different prototypes of the first photodetector.

R1
+

+5 V

-5 V

LT1028

R2

C1

R3

R4

Photovoltaic Transimpedance

+

-5 V

R2

+5 V

-5 V

LT1028

C2

R3

C1
+5 VR1

Photoconductive Transimpedance

63

5.1.2 Second photodetector

To achieve the desired displacement measurement speed of 10 mms-1 with 50 nm

resolution, the phase signal should be detectable at a bandwidth greater than 200 kHz

which requires the modulation frequencies of about 200 kHz. Furthermore, to extract the

phase information from 10 harmonics of the modulation frequency, this requires 200 kHz

detection bandwidth centered around 2 MHz. Therefore, the photodetector should be

designed to provide a detection bandwidth of up to 2.1 MHz. This goal can be achieved

by a preamp photodetector circuit using a photodiode with small junction capacitance

followed by an op-amp with picoamps of input bias current and low input offset voltage

to minimize the error. The output of the photodetector circuit should be fed into an

Analog-to-Digital Convertor (ADC) with conversion speed of greater than 20 MHz to

provide at least 10 samples per period for 2 MHz signal.

Looking for characteristics of different photodiodes, OSRAM Opto

Semiconductors SFH 2701 PIN photodiode seems very promising as it has a small

junction capacitance of 3 pF typical, 5 pF maximum for 0 V bias. The typical capacitance

is 1.7 pF for 5 V reverse bias. Measurements in the circuit were all taken with a reverse

bias of 5 V. The AD8065 op-amp with a very small input bias current and offset voltage

of 2 pA and 400 µV, respectively, satisfies the required bandwidth and input

characteristics. The AD9629-20 is a good candidate for a 20 MHz sampling rate ADC

with 12 bits of resolution. This photodetector circuit followed by the ADC is shown in

Figure 5-6. Detailed analysis of the noise and resolution matching for this photodetector

is presented in [81]. The circuit presented in this study is a modified version of the circuit

presented in [81] to cancel the DC part of the signal for preventing the ADC from

64

overflowing by the unnecessary DC part of the detected signal. A photo of the modified

photodetector is shown in Figure 5-7.

Figure 5-6- Photodiode preamp system with dark current compensation [81].

Figure 5-7- Modified photodetector for use with FPGA board.

AVDD

GND

VIN-

+5 V

0.1 μF

+5 V

24.9 kΩ

VBIAS

-5 V

+

3.3 pF

0
.1

 μ
F

2
4

.9
 k
Ω

-5 V

AD8065

S
F

H
 2

7
0

1

2
.5

 k
Ω

+
AD8475

2.5 kΩ

2.5 kΩ

1 kΩ

1 kΩ

33 Ω

33 Ω

2
2

 p
F

-out

+out

INP

INN

+2.5V

-5 V

+1.8 V

AD9629-20
VIN+

VCM

Lens to

increase

aperture

size

Digital Data

Output to

Connect to

FPGA-Board

Oscillator Replaced by Atomic Clock Signal

65

5.2 Harmonics detection by analog lock-in amplifiers

As mentioned in CHAPTER 2, the phase information is extracted from the

amplitudes of the harmonics of modulation frequency in the interfered FM light intensity

measured by the detector. To this end, the detected signal is transferred to the frequency

domain using Fourier transform. Lock-in amplifiers use analog demodulators to mix the

harmonics of any particular frequency that is connected to their external clock to extract

the Fourier coefficients of those harmonics in a signal. In fact, these analog demodulators

apply fast Fourier transform to the signal. A schematic of this demodulation technique is

represented in Figure 5-8. The low-pass filter, in Figure 5-8, after the mixer has a cut-off

frequency of one-tenth of the reference input, i.e. desired frequency to be extracted. This

limits the bandwidth of analog lock-in / demodulation circuits to one-tenth of the

frequency to be extracted.

Figure 5-8- Schematic of Fourier transform implementation through analog

demodulators.

At the onset of this research, two DSP lock-in amplifiers model SR850 [83] were

used for extracting the modulation frequency harmonics from the photodetector output,

Programmable

Gain Amplifier

Signal

Input

High-pass

filter

Low-pass

filter

Reference

Input


Mixer Low-pass

filter
Programable

Gain Amplifier

Digital

phase shifter

Comparator

ka kbor

output

66

see Figure 5-9. These lock-in amplifiers have a detection bandwidth of 1 mHz to 102 kHz

for detection of any first 10 harmonics of the reference input. In an effort to increase

demodulation bandwidth, AD630 demodulators [87] were used to create a compact lock-

in amplifier, see Figure 5-10. This lock-in circuit provides 350 kHz bandwidth for

extraction of amplitude of the reference signal frequency component present in the

demodulation signal input. The results of measurements with these lock-in amplifiers are

discussed in CHAPTER 6.

Figure 5-9- DSP lock-in amplifiers model SR850 [83].

Figure 5-10- Compact lock-in amplifier circuit using AD630 microchip [87].

67

5.3 Harmonics detection by FPGA-based Fourier transform

FPGA technology provides a vehicle for ultrafast parallel signal processing.

Computationally the special orthogonality property of Fourier transform over singular or

multiple complete period/s of detection frequency [88] provides a unique opportunity to

substantially increase the detection bandwidth in our system. Combination of

orthogonality property of synchronous discrete Fourier transform and the unprecedented

speed of parallel signal processing in FPGAs has been the main incentive to develop an

FPGA-based synchronous discrete Fourier transform code to extract the harmonics of

modulation frequencies in our system. Furthermore, as it was explained in section 3.4.3,

the AD9833 DDS can generate modulation frequency of 710 32 312500mf   Hz

without any truncation error due to its look-up table limits. Therefore, if a 32 sample

Fourier transform is implemented in FPGA that is synchronously being timed with the

same 10 MHz atomic clock, then this number of samples used in the Fourier transform

covers exact periods of the modulation frequency. This guarantees the compatibility of

the implemented Fourier transform in FPGA with the orthogonality feature of Fourier

transform.

To calculate displacement from an interferometer sensor, the temporal phase of

selected modulation harmonic pairs should be extracted from the measured interference

intensity. Individual harmonic frequency amplitudes are measured by applying discrete

Fourier transform algorithm to the signal from the photodetector. The discrete Fourier

transform is developed by a VHDL code on an FPGA microchip that is being timed with

the same atomic clock that is timing the FM signal generator to synchronize all the

68

timings in the system. The discrete Fourier transform algorithm has been developed on

the commercial FPGA board model NEXYS4 DDR [89], see Figure 5-11.

Figure 5-11- NEXYS 4 DDR board.

The idea behind Fourier transforms is that if  x t is a periodic function with

period, T , it is possible to expand this into a series of harmonics with integer multiple

frequencies:

  0

1

2 2
2 cos sink k

k

kt kt
x t a a b

T T

 



    
      

    
 , (5-1)

where,

   0 0

0 0

1 2 1 2
| cos , & | sin

T T

k k k k

kt kt
a x t dt b x t dt

T T T T

 
 

   
    

   
  . (5-2)

69

If we use complex notation, equations (5-2) can be combined into a single

equation using

 2

,

2 2
cos sin

k k k

i kt T

X a ib

kt kt
e i

T T

  

 

   
    

   

 , (5-3)

to give

   2

0

0

1
|

T
i kt T

k kX x t e dt
T



   . (5-4)

Now, if the continuous time-series  x t is not known and only equally spaced

samples are available as    , 0,1,2,..., 1rx r N  , where t r  , and T N  . In such

case, the integral in equation (5-4) may be approximated by summation

  
1

2

0

1 N
i k T r

k r

r

X x e
T




 



  . (5-5)

Figure 5-12- Riemann sum approximation involved in calculation of Fourier coefficients

from a discrete series, rx , rather than a continuous function,  x t .

0 1 2 3 4 5

N-1

N

S
ig

n
al

 A
m

p
li

tu
d
e

(V
)

70

Assuming the equations (5-4) and (5-5) result in equal values for kX is identical

to assuming that the total area under the curve shown in Figure 5-12 is given by the sum

of all the shaded strips [90]. Substituting T N  into (5-5) gives the approximate

formula for the Fourier transform, i.e. discrete Fourier transform, as

 
1

2

0

1 N
i kr N

k r

r

X x e
N








  (5-6)

The discrete Fourier transform that is implemented in the FPGA microchip uses

the equation (5-6) at each time point and sweeps through the measured data, rx to

calculate the Fourier coefficients through the time. This means the coefficients calculated

from the series 0 1 1, ,..., Nx x x  are considered to be at 0t t , those calculated from the

series 1 2, ,..., Nx x x belong to 1 0t t  , and those calculated from the series

2 2 1, ,..., Nx x x  belong to 2 1t t  . This algorithm gives a method to calculate the Fourier

coefficients with time interval of  if the FPGA microchip is fast enough to execute all

the calculations for equation (5-6) in  timeframe. Schematic of the detected signal, rx ,

path through different signal processing units of FPGA to extract the first harmonic of mf

, 1R , is shown in Figure 5-13.

In the schematic shown in Figure 5-13, the numbers  0,1,2,...,15 represent

 0,1,2,..., 1r N  in equation (5-6). Also, the harmonic frequency in this algorithm is

determined by the update rate of rx divided by the number of samples used in Fourier

transform, N . For example, if the photodetector ADC output rate is 10 MHz and a 32

sample Fourier transform algorithm is implemented, the detection frequency will be equal

71

to 312.5 kHz. Averaging the measured signal before applying the Fourier transform can

reduce the high-frequency content of the signal in cost of a small time delay in the

processed signal. Also averaging the calculated coefficients through the time can reduce

some of the noise in the calculated Fourier coefficients.

Figure 5-13- Schematic of FPGA-based, 16 sample, discrete Fourier transform for

extraction of the amplitude of first harmonic in the detected signal, rx .

+

sin_0

x_0
x

sin_1

x_1
x

+

sin_2

x_2
x

sin_3

x_3
x

+

+

sin_4

x_4
x

sin_5

x_5
x

+

sin_6

x_6
x

sin_7

x_7
x

+

+

+

sin_8

x_8
x

sin_9

x_9
x

+

sin_10

x_10
x

sin_11

x_11
x

+

+

sin_12

x_12
x

sin_13

x_13
x

+

sin_14

x_14
x

sin_15

x_15
x

+

+

+
1b

16

+

cos_0

x_0
x

cos_1

x_1
x

+

cos_2

x_2
x

cos_3

x_3
x

+

+

cos_4

x_4
x

cos_5

x_5
x

+

cos_6

x_6
x

cos_7

x_7
x

+

+

+

cos_8

x_8
x

cos_9

x_9
x

+

cos_10

x_10
x

cos_11

x_11
x

+

+

cos_12

x_12
x

cos_13

x_13
x

+

cos_14

x_14
x

cos_15

x_15
x

+

+

+
1a

16

x

2

1a

x

2

1b

SQRT

2

1a

2

1b
+

2

1R 1R

72

Figure 5-14- Experimental setup to measure the frequency response of discrete Fourier

transform.

To verify that the Fourier transform algorithm that is being implemented in the

NEXYS 4 DDR board’s FPGA is correct, different VHDL codes for different sampling

rates and numbers of Fourier transform algorithm were programmed in Xilinx Vivado

software [91]. To evaluate the performance of the implemented Fourier transform

algorithms, an experiment was set up, see Figure 5-14. Two important characteristics of

the discrete Fourier transform algorithm are evaluated with this experimental setup: 1)

frequency dependency of the detection bandwidth, 2) phase extraction speed limit. The

frequency-dependency of the Fourier transform detection bandwidth is assessed by

programming the on-board 1 MHz ADC of the FPGA to detect the amplitude of the

signal that is connected to the analog Pmod pins of the NEXYS 4 DDR board. The

frequency and amplitude of the signal are changed and the detected values are

demonstrated in the 7-segment LEDs of the FPGA board. Results of this experiment are

73

shown in Figure 5-15 and Figure 5-16 for detection frequencies of 25 kHz and 80 kHz,

respectively.

Figure 5-15- FPGA-based Fourier transform spectrum response for 25 kHz signal.

Figure 5-16- FPGA-based Fourier transform spectrum response for 80 kHz signal.

To evaluate the performance of the applied discrete Fourier transform algorithm,

the theoretical response of a digital discrete Fourier transform algorithm is presented in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 12.5 25 37.5 50 62.5 75 87.5 100

A
m

p
li

tu
d

e
(V

)

frequency (kHz)

Measured Theory

25 kHz bandwidth @ 25 kHz,

800 kHz sampling rate,

32 samples/period,

No averaging,

40 μs delay

Bandwidth

0

0.1

0.2

0.3

0.4

0.5

0.6

0 40 80 120 160 200 240

A
m

p
li

tu
d
e

(V
)

frequency (kHz)

Measured Theory

80 kHz bandwidth @ 80 kHz,

960 kHz sampling rate,

12 samples/period,

12 point average,

25 μs delayBandwidth

74

Figure 5-15 and Figure 5-16. As seen in these figures, the measured frequency response

is compatible with theory. Also, the detection bandwidth of the discrete Fourier transform

is highly dependent upon the detection frequency. The averaging after calculation of the

Fourier coefficients affect the detection bandwidth if the number of averaging is higher

than number of samples, N , as well. This averaging affects the phase of the detected

frequency that can be determined from Lissajous curves showing the Fourier coefficients

of first and second harmonic of modulation frequency versus each other, see Figure 5-17

to Figure 5-24. To evaluate the phase extraction speed limit of the Fourier transform, the

simulation modules of the Vivado software was used as it is discussed here. First a 12-

point sampling, 12-point averaging, 960 kHz sampling rate Fourier transform algorithm

was programmed in Vivado software to detect two frequencies of 80 kHz and 160 kHz as

the first and second harmonics of the desired modulation frequency, 960 12 80mf  

kHz. Then, the ADC part of the code was deactivated and a “.txt” formatted simulation

file was generated to mimic the detected signal inside the FPGA microchip. This signal

contains a series of data generated by

       
3 3

1 1

sin 8 sin cos cosr m r m r

p p

x p t p t Noise    
 

       , (5-7)

where,  is the displacement related optical phase that is a sinusoidal function of time

represented by    sin rA t    , m is the angular modulation frequency, and Noise

is a random noise with maximum signal-to-noise amplitude ratio of 0.1, i.e. -20 dBm.

Results of this on-chip simulation for maximum speeds of 15 μms-1, 1 mms-1, 5 mms-1,

7 mms-1, and 10 mms-1 are shown in Figure 5-17 to Figure 5-21, respectively.

75

Figure 5-17- Lissajous of Fourier transform coefficients of first and second harmonics,

and displacement calculated from these harmonics coefficients, compared with the

applied displacement for maximum displacement speed of 15 μms-1.

76

Figure 5-18- Lissajous of Fourier transform coefficients of first and second harmonics,

and displacement calculated from these harmonics coefficients, compared with the

applied displacement for maximum displacement speed of 1 mms-1.

