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ABSTRACT

BRITTNEY LAMBERT. Design and veri�cation of a levitation device. (Under the
direction of DR. STEVE PATTERSON)

This thesis describes the design and veri�cation of a force measurement instrument

using levitation through use of a voice coil actuator. The device can suspend an

external force of up to 10 N, and determine that external force to within ±0.003 N.

Mechanical design, electrical design both analog and digital, manufacturing processes,

and the resulting measurements are described. Flexures, voice coil design, positioning

sensors, and control systems are all integrated through use of an additively manufac-

tured frame. Design objectives to limit manufacturing time and complexity, provide

the ability to make design changes easily, and provide proof of concept feasibility are

addressed.
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CHAPTER 1: INTRODUCTION

A load cell is a mechanism that takes an unknown applied force and outputs a

quanti�able signal that can be related to the unknown force. The unknown applied

force is determined by looking at the signal change induced when a load is applied. A

force balance uses a known force to balance an unknown applied force. When the force

is balanced, the known force is equal to the unknown force. In an electromagnetic

force balance, using a voice coil actuator, the voice coil balances the unknown applied

force. When the unknown applied force is balanced, the current required to drive the

voice coil can then be related to the unknown applied force. Measurements can also

be taken while moving the coil through a magnetic �eld and used to determine the

magnetic �ux of the system. While strain gauge load cells are common, a force balance

has the potential to be much more precise. An electromagnetic force balance is even

more desirable because the system can be measured to determine the magnetic �ux,

and that can then be used to determine the applied force, making the measurement

more precise.

1.1 RELATED WORK

1.2 Force Measurement Systems

One force balance apparatus created for atomic force microscope probe calibration

at UNC Charlotte [1], uses �exures that suspend a rod. When a force is applied to

the rod, the �exures displace. That displacement is then measured with a capacitance

gauge, and then a signal is fed through a PID controller and a power ampli�er provides

current to a solenoid to keep the system at a set null point in position. The system

has the ability to measure forces of up to 100 mN with a resolution of 70 nN/
√

Hz.
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A patent by Feliks Bator shows a design for rapid weighing [2] through the use of

a voice coil. A tray is used to hold a weight and is attached to a spring or �exure.

A force is applied to the tray of the scale causing the spring to displace. A position

sensor sends a signal to a control system, and current is then sent to the voice coil

to bring the tray back to its original position. At that point the applied force is

proportional to the current and can be determined.

A "nanopositioning system based on electromagnetic force compensated balances",

discussed by C. Diethold, was used to determine "force to displacement curves" [3].

The system is able to measure force and displacement at the same time with only one

sensor and is capable of measuring spring constants as high as 109 N
m
, with a resolution

of up to 0.01 N
m
.

1.3 Watt Balance

Several types of electromagnetic force balances, known as Kibble (watt) balances,

have been designed in the last forty years. A Kibble balance, named after its inventor

Dr. Bryan Kibble, uses the balancing of electrical and mechanical power to determine

force [4]. A current carrying coil in a magnetic �eld is used to restore the balance to

a null point after a force is applied. Kibble balances have two modes of measuring,

one is a force measurement and the other is a velocity measurement. In the force

measurement mode, the balance is held at a constant displacement and current is

measured to determine the force applied. In velocity mode, the velocity of the moving

coil is held constant and the back emf is measured to determine the magnetic �ux.

Examples of some Kibble balances include the BIPM watt balance[5][6][7], NIST watt

balance[8][9][10], and BNM watt balance[11].

The BNM watt balance is designed to measure forces through the use of a voice coil,

feedback position, and feedback velocity [11]. An interferometer is used to measure the

position and velocity of the coil. The BNM watt balance allows for a magnetic circuit

with the same poles of the magnets facing each other. This causes a repelling force
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and causes the magnetic �eld lines to travel outward at 90 degrees. These magnetic

�eld lines cross the voice coil perpendicular to the �ow of current. Due to the Lorentz

Force principal, this then gives a restoring force and motion to the system. In this

system, the magnets are stationary and the coil moves. In force measuring mode, the

current is measured to hold the system at a constant displacement to determine the

applied force. When the system is moving, measurements can be taken to determine

the magnetic �ux.



