
PARAMETRIC FORM MAKING WITH MODULAR UNITS

by

Rachel Lutes

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Architecture and Information Technology

Charlotte

2020

Approved by:

Eric Sauda

David Thaddeus

David Wilson

Jefferson Ellinger



ii

c©2020
Rachel Lutes

ALL RIGHTS RESERVED



iii

ABSTRACT

RACHEL LUTES. Parametric form making with modular units. (Under the
direction of ERIC SAUDA)

Modular units are a bedrock of modern construction. Finding ways to design new

forms and be creative with modular units is a challenge for architects and designers.

Parametric design allows designers to create a wide range of configurations, but tends

to result in designs that require lots of different parts, rather than using modular units

that are common in construction. Parametric design requires time and experimen-

tation with coding and visual coding systems. This thesis looks at how to create an

intuitive user interface to allow designers to easily create complex designs with com-

mon modular units, using bricks as a common and simple modular unit. Bricks also

have an extensive history of use to create creative forms throughout history, making

them a good choice for this project.



iv

DEDICATION

To my parents, for always supporting my academic goals even when they have no

clue what I am doing. To my sister, for keeping me sane and productive during the

last stretch of finishing this thesis during the Covid-19 pandemic.



v

ACKNOWLEDGEMENTS

I would like to acknowledge Eric Sauda’s invaluable advising and constant assistance,

as well as David Thaddeus, David Wilson, and Jefferson Ellinger who lent me their

experience and knowledge. Without them, this thesis would not have existed.



vi

TABLE OF CONTENTS

LIST OF FIGURES viii

CHAPTER 1: INTRODUCTION 2

CHAPTER 2: TERMINOLOGY 3

2.1. Brick Dimensions 3

2.2. Rotation 4

2.3. Translation 4

2.4. Removal 4

2.5. Wall Form 5

2.6. Brick Gap 6

2.7. Other Terms 6

CHAPTER 3: MODULAR FORM MAKING LITERATURE REVIEW 7

CHAPTER 4: METHODOLOGY 13

CHAPTER 5: FUNCTIONALITY 15

5.1. Wall Surface Creation 15

5.2. Brick Wall Creation 15

5.3. Wall Analysis 17

5.4. Rotation 18

5.5. Removal 19

5.6. Translation 20

5.7. Individual Support Analysis 21

5.8. Intersection Check 22



vii

5.9. Analysis- Kangaroo 22

5.10.Analysis- Karamba3D 22

5.11.Analysis- PhysX.gh 23

5.12.Display 23

5.13.Bake Rhino Geometry 25

5.14.Functional User Interface - Human UI 25

CHAPTER 6: USER TESTING 30

CHAPTER 7: FUTURE PLANS 33

CHAPTER 8: CONCLUSIONS 35

REFERENCES 36

APPENDIX A: USER INTERFACE FOR USER TESTING 38

APPENDIX B: USER STUDY RESPONSES 41

APPENDIX C: GRASSHOPPER SCRIPTS 44

APPENDIX D: IDEAL UI DESIGN 49



viii

LIST OF FIGURES

FIGURE 2.1: Uniform and varied rotation 4

FIGURE 2.2: Translated bricks 5

FIGURE 2.3: Removed bricks 5

FIGURE 2.4: Wall surface and bricks following the surface 5

FIGURE 2.5: Brick gap, horizontal spacing 6

FIGURE 3.1: The simple wall 7

FIGURE 3.2: BrickDesign plugin by ROB Technologies 8

FIGURE 3.3: Pattern created on a simple brick wall 9

FIGURE 3.4: Unexpected brick structures 10

FIGURE 3.5: Amsterdam school of architecture 11

FIGURE 5.1: Data structure 16

FIGURE 5.2: Wall centroid analysis 17

FIGURE 5.3: Rotation 18

FIGURE 5.4: Removal 19

FIGURE 5.5: Translation 20

FIGURE 5.6: Support Variation 21

FIGURE 5.7: PhysX.gh gravity simulation 23

FIGURE 5.8: Bricks displayed as transparent due to overlap 24

FIGURE 5.9: Wall and brick user interface controls 26

FIGURE 5.10: User interface intersection alert 27

FIGURE 5.11: User interface transformation selections 28



ix

FIGURE 5.12: User interface analysis controls and bake to Rhino buttons 29

FIGURE 6.1: The example wall provided for user testing 30

FIGURE 7.1: Serpentine walls on the campus of UVA 34

FIGURE A.1: User testing UI - wall and brick controls 38

FIGURE A.2: User testing UI - pattern selection 39

FIGURE A.3: User testing UI - individual selection 40

FIGURE A.4: User testing UI - display and analysis 40

FIGURE C.1: Thumbnail of the Grasshopper code for the UI 44

FIGURE C.2: Detail 1 - the Grasshopper code for the UI 45

FIGURE C.3: Detail 2 - the Grasshopper code for the UI 46

FIGURE C.4: Detail 3 - the Grasshopper code for the UI 47

FIGURE C.5: The base Grasshopper script with no UI or transformation 48

FIGURE C.6: The base Grasshopper script with no UI 48

FIGURE D.1: Ideal script 49

FIGURE D.2: Ideal components 50



1

PREFACE

I first became interested in complex brick forms during an undergraduate architecture

studio. The project was a library in a neighborhood of Charlotte, NC that had lots of

brick buildings. I wanted to create a building that blended in with the neighborhood,

but had plenty of natural light. However, since it was a library, I knew that I needed to

protect the books from direct sunlight as much as possible. This lead me to exploring

brick screen patterns. Since I had just learned Grasshopper for the first time, I dove

into the challenge of how to parametrically stack and manipulate bricks. At the time

I did not have the knowledge or time to do what I wanted, so I set the idea aside

until grad school and this thesis.



