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ABSTRACT 

 
 

QIONG SHOU. Semiparametric time-varying coefficient regression model for 
longitudinal data with censored time origin. (Under the direction of DR. YANQING SUN) 
 
 

In preventive HIV vaccine efficacy trials, thousands of HIV-negative volunteers 

are randomized to receive vaccine or placebo, and are monitored for HIV infection. The 

primary objective is to assess vaccine efficacy to prevent HIV infection. An important 

aspect of vaccine efficacy trials is to assess whether vaccine decreases secondary 

transmission of HIV and ameliorates HIV disease progression in vaccine recipients who 

become infected. 

This dissertation investigates the vaccine effect on the post HIV longitudinal 

biomarkers (e.g., viral loads and CD4 counts) over time since the actual HIV acquisition. 

The method applies to the situation when the time of the actual HIV acquisition may be 

missing or censored. 

The problem is investigated under the semiparametric additive time-varying 

coefficient model where the influences of some covariates vary nonparametrically with 

time while the effects of the other covariates remain constant. The weighted profile least 

squares estimators are developed for the unknown parameters as well as for the 

nonparametric coefficient functions. The method uses the expectation maximization 

approach to deal with the censored time origin. The asymptotic properties of both the 

parametric and nonparametric estimators are derived and the consistent estimates of the 

asymptotic variances are given. The numerical simulations are conducted to examine 

finite sample properties of the proposed estimators. The method is also applied to a real 

data from the STEP study with MITT cases. 
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CHAPTER 1: INTRODUCTION

1.1 A motivating example

In preventive HIV vaccine efficacy trials, thousands of HIV-negative volunteers

are randomized to receive vaccine or placebo, and are monitored for HIV infection.

The primary objective is to assess vaccine efficacy to prevent HIV infection. An impor-

tant aspect of vaccine efficacy trials is to assess whether vaccine decreases secondary

transmission of HIV and ameliorates HIV disease progression in vaccine recipients

who become infected (cf., Clemens et al., 1997; Halloran et al., 1997; Clements-Mann,

1998; Nabel, 2001; Shiver et al., 2002; HVTN, 2004; IAVI, 2004).

We propose to investigate the vaccine effect on the post HIV longitudinal

biomarkers (e.g., viral loads and CD4 counts). Viral load and CD4 counts have

been found to be highly prognostic for both secondary transmission and progression

to clinical disease in observational studies (cf., Mellors et al., 1997; HIV Surrogate

Marker Collaborative Group, 2000; Quinn et al., 2000; Gray et al., 2001). All previous

analyses of HIV vaccine efficacy trials assessed these biomarkers based on the time

from HIV positive diagnosis. However, it is biologically meaningful to assess whether

vaccination modifies or accelerates the development of these biomarkers over time

since the actual HIV acquisition. This assessment can be challenging since exact

times of actual HIV acquisition are often unobtainable for trial participants. A brief

description of HIV vaccine efficacy trial’s diagnosis algorithm is given in the following.

HIV vaccine trials test volunteers for anti-HIV antibodies at periodic intervals

(e.g., every 3 or 6 months); these antibody-based tests have near-perfect sensitivity

to detect infections that occurred at least four weeks ago but otherwise may miss
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the infection. For all subjects with an HIV antibody positive (Ab+) test, a “look-

back” procedure is applied wherein earlier available blood samples are tested for HIV

infection using a more sensitive antigen-based HIV-specific PCR assay, which has

near-perfect sensitivity if the infection occurred at least one week ago. Therefore,

each infected subject is classified into one of two groups, defined by whether the

earliest HIV positive sample is Ab- and PCR+ or is Ab+ and PCR+. The actual

HIV acquisition time is approximated well by the time at Ab- and PCR+, while

actual infection time occur approximately between the first Ab+ and earlier Ab- test

times in the case of Ab+ and PCR+. The Ab+ and PCR+ cases occur in between

20% and 70% of infected subjects, with the rate depending on the frequency of HIV

testing.

Ti1

1st viral test

......

j-th viral testAb- test

Oi

actual HIV
acquisition

Si

DiLi

Ab+ test

Tij

Figure 1.1: Time since actual HIV acqusition in case of Ab+ and PCR+.

Consider the ith subject, i = 1, . . . , n, who becomes HIV infected during the

HIV vaccine efficacy trial. Let Oi be the time of actual HIV acquisition, Di the

HIV positive diagnosis time based on the trial’s diagnosis algorithm (first Ab+ test

time) and Li the last Ab- test time. Post-infection biomarkers are measured at times

Ti1, . . . , Tini
, where Tij is the time between the first Ab+ and the time at which the jth

measurement is taken. Let Si be the gap between HIV acquisition and the diagnosis,

Si = Di−Oi. If subject i has an acute sample (Ab- and PCR+), the actual infection

time can be well approximated by Li and in this case let Si = Di −Li. Otherwise, Si

is less than Di − Li. The Si (time origin) is left censored by Di − Li with censoring

indicator Ri: Ri = 1 if Si is observed and Ri = 0 if Si is less than Di − Li. The time
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from actual HIV acquisition to the jth sampling time is then T o
ij = Si + Tij. Figure

1.1 illustrates the set-up.

1.2 Existing works

The sampling times T o
ij = Si + Tij from the actual HIV acquisition are known

when Si is completely observed. In this case many existing statistical methods can

be used to analyze model (2.1). Among others, recent works in this area include

semiparametric methods by Moyeed & Diggle (1994), Zeger & Diggle (1994), and

Liang, Wu & Carroll (2003), nonparametric methods by Hoover, Rice, Wu & Yang

(1998), Wu, Chiang & Hoover (1998), Scheike & Zhang (1998), Wu & Zhang (2002),

Wu & Liang (2004) and Sun & Wu (2003). Martinussen & Scheike (1999, 2000,

2001) and Lin & Ying (2001) considered time-varying coefficients regression models

for longitudinal data and successfully integrated counting process techniques into the

analysis of longitudinal data, providing further bridging between survival analysis,

recurrent events, and time-dependent observations. Sun and Wu (2005) developed

weighted least squares estimation procedure which avoids modeling of the sampling

times is asymptotically more efficient than a single nearest neighbor smoothing which

depends on estimation of the sampling model.



CHAPTER 2: SAMPLING ADJUSTED PROFILE LOCAL LINEAR
ESTIMATION APPROACH THROUGH EM ALGORITHM

2.1 Preliminaries

Suppose that there is a random sample of n subjects. For subject i, let Yi(t) be

the response process and letXi(t) and Zi(t) be the possibly time-dependent covariates

of dimensions (p+1)× 1 and q× 1, respectively, where t is the time since actual HIV

acquisition. The proposed general semiparametric time-varying coefficients regression

model assumes that

Yi(t) = βT (t)Xi(t) + γTZi(t) + εi(t), i = 1, . . . , n (2.1)

where β(t) is an unspecified (p + 1) × 1 vector of smooth regression functions, γ

is a q × 1 dimensional vector of parameters, and εi(t) is a mean-zero process. The

notation xT represents transpose of a vector or matrix x. The first component of X(t)

is specified as 1 in general, giving to a model with a nonparametric baseline. The

effect of X(t) is modeled nonparametrically while the effect of Z(t) follows a given

parameter.

The observations of Yi(t) are taken at time points T o
i1 < T o

i2 < · · · < T o
ini
, where

ni is the total number of observations on the ith subject. The observation times T o
ij

can be decomposed in two parts T o
ij = Si+Tij as shown in Figure 1.1, where Si is the

time from actual HIV acquisition to the first positive diagnosis test and Tij is the time

from the first positive diagnosis test to the jth visit for the ith subject. The number

of observations taken on the ith subject by time t is N o
i (t) =

∑ni

j=1 I(T
o
ij ≤ t), where

I(·) is the indicator function. Let Ci be the end of follow-up time or censoring time



5

for the ith subject starting at HIV positive diagnosis (Ab+ test time). The censoring

time Ci will be allowed to depend on the covariates Xi(·) and Zi(·). The responses

for the ith subject can only be observed at the time points before Ci. The censoring

time since the actual time origin (HIV acquisition) is Si + Ci.

Let the conditional mean rate of the observation times αi(t) for subject i be

defined as

E{dN o
i (t) |Xi(t), Zi(t)} = α(t, Ui(t)) dt ≡ αi(t) dt, i = 1, . . . , n, (2.2)

where Ui(t), a m×1 vector, is the part of the covariates (Xi(t), Zi(t)) that affects the

potential sampling times. The function α(t, u) is an unspecified nonnegative smooth

function.

The time Si from actual HIV acquisition to HIV positive diagnosis may be left

censored by the censoring time Vi. Let Ri = I(Si ≥ Vi) be the censoring indicator. For

the application concerned in this paper, the censoring time Vi (e.g. Di−Li) is assumed

to be observed for all subjects. Let Di = {Vi, Ci, Ai, Tij, Xi(T
o
ij), Zi(T

o
ij), Yi(T

o
ij), j =

1, . . . , ni}, where Ai is a collection of possible auxiliary variables that are not of

interest in the modelling of Yi(t) but may be useful in predicting the distribution of

Si. The observed data for subject i can be expressed as Xi = {RiSi, Ri,Di}. The

observation is {Si,Di} if Ri = 1 and Di if Ri = 0. Although exact times T o
ij may

be unobtainable, the values Xij = Xi(T
o
ij), Zij = Zi(T

o
ij) and Yij = Yi(T

o
ij) at T

o
ij are

known. Denote the observed data by X = {Xi, i = 1, 2, . . . , n}.
Assume that Si and Vi are independent, and that the censoring time Ci is non-

informative in the sense that E{dN o
i (t) |Xi(t), Zi(t), Si + Ci ≥ t} = E{dN o

i (t)|Xi(t),

Zi(t)} and E{Yi(t)|Xi(t), Zi(t), Si + Ci ≥ t} = E{Yi(t)|Xi(t), Zi(t)}. Let Ni(t) =∑ni

j=1 I(Tij ≤ t). Assume E{Yi(t)|Xi(·), Zi(·), Ni(·), Si, Vi, Ci} = E{Yi(t)|Xi(·), Zi(·)}.
Assume also that Yi(t) and dN o

i (t) are independent conditional on Xi(t), Zi(t) and

Si + Ci ≥ t. This assumption implies that, conditional on covariate processes, sam-
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pling times are noninformative for the response. Note that dependence between

response and sampling times as well dependence between sampling times and the

censoring time Ci is often induced by ignoring certain covariates (cf., Miloslavsky et

al., 2004 and Zeng, 2005). The stated conditional independence assumptions make

the proposed methods applicable to situations where dependence may exist among

response process, sampling times and censoring time Ci but becoming independent

by including appropriate additional covariates. A recent work by Sun and Lee (2011)

on testing independent censoring for longitudinal data provides needed procedures

for checking such assumptions.

When all Si’s are observed, the existing statistical methods cited in Section

1.2 can be used to analyze model (2.1). However, none of these methods address

the problem in which the time origin may be censored. We propose to extend the

investigation of model (2.1) to accommodate this situation.

2.2 Estimation Procedures

It is important to note that if the unobserved or censored Si is treated as

missing, then Si is not missing at random in the sense of Robin (1976). The inverse

probability weighting of complete-cases method of Horvitz and Thompson (1952)

and the augmented inverse probability weighted complete-case method of Robins,

Rotnitzky and Zhao (1994), which have been successfully adapted in Sun and Gilbert

(2011), Sun, Wang and Gilbert (2011) and by many other authors, will not work

in this situation. We propose an estimation procedure based on the missing-data

principle using the EM-algorithm. The EM-algorithm has been applied by Scheike

and Sun (2007) to develop maximum likelihood estimation for tied survival data under

Cox regression model.

Let FS(s|Di) be the conditional distribution of Si given Di. The conditional

distribution of Si given Di and Ri = 0, FS(s|Di, Ri = 0), equals FS(s|Di)/FS(Vi|Di)

for s ≤ Vi and 1 for s > Vi. Assume that max{Si, Vi} is bounded by a predetermined
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constant c. This is reasonable since for the application concerned here max{Si, Vi}
is less than the time interval between two consecutive testing times which is usually

between 3 and 6 months. The distribution of Si based on the left censored data can

be estimated by using the right censored data through the transformation {min{c−
Si, c−Vi}, Ri = I(c−Si ≤ c−Vi)}. Therefore, the Kaplan-Meier estimator can be used

to estimate the distribution of Si when Si is independent of Di. Otherwise, a failure

time regression model such as the Cox model (Cox, 1972) can be used to estimate the

conditional distribution FS(s|Di). Observing the censoring time Vi for all subjects is

a key factor in the estimation of FS(s|Di, Ri = 0). Otherwise FS(s|Di, Ri = 0) is not

identifiable.

Let F̂S(s|Di) be the estimated conditional distribution of FS(s|Di). The prob-

ability πi = P (Ri = 1|Di) = P (Si ≥ Vi|Di) can be estimated by π̂i = 1 − F̂S(Vi|Di).

Let dN c
i (t) = I(Si + Ci ≥ t)dN o

i (t). The estimation of model (2.1) will be based on

targeting to minimize the following objective function:

l(β, γ) =
n∑

i=1

Ri

∫ τ

0

W (u){Yi(u)− βT (u)Xi(u)− γTZi(u)}2 dN c
i (u)

+
n∑

i=1

(1−Ri)ÊS

{∫ τ

0

W (u){Yi(u)− βT (u)Xi(u)

−γTZi(u)}2 dN c
i (u)|X

}
, (2.3)

whereW (·) is a nonnegative weight function, and ÊS{·|X} is the estimate of the condi-

tional expectation, ES{·|X}, of a function of Si given X . ForRi = 0 and a smooth ran-

dom function Gn(t,Xi(t), Zi(t), Yi(t)), ÊS

{∫ τ

0
Gn(u,Xi(u), Zi(u), Yi(u))dN

c
i (u)|X

}
equals

ni∑
j=1

ÊS{Gn(Si + Tij, Xi(T
o
ij), Zi(T

o
ij), Yi(T

o
ij))I(Ci ≥ Tij)I(Si + Tij ≤ τ)|X}
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=

ni∑
j=1

ÊS{Gn(Si + Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(Si + Tij ≤ τ)|X}

=

ni∑
j=1

∫ ∞

0

Gn(s+ Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(s+ Tij ≤ τ) dF̂S(s|X )

Since the observations for different subjects are independent, the above equation

equals

ni∑
j=1

∫ ∞

0

Gn(s+ Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(s+ Tij ≤ τ) dF̂S(s|Xi)

=

ni∑
j=1

∫ ∞

0

Gn(s+ Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(s+ Tij ≤ τ) dF̂S(s|Di, Ri = 0)

=

ni∑
j=1

∫ ∞

0

Gn(s+ Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(Tij ≤ τ − s)I(s < Vi)
dF̂S(s|Di)

F̂S(Vi|Di)
.

(2.4)

Note that the function Gn(u,Xi(u), Yi(u), Zi(u)) maybe depend on the observed data

which makes it measurable with respect to X for each fixed (u,Xi(u), Yi(u), Zi(u)).

For fixed γ and at time t, we estimate β(t) by minimizing

l̃t(β, γ) =
n∑

i=1

�
∫ τ

0

Kh(u− t){Yi(u)− βTXi(u)− γTZi(u)}2 dN c
i (u) �R, (2.5)

where and hereafter, the notation � Hi(t) �R= RiHi(t) + (1 − Ri)ÊS{Hi(t)|X}
is used for a random function Hi(t), and Kh(t) = h−1K(t/h), K(t) is a symmetric

kernel function with a compact support and h is the bandwidth depending on n.