CHAPTER 2: OVERALL DESIGN

A force measurement system is desired that can be additively manufactured to

lower costs and to provide ease of manufacturing compared to commercially available

options, while maintaining equal to or better precision than commercially available

options. The force measurement system is also desired to be compact in size, and

serve as a proof of concept for further projects. The overall design is shown in Figure

2.1. A voice coil with a stationary coil positioned in the middle of the system drives

a pair of moving magnets. Four �exures connect the magnet housings to an outer

frame, constraining motion to a single axis. The system is raised on supports to allow

room for an external force to be applied from beneath. An opto-interrupter and razor

blade optical knife edge sensor determine a position at the top. This optical knife

edge (OKE) sensor serves as the position measurement instrument for the system.
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opto-interruptor
razor blade

�exures x4

supports

moving magnets

stationary
coil housing

external force

magnet
connection

Figure 2.1: Basic Design Concept

The current required to hold a force at a known position through the use of a

feedback control system provides the measure of the force. Measuring multiple known

forces at a known �xed position for calibration, the system can then be used to

measure unknown forces.

The armature, voice coil housing, and OKE sensor housing are additively manufac-

tured with ABS. ABS was chosen based on analysis of the same �exure con�guration

and dimensions with di�erent materials. ABS has the lowest Young's modulus, and

therefore provides the lowest spring sti�ness in the armature �exures. This analysis

is shown in Appendix B. The �nal design can be seen in Figure 2.2. Figure 2.3,

shows the terminology used for various parts of the system, and their location. The

coil is stationary within the voice coil housing, and the magnets move within the coil

on both of the outer edges. The magnets are held within the magnet housing and

attached to the armature �exures to allow single-axis movement. The magnets are

held within their respective housings by the repelling force between the two magnets.
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Figure 2.2: Overall Design

micrometer

armature �exures*

voice coil housing

OKE �exures

OKE sensor housing

razor blade*

magnet housing*

OKE sensor (inside)

*part of armature

voice coil housing

Figure 2.3: Voice Coil and OKE Sensor Housing Exploded View



CHAPTER 3: MECHANICAL DESIGN

3.1 Voice Coil and Magnetic Field Design

The voice coil driver is a stationary-coil moving-magnet system. The design of

the magnet structure is in�uenced by that of the BNM and NIST watt balances. To

achieve the desired maximum current capacity, the coil is wound with 20 ga. copper

magnet wire. The coil length is 0.8 in, with an inner diameter of 1.04 in, and an

outer diameter of 1.6 in. The voice coil was designed with a magnetic �eld direction

aligned with the �eld of the moving magnets to produce an upward and downward

force depending on the direction of the current. The design can be seen in Figure

3.1, where the two opposing magnets generate the magnetic �eld normal to the axis

of motion.

Figure 3.1: Magnetic Circuit Design with Magnetic Field Lines Normal to Coil

A free computer program called Finite Element Magnetics Modelling (FEMM) was
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used to calculate the magnetic �eld at points of interest, speci�cally at the position

of the coil. Various magnet sizes and separations were calculated to determine the

con�guration of the magnetic system with the highest magnetic �eld at the coil,

while maintaining the ability to assemble the system. The �nal design choice was two

neodymium N-42 cylindrical magnets, each with a length of 1 in, and a diameter of

1 in, separated by 0.5 in. Figure 3.2 shows the FEMM model of the magnetic design.

Figure 3.2: FEMM Model

3.2 Flexures

Flexures are used for both the armature movement and for the positioning of the

OKE sensor with respect to the razor blade.