77

Figure 5-19- Lissajous of Fourier transform coefficients of first and second harmonics,

and displacement calculated from these harmonics coefficients, compared with the

applied displacement for maximum displacement speed of 5 mms-1.

78

Figure 5-20- Lissajous of Fourier transform coefficients of first and second harmonics,

and displacement calculated from these harmonics coefficients, compared with the

applied displacement for maximum displacement speed of 7 mms-1.

79

Figure 5-21- Lissajous of Fourier transform coefficients of first and second harmonics,

and displacement calculated from these harmonics coefficients, compared with the

applied displacement for maximum displacement speed of 10 mms-1.

80

As seen in Figure 5-17 to Figure 5-21, the Lissajous curves transfer from an

ellipse to an annulus by increasing the speed of displacement. Since the accuracy of the

calculated phase from the Lissajous curves decreases by the growth of the annulus width,

the calculated displacements show larger deviations from the applied displacement at

higher speeds. These simulation reveal that the detection speed limit of the implemented

Fourier transform to be around 7 mms-1 for 1 MHz ADC sampling rate. The speed of

phase calculation by the Fourier transform can be boosted by either using lower numbers

of samples per period of modulation frequency or by increasing the sampling rate of the

ADC. The prior method results in a wider detection bandwidth and in its ultimate limit

causes aliasing issues if the sampling frequency is less than 2 times the detection

frequency.

In this research the second method was used to increase speed of measurement.

To this end, the second photodetector was used to provide sampling rates up to 20 MHz.

However, the digital signal processing unit that calculates square root of the amplitudes

of the harmonics inside the FPGA microchip limits the phase calculation speed to 10

MHz. Therefore, to evaluate the speed of displacement measurement in the FPGA board

a 10 MHz sampling rate Fourier transform algorithm with 32 samples per period

followed by 32 points averaging was implemented and the on-chip simulations were

conducted for this code as well. The range of error vs. the speed resulted from

simulations by the 12-sample, 80 kHz bandwidth Fourier transform and 32-sample, 312.5

kHz bandwidth Fourier transform are shown in Figure 5-22. Also, the results of on-chip

simulations of 32-sample Fourier transform for speeds of 20 mms-1 and 30 mms-1 are

presented in Figure 5-23 and Figure 5-24, respectively. As seen in these three figures, the

81

speed limit has increased up to 20 mms-1 with phase-unwrapping-related displacement

errors of less than 20 nm. The 32-sample Fourier transform is used in real measurements.

The main module of the VHDL code for 32-sample Fourier transform is presented in

APPENDIX C. Also, the VHDL code that was developed in Vivado 2018.3, the

LabVIEW code that was generated in LabVIEW 2017, and all the Arduino codes are

attached to this document for future use.

Figure 5-22- Error of 12-sample and 32-sample Fourier transforms vs. different speeds.

0

20

40

60

80

0 5 10 15 20 25 30

E
rr

o
r

R
an

g
e

(n
m

)

Speed (mm/s)

12-sample discrete

Fourier transform

32-sample discrete

Fourier transform

82

Figure 5-23- Lissajous of 32-sample, 32-averaged Fourier transform coefficients of first

and second harmonics, and displacement calculated from these harmonics coefficients,

compared with the applied displacement for maximum displacement speed of 20 mms-1.

83

Figure 5-24- Lissajous of 32-sample, 32-averaged Fourier transform coefficients of first

and second harmonics, and displacement calculated from these harmonics coefficients,

compared with the applied displacement for maximum displacement speed of 30 mms-1.

84

CHAPTER 6 DISPLACEMENT MEASUREMENT

This chapter consists of four sections that present the displacement measurements

by standard laboratory equipment and analog demodulator circuits in section 6.1,

displacement measurement results using FPGA-based discrete Fourier transform in

section 6.2, synchronization issues between LabVIEW FPGA and the NEXYS4 DDR

board in section 6.3, and suggestions for future works in section 6.4.

6.1 Measurements by analog lock-in amplifiers

The first experimental setup to evaluate displacement measurement by different

pairs of modulation harmonics extracted by DSP lock-in amplifiers is shown in Figure

6-1. This setup comprises a piezoelectrically actuated translation stage with a moving

mirror that is monitored by the polydyne interferometer. To evaluate the displacement

measured by the polydyne interferometer, a commercial heterodyne laser interferometer

(Hewlett Packard model 5529A [92]) is used to simultaneously measure the moving

mirror as shown in Figure 6-1. The output of the photodetector shown in Figure 6-1 is

connected to the signal input of the DSP lock-in amplifiers shown in Figure 5-9. Also, the

modulation signal output from the FM board shown in Figure 5-13 is connected to the

reference input of the lock-in amplifiers. Since the DSP lock-in amplifiers provide

detection bandwidth up to 102 kHz, modulation frequencies of less than 10 kHz were used

for this experiment so that up to 10 modulation harmonics can be measured. The lock-in

85

amplifiers are set to different harmonics of the modulation frequency and the amplitude

of the detected harmonics are collected using a LabView program. An example of

amplitude variation of detected modulation signal harmonics while a sinusoidal

displacement is injected to the moving arm of the interferometer is shown in Figure 6-2.

Plotting these amplitudes versus each other results in a Lissajous curve, see Figure 6-3

for Lissajous loci of different harmonic pairs from different measurements. The spin of

the Lissajous curve is dependent on the direction of the displacement.

Figure 6-1- Apparatus for interferometric displacement measurement, a) polydyne

interferometer setup, b) added optics for the reference interferometer.

HP

moving

arm

Optics for the reference

interferometer

HP interferometer laser

source and photodetector

b

Photodetector

FM signal

Linear stage

a

Length-

varying arm
Beam splitters

Retroreflectors

AOM

Beam splitters

Retroreflectors

Slit

Slit

Cap. gage for

2nd reference

Polydyne

moving

arm

86

Figure 6-2- Modulation harmonics amplitude variations due to a sinusoidal displacement.

To extract the phase variations on the Lissajous curve, the elliptic curves is first

normalized into a circle of unit radius, see Figure 6-4, then the phase is calculated using

the quadrature method explained in CHAPTER 2. After unwrapping the measured phase,

the displacement is extracted using equation (2-10). Among all the possible combinations

of harmonic pairs from harmonics 1 to 5, the harmonics pair 2 and 5 (H2-H5 pair) were

in-phase and did not lead to a smooth unwrapped phase. Therefore, the phase difference

between them was not detectable for the unwrapping algorithm.

0

2

4

6

0 20 40 60 80

A
m

p
li

tu
d
e

(V
)

Harmonics 1

0

2

4

6

8

0 20 40 60 80

A
m

p
li

tu
d
e

(V
)

Time (s)

Harmonics 2

87

Figure 6-3- Lissajous curves from different harmonic pairs of 10mf  kHz.

To illustrate displacement measurement from the unwrapped phase, Figure 6-5

shows an example of the measured displacement with harmonic pairs (H1-H2) for FM

signal of 60cf  MHz and 5mf  kHz. The displacement measured by the HP

interferometer, and the difference between the HP interferometer and H1-H2

measurements (labelled deviation in this study) are also shown in this figure. The

displacement measured by the reference interferometer has been artificially shifted +0.5

88

µm to make both the HP interferometer and the H1-H2 measurements visible in the plot.

Similar data is obtained for all other harmonic pairs and the RMS of deviations for these

measurements are presented in Table 6-1. These results show deviations within ±40 nm.

The deviations, which contains both drift and noise, are most probably due to different

metrology loops determined by the different locations of beam splitters and light sources

used in the HP and polydyne interferometers. As seen in Figure 6-1, the moving arm of

the HP interferometer is longer and consequently more exposed to the ambient variations

than that of the polydyne interferometer. Also, the detector of the HP interferometer is

located on the ground that is separated from the vibrational isolated basement of the

optics table. This causes the HP interferometer to be more susceptible to environmental

vibrations. All these differences between the HP and the polydyne optics setup as well as

the resolution limit of the HP interferometer that is about 9 nm contribute in deviations

between the measurements by these interferometers.

Figure 6-4- Normalized Lissajous curve.

89

Figure 6-5- Displacement measured by reference interferometer and H1-H2.

Table 6-1- RMS of deviations between reference interferometer and harmonics pairs

measurements.

Harmonic

pairs
RMS of deviations (m) for

measurements by 5mf  kHz

RMS of deviations (m) for

measurements by 10mf  kHz

H1-H2 0.009 0.013

H1-H3 - 0.012

H1-H4 0.011 0.011

H1-H5 0.012 0.011

H2-H3 0.013 0.009

H2-H4 0.009 0.011

H2-H5 0.011 -

H3-H4 0.012 0.012

H3-H5 0.010 0.008

H4-H5 0.011 0.009

To evaluate the temporal stability of the system, a drift test was conducted by

monitoring interferometer outputs while all components remained stationary. The optical

path lengths for the reference and polydyne interferometers were 50 mm and 20 mm,

respectively. In these tests the metrology loops were different and there was a small Abbe

-2

0

2

4

-0.04

-0.02

0

0.02

0.04

0 20 40 60 80 100

D
is

p
la

ce
m

en
t

(μ
m

)

D
ev

ia
ti

o
n
s

(μ
m

)

time (s)

Deviations HP H1-H2

90

error of about 10 mm with misalignment between axes of two interferometers of up to 0.1

radians. However, for drifts of less than 1 µm these effects are likely to be insignificant.

Temperature, pressure and humidity of the laboratory were monitored during the drift

test. Optical path length changes due to variations of these parameters can be calculated

using a modified Edlen equation [93]:

          
1 2 3

20 760 50 4c m m T P H

A A A

L L L K T K P K RH A         , (6-1)

where, cL

is the corrected optical path length, mL the measured optical path length,

79.5 10TK   (ºC-1), T the temperature in (ºC),
73.6 10PK   (mmHg-1), P the

atmospheric pressure in (mmHg),
85.0 10HK   (RH-1), and RH is the relative

humidity. The correction factors 1A , 2A , 3A , and 4A based on the measured temperature,

pressure, and humidity are shown in Figure 6-6. Also, the drift test results are presented

in Figure 6-7.

Figure 6-6- Length correction coefficients for temperature, 1A , pressure, 2A , humidity,

3A , and total, 4A .

-2E-6

0E+0

2E-6

4E-6

6E-6

8E-6

1E-5

0 4 8 12 16 20 24

C
o
ef

fi
ci

en
ts

 (
m

/m
)

time (h)

1ATemp. coef.,

2APress. coef.,

4ATotal coef.,

3AHumid. coef.,

91

Figure 6-7- Drift test results for HP and polydyne interferometer.

From Figure 6-7, it can be seen that the displacement variations are comparable

and of the order of 0.6 µm. A simple calculation for an optical path length of 20 mm and

Edlen correction of 9 × 10-6 indicates a deviation of 0.18 µm. Assuming a thermal

expansion of the setup comparable to aluminum (24 × 10-6 ºC-1) indicates a deviation of

0.58 µm. These two effects predict 0.76 µm variation compared with an observed drift of

0.6 µm over a twenty four hour period. These calculations ignore the complexity of the

translation stage and alignment mechanism that can also move during the drift test.

Although the optical path length of the reference interferometer was longer, its measured

drift was around 0.5 µm. During this drift experiment the laser, the AOM, and all other

system components of the polydyne interferometer were mounted on an aluminum

breadboard plate; this plate was, in turn, mounted onto a rigid table. For the reference

interferometer, the beam splitter was mounted directly onto the rigid table, while only its

moving mirror was connected onto the moving stage of the apparatus. Hence, the

metrology loops for these two systems were considerably different. However, we believe

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 4 8 12 16 20 24

d
is

p
la

ce
m

en
t

(
m

)

time (h)

HP

Polydyne H1-H2

92

that the majority of the observed deviations were due to refractive index and thermal

expansion effects. Notwithstanding this, it is clear that the drift and temperature, pressure,

and humidity effects are clearly correlated.

Figure 6-8- Lissajous measured by AD630 circuits at speeds of 1, 2, 14, and 15 μms-1.

Displacement measurement from different modulation harmonics and the drift test

results showed the feasibility of phase measurement by polydyning technique. However,

the speed of measurement was limited to a few hundred nm.s-1 because of the low

bandwidth of the DSP lock-in amplifiers. To increase this speed limit, an experiment

similar to the one shown in Figure 6-1 was set up using AD630 circuits instead of DSP

lock-ins. Results of this experiment in the form of Lissajous curves for different speeds

93

are shown in Figure 6-8. As shown in Figure 6-8, increasing the displacement speed from

1 μms-1 to 15 μms-1 changes a reasonably precise elliptic Lissajous to a very wide

annulus Lissajous. Increasing the speed further deteriorates the Lissajous shape and

increases the phase unwrapping error drastically. Results of measurements by the analog

circuits showed that the AD630 demodulators limit the speed of measurement to 15 μms-

1. Based on discussions with industry users, it was desirable that this limit be increased to

10 - 20 mms-1. To address this issue the synchronous FPGA-based Fourier transform is

used and the results are show in the following section.

6.2 Measurements by FPGA-based discrete Fourier transform

To test the performance of the discrete Fourier transform algorithm developed in a

NEXYS 4 DDR board, an experiment was setup as shown in Figure 6-9. This experiment

also uses the same HP interferometer to evaluate polydyne interferometer measurements.

The phase unwrapping algorithm of this experiment is somewhat different from the

previous measurements. Due to the limits in the number of digital signal processing and

memory units of the FPGA microchip of the NEXYS 4 DDR board, we could not

implement the discrete Fourier transform and phase unwrapping algorithm together inside

the FPGA microchip. Therefore, the amplitude of two harmonics are extracted by the 32-

sample Fourier transform in the FPGA and sent to a LabVIEW through the DAQ, see

Figure 6-9. The digital data transfer from the FPGA to the LabVIEW uses a shared clock

signal to time the data transformation. In the LabVIEW, an ellipse is fitted to the

Lissajous that is developed by the amplitude of the detected harmonics through a

calibration procedure. Then, the ellipse parameters are used to calculate the real-time

phase of the Lissajous in a LabVIEW FPGA-code. The LabVIEW codes and the VHDL

94

code are available in an external memory that is attached to the hard-copy of this

document. All the codes are commented thoroughly to be self-explanatory for the users.

Because the LabVIEW could not read 16 bit data at rising and falling edge of 20 MHz,

the sampling rate of the ADC was reduced to 10 MHz that showed more stable Lissajous.

Figure 6-9- Experimental setup of polydyne interferometer with FPGA-based Fourier

transform.

Displacements with different amplitudes and frequencies were injected to the

moving arm of the interferometer and were measured by the setup shown in Figure 6-9.

Examples of these Lissajous for speeds of 2 mms-1, 4 mms-1, 7 mms-1, and 11 mms-1

are shown in Figure 6-10. As seen in this figure for 7 mms-1 and 11 mms-1 Lissajous

95

curves, the averaging in the Fourier transform algorithm causes the detected harmonics

amplitudes to construct two distinct Lissajous. The displacements measured at maximum

speed of 2 mms-1 and the corresponding deviations between HP and polydyne

measurements results are presented in Figure 6-11 and Figure 6-12, respectively.