Taking derivative of l̃t(β, γ) with respect to β for a fixed γ yields

∂lt(β, γ)

∂β
= −2

n∑
i=1

�
∫ τ

0

Kh(u− t)Xi(u){Yi(u)− βTXi(u)− γTZi(u)} dN c
i (u) �R,

(2.6)

This leads to the following estimating function

Ut(β, γ) =
n∑

i=1

�
∫ τ

0

Kh(u−t)Xi(u){Yi(u)−βTXi(u)−γTZi(u)} dN c
i (u) �R . (2.7)
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The root of the equation Ut(β, γ) = 0 is denoted by β̃(t, γ). Let Ẽzx(t) = n−1
∑n

i=1 �∫ τ

0
Kh(u− t)Zi(u)X

T
i (u) dN

c
i (u) �R. The Ẽyx(t) and Ẽxx(t) are similarly defined by

replacing Zi with Yi and Xi respectively. The local least squares estimator for β(t)

for fixed γ is then given by

β̃(t; γ) = Ỹ T
x (t)− Z̃T

x (t)γ, (2.8)

where Ỹx(t) = Ẽyx(t)(Ẽxx(t))
−1 and Z̃x(t) = Ẽzx(t)(Ẽxx(t))

−1. Replacing β̃(t; γ) for

β(t) in (2.3) and taking derivative with respect to γ, we obtain the profile estimating

equation for γ:

U(γ) =
n∑

i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)β̃(t; γ)

−ZT
i (t)γ} dN c

i (t) �R= 0. (2.9)

Here [t1, t2] is taken as a subinterval of [0, τ ] to avoid boundary problems in the

theoretical justifications. In practice, [t1, t2] can be taken as [0, τ ]. From (2.9), we

solve for γ to get γ̂ which equals D̂−1Ŵ where

D̂ = n−1

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}⊗2dN c
i (t) �R

Ŵ = n−1

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)Ỹ

T
x (t)}dN c

i (t) �R .

An estimator of β(t) is given by β̂(t) = β̃(t; γ̂).

When Si is observed for all subjects, Ri = 1. The estimators for β(t) and

γ are reduced to those under Sun and Wu (2005). However, when Si is censored,

the estimating equations (2.6) and (2.9) are weighted according to the conditional

distribution of Si so that the estimated covariate effects correspond to those at the

time since the actual time origin. A key factor for this procedure to work is that the

censoring time Vi is observed for all subjects so that the estimation of FS(s | Di, Ri =

0) is possible.
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2.3 Computational algorithm

The boundary effects on the estimation of β(t) and the covariance matrix of

its estimator can be reduced by applying the equivalent kernel for the local linear

approach; see Fan & Gijbels (1996).

Suppose the binary data (T1, B1), (T2, B2), · · · , (Tn, Bn) which are n indepen-

dent and identically distributed copies from (T,B). To estimatem(t0) = E(B|T = t0)

is of interest. Suppose we use symmetric kernel K(x) in local constant method. Then

the local constant estimator of m(t) at point t0 will be

m̂C =
n−1

∑n
i=1 Kh(Ti − t0)Bi

n−1
∑n

i=1 Kh(Ti − t0)
.

To get the equivalent kernel, we will mimic some notations in Fan & Gijbels

(1996).

Sn,j(t0) =
n∑

i=1

Kh(Ti − t0)(Ti − t0)
j, j = 0, 1, 2.

Then

Sn(t0) =

⎛
⎜⎝ Sn,0(t0) Sn,1(t0)

Sn,1(t0) Sn,2(t0)

⎞
⎟⎠ .

Meanwhile the inverse can be written as

S−1
n (t0) =

1

Sn,0(t0)Sn,2(t0)− S2
n,1(t0)

⎛
⎜⎝ Sn,2(t0) −Sn,1(t0)

−Sn,1(t0) Sn,0(t0)

⎞
⎟⎠ .

As stated in the Section 3.2.2 of Fan & Gijbels (1996), the equivalent kernel

for local linear approach is

K∗
h(t− t0) = eT1 S

−1
n (t0)(1 t− t0)

TKh(t− t0),

where e1 = (1 0)T . Then we can simplify the equivalent kernel as follows.

K∗
h(t− t0) = eT1 S

−1
n (t0)(1 t− t0)

TKh(t− t0)
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=
Kh(t− t0)( 1 0 )

Sn,0(t0)Sn,2(t0)− S2
n,1(t0)

⎛
⎜⎝ Sn,2(t0) −Sn,1(t0)

−Sn,1(t0) Sn,0(t0)

⎞
⎟⎠

⎛
⎜⎝ 1

t− t0

⎞
⎟⎠

=
{Sn,2(t0)− Sn,1(t0)(t− t0)}Kh(t− t0)

Sn,0(t0)Sn,2(t0)− S2
n,1(t0)

.

Therefore, the local linear estimator m̂L at point t0 under the model B = m(T )+ ε is

n−1
∑n

i=1 K
∗
h(Ti − t0)Bi

n−1
∑n

i=1 K
∗
h(Ti − t0)

=

∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)Bi∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)

.

Compared to the local constant estimator above, if we use the following kernel

Wh(Ti − t0) = {Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0) (2.10)

instead of Kh(Ti − t0), we simply obtain the local linear estimator.

Let f(t) be the density function of T . For a interior point t0, the local linear

estimator is asymptotically equivalent to the local constant estimator as h → 0 and

nh5 = O(1) since for a symmetric kernel,
∫
K(x)x dx = 0. Then

n−1ESn,j(t0) = EKh(Ti − t0)(Ti − t0)
j =

∫
Kh(t− t0)(t− t0)

jf(t) dt

=

∫
K(x)hjxjf(t0 + hx) dx = hj(f(t0) + o(h))

∫
K(x)xj dx = o(h).

Especially note that n−1ESn,1(t0) = 0. Hence

m̂L =

∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)Bi∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)

=
n−1

∑n
i=1{n−1Sn,2(t0)− n−1Sn,1(t0)h

Ti−t0
h

}Kh(Ti − t0)Bi

n−1
∑n

i=1{n−1Sn,2(t0)− n−1Sn,1(t0)h
Ti−t0

h
}Kh(Ti − t0)

≈ n−1
∑n

i=1 Kh(Ti − t0)Bi

n−1
∑n

i=1 Kh(Ti − t0)
+ op(h

2)

= m̂C + op(h
2).

Hence (nh)1/2(m̂L − m̂C) = op((nh
5)1/2), which means the asymptotic distributions

for the local linear estimator and the local constant estimator are the same for an

interior point t0 as h → 0 and nh5 = O(1). This enables using the equivalent kernel



12

for the boundary time points while using the kernel in local constant approach for

the interior time points.

In estimating β(t), time points T may be unknown since Si is left censored by

Vi. Then we cannot simply use Sn,j(t0) defined above. Let

Sn,j(t) =
n∑

i=1

�
∫ τ

0

Kh(u− t)(u− t)jdN c
i (u) �R, j = 0, 1, 2.

Now under the new definition of Sn,j(t0), we still have the form of equivalent kernel

in (2.10) for local linear approach of estimating β(t).

2.4 Cross-validation bandwidth selection

The optimal theoretical bandwidth is difficult to achieve since it would involve

estimating the second derivative of β(t) with respect to t, β′′(t); see Fan and Gijbels

(1996) and Cai and Sun (2002). In practice, the appropriate bandwidth selection can

be based on a cross-validation method. This approach is widely used in nonparametric

function estimation literature; see Rice and Silverman (1991) for leave-one-subject-out

cross-validation approach and Tian, Zucker and Wei (2005) forK-fold cross-validation

approach.

An analog of the K-fold cross-validation approach in the current setting is to

divide the data into K equal-sized groups. Let Dk denote the kth subgroup of data,

then the kth prediction error is given by

PEk(h) =
∑
i∈Dk

�
∫ t2

t1

[
Yi(t)− (β̂(−k)(t))

TXi(t)− γ̂T
(−k)Zi(t)

]2
dN c

i (t) �R, (2.11)

for k = 1, . . . , K, where β̂(−k)(t) and γ̂(−k) are the estimators of β(t) and γ based

on the data without the subgroup Dk. The data-driven bandwidth selection based

on the K-fold cross-validation is to choose the bandwidth h that minimizes the total

prediction error PE(h) =
∑K

k=1 PEk(h). This bandwidth selection procedure will be

further studied and tested empirically through simulations.



CHAPTER 3: ASYMPTOTIC PROPERTIES

In this section we will explore the asymptotic properties of the proposed es-

timators. For simplicity, the asymptotic results are derived assuming that Si is in-

dependent of Di. In general, the Cox model can be used to model the conditional

hazard function of Si depending on Di. The proofs can be modified to accommodate

this situation. First we will introduce some notations. Let

ezx(t) = E(ξi(t)αi(t)Zi(t)X
T
i (t)),

where ξi(t) = I(Si+Ci+c1 ≥ t) and αi(t) is the conditional mean rate of N o
i (t) defined

in (2.2). exx(t) and eyx(t) are similarly defined. Let yx(t) = eyx(t)(exx(t))
−1 and

zx(t) = ezx(t)(exx(t))
−1. Let γ0 and β0(t) be the true values of γ and β(t) respectively.

Let Fv(t) be the distribution function of Vi and fs(t) be the density function of

Si. In additional to the conditional independence assumptions and noninformative

censoring assumptions stated in Section 2.1 we assume the following conditions for

the asymptotic results to hold.

Conditions (I). Assume that the {ni} are bounded; the {Si} are bounded by

a large enough value L and independent of Di; the kernel function K(·) is symmetric

with compact support on [−1, 1]; the processes Xi(t), Zi(t) and αi(t), 0 ≤ t ≤ τ ,

are bounded by a constant, continuous and their total variations are bounded by

a constant; the values of the jth measurement Xij and Zij are also bounded; the

processes Xi(t), Zi(t) and Yi(t) are left continuous processes; (exx(t))
−1 for 0 ≤ t ≤ τ

are bounded; the weight function W (t) can be written as a difference of two monotone

functions and each converges to a deterministic function so that W (t) converges to
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w(t).

Conditions (II). Define τH = sups{s : Fv(L− s)Fs(L− s) > 0}. Assume

∫ τH

0

fs(L− s)

Fv(L− s)
ds < ∞.

Also assume that Fs(s0) > 0 and Fv(s0) = 0 for some s0 > 0.

Under Conditions (II), the consistency and weak convergence of the Kaplan

Meier estimation for the distribution of Si can be extended to the whole line (Ying

(1989)). Under Conditions (I) and (II), it follows from Lemma A.2.3 that Ẽzx(t)

P−→ ezx(t) uniformly in t ∈ [t1, t2] ⊂ [0, τ ]. Similar asymptotic results hold for Ẽyx(t)

and Ẽxx(t). By continuous mapping theorem, the above results lead to the conclusion

that Ỹx(t) and Z̃x(t) converge to yx(t) and zx(t) uniformly in t ∈ [t1, t2] respectively.

Theorem 3.1 and Theorem 3.2 state that both the estimators γ̂ and β̂(t) are

consistent. Note that γ̂ is the minimizer of n−1l̃(γ) = n−1l(β̃(·; γ), γ) which equals

n−1

n∑
i=1

�
∫ τ

0

W (s){Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)− Zi(s))}2 dN c
i (s) �R .

In the proof of Theorem 3.1, we show that n−1l̃(γ) converges uniformly to a deter-

ministic function of γ that minimizes at γ = γ0. Then the consistency of γ̂ follows by

Theorem 5.7 of van der Vaart (1998).

Theorem 3.1: (Consistency of γ̂) Under Conditions (I) and (II), γ̂ = D̂−1Ŵ con-

verges to its true value γ0 in probability as n → ∞.

The consistency of β̂(t) follows from Lemma A.2.3 and Theorem 3.1,

β̂(t) = Ỹ T
x (t)− Z̃T

x (t)γ̂
P−→ yTx (t)− zTx (t)γ0

= (exx(t))
−1eTyx(t)− (exx(t))

−1eTzx(t)γ0

= (exx(t))
−1[E(ξi(t)αi(t)Xi(t)Y

T
i (t))− E(ξi(t)αi(t)Xi(t)Z

T
i (t))γ0]

= (exx(t))
−1E(ξi(t)αi(t)Xi(t)[Y

T
i (t)− ZT

i (t)γ0])

= (exx(t))
−1E(ξi(t)αi(t)Xi(t)[X

T
i (t)β0(t) + εT (t)])
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= (exx(t))
−1exx(t)β0(t) + E(E[ξi(t)αi(t)Xi(t)ε

T (t) | Xi(t), Zi(t), Si + Ci ≥ t])

= β0(t) + E(ξi(t)αi(t)Xi(t)E[εT (t) | Xi(t), Zi(t), Si + Ci ≥ t])

= β0(t) + E(ξi(t)αi(t)Xi(t)E[εT (t) | Xi(t), Zi(t)]) = β0(t).

Theorem 3.2: (Consistency of β̂(t)) Under Conditions (I) and (II), β̂(t) = β̃(t; γ̂)

converges to β0(t) in probability uniformly on [t1, t2] as n → ∞, where 0 ≤ t1 ≤ t2 ≤
τ .

The details of the proofs of Theorem 3.1 and 3.2 are given in the Appendix

A.3.

In Section 2.2, γ̂ is the solution of (2.9). So denote U(γ) as

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)β̃(t; γ)− ZT

i (t)γ} dN c
i (t) �R

which is usually called the score function. Then the Taylor expansion of U(γ̂) at γ0

is

n1/2(γ̂ − γ0) = −
(
n−1∂U(γ∗)

∂γT

)−1

[n−1/2U(γ0)],

where γ∗ is on the line segment between γ̂ and γ0. To prove the asymptotic normality

of n1/2(γ̂−γ0), it is sufficient to prove the convergence in probability to a non-singular

matrix of n−1 ∂U(γ∗)
∂γT , and the weak convergence of n−1/2U(γ0). The convergence in

probability can be easily obtained by applying Lemma A.2.2. And n−1/2U(γ0) can be

derived to equal to

n−1/2

n∑
i=1

∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}εi(t)[RidN
c
i (t)

+Es{(1−Ri)dN
c
i (t) | Di, Ri = 0}] + op(1).

Then applying theorem 5.21 (van der Vaart, 1998) to the sore function, the asymptotic

normality of γ̂ is presented in the following theorem.

Theorem 3.3: (Asymptotic Normality of γ̂) Under Conditions (I) and (II), n1/2(γ̂−
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γ0)
D−→ N (0, D−1V D−1) as n → ∞ where

D = E

(∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}⊗2 dN c
i (t)

)
,

V = E

{∫ t2

t1

[Riw(t)(Zi(t)− zx(t)Xi(t))εi(t)dN
c
i (t)

+(1−Ri)Es{w(t)(Zi(t)− zx(t)Xi(t))εi(t)dN
c
i (t) | Di, Ri = 0}]

}⊗2

.

The matrix V can be reformulated to assist the understanding and interpre-

tation. Let Q̃i =
∫ t2
t1

w(t)(Zi(t)− zx(t)Xi(t))εi(t)dN
c
i (t). Then V = V ar{RiQ̃i + (1−

Ri)Es(Q̃i | Di, Ri = 0)}. Under the assumptions in Section 2.1, E(Q̃i | Ri = 1) equals

E[E{Q̃i | Ri = 1, Xi(·), Zi(·), Ni(·), Si, Vi, Ci} | Ri = 1]

= E

[ ∫ t2

t1

w(t)(Zi(t)− zx(t)Xi(t))E{εi(t) | Xi(·), Zi(·)}dN c
i (t) | Ri = 1

]
= 0.

Similarly, E(Q̃i | Ri = 0) = 0. Hence,

RiQ̃i + (1−Ri)Es(Q̃i | Di, Ri = 0)

= Ri{Q̃i − Es(Q̃i | Ri = 1)}+ (1−Ri){Es(Q̃i | Di, Ri = 0)− Es(Q̃i | Ri = 0)}

� Q1 +Q2.

By the fact that EQ1 = 0, EQ2 = 0, and Q1 and Q2 are uncorrelated, V ar{RiQ̃i +

(1 − Ri)Es(Q̃i | Di, Ri = 0)} = V ar(Q1) + V ar(Q2), V ar(Q1) = P (Ri = 1)V ar(Q̃i |
Ri = 1) and V ar(Q2) = P (Ri = 0)V ar{E(Q̃i | Di, Ri = 0}. Hence, we have

V = V ar{RiQ̃i + (1−Ri)Es(Q̃i | Di, Ri = 0)}

= P (Ri = 1)V ar(Q̃i | Ri = 1) + P (Ri = 0)V ar{E(Q̃i | Di, Ri = 0}.

Based on the equations (A.33) and (A.44), the asymptotic variance in the

statement of theorem can be estimated by n−1D̂−1V̂ D̂−1 where

D̂ = n−1

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}⊗2 dN c
i (t) �R,
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V̂ = n−1

n∑
i=1

{∫ t2

t1

� W (t)(Zi(t)− Z̃x(t)Xi(t))ε̂i(t) dN
c
i (t) �R

}⊗2

and ε̂i(t) = Yi(t) − β̂(t)TXi(t) − γ̂TZi(t). This estimator is consistent estimator of

the asymptotic variance by the consistency of D̂ and V̂ . The proof of Theorem 3.3 is

given in the Appendix A.3.

