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ABSTRACT 

 

 

ALI S. A. Q. MOHAMMAD. Hybrid elevations using GAN networks. (Under the direction of 

CHRIS BEORKREM) 

 

 

This project attempts to develop and test a method for generating one-sided hybrid exterior 

building elevations using two designer’s base criteria and design ruleset as an input. Architects are 

using computational design to expedite the iteration process in an efficient manner. Optimization 

techniques utilizing genetic solvers within the architectural 3D model space have been around for 

the past decade. However, with the introduction of artificial intelligence the computational design 

niche within the architectural field can be expanded on. Generative Adversarial Networks (GAN) 

are used in this research to demonstrate artificial intelligence capabilities in the computational 

design realm. Can GAN networks dream of hybrid architectural elevations?  
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CHAPTER 1: INTRODUCTION 

 

 

Architects have conventionally used Computational Design to explore design iteratively. 

Computational design opens doors for the architectural field in terms of generating, testing and 

evaluating design models in a fast and efficient manner, thus leveraging the field in areas which 

require prolonged exploration and activity. Honorable examples include controlling complexity in 

design using a set of rules. Or if one is testing for sustainability, the ability to delve into the impact 

of sunlight exposure on a building. The possibilities are endless.  

Imagine yourself, the reader, having to design everything by hand, drawing iteration after 

iteration of the same base with various tweaks to see how amalgamated solutions A, B & C would 

work. This is a drawn-out, time consuming process. However, the introduction of computation in 

the architectural profession, allows for more malleable results solving complex design problems 

and solutions by assigning variables and altering their properties. 

“If a researcher is wedded to the authority inherent within a particularly instrumental view of 

rationality, as resident in a common sense logic, then the contingent and contested nature of 

professional authority may be irrelevant. For such a researcher the question of how authority is 

derived or promulgated in design is not a matter of discussion.” 

Richard Coyne (Logic models of Design,  1988). 

Design problems in general, as well as those specific to the architectural profession are still 

considered to be wicked or ill-defined problems. These kinds of problems are often difficult to 

solve due to the contradictory, fragmented nature and their constantly ever-changing requirements 

over time. An imaginary blurry line is created between design problem and solution. There are 

countless solutions to one problem and innumerable paths to one solution as nothing is concrete. 

This also does not exclude where and from whom the solution is coming from. For example (to 

compare), this may be juxtaposed with “Software Studies”, which frames the argument that data 
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and code have their own agency and therefore there is an ethical imperative to evaluate their source, 

impacts and accuracy. (Przybylski, 2018).      

Instead of impeding the field, this ideology in fact furthers the architectural design field, as 

solutions are derived from numerous and various sources. For example, using principles in 

psychology or sociology to further understand the average person’s motive when using X, Y or Z. 

This valuable information may in fact be used by an architect as a base to design a building. 

Architects are able to extrapolate philosophies, definitions, methodologies etc. from other 

disciplines and convert them into usable data points to fit to and solve their design problems.  

With computational design, a number of tools and strategies have been created to  assist the search 

and design exploration process such as optimization. With the exhilaration of being able to derive 

many design options from concepts like optimization, there are several flaws that go along with it. 

A conspicuous problem is that the strategy only produces ideal numbers (fitness), numbers based 

on a maximum or a minimum function. In other terms a predefined rule. Although this provides a 

powerful quantitative approach, it is limited because it only caters to the minimum or maximum 

number of possibilities and nothing in between. The gray areas are left unusable! So what happens 

when a designer makes an attempt to achieve results that are combinations of multiple variables 

(think gray area) ? Somewhere in the middle? Where the designer has to make compromises to find 

solutions which match multiple variables at the same time even when they are conflicting. We begin 

to avoid quality options based off a user’s particular taste. 

Although optimization workflows are a completely valid approach, they hinder and often prevent 

them from thinking of design solutions abstractly or outside of the box. Blindly pursuing such 

options may sometimes yield the optimum solution in some cases (quantitative). However, in 

other instances it creates problems in qualitative aspects of the design solution. Designers that are 

not as knowledgeable about these tools tend to use them and completely rely on them simply 

because it is the only offer available. The satisfaction fabricated from designers is predominantly 

due to utilizing the tool, and not necessarily achieving the precise results that they had hoped for, 
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but the closest they can find.  

There seems to be no control in yielding a set of results based on what the designer’s fundamental 

ruleset in design would be. This is essential as each designer’s process differs greatly from one to 

another. each designer may conclude what “good” design is based on their individual experiences 

and what they learned from past projects. To be able to create narrow design solutions to a 

designer’s qualitative taste, we must instruct, teach, apply descriptors and rules to our 

computational models on potentially infinite design solutions generated from optimization (and 

genetic solvers)(Sjoberg, 2017).  Discovering qualitative emergent properties from unexpected 

search solutions is diminished through such strategies.  

“Learning to restructure knowledge to produce novel results that not be achieved using the 

current knowledge.” (Evolutionary Learning of Novel Grammars. John Gero, Sushil Louis & 

Sourav Kundu. 2006, p. 1 & 4). 

So how would we go about solving this dilemma? How would we go about teaching the system 

about our design principles and traditions about our specific qualitative desires? 

This project attempts to develop and test a method for evaluating exterior building elevations 

using a designer’s base criteria and ruleset as an input. In addition to the genetic solvers, the use 

of a Neural Networks will create solutions based upon computationally perceived content. What 

is so special about a neural network? 

The most fascinating part about neural networks is their ability to learn from traditional 

experiences and adapt to new ones using that new learned knowledge. This is done by a process 

called training, in which an expansive set of data is passed into the network as input. The passed 

data is iteratively looped around the network for it to learn. Much like humans, neural networks 

are impressive at evaluating patterns from the data they had learned from.  
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Figure 1. Diagram of a simple Neural Network 

 

 

Consider this anecdote as an introduction to the experience of a neural network. This is also a 

way for the reader to obtain a different perspective on the subject through a scenario. 

Imagine, a future where you, <insert name> get hired for a new job in a state-of-the-art futuristic 

architecture firm. You are introduced to the company’s owner who attempts to comfort you into 

your new position. He says, “hey <insert name>, welcome to your new office workspace.” He 

hits a reset button that resides on the wall from outside of the office and then opens the door and 

tells you to take the first step in. As soon as you go through the door, you notice how blank, dull 

and empty this office space is. John, the office assistant sits in the corner of the room and takes a 

good look at you from top to bottom but does not say anything. 