Figure 6-10- Lissajous and fitted ellipse to the results of measurements by 32-sample, 32-

point-averaged Fourier transform with 10 MHz ADC sampling rate and different

maximum displacement speeds of 2, 4, 7, and 11 mms-1.

The deviations depicted in Figure 6-12 contains a variety of error components

including an Abbe error due to different metrology loops and a systematic error due to

non-synchronous measurements with the HP and polydyne interferometers.

Notwithstanding all these error sources, the polydyne and HP interferometers provide a

maximum point to point deviations with ±50 nm and RMS of 20 nm for displacement

measurements up to 11 mms-1, see Table 6-2.

96

Figure 6-11- Sinusoidal displacement with maximum speed of 2 mm.s-1 measured by

polydyne (H1-H2) and HP interferometers.

Figure 6-12- Deviations between HP and polydyne (H1-H2) displacement measurements

at maximum speed of 2 mms-1.

-4

-2

0

2

4

6

8

0 0.05 0.1 0.15 0.2

d
is

p
la

ce
m

en
t

(μ
m

)

time (s)

HP (μm) H1-H2 (μm)

97

Table 6-2- Span and RMS of deviations between HP and polydyne interferometers

measurements.

Maximum speed Deviations span RMS of deviations

2 mms-1 -35 nm to 25 nm 15 nm

4 mms-1 -35 nm to 25 nm 15 nm

7 mms-1 -40 nm to 30 nm 18 nm

11 mms-1 -45 nm to 40 nm 21 nm

6.3 Synchronization issues

Due to limits in the size and memory of the Artix 7 FPGA microchip that is used

in NEXYS 4 DDR board, in the current experimental setup, the measured modulation

harmonics amplitude is transferred from the NEXYS 4 DDR board into a National

Instruments PXIe module, model NI7851R, to conduct real-time phase unwrapping on

the phase of the measured harmonics amplitude. On one hand, the NI7851R does not

provide external clocking option and its operation is not synchronous to the atomic clock.

On the other hand, the data transfer speed between the NEXYS 4 DDR board and this NI

module is very high, 320 Mbits-1. This results in a high possibility of systematic error

occurrence due to non-synchronous operation of the NI module and the NEXYS 4 DDR

board, i.e. some of the transferred digital data from the NEXYS 4 DDR board are skipped

by the NI module. Also, the LabVIEW program that is storing data in the PXIe module

operates in a real time system that has a speed limit of 1 MHz. All these parameters can

cause systematic errors in the measurements by the current setup. To demonstrate effects

of these systematic errors in the measurements, a specific displacement measurement at

the maximum speed of 11 mms-1 and the corresponding deviations between the HP and

98

polydyne measurements in this experiment are shown in Figure 6-13 and Figure 6-14,

respectively.

Figure 6-13- Displacement measurement at maximum speed of 11 mms-1.

Figure 6-14- Deviations between HP and polydyne measurements shown in Figure 6-13.

-8

-4

0

4

0 0.002 0.004 0.006 0.008 0.01

D
is

p
la

ce
m

en
t

(μ
m

)

time (s)

HP Polydyne

-1.2

-0.7

-0.2

0.3

-8 -6 -4 -2 0 2 4

D
ev

ia
ti

o
n
s,

 H
P
–

p
o
ly

d
y
n
e,

 (
μ

m
)

HP measurement (μm)

99

Measurements presented in Figure 6-13 and Figure 6-14 show deviations of about

-1.2 μm to 0.3 μm between HP and polydyne interferometers. These figures demonstrate

not only that the polydyne setup is not synchronous to the HP measurement but also the

time intervals that they capture the data do not have the same repeatability. To further

demonstrate the existence of systematic error in this measurement, theoretical sine

equations were fit to each measurement using Excel solver for minimizing the least

square method. These fit equations were plotted versus each other, see Figure 6-15. As

seen in this figure, there is a phase difference between these two fit sine waves. Since this

phase difference is smaller than the resolution of the captured data, it results in a

systematic error when comparing HP and polydyne measurements. Furthermore, the

amplitudes of the fit sine waves has about 20 nm difference that is due to the

measurement resolution in both HP and polydyne systems. For the results presented in

Table 6-2, all these systematic errors have been compensated and the best measurements

at highest stable conditions have been used.

Figure 6-15- Lissajous generated by depicting fit sine waves to displacement

measurements by HP and polydyne interferometers.

-8

-4

0

4

-8 -4 0 4

P
o

ly
d

y
n

e
fi

t
(μ

m
)

HP fit (μm)

100

6.4 Future work

According to the issues explained in this section, here are a few suggestions for

future work to both improve the repeatability and accuracy of the measurements by the

polydyne interferometer, and to investigate different applications of the polydyning

technique:

1. Replace the NEXYS 4 DDR board with another evaluation board that has larger

FPGA microchip to implement the phase unwrapping in the same FPGA board. This

eliminates the need for NI PXIe module resulting in elimination of synchronization

issues between the NI module and the atomic clock as well as increasing the speed

and bandwidth of the measurement if a loock-up table approach is adopted for the

new phase extraction method. NEXYS Video evaluation board [94] looks promising

for this application, since it uses an FPGA microchip that provide digital signal

processing units and other resources as twice as the one that is used in NEXYS 4

DDR board.

2. To miniaturize the system into a portable device operating based on a battery power,

the Acousto-Optic Modulator should be replaced with another modulation technique.

Optical phase modulation techniques like changing the optical path length of a laser

beam in its traverse direction by applying oscillations into a quartz crystal seems to be

a reasonably feasible and promising approach to solve this issue. Furthermore, the

He-Ne laser diode and the PRS 10 atomic clock can be respectively replaced by a

VBG-stabilized diode laser and a miniature atomic clock.

3. Design and manufacture of a photodetector circuit board with 4 MHz band-width

followed by an on-board FPGA unit will be the best approach to improve the

101

accuracy of the system along with reducing its size substantially. If this approach is

adopted, the signal generation and processing units can be manufactured in a compact

size to fit in a portable box.

4. Applied Fourier transform on the measured signal to extract the phase and amplitude

of the harmonics showed that the optical phase can be extracted from the sine and

cosine terms of each harmonics as well. This reveals the existence of small non-linear

terms in the FM light beam. A small perturbation analysis can provide more detailed

insight and more relevant equations for the result of interference of each of the

diffraction side beams.

5. In the current interferometer set up, only one of the diffraction side beams is extracted

via a mechanical slit for constructing polydyne interferometer. Since all the

diffraction side beams contain the harmonics of modulation signal, the diffraction

side beams that are currently being blocked by the slit can be used to implement a

wide variety of interesting experiments just like multi-axis displacement

measurement by a single AOM and multiple photodetectors. Also, multiple AOMs

with different modulation frequencies can construct a multi-axis displacement

measurement interferometer with a single photodetector.

6. Primary measurements for a two-axis displacement measurement polydyne

interferometer with a single photodetector [95] proved the existence of modulation

harmonics of both axes in the measured signals spectra. However, simultaneous

displacement measurement of both axes did not result in accurate measurements. This

was most probably due to the high amount of noise that was injected from the moving

arm of each of these axes to the other one as well as the interaction of two FM signal

102

generators through long cables. Implementing a more elaborate interferometry stage

that can guide the beams from two AOMs properly can provide a better insight to this

experiment.

7. The polarization effects were neglected through all these experiments by using a

linearly polarized He-Ne laser beam and non-polarization optics. However, the AOM

and the beam splitters has a small polarization non-linearity that can affect the

accuracy of the measurements. A comprehensive study on the polarization effects in

the polydyne system can provide further insight to the extent of these effects and

finally these nonlinearities can be compensated just like the study conducted on

heterodyne interferometers in Ref. [96].

103

REFERENCES

[1] W. F. Magie, A Source Book in Physics, Harvard University Press, 309 (1935).

[2] A. A. Michelson, and E. W. Morley, The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science 24, 5, 449 (1887), DOI:

10.1080/14786448708628130.

[3] D. W. Ball, Field Guide to Spectroscopy, SPIE Press, Bellingham, Washington,

USA, 2006, ISBN: 9780819463524.

[4] J. D. Ellis, Field Guide to Displacement Measuring Interferometry, SPIE Press,

Bellingham, Washington, USA, 2014, ISBN: 9780819497994.

[5] R. Jones, Proc. Soc. Photo-Opt. Instrum. Eng. 599, 309 (1985), DOI:

10.1117/12.952392.

[6] D. Chang, G. Cardell, A. San Martin, and G. Spiers, NASA Tech. Briefs 29, 9

(2005).

[7] C. Laskoskie, H. Hung, T. El-Wailly, and C. L. Chang, J. Lightwave Technol. 7,

600 (1989), DOI: 10.1109/50.19085.

[8] D. Malacara, Twyman–Green Interferometer, Optical Shop Testing, 3rd ed., John

Wiley & Sons, Inc., 46 (2007).

[9] C. R. Steinmetz, Performance evaluation of laser displacement interferometry on a

precision coordinate measuring machine, Industrial Metrology 1 (1990) 165-191.

[10] N. Bobroff, Meas. Sci. Technol. 4, 907 (1993), DOI: 10.1088/0957-0233/4/9/001.

104

[11] M. Keefer, R. Pinto, C. Dennison, and J. Turlo, Handbook of thin film deposition

processes and techniques, 2nd edition, chapter 6: the role of metrology and inspection in

semiconductor processing, 241 (2001).

[12] P. Spanò, Free-forms Optics into Astronomical Use: The Case of an All-mirror

Anamorphic Collimator, Proceedings of the SPI, 7018 (2008), DOI: 10.1117/12.789183.

[13] P. Shore, C. Cunningham, D. DeBra, C. Evans, J. Hough, R. Gilmozzi, H.

Kunzmann, P. Morantz, and X. Tonnellier, CIRP Annals - Manufacturing Technology 59,

694 (2010), DOI: 10.1016/j.cirp.2010.05.003.

[14] X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, Biomed. Opt. Express

3, 1062 (2012), DOI: 10.1364/BOE.3.001062.

[15] L. J. Wuerz, R.C. Quenelle, Precision Engineering 5, 3, 111 (1983), DOI:

10.1016/0141-6359(83)90006-5.

[16] E. R. Peck and S.W. Obetz, J. Opt. Soc. Am. 43, 6, 505 (1953), DOI:

10.1364/JOSA.43.000505.

[17] J. N. Dukes and G. B. Gordon, Hewlett Packard Journal 21, 12, 2 (1970).

[18] C. Sternkopf, C. Diethold, U. Gerhardt, J.Wurmus, and E. Manske, Meas. Sci.

Technol. 23, 074006 (2012), DOI: 10.1088/0957-0233/23/7/074006.

[19] S. J. Bennett and W. R. C. Rowley, J. Phys. E: Sci. Instrum. 6, 10, 963 (1973),

DOI: 10.1088/0022-3735/6/10/002.

[20] M. A. Zumberge, J. Berger, M. A. Dzieciuch, and R. L. Parker, Appl. Opt. 43, 771

(2004), DOI: 10.1364/AO.43.000771.

[21] M. J. Downs and K. Raine, Precision Engineering 1, 85 (1979), DOI:

10.1016/0141-6359(79)90138-7.

105

[22] SIOS Meßtechnik GmbH, MI-Series Miniature Retroreflector Interferometer,

https://www.piezosystem.com/fileadmin/datasheets/Interferometer-SIOS/MI-Miniature-

Retroreflector-Interferometer-SIOS_Datasheet.pdf, visited on April 29, 2019.

[23] E. Leirset, H. E. Engan, and A. Aksnes, Opt. Express 21, 019900 (2013), DOI:

10.1364/OE.21.019900.

[24] K. Thurner, P. F. Braun, and K. Karrai, Rev. Sci. Instrum. 84, 095005 (2013), DOI:

10.1063/1.4821623.

[25] G. E. Sommagren, US Patent 4684828, 1987.

[26] B. K. Nowakowski, D. T. Smith, and S. T. Smith, Rev. Sci. Instrum. 87, 115102

(2016), DOI: 10.1063/1.4964622.

[27] B. K. Nowakowski, D. T. Smith, and S. T. Smith, in Proceedings of the 29th ASPE

Annual Meeting, (2014).

[28] M. Teran, V. Mart´ın, L. Gesa, I. Mateos, F. Gibert, N. Karnesis, J. Ramos- Castro,

T. Schwarze, O. Gerberding, G. Heinzel et al., J. Phys.: Conf. Ser. 610, 012042 (2015),

DOI: 10.1088/1742-6596/610/1/012042.

[29] K. S. Isleif, O. Gerberding, T. S. Schwarze, M. Mehmet, G. Heinzel, and F. G.

Cervantes, Opt. Express 24, 1676 (2016), DOI: 10.1364/OE.24.001676.

[30] O. Gerberding, Opt. Express 23, 14753 (2015), DOI: 10.1364/OE.23.014753.

[31] J. E. Greivenkamp and J. H. Bruning, Phase Shifting Interferometry, in Optical

Shop Testing, D. Malacara, ed. (Whiley, New York, 1992), Chap. 14.

[32] P. Hariharan, Optical Interferometry (Academic, Orlando, Fla., 1985).

[33] P. de Groot, Applied Optics 34, 22, 4723 (1995), DOI: 10.1364/AO.34.004723.

[34] J. Watchi, S. Cooper, B. Ding, C. M. Mow-Lowry,and C. Collette1, Rev. Sci.

Instrum. 89, 121501 (2018), DOI: 10.1063/1.5052042.

https://www.piezosystem.com/fileadmin/datasheets/Interferometer-SIOS/MI-Miniature-Retroreflector-Interferometer-SIOS_Datasheet.pdf
https://www.piezosystem.com/fileadmin/datasheets/Interferometer-SIOS/MI-Miniature-Retroreflector-Interferometer-SIOS_Datasheet.pdf

106

[35] I. Y. Poberezhskiy, B. Bortnik, J. Chou, B. Jalali, and H. R. Fetterman, IEEE J.

Quantum Electron 41, 1533 (2005), DOI: 10.1109/JQE.2005.858467.

[36] A. Dandridge, and A. B. Tveton, Electron. Lett. 18, 302 (1982), DOI:

10.1049/el:19820206.

[37] S. Saito, Y. Yamamoto, and T. Kimura, Electron. Lett. 16, 826 (1980), DOI:

10.1049/el:19800587.

[38] C. T. Anger, Neueste Schriften der Naturf. Ges. in Danzig 5, 2 (1855).

[39] C. G. J. Jacobi, Journal für die reineund angewandte Mathematik 16, 344 (1836).

[40] J. Zheng, Applied Optics 43, 4189 (2004), DOI: 10.1364/AO.43.004189.

[41] G. Heinzel, F. Guzm´an Cervantes, A. F. Garc´ıa Marin, J. Kullmann, W. Feng,

and K. Danzmann, Opt. Express 18, 19076 (2010), DOI: 10.1364/OE.18.019076.

[42] M. Abramowitz, I. A. Stegun et al., Handbook of mathematical functions, vol. 1

Dover New York, 1972.