Before demonstrating the asymptotic normality of β̂(t) at each fixed time point

t, we first introduce the following notations. Let the filtration FR
t = σ {RiN

c
i (s),

(1−Ri)E(N c
i (s) | Di, Ri = 0), Ri, Xi(s), Zi(s), Yi(s), 0 ≤ s ≤ t, 1 ≤ i ≤ n}. Let

dNR
i (t) = RidN

c
i (t) + (1−Ri)E(dN c

i (t) | Di, Ri = 0),

and

αR
i (t)dt = E{dNR

i (t) | FR
t−}

= E{RidN
c
i (t) + (1−Ri)E(dN c

i (t) | Di, Ri = 0) | FR
t−}. (3.1)

Also let dMR
i (t) = dNR

i (t) − αR
i (t)dt. Then MR

i (t) is a FR
t −martingale, with the

predictable variation process
∫ t

0
V ar{dMR

i (s) | FR
s−} =

∫ t

0
αR
i (s)ds.

Then the asymptotic normality of β̂(t) is given in the following theorem and

its proof is given in the Appendix A.3.

Theorem 3.4: (Asymptotic Normality of β̂(t)) Under Conditions (I) and (II),

((nh)1/2(β̂(t)−β0(t)−βBias(t))
D−→ N (0, μ0Σ(t)) for each fixed time point t as n → ∞,

h → 0, nh2 → ∞ and nh5 = O(1). Here μ0 =
∫ 1

−1
K2(u)du, μ2 =

∫ 1

−1
u2K2(u)du,

βBias(t) = (1/2)μ2h
2(exx(t))

−1{e′′xy(t)− e′′xz(t)γ0 − e′′xx(t)β0(t)},

Σ(t) = (exx(t))
−1E{ε2i (t)αR

i (t)Xi(t)X
T
i (t)}(exx(t))−1.

Based on the equation (A.52), the covariance matrix of β̂(t) can be estimated
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by

n−2(Ẽxx(t))
−1

[ n∑
i=1

(
�

∫ τ

0

Kh(u− t)Xi(u)ε̂i(u)dN
c
i (u) �R

)⊗2]
(Ẽxx(t))

−1,

which is a consistent estimator based on the derivation in the Appendix A.3.

Note that

(nh)1/2(β̂(t)− β0(t)− βBias(t))

= (nh)1/2(β̃(t; γ0)− β0(t)− βBias(t)) + (nh)1/2(γ̂ − γ0)
∂β̃(t; γ0)

∂γ
+Op(n

−1/2h1/2)

= n−1/2

n∑
i=1

h1/2

[
(exx(t))

−1

(
Ri

∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u)

+(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) | Di, Ri = 0

})

−D−1

(∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}εi(t)[RidN
c
i (t)

+Es{(1−Ri)dN
c
i (t) | Di, Ri = 0}]

)
z̃x(t)

]
+O(h1/2) + op(h

1/2) +Op(n
−1/2h5/2) +Op(n

−1/2h1/2).

An adjusted estimation of the covariance matrix of β̂(t) is given as

n−2

n∑
i=1

(
(Ẽxx(t))

−1 �
∫ τ

0

Kh(u− t)Xi(u)ε̂i(u)dN
c
i (u) �R

−D̂−1 �
∫ t2

t1

W (t){Zi(t)− Z̃x(t)Xi(t)}ε̂i(t)dN c
i (t) �R Z̃x(t)

)⊗2

.

(3.2)

We will use the adjusted estimated covariance matrix in the following simulation and

real data application.



CHAPTER 4: A SIMULATION STUDY

A numerical study is conducted to illustrate the feasibility and validity of the

proposed methods. The performances of the estimator for γ are measured through the

bias (Bias), the sample standard error of the estimates (SSE), the estimated standard

error of γ̂(ESE) and the coverage probability of a 95% confidence interval for γ. The

overall performance of the estimator for the jth component βj(·) on the interval [0, τ ]

is evaluated through the square root of integrated average square error

RASE(β̂j(·)) =
{
1

τ

∫ τ

0

(β̂j(t)− βj(t))
2 dt)

}1/2

,

where β̂j(t) is the estimate of βj(t). The simulation uses the unit weight function.

The interval [t1, t2] = [0.15, π] is taken to be [0, τ ] in the estimating functions (2.9).

The performance of the proposed estimators are examined under the following

selected setting of model (2.1). Let Yi(t) follow the semiparametric additive model:

Yi(t) = β0(t) + β1(t)Xi + γZi + εi(t), i = 1, . . . , n, (4.1)

where β0(t) = 1− t, β1(t) = 5 sin(t), γ = 8, Xi is uniformly distributed on [0, 1], and

Zi is a Bernoulli random variable with P (Zi = 1) = 0.5. The error process εi(t) has

a normal distribution with mean φi and variance 1 for subject i where φi follows a

standard normal distribution.

For subject i, Si is generated from the uniform distribution on [0, 0.8]. The

first sampling point is set as Ti1 = 0, and the rest Tij’s are generated from a Poisson

process Ni(t) with the intensity rate of λ0 exp(η1Xi+η2Zi) where λ0 = 0.4, η1 = 1 and

η2 = 0.3. Let Yij be the responses Yi(t) at time points T o
ij = Tij + Si following model
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(4.1). The censoring time Ci is exponentially distributed with the parameter adjusted

to give an approximately 0% or 30% censoring in the time interval [0, τ ] = [0, 4], which

is the probability of max1≤j≤ni
{T o

ij∧τ} > Si+Ci, denoted as cR. The average number

of observations in the interval [0, τ ] = [0, 4] per subject is about 3.48.

The following four cases, including three different left censoring percentages for

Si,denoted as cL, and the one that ignores Si by mistreating Tij as the measurement

times since the actual time origin, are conducted to examine the behavior of both

estimators: (1) cL = 0% which means {Si} are observed for all the subjects; (2)

cL = 20%; (3) cL = 50%; and (4) the last case treats Tij as the time since the actual

time origin and Yij = Yi(T
o
ij) as the response at t = Tij. The censoring time Vi is

generated from an uniform distribution [a, b] with the parameters a and b adjusted

to yield desired percentages of left censoring for Si.

The simulation presented in the following is carried out using local linear

approach. As discussed in Section 2.3, to reduce the time consumption of simulations,

the Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1) is used for the inner points

of time interval, i.e. (3h, τ − 3h) while the equivalent kernel in (2.10) is applied for

the boundary points in [0, 3h]
⋃
[τ − 3h, τ ].

For sample sizes n = 200, 300 and 500, and bandwidths h = 0.3, 0.4 and 0.5,

Table 4.1 shows the biases (Bias), the sample standard errors (SSE), the estimated

standard errors (ESE) of γ̂, the coverage probabilities of a 95% confidence interval

for γ and also the square root of integrated average square error (RASE) of both

components of β̂(t) for the first three cases based on 500 simulations when there is

no right censoring. While Table 4.2 shows the same criterions for the first three cases

based on 500 simulations when there is 30% of subjects right-censored during the

time scale. The biases of γ̂ for the first three cases using the proposed method are

small. The sample standard errors of γ̂ are close to its estimated standard errors.

Both standard errors reduce as the sample size increases. When the left censoring
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percentage of Si goes up, the standard errors rise a tiny bit since the increase of

percentage means more unknown information of Si. The coverage probabilities of γ̂

are slightly around 0.95 as expected. The square root of integrated average square

error of β̂0(t) is smaller than that of β̂1(t) because β0(t) is a straight line while β1(t) is

more curvy. Both RASE’s increase together with the left censoring percentage of Si.

Furthermore, as the bandwidth h changes, the RASE(β̂0(·)) and RASE(β̂1(·)) varies
a little, which indicates that the choice of three bandwidths will not quite affect the

estimates of β0(t) and β1(t).

Table 4.3 present the biases, sample standard errors, estimated standard er-

rors and the coverage probabilities related to γ in the case of mistreating Tij as the

measurement times since the actual time origin. Although both the standard errors

of γ̂ increase compared to the third case with the same left censoring percentage, the

biases are also small, the coverage probabilities are close to 0.95 and two types of

standard errors are also close. This means even the time origin is mistreated, we can

still get an unbiased estimator of γ since γ is time-independent.

Table 4.4 compare the RASE’s in the two cases when the left censoring per-

centage of Si is 50%. An obvious reduction of both RASE’s is shown in the table.

Figure 4.1 shows the average estimates of β(t) = (β0(t), β1(t))
T based on 500

simulations under four cases proposed above. Figure 4.1 (a), (b) and (c) are the plots

of the average of the estimates based on the proposed method corresponding to 0%,

20% and 50% left censoring for Si, and Figure 4.1 (d) corresponds to the fourth case.

Figure 4.1 (a), (b) and (c) show that the estimated curves fit the true curve quite

well. There is an obvious time shift for the covariate effect of Xi in Figure 4.1 (d).

Figure 4.2 shows both the standard errors of β(t) = (β0(t), β1(t))
T based on

500 simulations under four cases proposed above. Figure 4.2 (a), (b) and (c) are the

plots based on the proposed method corresponding to 0%, 20% and 50% left censoring

for Si, and Figure 4.2 (d) corresponds to the fourth case. In all four plots, the sample
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standard error curves are quite close to the estimated standard error curve. In the

first three cases large variation near zero are typical for local linear approach near the

boundaries; see Page 73 of Fan and Gijbels (1996). The case in Figure 4.2 (d) does

not suffer from the large variation near zero since the new time zero is shifted from a

time point that is of length Si after actual time origin for ith subject, i = 1, 2, · · · , n.
In addition all subjects have responses measured at Si.

Figure 4.3 shows the coverage probability of a pointwise 95% confidence in-

terval for each component of β(t) = (β0(t), β1(t))
T at each time point t based on 500

simulations under four cases proposed above. Figure 4.3 (a), (b) and (c) are the plots

based on the proposed method corresponding to 0%, 20% and 50% left censoring for

Si, and Figure 4.3 (d) corresponds to the fourth case. The doted line in all four plots

are the line when coverage probability is 95%. It is quite clear that all the coverage

probabilities are close to 0.95.
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Table 4.1: Summary statistics for the estimators γ̂ and β̂(t) with no right censoring

cL n h Bias SSE ESE CP RASE(β̂0(t)) RASE(β̂1(t))
0% 200 0.3 −0.0090 0.1794 0.1780 0.958 0.0205 0.0479

0.4 −0.0082 0.1794 0.1786 0.948 0.0172 0.0596
0.5 −0.0078 0.1794 0.1790 0.954 0.0161 0.0858

300 0.3 −0.0009 0.1386 0.1450 0.966 0.0182 0.0500
0.4 0.0011 0.1385 0.1454 0.966 0.0163 0.0639
0.5 0.0013 0.1384 0.1457 0.968 0.0160 0.0907

500 0.3 −0.0083 0.1117 0.1134 0.950 0.0104 0.0323
0.4 −0.0083 0.1116 0.1136 0.952 0.0064 0.0445
0.5 −0.0081 0.1116 0.1137 0.950 0.0056 0.0724

20% 200 0.3 −0.0064 0.1809 0.1781 0.948 0.0279 0.0686
0.4 −0.0064 0.1808 0.1788 0.946 0.0256 0.0758
0.5 −0.0062 0.1810 0.1793 0.944 0.0241 0.0959

300 0.3 0.0022 0.1426 0.1450 0.960 0.0314 0.0772
0.4 0.0027 0.1427 0.1454 0.960 0.0310 0.0864
0.5 0.0033 0.1426 0.1457 0.960 0.0289 0.1061

500 0.3 −0.0059 0.1127 0.1135 0.942 0.0182 0.0704
0.4 −0.0058 0.1127 0.1137 0.944 0.0154 0.0759
0.5 −0.0057 0.1127 0.1139 0.944 0.0147 0.0914

50% 200 0.3 −0.0061 0.1821 0.1784 0.952 0.0905 0.2187
0.4 −0.0055 0.1822 0.1795 0.952 0.0897 0.1960
0.5 −0.0051 0.1822 0.1800 0.952 0.0547 0.1608

300 0.3 0.0051 0.1418 0.1451 0.962 0.0725 0.1798
0.4 0.0058 0.1417 0.1458 0.964 0.0672 0.1743
0.5 0.0060 0.1417 0.1461 0.962 0.0585 0.1626

500 0.3 −0.0050 0.1132 0.1138 0.942 0.0557 0.1824
0.4 −0.0044 0.1133 0.1141 0.948 0.0485 0.1756
0.5 −0.0041 0.1135 0.1143 0.942 0.0431 0.1615



24

Table 4.2: Summary statistics for the estimators γ̂ and β̂(t) with 30% right censoring
rate

cL n h Bias SSE ESE CP RASE(β̂0(t)) RASE(β̂1(t))
0% 200 0.3 −0.0131 0.1871 0.1836 0.946 0.0213 0.0479

0.4 −0.0121 0.1873 0.1843 0.946 0.0179 0.0569
0.5 −0.0113 0.1872 0.1848 0.950 0.0172 0.0823

300 0.3 −0.0011 0.1436 0.1500 0.962 0.0243 0.0548
0.4 −0.0009 0.1434 0.1504 0.968 0.0226 0.0667
0.5 −0.0006 0.1432 0.1507 0.968 0.0223 0.0921

500 0.3 −0.0092 0.1154 0.1173 0.948 0.0123 0.0334
0.4 −0.0092 0.1152 0.1175 0.946 0.0076 0.0415
0.5 −0.0089 0.1152 0.1177 0.944 0.0066 0.0677

20% 200 0.3 −0.0084 0.1874 0.1835 0.944 0.0330 0.0745
0.4 −0.0085 0.1875 0.1844 0.950 0.0306 0.0784
0.5 −0.0083 0.1879 0.1850 0.952 0.0290 0.0962

300 0.3 0.0015 0.1468 0.1500 0.960 0.0376 0.0796
0.4 0.0019 0.1469 0.1504 0.962 0.0381 0.0874
0.5 0.0024 0.1470 0.1507 0.962 0.0362 0.1065

500 0.3 −0.0066 0.1160 0.1174 0.942 0.0181 0.0773
0.4 −0.0064 0.1158 0.1176 0.942 0.0148 0.0806
0.5 −0.0063 0.1157 0.1178 0.942 0.0152 0.0924

50% 200 0.3 −0.0081 0.1897 0.1835 0.950 0.0921 0.2330
0.4 −0.0077 0.1897 0.1847 0.952 0.0873 0.2065
0.5 −0.0072 0.1898 0.1854 0.952 0.0565 0.1688

300 0.3 0.0042 0.1467 0.1500 0.962 0.0773 0.1844
0.4 0.0047 0.1468 0.1507 0.960 0.0736 0.1789
0.5 0.0052 0.1467 0.1512 0.962 0.0653 0.1672

500 0.3 −0.0057 0.1164 0.1175 0.942 0.0557 0.1935
0.4 −0.0051 0.1163 0.1179 0.944 0.0491 0.1852
0.5 −0.0049 0.1163 0.1182 0.942 0.0442 0.1683
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Table 4.3: Summary statistics for the estimator γ̂ with misplaced time origin and 50%
left censoring in the presence (cR = 30%) and absence (cR = 0%) of right censoring

cR n h Bias SSE ESE CP
0% 200 0.3 −0.0016 0.2126 0.2119 0.946

0.4 −0.0005 0.2122 0.2127 0.950
0.5 0.0006 0.2121 0.2134 0.946

300 0.3 0.0019 0.1746 0.1733 0.944
0.4 0.0026 0.1746 0.1738 0.944
0.5 0.0033 0.1745 0.1742 0.948

500 0.3 −0.0066 0.1410 0.1349 0.932
0.4 −0.0058 0.1407 0.1352 0.932
0.5 −0.0052 0.1404 0.1354 0.932

30% 200 0.3 0.0003 0.2251 0.2262 0.946
0.4 0.0014 0.2251 0.2272 0.946
0.5 0.0027 0.2250 0.2281 0.946

300 0.3 0.0019 0.1853 0.1865 0.938
0.4 0.0029 0.1848 0.1871 0.940
0.5 0.0040 0.1845 0.1876 0.946

500 0.3 −0.0106 0.1487 0.1449 0.936
0.4 −0.0096 0.1486 0.1452 0.936
0.5 −0.0086 0.1480 0.1455 0.942
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Figure 4.1: The averages of the estimator β(t) = (β0(t), β1(t))
T for n = 300, h = 0.4

and 30% right censoring rate. The solid lines are for β1(t) and the dashed lines are for
β0(t). The grey lines are the true curves. Figures (a), (b) and (c) shows the averages
in the cases of 0%, 20% and 50% left censoring rate of Si respectively. Figure (d)
shows the results in the case of misplaced time origin by ignoring Si.
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Figure 4.2: The sample and estimated standard errors of the estimator β(t) =
(β0(t), β1(t))

T for n = 300, h = 0.4 and 30% right censoring rate. The solid lines
are for β1(t) and the dashed lines are for β0(t). The grey lines are the estimated
standard error and the black ones are the sample standard error. Figures (a), (b)
and (c) shows the results in the cases of 0%, 20% and 50% left censoring rate of Si

respectively. Figure (d) shows the results in the case of misplaced time origin by
ignoring Si.
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Figure 4.3: The coverage probabilities of 95% pointwise confidence intervals of β(t) =
(β0(t), β1(t))

T for n = 300, h = 0.4 and 30% right censoring rate. The solid lines are
for β1(t) and the dashed lines are for β0(t). Figures (a), (b) and (c) shows the averages
in the cases of 0%, 20% and 50% left censoring rate of Si respectively. Figure (d)
shows the results in the case of misplaced time origin by ignoring Si.