CHAPTER 1: INTRODUCTION

This project is an important tool to assist designers to create and analyze a wide

range of wall structures built out of modular units without coding or determining the

logic for each different design or idea.

This project has two main research questions which are listed below.

1. Can I create an open source, simple to use, well featured, and flexible program

to assist architectural designers in the creation and understanding of complex

brick structures?

2. How can I use parametric computation to create a graphical user interface (GUI)

to allow architectural designers without programming knowledge to design and

structurally analyze a complex geometric form made up of individual modules

such as a brick wall?

The first question focuses on the requirements- the functionality and features

needed to create a complex parametric brick wall with a wide range of potential

forms.

The second question focuses on the design and effectiveness of a user interface

(UI) to allow users to interact easily with the functional program created in the first

question.

Together, these two questions allow this project to enable the user to easily create

a variety of forms built with individual modules and analyze the forms for structural

stability at different levels.



CHAPTER 2: TERMINOLOGY

Modular units can be used to create complex forms and structures if the designer

has the knowledge and experience to ensure that the structure is stable. A tool that

allows a designer to manipulate set variables while ensuring that the resultant struc-

ture is stable would allow designers to easily design complex forms without needing

to become experts in the structural and geometrical rules of the module. Brick is an

example of this sort of module that has simple enough geometry and construction

rules to make it a good starting point for such a tool.

This project aims to create an interface to allow architects to design custom mod-

ular structures without needing to learn to code.

The main goal of the interface is to allow the user to create complex custom struc-

tures using the modular unit of a standard brick. The basic transformations, manip-

ulations, and variables that will be included in the program to allow for design and

variation are brick dimensions, rotation, translation, removal, wall form, and brick

gap.

2.1 Brick Dimensions

The dimensions of the brick itself. There are a variety of different brick sizes

commercially available, and the most common varies depending on the location and

application. To make the most flexible program, the user will have the option to

choose from a set of preset standard sizes, or will be able to change the dimensions

to suit their design goals.



4

2.2 Rotation

The rotation around a vertical axis through the centroid of each individual brick

(Figure 2.1). This creates gaps in the wall without removing bricks. These gaps

can be utilized to create a shade screen with brick. Each brick can be rotated the

same as all the others to create a uniform pattern, or individual bricks or rows can

be rotated separately to create a design. The downside of this rotation is that the

overlap connecting the brick to the others around it is decreased which affects the

structural stability of the wall as a whole.

Figure 2.1: Uniform and varied rotation

2.3 Translation

The movement of a brick forward and backward in the thickness of the wall (Figure

2.2). This creates a subtle pattern with the shadows created by the light hitting

the wall. The effects of the decreased surface area connecting the brick to others

is minimal with translations, though should still be considered, as the larger the

translation, the more the effects on stability.

2.4 Removal

The strategic removal of specific bricks (Figure 2.3). This creates a lighter, more

transparent wall at the cost of the structural stability of each individual brick and

the whole wall. This can be used to create a more transparent structure than can be

achieved with rotations, but the bricks to be removed must be carefully chosen and

located to ensure that all the other bricks remain properly supported.



5

Figure 2.2: Translated bricks

Figure 2.3: Removed bricks

2.5 Wall Form

The base form that the wall will attempt to create (Figure 2.4). This is basically

the surface of the wall face. The examples up to this point have all used a basic

vertical rectangular form. Figure 2.4 is an example of how a curved form like the one

shown would be followed by the bricks being used to create it. More complex and

curved forms can add structural stability to the overall wall.

Figure 2.4: Wall surface and bricks following the surface



6

2.6 Brick Gap

How much space is left between bricks (Figure 2.5). Traditionally, this space would

be filled with mortar, though in this project the gap will be left empty as all structures

will be gravity/dry fit. This determines the horizontal spacing of the bricks along the

wall and can be used to create a shade screen or a lighter structure. The surface area

between bricks is decreased, but the loss is minimal.

Figure 2.5: Brick gap, horizontal spacing

2.7 Other Terms

Usually in working with bricks, each horizontal set of bricks is called a course. In

this project, the term row will be used instead, as a reminder that this project is

using brick as an example of a modular unit, and thus that there is the possibility

that the concepts discussed could be applied to other modular building units.



CHAPTER 3: MODULAR FORM MAKING LITERATURE REVIEW

Regular modules are commonly found in architecture and construction. A variety

of work has been done on the use of modular construction units and the ways in which

they can be utilized. Most of the existing work focuses on the use of robotics to create

precise and complex forms [1] [2] [3]. However, the physical construction process is

not what this project is focused on. Most robotic construction work uses a simple and

custom-made computer model of the units as input into the robot. However, these

custom models require a lot of work to create and a human to carefully consider if

the designed structure is self-supporting or not.