3.2.1 Flexure for Armature Movement

A modi�ed blade �exure design supports the armature. Figure 3.3 shows the design

of the armature �exure in a sectional view with the top of the system removed for

viewing of the �exures. The armature �exures are in a J-shape and are symmetrically

opposed side to side and top to bottom to eliminate torsion that would otherwise cause

misalignment with the coil during movement. With the �exures opposing each other,
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a single linear degree of freedom was achieved.

Figure 3.3: Opposing Modi�ed Blade Flexure Design Allowing Single-Axis Motion

Calculations using simple beam theory (Appendix C) determined the sti�ness of

the armature �exure to be 0.552 N
mm

. A �nite element analysis approximately agreed

with beam theory calculations and is shown in Figure 3.4, with the colors and table

representing displacement in millimeters. A 5 N load was applied to the armature.

Flexure sti�ness through FEA was determined to be 0.449 N
mm

.
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Figure 3.4: FEA analysis of �exure design with 5 N load applied to armature; units
in mm

3.2.2 Flexure for OKE Sensor Positioning

A �exure system provides adjustment of the position sensor with respect to the

razor blade. The OKE �exure has a range of 2 mm. This range is greater than the

range of the opto-interrupter so that the sensor can be positioned at the edge of the

razor blade and �ne tuned as needed. This position is controlled with a micrometer

�xed to the top of the OKE sensor housing. Figure 3.5 shows the micrometer at the

top and its interface with the OKE �exure for the position sensor.
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Figure 3.5: Position Sensor Bridge with Flexures and Micrometer



CHAPTER 4: ELECTRICAL AND CONTROLS DESIGN

A voice coil is driven by a current that is determined from holding the armature at a

�xed position on the OKE sensor. Figure 4.1, shows the control system that produces

the current to drive the voice coil based on positioning from the OKE sensor.

+
−

PI Analog
Controller

Power
Amp

DAQ Current
Sense

Displacement

OKE

point
set

Vbias

Figure 4.1: Control Diagram

4.1 DAQ

The DAQ is a LabJack T7 Pro that provides the set point based on input from the

OKE sensor, and a constant Vbias, while also recording OKE sensor voltage, sense

resistor voltage, commanded set point values, error term to the set point, and time.

The LabJack has 24 bit resolution capability, which was utilized for recording long

term data. For transient data collection the resolution can be adjusted based on the

LabJack's resolution index to allow faster data collection. A resolution index of 5
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was chosen for transient data collection, which is a 16 bit resolution. This allowed

data collection to run at 1 kHz so that more data could be seen and aliasing could

be limited. Five analog inputs were used on the labJack and 2 analog outputs. Table

4.1 below shows each analog input and output used and what they were measuring

or sending.

Table 4.1: LabJack Inputs and Outputs

Value De�nition

AIN0 position sensor (volts)

AIN1 coil temp. sensor (volts)

AIN2 sense resistor (volts=amps)

AIN3 ambient temp. sensor (volts)

AIN4 error term (volts)

DAC0 V bias output

DAC1 V setpoint output

4.2 OKE Sensor Circuit

The optical knife edge sensor, OKE sensor, determines positioning of the armature.

As the armature moves upward, the razor blade covers more of the photosensor,

blocking the beam of light from hitting the photosensor. This changes the voltage

output of the sensor which represents a position. This voltage signal is used as a

feedback signal in the control system, so that current can be increased or decreased

to the voice coil depending on if the armature is above or below the intended voltage

setpoint.

The position signal from the OKE sensor in Figure 4.1, is derived from a trans-

impedance ampli�er coupled to an opto-interrupter as shown in Figure 4.2. The

LM7805 is a voltage regulator to provide better voltage control for components
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throughout the circuit. The LTC-1046 is a voltage inverter to provide a −5 V to

the transimpedance ampli�er.