[43] S. Haykin, Communication systems, 4th Ed., John Willey & Sons, INC., New

York, 2011, Ch. 2, pp. 109–130.

[44] S. T. Cundiff, Y. Jun, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001), DOI:

10.1063/1.1400144.

[45] P. de Groot, H. A. Hill, US patent 5838485 A, Nov. 17, 1998.

[46] K. Thurner, P. F. Braun, and K. Karrai, Rev. Sci. Instrum. 84, 115002 (2013), DOI:

10.1063/1.4831800.

[47] I. Hatai, and I. Chakrabarti, International Journal of Reconfigurable Computing

342532, 10 pages (2011), DOI: 10.1155/2011/342532.

[48] AD9951 datasheet, Analog Devices, http://www.analog.com/media/en/technical-

documentation/data-sheets/AD9951.pdf, visited on Dec 2, 2018.

http://www.analog.com/media/en/technical-documentation/data-sheets/AD9951.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9951.pdf

107

[49] AD9912 datasheet, Analog Device, http://www.analog.com/static/imported-

files/data_sheets/AD9912.pdf, visited on Dec 2, 2018.

[50] AD9834 datasheet, Analog Device, http://www.analog.com/media/en/technical-

documentation/data-sheets/AD9834.pdf, visited on Dec 2, 2018.

[51] A. Gutierrez-Aitken, J. Matsui, E. N. Kaneshiro, B. K. Oyama, A. K. Oki, and D.

C. Streit, IEEE J. Solid-State Circuits 37, 1115 (2002), DOI: 10.1109/JSSC.2002.801174.

[52] S. E. Turner, and D. E. Kotecki, IEEE Microw. Wireless Compon. Lett.16, 296

(2006), DOI: 10.1109/LMWC.2006.873490.

[53] S. E. Turner, and D. E. Kotecki, IEEE J. Solid-State Circuits 41, 2284 (2006),

DOI: 10.1109/JSSC.2006.881552.

[54] S. E. Turner, R. T. Chan, and J. T. Feng, IEEE Microw. Wireless Compon. Lett.18,

566 (2008), DOI: 10.1109/LMWC.2008.2001025.

[55] X. Yu, F. F. Dai, J. D. Irwin, and R. C. Jaeger, IEEE Trans. Microw. Theory Tech.

56, 1257 (2008), DOI: 10.1109/TMTT.2008.921308.

[56] X. Yu, F. F. Dai, J. D. Irwin, and R. C. Jaeger, IEEE J. Solid-State Circuits 43,

1384 (2008), DOI: 10.1109/JSSC.2008.922739.

[57] S. Thuries, E. Tournier, A. Cathelin, S. Godet, and J. Graffeuil, IEEE Microw.

Wireless Compon. Lett. 18, 1 (2008), DOI: 10.1109/LMWC.2007.911994.

[58] X. Geng, X. Yu, F. F. Dai, J. D. Irwin, and R. C. Jaeger, IEEE Journal of Solid-

State Circuits 45, 300 (2010), DOI: 10.1109/JSSC.2009.2037542.

[59] X. Geng, F. F. Dai, J. D. Irwin, and R. C. Jaeger, IEEE Journal of Solid-State

Circuits 45, 944 (2010), DOI: 10.1109/JSSC.2010.2041398.

[60] R. Thirunarayanan, D. Ruffieux, N. Scolari, and C. Enz, European Solid-State

Circuits Conference (ESSCIRC), 388 (2015), DOI: 10.1109/ESSCIRC.2015.7313909.

http://www.analog.com/static/imported-files/data_sheets/AD9912.pdf
http://www.analog.com/static/imported-files/data_sheets/AD9912.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9834.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9834.pdf

108

[61] PRS10 Rubidium Frequency Standard catalog and manual, Stanford Research

Systems, https://www.thinksrs.com/downloads/pdfs/catalog/PRS10c.pdf, and

https://www.thinksrs.com/downloads/pdfs/manuals/PRS10m.pdf, visited on Dec 2, 2018.

[62] R. E. Ziemer, and W. H. Tranter, Principles of communications, systems,

modulation, and noise, 4th Ed., Wiley, 1995.

[63] LF353 Datasheet, Texas Instruments, http://www.ti.com/lit/ds/symlink/lf353-n.pdf,

visited on Dec 2, 2018.

[64] LT1016 datasheet, Analog Devices, https://www.analog.com/media/en/technical-

documentation/data-sheets/lt1016.pdf , visited on Dec 2, 2018.

[65] SN74LS123 Datasheet, Texas Instruments,

https://datasheet.octopart.com/SN74LS123N-Texas-Instruments-datasheet-8442807.pdf,

visited on Dec 2, 2018.

[66] AD5270 datasheet, Analog Devices, https://www.analog.com/media/en/technical-

documentation/data-sheets/ad5270_5271.pdf, visited on Dec 2, 2018.

[67] MCP2518S voltage regulator datasheet,

http://ww1.microchip.com/downloads/en/DeviceDoc/22056b.pdf, visited on Feb 24,

2019.

[68] J. D. Hagerty, An advanced direct-digital VFO,

http://www.wa1ffl.com/Hagerty_QEX.pdf, 2008.

[69] American Radio Relay League, The Radio Amateur’s Handbook (American Radio

Relay League, USA, 1985), through 1994 editions, pp. 30-8–30-15.

[70] AD835 datasheet, Analog Devices, https://www.analog.com/media/en/technical-

documentation/data-sheets/ad835.pdf, visited on Feb 24, 2019.

[71] L. Brillouin, Annales de Physique 17, 88 (1922), DOI:

10.1051/anphys/192209170088.

https://www.thinksrs.com/downloads/pdfs/catalog/PRS10c.pdf
https://www.thinksrs.com/downloads/pdfs/manuals/PRS10m.pdf
http://www.ti.com/lit/ds/symlink/lf353-n.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/lt1016.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/lt1016.pdf
https://datasheet.octopart.com/SN74LS123N-Texas-Instruments-datasheet-8442807.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad5270_5271.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad5270_5271.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22056b.pdf
http://www.wa1ffl.com/Hagerty_QEX.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad835.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad835.pdf

109

[72] P. Debye, and F. W. Sears, PNAS 18, 409 (1932), DOI: 10.1073/pnas.18.6.409.

[73] R. Lucas, and P. Biquard, Journal de Physique 71, 464 (1932).

[74] M. Born, and E. Wolf, Principles of Optics, Electromagnetic theory of propagation

interference and diffraction of light, Sixth Edition, Cambridge University Press, Ch. 11,

pp. 594, 1980.

[75] C. V. Raman, and N. S. N. Nath, Parts I, II, and II in Proc. Ind. Acad. Sci. 2, 406,

413 (1935), 3, 75 (1936), DOI: 10.1007/BF03035840, DOI: 10.1007/BF03035841, and

DOI: 10.1007/BF03046238.

[76] E. David, Phys. Z. 38, 587 (1937).

[77] A. B. Bhatia, Ultrasonic Absorption, An Introduction to the Theory of Sound

Absorption and Dispersion in Gases, Liquids, and Solids, Dover Publications Inc., New

York, 1967.

[78] V. Vivek, Optical switches, https://wp.optics.arizona.edu/milster/wp-

content/uploads/sites/48/2016/06/acousto-optics-modulator.pdf, visited on March 4,

2019.

[79] A. Yaris, P. Yeh, Optical Waves in Crystals, Propagation and Control of Laser

Radiation, John Wiley & Sons, Inc., New York, Ch. 9 and 10, pp. 318-404, 1984.

[80] IntraAction AOM datasheet, https://intraaction.com/wp-

content/themes/Divi/pdf/AOM-AF1_Series_04053.pdf, visited on March 5, 2019.

[81] Analog Devices, Circuit Note CN-0272, https://www.analog.com/en/design-

center/reference-designs/hardware-reference-design/circuits-from-the-

lab/cn0272.html#rd-overview, visited on Dec 2, 2018.

[82] G. Lochead, Photodiode amplifiers, application handbook, McGraw-Hill, second

edition, 1996.

https://wp.optics.arizona.edu/milster/wp-content/uploads/sites/48/2016/06/acousto-optics-modulator.pdf
https://wp.optics.arizona.edu/milster/wp-content/uploads/sites/48/2016/06/acousto-optics-modulator.pdf
https://intraaction.com/wp-content/themes/Divi/pdf/AOM-AF1_Series_04053.pdf
https://intraaction.com/wp-content/themes/Divi/pdf/AOM-AF1_Series_04053.pdf
https://www.analog.com/en/design-center/reference-designs/hardware-reference-design/circuits-from-the-lab/cn0272.html#rd-overview
https://www.analog.com/en/design-center/reference-designs/hardware-reference-design/circuits-from-the-lab/cn0272.html#rd-overview
https://www.analog.com/en/design-center/reference-designs/hardware-reference-design/circuits-from-the-lab/cn0272.html#rd-overview

110

[83] Stanford Research Systems, Model SR810 DSP Lock-In Amplifier,

https://www.thinksrs.com/downloads/pdfs/manuals/SR850m.pdf, visited on March 27,

2019.

[84] Linear Technologies, LT1793 datasheet,

https://www.analog.com/media/en/technical-documentation/data-sheets/1793f.pdf,

visited on March 27, 2019.

[85] Linear Technologies, LT1028 datasheet,

https://www.analog.com/media/en/technical-documentation/data-sheets/1028fd.pdf,

visited on March 27, 2019.

[86] OSRAM Opto Semiconductors, BPX61 datasheet,

https://www.mouser.com/ds/2/311/BPX%2061,%20Lead%20(Pb)%20Free%20Product%

20-%20RoHS%20Compliant-318809.pdf, visited on March 27, 2019.

[87] Analog Devices, AD630 Balanced Modulator/Demodulator,

https://www.analog.com/media/en/technical-documentation/data-sheets/AD630.pdf,

visited on March 27, 2019.

[88] R. W. Hamming, Digital Filters, Dover Publications, Inc., Mineola, New York, 3rd

edition, Ch. 10, pp. 208-218, 1989.

[89] NEXYS4 DDR reference manual, Digilent National Instruments Company,

https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/reference-

manual, visited on Dec 2, 2018.

[90] D. E. Newland, An Introduction To Random Vibrations, Spectral & Wavelet

Analysis, John Wiley & Sons, Inc., New York, 3rd Edition, Ch. 10, pp. 113-124, 1993.

[91] Xilinx Vivado software, https://www.xilinx.com/support/download.html, visited on

March 31, 2019.

https://www.thinksrs.com/downloads/pdfs/manuals/SR850m.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/1793f.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/1028fd.pdf
https://www.mouser.com/ds/2/311/BPX%2061,%20Lead%20(Pb)%20Free%20Product%20-%20RoHS%20Compliant-318809.pdf
https://www.mouser.com/ds/2/311/BPX%2061,%20Lead%20(Pb)%20Free%20Product%20-%20RoHS%20Compliant-318809.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD630.pdf
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/reference-manual
https://www.xilinx.com/support/download.html

111

[92] Hewlett Packard model 5529A interferometer, https://www.keysight.com/en/pd-

1000001491%3Aepsg%3Apro-pn-5529A/dynamic-calibration-system?nid=-

33213.536880403&cc=TR&lc=eng, visited on March 31, 2019.

[93] P. E. Ciddor, Applied Optics 35, 1566 (1996), DOI: 10.1364/AO.35.001566.

[94] NEXYS Video reference manual, Digilent National Instruments Company,

https://reference.digilentinc.com/_media/nexys-video:nexys_video_rm.pdf, visited on

Dec 2, 2018.

[95] L. D. Perez, K. Arumugam, M. Arablu, and S. T. Smith, Combined frequency-

modulated signals for two-axis displacement measurement, euspen’s 19th International

Conference & Exhibition, Bilbao, ES, June 2019.

[96] V. G. Badami, Investigation and compensation of periodic nonlinearities in

heterodyne interferometry, PhD dissertation, The University of North Carolina at

Charlotte, 1999.

https://www.keysight.com/en/pd-1000001491%3Aepsg%3Apro-pn-5529A/dynamic-calibration-system?nid=-33213.536880403&cc=TR&lc=eng
https://www.keysight.com/en/pd-1000001491%3Aepsg%3Apro-pn-5529A/dynamic-calibration-system?nid=-33213.536880403&cc=TR&lc=eng
https://www.keysight.com/en/pd-1000001491%3Aepsg%3Apro-pn-5529A/dynamic-calibration-system?nid=-33213.536880403&cc=TR&lc=eng
https://reference.digilentinc.com/_media/nexys-video:nexys_video_rm.pdf

112

APPENDIX A. ARDUINO CODE FOR FM BOARD

The Arduino code used to program the FM board is presented here. This code is

the modified version of the simple separate codes used for each microchip. It is

developed in a library format for Arduino. Users should copy the codes

“FMGenerate.CPP”, “FMGenerate.h” and “keywords” in separate “.txt” formatted files

and keep the title of the files as “FMGenerate”, “FMGenerate”, and “keywords”. Then,

these files should be copied to a folder with title “FMGenerate” inside the library

directory of the Arduino. Finally, the code “FMGenerate_Arduino” can be executed in an

Arduino software to program the DDS chips and the rheostat of the FM board. The code

contains comments to guide the users to choose proper Arduino digital pins to be

connected to the digital pins of the board.

Appendix A.1 FMGenerate_Arduino

/*

This code was created on May 2017 for one FM board and expanded on Sept 2018 to program two FM

boards and a Saji board for multi-axis polydyne interferometry.

Created by Masoud Arablu.

The FMGenerate.h includes the library and the values should be sent via a function like

fmGenerate(long clk_,double PLLM_,long fm_1,long fc_1,double RPot_1,int ss3_1,int ss2_1,int IOU_1,int

OSK_1,int SDIO_1,int SCLK_1,int ss1_1,int IOSync_1,int RESET_1,int PDCtl_1,...

 long fm_2,long fc_2,double RPot_2,int ss3_2,int ss2_2,int IOU_2,int OSK_2,int SDIO_2,int

SCLK_2,int ss1_2,int IOSync_2,int RESET_2,int PDCtl_2,...

 long dfm,int SCLK_Saji,int DATA_Saji,int SS_Saji)

This is a function that programms two FM boards and a Saji board separately for a two-axis polydyne

interferometer.

Digital ground of Arduino should be connected to one of the GND digital pins on the FM boards.

113

The parameters ending to _1 are for FM board one, _2 for FM board 2, and _ are for both FM boards.

*/

#include <FMGenerate.h>

long clk_, fm_1, fm_2, fc_1, fc_2, dfm;

double PLLM_, RPot_1, RPot_2;

int ss2_1,ss3_1,IOU_1,OSK_1,SDIO_1,SCLK_1,ss1_1,IOSync_1,RESET_1,PDCtl_1;

int ss2_2,ss3_2,IOU_2,OSK_2,SDIO_2,SCLK_2,ss1_2,IOSync_2,RESET_2,PDCtl_2;

int SCLK_Saji,DATA_Saji,SS_Saji;

void setup()

 {

 clk_ = 10000000; // External Clock frequency. 10 MHz for the PRS10 atomic clock.