You ignore him/her and continue setting up your new mint office. “What's going on? Why is it so 

hot in here? Not to mention a little dark. I wish I had windows in the room at least” you ask and 

tell yourself. You go to configure the thermostats and lights in the room and then go to sit down 

on your fully customizable chair, and you adjust the height and lean back.  

You turn on your computer and lay down your notebook with information on how to decorate 

your new office. You then decide it’s been a worthwhile day and leave the office, forgetting your 

notebook wide open on your desk. John is still in the room and while you are gone he decides to 

look at what you’ve done in the room, plus check out your notebook. So what information does 
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john have right now? He’s got your weight, height, comfort levels, light intensity information. He 

looks at your notebook and you seem to be into floral patterns that you have designed for a 

wallpaper on one wall of your office and how the room is laid out. John has now learned about 

your preliminary actions.  

You come back the next day and notice a few things are out of place and that the temp in the 

room feels great, just the way you like it and the room doesn’t feel too dark. You notice a wall 

partition that had been pulled apart from the original walls of the office and moved into the office 

space to a location. You notice a designed floral pattern on the wall the way you wanted it and 

you’re wondering how is that possible when you haven’t told anyone about it? Not to mention 

there is now an opening within the wall that you haven’t seen before to let natural light in. You 

are then startled by a sudden voice in the room “<insert name>, welcome, I am John, your 

personal assistant and have changed the room according to your needs”. John is not a human 

being, John is an artificial intelligence agent with a neural network brain, capable of taking in 

your personal data, learning about your traits and habits and working around your every desire 

and goal without you having to utter a word.  Ladies and Gents, welcome to the world of neural 

networks. 
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CHAPTER 2: BACKGROUND 

 

 

Decision Making 

“The linear model of design thinking is based on determinate problems which have 

definite conditions. The designer's task is to identify those conditions precisely and then calculate 

a solution. In contrast, the wicked-problems approach suggests that there is a fundamental 

indeterminacy in all but the most trivial design problems where, as Rittel suggests, the 

"wickedness" has already been taken out to yield determinate or analytic problems. To understand 

what this means, it is important to recognize that indeterminacy is quite different from 

undetermined. Indeterminacy implies that there are no definitive conditions or limits to design 

problem” (Wicked Problems in Design Thinking. Richard Buchanan. 1992 p. 15 & 16). 

To understand the essence of this paper, providing a brief overview to Rittel and Webbers work, 

which emphasize the nature of wicked problems is a sufficient introduction to the whole 

background. In the quote above, Richard Buchanan makes a clear distinction between a linear 

design thinking problem juxtaposed with a wicked design problem. Why is it crucial to mention 

the wicked problem context? Because of wicked problems, the architecture profession can 

synergize and exercise with various other fields, such as computer science in order to solve a 

problem. In design computation, exists a realm where humans, machines work collectively, and a 

mutual trust is demonstrated when searching for a qualitative design solution. This highlight is an 

evident trajectory and emergent property that resulted from the wicked problem philosophy.  

“What is an assemblage? It is a multiplicity which is made up of many heterogeneous terms and 

which establishes liaisons, relations between them, across ages, sexes and reigns – different 

natures. Thus, the assemblage’s only unity is that of a co-functioning: it is a symbiosis, a 

‘sympathy’. It is never filiations which are important, but alliances, alloys; these are not 

successions, lines of descent, but contagions, epidemics, the wind. 
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In this definition, two aspects of the concept are emphasized: that the parts that are fitted together 

are not uniform either in nature or in origin, and that the assemblage actively links these parts 

together by establishing relations between them.” 

“These contributions of the concept of emergence can help us understand the other important 

characteristic mentioned in the opening quote: that social wholes must be considered to be 

peripheral or to exist alongside their parts.” 

(Assemblage Theory. Manuel Delanda. 2016 p. 2). In the works of Deleuze and Guittari, as well 

as the addition to Manuel Delanda (added emergent properties to Deleuze and Guittari’s 

assemblage theory), present assemblage theory. Although the authors explain assemblages in the 

social context, the same can be applied in the design computation niche. Architects working 

alongside artificial intelligence agents can be considered an assemblage, even though both are not 

uniform in nature or origin. In their individual characteristics and properties, they are 

fundamentally distinct, but when they coalesce, novel emergent properties are created to solve a 

particular design problem. The merge of Architect and A.I. (a neural network) yields a constant 

dialogue of exploration, variation and evaluation in this case.  The prominence of such 

assemblages should not be treated as individual entities, as they are today, rather as whole. This 

ideology, if perceived correctly, empowers the relationship between Architects and A.I operating 

congruently.  

“Accepting that software is becoming a material used in the production of the built environment 

and that we want to build ethically-minded understandings of the impacts of design work. 

This framing supports a reconceptualization of ethical literacy in architectural projects embedded 

with custom software. By including soft materials, such as data and algorithms, in our conception 

of a project’s material assembly they implicitly become a part of the matrix defining the works’ 

ethical dimensions. This necessitates an expansion of knowledge and methods to support a more 

complete engagement with computational components embedded in such work.” 
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(Soft Materials: Assessing Architects Roles as Ethical Producers of Digital Technology.  Maya 

Pryzbylski. 2018 )  

In addition to the conversation on assemblages, the works of Maya Pryzbylski 

acknowledges that custom computational components such as custom algorithms are being a part 

of everyday convention and built environment. Designers develop code nowadays to achieve a 

diverse range of results. An example is implementing developed code on building components 

such as facades with the aim to make them responsive and interactive. Other examples include 

data visualization, which is becoming a common norm amongst designers. There are two parts to 

this paper by Pryzbylski. One discusses the role of the architect and his/her position in the 

fabrication of technology. The second part of the paper is critical because it reveals that the 

constituents of those technologies, like data and code bundles are being embedded within the 

framework and matrix of requirements for architectural projects. The realization of this notion is 

vital to grasp as the profession progresses further. In the case of this paper, data is becoming an 

essential piece in the assemblage between architects and artificial intelligence.  