LM7805
1 3

2

47
nF

47
nF

0.68
µF

499 Ω

λ

499 Ω

5 V

λ
−

+

5 V

−5 V

499 Ω

to analog

summation
circuit

LTC-1046
Voltage

Inverter

Boost

Cap+

GND

Cap- Vout

LV

OSC

V+

5 V

10
µF

−5 V

10
µF

−+ 12 V

Figure 4.2: OKE circuit

4.3 Power Ampli�er Circuit

The circuit for the power ampli�er from Figure 4.1 is shown in Figure 4.3. An

emitter-follower was created from two transistors to drive the voice coil. The 5 V

power supply is a variable power supply set to 5 V, with a current limit manually set

to 2.5 A. Voltage was measured across the 1 Ω sense resistor to determine the current

required to drive the voice coil.
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273 Ω

from PI
analog

control
2N3904G

TIP35

5 V

voice
coil

1 Ω sense
resistor

voltage

reading

sent to
LabJack

10 kΩ 10 kΩ

Figure 4.3: Power Ampli�er Circuit

4.4 PI Analog Controller Circuit

The PI analog controller circuit, shown in Figure 4.4, is comprised of �ve LM741

operational ampli�ers. A bias voltage signal from the LabJack is sent through a unity

gain inverting op amp and then to the proportional op amp. The commanded set

point voltage from the summing junction is sent to both a proportional gain stage and

an integral gain stage. The signals from both the proportional and integral gain stages

are then added together in the summing ampli�er. To obtain a positive voltage value

for the power amp, the signal is then fed through a unity gain inverting ampli�er.
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from analog

summation
circuit 10 kΩ 10 kΩ

Rbias

−
+

Vcc

Vee

1 kΩ

1 kΩ
Vbias from
LabJack

−
+

Vcc

Vee

Rf

−
+

Vcc

Vee

51 kΩ

2 µF

10 kΩ

10 kΩ

−
+

Vcc

Vee

Rsum

1 kΩ
−
+

Vcc

Vee

1 kΩ

to power

ampli�er

Figure 4.4: PI Analog Control Circuit

4.5 Analog Summation Circuit

The analog summation junction circuit, shown in Figure 4.5, takes the inverted

set point voltage signal from the LabJack and subtracts it from the output voltage

signal of the OKE sensor through a di�erencing ampli�er. This provides a voltage

error signal that is sent to the PI analog control circuit and the DAQ.

Vsensor R1
−
+

Vcc

Vee

to PI analog

control

R2

R1

−
+

Vcc

Vee

1 kΩ

1 kΩ

set point

from LabJack

R2

Figure 4.5: Analog Summation Circuit

4.6 Digital and Analog Control

A combination of both digital and analog control is used to eliminate latency issues

with using the LabJack T7 Pro DAQ. Measurements were taken of the coil current
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and residual position for a succession of loadings, and were conducted with the analog

PI control system. The measurements began with a 272 g mass, and an additional

10 g loading was added. The 10 g was removed and 20 g was added to the 272 g mass.

This process was repeated by adding 50 g, 100 g, and 500 g to the 272 g mass. The

steady state error observed as mass was added to the system indicated that the analog

control system was not able to completely eliminate the residual error with increasing

mass. This was due to imperfect integration in the analog PI controller.

To reduce this residual error, a digital integrator was implemented. The measure-

ments were repeated with the modi�cations to the control system. Figure 4.6 shows

the error as the mass is added to the system after implementation of the digital inte-

grator. The residual error has been reduced to the noise limit of the position sensor

by the introduction of the digital integrator.

0 100 200 300 400 500 600 700 800
−1

−0.5

0

0.5

1
·10−2

time (seconds)

re
si
du
al
er
ro
r
(V

)

272 282 292 322
372

Figure 4.6: Residual error for a succession of �ve loading masses: 272 g, 282 g, 292 g,
322 g and 372 g with digital integrator implementation



CHAPTER 5: MANUFACTURING

The voice coil housing, armature, and OKE sensor housing were all manufactured

using additive manufacturing, and the coil was wound on a lathe.