 PLLM_ = 20; // An integer between 4 and 20 to be multiplied in the multiplexer of the PLL in

DDS2.

 // Set Values for the FM board 1

 RPot_1 = 20000; // This is the resistance value of the rheostat of the FM board 1. Can vary from 0 to

20000.

 fm_1 = 312500; // Modulation frequency of the FM board 1.

 fc_1 = 60000000; // Carier frequency of the FM board 1.

 PDCtl_1 = 12; // Arduino digital pin number that is connected to the PwrDwnCtl pin of the FM

board 1.

 RESET_1 = 11; // Arduino digital pin number that is connected to the Reset pin of the FM board 1.

 IOSync_1 = 10; // Arduino digital pin number that is connected to the IOSync pin of the FM board 1.

 ss1_1 = 9; // Arduino digital pin number that is connected to the SS1 pin of the FM board 1.

 SCLK_1 = 8; // Arduino digital pin number that is connected to the SCLK pin of the FM board 1.

 SDIO_1 = 7; // Arduino digital pin number that is connected to the SDIO pin of the FM board 1.

 OSK_1 = 6; // Arduino digital pin number that is connected to the OSK pin of the FM board 1.

 IOU_1 = 5; // Arduino digital pin number that is connected to the IOU pin of the FM board 1.

 ss2_1 = 4; // Arduino digital pin number that is connected to the SS2 pin of the FM board 1.

 ss3_1 = 3; // Arduino digital pin number that is connected to the SS3 pin of the FM board 1.

 // Set Values for the FM board 2

 RPot_2 = RPot_1; // This is the resistance value of the rheostat of the FM board 2. Can vary from 0 to

20000.

 fm_2 = fm_1; // Modulation frequency of the FM board 2.

 fc_2 = fc_1; // Carier frequency of the FM board 2.

 PDCtl_2 = 25; // Arduino digital pin number that is connected to the PwrDwnCtl pin of the FM

board 2.

 RESET_2 = 27; // Arduino digital pin number that is connected to the Reset pin of the FM board 2.

 IOSync_2 = 29; // Arduino digital pin number that is connected to the IOSync pin of the FM board 2.

 ss1_2 = 31; // Arduino digital pin number that is connected to the SS1 pin of the FM board 2.

 SCLK_2 = 33; // Arduino digital pin number that is connected to the SCLK pin of the FM board 2.

 SDIO_2 = 35; // Arduino digital pin number that is connected to the SDIO pin of the FM board 2.

 OSK_2 = 37; // Arduino digital pin number that is connected to the OSK pin of the FM board 2.

 IOU_2 = 39; // Arduino digital pin number that is connected to the IOU pin of the FM board 2.

 ss2_2 = 41; // Arduino digital pin number that is connected to the SS2 pin of the FM board 2.

 ss3_2 = 43; // Arduino digital pin number that is connected to the SS3 pin of the FM board 2.

 // Set Values for Saji board

 dfm = (fm_1-fm_2); // Frequency that should be generated by Saji board for beat detection.

 SCLK_Saji = 44; // Arduino digital pin number that is connected to the CLK pin of the Saji board.

 DATA_Saji = 45; // Arduino digital pin number that is connected to the DATA pin of the Saji board.

 SS_Saji = 46; // Arduino digital pin number that is connected to the SS pin of the Saji board.

114

 FMGenerate

fmGenerate(clk_,PLLM_,fm_1,fc_1,RPot_1,ss3_1,ss2_1,IOU_1,OSK_1,SDIO_1,SCLK_1,ss1_1,IOSync_

1,RESET_1,PDCtl_1,fm_2,fc_2,RPot_2,ss3_2,ss2_2,IOU_2,OSK_2,SDIO_2,SCLK_2,ss1_2,IOSync_2,R

ESET_2,PDCtl_2,dfm,SCLK_Saji,DATA_Saji,SS_Saji);

 }

void loop()

{

}

Appendix A.2 keywords

FMGenerate KEYWORD1

Transfer KEYWORD2

Appendix A.3 FM_Generate.h

// This is the Header file.

#ifndef FMGenerate_h

#define FMGenerate_h

class FMGenerate

{

 public:

 FMGenerate(long clk_,double PLLM_,long fm_1,long fc_1,double RPot_1,int ss3_1,int ss2_1,int

IOU_1,int OSK_1,int SDIO_1,int SCLK_1,int ss1_1,int IOSync_1,int RESET_1,int PDCtl_1,long

fm_2,long fc_2,double RPot_2,int ss3_2,int ss2_2,int IOU_2,int OSK_2,int SDIO_2,int SCLK_2,int

ss1_2,int IOSync_2,int RESET_2,int PDCtl_2,long dfm,int SCLK_Saji,int DATA_Saji,int SS_Saji);

 void Pot(int ssp,double RPot,int SCLK,int SDIO);

 void Transfer(int ControlWord, long FrequencyReg,int SCLK,int SDIO,int sst);

 void DDS1(long fm,int SCLK,int SDIO,int ss2,long clk);

 void DDS2(long fc,int SCLK,int SDIO,double PLLM,int ss1,int PDCtl,int RESET,int IOSync,int

OSK,int IOU,long clk);

 private:

 int i;

};

#endif

115

Appendix A.4 FM_Generate.CPP

// This is the main CPP file.

#include "Arduino.h"

#include "FMGenerate.h"

#include <math.h>

FMGenerate::FMGenerate(long clk_,double PLLM_,long fm_1,long fc_1,double RPot_1,int ss3_1,int

ss2_1,int IOU_1,int OSK_1,int SDIO_1,int SCLK_1,int ss1_1,int IOSync_1,int RESET_1,int

PDCtl_1,long fm_2,long fc_2,double RPot_2,int ss3_2,int ss2_2,int IOU_2,int OSK_2,int SDIO_2,int

SCLK_2,int ss1_2,int IOSync_2,int RESET_2,int PDCtl_2,long dfm,int SCLK_Saji,int DATA_Saji,int

SS_Saji){

 // For FM board 1:

 Pot(ss3_1,RPot_1,SCLK_1,SDIO_1); //calling Pot (AD5270) function

 DDS1(fm_1,SCLK_1,SDIO_1,ss2_1,clk_); //calling DDS1 (AD9883) function for

cos(2.pi.fm1.t)

 DDS2(fc_1,SCLK_1,SDIO_1,PLLM_,ss1_1,PDCtl_1,RESET_1,IOSync_1,OSK_1,IOU_1,clk_);

 //calling DDS2 (AD9951) function for cos(2.pi.fc1.t)

 // For FM board 2:

 Pot(ss3_2,RPot_2,SCLK_2,SDIO_2); //calling Pot (AD5270) function

 DDS1(fm_2,SCLK_2,SDIO_2,ss2_2,clk_); //calling DDS1 (AD9883) function for

cos(2.pi.fm2.t)

 DDS2(fc_2,SCLK_2,SDIO_2,PLLM_,ss1_2,PDCtl_2,RESET_2,IOSync_2,OSK_2,IOU_2,clk_);

 //calling DDS2 (AD9951) function for cos(2.pi.fc2.t)

 // For Saji board:

 DDS1(dfm,SCLK_Saji,DATA_Saji,SS_Saji,clk_); //calling DDS1 (AD9883) function for

cos(2.pi.dfm.t)

} // end of FMGenerate configuration

// defining Pot function here

void FMGenerate::Pot(int ssp,double RPot,int SCLK,int SDIO){

 int DIN[16] = {0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0};

 unsigned long y1, z1;

 pinMode(ssp, OUTPUT);

 digitalWrite(ssp, 1);

 pinMode(SCLK, OUTPUT);

 digitalWrite(SCLK, 0);

 pinMode(SDIO, OUTPUT);

 digitalWrite(SDIO, 0);

 digitalWrite(ssp, 0);// Enable the chip by taking ssp to logic LOW

 delayMicroseconds(1);

 // WRITING DIN

 for (i = 0; i < 16; i++) {

 digitalWrite(SCLK, 1);

 digitalWrite(SDIO, DIN[i]);

 digitalWrite(SCLK, 0);

 }

 digitalWrite(ssp, 1); // Disabling the chip by taking ssp to logic HIGH.

 delayMicroseconds(1);

 DIN[3] = 0;

 DIN[4] = 0;

 //Calculating correct ratio of potentiometer and bit-reading it to DIN[15:6]

116

 z1 = RPot*1023/20000;

 y1 = (unsigned long)ceil(z1);

 for (i = 0; i < 10; i++) {

 DIN[15-i] = bitRead(y1, i);

 }

 digitalWrite(ssp, 0); // Enable the chip by taking ssp to logic LOW

 delayMicroseconds(1);

 // WRITING DIN

 for (i = 0; i < 16; i++) {

 digitalWrite(SCLK, 1);

 digitalWrite(SDIO, DIN[i]);

 digitalWrite(SCLK, 0);

 }

 digitalWrite(ssp, 1); // Disabling the chip by taking ssp to logic HIGH.

 delayMicroseconds(1);

} // end of Pot function

// defining DDS1 function here

void FMGenerate::DDS1(long fm,int SCLK,int SDIO,int ss2,long clk){

 int cw;

 char _type = 's';

 //fm = fm*(268435456/(10*clk)); // Value which goes to the Freq Register

 fm = long(fm*26.8435456);

 pinMode(SDIO,OUTPUT);

 pinMode(SCLK,OUTPUT);

 pinMode(ss2,OUTPUT);

 switch (_type){

 case 's': // s for Sine wave

 cw = 0;

 break;

 case 't': // t for Triangle

 cw = 16384;

 break;

 case 'p': // p for Sawtooth

 cw = 5120;

 break;

 } //end of switch

 Transfer(cw,fm,SCLK,SDIO,ss2);

 digitalWrite(ss2,1);

 Serial.println();

 delay(100);

} // End of DDS1 function

// defining Transfer function here

void FMGenerate::Transfer(int ControlWord, long FrequencyReg,int SCLK,int SDIO,int sst){

 // writing Control Word:

 digitalWrite(SCLK,0);

 digitalWrite(sst,1);

 digitalWrite(SCLK,1);

 delayMicroseconds(1);

 digitalWrite(sst,0);

 for (byte i=0; i<16; i++) {

 byte cwState = bitRead(ControlWord, i);

 digitalWrite(SDIO,cwState);

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

117

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 }

 //writing Fine Tune:

 digitalWrite(SCLK,0);

 digitalWrite(sst,1);

 digitalWrite(SCLK,1);

 delayMicroseconds(1);

 digitalWrite(sst,0);

 // writing 01 to fm:

 digitalWrite(SDIO,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 digitalWrite(SDIO,1);

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 // Fine Tune to fm:

 for (byte i=0; i<14; i++) {

 byte ftState = bitRead(FrequencyReg, 13-i);

 digitalWrite(SDIO,ftState);

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 }

 // writing Control Word:

 digitalWrite(SCLK,0);

 digitalWrite(sst,1);

 digitalWrite(SCLK,1);

 delayMicroseconds(1);

 digitalWrite(sst,0);

 for (byte i=0; i<16; i++) {

 byte cwState2 = bitRead(ControlWord+8, i);

 digitalWrite(SDIO,cwState2);

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 }

 // writing Coarse Tune:

 digitalWrite(SCLK,0);

 digitalWrite(sst,1);

 digitalWrite(SCLK,1);

 delayMicroseconds(1);

 digitalWrite(sst,0);

 // writing 01 to fm:

 digitalWrite(SDIO,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 digitalWrite(SDIO,1);

118

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 // Coarse Tune to fm:

 for (byte i=0; i<14; i++) {

 byte state = bitRead(FrequencyReg, 27-i);

 Serial.print(state);

 digitalWrite(SDIO,state);

 delayMicroseconds(1);

 digitalWrite(SCLK,0);

 delayMicroseconds(1);

 digitalWrite(SCLK,1);

 }

}

// defining DDS2 function here

void FMGenerate::DDS2(long fc,int SCLK,int SDIO,double PLLM,int ss1,int PDCtl,int RESET,int

IOSync,int OSK,int IOU,long clk){

 unsigned long y;

 unsigned long z;

 double x;

 // CFR, ASF, ARR, FTW, and POW are the values that should be sent to the registers of the AD9951

to program it properly.

 // These values are available in AD9951 datasheet.

 int CFR1[40] = {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,1,0,0,0,1,0, 0,0,0,0,0,0,1,0};

 int CFR2[32] = {0,0,0,0,0,0,0,1, 0,0,0,1,1,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1};

 int ASF[24] = {0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0};

 int ARR[16] = {0,0,0,0,0,0,1,1, 0,0,0,0,0,0,0,0};

 int FTW[40] = {0,0,0,0,0,1,0,0};

 int POW[24] = {0,0,0,0,0,1,0,1, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0};

 pinMode(PDCtl, OUTPUT); // PwrDwnCtrl Pin

 pinMode(RESET, OUTPUT); // RESET Pin

 pinMode(IOSync, OUTPUT); // IOSync Pin

 pinMode(ss1, OUTPUT); // Chip Select Pin

 pinMode(SCLK, OUTPUT); // CLOCK Pin

 pinMode(SDIO, OUTPUT); // Data Pin

 pinMode(OSK, OUTPUT); // OSK Pin

 pinMode(IOU, OUTPUT); // IOUPDATE Pin

 // Initialize the pins to inactive mode

 digitalWrite(PDCtl, 0);

 delayMicroseconds(1);

 digitalWrite(RESET, 0);

 delayMicroseconds(1);

 digitalWrite(IOSync, 0);

 delayMicroseconds(1);

 digitalWrite(ss1, 1);

 delayMicroseconds(1);

 digitalWrite(SCLK, 0);

 delayMicroseconds(1);

 digitalWrite(SDIO, 0);

 delayMicroseconds(1);

119

 digitalWrite(OSK, 0);

 delayMicroseconds(1);

 digitalWrite(IOU, 1);

 delayMicroseconds(1);

 // Bitreading PLLM to CFR2<7:3> which is equivalent to CFR2[24:28]

 z = (unsigned long)ceil(PLLM);

 for (i = 0; i < 5; i++){

 CFR2[28-i]= bitRead(z, i);

 }

 // Calculating the frequency tuning word according to the desired frequency and external clock in the

form of a float number x,

 // ceiling it and then bitReading it into FTW[i] for 8<= i <=39

 x = (4294967296.000/PLLM)*(fc/clk);

 if (x > 2147483648.0) {

 x = 4294967296.000*(1-(fc/(PLLM*clk)));

 }

 y= (unsigned long)ceil(x);

 for (i = 0; i < 32; i++) {

 FTW[39-i]=bitRead(y,i);

 }

 //Toggle RESET:

 digitalWrite(RESET, 1);

 delayMicroseconds(1);

 digitalWrite(RESET, 0);

 delayMicroseconds(1);

 // Taking the IOU Low:

 digitalWrite(IOU, 0);

 delayMicroseconds(1);