"Biology has traditionally started at the top, viewing a living organism as a complex biochemical 

machine, and worked analytically downwards from there - through organs, tissues, cells, 

organelles, membranes, and finally molecules - in its pursuit of the mechanisms of life.  

Artificial Life starts at the bottom, viewing an organism as a large population of simple machines, 

and works upwards synthetically from there, constructing large aggregates of simple, rule-

governed objects which interact with one another nonlinearly in the support of life-like, global 

dynamics. “ (Virtual Environments and the Emergence of Synthetic Reason. Manuel Delanda. 

1993). 

Manuel Delanda discusses the importance and impact of virtual environments in the 

research fields. The snippet of text above is Delanda explaining and contrasting between 

organisms in biology and artificial life. This introduces basic terminology for the purpose of this 
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paper, and will make much more sense when processes in neural networks are elaborated in the 

methodology section later on.  

The top bottom approach suggests an analytical approach and breaking down larger 

components into smaller ones to comprehend the system and its subsystems. The insight gained 

on one hand is further polished and understood through a reverse-engineering methodology. In 

neural networks, the training aspect of the whole process is a top-down approach as it takes data 

as input and trains, recognizing patterns the same way humans do to make sense of any type of 

collective data.  

Delanda states that artificial life starts from the bottoms up. The bottom up approach 

suggests looking at the top down approach from the other end, where minute individual pieces 

begin to gather and formulate into larger, complex systems. This ideology allows for emergent 

properties. New properties and characteristics generated through the assembly of smaller 

elements. These same elements once expressed their properties on the individual level, however 

now that they are compounded, they exhibit various novel properties. For example cells in the 

body that organize into tissues to form muscles and work jointly to execute a specific function. In 

the bottom up approach, systems may behave differently or independently on their own, yet when 

coupled together, begin to reveal disparate behavior and in other words, becomes an assemblage. 

In neural networks, it is mentioned above that the training process is a top down process, and at 

the same time, when the network is in the output phase, it would be considered a bottom up 

process (in unsupervised learning).  Below is a closing quote by Delanda to provide another 

perspective.  

“The basic point is that emergent properties do not lend themselves to an analytical approach, that 

is, an approach which dissects a population into its components. Once we perform this dissection, 

once the individuals become isolated from each other, any properties due to their interactions will 

disappear. What virtual environments provide is a tool to replace (or rather, complement) analysis 

with synthesis, allowing researchers to exploit the complementary insights of population thinking 
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and nonlinear dynamics.” 

(Virtual Environments and the Emergence of Synthetic Reason. Manuel Delanda. 1993) 
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CHAPTER 3: NEURAL NETWORKS 

 

 

A Brief History 

“Because of the ‘all-or-none” character of nervous activity, neural events and the relations among 

them can be treated by means of propositional logic.” 

(A Logical Calculus of the Ideas Immanent in Nervous Activity. Walter Pitts & Warren 

McCullough. 1943) 

The mathematics of neural networks were introduced in 1943, as Walter Pitts and Warren 

McCullough cogitated about the nervous system and its activity. A remarkable tale of two men 

that collaborated on the earliest views of artificial intelligence. Not only did they work on the 

foundation of neural nets, but also the preliminary computational approach to neuroscience and 

design of modern computers in the logical sense. The initial ideas formulated when Walter Pitts 

pondered about a model to the brain utilizing Leibnizian logical calculus. What led Pitts and 

McCullough eventually to reach the topic of neurons was from the Principia Mathematica. The 

works of Alfred North Whitehead and Bertrand Russell who inadvertently introduced the 

fundamental language of programming people know today. The use of fundamental operations in 

logic such as boolean “true” or “false” statements. And later, other operations like “or”, “and” & 

“not”. When McCullough thought about neurons, the major and heart of the discovery to him was 

that neurons fire electrical signals only after a certain threshold had passed it. The net signal 

comes from the combination of neurons nearby that had been accumulated, however not fired off 

yet. The reader must understand this key concept and how it was modelled in order to grasp the 

nature of neural networks in this paper.  

Implementation in Design 

Game Design 

Ever since Walter Pitts and Warren McCullough introduced the primary components of a neural 

network (circle nodes and cumulative weights) and the mathematical model of a neuron, there 
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have been others which have expanded on their notable studies. Subsequent, improved neural 

network models are gradually being applied to a number of various design areas such as in 

gaming.   

One of the earliest cases where a neural network implemented in gaming design involved 

a simple game of checkers. Arthur Samuel’s unprecedented game of checkers brought attention 

the preliminary idea of self-learning machines. With enough “experience”, these machines, 

Samuel deduced, could learn to outperform humans. Arthur also mentioned two general methods 

in his paper, which are familiar today in the artificial intelligence sphere. 

"One method, which be called the Neural-Nets approach, deals with the possibility of inducing 

learned behavior into a randomly connected switching net for its simulation on a digital computer 

as result of a reward-and-punishment routine.”  (Samuels, 1959) 

Here, Arthur Samuel provides an early description of reinforcement learning, which falls 

under the unsupervised learning category in machine learning. To put this in brief terms, 

unsupervised learning involves a machine taking inputs, generalizing that data and completely 

generating its own outputs based on what rules and variables of that data it had previously learned 

about. What differentiates unsupervised learning and reinforcement learning is that the latter 

incorporates a reward and punishment system simply to guide and teach the agent (similar to 

human beings learning) to the correct path. To put this into extremely simple pseudo code for the 

reader (please note that there are many other factors that go into this, however this is for the 

reader to grasp the reinforcement learning fundamentals): 

For each action: 

 If agent performs an action in environment correctly (set by programmer what the 

rewards are in the environment are): 

   +1 as reward 

 Else: 

   -1 as punishment 
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"A second method, and much more efficient approach, is to produce the equivalent of a highly 

organized network which has been designed to learn only certain specific things.”  (Samuels, 

1959) 

The second method mentioned by Arthur Samuels would in today’s terms be called 

supervised learning. This approach suggests that the output is a known factor. The system 

understands its inputs and has been trained to produce a specific known output, hence it cannot 

generate its own disparate outputs, only the domain in which it has been subjected to. In the case 

of Arthur Samuel’s game of checkers, it made more sense to use supervised learning ever more 

so, since all the outputs and moves in checkers are known in relevance to each piece’s position. 