5.1 Coil

To manufacture the coil to necessary tolerances, a mandrel with a diameter equal

to the desired 1.04 in inner diameter dimensions of the coil was made. The mandrel

was made with walls spaced by the desired length, so that the wire could be wound

to the length of the coil without repeatedly measuring length during the winding

process. Speed StickTM gel deodorant was applied directly to the mandrel as a mold

release to ensure removal of the coil after winding. The coil was wound 300 times with

20 ga magnet wire. The wire was wrapped around the outer section of the mandrel

multiple times to ensure it would not slip when the winding began. After each layer

was wrapped, Devcon super glue gel was applied to hold the coil together. Once

completed, the coil was allowed to set for thirty minutes and then it was removed

from the mandrel. The �nished coil mounted inside the ABS coil housing is shown in

Figure 5.1.

Figure 5.1: Manufactured Coil Inside ABS Coil Housing
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5.2 Additive Manufacturing

Additive manufacturing is used to streamline any necessary changes, to reduce

cost, and to allow ease of manufacturing for proof of concept purposes. The material

of choice is black ABS plastic. The choice of black eliminates stray light entering

through the ABS and a�ecting the position sensor reading. ABS is chosen out of

ABS, Nylon, and polycarbonate as having the lowest Young's modulus, and therefore

providing the lowest spring sti�ness for the armature �exure. The system was printed

using a Fortus 400 MC fused deposition printer.

5.3 Assembly

Brass heat-set threaded inserts were placed inside parts of the housing to allow for

ease of assembly when putting the sections together. The coil housing is assembled

�rst, placing the coil within each half of the coil housing and bolting the housing

together. Care must be taken during assembly of the armature, as the magnets can

have a repulsive force of over 50 lbs. Stops, shown in Figure 5.2, were integrated into

the design on either side of the armature �exures to prevent the �exures from being

over extended during assembly.
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top �exure stop

bottom �exure stop

�exures

Figure 5.2: Stops to prevent over extending �exures during assembly

The top and bottom parts of the armature are clamped together around the coil

housing while the two halves are bolted together. The OKE sensor housing is as-

sembled separately and then placed on top of the system. An exploded view of the

system is shown in Figure 5.3.
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Figure 5.3: Exploded View of System Components for Assembly



CHAPTER 6: RESULTS

The balance of forces applied to the armature at equilibrium is shown in Equation

6.1, where k is the spring constant of the voice coil �exures, x is the position of

the �exures with respect to the null point of the �exures, C is the force constant

of the voice coil, i is the coil current, fa is the force produced by the mass of the

armature and spring sti�ness of the �exures, and fext is the external force applied to

the armature.

∑
F = k(x− x0)− Ci+ fa + fext = 0 (6.1)

Equation 6.1 can be solved for fext yielding,

fext = Ci− kx− fa (6.2)

C is determined by applying known external forces and determining the current

required to maintain the armature at a constant position, x. Given a known value of

C, k is determined by �tting position versus applied current at one or more constant

values of fext.

6.1 Calibration Methods

The OKE position sensor used is described in Chapter 4 Section 3. In order to

translate the voltage signal received from the sensor into a position value, the sensor

must be calibrated. This position value is then used to calculate fext in Equation 6.2.

To calibrate the position sensor, the coil was not powered and the sensor was

positioned over the razor blade by adjusting the micrometer on top. The micrometer

reading and the corresponding voltage from the position sensor was recorded at each
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step across the full range of the position sensor. The sensitivity of the sensor was

determined by a linear �t of the position sensor voltage to position. Based on the

calibration data and linear �t, as seen in Figure 6.1, the sensitivity of the position

sensor was determined to be 1.186(23) V
mm

.