The parametric wall is a simple coding problem that has been tackled many times

[1] [4] [5] [6] [7]. This consists of making a script that takes the base number of bricks

per row and the number of rows and places the bricks, creating something like what

is seen in Figure 3.1.

Figure 3.1: The simple wall

The BrickDesign Rhino plugin by ROB Technologies [8] allows the user to create

a standard wall and control the variables of Bond type, Wall form, Mortar thickness,

and Brick dimensions. The plugin does not allow for the rotation, translation, or

removal of individual bricks. Additionally, the plugin is not user friendly and requires

a fair amount of effort to figure out exactly what each tool in the plugin does and how



8

Figure 3.2: BrickDesign plugin by ROB Technologies [8]

to control the form of the structure. The plugin is formatted as a set of several Rhino

toolbars with a variety of tools with names that are not clear as to their function

(Figure 3.2). The use of this plugin even by someone familiar with the complexity

of brick stacking requires a lot of trial and error and/or reading the extensive user’s

guide to figure out how to create even the most standard of walls. Many of the options

to modify the wall are buried in a deep collection of object information menus and

are difficult to find. With such a complex problem with so many variables, it is

important to create an interface that assumes that the user is unfamiliar with all the

terminology used, as well as the process of creating such a complex structure, and

thus the interface should group the functionality into useful sections.

The simplest form of brick wall design is the use of rotation to create images on a

standard wall. In the paper, Integrated Generative Technique for Interactive Design

of Brickworks [7], Afsari utilizes image analysis to rotate each brick around its central

vertical axis to create patterns and images on a simple brick wall (Figure 3.3). Afsari

lays out the process in Grasshopper to create a parametric wall with customizable

bricks and other variables, as well as the process for analyzing images and mapping



9

Figure 3.3: Pattern created on a simple brick wall by Afsari [7]

them onto the wall. This is one of the only papers that actually specifies the process

that was done in such a way that a reader could have a hope of replicating the work,

however the reader would need to utilize knowledge of coding to do so, making it

inaccessible to the average designer. For its simplicity it lays the groundwork for

creating more complex parametric models of brick walls, however it restrains the

designer to simply creating an image on a flat wall.

Creating more complex forms of structures has been done in (Re)Thinking the

Brick: Digital Tectonic Masonry Systems [4]. In this work Imbern looks at how

bricks as a standard unit can be warped in simple ways during the manufacturing

stage to create new and unexpected structures (Figure 3.4). This addresses the use of

Wall form, Rotation, and Translation; however, it does so by modifying and warping

the standard units, which takes away from the advantages of using a modular unit

and is not easily replicable.

Wall form is the base of creating a unique structure with bricks. Parametric consid-

eration of the wall form with guidelines is shown in Robotic Fabrication of Acoustic

Brick Walls [2] which describes the process of utilizing a robotic arm to construct an

acoustic wall system that utilizes geometry and principles of sound diffusion to create

visually appealing and effective modular walls to diffuse sound. The paper shows



10

Figure 3.4: Unexpected brick structures by Imbern [4]

how the rules of acoustic diffusion can be applied to create a complex structure and

then the program can utilize the structure and the base units to create a wall that

structurally conforms to the needs of the unit, while also mimicking the imported

form as closely as possible.

Wall form has also been addressed in the Amsterdam School of Architecture, which

historically utilized bricks to create complex forms [9] [10] [11]. These works of archi-

tecture utilize rotation, translation, bond types, wall form, and removal. The designs

are all complex and unique and create visual appeal (Figure 3.5). However, the cre-

ation of such designs requires a thorough understanding of the physics of bricks and

their limitations, which is often not something that designers have or can easily learn

for the sake of a design. These sorts of designs are what this project aims to make

simpler to create and design.

Translation of individual bricks can create patterns and textures, especially when

combined with rotation of bricks [7]. However, this project takes the concept even



11

Figure 3.5: Amsterdam school of architecture [9] - See the complex curves and arched
forms created in this brick structure

further by combining these factors with complex wall forms, not just applying them

to standard straight walls. Additionally, individual bricks can be removed from the

system, leaving openings that add to the complexity of the structure, but leaving

the structure susceptible to the perils of gravity. This project will take gravity and

physics into account to analyze the structural stability of the construct and allow the

user to remove individual units and customize the wall as they wish through a clear

and simple interface.

There are papers and projects that address the different parts of creating a para-

metric construction, but there is not a publicly available, intuitive, and functional

program that addresses all the transformations and manipulations that this project

addresses with the ability to expand upon the functionality.

The concept of a modular unit is found widely throughout the building and con-

struction industry, not just with bricks. A more general program with flexibility to



12

be applied to a variety of materials and situations beyond its creators initial intent

would allow designers to utilize the ideas and techniques of bricks with other building

materials. This flexibility in the size or proportions of modules is not found in any of

the examples mentioned here. This project uses brick as a starting point, but is built

in such a way as to allow the user to substitute any type of rectangular prism as the

material, with the ability to completely control the dimensions of each unit.