CHAPTER 5: REAL DATA APPLICATION

In this chapter a real data from the STEP study (cf., Buchbinder et al., 2008;

Fitzgerald et al., 2011) is analyzed by applying the methods discussed in previous

chapters. The step study was a multicenter, double-blind, randomized, placebo-

controlled, phase II test-of-concept study to determine whether the MRKAd5 HIV-1

gag/pol/nef vaccine, which elicits T cell immunity, is capable to result in controlling

the replication of the Human immunodeficiency virus among the participants who

got HIV-infected after vaccination. This study opened in December 2004 and was

conducted at 34 sites in North America, the Caribbean, South America, and Australia.

Three thousand HIV-1 negative participants aged from 18 to 45 who were at high risk

of HIV-infection were enrolled and randomly assigned to receive vaccine or placebo

in ratio 1:1, stratified by sex, study site and adenovirus type 5 (Ad5) antibody titer

at baseline. Some of the participants were fully adherent to vaccinations while others

not.

The analysis in this chapter includes a subset of the 3000 participants which

involves all 174 MITT cases as of September 22, 2009. MITT cases stand for modified

intention-to-treat subjects who became HIV infected during the trial. The modified

inention to treat refers to all randomized subjects, excluding the few that were found

to be HIV infected at entry. It is recommended to study males only, for the entire

analysis to avoid the effect of sex since there are only 15 females that are < 10% of

the sample. There were 159 HIV-infected males. Each participant had the records of

the first positive diagnosis (the dates of their first positive Elisa confirmed by Western

Blot or RNA, illustrated as Di’s in Figure 1.1), the dates of their first evidence of
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infection (determined by the dates of the first positive RNA (PCR) test), and the

estimated dates of infection. The estimated dates of infection is considered as the

midpoint between last RNA negative visit date (Li’s in Figure 1.1) and the date of

first evidence of infection. The last RNA negative visit date can be computed by the

estimated date of infection and the dates of their first evidence of infection. As such,

we calculate Vi by Vi = Di−Li = Di−2× estimated infection dates + the date of first

evidence of infection. The indicator of whether the actual acquisition of ith subject

is observed or not is denoted by Ri; Ri = 1 if the actual HIV acquisition date can

be determined by using the RNA test, and in this case the duration between actual

HIV acquisition and the first positive diagnosis date Si = Vi; otherwise Ri = 0 and

Si < Vi.

After the participant was infected, there were 18 scheduled post-infection visits

per subject at weeks 0, 1, 2, 8, 12, 26, and every 26 weeks thereafter through week

338. However, the actual times and dates of visits may vary due to each individual.

During jth visit, the ith subject received tests to have the measurements of HIV

virus load and CD4 cell counts before the subject started the antiretroviral therapy

(ART) or was censored. And the time from the first positive Elisa to the jth visit

for ith subject is Tij in the above chapters. The time between the first positive Elisa

and ART initiation or censoring for subject i is the right censoring time Ci. In the

analysis time is measured in years. Let Y be the common logarithm of HIV virus

load, X1 be the square root of CD4 counts, X2 be the treatment indicator (X2 = 1

if the subject received vaccine and 0 if receiving placebo), Z1 be the site indicator

(Z1 = 1 if North America or Australia and 0 otherwise), Z2 be the natural logarithm

of Ad5 and Z3 be the pre-protocol indicator (Z3 = 1 if the subject was fully adherent

to vaccinations and 0 otherwise). Our main interest is to see the effect of vaccine on

the HIV virus load response.

In the data 159 males made a total of 791 pre-ART visits. Among them there
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are 156 missing in CD4 cell counts and 5 missing in HIV virus load. Since there are

no missing in CD4 and virus load at the same time, we could use a simple imputation

model to create a complete data set. At each time point separately, we use a linear

regression model linking log10(viral load) to square root of CD4 count (for those with

data on both), and use the viral load value for those with missing data to fill in the

missing CD4 cell count or predict missing virus load data by CD4 values. However,

at three time points there are no complete data for conducting the linear regression

model fitting; at two other points there are only one complete data which is unable to

complete the linear model fitting; at another time point one predicted value of virus

load is relatively far beyond the range of other values of virus load and may affect

the analysis results. Therefore, we delete these six visits to get the complete data for

the entire analysis.

Now in this complete data set there are 159 subjects with 785 visits. 97 Of all

the participants were in the vaccine group while 62 received the placebo. 122 subjects

participate in the study in North America or Australia and the rest are residents in

the other sites mentioned at the beginning of this chapter. The left censoring rate of

Si is 70.44% and the right censoring rate of Tij is 69.81%. Figure 5.1 to Figure 5.3

are further exploration of the data. It is easy to figure out that there are few data

after time point 2.5. Therefore, we will choose t1 = 0 and t2 = 2.5 to estimate γ, and

also plot the estimators of β(t)’s for the time points in the interval [0,2.5]. Finally,

Figure 5.4 shows the Kaplan Meier estimator of the distribution of Si. Note that the

smallest observed Si is 0.14. Before that time we do not have enough information to

get the estimator of the distribution. However, since time is always nonnegative, the

probability of Si reduce to 0 at Si = 0.

After preliminary exploration of the data, we propose the following model for

virus load response of the ith subject in this study:

Yi(t) = β0(t) + β1(t)X1i(t) + β2(t)X2i + γ1Z1i + γ2Z2i + γ3Z3i + εi(t). (5.1)
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By the study of simulation and several tries of different bandwidths, a possible rea-

sonable choice of the bandwidth for this data set is 0.5. And we still consider the

unit weight for the analysis. The estimates of γ1, γ2 and γ3 are 0.0302, −0.1467 and

0.1956, with the standard deviations 0.0389, 0.1492 and 0.1540, respectively. The

p-values for testing H0 : γ1 = 0, H0 : γ2 = 0 and H0 : γ3 = 0 are equal to 0.4375,

0.3255 and 0.2042, respectively, which indicates that there are no significant effects of

baseline Ad5 titer, study sites or the pre-protocol on the HIV viral load level at 5%

significance level. The estimates of time-dependent effects and their 95% pointwise

confidence intervals are shown in Figure 5.5. From the graph although the effects of

vaccine or CD4 cell count on the HIV viral load level are not statistically significant,

both of them have negative trend of HIV viral load. Further hypothesis test study

will be done in the future. Finally Figure 5.6 shows the scatter plot of the residuals

of subjects with Ri = 1 from fitting the model (5.1).

From Figure 5.5, it is reasonable to suspect that there is constant effect on

both treatment and CD4 cell counts. More rigorously we could conduct hypothesis

tests for the constant effect. This work will be done in the future. So let us consider

the new fitting model

Yi(t) = β0(t) + γ1X1i(t) + γ2X2i + γ3Z1i + γ4Z2i + γ5Z3i + εi(t). (5.2)

We remain using 0.5 as the bandwidth and the unit weight. The estimates of [γ1,

γ2, γ3, γ4, γ5] are [−0.0624, −0.0568, 0.0227, −0.0937, 0.1757], with the standard

deviations 0.0114, 0.1237, 0.0380, 0.1521 and 0.1435, respectively. The p-values for

testing H0 : γi = 0, i = 1, 2, · · · , 5 are equal to <0.0001, 0.6463, 0.5496, 0.5379 and

0.2210, respectively, which indicates that square root of Cd4 cell counts has signifi-

cantly negative effects on log10-transformed virus load while there are no significant

effects of the treatment, baseline Ad5 titer, study sites or the pre-protocol on the HIV

viral load level at 5% significance level. The estimates of time-dependent intercept
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and its 95% pointwise confidence intervals are shown in Figure 5.7. Figure 5.8 shows

the scatter plot of the residuals of subjects with Ri = 1 from fitting the model (5.2).

Here in both fitting models there are five independent variables. So we can

conduct model selection in the future.
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Blot or RNA to subsquent visits.
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Elisa confirmed by Western Blot or RNA. Figure (a) shows the histogram of observed
Vi’s (Ri = 1) while Figure (b) shows the counts of censored Vi’s (Ri = 0).
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Figure 5.5: Estimation of β(t) = (β0(t), β1(t), β2(t))
T based on the data from STEP

study with MITT cases. Figure (a) shows the estimated intercept, β0(t) and its 95%
pointwise confidence interval. Figure (b) shows the estimated effect of the square root
of CD4 effect, β1(t) and its 95% pointwise confidence interval. Figure (c) shows the
estimated treatment effect, β2(t) and its 95% pointwise confidence interval. The solid
curves are the estimated curves and the dashed curves are the confidence intervals.
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Figure 5.6: The scatter plot of residuals of the subjects with Ri = 1.
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Figure 5.7: The estimated intercept, β0(t) and its 95% pointwise confidence interval
under Model 5.2, based on the data from STEP study with MITT cases. The solid
curves are the estimated curves and the dashed curves are the confidence intervals.
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Figure 5.8: The scatter plot of residuals of the subjects with Ri = 1 under Model 5.2.



CHAPTER 6: FUTURE WORKS

As mentioned in Chapter 5.1, it is more rigorous to test whether there are

constant effects of Xi(t) before we fitting Model (5.2). This test is based on the

asymptotic properties of estimator of integrated time-dependent effects, i.e. B̂(t) =∫ t

0
β̂(s)ds. These asymptotic results can be obtained by using our lemmas in Appendix

A.2. After that, besides testing constant effect ofXi(t), we can also test whether there

is no effect of Xi(t).
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APPENDIX A: PROOF OF LEMMA AND THEOREM

In this chapter, we provide the proofs of Theorem 3.1 to 3.4. Six technique

lemmas are presented and proved first in Section A.2. Lemma A.2.1 to A.2.6 are to

be used in the proofs of Theorem 3.1 to 3.4 in Section A.3.

A.1 Preliminaries

For simplicity we derive the asymptotic results under the assumption that Si

and Di are independent. Preparing for future application in this section, we first

derive the martingale decomposition of the Kaplan-Meier estimator of the survival

function for the left censored data.

In general, we have the i.i.d. data structure of the left censored data as follows,

{Ti = max(Si, Ci), δi = I(Si ≥ Ci)},

where Si is the failure time censored by Ci, Ti is observed time and δi is the indicator

of non-censorship for ith subject. Suppose L be a large enough number so that all

Si < L. Then

{L− Ti = min(L− Si, L− Ci), δi = I(L− Si ≤ L− Ci)}

is the corresponding right censored data structure. Let S(t) = P (Si > t) and SS(t) =

P (L−Si > t) be the survival functions of the failure time for the left and right censored

data respectively. And Ŝ(t), ŜS(t) are the Kaplan-Meyer estimators of the survival

functions respectively. Now define the counting process NS
i (t) = I(L−Ti ≤ t, δi = 1).

By the Doob-Meyer decomposition, there is a compensator
∫ t

0
Y S
i (s)dΛS(s) and a

martingale MS
i (t) so that NS

i (t) =
∫ t

0
Y S
i (s)dΛS(s)+MS

i (t). Here Y
S
i (t) = I(L−Ti ≥

t) is the at risk indicator and ΛS(t) is the cumulative hazard function. Let NS(t) =∑n
i=1 N

S
i (t), M

S(t) =
∑n

i=1 M
S
i (t) and Y S(t) =

∑n
i=1 Y

S
i (t) =

∑n
i=1 I(Ti ≤ L − t).

Assume that Y S(t)/n
P−→ yS(t). Hence according to Equation (2.11) in Chapter 3
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on Page 98 of Fleming & Harrington (1991), we have the decomposition

n1/2(ŜS(t)− SS(t)) = −n1/2SS(t)

∫ t

0

ŜS(s−)

SS(s)

I(Y S(s) > 0)

Y S(s)
dMS(s) + op(1).

Since

S(t) = P (Si > t) = P (L− Si < L− t) = 1− P (L− Si ≥ L− t) = 1− SS((L− t)−),

then for the left censored data

n1/2(Ŝ(t)− S(t))

= −n1/2[ŜS((L− t)−)− SS((L− t)−)]

= n1/2SS((L− t)−)

∫ (L−t)−

0

ŜS(s−)

SS(s)

I(Y S(s) > 0)

Y S(s)
dMS(s) + op(1)

= n−1/2(1− S(t))

∫ (L−t)−

0

1− Ŝ(L− s)

1− S((L− s)−)

I(Y S(s) > 0)

Y S(s)/n
dMS(s) + op(1)

= n−1/2(1− S(t))

∫ (L−t)−

0

1

yS(s)
dMS(s) + op(1). (A.1)

Under Conditions (II), n1/2(Ŝ(t)− S(t)) converges weakly on [0,∞] by Ying (1989).

Now let us define the following notations for the future use.

XI
zi(t) =

∫ t

0

[RiZi(u)X
T
i (u)dN

c
i (u)− E(Riξi(u)αi(u)Zi(u)X

T
i (u))du],

(A.2)

XII
zi (t) =

∫ ∞

0

∫ L

0

∫ t

t1

E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− Vi)−)

Fs(Vi)

}

dudFs(s)
dMS

i (x)

yS(x)

−
∫ L−

0

∫ (L−x)−

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
du dFs(s)

dMS
i (x)

yS(x)

+

∫ L

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
Fs(s)du

dMS
i ((L− s)−)

yS((L− s)−)
,

(A.3)

XIII
zi (t) =

∫ t

0

(Es{(1−Ri)Zi(u)X
T
i (u)dN

c
i (u) | Di, Ri = 0}

−E{(1−Ri)ξi(u)αi(u)Zi(u)X
T
i (u)}du), (A.4)
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and

XI
zn(t) = n−1/2

n∑
i=1

XI
zi(t), X

II
zn(t) = n−1/2

n∑
i=1

XII
zi (t), X

III
zn (t) = n−1/2

n∑
i=1

XIII
zi (t).

Similarly, we define XI
yi(t), X

II
yi (t), X

III
yi (t), XI

yn(t), X
II
yn(t), X

III
yn (t) by replacing Zi(·)

with Yi(·) respectively. XI
xi(t), X

II
xi (t), X

III
xi (t), XI

xn(t), X
II
xn(t), X

III
xn (t) are similarly

defined by replacing Zi(·) with Xi(·) respectively.

A.2 Some Lemmas

Lemma A.2.1: Let g(t, x, z, y) be a continuous function of (t, x, z, y) and gi(t) =

g(t,Xi(t), Zi(t), Yi(t)). Then under Conditions (I) and (II),

n−1

n∑
i=1

(1−Ri)Ês

{∫ t

t1

gi(u)dN
c
i (u) | Di, Ri = 0

}
P−→ E

{
(1−Ri)

∫ t

t1

gi(u)dN
c
i (u)

}

uniformly in t ∈ [t1, t2] ⊂ (0, τ) as n → ∞.