Based on position, the system can “think ahead’ by calculating all the possibilities, a “tree” of 

moves it can derive with the goal to win. Below is an image from Arthur Samuel’s paper 

demonstrating the board from its initial position and considering a few possible moves ahead.  

 
Figure 2. Game of Checkers move possibilities 

 

 

There are three cases in gaming to touch on, in which artificial intelligence agents have defeated 

humans who have spent years and years, becoming masters at their respective games. The reason 
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for these three highlights is to instill an inevitable vision to the reader which the future would 

yield. When a human being had spent most of his or her years mastering a subject or skill, a 

machine could in turn, condense these training years into days or even hours.  

IBM’s Deep Blue (chess 1996-1997)  & IBM’s Watson (Jeopardy 2011)  

Two of IBM’s iconic artificial intelligence agents which have been implemented and well-

documented in game design. Although both are “A.I. agents”, both exhibit variation in their 

approach to tackle a problem. Deep Blue took part in the game of chess. Arthur Samuel actually 

considered chess as his initial environment for experimentation, however chess is far more 

complex than checkers. Chess requires one to comprehend what each specific chess piece’s 

function is, whereas in checkers, all  elements share the same function. As opposed to IBM’s 

Watson architecture, Deep Blue emphasizes on optimization techniques to achieve its goal in 

defeating a competitor. Two major algorithms are Alpha-beta pruning and Minimax algorithms 

are embedded in Deep Blue’s software. The Minimax algorithm is designed to minimize a worst-

case scenario loss and maximize the best scenarios, the algorithm’s name speaks for itself. The 

alpha-beta pruning algorithm which sits on top of the minimax function, allows for faster 

computation. This is achieved by eliminating possibilities that had already been seen or 

discovered. In a tree of decisions, for example, some branches would be already eliminated 

depending on the situation. In other words, we do not need to look back at the opponent’s bad 

moves (F. Hsu, 1999).  

IBM Watson’s purpose on the other hand was to become a Jeopardy competitor, and not 

just any, but one to attempt to defeat the top-ranking competitors in that game show. Although 

former grandmasters, Ken Jennings and Brad Rutter gladly took on the man vs machine 

challenge. As opposed to chess, Jeopardy is a game of trivia, testing the knowledge of 

competitors over a large realm of natural language questions (Lally, 2011). Watson’s system 

architecture is named DeepQA, which was developed by IBM’s research team. Answering 

Jeopardy questions isn’t an easy homerun at the ballpark but may require complex natural 
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processing and specific sentence structure to denote any type of connotation. Watson needs to be 

able to not only gather the right context, parse data for the right answer, but also put together the 

right sentence in a timely fashion, which is yet another crucial factor in the game. As opposed to 

IBM Deep Blue’s optimization strategies, IBM Watson utilizes a neural network and trained on 

an immensely vast library of general knowledge data. 

Alpha Go (March, 2016) 

 Another board game by the name of “Go”. As opposed to checkers and chess, Go would 

require a vast search space of solutions for any artificial intelligence agent. Although each 

physical, oval piece functions the same way, the board is larger than a checkerboard. An A.I. 

agent must also understand how to win the game and formulate its own ways of doing so. 

AlphaGo’s brain is equipped with a deep neural network, along with a tree search function, 

bolstering vast search spaces findings in a fast and efficient manner. The power of a neural 

network can be recognized in this recent example. Authors of the article “Mastering the game of 

Go with deep neural networks and tree search” proudly claim that their neural network does not 

possess a lookahead search, which that in itself is already fascinating. The networks employed in 

AlphaGo are actually a combination of a convolutional neural network (computer vision and 

image analysis & recognition to look at the board), a feed forward neural network using a 

supervised learning approach (data trained by looking at expert professional players and 

understanding their output. Named this network “SL Policy Network”) and reinforcement 

learning (interacting in the environment on its own and learning to play the game (“RL Policy 

Network”) and in addition to that, a Monte-Carlo tree search to simulate hundreds and hundreds 

of random games for self-playing (to gain as much perspective as possible)(Silver & others, 

2016). With the amalgamation of all these parts, AlphaGo was able to defeat Chinese-born 

European Go champion Fan Hui 5 games to 0, marking the first of its kind, and simultaneously, 

becoming extremely exciting for what’s to come.  

 



16 

 
Figure 3. Final boards of all 5 games with Fan Hui 

 

 

Dota 2 (June, 2018) 

 

 The final precedent in gaming design is a PC game known as DOTA2. This type of game 

is known as a MOBA (Multiplayer Online Battle Area). The game requires participation from 5 

players versus 5 players in a large confined space or in other words “map”. This is coupled with a 

camera angle looking from the top right or top left. The complexity in a type of game like this is 

unrivaled, as coordination is a large portion to success and to have 5 A.I. agents collaborating is 

by itself an extremely demanding feat.  In the environment, the goal to win is to take down enemy 

turrets in order to advance into the enemy base and to demolish their “nexus” (another way of 

saying main base / turret). The consequences of a character dying a single time in the game 

rewards the enemy with a somewhat massive lead, denoting the game’s fragile and sensitive 

nature. OpenAI was funded by entrepreneur Elon Musk to see if A.I. agents could in fact defeat 

humans at their own games.  
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Figure 4. Diagram and captions for the overall structure for OpenAI 

 

 

The diagram above (pulled from openAI’s blog website) is a simplified version of the entire 

model architecture, consisting of a single-layer, 1024-unit LSTM (a type of neural network short 

for “Long-Short Term Memory”, part of a recurrent neural network ).  

 
Figure 5. OpenAI full architecture reveal 

 

 

The image directly above (also from the openAI blog website) is the full set of components 

assembled. There is a constant dialogue between states, the neural network and the observations 

received as input to be processed. 

Architectural Design 

 In terms of Architectural design, the implementation of neural networks or an artificial 

intelligence agent has yet to make a substantial impact (Khean & others, 2018). There are a few 

reasons that stem from that statement. One, there is a conspicuous knowledge gap difference that 
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needs to be accentuated on. The subject of deep learning and neural networks is compounded and 

has yet to reach its prime, even in the Computer Science profession itself. Another problem is that 

architects do not fully comprehend the powerful predictive and self-learning quality of a neural 

network,  let alone where and how to apply it (problem domain).  