 //Toggle IOSync:

 digitalWrite(IOSync, 1);

 delayMicroseconds(1);

 digitalWrite(IOSync, 0);

 delayMicroseconds(1);

 // Enable the chip by taking ss1 to logic LOW:

 digitalWrite(ss1, 0);

 delayMicroseconds(1);

 // WRITING CFR1:

 digitalWrite(SCLK, 0);

 for (i = 0; i < 40; i++) {

 delayMicroseconds(1);

 digitalWrite(SDIO, CFR1[i]);

 delayMicroseconds(1);

 digitalWrite(SCLK, 1);

 delayMicroseconds(1);

 digitalWrite(SCLK, 0);

 }

 // Toggle IOU:

 digitalWrite(IOU, 1);

 delayMicroseconds(1);

 digitalWrite(IOU, 0);

 delayMicroseconds(1);

 //Toggle IOSync:

 digitalWrite(IOSync, 1);

 delayMicroseconds(1);

 digitalWrite(IOSync, 0);

120

 delayMicroseconds(1);

 // WRITING CFR2:

 for (i = 0; i < 32; i++) {

 delayMicroseconds(1);

 digitalWrite(SDIO, CFR2[i]);

 delayMicroseconds(1);

 digitalWrite(SCLK, 1);

 delayMicroseconds(1);

 digitalWrite(SCLK, 0);

 }

 // Toggle IOU:

 digitalWrite(IOU, 1);

 delayMicroseconds(1);

 digitalWrite(IOU, 0);

 delayMicroseconds(1);

 //Toggle IOSync:

 digitalWrite(IOSync, 1);

 delayMicroseconds(1);

 digitalWrite(IOSync, 0);

 delayMicroseconds(1);

 // WRITING ASF:

 for (i = 0; i < 24; i++) {

 delayMicroseconds(1);

 digitalWrite(SDIO, ASF[i]);

 delayMicroseconds(1);

 digitalWrite(SCLK, 1);

 delayMicroseconds(1);

 digitalWrite(SCLK, 0);

 }

 // Toggle IOU:

 digitalWrite(IOU, 1);

 delayMicroseconds(1);

 digitalWrite(IOU, 0);

 delayMicroseconds(1);

 //Toggle IOSync:

 digitalWrite(IOSync, 1);

 delayMicroseconds(1);

 digitalWrite(IOSync, 0);

 delayMicroseconds(1);

 // WRITING ARR:

 for (i = 0; i < 16; i++) {

 delayMicroseconds(1);

 digitalWrite(SDIO, ARR[i]);

 delayMicroseconds(1);

 digitalWrite(SCLK, 1);

 delayMicroseconds(1);

 digitalWrite(SCLK, 0);

 }

 // Toggle IOU:

 digitalWrite(IOU, 1);

 delayMicroseconds(1);

 digitalWrite(IOU, 0);

 delayMicroseconds(1);

 //Toggle IOSync:

 digitalWrite(IOSync, 1);

 delayMicroseconds(1);

121

 digitalWrite(IOSync, 0);

 delayMicroseconds(1);

 // WRITING FTW:

 for (i = 0; i < 40; i++) {

 delayMicroseconds(1);

 digitalWrite(SDIO, FTW[i]);

 delayMicroseconds(1);

 digitalWrite(SCLK, 1);

 delayMicroseconds(1);

 digitalWrite(SCLK, 0);

 }

 // Toggle IOU:

 digitalWrite(IOU, 1);

 delayMicroseconds(1);

 digitalWrite(IOU, 0);

 delayMicroseconds(1);

 //Toggle IOSync:

 digitalWrite(IOSync, 1);

 delayMicroseconds(1);

 digitalWrite(IOSync, 0);

 delayMicroseconds(1);

 // WRITING POW:

 for (i = 0; i < 24; i++) {

 delayMicroseconds(1);

 digitalWrite(SDIO, POW[i]);

 delayMicroseconds(1);

 digitalWrite(SCLK, 1);

 delayMicroseconds(1);

 digitalWrite(SCLK, 0);

 }

 // Take IOU to logic HIGH:

 delayMicroseconds(1);

 digitalWrite(IOU, 1);

 // Disabling the Chip by taking ss1 HIGH.

 delayMicroseconds(1);

 digitalWrite(ss1, 1);

}// end of DDS2 function.

122

APPENDIX B. SPECTRA OF ELECTRICAL FM SIGNALS

Spectra of signals of 10cf  , 30, 60, and 70 MHz with two different modulation

frequency sets of (50, 100, and 150 kHz) and (200, 250, and 300 kHz) are presented:

Figure Appendix B-1- Spectra of signals of 10cf  MHz and mf  50, 100, and 150

kHz measured with frequency steps of 1 Hz.

123

Figure Appendix B-2- Spectra of signals of 30cf  MHz and mf  50, 100, and 150

kHz measured with frequency steps of 1 Hz.

124

Figure Appendix B-3- Spectra of signals of 60cf  MHz and mf  50, 100, and 150

kHz measured with frequency steps of 1 Hz.

125

Figure Appendix B-4- Spectra of signals of 70cf  MHz and mf  50, 100, and 150

kHz measured with frequency steps of 1 Hz.

126

Figure Appendix B-5- Spectra of signals of 10cf  MHz and mf  200, 250, and 300

kHz measured with frequency steps of 1 Hz.

127

Figure Appendix B-6- Spectra of signals of 30cf  MHz and mf  200, 250, and 300

kHz measured with frequency steps of 1 Hz.

128

Figure Appendix B-7- Spectra of signals of 60cf  MHz and mf  200, 250, and 300

kHz measured with frequency steps of 1 Hz.

129

Figure Appendix B-8- Spectra of signals of 70cf  MHz and mf  200, 250, and 300

kHz measured with frequency steps of 1 Hz.

130

APPENDIX C. VHDL code for 32-sample Fourier transform

The main module of the VHDL code for 32-sample Fourier transform is presented

here. However, there are more than hundred submodules in this code that makes it

infeasible to represent them in an appendix. Therefore, a complete version of the 32-

sample Fourier transform VHDL code and the LabVIEW program that are used for phase

extraction and unwrapping are attached to this document. Each of the codes are self-

explanatory so that the readme file inside the codes navigate the users to operate the

system easily.

-- Code Description ------------------------------

-- Company: UNC Charlotte

-- Student: Masoud Arablu

--

-- Create Date: 10/17/2018 08:06:14 AM

-- Design Name: Discrete Fourier Transform

-- Module Name: Top - Behavior

-- Project Name: Digital Methods for Phase Extraction in Interferometry

-- Target Devices: NEXYS 4 DDR

--

-- Description: This VHDL code is developed in Vivado 2018.3. It uses add/sub,

-- multiplier, Clock Wizard, CORDIC, and ILA IPs for implementation and debugging

-- DFT. Also, component bin2bcd converts binary to decimal and component DigitToSeg

-- monitors values in the 7-segment LEDs.

--

-- Revision 16 - Algorithm was expanded to two harmonics of 312.5 kHz.

-- Additional Comments: This algorithm reads 12 bit digital data in

-- parallel mode at 10 MHz speed and applies 32 sample digital DFT followed

-- by 32-points averaging.

--- Libraries ----------------------------------1

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

---end1

--- Entity -------------------------------------2

entity Top is

131

 Port (

CLK : in std_logic;

CLK_Reset : in std_logic;

D : in std_logic_vector(11 downto 0);

Photo_CLK : out std_logic := '0';

Dp : out std_logic;

Seg : out std_logic_vector(6 downto 0);

an : out std_logic_vector(7 downto 0);

LED : out std_logic_vector(15 downto 0);

--sw : in std_logic_vector(1 downto 0):=(others=> '0');

D_Out : out std_logic_vector(15 downto 0) := (others=> '0');

Dec_CLK : out std_logic := '0'

);

end Top;

---end2

--- Architecture ----------------------------------3

architecture Behavior of Top is

---------- Declaring variables and IPs ----------------------------------3.1-to-3.20

 signal count : integer range 0 to 10000;

 signal count2 : integer range 0 to 10000;

 signal dig0 : std_logic_vector(3 downto 0);

 signal dig1 : std_logic_vector(3 downto 0);

 signal dig2 : std_logic_vector(3 downto 0);

 signal dig3 : std_logic_vector(3 downto 0);

 signal dig4 : std_logic_vector(3 downto 0);

 signal dig5 : std_logic_vector(3 downto 0);

 signal dig6 : std_logic_vector(3 downto 0);

 signal Bin_Data : std_logic_vector(15 downto 0);

 --

 signal MAIN_CLK : std_logic;

 signal CLK_100MHz : std_logic;

 signal reset_bcd : std_logic;

 signal counter1 : integer range 0 to 511 := 0;

 signal counter2 : integer range 0 to 511 := 0;

 signal counter3 : integer range 0 to 511 := 0;

 signal probe_0 : std_logic_vector(11 downto 0) := (others=> '0');

 signal probe_1 : std_logic_vector(0 downto 0) := (others=> '0');

 signal probe_2 : std_logic_vector(0 downto 0) := (others=> '0');

 signal probe_3 : std_logic_vector(0 downto 0) := (others=> '0');

 signal probe_4 : std_logic_vector(15 downto 0) := (others=> '0');

 signal MMCM_Locked : std_logic;

 signal D_In_Ready : std_logic := '0';

 signal D_Out_Ready : std_logic := '0';

 signal data : std_logic_vector(11 downto 0) := (others=> '0');

 --

 type mem32_12 is array (31 downto 0) of std_logic_vector (11 downto 0);

 signal data_1 : mem32_12 := (others => (others=> '0'));

 --

 type mem32_16 is array (31 downto 0) of std_logic_vector (15 downto 0);

 -- C1 is a 32-sample cosine LUT that contains 1 complete period, i.e. for first harmonic

 signal C1 : mem32_16 :=

("0111111111111111","0111110110001010","0111011001000010","0110101001101110",

"0101101010000010","0100011100011101","0011000011111100","0001100011111001",

"0000000000000000","1110011100000111","1100111100000100","1011100011100011",

132

"1010010101111110","1001010110010010","1000100110111110","1000001001110110",

"1000000000000000","1000001001110110","1000100110111110","1001010110010010",

"1010010101111110","1011100011100011","1100111100000100","1110011100000111",

"0000000000000000","0001100011111001","0011000011111100","0100011100011101",

"0101101010000010","0110101001101110","0111011001000010","0111110110001010");

 -- S1 is a 32-sample sine LUT that contains 1 complete period, i.e. for first harmonic

 signal S1 : mem32_16 :=

 ("0000000000000000","0001100011111001","0011000011111100","0100011100011101",

"0101101010000010","0110101001101110","0111011001000010","0111110110001010",

"0111111111111111","0111110110001010","0111011001000010","0110101001101110",

"0101101010000010","0100011100011101","0011000011111100","0001100011111001",

"0000000000000000","1110011100000111","1100111100000100","1011100011100011",

"1010010101111110","1001010110010010","1000100110111110","1000001001110110",

"1000000000000000","1000001001110110","1000100110111110","1001010110010010",

"1010010101111110","1011100011100011","1100111100000100","1110011100000111");

 -- C2 is a 32-sample cosine LUT that contains 2 complete periods, i.e. for second harmonic

 signal C2 : mem32_16 :=

 ("0111111111111111","0111011001000010","0101101010000010","0011000011111100",

"0000000000000000","1100111100000100","1010010101111110","1000100110111110",

"1000000000000000","1000100110111110","1010010101111110","1100111100000100",

"0000000000000000","0011000011111100","0101101010000010","0111011001000010",

"0111111111111111","0111011001000010","0101101010000010","0011000011111100",

"0000000000000000","1100111100000100","1010010101111110","1000100110111110",

"1000000000000000","1000100110111110","1010010101111110","1100111100000100",

"0000000000000000","0011000011111100","0101101010000010","0111011001000010");

 -- S2 is a 32-sample sine LUT that contains 2 complete periods, i.e. for second harmonic

 signal S2 : mem32_16 :=

 ("0000000000000000","0011000011111100","0101101010000010","0111011001000010",

"0111111111111111","0111011001000010","0101101010000010","0011000011111100",

"0000000000000000","1100111100000100","1010010101111110","1000100110111110",

"1000000000000000","1000100110111110","1010010101111110","1100111100000100",

"0000000000000000","0011000011111100","0101101010000010","0111011001000010",

133

"0111111111111111","0111011001000010","0101101010000010","0011000011111100",

"0000000000000000","1100111100000100","1010010101111110","1000100110111110",

"1000000000000000","1000100110111110","1010010101111110","1100111100000100");

 --

 type mem32_28 is array (31 downto 0) of std_logic_vector (27 downto 0);

 signal X1_1 : mem32_28 := (others => (others=> '0'));

 signal Y1_1 : mem32_28 := (others => (others=> '0'));

 signal X2_1 : mem32_28 := (others => (others=> '0'));

 signal Y2_1 : mem32_28 := (others => (others=> '0'));

 --

 type mem16_29 is array (15 downto 0) of std_logic_vector (28 downto 0);

 signal X1_2 : mem16_29 := (others => (others=> '0'));

 signal Y1_2 : mem16_29 := (others => (others=> '0'));

 signal X2_2 : mem16_29 := (others => (others=> '0'));

 signal Y2_2 : mem16_29 := (others => (others=> '0'));

 --

 type mem8_30 is array (7 downto 0) of std_logic_vector (29 downto 0);

 signal X1_3 : mem8_30 := (others => (others=> '0'));

 signal Y1_3 : mem8_30 := (others => (others=> '0'));

 signal X2_3 : mem8_30 := (others => (others=> '0'));

 signal Y2_3 : mem8_30 := (others => (others=> '0'));

 --

 type mem4_31 is array (3 downto 0) of std_logic_vector (30 downto 0);

 signal X1_4 : mem4_31 := (others => (others=> '0'));

 signal Y1_4 : mem4_31 := (others => (others=> '0'));

 signal X2_4 : mem4_31 := (others => (others=> '0'));

 signal Y2_4 : mem4_31 := (others => (others=> '0'));

 --

 type mem2_32 is array (1 downto 0) of std_logic_vector (31 downto 0);

 signal X1_5 : mem2_32 := (others => (others=> '0'));

 signal Y1_5 : mem2_32 := (others => (others=> '0'));

 signal X2_5 : mem2_32 := (others => (others=> '0'));

 signal Y2_5 : mem2_32 := (others => (others=> '0'));

 --

 type mem2_33 is array (1 downto 0) of std_logic_vector (32 downto 0);

 signal X1_6 : mem2_33 := (others => (others=> '0'));

 signal Y1_6 : mem2_33 := (others => (others=> '0'));

 signal X2_6 : mem2_33 := (others => (others=> '0'));

 signal Y2_6 : mem2_33 := (others => (others=> '0'));

 --

 signal X1 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Y1 : std_logic_vector(15 downto 0) := (others=> '0');

 signal X2 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Y2 : std_logic_vector(15 downto 0) := (others=> '0');