CHAPTER 4: METHODOLOGY

The goal of this project is to create a plugin for Grasshopper for Rhino. The project

starts with the base wall components, then moves to the basic structural analysis,

then geometric translations, before finally doing the overall structural analysis.

The plugin provides components to input brick dimensions and spacing and the

base geometry of the desired wall as a series of polyline profiles to loft into a surface.

After the base wall, there are two categories of components in the plugin. The first

is geometric translations, and the second is structural analysis.

For the geometric translations, components allow the user to rotate, translate, or

remove bricks in a strategic manner. The user interface allows the application of these

geometric translations to selected bricks of the wall or to the whole wall in a pattern

for more customizable control.

For structural analysis, there are three separate analysis types. First, the wall

surface is analyzed to determine if it is likely to stand upright. Next, each individual

brick is analyzed in relation to the row below to ensure that it is properly supported.

Lastly, the whole wall is analyzed to find out the stability of the composite object.

For the wall surface analysis, the centroid of the surface is found and compared to

the footprint of the base row of bricks. If the centroid is over the base, it is assumed

that the structure will be stable. This is not a comprehensive or reliable method of

analysis, in that it only looks at the centroid of the wall surface, not the center of

mass of the final brick structure.

For the individual brick analysis the plugin implements an algorithm component to

check that each brick unit is supported by the row below it, highlighting problematic

bricks. This allows the user to check that a translation or movement has not led to



14

any single brick being inadequately supported. This method is a secondary check of

the bricks, and could be useful in determining where issues would occur while stacking

the bricks, but is not indicative of the stability of the structure as a whole.

For the final analysis, the plugin utilizes a physics engine for Grasshopper, to

analyze the structure in relation to gravity. This allows the user to check the wall

against gravity without having to code the whole of physics. This expedites the

structural analysis programming and allow greater accuracy than the user can create

themselves. Depending on the accuracy of the physics engine, this method could

prove to be very reliable in determining the stability of the final brick structure.

Once basic functionality was completed, user testing was conducted with an early

version of the user interface (Appendix A). Feedback from this testing was used to

complete the final version of the functional interface (see Appendix B).



CHAPTER 5: FUNCTIONALITY

The base functionality of the plugin is a series of Grasshopper components which

can be connected together to form a complete script.

5.1 Wall Surface Creation

There are 2 similar methods/components for creating the wall surface. The first is

a simple 2 curve lofted wall. This has 4 inputs-

• The top curve of the wall

• The bottom curve of the wall

• Brick height

• The desired number of rows of bricks

The component takes these inputs and lofts a surface between the two curves with a

height equal to the number of rows of bricks multiplied by the brick height.

The second option is similar to the first, but instead of 2 single curve inputs, there

is a single list input of multiple curves. These curves are then spaced equally along

the potential height of the wall, again using the brick height and number of rows.

5.2 Brick Wall Creation

The primary component is for wall creation. This component takes 6 inputs-

• The surface of the wall

• Brick length

• Brick width



16

• Brick height

• The horizontal gap between bricks

• The desired number of rows of bricks

The wall surface is first divided vertically at the level of each row of bricks. The

contours of the wall at each row are then sorted into two alternating lists to create a

list of even rows and a list of odd rows. The even rows are divided up into sections of

the length of the brick plus the gap between bricks, and the points and corresponding

vectors are stored in a tree structure. The same is done with the odd rows, but with

the dimension divided in half and every other point removed to offset the rows of

bricks. Then the data trees of points and tangents are interwoven to create a master

data tree (Figure 5.1).

• Row 1

– Brick 1

– Brick 2

• Row 2

– Brick 1

– Brick 2

Figure 5.1: Data structure

Next, the tangent vectors and points are combined to create a plane for each

brick to be placed upon and the bricks are generated with the provided plane at the

geometrical center of the brick. The component then analyzes the data tree and the

bricks and provides a variety of information as outputs as well as the final data tree

that represents the wall.



17

5.3 Wall Analysis

The wall analysis is an initial analysis step to check the potential stability of the

wall. It takes the surface and the brick geometry created and checks if the centroid

of the surface is over the base of the bottom row of bricks. This allows the user to

ensure the wall does not lean too far in any direction (Figure 5.2). This is not a

comprehensive or 100% accurate analysis, it just alerts the user if the structure is

likely to be unstable.

Figure 5.2: Wall centroid analysis using the surface of the wall, the centroid, and
bases of the bottom row of bricks.



18

5.4 Rotation

The rotation component takes four inputs-

• The current Brick Geometry in a data tree

• The row of the brick to rotate

• The position of the brick in its row

• The degree of rotation

These inputs are then put into a C# script component that extracts the specified

brick and rotates it around its centroid before placing the modified geometry back

into the data tree and returning the now modified brick structure (Figure 5.3).

Figure 5.3: Rotation



19

5.5 Removal

The removal component takes three inputs-

• The current Brick Geometry in a data tree

• The row of the brick to remove

• The position of the brick in its row

A C# script then replaces the specified brick with a null value. This maintains

the structure of the data. The component then returns the modified brick structure

(Figure 5.4).