0.5 1 1.5 2

−1

0

position (mm)

vo
lt
ag
e
(V

)

Raw Data
Linear Fit

y = 1.186 V
mm
∗ x− 2.0388 V

Figure 6.1: Voltage to Position of OKE Position Sensor moved with micrometer with
Linear Fit line

Figure 6.2 shows that positions between 0.4 mm and 1.0 mm have the least non-

linearity in the position sensor output data. Accordingly, 0.715 mm was chosen as the

x0 position for all measurements.
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Figure 6.2: Nonlinearity of OKE Position Sensor
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The OKE sensor housing design left little room for ambient light to reach the

detector. Voltage levels at a known position were tested with both the lights on in

the lab, and the lights o�. Changes in voltage could not be seen outside of the noise

limit of the sensor.

The force produced by the armature mass and spring sti�ness of the voice coil

�exures, fa, determines the coil current required to suspend the armature without

any external force. Two di�erent methods were used to determine fa.

The �rst method was to use a force gauge attached to a linear slide and placed

under the �exure stage. An aluminum rod was attached to the end of the force gauge

to reduce magnetic e�ects from the coil on the force gauge. The force gauge was

moved upward until the position sensor was reading at x0. The force gauge reading

at this time was 251.2(10) g (2.4643(98) N). Figure 6.3 depicts the set-up used for

this measurement method.
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micrometer linear actuator

force gauge

riser block

armature

Figure 6.3: Voice coil system set-up

The second method was to use the linear �t of the current vs position data to

calculate the force at x0. Through this method, fa was determined to be 2.2524(13) N.

The �rst method had more room for errors, to include o� axis forces due to poor

alignment with the force gauge. Interference in the reading from the magnets used in

the voice coil could also not be ruled out. The measured fa from the second method

was used in all calculations.
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6.2 Testing

6.2.1 Force Constant

The force constant, C, used in Equation 6.2, was determined with the current of

six successive loading masses at the same position. Figure 6.4 shows the position and

current with respect to time, as mass is added to the system.
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Figure 6.4: Coil current and position for a succession of six loading masses: 272 g,
282 g, 292 g, 322 g, 372 g and 772 g

Using the same data shown in Figure 6.4, Figure 6.5 shows the force versus current.

The force constant, C, was determined to be 4.6015(12) N
A
.
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Figure 6.5: Force vs Current with best �t line for determining force constant C

6.2.2 Flexure Sti�ness

To determine the voice coil �exures sti�ness, k, in Equation 6.2, force versus po-

sition measurements of 5 known forces at 12 points were conducted, as shown in

Figure 6.6. A linear �t of the force versus position data gives a �exure sti�ness of

0.4532(19) N
mm

with an R2 value of 0.999. This value is in approximate agreement

with an analytical approximation of 0.552 N
mm

discussed in Chapter 3 Section 2.1.
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Figure 6.6: Measured Flexure Sti�ness with 5 Known Forces at 12 positions with
linear �ts to each set of measurements
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With the force constant, C, �exure sti�ness, k, and combined force produced by

the armature mass and �exure, fa, determined, the measurements of the current and

position for a known external force were taken. Equation 6.2 was used to calculate

the known external force for comparison against measurements taken with a separate

scale. With this veri�ed, an unknown external force was applied to the system. The

corresponding position and current was measured and the unknown external force

was calculated using Equation 6.2.

To determine the uncertainty of the measured external force, Equation 6.3 was

used. The uncertainty of the measured external force was determined to be ±0.003 N.

Equation 6.2 was used to derive Equation 6.3. The sensitivities of each variable are

multiplied by their respective uncertainty, and then summed in quadrature with all

other variables to determine the overall uncertainty.

(δfext)
2 = (i · δC)2 + (C · δi)2 + (x · δk)2 + (k · δx)2 + (1 · δfa)2 (6.3)



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

The voice coil actuated force measurement gauge is capable of determining an

unknown force of up to 10 N, with an uncertainty of ±0.003 N. Ease of manufacturing

and design change is obtained through the use of additive manufacturing. Flexure

design provides compliant springs for armature and OKE sensor movement. The use

of an analog control system helped reduce latency issues with the LabJack DAQ, and

the digital integrator implementation was critical in reducing residual steady state

errors.