In design computation, a relatively new area that bridges between Architecture and Computer 

Science, a few tools have been created that attempt to implement deep neural networks and solve 

specific problems. A set of digital architectural components will be introduced in order to situate 

the reader appropriately.  

“Grasshopper” is a visual programming extension which enables designers create scripts 

through several predefined nodes that may be connected and stitched together to generate a 

model. Grasshopper follows the same logical approach needed in programming, a linear, step by 

step procedure. For example, if a designer were to draw a line, they would do so in a CAD type 

environment by clicking one point in space, followed by clicking on another point in space and 

the software would create the line, however, in Grasshopper one would need to define the points 

in space through their XYZ coordinates, in other words, through numbers. This is followed by 

adding another node called “line” which requires two points to create the line. The 3D modelling 

environment is more intuitive than the visual programming approach.  Grasshopper is an add-on 

to “Rhinoceros”, which is mainly a 3D computer-aided design (CAD) modelling software used to 

create detailed models that may be rendered into photorealistic images.  

Grasshopper is needed to operate machine learning plugins and there are, according to a paper 

written by Lorenzo Greco (2015),  four documented plugins that enable designers to interact with 

and tune neural networks visually. The four plugins are listed as follows: 1. “Dodo”, 2. “Crow”, 

3. “Owl” and 4. “LunchBox”. 

“Dodo” (2015), pioneered by Lorenzo Greco, provides a set of “nodes” for Grasshopper 

to allow for machine learning capabilities. There are also nodes that deal with tensor and matrix 

conversions. A tensor, to put it in simple terms, is a collection of vectors, required for a neural 
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network to understand the data received. The difference between these plugins is influenced by 

the .NET framework that the extension has been built on, as each framework is tuned 

dissimilarly. One of the main features of Dodo is the ability to perform non-linear and constrained 

optimization, as well as incorporate artificial neural networks (Doherty & others, 2018). 

Another plugin by the name of “Crow” (2016), is also capable of learning, however the expertise 

it provides is largely to do with SOM’s (Self-Organizing Maps) and Crow provides the necessary 

nodes for Grasshopper to enable its functions. SOM’s are a type of unsupervised learning 

approach and was developed in the 1980’s by Tuevo Kohonen (Kohonen, 1999). The form of 

architecture in SOM’s are disparate in behavior and goal. SOM’s also utilize the K-means cluster 

algorithm, essentially to quantize vectors. The “centroid” of a supposed k-cluster ultimately 

becomes the new mean, and from that, the system adapts to these new positions the process is 

then repeated. Below is an image that displays a mesh, stretching, conforming and adapting to a 

set of points floating in space. The concept of SOM’s is fundamentally what differentiates this 

plugin from the other three mentioned plugins.  

 
Figure 6. Image displaying SOM conforming to points in space 

 

 

“Owl” (2017) and “LunchBox” (2017) also provide a set of predefined components for 

machine learning and neural network application. LunchBox is a slightly more comprehensive 

toolset, running the gamut from predefined panel creation tools, as well as fundamental and basic 

tools for generating neural networks. And finally, Owl provides a comprehensive toolset for 

creating neural networks, however it only deals with tensors as the major data type and provides 
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nodes to convert any type of data into a tensor set. Any data type (number, string or GUIobject 

(e.g. point in space)) is converted into a tensor, and then run through the neural network to 

compute information. The output would then be “detensored”, which is the conversion from 

tensor, back to data. Each one of these plugins cater to the same topic, however their approach 

and frameworks are various. One problem for all of these plugins is the fact that their frameworks 

are slightly outdated, with “Accord.Net” being the latest framework for the implementation of 

machine learning (2014). 

Optimization (Galapagos) 

There are numerous tools that have become accessible for designers seeking to 

incorporate genetic algorithms in the architectural design process, prominently,  Galapagos, 

which runs on the previously mentioned Rhinoceros + Grasshopper combo (Rutten 2013). 

Galapagos allows the designer utilizing visual scripting platforms to use genetic algorithms 

without the need to program the complete process, which requires a vast amount of time. 
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CHAPTER 4: METHODOLOGY 

 

 

This experiment goes through three main phases. The first phase involves two designers. Two 

distinct designs with a few static elements are constructed, however they were self-simulated in 

the case of this experiment. The second phase is to collect a 2D based dataset consisting of small 

resolution images of 150x150 pixels. This phase will be expanded on in the next subsection. The 

third phase is to use the collected dataset of images and feed it through a GAN (Generative 

Adversarial Networks), train the network and output new AI generated images based on what the 

model has learned.  

1. Constructing two designs 

In this initial experiment, the designs were loosely inspired from one-sided tall building 

elevations in New York city.  The base 3D models were generated in the 3D modelling software 

“Rhinoceros”, and those models in the experiment are 6’X 6’ X 100’ (10 story building). The two 

designs are to exhibit static and dynamic features, as well as contrasting styles.  

Design 1 

The key feature of the first design is to display a sense of rigidity. This entails using a 

grid like pattern with repeating frames. Another feature is presenting an overall vertical 

proportionality. The base of the generated building is to be amalgamated of simple rectangular 

repeating elements which represent a glass wall with mullions. The rule for the base is for it to be 

the static element in both designs. The only dynamic element which is to be optimized by 

Galapagos using “Grasshopper” is the frame extrusions. The extrusions are set to a max length 

and at random for each frame. This is to allow for variation and to exercise the GAN network as 

the training is performed on it.  

Below is the image of the proposed design: 
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Figure 7. Design1 with rigid features 

 

 

Design 2 

The key features for the second design exhibit smoother, organic and a freeform quality to it. A 

large organic surface is generated and contoured in a striped manner to highlight the horizontality 

in proportions. Again, as mentioned before, the base is static and exactly similar to the Design 1. 

The reasoning is to test if the networks can actually study the positioning of the base element and 

can reconstruct it in both designs. The dynamic elements of the whole design are the culling of 

the stripes at random. This reveals some basic structure behind the culled pieces.  