Proof. Let ξ∗i (s, v) = I(t1 ≤ s + v ≤ t)I(s < Vi)I(Ci ≥ v). Since Si is

independent of Di, under conditions (II) and by (2.4),

n−1

n∑
i=1

(1−Ri)Ês

{∫ t

t1

gi(u)dN
c
i (u) | Di, Ri = 0

}

= n−1

n∑
i=1

(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)

dF̂s(s)

F̂s(Vi)

= n−1

n∑
i=1

(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)

dFs(s)

Fs(Vi)

+n−1

n∑
i=1

(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)

(
dFs(s)

F̂s(Vi)
− dFs(s)

Fs(Vi)

)

+n−1

n∑
i=1

(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)

dF̂s(s)− dFs(s)

F̂s(Vi)
(A.5)

Since F̂s(s) is the Kaplan-Meier estimator, under Conditions (II), by Theorem

3.1 of Sun (1997) and relative work in Ying (1989), we have F̂s(s)
P−→ Fs(s) uniformly

in s ∈ [s0, L]. Then F̂s(Vi)
P−→ Fs(Vi) since P (Vi > s0) = 1. By the continuous
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mapping theorem, 1/F̂s(Vi)
P−→ 1/Fs(Vi). Under Conditions (I) the second term in

(A.5)

n−1

n∑
i=1

(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)

(
1

F̂s(Vi)
− 1

Fs(Vi)

)
dFs(s)

= n−1

n∑
i=1

(
1

F̂s(Vi)
− 1

Fs(Vi)

)
(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)dFs(s)

converges to zero in probability. Note that Ni(t) =
∑ni

j=1 I(Tij ≤ t), the third term

in (A.5) is equal to

n−1

n∑
i=1

(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)

dF̂s(s)− dFs(s)

Fs(Vi)
+ op(1)

= n−1

n∑
i=1

(1−Ri)

∫ L

s0

(∫ τ−s

−s

gi(s+ v)ξ∗i (s, v)dNi(v)

)
d(F̂s(s)− Fs(s))

Fs(Vi)

+op(1)

=

∫ L

s0

[
n−1

n∑
i=1

(1−Ri)

∫ τ−s

−s

gi(s+ v)ξ∗i (s, v)dNi(v)
1

Fs(Vi)

]
d(F̂s(s)− Fs(s))

+op(1)

Let

Hn(s) = n−1

n∑
i=1

(1−Ri)

∫ τ−s

−s

gi(s+ v)ξ∗i (s, v)dNi(v)
1

Fs(Vi)
.

So the absolute value of the third term in (A.5) equals∣∣∣∣
∫ L

s0

Hn(s)d(F̂s(s)− Fs(s))

∣∣∣∣
=

∣∣∣∣Hn(L)(F̂s(L)− Fs(L))−Hn(s0)(F̂s(s0)− Fs(s0))−
∫ L

s0

(F̂s(s)− Fs(s))dHn(s)

∣∣∣∣
≤ |Hn(L)(F̂s(L)− Fs(L))|+ |Hn(s0)(F̂s(s0)− Fs(s0))|+

∣∣∣∣
∫ L

s0

(F̂s(s)− Fs(s))dHn(s)

∣∣∣∣
≤ |Hn(L)(F̂s(L)− Fs(L))|+ |Hn(s0)(F̂s(s0)− Fs(s0))|

+ sup
s∈[s0,L]

|F̂s(s)− Fs(s)|
∫ L

s0

|dHn(s)|

Under Conditions (I), by the uniform consistency of F̂s(s) on [s0, L] and since Hn(·)
is of bounded variation uniformly in n, the third term of (A.5) converges to zero in
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probability as n → ∞. Therefore,

(A.5)
P−→ E

{
(1−Ri)

∫ L

s0

ni∑
j=1

gi(s+ Tij)ξ
∗
i (s, Tij)

dFs(s)

Fs(Vi)

}

= E

{
(1−Ri)Es

(∫ t

t1

gi(u)dN
c
i (u) | Di, Ri = 0

)}

= E

{
I(Ri = 0)Es

(∫ t

t1

gi(u)dN
c
i (u) | Di, Ri = 0

)}

= E

{
Es

(
I(Ri = 0)

∫ t

t1

gi(u)dN
c
i (u) | Di, Ri = 0

)}

= E

{
(1−Ri)

∫ t

t1

gi(u)dN
c
i (u)

}

The proof of Lemma A.2.1 is completed.

Based on the above lemma, we can easily prove the following lemma.

Lemma A.2.2: Let g(t, x, z, y) be a continuous function of (t, x, z, y) and gi(t) =

g(t,Xi(t), Zi(t), Yi(t)). Then under Conditions (I) and (II),

n−1

n∑
i=1

�
∫ t

t1

gi(u)dN
c
i (u) 	R

P−→ E

{∫ t

t1

gi(u)dN
c
i (u)

}

uniformly in t ∈ [t1, t2] ⊂ (0, τ) as n → ∞.

Proof. Note that

n−1

n∑
i=1

�
∫ t

t1

gi(u)dN
c
i (u) 	R

= n−1

n∑
i=1

Ri

∫ t

t1

gi(u)dN
c
i (u) + n−1

n∑
i=1

(1−Ri)Ês

{∫ t

t1

gi(u)dN
c
i (u) | X

}

= n−1

n∑
i=1

Ri

∫ t

t1

gi(u)dN
c
i (u) + n−1

n∑
i=1

(1−Ri)Ês

{∫ t

t1

gi(u)dN
c
i (u) | Di, Ri = 0

}
.

(A.6)

By the law of large numbers, the first term of (A.6) converges to E{Ri

∫ t

t1
gi(u)dN

c
i (u)}
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in probability and by Lemma A.2.1,

(A.6)
P−→ E

{
Ri

∫ t

t1

gi(u)dN
c
i (u)

}
+ E

{
(1−Ri)

∫ t

t1

gi(u)dN
c
i (u)

}

= E

{
Ri

∫ t

t1

gi(u)dN
c
i (u) + (1−Ri)

∫ t

t1

gi(u)dN
c
i (u)

}

= E

{∫ t

t1

gi(u)dN
c
i (u)

}
.

Lemma A.2.2 is proved.

Lemma A.2.3: Let g(t, x, z, y) be a continuous function of (t, x, z, y) and gi(t) =

g(t,Xi(t), Zi(t), Yi(t)). Then under Conditions (I) and (II),

n−1

n∑
i=1

�
∫ τ

0

Kh(u− t)gi(u)dN
c
i (u) 	R

P−→ E(ξi(t)αi(t)gi(t))

uniformly in t ∈ [t1, t2] ⊂ (0, τ) as n → ∞, h → 0 and nh2 → ∞, where ξi(t) =

I(Si + Ci ≥ t).

Proof. By the definition,

n−1

n∑
i=1

�
∫ τ

0

Kh(u− t)gi(u)dN
c
i (u) 	R

= n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)gi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)gi(u)dN
c
i (u) | X

}
(A.7)

Since the observations for different subjects are independent, the second term can be

written as

n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)gi(u)dN
c
i (u) | Di, Ri = 0

}

= n−1

n∑
i=1

(1−Ri)

∫ τ

0

Kh(u− t)d

(∫ u

0

Ês{gi(v)dN c
i (v) | Di, Ri = 0}

)
. (A.8)

It is easy to see that the convergence in Lemma A.2.1 holds uniformly in u ∈ [0, τ ]

with the interval [0, u] in place of [t1, t2]. Then by the argument in the proof of Lemma
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A.2.1,

n−1

n∑
i=1

(1−Ri)

[ ∫ u

0

Ês(gi(v)dN
c
i (v) | Di, Ri = 0)−

∫ u

0

Es(gi(v)dN
c
i (v) | Di, Ri = 0)

]

converges to zero in probability uniformly in u ∈ [0, τ ]. So

(A.8) =

∫ τ

0

Kh(u− t)d

(
n−1

n∑
i=1

(1−Ri)

∫ u

0

Es{gi(v)dN c
i (v) | Di, Ri = 0}

)
+op(1)

=

∫ τ

0

Kh(u− t)d

(
E

[
(1−Ri)

∫ u

0

Es{gi(v)dN c
i (v) | Di, Ri = 0}

])
+ op(1)

=

∫ τ

0

Kh(u− t)d

(∫ u

0

E[Es{(1−Ri)gi(v)dN
c
i (v) | Di, Ri = 0}]

)
+ op(1)

=

∫ τ

0

Kh(u− t)d

(∫ u

0

E{(1−Ri)gi(v)dN
c
i (v)}

)
+ op(1)

=

∫ τ

0

Kh(u− t)E{(1−Ri)gi(u)dN
c
i (u)}+ op(1).

According to the argument on Page 37 of Sun & Wu (2005), the first term of (A.7)

is equal to ∫ τ

0

Kh(u− t)E{Rigi(u)dN
c
i (u)}+Op(n

−1/2h−1).

Note that dN c
i (u) = ξi(u)dN

o
i (u). Therefore,

(A.7) =

∫ τ

0

Kh(u− t)E{Rigi(u)dN
c
i (u)}+

∫ τ

0

Kh(u− t)E{(1−Ri)gi(u)dN
c
i (u)}

+Op(n
−1/2h−1) + op(1)

=

∫ τ

0

Kh(u− t)E{gi(u)dN c
i (u)}+Op(n

−1/2h−1) + op(1)

=

∫ τ

0

Kh(u− t)E{gi(u)ξi(u)dN o
i (u)}+Op(n

−1/2h−1) + op(1)

=

∫ τ

0

Kh(u− t)E{ξi(u)E[gi(u)dN
o
i (u) | Xi(u), Zi(u), ξi(u)]}+Op(n

−1/2h−1)

+op(1).

Since Yi(u) and dN o
i (u) are independent conditional on Xi(u), Zi(u) and ξi(u), by
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the assumptions of noninformative censoring,

(A.7) =

∫ τ

0

Kh(u− t)E{ξi(u)E[gi(u) | Xi(u), Zi(u), ξi(u)]

E[dN o
i (u) | Xi(u), Zi(u), ξi(u)]}+Op(n

−1/2h−1) + op(1)

=

∫ τ

0

Kh(u− t)E{ξi(u)E[gi(u) | Xi(u), Zi(u), ξi(u)]E[dN o
i (u) | Xi(u), Zi(u)]}

+Op(n
−1/2h−1) + op(1)

=

∫ τ

0

Kh(u− t)E[ξi(u)E[gi(u) | Xi(u), Zi(u), ξi(u)]αi(u)du] +Op(n
−1/2h−1)

+op(1)

=

∫ τ

0

Kh(u− t)E(E[ξi(u)gi(u)αi(u)du | Xi(u), Zi(u)]) +Op(n
−1/2h−1) + op(1)

=

∫ τ

0

Kh(u− t)E(ξi(u)gi(u)αi(u)du) +Op(n
−1/2h−1) + op(1)

= E(ξi(t)αi(t)gi(t)) +O(h2) +Op(n
−1/2h−1) + op(1)

P−→ E(ξi(t)αi(t)gi(t))

as n → ∞, h → 0 and nh2 → ∞. Lemma A.2.3 is proved.

Define the counting process N∗
i (t) =

∑ni

j=1 I(Tij ≤ t)I(Ci ≥ t) and denote its

mean rate by

E{dN∗
i (t) | Ri, Xi(t), Yi(t), Zi(t), Vi} = α∗

i (t)dt. (A.9)

Lemma A.2.4: Let g(t, x, z, y) be a continuous function of (t, x, z, y) and gi(t) =

g(t,Xi(t), Zi(t), Yi(t)). Then under Conditions (I) and (II),

n−1/2h1/2

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)gi(u)dN
c
i (u) | Di, Ri = 0

}

− n−1/2h1/2

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)gi(u)dN
c
i (u) | Di, Ri = 0

}
= Op(h

1/2)

(A.10)

uniformly in t ∈ [t1, t2] ⊂ (0, τ) as n → ∞, h → 0 and nh2 → ∞.
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Proof. The left side of (A.10) equals

n−1/2h1/2

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

Kh(s+ Tij − t)gi(s+ Tij)I(Ci ≥ Tij)I(s+ Tij ≤ τ)

I(s ≤ Vi)

(
dF̂s(s)

F̂s(Vi)
− dFs(s)

Fs(Vi)

)

= n−1h1/2

n∑
i=1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − t)gi(v)dN
∗
i (v − s)I(s ≤ Vi)

n1/2(Ŝs(Vi)− Ss(Vi))

F 2
s (Vi)

dFs(s)

−n−1h1/2

n∑
i=1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − t)gi(v)dN
∗
i (v − s)I(s ≤ Vi)

d{n1/2(Ŝs(Vi)− Ss(Vi))}
Fs(Vi)

.

Applying (A.1),above equation equals

n−1h1/2

n∑
i=1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − t)gi(v)dN
∗
i (v − s)I(s ≤ Vi)

n−1/2

Fs(Vi)

∫ (L−Vi)−

0

dMS(x)

yS(x)
dFs(s)

−n−1h1/2

n∑
i=1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − t)gi(v)dN
∗
i (v − s)I(s ≤ Vi)

1

Fs(Vi)
d

{
n−1/2Fs(s)

∫ (L−s)−

0

dMS(x)

yS(x)

}
+ op(1)

= h1/2n−1/2

∫ ∞

0

∫ L

0

∫ τ

0

Kh(v − t)n−1

n∑
i=1

(1−Ri)gi(v)dN
∗
i (v − s)I(s ≤ Vi)

I(x < (L− Vi)−)

Fs(Vi)
dFs(s)

dMS(x)

yS(x)

−h1/2n−1/2

∫ L

0

∫ τ

0

Kh(v − t)n−1

n∑
i=1

(1−Ri)gi(v)
dN∗

i (v − s)

Fs(Vi)
I(s ≤ Vi)

Fs(s)
dMS((L− s)−)

yS((L− s)−)

−h1/2n−1/2

∫ L

0

∫ (L−x)−

0

∫ τ

0

Kh(v − t)n−1

n∑
i=1

(1−Ri)gi(v)
dN∗

i (v − s)

Fs(Vi)
I(s ≤ Vi)

dFs(s)
dMS(x)

yS(x)
. (A.11)
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Let u = v − s. The third term of (A.11) is

h1/2n−1/2

∫ τ

0

Kh(v − t)n−1

n∑
i=1

(1−Ri)gi(v)

∫ L

0

∫ (L−x)−

0

dN∗
i (v − s)

Fs(Vi)
I(s ≤ Vi)

dFs(s)
dMS(x)

yS(x)

= h1/2n−1/2

∫ L

0

∫ τ−s

−s

Kh(u+ s− t)n−1

n∑
i=1

(1−Ri)gi(u+ s)
dN∗

i (u)

Fs(Vi)
I(s ≤ Vi)

∫ (L−s)−

0

dMS(x)

yS(x)
dFs(s). (A.12)

Let

Γn(s) =

∫ τ−s

−s

Kh(u+ s− t)n−1

n∑
i=1

(1−Ri)gi(u+ s)
dN∗

i (u)

Fs(Vi)
I(s ≤ Vi).

Then (A.12) = h1/2n−1/2
∫ L

0
Γn(s)

∫ (L−s)−
0

dMS(x)
yS(x)

dFs(s). Note that

E(Γn(s)) =

∫ τ−s

−s

Kh(u+ s− t)E

{
(1−Ri)gi(u+ s)

α∗
i (u)

Fs(Vi)
I(s ≤ Vi)

}
du

→ E

{
(1−Ri)gi(t)

α∗
i (t− s)

Fs(Vi)
I(s ≤ Vi)

}
, (A.13)

uniformly in t and s as n → ∞ and h → 0, and by applying Lemma A.1 of Lin &

Ying (2001) we have

Γn(s)− E(Γn(s))

=

∫ τ−s

−s

n−1/2Kh(u+ s− t)n1/2d

{∫ u

−s

n−1

n∑
i=1

(1−Ri)gi(v + s)
dN∗

i (v)

Fs(Vi)
I(s ≤ Vi)

−
∫ u

−s

E

{
(1−Ri)gi(v + s)

α∗
i (v)

Fs(Vi)
I(s ≤ Vi)dv

}
P−→ 0,

uniformly in t and s as n → ∞, h → 0 and nh2 → ∞. Hence (A.12) equals

h1/2n−1/2

∫ L

0

E(Γn(s))

∫ (L−s)−

0

dMS(x)

yS(x)
dFs(s) + op(h

1/2)

= h1/2n−1/2

∫ L

0

E

{
(1−Ri)gi(t)

α∗
i (t− s)

Fs(Vi)
I(s ≤ Vi)

}∫ (L−s)−

0

dMS(x)

yS(x)
dFs(s)
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+op(h
1/2)

= h1/2n−1/2

∫ L

0

∫ (L−x)−

0

E

{
(1−Ri)gi(t)

α∗
i (t− s)

Fs(Vi)
I(s ≤ Vi)

}
dFs(s)

dMS(x)

yS(x)

+op(h
1/2)

= Op(h
1/2) + op(h

1/2). (A.14)

Now apply similar arguments to the first and second terms of (A.11), we can obtain

the left side of (A.10) is of the order of Op(h
1/2). Lemma has been proved.