As a proof of concept the system demonstrates potential. It could be improved

upon with several additions and modi�cations. The addition of a thermistor on the

coil would help determine the temperature of the coil during measurements, and

analysis of those temperature e�ects on the unknown force determination could be

conducted. The magnetic circuit could potentially be improved with the addition of

a yoke. This could help concentrate magnetic �elds at points of interest to increase

the force produced by the voice coil. Connection points for ease of assembly of the

top and bottom portions of the voice coil �exure stage should be considered. It is also

recommended to automate the process of switching between suspended masses during

calibration in order to avoid thermal and mechanical disturbances due to handling.
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APPENDIX A: C++ Code

Listing A.1: C++ code main4rev3avgSLOW

1 /**

2 * Name : eWriteAddress . c

3 * Desc : Shows how to use the LJM_eWriteAddress func t i on

4 **/

5

6 // For p r i n t f

7 #inc lude <s td i o . h>

8

9 // For the LabJackM Library

10 #inc lude <LabJackM . h>

11

12 // input output stream that a l l ows c in and cout to read

13 // cont inuous ly

14 #inc lude <iostream>

15

16 // For LabJackM he lpe r funct i ons , such as OpenOrDie ,

17 //PrintDeviceInfoFromHandle , ErrorCheck , e t c .

18 #inc lude "LJM_Uti l i t ies . h"

19

20 // to save to csv f i l e

21 #inc lude <fstream>

22 #inc lude <s t r i ng>

23

24 // f o r measuring time in hours minutes seconds
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25 #inc lude <ctime>

26 #inc lude <chrono>

27

28 us ing namespace std ;

29

30 // f o r measuring time in nanoseconds

31 // us ing ns = chrono : : nanoseconds ;

32 // us ing get_time = chrono : : steady_clock ;

33

34 i n t main ( )

35 {

36

37 // c r e a t e an ofstream f o r the f i l e output ( s ee the l i n k on

38 // streams f o r more i n f o )

39 ofstream outputF i l e ;

40

41 // c r e a t e a name f o r the f i l e output

42 // s t r i n g f i l ename = "exampleOutput . csv " ;

43

44 // c r e a t e and open the . csv f i l e

45 // outputF i l e . open (" exampleOutput . csv " ) ; // t h i s one wr i t e s

46 // over i t s e l f everyt ime you run i t

47 outputF i l e . open ( "exampleOutput . csv " , f s t ream : : app ) ; // t h i s one

48 //appends new data to end o f o ld data everyt ime you run i t

49

50 // wr i t e the f i l e headers

51 outputFi le<<"time & date "<<" , "<<" po s i t i o n senso r ( v o l t s ) avg"
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52 << " , "<< " sense r e s i s t o r (amps) avg" << " , " << " vbias " << " , "

53 << "v s e tpo i n t " << " , " << "ambient temp vo l t avg" << " , "

54 << " c o i l temp vo l t avg" << " , " << " e r r o r term vo l t s " << endl ;

55

56 i n t n=1;

57 // l o ck s in to a loop cont inuo s l y

58 whi l e ( t rue ){

59

60 n=n+1;

61 i n t err , handle , i ;

62

63 // to change the r e s o l u t i o n

64 enum { NUM_FRAMES_CONFIG = 1 } ;

65 const char * aNamesConfig [NUM_FRAMES_CONFIG] = \

66 {"AIN_ALL_RESOLUTION_INDEX" } ;

67 const double aValuesConf ig [NUM_FRAMES_CONFIG] = {10} ;

68 i n t er rorAddres s = INITIAL_ERR_ADDRESS;

69

70 // Set up f o r read ing AIN value

71 double va lue ; //measurement that the LabJack i s read ing

72 // from the OKE senso r

73 const char * NAME = "AIN0" ; // vo l tage va lue

74

75 // Open f i r s t found LabJack

76 handle = OpenOrDie (LJM_dtANY, LJM_ctANY, "LJM_idANY" ) ;