Below is the image of the proposed second design: 
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Figure 8. Design2 with organic features 

 

 

This set of designs are simulated to test if the GAN network can learn specific features, 

understand the patterning behind the designs and attempt to combine features together to form a 

hybrid style building from the domain. 

2. Creating the dataset 

The second phase is comprised of three main steps:  

1. “Optimize” the model to produce iterations. 

2. Record these iterations through a spreadsheet in Microsoft Excel. 

3. Use Anemone (Grasshopper extension) to loop through iterations and save each elevation 

to a folder 
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Figure 9. Diagram of dataset collection process 

 

 

a. Given the generated model from both designers- “optimize” the model using the 

Galapagos genetic solver. The solver node is connected to a set of genomes, or in other terms, the 

variables that are to be changed and optimized. The random component from Grasshopper is used 

on the dynamic elements from both designs. Below displays an image directly from the 

Grasshopper environment and the connections made from Galapagos (pink node) and random. 

The genetic solver will produce iterations of each model by modifying the genome numbers. This 

is needed to reinforce the GAN network later. 

 
Figure 10. Part of Grasshopper script with random component 

 

 

b. To record all the iterations, another Grasshopper extension is used, called “Galapagos 

Listener”. This extension is a tool from computational design firm “Core Studio” under the “TT 

Toolbox”. Listener is a component that simply records the values as the genomes are being 

optimized, in a data tree. The values recorded are then connected to an output Microsoft Excel 
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component from the same extension, “TT Toolbox”. Below is an of a set of recorded numbers 

with column A representing the fitness of each iteration and the other three columns representing 

the values from the random component. 

 
Figure 11. Excel sheet with fitness and genome values 

 

 

c. “Anemone” is another Grasshopper extension with the aim to perform a loop function 

using a “start loop” and “end loop” nodes within the Grasshopper environment. This is utilized in 

node form instead of the native code written form. What Anemone does in this case is iterating 

through each row in the spreadsheet. This is coupled with a small script written in VB (visual 

basic) which contain Rhinoceros commands in code format. The script opens a new Rhino 

viewport, sets the elevation to “Front”, saves and crops a screenshot. This is set and done with a 

count which can be set along using the Anemone components. 
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Figure 12. Grasshopper script that takes snapshots of model space 

 

 

Once all three steps are completed, images of 500x500 are stored in the designated folder. The 

initial experiment had roughly 5000 images. Below is an example of the images generated: 

 

 
Figure 13. dataset created 

 

 

3. Generative Adversarial Network  

 

The third and final phase is to run the dataset through a DCGAN (Deep Convolutional Generative 

Adversarial Network). The DCGAN architecture convolves and breaks down the images into 

smaller pieces to work with.  GANS, in general contain two major pieces. One is a neural 

network called a “Generator” and the other a “Discriminator”, and both networks are needed for a 

GAN to work. The generator takes in noise as input and generates samples, while the 

discriminator determines whether these generated images are A.I generated or not. 

The loss function used and is necessary for GANs to work is a BCE Loss which stands for Binary 

Cross-Entropy loss. It is a Sigmoid activation as well as Cross-Entropy loss together. It returns 

the 0 or 1 classification needed for the discriminator part of the model to determine if an image is 

fake or real. But the real reason behind GAN networks is their generative ability, not the 

discriminator’s 0 or 1 classification.  
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CHAPTER 5: RESULTS & DISCUSSION 

 

 

Initial Results 

Below are the preliminary results and images of resolution 64x64 pixels. The original images 

were at 500x500 pixels.  

 

Epoch1 

The first cycle of GAN network training on the dataset being fed into it. It is only natural to see 

noise on the first epoch since it is cycling through all the images for the first time. Since the 

outcomes are at 64x64 pixels, training goes by quickly. 

 

Epoch2 

While the second epoch is for the most part noise, there is a slightly visible figure in the middle. 

This gives hope that something might appear, however all that is seen right now is just the outline 

of the figure as the network is still training and is in the early phase of the operation. 

 

Epoch3 

The noise in the third epoch is clearing up and the elevations are beginning to become visible, 

however there is no telling how the features might turn out just yet. For the initial results to 

become visible by epoch3 is good news. Again, the reason this is network is producing results 

early in epochs is because of the image size of 64x64.  
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Epoch4 

Getting to this point, epoch4 is displaying promise that results are appearing. As one might tell, 

the network has not yet reached a state of stability just yet. But again, the fact that there exhibit 

results at just epoch4 is good to see. Also, as opposed to epoch3, the variety of designs in epoch4 

are now discernable. 

 

Epoch5 

After epoch4, the networks are attempting to fully stabilize the image. The noise is clearing up 

and the images are starting to become worthy of comparison. 

 

Epoch6 

At epoch6, clearly the networks have stabilized. The white background is brightening up and now 

even the features of each design are visible. As much as it exciting to see these results, there are a 

few pros and cons to them. 

Pros: 

What is fascinating about this is witnessing for the first time how the images are formed from 

pure noise. From looking at the images, there are early signs of hybrid design. Another great 

aspect of the initial results is that the resulted images were appearing quickly and were run on the 

CPU. By the fourth epoch we can see results and by the fifth, stability is displayed from the 
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network in generating images. If the network is not tuned correctly, only noise will be visible. 

This is a great starting set. 

Cons:  

One main con is that the features are barely seen. A person would have zoom in and look 

extremely deep for clues. Another con is the fact that these initial results are not comparable just 

yet to the original images, just due to the image size. Compression is playing a big role in 

generating these images and thus, many features are lost in the transition. However, as mentioned 

before, as an exploratory initial set, these results serve as a good starting point in the entire 

experiment.  

Challenges & Adjustments needed after the preliminary set:  

1. Dataset size needs to be increased for better results 

2. Modification of 3D models to be rendered with less shadows & more variation 

3. Improvement in hyper-tuning of GAN networks (conv layer numbers etc.) 

4. Train with slower learning rate and more epochs 

5. Switch between CPU to GPU computing for faster results 

6. Current generated images are at 64x64 🡪 working on 128x128 which will yield finer results 

7. Training GAN networks is tricky & takes a while to train  

The major next step was to generate larger resolution images to see how much finer the results 

would be. An attempt is made to move from 64x64 → 128x128 
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Second set of results: 

 

FIGURE 14. A.I. Generated images at 128x128 

 

 

Here are some of the A.I. generated images at 128x128. 