Further, if E{gi(t) | Ri, Vi, α
∗
i (t − s)} = 0 for s ≤ t, then (A.10) holds at the

rate of op(h
1/2).

Lemma A.2.5: Under Conditions (I) and (II),

n1/2

∫ t

t1

{Ẽzx(u)− ezx(u)}(exx(u))−1du

= n−1/2

n∑
i=1

∫ t

t1

[
d{XI

zi(v) +XII
zi (v) +XIII

zi (v)}(exx(v))−1

]
+Op(n

−1/2h2 + n1/2h2) + op(1) (A.15)

converges weakly to a vector of mean-zero Gaussian processes with continuous paths

as n → ∞, h → 0 and nh4 → 0. Similar results hold for

n1/2

∫ t

t1

{Ẽyx(u)− eyx(u)}(exx(u))−1du

= n−1/2

n∑
i=1

∫ t

t1

[
d{XI

yi(v) +XII
yi (v) +XIII

yi (v)}(exx(v))−1

]
+Op(n

−1/2h2 + n1/2h2) + op(1), (A.16)

n1/2

∫ t

t1

βT (u){Ẽxx(u)− exx(u)}(exx(u))−1du

= n−1/2

n∑
i=1

∫ t

t1

[
βT (u)d{XI

xi(v) +XII
xi (v) +XIII

xi (v)}(exx(v))−1

]

+Op(n
−1/2h2 + n1/2h2) + op(1). (A.17)
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Proof. By the definitions,

n1/2

∫ t

t1

(Ẽzx(u)− ezx(u))(exx(u))
−1du

= n1/2

∫ t

t1

(
n−1

n∑
i=1

�
∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) 	R

−E{ξi(u)αi(u)Zi(u)X
T
i (u)}

)
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[
Ri

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v)

−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

+(1−Ri)Ês

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | X

}

−E{(1−Ri)ξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[
Ri

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v)

−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

+(1−Ri)Ês

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}

−E{(1−Ri)ξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[
Ri

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v)

−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

+n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

[
Ês

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}

−Es

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}]
(exx(u))

−1du

+n−1/2

n∑
i=1

∫ t

t1

[
(1−Ri)Es

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}

−E{(1−Ri)ξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

RiKh(v − u)Zi(v)X
T
i (v)dN

c
i (v)
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−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

+n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

ni∑
j=1

Kh(s+ Tij − u)ZijX
T
ijI(Ci ≥ Tij)

[
dF̂s(s | Di)

F̂s(Vi | Di)

−dFs(s | Di)

Fs(Vi | Di)

]
(exx(u))

−1du

+n−1/2

n∑
i=1

∫ t

t1

[
(1−Ri)Es

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}

−E{(1−Ri)ξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du. (A.18)

Denote the three terms in (A.18) by A, B and C, respectively. Then

A = n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

Kh(v − u)RiZi(v)X
T
i (v)dN

c
i (v)

−
∫ τ

0

Kh(v − u)E{Riξ(v)αi(v)Zi(v)X
T
i (v)}dv +O(h2)

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

∫ τ

0

Kh(v − u)[RiZi(v)X
T
i (v)dN

c
i (v)

−E{Riξ(v)αi(v)Zi(v)X
T
i (v)}dv](exx(u))−1du+Op(n

1/2h2)

= n1/2

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

[RiZi(v)X
T
i (v)dN

c
i (v)

−E{Riξ(v)αi(v)Zi(v)X
T
i (v)}dv](exx(u))−1du+Op(n

1/2h2)

=

∫ t

t1

∫ τ

0

Kh(v − u)d

(
n−1/2

n∑
i=1

∫ v

0

[RiZi(w)X
T
i (w)dN

c
i (w)

−E{Riξi(w)αi(w)Zi(w)X
T
i (w)}dw]

)
(exx(u))

−1du+Op(n
1/2h2). (A.19)

Note that

XI
zn(v) = n−1/2

n∑
i=1

∫ v

0

[RiZi(w)X
T
i (w)dN

c
i (w)− E{Riξi(w)αi(w)Zi(w)X

T
i (w)}dw].

Under Condition (I) XI
zn(v) converges to a vector of mean zero Gaussian processes,

saying XI
z (v) uniformly in v. Then also by the compactness of K(·) and the applica-
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tion of the continuous mapping theorem,

A =

∫ t

t1

∫ τ

0

Kh(v − u)dXI
zn(v)(exx(u))

−1du+Op(n
1/2h2)

=

∫ t+h

t1−h

[
dXI

zn(v)

∫ t

t1

h−1K(
v − u

h
)(exx(u))

−1du

]
+Op(n

1/2h2)

=

∫ t+h

t1−h

[
dXI

zn(v)((exx(v))
−1 +O(h2))

]
+Op(n

1/2h2)

D−→
∫ t

t1

[
dXI

z (v)((exx(v))
−1)

]
(A.20)

as n → ∞, h → 0 and nh4 → 0.

The third summation in (A.18)

C = n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

Kh(v − u)Es{(1−Ri)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0}

−E{(1−Ri)ξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

Kh(v − u)Es{(1−Ri)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0}

−
∫ τ

0

Kh(v − u)E{(1−Ri)ξi(v)αi(v)Zi(v)X
T
i (v)}dv +O(h2)

]
(exx(u))

−1du

=

∫ t

t1

[ ∫ τ

0

Kh(v − u)

{
n−1/2

n∑
i=1

(Es{(1−Ri)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0}

−E{(1−Ri)ξi(v)αi(v)Zi(v)X
T
i (v)}dv)

}]
(exx(u))

−1du+Op(n
1/2h2)

=

∫ t

t1

[ ∫ τ

0

Kh(v − u)d

{
n−1/2

n∑
i=1

∫ v

0

(Es{(1−Ri)Zi(w)X
T
i (w)dN

c
i (w) | Di, Ri

= 0} − E{(1−Ri)ξi(w)αi(w)Zi(w)X
T
i (w)}dw)

}]
(exx(u))

−1du

+Op(n
1/2h2). (A.21)

Note that

XIII
zn (v) = n−1/2

n∑
i=1

∫ v

0

(Es{(1−Ri)Zi(w)X
T
i (w)dN

c
i (w) | Di, Ri = 0}

−E{(1−Ri)ξi(w)αi(w)Zi(w)X
T
i (w)}dw).
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Under Condition (I) XIII
zn (v) converges to a vector of mean zero Gaussian processes,

saying XIII
z (v) uniformly in v. Following similar arguments in deriving (A.20) for the

term A, we have

C =

∫ t

t1

∫ τ

0

Kh(v − u)dXIII
zn (v)(exx(u))

−1du+Op(n
1/2h2)

=

∫ t+h

t1−h

[
{dXIII

zn (v)}((exx(v))−1 +O(h2))

]
+Op(n

1/2h2)

D−→
∫ t

t1

[
{dXIII

z (v)}((exx(v))−1)

]
(A.22)

as n → ∞, h → 0 and nh4 → 0.

Remind the counting process N∗
i (t) =

∑ni

j=1 I(Tij ≤ t)I(Ci ≥ t) and its mean

rate E{dN∗
i (t) | Ri, Xi(t), Yi(t), Zi(t), Vi} = α∗

i (t)dt. The second summation of (A.18)

B = n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

ni∑
j=1

Kh(s+ Tij − u)ZijX
T
ijI(Ci ≥ Tij)

[
dF̂s(s)

F̂s(Vi)

−dFs(s)

Fs(Vi)

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

[(
1

F̂s(Vi)

− 1

Fs(Vi)

)
dFs(s) +

dF̂s(s)− dFs(s)

F̂s(Vi)

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

Fs(Vi)− F̂s(Vi)

F 2
s (Vi)

dFs(s)(exx(u))
−1du

+n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

d(F̂s(s)− Fs(s))

Fs(Vi)
(exx(u))

−1du+ op(1)

= n−1

n∑
i=1

∫ t

t1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

n1/2(Ŝs(Vi)− Ss(Vi))

F 2
s (Vi)

dFs(s)(exx(u))
−1du

−n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)
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d[n1/2(Ŝs(s)− Ss(s))]

Fs(Vi)
(exx(u))

−1du (A.23)

+op(1)

Applying the approximation (A.1), the first term of (A.23) is

n−1

n∑
i=1

∫ t

t1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

n−1/2Fs(Vi)

F 2
s (Vi)∫ (L−(Vi))−

0

dMS(x)

yS(x)
dFs(s)(exx(u))

−1du+ op(1)

=

∫ t

t1

∫ L

0

n−1

n∑
i=1

∫ τ

0

(1−Ri)Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

n−1/2

Fs(Vi)∫ ∞

0

I(x ≤ (L− (Vi))−)
dMS(x)

yS(x)
dFs(s)(exx(u))

−1du+ op(1)

= n−1/2

∫ ∞

0

∫ L

0

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)Zi(v)X
T
i (v)dN

∗
i (v − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)
(exx(u))

−1dudFs(s)
dMS(x)

yS(x)
+ op(1). (A.24)

The second term of (A.23) is

−n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)

d

{
n−1/2Fs(s)

∫ (L−s)−

0

dMS(x)

yS(x)

}
(exx(u))

−1du+ op(1)

= −n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)

n−1/2

∫ (L−s)−

0

dMS(x)

yS(x)
dFs(s)(exx(u))

−1du

+n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)
n−1/2Fs(s)

dMS((L− s)−)

yS((L− s)−)
(exx(u))

−1du+ op(1)

= −n−1/2

∫ L−

0

∫ (L−x)−

0

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)
Zi(v)X

T
i (v)

Fs(Vi)

dN∗
i (v − s)(exx(u))

−1du dFs(s)
dMS(x)

yS(x)
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+n−1/2

∫ L

0

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)
Fs(s)

(exx(u))
−1du

dMS((L− s)−)

yS((L− s)−)
+ op(1). (A.25)

Since

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)Zi(v)X
T
i (v)dN

∗
i (v − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

=

∫ τ

0

Kh(v − u)d

(
n−1

n∑
i=1

∫ v

0

(1−Ri)Zi(w)X
T
i (w)dN

∗
i (w − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

)

=

∫ τ

0

Kh(v − u)dE

{∫ v

0

(1−Ri)Zi(w)X
T
i (w)dN

∗
i (w − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+op(1)

=

∫ τ

0

Kh(v − u)dE

{
E

[ ∫ v

0

(1−Ri)Zi(w)X
T
i (w)dN

∗
i (w − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

∣∣∣∣Ri, Xi(·), Yi(·), Zi(·), Vi

]}
+ op(1)

=

∫ τ

0

Kh(v − u)dE

{∫ v

0

(1−Ri)Zi(w)X
T
i (w)E[dN∗

i (w − s) | Ri, Xi(·), Yi(·),

Zi(·), Vi]
I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+ op(1)

=

∫ τ

0

Kh(v − u)dE

{∫ v

0

(1−Ri)Zi(w)X
T
i (w)α

∗
i (w − s)dw

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+op(1)

=

∫ τ

0

Kh(v − u)E

{
(1−Ri)Zi(v)X

T
i (v)α

∗
i (v − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
dv + op(1)

= E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+Op(h

2) + op(1)

(A.26)

and similarly

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)

= E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
+Op(h

2) + op(1),
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then

(A.24) = n−1/2

∫ ∞

0

∫ L

0

∫ t

t1

E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}

(exx(u))
−1du dFs(s)

dMS(x)

yS(x)
+Op(n

−1/2h2) + op(1),

(A.25) = −n−1/2

∫ L−

0

∫ (L−x)−

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
(exx(u))

−1

du dFs(s)
dMS(x)

yS(x)

+n−1/2

∫ L

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
Fs(s)(exx(u))

−1

du
dMS((L− s)−)

yS((L− s)−)
+Op(n

−1/2h2) + op(1)

Hence the second summation of (A.18)

B = n−1/2

[ ∫ ∞

0

∫ L

0

∫ t

t1

E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− Vi)−)

Fs(Vi)

}

(exx(u))
−1du dFs(s)

dMS(x)

yS(x)

−
∫ L−

0

∫ (L−x)−

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
(exx(u))

−1du

dFs(s)
dMS(x)

yS(x)

+

∫ L

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
Fs(s)(exx(u))

−1du

dMS((L− s)−)

yS((L− s)−)

]
+Op(n

−1/2h2) + op(1)

=

∫ t

t1

(dXII
zn(v))(exx(v))

−1 +Op(n
−1/2h2) + op(1). (A.27)

The asymptotic approximation (A.15) follows from (A.18), (A.20), (A.22) and (A.27).

The weak convergence of (A.15) follows from application of the Donsker Theorem (c.f.,

van der Vaart and Wellner, 1996 and Lemma 1 of Sun and Wu (2005)).

Recall the definitions in Section A.1. We can have the following lemma.

Lemma A.2.6: Under Conditions (I) and (II), n1/2
∫ t

t1
{Z̃x(u)−zx(u)}du and n1/2

∫ t

t1
{Ỹx(u)−
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yx(u)}du converge weakly to mean zero Gaussian processes with continuous paths as

n → ∞, h → 0 and nh4 → 0. Futher,

n1/2

∫ t

t1

{β̃T (u, γ0)− βT
0 (u)}du

= n−1/2

n∑
i=1

{∫ t

t1

d(XI
yi(v) +XII

yi (v) +XIII
yi (v))(exx(v))

−1

−
∫ t

t1

γT
0 d(X

I
zi(v) +XII

zi (v) +XIII
zi (v))(exx(v))

−1

−
∫ t

t1

βT (v)d(XI
xi(v) +XII

xi (v) +XIII
xi (v))(exx(v))

−1

}
+Op(n

−1/2h2 + n1/2h2) + op(1) (A.28)

converges weakly to a mean zero Gaussian process with continuous paths as n → ∞,

h → 0 and nh4 → 0.

Proof. By the definitions,

n1/2

∫ t

t1

{β̃T (u, γ0)− βT
0 (u)}du

=

∫ t

t1

n1/2{Ỹx(u)− γT
0 Z̃x(u)− (yx(u)− γT

0 zx(u))}du

= n1/2

∫ t

t1

{Ỹx(u)− yx(u)}du− γT
0 n

1/2

∫ t

t1

{Z̃x(u)− zx(u)}du (A.29)

By the continuous mapping theorem, it is sufficient to prove that

(
n1/2

∫ t

t1

{Ỹx(u)− yx(u)}du, n1/2

∫ t

t1

{Z̃x(u)− zx(u)}du
)

(A.30)

converges weakly to a vector of mean zero Gaussian processes with continuous sample

paths. Note that

n1/2

∫ t

t1

{Ỹx(u)− yx(u)}du

= n1/2

∫ t

t1

{Ẽyx(u)(Ẽxx(u))
−1 − eyx(u)(exx(u))

−1}du

= n1/2

∫ t

t1

{[Ẽyx(u)− eyx(u)](Ẽxx(u))
−1 − eyx(u)(Ẽxx(u))

−1[Ẽxx(u)
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−exx(u)](exx(u))
−1}du

= n1/2

∫ t

t1

{[Ẽyx(u)− eyx(u)](exx(u))
−1 − eyx(u)(exx(u))

−1[Ẽxx(u)

−exx(u)](exx(u))
−1}du+ op(1). (A.31)

n1/2
∫ t

t1
{Z̃x(u) − zx(u)}du has a similar decomposition. Lemma A.2.6 follows from

applications of Lemma A.2.5.