 --

 type mem32_33 is array (31 downto 0) of std_logic_vector (32 downto 0);

 signal Ave1_X1 : mem32_33 := (others => (others=> '0'));

 signal Ave1_Y1 : mem32_33 := (others => (others=> '0'));

 signal Ave1_X2 : mem32_33 := (others => (others=> '0'));

 signal Ave1_Y2 : mem32_33 := (others => (others=> '0'));

 --

 type mem16_34 is array (15 downto 0) of std_logic_vector (33 downto 0);

 signal Ave2_X1 : mem16_34 := (others => (others=> '0'));

134

 signal Ave2_Y1 : mem16_34 := (others => (others=> '0'));

 signal Ave2_X2 : mem16_34 := (others => (others=> '0'));

 signal Ave2_Y2 : mem16_34 := (others => (others=> '0'));

 --

 type mem8_35 is array (7 downto 0) of std_logic_vector (34 downto 0);

 signal Ave3_X1 : mem8_35 := (others => (others=> '0'));

 signal Ave3_Y1 : mem8_35 := (others => (others=> '0'));

 signal Ave3_X2 : mem8_35 := (others => (others=> '0'));

 signal Ave3_Y2 : mem8_35 := (others => (others=> '0'));

 --

 type mem4_36 is array (3 downto 0) of std_logic_vector (35 downto 0);

 signal Ave4_X1 : mem4_36 := (others => (others=> '0'));

 signal Ave4_Y1 : mem4_36 := (others => (others=> '0'));

 signal Ave4_X2 : mem4_36 := (others => (others=> '0'));

 signal Ave4_Y2 : mem4_36 := (others => (others=> '0'));

 --

 type mem2_37 is array (1 downto 0) of std_logic_vector (36 downto 0);

 signal Ave5_X1 : mem2_37 := (others => (others=> '0'));

 signal Ave5_Y1 : mem2_37 := (others => (others=> '0'));

 signal Ave5_X2 : mem2_37 := (others => (others=> '0'));

 signal Ave5_Y2 : mem2_37 := (others => (others=> '0'));

 --

 type mem2_38 is array (1 downto 0) of std_logic_vector (37 downto 0);

 signal Ave6_X1 : mem2_38 := (others => (others=> '0'));

 signal Ave6_Y1 : mem2_38 := (others => (others=> '0'));

 signal Ave6_X2 : mem2_38 := (others => (others=> '0'));

 signal Ave6_Y2 : mem2_38 := (others => (others=> '0'));

 --

 signal Ave_X1 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Ave_Y1 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Ave_X11 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Ave_Y11 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Ave_XY1 : std_logic_vector(31 downto 0) := (others=> '0');

 signal Ave_X2 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Ave_Y2 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Ave_XY2 : std_logic_vector(31 downto 0) := (others=> '0');

 signal Ave_PHI1 : std_logic_vector(15 downto 0) := (others=> '0');

 signal Ave_PHI2 : std_logic_vector(15 downto 0) := (others=> '0');

 signal sqr_Ave_X1 : std_logic_vector(31 downto 0) := (others=> '0');

 signal sqr_Ave_Y1 : std_logic_vector(31 downto 0) := (others=> '0');

 signal sqr_Ave_X2 : std_logic_vector(31 downto 0) := (others=> '0');

 signal sqr_Ave_Y2 : std_logic_vector(31 downto 0) := (others=> '0');

 signal sqr_Ave_R1 : std_logic_vector(32 downto 0) := (others=> '0');

 signal sqr_Ave_R2 : std_logic_vector(32 downto 0) := (others=> '0');

 signal sqr_Ave_R1_2 : std_logic_vector(39 downto 0) := (others=> '0');

 signal sqr_Ave_R2_2 : std_logic_vector(39 downto 0) := (others=> '0');

 signal Ave_R1 : std_logic_vector(23 downto 0) := (others=> '0');

 signal Ave_R2 : std_logic_vector(23 downto 0) := (others=> '0');

 ---end3.1

 component mult_gen_0

 port (A : in std_logic_vector(11 downto 0);

 B : in std_logic_vector(15 downto 0);

 CLK : in std_logic;

 P : out std_logic_vector(27 downto 0));

 end component mult_gen_0;

 ---end3.2

135

 component mult_gen_1

 port (A : in std_logic_vector(15 downto 0);

 B : in std_logic_vector(15 downto 0);

 CLK : in std_logic;

 P : out std_logic_vector(31 downto 0));

 end component mult_gen_1;

 ---end3.3

 component c_addsub_0

 port (A : in std_logic_vector(27 downto 0);

 B : in std_logic_vector(27 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(28 downto 0));

 end component c_addsub_0;

 ---end3.4

 component c_addsub_1

 port (A : in std_logic_vector(28 downto 0);

 B : in std_logic_vector(28 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(29 downto 0));

 end component c_addsub_1;

 ---end3.5

 component c_addsub_2

 port (A : in std_logic_vector(29 downto 0);

 B : in std_logic_vector(29 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(30 downto 0));

 end component c_addsub_2;

 ---end3.6

 component c_addsub_3

 port (A : in std_logic_vector(30 downto 0);

 B : in std_logic_vector(30 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(31 downto 0));

 end component c_addsub_3;

 ---end3.7

 component c_addsub_4

 port (A : in std_logic_vector(31 downto 0);

 B : in std_logic_vector(31 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(32 downto 0));

 end component c_addsub_4;

 ---end3.8

 component c_addsub_5

 port (A : in std_logic_vector(32 downto 0);

 B : in std_logic_vector(32 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(33 downto 0));

 end component c_addsub_5;

 ---end3.9

 component c_addsub_6

 port (A : in std_logic_vector(33 downto 0);

 B : in std_logic_vector(33 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(34 downto 0));

 end component c_addsub_6;

 ---end3.10

136

 component c_addsub_7

 port (A : in std_logic_vector(34 downto 0);

 B : in std_logic_vector(34 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(35 downto 0));

 end component c_addsub_7;

 ---end3.11

 component c_addsub_8

 port (A : in std_logic_vector(35 downto 0);

 B : in std_logic_vector(35 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(36 downto 0));

 end component c_addsub_8;

 ---end3.12

 component c_addsub_9

 port (A : in std_logic_vector(36 downto 0);

 B : in std_logic_vector(36 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector(37 downto 0));

 end component c_addsub_9;

 ---end3.13

 component c_addsub_10

 port (A : in std_logic_vector(15 downto 0);

 CLK : in std_logic;

 S : out std_logic_vector (15 downto 0));

 end component c_addsub_10;

 ---end3.14

 component ila_0

 port (clk : in std_logic;

 probe0 : in std_logic_vector(11 downto 0);

 probe1 : in std_logic_vector(0 downto 0);

 probe2 : in std_logic_vector(0 downto 0);

 probe3 : in std_logic_vector(0 downto 0);

 probe4 : in std_logic_vector(15 downto 0));

 end component ila_0;

 ---end3.15

 component cordic_0

 port (aclk : in std_logic;

 s_axis_cartesian_tvalid : in std_logic;

 s_axis_cartesian_tdata : in std_logic_vector(39 downto 0);

 m_axis_dout_tvalid : out std_logic;

 m_axis_dout_tdata : out std_logic_vector(23 downto 0));

 end component;

 ---end3.16

 component cordic_1

 port (aclk : in std_logic;

 s_axis_cartesian_tvalid : in std_logic;

 s_axis_cartesian_tdata : in std_logic_vector(31 downto 0);

 m_axis_dout_tvalid : out std_logic;

 m_axis_dout_tdata : out std_logic_vector(15 downto 0));

 end component;

 ---end3.17

 component clk_wiz_0

 port (clk_out1 : out std_logic;

 clk_out2 : out std_logic;

 clk_out3 : out std_logic;

137

 reset : in std_logic;

 locked : out std_logic;

 clk_in1 : in std_logic);

 end component;

 ---end3.18

 component DigitToSeg

 port (in1 : in std_logic_vector(3 downto 0);

 in2 : in std_logic_vector(3 downto 0);

 in3 : in std_logic_vector(3 downto 0);

 in4 : in std_logic_vector(3 downto 0);

 in5 : in std_logic_vector(3 downto 0);

 in6 : in std_logic_vector(3 downto 0);

 in7 : in std_logic_vector(3 downto 0);

 in8 : in std_logic_vector(3 downto 0);

 mclk : in std_logic;

 an : out std_logic_vector(7 downto 0);

 dp : out std_logic;

 seg : out std_logic_vector(6 downto 0));

 end component DigitToSeg;

 ---end3.19

 component bin2bcd

 port (mclk, reset : in std_logic;

 binary_in : in std_logic_vector(15 downto 0);

 bcd0, bcd1, bcd2, bcd3, bcd4, bcd5, bcd6 : out std_logic_vector(3 downto 0));

 end component bin2bcd;

 ---end3.20

---------------------------------- start of DFT processes -----------------------------------

begin

 -- multiplying sine and cosine arrays to the signal, the outputs are 28 bit -- 3.21

 multiplier0: for i in 0 to 31 generate -- generates 28 bit data

 gives_X1_1 : component mult_gen_0

 port map (CLK => MAIN_CLK,

 A => data_1(i),

 B => C1(i),

 P => X1_1(i));

 gives_Y1_1 : component mult_gen_0

 port map (CLK => MAIN_CLK,

 A => data_1(i),

 B => S1(i),

 P => Y1_1(i));

 gives_X2_1 : component mult_gen_0

 port map (CLK => MAIN_CLK,

 A => data_1(i),

 B => C2(i),

 P => X2_1(i));

 gives_Y2_1 : component mult_gen_0

 port map (CLK => MAIN_CLK,

 A => data_1(i),

 B => S2(i),

 P => Y2_1(i));

 end generate multiplier0;

 ---end3.21

 ------------------ summing 28 bit data results in 29 bit data ------------------- 3.22

138

 adder0: for i in 0 to 15 generate -- generates 29 bit data

 gives_X1_2 : component c_addsub_0

 port map (CLK => MAIN_CLK,

 A => X1_1(i),

 B => X1_1(i+16),

 S => X1_2(i));

 gives_Y1_2 : component c_addsub_0

 port map (CLK => MAIN_CLK,

 A => Y1_1(i),

 B => Y1_1(i+16),

 S => Y1_2(i));

 gives_X2_2 : component c_addsub_0

 port map (CLK => MAIN_CLK,

 A => X2_1(i),

 B => X2_1(i+16),

 S => X2_2(i));

 gives_Y2_2 : component c_addsub_0

 port map (CLK => MAIN_CLK,

 A => Y2_1(i),

 B => Y2_1(i+16),

 S => Y2_2(i));

 end generate adder0;

 ---end3.22

 ------------------ summing 29 bit data results in 30 bit data ------------------- 3.23

 adder1: for i in 0 to 7 generate -- generates 30 bit data

 gives_X1_3 : component c_addsub_1

 port map (CLK => MAIN_CLK,

 A => X1_2(i),

 B => X1_2(i+8),

 S => X1_3(i));

 gives_Y1_3 : component c_addsub_1

 port map (CLK => MAIN_CLK,

 A => Y1_2(i),

 B => Y1_2(i+8),

 S => Y1_3(i));

 gives_X2_3 : component c_addsub_1

 port map (CLK => MAIN_CLK,

 A => X2_2(i),

 B => X2_2(i+8),

 S => X2_3(i));

 gives_Y2_3 : component c_addsub_1

 port map (CLK => MAIN_CLK,

 A => Y2_2(i),

 B => Y2_2(i+8),

 S => Y2_3(i));

 end generate adder1;

 ---end3.23

 ------------------ summing 30 bit data results in 31 bit data ------------------- 3.24

 adder2: for i in 0 to 3 generate -- generates 31 bit data

139

 gives_X1_4 : component c_addsub_2

 port map (CLK => MAIN_CLK,

 A => X1_3(i),

 B => X1_3(i+4),

 S => X1_4(i));

 gives_Y1_4 : component c_addsub_2

 port map (CLK => MAIN_CLK,

 A => Y1_3(i),

 B => Y1_3(i+4),

 S => Y1_4(i));

 gives_X2_4 : component c_addsub_2

 port map (CLK => MAIN_CLK,

 A => X2_3(i),

 B => X2_3(i+4),

 S => X2_4(i));

 gives_Y2_4 : component c_addsub_2

 port map (CLK => MAIN_CLK,

 A => Y2_3(i),

 B => Y2_3(i+4),

 S => Y2_4(i));

 end generate adder2;

 ---end3.24

 ------------------ summing 31 bit data results in 32 bit data ------------------- 3.25

 adder3: for i in 0 to 1 generate -- generates 32 bit data

 gives_X1_5 : component c_addsub_3

 port map (CLK => MAIN_CLK,

 A => X1_4(i),

 B => X1_4(i+2),

 S => X1_5(i));

 gives_Y1_5 : component c_addsub_3

 port map (CLK => MAIN_CLK,

 A => Y1_4(i),

 B => Y1_4(i+2),

 S => Y1_5(i));

 gives_X2_5 : component c_addsub_3

 port map (CLK => MAIN_CLK,

 A => X2_4(i),

 B => X2_4(i+2),

 S => X2_5(i));

 gives_Y2_5 : component c_addsub_3

 port map (CLK => MAIN_CLK,

 A => Y2_4(i),

 B => Y2_4(i+2),

 S => Y2_5(i));

 end generate adder3;

 ---end3.25

 ------------------ summing 32 bit data results in 33 bit data ------------------- 3.26

 gives_X1_6_0 : component c_addsub_4 -- generates 33 bit data

 port map (CLK => MAIN_CLK,

 A => X1_5(0),

140

 B => X1_5(1),

 S => X1_6(0));

 gives_Y1_6_0 : component c_addsub_4 -- generates 33 bit data

 port map (CLK => MAIN_CLK,

 A => Y1_5(0),

 B => Y1_5(1),

 S => Y1_6(0));

 ---end3.26

 --------------- Divide to ((half the # of samples)*(LUT amp.)) --------------- 3.27

 -- X1_6(0) is divided to (16*2^15) and saved into 16-bit X1. Divide less to amplify it.

 X1_6(1) <= std_logic_vector(shift_right(signed(X1_6(0)), 12));

 X1 <= X1_6(0)(32) & X1_6(1)(14 downto 0);

 -- Y1_6(0) is divided to (16*2^15) and saved into 16-bit Y1. Divide less to amplify it.

 Y1_6(1) <= std_logic_vector(shift_right(signed(Y1_6(0)), 12));

 Y1 <= Y1_6(0)(32) & Y1_6(1)(14 downto 0);

 gives_X2_6_0 : component c_addsub_4 -- generates 33 bit data

 port map (CLK => MAIN_CLK,

 A => X2_5(0),

 B => X2_5(1),

 S => X2_6(0));

 gives_Y2_6_0 : component c_addsub_4 -- generates 33 bit data

 port map (CLK => MAIN_CLK,

 A => Y2_5(0),

 B => Y2_5(1),

 S => Y2_6(0));

 -- X2_6(0) is divided to (16*2^15) and saved into 16-bit X2. Divide less to amplify it.