First time attempted to generate these images; the network would only yield noise. There was 

some realization that the network needed to be tuned once again, with changes in specifically: 

1. Batchsize no. (initial results had a batch of 8 but this one is 32) 

2. Imagesize Output 

3. Learning rate 
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4. Adding more layers to both neural networks 

5. Switching to GPU 

After a series of long period trial and errors with these factors, we finally begin to see the results 

for the 128x128. A problem with GAN networks (experience and reading other relative research 

papers) is that there is difficulty when the model converges, leaving the generated images at noise 

level even after training the networks for more than 100 epochs. A GAN network’s discriminator 

is constantly trying to reduce its loss, however on the other end, the generator is attempting to 

maximize the loss. This is the reason why training GANs is a tricky task, since the model can 

collapse and just produce noise. It is quite a sensitive model. The image below was towards end 

of a training set that been going on for a while. Towards the end, the generator network is being 

dominated by the discriminator who is close to reaching zero loss, thus it knew a while back that 

the images were fake images. This leads to a model collapse. 

 
FIGURE 15. Loss function D & G 

 

 

Pros: 

This a much better rendition than the previous results and we can clearly see features this time. 

More early evidence of hybridization. 
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Cons: 

The increase in resolution is great, however training and tuning is time consuming. As opposed to 

the first set of results (images appeared within a mere 4 epoch), features became visible at the 7th 

epoch and stabilized around the 9th epoch.  

Before analyzing the current set of results, a conscious decision was made to increase the 

generated image resolution. The process needs repetition so we can achieve a finer illustration. 

The next step is to move from 128x128 → 256x256 size. The image resolution problem needed to 

be solved first before moving on trying out new and other features.  

The results for 256x256: 
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FIGURE 16: A.I. generated images at 256x256 

 

 

Now this is an image resolution that works, and features are large enough for anyone to witness. 

The images above and until recently have been a combination of blacks, greys and whites for 

color and reason is for simplicity’s sake. Below are a few samples selected from the batches to 

get a closer look at their features in detail.  
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FIGURE 17. Samples selected at 256x256 
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In the set above, we can clearly see that the GAN network does exhibit some complexity, 

and all three images were from a set in the late epochs between 200 – 220. This potentially means 

that the network could understand the underlying structure and prominent features of each design 

in the late epochs, then learns to play and hybridize some of the features together. Since both the 

generator and discriminator are in adversarial mode and are trying to out-wit each other, then the 

generator would have learned enough to carry out possible hybrid variations.  

 
FIGURE 18. Observational analysis at set 1 

 

 

Before moving on to the comparison section (compares A.I. generated images with the 

real dataset’s images), let’s look at a quick analysis made by observation at first glance. The 

colored lines in the images above represent edge and boundary lines. The image to the left 

displays a jagged red line where the blue arrow is pointing to, and that is an anomaly, a hard edge 

that the A.I. has chosen to stop at. This hard stop is originating from the mullions that are 

extruding from the base, as displayed by the red lines. There is clear evidence of understanding 

some of the underlying framework of the images. However, these are just observations at first 

sight and can be evaluated at the comparison section with the real images from the original 

dataset.  
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The image to the right is concerned with evidence of hybridization, as the GAN network has 

produced an image with features from both designs. The red outline in this case is the rigid design 

features and the blue lines represent elements (stripes) from the second design (organic). 

The images below introduce color at 256x256 resolution size. The pink red color represents glass 

and the experiment was set up to see how GANs understands materiality (buildings), edges and 

boundaries (lines within patterns). 

 

 
FIGURE 19. A.I generated images at 256x256 set 2 
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FIGURE 20. Selected samples from set 2 

 

 

As opposed to the grayscale set of results, the coloration in these images allows for insight into 

how the network handles more tensors. Does it make sense of shadows and colors? Do the new 

formations still respond to the underlying framework of the images it had trained on? And does it 

still hybridize some of the features of both designs? Below is another set of simple observational 

analysis at first glance. As mentioned previously, a comparison will be made after the 

experiments between the preliminary observation and images from the real dataset. 
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FIGURE 21. Observational analysis set 2 

 

 

Here is another quick observational analysis performed on the second set. Note that all 

these images are pulled from the 100+ epoch sets. The first image is associated with feature 

hybrids, and the letters A & B correspond to which design these features are from. ‘A’ represents 

the rigid design whilst ‘B’ represents the organic design, thus the first design exhibits a 50/50 

feature mixture. The image to the right utilizes lines from the three mullions at the base as 

guidelines to halt stripes crossing the whole way at intersecting points, thus creating novel 

patterns that have not been seen before. And finally, the third image is another feature mixture of 

about 50/50 from each design. Aside from these observations, there is a plethora of other designs 

with hybrid features and small anomalies. The main question that arises from the current 
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observations is can GAN networks understand the meaningful variation necessary for human 

interaction? In other words, are these somewhat subtle variations enough to move designers to 

pay attention to them and make changes to their architectural design?  

The last experiment is set up to have no shadows and green color for glass. The reason for this is 

to see if the network understands hard edges and if it can learn and recreate some of those 

features in various ways. The images are scaled up to 512x512 resolution for even finer results. 

 
FIGURE 22. A.I. generated images at 512x512 

 

 

Pros: 

Many features are visible and clearly the network understands some hard edges and can recreate 

them. The test revealed that the network was able to generate the flat shade of green representing 

glass without any additional hues or other shades of green, denoting consistency.  

 

Cons: 
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Even with a GPU, this takes a long time to train. The results are great, but the process is extremely 

time-consuming and can take a long time to fine tune the model each time. Another issue is one 

cannot tell if a form is emerging out of noise until a few epochs in. Each epoch takes around 30 

minutes depending on batch size. The images above started to emerge overnight after 100 epochs.  