A.3 Proof of Theorems

Proof of Theorem 3.1

By the uniform convergence of Ỹx(t) and Z̃x(t), which can be proved by using

Lemma A.2.3, we have

β̃(t; γ) = Ỹ T
x (t)− Z̃T

x (t)γ
P−→ yTx (t)− zTx (t)γ

uniformly in t ∈ [t1, t2] as n → ∞, h → 0. Since β0(t) = yTx (t) − zTx (t)γ0, by using

(2.8), replace β(s) in (2.3) and Applying Lemma A.2.2 We have n−1l̃(γ) equals

n−1

n∑
i=1

Ri

∫ τ

0

W (s){Yi(s)− (Ỹx(s)− γT Z̃x(s))Xi(s)− γTZi(s)}2 dN c
i (s)

+n−1

n∑
i=1

(1−Ri)ÊS

[ ∫ τ

0

W (s){Yi(s)− (Ỹx(s)− γT Z̃x(s))Xi(s)

−γTZi(s)}2 dN c
i (s) | X

]

= n−1

n∑
i=1

�
∫ τ

0

W (s){Yi(s)− (Ỹx(s)− γT Z̃x(s))Xi(s)− γTZi(s)}2 dN c
i (s) 	R

= n−1

n∑
i=1

�
∫ τ

0

W (s){Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)

−Zi(s))}2 dN c
i (s) 	R

where

∫ τ

0

W (s){Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)− Zi(s))}2 dN c
i (s)



68

=

∫ τ

0

W (s)[{Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)− Zi(s))}2 − {Yi(s)

−yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2] dN c
i (s)

+

∫ τ

0

W (s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)W (s)[2Yi(s)

−(Ỹx(s) + yx(s))Xi(s) + γT{(Z̃x(s) + zx(s))Xi(s)− 2Zi(s)}]dN c
i (s)

+

∫ τ

0

W (s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)W (s){−(Ỹx(s)− yx(s))Xi(s)

+γT (Z̃x(s)− zx(s))Xi(s) + 2yx(s)Xi(s) + 2Yi(s)

+γT (2zx(s)Xi(s)− 2Zi(s))}dN c
i (s)

+

∫ τ

0

W (s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

=

∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2W (s)dN c

i (s)

+

∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)W (s){yx(s)Xi(s) + Yi(s)

+γT (zx(s)Xi(s)− Zi(s))}dN c
i (s)

+

∫ τ

0

W (s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

So by the linearity of the operation � 	R,

n−1l̃(γ) = n−1

n∑
i=1

�
∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2W (s)

dN c
i (s) 	R

+n−1

n∑
i=1

�
∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)W (s)

{yx(s)Xi(s) + Yi(s) + γT (zx(s)Xi(s)− Zi(s))}dN c
i (s) 	R

+n−1

n∑
i=1

�
∫ τ

0

W (s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2

dN c
i (s) 	R +op(1)
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The first term equals

n−1

n∑
i=1

Ri

∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2W (s)dN c

i (s)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2W (s)

dN c
i (s) | X

}

= n−1

n∑
i=1

Ri

∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2W (s)dN c

i (s)

+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2W (s)

dN c
i (s) | X

}
+ op(1)

=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}
(
n−1

n∑
i=1

RiXi(s)Xi(s)
TW (s)

dN c
i (s)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T

+Es

{∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}
(
n−1

n∑
i=1

(1−Ri)Xi(s)Xi(s)
T

W (s)dN c
i (s)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T | X

}
+ op(1)

=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

RiXi(u)Xi(u)
TWi(u)

dN c
i (u)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T

+Es

{∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)

Xi(u)
TW (u)dN c

i (u)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T | X

}
+op(1).

Since

n−1

n∑
i=1

∫ s

0

RiXi(u)Xi(u)
TW (u)dN c

i (u)
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P−→ E

{∫ s

0

RiXi(u)Xi(u)
TW (u)dN c

i (u)

}
,

n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)Xi(u)
TW (u)dN c

i (u)

P−→ E

{∫ s

0

(1−Ri)Xi(u)Xi(u)
TW (u)dN c

i (u)

}

and by the uniform convergence of Ỹx(s) and Z̃x(s) which lead to −(Ỹx(s)− yx(s)) +

γT (Z̃x(s)− zx(s))
P−→ 0, the first term converges to zero in probability.

The second term equals

n−1

n∑
i=1

Ri

∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)W (s){yx(s)Xi(s)

+Yi(s) + γT [zx(s)Xi(s)− Zi(s)]}dN c
i (s)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)W (s)

{yx(s)Xi(s) + Yi(s) + γT [zx(s)Xi(s)− Zi(s)]}dN c
i (s) | X

}

=

∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

RiXi(u)W (u)

{yx(u)Xi(u) + Yi(u) + γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

)

+Es

{∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)

W (u){yx(u)Xi(u) + Yi(u) + γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

)
| X

}
+op(1).

Also

n−1

n∑
i=1

∫ s

0

RiXi(u)W (u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

P−→ E

{∫ s

0

RiXi(u)W (u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

}
,
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n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)W (u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

P−→ E

{∫ s

0

(1−Ri)Xi(u)W (u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

}
.

Similarly to the first term, the second term converges to zero in probability.

Therefore according to our lemma A.2.2,

n−1l̃(γ) = n−1

n∑
i=1

�
∫ τ

0

W (s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)

−Zi(s))}2 dN c
i (s) 	R +op(1)

P−→ E

{∫ τ

0

w(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

}

= E

{∫ τ

0

w(s){Yi(s)− (yx(s)− γT
0 zx(s))Xi(s)− γT

0 Zi(s)

+(γ − γ0)
T (zx(s)Xi(s)− Zi(s))}2 dN c

i (s)

}

= E

{∫ τ

0

w(s){εi(s) + (γ − γ0)
T (zx(s)Xi(s)− Zi(s))}2 dN c

i (s)

}

= E

{∫ τ

0

w(s){ε2i (s) + 2εi(s)[(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

+[(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}

= E

{∫ τ

0

w(s){ε2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}

+E

{∫ τ

0

2w(s)εi(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))dN

c
i (s)

}

= E

{∫ τ

0

w(s){ε2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}

+

∫ τ

0

E{E[2w(s)εi(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))dN

c
i (s) | Xi(s),

Zi(s)]}

= E

{∫ τ

0

w(s){ε2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}

+

∫ τ

0

E{2w(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))E[εi(s)dN

c
i (s) | Xi(s),



72

Zi(s)]}

= E

{∫ τ

0

w(s){ε2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}

+

∫ τ

0

E{2w(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))E[εi(s) | Xi(s), Zi(s)]

E[dN c
i (s) | Xi(s), Zi(s)]}

= E

{∫ τ

0

w(s){ε2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}

≡ l0(γ) ≥ l0(γ0) ≡ E

{∫ τ

0

w(s)ε2i (s)dN
c
i (s)

}
,

uniformly in γ in Γ. Let d(γ, γ0) be the Euclidean distance between γ and γ0. There-

fore, for every ε > 0,

sup
γ:d(γ,γ0)≥ε

(−l0(γ)) = − inf
γ:d(γ,γ0)≥ε

l0(γ)

= − inf
γ:d(γ,γ0)≥ε

E

{∫ τ

0

w(s){ε2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}

< − inf
γ:d(γ,γ0)≥ε

E

{∫ τ

0

w(s){ε2i (s)dN c
i (s)

}
= − inf

γ:d(γ,γ0)≥ε
l0(γ0)

= sup
γ:d(γ,γ0)≥ε

(−l0(γ0)).

Then according to Theorem 5.7 of van der Vaart (1998), we have γ̂
P−→ γ0.

Proof of Theorem 3.2

By continuous mapping theorem, the asymptotic uniform consistency of β̂(t)

on [t1, t2] can be easily obtained by the consistency of γ̂, the uniform consistency of

Ỹx(t) and Z̃x(t) since β̂(t) = Ỹ T
x (t)− Z̃T

x (t)γ̂.

Proof of Theorem 3.3

Recall the score function U(γ) and the Taylor expansion of U(γ̂) at γ0

n1/2(γ̂ − γ0) = −
(
n−1∂U(γ∗)

∂γT

)−1

[n−1/2U(γ0)], (A.32)

where γ∗ is on the line segment between γ̂ and γ0.
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By plugging (2.8) into the score function (2.9) we will have

U(γ) =
n∑

i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)(Ỹ

T
x (t)

−Z̃T
x (t)γ)− ZT

i (t)γ} dN c
i (t) 	R

=
n∑

i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)Ỹ

T
x (t) + (XT

i (t)Z̃
T
x (t)

−ZT
i (t))γ} dN c

i (t) 	R .

Then take the partial derivative with respect to γ, we get

n−1∂U(γ∗)
∂γT

= −n−1

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}⊗2 dN c
i (t) 	R . (A.33)

According to the similar argument we discussed in the proof of consistency of γ̂, Z̃x(t)

and W (t) can be replaced by their limits zx(t) and w(t) respectively, and this change

only contributes a op(1) difference to the above equation. Thus by Lemma A.2.2

n−1∂U(γ∗)
∂γT

= −n−1

n∑
i=1

�
∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}⊗2 dN c
i (t) 	R +op(1)

P−→ −E

(∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}⊗2 dN c
i (t)

)
= −D. (A.34)

Now we define B(t) = ∫ t

t1
β0(s)ds and a mean zero process

Mi(t;B, γ, α) =
∫ t

t1

{[Yi(s)− γTZi(s)]dN
c
i (s)− ξi(s)αi(s)X

T
i (s)dB(s)}. (A.35)

For simplicity, we use Mi(t) = Mi(t;B, γ0, α). Also let Oi(t) = N c
i (t)−

∫ t

0
ξi(s)αi(s)ds.

Let εi(t) = Yi(t)−XT
i (t)β0(t)− ZT

i (t)γ0. Then

dMi(t)− βT
0 (t)Xi(t)dOi(t)

= [Yi(t)− γT
0 Zi(t)]dN

c
i (t)− ξi(t)αi(t)X

T
i (t)dB(t)− βT

0 (t)Xi(t)dN
c
i (t)

+βT
0 (t)Xi(t)ξi(t)αi(t)dt

= [Yi(t)− γT
0 Zi(t)− βT

0 (t)Xi(t)]dN
c
i (t)− ξi(t)αi(t)X

T
i (t)β0(t)d(t)

+βT
0 (t)Xi(t)ξi(t)αi(t)dt
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= εi(t)dN
c
i (t), (A.36)

It follows that

n−1/2U(γ0) = n−1/2

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)β̃(t; γ0)

−ZT
i (t)γ0} dN c

i (t) 	R

= n−1/2

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}εi(t) dN c
i (t) 	R

−n−1/2

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t){β̃(t; γ0)− β0(t)}

dN c
i (t) 	R

Denote the second term by η. Next we show that η
P−→ 0. We have

η = n−1/2

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− zx(t)Xi(t)}XT
i (t){β̃(t; γ0)− β0(t)} dN c

i (t) 	R

−n−1/2

n∑
i=1

∫ t2

t1

� W (t){Z̃x(t)− zx(t)}Xi(t)X
T
i (t){β̃(t; γ0)− β0(t)}

dN c
i (t) 	R . (A.37)

The two terms in (A.37) are denoted as η1 and η2 repectively. Then the first term

η1 = n−1/2

∫ t2

t1

W (t) �
n∑

i=1

Zi(t)X
T
i (t) dN

c
i (t) 	R {β̃(t; γ0)− β0(t)}

−n−1/2

∫ t2

t1

W (t) �
n∑

i=1

zx(t)Xi(t)X
T
i (t) dN

c
i (t) 	R {β̃(t; γ0)− β0(t)}

= n−1/2

∫ t2

t1

W (t)d

(∫ t

t1

�
n∑

i=1

Zi(u)X
T
i (u) dN

c
i (u) 	R

)
{β̃(t; γ0)− β0(t)}

−n−1/2

∫ t2

t1

W (t)d

(∫ t

t1

�
n∑

i=1

zx(u)Xi(u)X
T
i (u) dN

c
i (u) 	R

)
{β̃(t; γ0)− β0(t)}.

(A.38)

By Lemma A.2.2, we have

n−1

n∑
i=1

∫ t

t1

� Zi(u)X
T
i (u) dN

c
i (u) 	R

P−→ E

(∫ t

t1

Zi(u)X
T
i (u) dN

c
i (u)

)
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= E

(∫ t

t1

ξi(u)αi(u)Zi(u)X
T
i (u)du

)
=

∫ t

t1

ezx(u)du,

and

n−1

n∑
i=1

∫ t

t1

� zx(u)Xi(u)X
T
i (u) dN

c
i (u) 	R

P−→ E

(∫ t

t1

zx(u)Xi(u)X
T
i (u) dN

c
i (u)

)
= E

(∫ t

t1

zx(u)ξi(u)αi(u)Xi(u)X
T
i (u)du

)

=

∫ t

t1

zx(u)exx(u)du =

∫ t

t1

ezx(u)du.

Therefore,
∫ t

t1
� Zi(u)X

T
i (u) dN

c
i (u) 	R and

∫ t

t1
� zx(u)Xi(u)X

T
i (u) dN

c
i (u) 	R

achieve the same mean. Based on (A.38), we have

η1 =

∫ t2

t1

W (t)d

{
n1/2

(
n−1

n∑
i=1

∫ t

t1

� Zi(u)X
T
i (u) dN

c
i (u) 	R −

∫ t

t1

ezx(u)du

)}

{β̃(t; γ0)− β0(t)}

−
∫ t2

t1

W (t)d

{
n1/2

(
n−1

n∑
i=1

∫ t

t1

� zx(u)Xi(u)X
T
i (u) dN

c
i (u) 	R

−
∫ t

t1

ezx(u)du

)}
{β̃(t; γ0)− β0(t)}. (A.39)

Hence η1
P−→ 0 follows from the weak convergence of

n1/2

(
n−1

n∑
i=1

∫ t

t1

� Zi(u)X
T
i (u) dN

c
i (u) 	R −

∫ t

t1

ezx(u)du

)

and

n1/2

(
n−1

n∑
i=1

∫ t

t1

� zx(u)Xi(u)X
T
i (u) dN

c
i (u) 	R −

∫ t

t1

ezx(u)du

)
,

also the application of consistency of β̃(t; γ0) and Lemma 1 of Lin & Ying (2001).

The second term of (A.37)

η2 = n−1/2

∫ t2

t1

{Z̃x(t)− zx(t)}W (t)
n∑

i=1

� Xi(t)X
T
i (t) dN

c
i (t) 	R {β̃(t; γ0)

−β0(t)}
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= n−1/2

∫ t2

t1

W (t){Z̃x(t)− zx(t)}d
(∫ t

t1

n∑
i=1

� Xi(u)X
T
i (u) dN

c
i (u) 	R

)

{β̃(t; γ0)− β0(t)}.

Using similar arguments of deriving (A.39), η2
P−→ 0. Therefore, η = η1 + η2

P−→ 0.

Hence

n−1/2U(γ0) = n−1/2

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− Z̃x(t)Xi(t)}εi(t)dN c
i (t) 	R +op(1)

= n−1/2

n∑
i=1

∫ t2

t1

� W (t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t) 	R

−n−1/2

∫ t2

t1

W (t){Z̃x(t)− zx(t)}d
( n∑

i=1

∫ t

t1

� Xi(u)εi(u)dN
c
i (u) 	R

)
+op(1). (A.40)

The second term of (A.40) converges to 0 in probability by using integration by parts,

lemma A.2.2, Lemma A.2.6 and Lemma A.1 of Lin & Ying (2001). The first term of

(A.40) is

n−1/2

n∑
i=1

∫ t2

t1

Ri{W (t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t)

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{W (t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t) | X}+ op(1).

(A.41)

The second term of (A.41) is

n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es{w(t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t) | Di, Ri = 0}

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{w(t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t) | Di, Ri = 0}

−n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es{w(t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t) | Di, Ri = 0}

+op(1)
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= n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es{w(t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t) | Di, Ri = 0}

+n−1/2

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

I(t1 ≤ s+ Tij ≤ t2)w(s+ Tij){Zij

−zx(s+ Tij)Xij}εi(s+ Tij)I(Ci ≥ Tij)

[
dF̂s(s)

F̂s(Vi)
− dFs(s)

Fs(Vi)

]
(A.42)

+op(1)

Write

dF̂s(s)

F̂s(Vi)
− dFs(s)

Fs(Vi)
=

d{F̂s(s)− Fs(s)}
F̂s(Vi)

+

{
1

F̂s(Vi)
− 1

Fs(Vi)

}
dFs(s),

and

Ji(s) =

ni∑
j=1

I(t1 ≤ s+ Tij ≤ t2)W (s+ Tij){Zij − zx(s+ Tij)Xij}εi(s+ Tij)I(Ci ≥ Tij).