Figure 5.4: Removal



20

5.6 Translation

The translation component takes four inputs-

• The current Brick Geometry in a data tree

• The row of the brick to translate

• The position of the brick in its row

• The distance of translation

These inputs are fed into a C# script that extracts the specified brick, translates it

forward or backward from its centroid the distance specified, with positive numbers

translating forward and negative numbers translating backward. Then the modi-

fied geometry is placed back into the data tree and the component returns the now

modified brick structure (Figure 5.5).

Figure 5.5: Translation



21

5.7 Individual Support Analysis

The next level of analysis is a check of each brick against the bricks below it to

ensure that it is supported. This is done by selecting the two bricks below each brick

and checking the area of the brick which overlaps the ones below. This overlapping

area is then used to calculate the percent of the brick supported and compared to a

percent set by the user to determine if the brick is supported or not. The component

then returns a data tree of 0 and 1, with 0 indicating the brick is not supported

and 1 indicating it is supported. The values of the data tree correspond to the brick

geometry stored in with the same structure. This method of analysis is simple and

can be easily scaled to handle varied size walls. While it can tell the user if each

individual brick is supported a certain amount, this does not take into account where

on the brick the support is located. A brick may only be supported by 20% of its

surface, but if that 20% is placed with 10% on each of its two ends, the brick will

be supported, whereas if that 20% is all at one end, cantilevering the brick, gravity

will cause the brick to fall (Figure 5.6). Because of this, the initial percent supported

analysis cannot be the final say in the stability of each brick, let alone the stability

of the structure of a whole.

Figure 5.6: Support Variation- Two bricks supported by the same amount, but whose
stability is clearly different.



22

5.8 Intersection Check

The intersection check component checks if any of the bricks are intersecting each

other and outputs a data tree of true and false, with false indicating a brick that does

not intersect another, and true indicating a brick that does intersect others. This

component does not change the position of any overlapping bricks, it only alerts the

designer to the issue.

5.9 Analysis- Kangaroo

The initial plan for further structural analysis was to use Kangaroo, a physics

engine built for Grasshopper and Rhino [12]. Kangaroo applies materiality and forces

to structures with specified support points. Given an individual pair of bricks, it is

simple enough to apply a gravity force and test if a brick will fall when another brick

is used as its support. However, with a large group of bricks all supporting each

other, it becomes much more challenging to test the structure as each row of bricks

must be tested then added to the supporting structure. This method is not easily

scalable to varied numbers of rows. With simple spheres, a many to many test can be

performed with Kangaroo’s built in components, but there is no way to easily modify

the component to take rectangular prisms instead.

5.10 Analysis- Karamba3D

The next method of physics analysis considered was Karamba3D [13]. Karamba

is a Grasshopper plugin for structural analysis. Karamba’s main use is for beams

and other linear load structures such as trusses, but it also has some capability for

analyzing shell structures. After some extensive trial and error, it seems that Karamba

cannot analyze a brick wall in the way that is needed for this project, as it lacks the

ability to analyze many discrete objects.



23

5.11 Analysis- PhysX.gh

The final method of physics analysis was PhysX.gh, a rigid body physics engine

for Grasshopper that uses NVIDIA PhysX and C# [14]. With PhysX.gh it is simple

to create each brick as an individual object and create a fixed base plane underneath

the wall to simulate the effect that gravity has on the inputted structure (Figure 5.7).

PhysX.gh has not been officially validated. Its intended use is for game develop-

ment, and thus it does not have a strong need to be 100% accurate. From basic use,

it seems to be reliable and accurate. The results are identical when run repeatedly

with the same input, and all the results are consistent with basic expectations.

Figure 5.7: PhysX.gh gravity simulation

5.12 Display

The display component allows the user to control the display settings of the bricks,

as well as providing some basic information.

The geometry is input as a data tree, from a variety of potential sources.



24

• The brick wall creation component (Section 5.2)

• The rotation component (Section 5.4)

• The transformation component (Section 5.6)

• The removal component (Section 5.5)

• The physics engine (Section 5.11)

The component then takes an input from the various analysis components and sets

the display properties of each brick to indicate the status of the brick. For color,

the component takes an input from the individual support analysis and uses this to

choose colors to display the bricks. 1 will result in a green brick, 0.5 will result in

a grey brick (for when this analysis is not displayed), and 0 results in a red brick.

For transparency, the component takes an input from the intersection analysis and if

there is a value of true in the data, the corresponding brick will appear transparent

(Figure 5.8).

Figure 5.8: Bricks displayed as transparent due to overlap



25

5.13 Bake Rhino Geometry

The next component generates a random number using the current time as a seed

and uses this number to bake the geometry of the wall to Rhino as a group. This

can be done with either the base geometry color, or using the colors assigned by an

analysis, similarly to the display component. This will allow users to save structures

to compare or utilize within Rhino.

5.14 Functional User Interface - Human UI

The final functional user interface created for this project uses the Grasshopper

plug-in Human UI [15] to create an interface that incorporates all the prior mentioned

functionalities. The interface consists of a set of collapsible sections, each controlling

a different component of the functionality.