 X2_6(1) <= std_logic_vector(shift_right(signed(X2_6(0)), 12));

 X2 <= X2_6(0)(32) & X2_6(1)(14 downto 0);

 -- Y2_6(0) is divided to (16*2^15) and saved into 16-bit Y2. Divide less to amplify it.

 Y2_6(1) <= std_logic_vector(shift_right(signed(Y2_6(0)), 12));

 Y2 <= Y2_6(0)(32) & Y2_6(1)(14 downto 0);

 ---end3.27

 ----------------------------- Average 32 values and report as Ave_Q values -------

 adder5: for i in 0 to 15 generate -- generates 34 bit data

 gives_Ave2_X1 : component c_addsub_5

 port map (CLK => MAIN_CLK,

 A => Ave1_X1(i),

 B => Ave1_X1(i+16),

 S => Ave2_X1(i));

 gives_Ave2_Y1 : component c_addsub_5

 port map (CLK => MAIN_CLK,

 A => Ave1_Y1(i),

 B => Ave1_Y1(i+16),

 S => Ave2_Y1(i));

 gives_Ave2_X2 : component c_addsub_5

 port map (CLK => MAIN_CLK,

 A => Ave1_X2(i),

 B => Ave1_X2(i+16),

 S => Ave2_X2(i));

141

 gives_Ave2_Y2 : component c_addsub_5

 port map (CLK => MAIN_CLK,

 A => Ave1_Y2(i),

 B => Ave1_Y2(i+16),

 S => Ave2_Y2(i));

 end generate adder5;

 ---end3.28

 adder6: for i in 0 to 7 generate -- generates 35 bit data

 gives_Ave3_X1 : component c_addsub_6

 port map (CLK => MAIN_CLK,

 A => Ave2_X1(i),

 B => Ave2_X1(i+8),

 S => Ave3_X1(i));

 gives_Ave3_Y1 : component c_addsub_6

 port map (CLK => MAIN_CLK,

 A => Ave2_Y1(i),

 B => Ave2_Y1(i+8),

 S => Ave3_Y1(i));

 gives_Ave3_X2 : component c_addsub_6

 port map (CLK => MAIN_CLK,

 A => Ave2_X2(i),

 B => Ave2_X2(i+8),

 S => Ave3_X2(i));

 gives_Ave3_Y2 : component c_addsub_6

 port map (CLK => MAIN_CLK,

 A => Ave2_Y2(i),

 B => Ave2_Y2(i+8),

 S => Ave3_Y2(i));

 end generate adder6;

 ---end3.29

 adder7: for i in 0 to 3 generate -- generates 36 bit data

 gives_Ave4_X1 : component c_addsub_7

 port map (CLK => MAIN_CLK,

 A => Ave3_X1(i),

 B => Ave3_X1(i+4),

 S => Ave4_X1(i));

 gives_Ave4_Y1 : component c_addsub_7

 port map (CLK => MAIN_CLK,

 A => Ave3_Y1(i),

 B => Ave3_Y1(i+4),

 S => Ave4_Y1(i));

 gives_Ave4_X2 : component c_addsub_7

 port map (CLK => MAIN_CLK,

 A => Ave3_X2(i),

 B => Ave3_X2(i+4),

 S => Ave4_X2(i));

 gives_Ave4_Y2 : component c_addsub_7

 port map (CLK => MAIN_CLK,

 A => Ave3_Y2(i),

 B => Ave3_Y2(i+4),

142

 S => Ave4_Y2(i));

 end generate adder7;

 ---end3.30

 adder8: for i in 0 to 1 generate -- generates 37 bit data

 gives_Ave5_X1 : component c_addsub_8

 port map (CLK => MAIN_CLK,

 A => Ave4_X1(i),

 B => Ave4_X1(i+2),

 S => Ave5_X1(i));

 gives_Ave5_Y1 : component c_addsub_8

 port map (CLK => MAIN_CLK,

 A => Ave4_Y1(i),

 B => Ave4_Y1(i+2),

 S => Ave5_Y1(i));

 gives_Ave5_X2 : component c_addsub_8

 port map (CLK => MAIN_CLK,

 A => Ave4_X2(i),

 B => Ave4_X2(i+2),

 S => Ave5_X2(i));

 gives_Ave5_Y2 : component c_addsub_8

 port map (CLK => MAIN_CLK,

 A => Ave4_Y2(i),

 B => Ave4_Y2(i+2),

 S => Ave5_Y2(i));

 end generate adder8;

 ---end3.31

 gives_Ave6_X1_0 : component c_addsub_9 -- generates 38 bit data

 port map (CLK => MAIN_CLK,

 A => Ave5_X1(0),

 B => Ave5_X1(1),

 S => Ave6_X1(0));

 gives_Ave6_Y1_0 : component c_addsub_9 -- generates 38 bit data

 port map (CLK => MAIN_CLK,

 A => Ave5_Y1(0),

 B => Ave5_Y1(1),

 S => Ave6_Y1(0));

 gives_Ave6_X2_0 : component c_addsub_9 -- generates 38 bit data

 port map (CLK => MAIN_CLK,

A => Ave5_X2(0),

 B => Ave5_X2(1),

 S => Ave6_X2(0));

 gives_Ave6_Y2_0 : component c_addsub_9 -- generates 38 bit data

 port map (CLK => MAIN_CLK,

 A => Ave5_Y2(0),

 B => Ave5_Y2(1),

 S => Ave6_Y2(0));

 ---end3.32

 ---- Divide to ((half the # of samples)*(# of averaging)*(LUT amp.)) ----- 3.33

 -- Ave6_X1(0) is divided to 2^24 and saved into Ave_X1. Divide less to amplify it.

 Ave6_X1(1) <= std_logic_vector(shift_right(signed(Ave6_X1(0)), 17));

143

 Ave_X11 <= Ave6_X1(0)(37) & Ave6_X1(1)(14 downto 0);

 givesAve_X1: component c_addsub_10

 port map(A => Ave_X11,

 CLK => MAIN_CLK,

 S => Ave_X1);

 -- Ave6_Y1(0) is divided to 2^24 and saved into Ave_Y1. Divide less to amplify it.

 Ave6_Y1(1) <= std_logic_vector(shift_right(signed(Ave6_Y1(0)), 17));

 Ave_Y11 <= Ave6_Y1(0)(37) & Ave6_Y1(1)(14 downto 0);

 givesAve_Y1: component c_addsub_10

 port map(A => Ave_Y11,

 CLK => MAIN_CLK,

 S => Ave_Y1);

 Ave_XY1 <= Ave_X1(15 downto 0) & Ave_Y1(15 downto 0);

 -- Ave6_X2(0) is divided to 2^24 and saved into Ave_X2. Divide less to amplify it.

 Ave6_X2(1) <= std_logic_vector(shift_right(signed(Ave6_X2(0)), 17));

 Ave_X2 <= Ave6_X2(0)(37) & Ave6_X2(1)(14 downto 0);

 -- Ave6_Y2(0) is divided to 2^24 and saved into Ave_Y2. Divide less to amplify it.

 Ave6_Y2(1) <= std_logic_vector(shift_right(signed(Ave6_Y2(0)), 17));

 Ave_Y2 <= Ave6_Y2(0)(37) & Ave6_Y2(1)(14 downto 0);

 Ave_XY2 <= Ave_X2(15 downto 0) & Ave_Y2(15 downto 0);

 ---end3.33

 gives_Ave_PHI1 :component cordic_1

 port map (aclk => MAIN_CLK,

 s_axis_cartesian_tvalid => D_In_Ready,

 s_axis_cartesian_tdata => Ave_XY1,

 m_axis_dout_tvalid => open,

 m_axis_dout_tdata => Ave_PHI1);

 gives_Ave_PHI2 :component cordic_1

 port map (aclk => MAIN_CLK,

 s_axis_cartesian_tvalid => D_In_Ready,

 s_axis_cartesian_tdata => Ave_XY2,

 m_axis_dout_tvalid => open,

 m_axis_dout_tdata => Ave_PHI2);

 ---end3.34

 gives_sqr_Ave_X1 : component mult_gen_1

 port map (CLK => MAIN_CLK,

 A => Ave_X1,

 B => Ave_X1,

 P => sqr_Ave_X1);

 gives_sqr_Ave_Y1 : component mult_gen_1

 port map (CLK => MAIN_CLK,

 A => Ave_Y1,

 B => Ave_Y1,

 P => sqr_Ave_Y1);

 gives_sqr_Ave_X2 : component mult_gen_1

 port map (CLK => MAIN_CLK,

 A => Ave_X2,

 B => Ave_X2,

 P => sqr_Ave_X2);

 gives_sqr_Ave_Y2 : component mult_gen_1

 port map (CLK => MAIN_CLK,

144

 A => Ave_Y2,

 B => Ave_Y2,

 P => sqr_Ave_Y2);

 ---end3.35

 -- calculate sqr_Ave_R1= sqr_Ave_X1+sqr_Ave_Y1

 gives_sqr_Ave_R1 : component c_addsub_4

 port map (CLK => MAIN_CLK,

 A => sqr_Ave_X1,

 B => sqr_Ave_Y1,

 S => sqr_Ave_R1);

 sqr_Ave_R1_2 <= "0000000" & sqr_Ave_R1(32 downto 0);

 --

 -- calculate sqr_Ave_R2= sqr_Ave_X2+sqr_Ave_Y2

 gives_sqr_Ave_R2 : component c_addsub_4

 port map (CLK => MAIN_CLK,

 A => sqr_Ave_X2,

 B => sqr_Ave_Y2,

 S => sqr_Ave_R2);

 sqr_Ave_R2_2 <= "0000000" & sqr_Ave_R2(32 downto 0);

 ---end3.36

 -- calculate Ave_R1= sqrt(sqr_Ave_R1)

 gives_Ave_R1 :component cordic_0

 port map (aclk => MAIN_CLK,

 s_axis_cartesian_tvalid => D_In_Ready,

 s_axis_cartesian_tdata => sqr_Ave_R1_2,

 m_axis_dout_tvalid => D_out_Ready,

 m_axis_dout_tdata => Ave_R1);

 --

 -- calculate Ave_R2= sqrt(sqr_Ave_R2)

 gives_Ave_R2 :component cordic_0

 port map (aclk => MAIN_CLK,

 s_axis_cartesian_tvalid => D_In_Ready,

 s_axis_cartesian_tdata => sqr_Ave_R2_2,

 m_axis_dout_tvalid => open,

 m_axis_dout_tdata => Ave_R2);

 ---end3.37

 -- take 10 MHz external clock and generate sync 100, 200, and 10 (MHz)

 Clock : clk_wiz_0

 port map (clk_out1 => CLK_100MHz,

 clk_out2 => MAIN_CLK,

 clk_out3 => Photo_CLK,

 reset => CLK_Reset,

 locked => MMCM_Locked,

 clk_in1 => CLK);

 ---end3.38

 -- show results in 7 segment LEDs

 segment1: DigitToSeg

 port map(in1 => dig0,

 in2 => dig1,

 in3 => dig2,

 in4 => dig3,

 in5 => dig4,

 in6 => dig5,

 in7 => dig6,

 in8 => "0000",

 mclk => MAIN_CLK,

145

 an => an,

 dp => open,

 seg => seg);

 dp <= '1';

 ---end3.39

 -- Read digital inputs

 process(MAIN_CLK, MMCM_Locked)

 begin

 if rising_edge(MAIN_CLK) then

 if (CLK_Reset = '1') then

 counter1 <= 0;

 counter2 <= 0;

 counter3 <= 0;

 end if;

 counter1 <= counter1 + 1;

 counter2 <= counter2 + 1;

 counter3 <= counter3 + 1;

 -- generate 10 MHz clock from 200 MHz MAIN_CLK

 if (counter1 = 82) then

 counter1 <= 63;

 probe_0(11 downto 0) <= D(11 downto 0);

 data_1(0)(11 downto 0) <= D(11 downto 0);

 Ave1_X1(0) <= X1_6(0);

 Ave1_Y1(0) <= Y1_6(0);

 Ave1_X2(0) <= X2_6(0);

 Ave1_Y2(0) <= Y2_6(0);

 C1(0) <= C1(31);

 S1(0) <= S1(31);

 C2(0) <= C2(31);

 S2(0) <= S2(31);

 My_loop0: for i in 31 downto 1 loop

 data_1(i) <= data_1(i-1);

 C1(i) <= C1(i-1);

 S1(i) <= S1(i-1);

 Ave1_X1(i) <= Ave1_X1(i-1);

 Ave1_Y1(i) <= Ave1_Y1(i-1);

 C2(i) <= C2(i-1);

 S2(i) <= S2(i-1);

 Ave1_X2(i) <= Ave1_X2(i-1);

 Ave1_Y2(i) <= Ave1_Y2(i-1);

 end loop My_loop0;

 end if;

 if (counter2 = 113) then

 counter2 <= 94;

 D_In_Ready <= '1';

 probe_1 <= "1";

 else

 D_In_Ready <= '0';

 probe_1 <= "0";

 end if;

 if (D_out_Ready = '1') then

 probe_2 <= "1";

 else

146

 probe_2 <= "0";

 end if;

 -- Send data to LabVIEW @ 5 MHz speed based on a 200 MHz clock

 if (counter3 > 127 and counter3 < 138) then

 Dec_CLK <= '1';

 D_Out <= Ave_R1 (15 downto 0);

 probe_4 <= Ave_R1 (15 downto 0);

 probe_3 <= "1";

 elsif (counter3 > 137 and counter2 < 148) then

 Dec_CLK <= '0';

 D_Out <= Ave_R2 (15 downto 0);

 probe_4 <= Ave_R2 (15 downto 0);

 probe_3 <= "0";

 if (counter3 = 147) then

 counter3 <= 128;

 end if;

 end if;

 end if;

 end process;

 ---end3.40

 -- binary to decimal conversion

 reset_bcd <= NOT MMCM_Locked;

 gives_digis : component bin2bcd

 port map (mclk => MAIN_CLK,

 reset => reset_bcd,

 binary_in => Bin_Data,

 bcd0 => dig0 ,

 bcd1 => dig1 ,

 bcd2 => dig2 ,

 bcd3 => dig3 ,

 bcd4 => dig4 ,

 bcd5 => dig5 ,

 bcd6 => dig6);

 process(MAIN_CLK)

 begin

 if rising_edge(MAIN_CLK) then --Show data_1(0) in LEDs and 7 Segments

 count <= count + 1;

 if (count = 999) then

 count <= 0;

 count2 <= count2+1;

 if(count2 = 4899)then

 count2 <= 0;

 Bin_Data <= data_1(0)(11) & "0000" & data_1(0)(10 downto 0);

 LED <= data_1(0)(11) & "0000" & data_1(0)(10 downto 0);

 end if;

 end if;

 end if;

 end process;

 ---end3-42

 -- ILA core for probing the processes

 ILA: ila_0

 port map (clk => MAIN_CLK,

 probe0 => probe_0,

 probe1 => probe_1,

147

 probe2 => probe_2,

 probe3 => probe_3,

 probe4 => probe_4);

 ---end3-43

end Behavior;

---end3