The second term of (A.42) is

n−1/2

n∑
i=1

(1−Ri)

∫ L

0

Ji(s)(F̂s(Vi))
−1d{F̂s(s)− Fs(s)}

+ n−1/2

n∑
i=1

(1−Ri)

∫ L

0

Ji(s){(F̂s(Vi))
−1 − (Fs(Vi))

−1}dFs(s) (A.43)

Since n−1
∑n

i=1(1−Ri)Ji(s)(F̂s(Vi))
−1 P−→ E{(1−Ri)Ji(s)(F̂s(Vi))

−1} = 0 uniformly

in s ∈ [0, L], and n−1/2(F̂s(s) − Fs(s)) converges weakly on [0, L], we have the first

term of (A.43) converges to zero in probability. By the decomposition (A.1), it also

follows that the second term of (A.43) is

n−1

n∑
i=1

(1−Ri)

∫ L

0

Ji(s)(Fs(Vi))
−1n1/2{Fs(Vi)− F̂s(Vi)}dFs(s) + op(1)

P−→ 0.

Hence by (A.40), (A.41), (A.42) and (A.43), we have

n−1/2U(γ0) = n−1/2

n∑
i=1

∫ t2

t1

Riw(t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t)
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+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es[w(t){Zi(t)− zx(t)Xi(t)}εi(t)dN c
i (t) | Di,

Ri = 0] + op(1). (A.44)

By (A.32), (A.34) and (A.44), we have

n1/2(γ̂ − γ0) = D−1[n−1/2U(γ0)] + op(1).

Hence n1/2(γ̂ − γ0)
D−→ N (0, D−1V D−1).

Let ẽyx(t) =
∫ τ

0
Kh(u− t)eyx(u)du. Similar definitions can be defined for ẽzx(t)

and ẽxx(t). Let β∗(t) = ỹTx (t) − z̃Tx (t)γ0, where ỹx(t) = ẽyx(t)(ẽxx(t))
−1 and z̃x(t) =

ẽzx(t)(ẽxx(t))
−1. We have the fact that ẽyx(t) =

∫ τ

0
Kh(u − t)eyx(u)du

P−→ eyx(u) as

h → 0. Similar facts hold for ẽxx(t) and ẽzx(t) too. The transpose of the matrix is

denoted by changing the order of the subscripts. And e′yx(t) and e′′yx(t) are the first

and second derivatives of eyx(t), respectively.

Proof of Theorem 3.4

Since β̂(t) = β̃(t; γ̂) = Ỹ T
x − Z̃T

x γ̂ and β∗(t) = ỹTx (t)− z̃Tx (t)γ0, applying Taylor

expansion for β̂(t) = β̃(t, γ̂) at γ0, also noting that n1/2(γ̂ − γ0)
D−→ N (0, D−1V D−1)

and

∂β̃(t; γ0)

∂γ
= −Z̃x(t)

P−→ − zx(t),

we have

(nh)1/2(β̂(t)− β∗(t))

= (nh)1/2(β̃(t; γ0)− β∗(t))− (nh)1/2(γ̂ − γ0)Z̃x(t)

= (nh)1/2(β̃(t; γ0)− β∗(t)) +Op(h
1/2). (A.45)

By the weak convergence of (nh)1/2{Ẽyx(t)− ẽyx(t)}, (nh)1/2{Ẽzx(t)− ẽzx(t)}
and (nh)1/2{Ẽxx(t) − ẽxx(t)}, and the convergence of Ẽxx(t) from Lemma A.2.3, we
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have

β̃(t; γ0)− β∗(t)

= Ỹ T
x (t)− Z̃T

x (t)γ0 − {ỹTx (t)− z̃Tx (t)γ0}

= (Ẽxx(t))
−1Ẽxy(t)− (Ẽxx(t))

−1Ẽxz(t)γ0 − (ẽxx(t))
−1ẽxy(t) + (ẽxx(t))

−1ẽxz(t)γ0

= (Ẽxx(t))
−1[{Ẽxy(t)− ẽxy(t)} − {Ẽxz(t)− ẽxz(t)}γ0]

−(ẽxx(t))
−1{Ẽxx(t)− ẽxx(t)}(Ẽxx(t))

−1{ẽxy(t)− ẽxz(t)γ0}

= (exx(t))
−1[{Ẽxy(t)− ẽxy(t)} − {Ẽxz(t)− ẽxz(t)}γ0]

−(exx(t))
−1{Ẽxx(t)− ẽxx(t)}β0(t) + op((nh)

−1/2)

= (exx(t))
−1[(Ẽxy(t)− ẽxy(t))− (Ẽxz(t)− ẽxz(t))γ0 − (Ẽxx(t)− ẽxx(t))β0(t)]

+op((nh)
−1/2). (A.46)

Let

φ1(t) = n−1

n∑
i=1

∫ t

0

RiXi(u)X
T
i (u)dN

c
i (u),

φ2(t) = n−1

n∑
i=1

∫ t

0

(1−Ri)Xi(u)X
T
i (u)dN

c
i (u),

θ1(t) = E{RiXi(t)X
T
i (t)ξi(t)αi(t)},

θ2(t) = E{(1−Ri)Xi(t)X
T
i (t)ξi(t)αi(t)}.

Note that

∫ τ

0

Kh(u− t)E{ξi(u)αi(u)Xi(u)εi(u)}du

=

∫ τ

0

Kh(u− t)E{ξi(u)αi(u)Xi(u)E[εi(u) | Xi(u), Zi(u), ξi(u)]}du = 0.

We have

(nh)1/2(β̃(t; γ0)− β∗(t))

= (nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)[Yi(u)− ZT
i (u)γ0
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−XT
i (u)β0(u)]dN

c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)[Yi(u)− ZT
i (u)γ0

−XT
i (u)β0(u)]dN

c
i (u) | X

}

−
∫ τ

0

Kh(u− t)E{ξi(u)αi(u)Xi(u)[Yi(u)− ZT
i (u)γ0

−XT
i (u)β0(u)]}du

)

−(nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)X
T
i (u)[β0(t)− β0(u)]dN

c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)X
T
i (u)[β0(t)− β0(u)]

dN c
i (u) | X

}

−
∫ τ

0

Kh(u− t)E{ξ(u)αi(u)Xi(u)X
T
i (u)}[β0(t)− β0(u)]du

)
+op((nh)

−1/2)

= (nh)1/2(exx(t))
−1

[
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) | X

}]

−(nh)1/2(exx(t))
−1

(∫ τ

0

Kh(u− t)dφ1(u)(β0(t)− β0(u))

+Ês

{∫ τ

0

Kh(u− t)dφ2(u)(β0(t)− β0(u)) | X
}

−
∫ τ

0

Kh(u− t)E{ξ(u)αi(u)Xi(u)X
T
i (u)}[β0(t)− β0(u)]du

)
+op((nh)

−1/2). (A.47)

The third term of (A.47) is

(nh)1/2
∫ τ

0

Kh(u− t)dφ1(u)(β0(t)− β0(u))

= (nh)1/2
∫ τ

0

Kh(u− t)d{E(φ1(u))}(β0(t)− β0(u))

+h1/2

∫ τ

0

Kh(u− t)n1/2d{φ1(u)− E(φ1(u))}(β0(t)− β0(u))
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= (nh)1/2
∫ τ

0

Kh(u− t)θ1(u)(β0(t)− β0(u))du+ op(1)

= μ2(nh
5)1/2((1/2)θ1(t)β

′′
0 (t) + θ′1(t)β

′
0(t)) + op((nh

5)1/2) + op(h
1/2), (A.48)

where the second equality holds since n1/2{φ1(u) − E(φ1(u))} converges weakly and

h1/2Kh(u− t)(β0(t)− β0(u)) → 0 as h → 0 and n → ∞, and the third equality hold

by applying Taylor Expansions at t. Similarly,

(nh)1/2
∫ τ

0

Kh(u− t)dφ2(u)(β0(t)− β0(u))

= −μ2(nh
5)1/2((1/2)θ2(t)β

′′
0 (t) + θ′2(t)β

′
0(t)) + op((nh

5)1/2) + op(h
1/2).(A.49)

Futher,

∫ τ

0

(nh)1/2Kh(u− t)E{ξ(u)αi(u)Xi(u)X
T
i (u)}[β0(t)− β0(u)]du

= −μ2(nh
5)1/2[e′xx(t)β

′
0(t) + (1/2)exx(t)β

′′
0 (t)] + op((nh

5)1/2). (A.50)

Hence,

(A.48) + (A.49)− (A.50) = op((nh
5)1/2). (A.51)

It follows that from (A.47),

(nh)1/2(β̃(t; γ0)− β∗(t))

= (nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

�
∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) 	R

)

+op((nh
5)1/2) (A.52)

= (nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) | Xi

})
+ op((nh

5)1/2)

= (nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) | Di, Ri = 0

}



82

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) | Di, Ri = 0

}

−n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) | Di, Ri = 0

})

+op((nh
5)1/2). (A.53)

By (A.47), (A.51) and Lemma A.2.4, it follows that

(nh)1/2(β̃(t; γ0)− β∗(t))

= (nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)εi(u)dN
c
i (u) | Di, Ri = 0

})
+op(h

1/2). (A.54)

Let

δn(t) = n−1/2

n∑
i=1

∫ t

0

RiXi(u)εi(u)dN
c
i (u)

+n−1/2

n∑
i=1

∫ t

0

(1−Ri)Xi(u)εi(u)E(dN c
i (u) | Di, Ri = 0)

= n−1/2

n∑
i=1

∫ t

0

Xi(u)εi(u)d{RiN
c
i (u) + (1−Ri)E(N c

i (u) | Di, Ri = 0)}

= n−1/2

n∑
i=1

∫ t

0

Xi(u)εi(u)dN
R
i (u).

Then δn(t)
D−→ δ(t), a mean zero Gaussian process. We can write

(nh)1/2(β̃(t; γ0)− β∗(t)) = h1/2(exx(t))
−1

∫ τ

0

Kh(u− t)dδn(t) + op(h
1/2). (A.55)

Remind the definition of NR
i (u) introduced in Chapter 3,

δn(t) = n−1/2

n∑
i=1

∫ t

0

Xi(u)εi(u)dN
R
i (u)

= n−1/2

n∑
i=1

∫ t

0

Xi(u)εi(u)dM
R
i (u) + n−1/2

n∑
i=1

∫ t

0

Xi(u)εi(u)α
R
i (u)du.
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(A.56)

Note that

E{Xi(u)εi(u)α
R
i (u)du}

= E[Xi(u)εi(u)E{dNR
i (u) | FR

u−}] = E{Xi(u)εi(u)dN
R
i (u)}

= E{Xi(u)εi(u)RidN
c
i (u)}+ E{Xi(u)εi(u)(1−Ri)E(dN c

i (u) | Di, Ri = 0)}

= E{Xi(u)εi(u)RidN
c
i (u)}+ E{Xi(u)εi(u)(1−Ri)dN

c
i (u)}

= E{Xi(u)εi(u)dN
c
i (u)} = 0.

The second term of (A.56) converges weakly to a mean zero Gaussian process. Hence

h1/2

∫ τ

0

Kh(u− t)n−1/2

n∑
i=1

Xi(u)εi(u)α
R
i (u)du

= h1/2

∫ τ

0

Kh(u− t)d

(
n−1/2

n∑
i=1

∫ u

0

Xi(w)εi(w)α
R
i (w)dw

)
(A.57)

Let ζn(u) = n−1/2
∑n

i=1

∫ u

0
Xi(w)εi(w)α

R
i (w)dw. Then ζn(u)

D−→ ζ(u), a Gaussian

process. By the almost sure representation theorem (Shorack & Wellner, 1986), there

exist ζ∗n(u) and ζ∗(u) on same probability space that have the same distributions and

sample paths as ζn(u) and ζ(u), respectively, such that supu∈[0,τ ] | ζ∗n(u) − ζ∗(u)| =
Op(n

−1/2+α) for α > 0. Hence (A.57) equals

h1/2

∫ τ

0

Kh(u− t)dζn(u)
D
= h1/2

∫ τ

0

Kh(u− t)dζ∗n(u)

= h1/2

∫ τ

0

Kh(u− t)d(ζ∗n(u)− ζ∗(u)) + h1/2

∫ τ

0

Kh(u− t)dζ∗(u). (A.58)

By integration by parts and

h1/2

∫ t+h

t−h

(ζ∗n(u)− ζ∗(u))h−1dK((u− t)/h)

= h1/2

∫ t+h

t−h

(ζ∗n(u)− ζ∗(u))h−2K ′((u− t)/h)du

≤ h−1/2n−1/2+α sup
u∈[0,τ ]

n1/2−α| ζ∗n(u)− ζ∗(u)|
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= Op((nh)
−1/2nα) = op(1).

The last equality holds for 0 < α < 1/4 and nh2 → ∞, the first term of (A.58) is

of the order of op(1). And the second term of (A.58) is h1/2ζ∗(t) = O(h1/2). Then

(A.57)
P−→ 0. By (A.55), (A.56) and (A.57)

P−→ 0, we have

(nh)1/2(β̃(t; γ0)− β∗(t))

= h1/2(exx(t))
−1

∫ τ

0

Kh(u− t)d

{
n−1/2

n∑
i=1

∫ u

0

Xi(w)εi(w)dM
R
i (w)

}
+op(1). (A.59)

The first term of (A.59) is a martingale in τ with respect to FR
τ , with the predictable

variation process equal to

h(exx(t))
−1

∫ τ

0

K2
h(u− t)n−1

n∑
i=1

Xi(u)X
T
i (u)ε

2
i (u)α

R
i (u)du(exx(t))

−1

→ μ0(exx(t))
−1E{Xi(t)X

T
i (t)ε

2
i (t)α

R
i (t)}(exx(t))−1 = μ0Σ(t).

Now note that

ẽxy(t) =

∫ τ

0

Kh(s− t)exy(s)ds =

∫ t+h

t−h

h−1K(
s− t

h
)exy(s)ds

=

∫ 1

−1

K(x)exy(t+ xh)dx

=

∫ 1

−1

K(x)(exy(t) + hxe′xy(t) + (1/2)h2x2e′′xy(t) + o(h2))dx

= exy(t)

∫ 1

−1

K(x)dx+ he′xy(t)
∫ 1

−1

xK(x)dx+ (1/2)h2e′′xy(t)
∫ 1

−1

x2K(x)dx

+o(h2)

= exy(t) + (1/2)μ2h
2e′′xy(t) + o(h2).

Similar results hold for ẽxx(t) and ẽxz(t). Following some tedious calculations, we

have

ỹTx (t) = (ẽxx(t))
−1ẽxy(t)
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= (exx(t) + (1/2)μ2h
2e′′xx(t) + o(h2))−1(exy(t) + (1/2)μ2h

2e′′xy(t) + o(h2))

= yTx (t) + (1/2)μ2h
2(exx(t))

−1[e′′xy(t)− e′′xx(t)(exx(t))
−1exy(t)] + o(h2),

and

z̃Tx (t) = zTx (t) + (1/2)μ2h
2(exx(t))

−1[e′′xz(t)− e′′xx(t)(exx(t))
−1exz(t)] + o(h2).

Thus

β∗(t) = ỹTx (t)− z̃Tx (t)γ0

= yTx (t)− zTx (t)γ0 + (1/2)μ2h
2(exx(t))

−1[e′′xy(t)− e′′xx(t)(exx(t))
−1exy(t)]

−(1/2)μ2h
2(exx(t))

−1[e′′xz(t)− e′′xx(t)(exx(t))
−1exz(t)]γ0 + o(h2)

= yTx (t)− zTx (t)γ0 + (1/2)μ2h
2(exx(t))

−1[e′′xy(t)− e′′xx(t)y
T
x (t)]

−(1/2)μ2h
2(exx(t))

−1[e′′xz(t)− e′′xx(t)z
T
x (t)]γ0 + o(h2)

= β0(t) + (1/2)μ2h
2(exx(t))

−1[e′′xy(t)− e′′xz(t)γ0 − e′′xx(t)β0(t)] + o(h2)

= β0(t) + βBias(t) + o(h2). (A.60)

Therefore,

(nh)1/2(β̂(t)− β0(t)− βBias(t))
D−→ N (0, μ0Σ(t)),

as n → ∞, h → 0, nh2 → ∞, nh5 = O(1).