The first section contains two radio buttons to select the wall surface input type

(Figure 5.9). Each then has buttons underneath that prompt the user to select the

appropriate curves for the wall from the Rhino document. If the wall analysis check

determines that the centroid is not over the base an alert is displayed to tell the user

that it is likely that the wall will not stand upright.

The second section provides the user with sliders to control the dimensions of the

bricks, the number of rows, and the gap between bricks (Figure 5.9). A drop down

menu provides some options for standard brick sizes. The gap between bricks is

limited to the length of the brick and changes dynamically as the brick length is

modified. If the intersection check discovers any intersecting bricks, an alert is shown

to the user to tell them what the issue is and to recommend that the easiest solution

is to increase the gap between the bricks (Figure 5.10).

The third, fourth, and fifth sections provide the controls for Rotation, Removal,

and Translation respectively (Figure 5.11). Each contains a check box to activate or

deactivate the transformation and selection type. Pattern transformation prompts the



26

Figure 5.9: Wall and brick user interface controls



27

Figure 5.10: When two bricks intersect, an alert in the user interface will let the user
know and recommend how to fix the issue. The bricks will also appear transparent
in the Rhino display.



28

user to enter a series of numbers separated by spaces to indicate the transformation

on each brick in series. For rotation and translation, the number indicates either the

degrees of rotation or the distance of translation, while 0 indicates a brick left alone.

For removal, 0 leaves the brick in place while 1 removes it. Individual transformation

prompts the user to select the row and position in the row of the desired brick. For

rotation and transformation, individual transformation also provides a slider to select

the degrees of rotation or the distance of transformation. In individual transformation

mode, the distance of translation is limited to the width of the brick.

Figure 5.11: User interface transformation selections

The sixth section provides the controls for the user to toggle the initial support

analysis visuals as well as the PhysX.gh physics analysis (Figure 5.12). Each type of

analysis is toggled by a checkbox, and when enabled will show its options beneath

it. The brick supported analysis only offers one option, the percent to be supported.

The physics analysis provides a button to reset the geometry and a toggle to turn on

and off the running of the physics simulation.

The seventh and final section of the UI contains the buttons to allow the user to



29

bake the geometry of the wall to Rhino (Figure 5.12).

Figure 5.12: User interface analysis controls and bake to Rhino buttons



CHAPTER 6: USER TESTING

Once basic functionality was completed, the next step was to conduct user testing

on the software. The User Testing was conducted on the initial user interface described

in Appendix A and was conducted online. Four participants, all architecture students,

were recruited through the UNCC School of Architecture.

Participants were provided with instructions on how to install Human UI [15] on

their computers, then provided with a Grasshopper file containing the first draft of

the user interface. Participants were asked to spend around 15 minutes using the tool

and attempting to recreate an example wall (Figure 6.1).

Figure 6.1: The example wall provided for user testing

Participants were then asked to complete a short questionnaire on their experience

with the tool. The questions asked were as follows:

1. What did you find most challenging about replicating the example?

2. If you were asked to design a similar structure without this tool, how would you

go about doing so?



31

3. Were there any particular ways in which you would have liked to be able to

manipulate the structure that you were unable to?

4. Did you encounter any particular issues with the interface or software function-

ality not working the way that you expected it to? If so, what happened?

5. Did the structural analysis display assist you in your design process?

6. Were you able to be creative within the limitations of the interface?

Full participant responses can be found in Appendix B.

In general, user feedback requested further help and descriptive text throughout

the document, with a general positive feeling on the usefulness of the tool.

Suggested functionalities included an undo function, live updates, and highlights

to show which brick is selected. Live updates were implemented in the final ver-

sion of the interface (see Section 5.14). An undo function is outside of the scope of

this project, though it would be useful. Highlighting the brick selected raises some

workflow questions about when the highlight would go into effect, and was not been

implemented. The additionally requested help text was included in the ideal design

(see Appendix D), and added to later versions of the functional script (see Section

5.14).

The responses to the user study can tell us a lot about the potential value of the

project. The second research question of this project (see Chapter 1) is about the

potential effectiveness and value of the proposed user interface. The answers to the

questionnaire give us a chance to evaluate the ways that the participants feel that the

project would impact their design process. The participants responded favorably to

the ways in which the project could assist or even guide them to try new forms. One

participant stated that the basic structural analysis was "the most interesting part of

it" as "it can act as a guide." All four participants stated that the interface was able



32

to allow them to be creative, with one participant saying that "it helped with trying

different alternatives easily."



CHAPTER 7: FUTURE PLANS

In the future, this project could be converted from Grasshopper clusters to full

C scripts in order to become a full fledged Grasshopper plugin. This final version

of the plugin would likely want to include the user interface in the Grasshopper

components as seen in Appendix D. This would enable the plugin to seamlessly fit

into Grasshopper without needing the additional Human UI plugin. It would also

allow the advanced user to modify the workflow as they see fit and incorporate the

output geometry into custom scripts to do anything they want.

It would also be useful to do more extensive and comprehensive user testing. The

original plan was to conduct face to face demos and interviews with individual partic-

ipants, however due to COVID-19 arriving in NC in mid March 2020, user testing was

moved online and completed asynchronously. The testing completed in the course of

the project was a small sample group working with an early version of the UI, and

as such, the information collected is a small glimpse as to the insights that could be

collected with more in depth user testing and observation of users interactions. Fu-

ture testing would require more participants and could be done with a more complete

version of the plugin for better results. It would also be beneficial for further user

testing to be recorded in order to analyze user interaction more fully. This would

expose any issues or small UI problems that are not obvious to users and thus are

not reported in the survey.