  

  
FIGURE 23. Selected samples from set 3 

 

 

Looking at a few samples in detail, a few anomalies can be seen such as the stripes from 

design B do no cross all the way and much like previous examples, are halting at certain 

intersections. What slightly changed in design A is that the changing element is the window 

opening rather than the extrusion of frames. Hybrid features revealed when stripes are attempting 

to merge vertically with frame openings much like on the second image from the detail samples. 
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When zoomed in on the same second image, there is even an attempt made to amalgamate the 

grids from both designs together. Like all samples generated thus far, the static base element is 

well ingrained into the A.I. agent’s head and has been overall quite consistent.  

  
FIGURE 24. Observational analysis for set 3 

 

 

These two samples taken from the batch of 4 above are analyzed to reveal that the 

network comprehends proportionality as well, as displayed by the red vertical lines on the image 

to the left (respectively 1 unit, 2 & 3 units far apart). The image to right displays feature mixture 

as previously discussed, where striped horizontal openings are attempted to merge with window 

openings from the first design, vertically. The purpose of the quick analysis was not only to 

display feature amalgamation, but also to point out some of the concepts talked about in general 

design (grid guidelines, proportionality etc.) and the GAN network is implementing these 

concepts. Again, the question still holds- Can GANs understand how important these variations 

are for human interaction? The upscaling of the image to 512x512 resolution bolsters the feature 

evidence presented in the A.I. generated images. 
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Comparisons 

Since there exists a series of analysis created from observations, now it is time to pull the same 

samples from each set and compare them with images from the real dataset.  

 
FIGURE 25. Comparison set 1 (A.I. vs real) 

 

 

Note that the dataset images were at 500x500, so it is quite natural to sharper features than the 

256x256 A.I. generated images (at least in the grayscale and pink window sets). In the first 

sample above the area marked with a blue square is an example of the network understanding a 

boundary created from the mullion lines and attempting to fill that area with stripes, even ending 

exactly at the boundary and revealing the prominently featured mullion. The reconstructions will 

never be as perfect as the images from the real dataset as it seems GAN’s pick up on the shadow 

patterns as well.  
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FIGURE 26. Comparison set 2 (A.I vs real) 

 

 

 In the set above, pay attention to the blue circled area. The A.I. had generated a reveal of 

the structure underneath the strips in a complex way. The comparison corroborates that the 

boundary lines from that reveal, flow along the organic curved lines. Just by observation, a person 

may not be able to see this directly without having a closer look. However, the two images (A.I. 

and real) have been overlaid on top of one another with the opacity reduced on the real image. 

This is to confirm and display where the A.I. had taken initiative from to produce some of that 

complexity in that circle cluster. In the first comparison, the variation may not be as high of 

importance for human interaction, however, the complexity revealed from the second comparison 

is not something an architect may simply reproduce or think of in that form. Designers can 

possibly learn from A.I. generated images. 
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FIGURE 27. Comparison set 3 (A.I vs real) 

 

 

Looking at some samples that are dominantly from the rigid design, the A.I. reconstruction 

highlighted a few stripes from the organic design and imposed them on top. The blue rectangle 

denotes where this feature mixture occurs. The blue lines show how the GAN network was 

playing around within the same height proportions as the frames. There is a discontinuity with the 

frame grid lines in that area as well.  

  
FIGURE 28. Comparison set 4 (A.I vs real) 

 

 

Moving on to the second experiment’s samples, the first obvious difference between the two 

designs is that the real sample’s horizontal stripes cross all the way from left to right. However, in 



45 

the case of the A.I. generated images there are obvious stops on certain stripes. The analysis 

performed on this image confirms that the stripes are halting at precise intersections. Another 

note to mention is that mullions that go all the way up from the base are invisible or missing from 

the A.I. generated image.  

  
FIGURE 29. Comparison set 5 (A.I vs real) 

 

 

 Another clear example of hybrid features, however the quality of the A.I. generated 

image is not always the best. The real image (on the right), exhibits incessant features with stripes 

pulled all the way, along with the mullions. The image to the left (A.I. generated), decided to use 

rigid frame features from the first design and incorporate it at the top of the design. Another 

aspect of the A.I. generated image reveals two stripes that are intersecting with the mullions. This 

is outside of the norm, but promising since it could be understood that GAN networks are capable 

of using strong sets of features as guidelines.  
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FIGURE 30. Comparison set 6 (A.I vs real) 

 

 

Although this sample (A.I. generated image) is at 512x512, trumping the original 

500x500 image from the dataset, however the original image is still much clearer overall. Still, 

there is still some credit to be given to the A.I generated image for the reconstruction. The main 

difference between the two images, which is highlighted with a blue rectangle, is that the network 

can understand unitization of elements. Aside from that, the network can also understand 

proportionality. The image from the dataset may only produce full stripes, just like the previous 

examples at 256x256, however the reconstruction comprehended some of the features from both 

datasets and learned to play around those features in an attempt to fool the discriminator. One 

feature that the GAN network seems to have trouble reproducing in most of the examples if the 

flow of the curve in the overall design. 
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FIGURE 31. Comparison set 7 (A.I vs real) 

 

 

 The results for this A.I. generated image is intriguing. An attempt is made to create 

feature mixtures from both designs, however if zoomed in, one can see that the network even 

attempted to mix grid lines together as well (highlighted in red rectangle). The frame openings 

can also be seen in the A.I. generated image as small squares. There is a high combination of 

striped and frame openings, which allows the network to think of ways to not only go 

horizontally but also break the pattern and go vertically (because of frame openings) and an 

example of this is highlighted with a blue rectangle.   

Improvements for the future: 

1. Dataset size needs to be increased for better results 

2. More tensors/features 

3. Improvement in hyper-tuning of GAN networks (conv layer numbers etc.) 

4. Train with various learning rates (highs and lows) and more epochs 

5. Scale to 1K resolution 

6. Training GAN networks is tricky since one network beats the other network quickly and 

can lead to a model collapse 

7. Understand how to add more components to the model for better results 
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CHAPTER 6: CONCLUSION 

 

 

GANs can understand the meaningful variation necessary for human interaction as seen from the 

results. There is enough to move architects and designers to able to incorporate A.I. influence into 

their designs. The combination of artificial intelligence, data and architects will prove to be 

extremely powerful and effective.  The iterative search force of machines, when coupled with 

user-trained neural network models will provide users a way to achieve, and even explore designs 

that match their qualitative selections. This project will display the potential of future 

collaborations between a neural network and a designer working congruently. 
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