Future work also includes potential other methods or types of structural analysis.

The current analysis only looks at gravity, but the reality of the world is that there are

many other forces at work that can affect anything we build and must be taken into

account. It would be useful to look at the application of lateral loads to the structure



34

and how the structure and form would impact the ability to withstand such forces.

It is well established that curved walls are stronger than straight walls, and this can

allow for some interesting form creation with single brick structures. This concept is

found in the notes of Thomas Jefferson [16] and can be seen on the campus of UVA

(Figure 7.1). Incorporating analysis of lateral loads would give the designer useful

feedback on the structural integrity of their design, extending the current analysis.

Figure 7.1: Serpentine walls on the campus of UVA [17]



CHAPTER 8: CONCLUSIONS

The final version of the user interface includes all the functionality planned for in

this project. While the final product is not a fully functional plugin, it is a functional

script. The analysis was successful in showing the structural integrity of the structure

at a variety of points in the script as well as through a variety of methods.

The initial research questions for this project were about functionality and the

effectiveness of a user interface to implement the functionality.

In Chapter 3 we looked at the Rhino plugin Brick Design by ROB Industries [8].

This plugin has a lot of functionality in overall wall form, but lacks the functionality

to transform individual modules within the structure. It focuses solely on bricks as a

modular unit, which restricts the user in ways that this project aims to free the user.

This project also intended to look at the effectiveness of a user interface (see Chapter

1) with the consideration of the novice user, with the menu interface of BrickDesign

as a baseline of what could be done to guide the user through the creation and design

of a structure. The user study was instrumental in guiding the direction of the final

design to be user friendly and intuitive to start using quickly. The participants all

reported that they were able to quickly figure out what they could do and how to

do it, showing that even with an early version of the user interface, this project was

successful in improving upon the options already available.



36

REFERENCES

[1] J. P. Sousa, P. A. Varela, and P. F. Martins, “Between Manual and Robotic
Approaches to Brick Construction in Architecture,” Proceedings of the 33rd
eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Aus-
tria, 2015.

[2] M. Vomhof, B. S. Vasey, Lauren, K. Eggenschwiler, J. Strauss, F. Gramazio, and
M. Kohler, “Robotic Fabrication of Acoustic Brick Walls,” ACADIA 14: Design
Agency, 2014.

[3] J. Braumann and S. Brell-Cockcan, “Parametric Robot Control: Integrated
CAD/CAM for Architectural Design,” ACADIA 11: Integration through Com-
putation, 2011.

[4] M. Imbern, “(Re)Thinking the Brick: Digital Tectonic Masonry Systems,” Re-
thinking Comprehensive Design: Speculative Counterculture, 2014.

[5] A. Fingrut, K. Crolla, and D. Lau, “Automation Complexity - Brick By Brick,”
Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume
1, 2019.

[6] T. Bonwetsch, D. Kobel, F. Gramazio, and M. Kohler, “The Informed Wall:
applying additive digital fabrication techniques on architecture,” Synthetic
Landscapes [Proceedings of the 25th Annual Conference of the Association for
Computer-Aided Design in Architecture], 2006.

[7] K. Afsari, M. E. Swarts, and T. R. Gentry, “Integrated Generative Technique for
Interactive Design of Brickworks,” Digital Crafting [7th International Conference
Proceedings of the Arab Society for Computer Aided Architectural Design], 2014.

[8] R. Technologies, “BrickDesign.”

[9] W. Herfst, The Amsterdam School. Architectura & Natura, Jan. 2017.

[10] M. Casciato, ed., The Amsterdam school. Rotterdam: 010 Publishers, 1996.

[11] W. d. Wit, ed., The Amsterdam school: Dutch expressionist architecture, 1915-
1930. New York : Cambridge, Mass: Cooper-Hewitt Museum ; MIT Press,
1983.

[12] McNeel, “Kangaroo physics.”

[13] C. Preisinger and B. und Grohmann ZTGmbH, “Karamba3d.”

[14] G. Ting-Chun Kao, L. Nguyen, and T. A. Coders, “Physx.gh.”

[15] A. Heumann, M. Syp, N. Holland, and B. Ringley, “Human UI.”



37

[16] T. Jefferson, “Jefferson drawing for the serpentine walls 1934.,” Place: Char-
lottesville, Va Publisher: Special Collections, University of Virginia Library.

[17] T. Inc, LIFE. Time Inc. Google-Books-ID: xEQEAAAAMBAJ.



38

APPENDIX A: USER INTERFACE FOR USER TESTING

This early version of the user interface built with Human UI[12] was used for user

testing. It is similar to the final version, with the main differences being the lack of

real time updates and physics analysis. Some other functionality was also added later

based on feedback from the users as well as the committee members.

The first section contains two buttons that prompt the user to select either the top

or bottom curve of the wall from the Rhino document (Figure A.1).

The second section provides the user with sliders to control the dimensions of the

bricks, the number of rows, and the gap between bricks. A drop down menu provides

some options for standard brick sizes. The gap between bricks is limited to the length

of the brick and changes dynamically as the brick length is modified (Figure A.1).

Figure A.1: User testing UI - wall and brick controls

The third, fourth, and fifth sections provide the controls for Rotation, Removal,

and Translation respectively. Each contains a check box to activate or deactivate



39

the transformation type and a drop down to choose between pattern and individual

transformation. Pattern transformation prompts the user to enter a series of numbers

separated by spaces to indicate the transformation on each brick in series (Figure A.2).

Individual transformation prompts the user to select the row and position in the row

Figure A.2: User testing UI - pattern selection

of the desired brick, as percentages of the total number (Figure A.3). For rotation

and transformation, individual also provides a slider to select the degrees of rotation

or the distance of transformation. The distance of transformation is limited to the

width of the brick.

The sixth section includes controls to select the display type. The user can choose

from the drop down if they wish to display the supported analysis or not (Figure A.4).

When supported analysis is turned on, the user is also given the option to choose the

percent that the brick needs to be supported in order to appear as supported.



40

Figure A.3: User testing UI - individual brick selection. Here a selection of row 78
and row position 45, selects the closest to the 78% of the number of rows and 45%
of the number of bricks in that row, or a brick about 3/4 of the way up the wall and
near the center.

Figure A.4: User testing UI - display and analysis



41

APPENDIX B: USER STUDY RESPONSES

The User Study had a total of 4 participants who were able to complete the exercise

and responded to the questionnaire. Their responses are reproduced below as they

were provided.

1. What did you find most challenging about replicating the example?

• Drawing the base curves.

• Using the interface.

• To understand difference between individual brick vs pattern took some

time but after that it was easy.

• Understanding the UI.

2. If you were asked to design a similar structure without this tool, how would you

go about doing so?

• I had to do it manually.

• I would create a Grasshopper script to generate the desired structure.

• By building a grasshopper/python script.

• It is pretty mind boggling to do so specially with the gravity complexity.

3. Were there any particular ways in which you would have liked to be able to

manipulate the structure that you were unable to?

• Having multiple curves.

• No, the program has multiple manipulation methods, or at least the most

important ones.

• I would have like automatic update to see how each change would affect the

design. To click update after every move was breaking my flow of thought.



42

• No it looked sophisticated enough.

4. Did you encounter any particular issues with the interface or software function-

ality not working the way that you expected it to? If so, what happened?

• It crashed several times I had to open it and re do it again.

• Yes, some of this include the lack of an "undo" functionality, which made

it hard to go back to previous iterations.

I find the "update" button to be completely ineffective as the user is not

watching changes to be done in real time making it hard to visualize what

exactly is being modified.

The rotation, translation and removal tools although are simple concepts,

the implementation is problematic, given that in the "pattern" manipula-

tion type there is not clear on what the numbers mean and how exactly

will they affect the structure.

There was no highlight on the selected brick or row that was being modi-

fied, which makes it hard to see what is being modified at the moment.

On the rotation, translation and removal tools on the "individual" manip-

ulation type following the previous point it is hard to know which brick is

modified without having to actually count which brick is being selected.

• Couldn’t understand what the pattern string was for example what does

010101 mean. how many digits to we have to specify?

• No.

5. Did the structural analysis display assist you in your design process?

• Yes it made me aware of my design choices.

• No, because, since I’m able to modify the "percent supported" it is easy

to trick the system. Also, I’m not entirely sure how it detects which bricks



43

are supported and which are not and why. Maybe a little text indicating

that bricks with certain amount of overhang will not be supported would

be helpful. As in some cases where some bricks were in similar positions

some where indicated as "not supported" and others "were supported".

• No, the analysis didn’t make sense, it was showing red when it should have

been green. I couldn’t understand how it was working.

• That was the most interesting part of it it can act as a guide.

6. Were you able to be creative within the limitations of the interface?

• Yes indeed it helped with trying different alternatives easily.

• Yes.

• Yes.

• Yes I wish it was more space.



44

APPENDIX C: GRASSHOPPER SCRIPTS

Figure C.1: Thumbnail of the Grasshopper code for the UI



45

Figure C.2: Detail 1 - the Grasshopper code for the UI



46

Figure C.3: Detail 2 - the Grasshopper code for the UI



47

Figure C.4: Detail 3 - the Grasshopper code for the UI



48

Figure C.5: The base Grasshopper script with no UI or transformation

Figure C.6: The base Grasshopper script with no UI



49

APPENDIX D: IDEAL UI DESIGN

Ideally, the plugin would function as individual components within Grasshopper,

each with a collapsible section for options like brick dimension sliders and selec-

tion types. This would enable users to embed portions of the plugin into their own

Grasshopper components, as well as guide users through the Grasshopper script.

Users would be able to add multiple of the various transformation types in series

with each other, as well as to display what they want to see. The simple script as it

may look is shown in Figure D.1. The full components with all the expanded sections

are shown in Figure D.2.

Figure D.1: The ideal script



50

Figure D.2: The ideal components expanded to show options and help and collapsed
to save space