77

78 // Read AIN from the LabJack
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79 e r r = LJM_eReadName( handle , NAME, &value ) ;

80 ErrorCheck ( err , "LJM_eReadName" ) ;

81

82 double value2 ;

83 const char * NAME2 = "AIN2" ;

84 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

85 ErrorCheck ( err , "LJM_eReadName" ) ;

86

87 // value4

88 const i n t ADDRESS = 1002 ; //DAC1

89 const i n t TYPE = LJM_FLOAT32;

90 double value4 = 1 . 1 8 ; // v s e tpo in t

91

92 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

93 ErrorCheck ( err , "LJM_Open" ) ;

94

95 e r r = LJM_eWriteAddress ( handle , ADDRESS, TYPE, value4 ) ;

96 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

97

98 // wr i t e a vo l tage to DAC0

99 const i n t ADDRESS1 = 1000 ; // DAC0

100 const i n t TYPE1 = LJM_FLOAT32;

101 double value3 = 1 . 0 ; // vb ias

102

103 // Open f i r s t found LabJack

104 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

105 ErrorCheck ( err , "LJM_Open" ) ;
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106

107 e r r = LJM_eWriteAddress ( handle , ADDRESS1, TYPE1, value3 ) ;

108 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

109

110 // to measure the time in hours minutes seconds

111 time_t now = time ( 0 ) ;

112 char * dt = ctime(&now ) ;

113

114 double value5 ; // ambient temp senso r

115 const char * NAME5 = "AIN3" ;

116 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

117 ErrorCheck ( err , "LJM_eReadName" ) ;

118

119 double value6 ; //temp senso r at c o i l

120 const char * NAME6 = "AIN1" ;

121 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

122 ErrorCheck ( err , "LJM_eReadName" ) ;

123

124 double value7 ; // e r r o r term

125 const char * NAME7 = "AIN4" ;

126 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

127 ErrorCheck ( err , "LJM_eReadName" ) ;

128

129 //Setup & c a l l eWriteNames to con f i gu r e AIN0 on LabJack .

130 e r r = LJM_eWriteNames( handle , NUM_FRAMES_CONFIG,

131 aNamesConfig , aValuesConfig ,& errorAddres s ) ;

132 ErrorCheckWithAddress ( err , errorAddress , "LJM_eWriteNames" ) ;
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133

134 //how many data po in t s i t i s averag ing be f o r e wr i t i ng

135 //a po int to the csv f i l e

136 i n t num=100;

137 double sum1=0, avgval1 ;

138 double sum2=0, avgval2 ;

139 double sum3=0, avgval5 ;

140 double sum4=0, avgval6 ;

141 double sum5=0, avgval7 ;

142

143 // c in >> num;

144

145 f o r ( i n t i = 1 ; i <= num; i++){

146 e r r = LJM_eReadName( handle , NAME, &value ) ;

147 ErrorCheck ( err , "LJM_eReadName" ) ;

148 sum1 += value ;

149

150 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

151 ErrorCheck ( err , "LJM_eReadName" ) ;

152 sum2 += value2 ;

153

154 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

155 ErrorCheck ( err , "LJM_eReadName" ) ;

156 sum3 += value5 ;

157

158 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

159 ErrorCheck ( err , "LJM_eReadName" ) ;
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160 sum4 += value6 ;

161

162 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

163 ErrorCheck ( err , "LJM_eReadName" ) ;

164 sum5 += value7 ;

165 }

166

167 avgval1 = sum1 / num;

168 avgval2 = sum2 / num;

169 avgval5 = sum3 / num;

170 avgval6 = sum4 / num;

171 avgval7 = sum5 / num;

172 cout<<avgval1<<" "<<avgval2<<" "<<avgval5<<" "

173 <<avgval6<<" "<<avgval7<<endl ;

174

175 outputFi le<<dt<<" , "<<avgval1<<" , "<<avgval2<<" , "

176 <<value3<<" , "<<value4<<" , "<<avgval5<<" , "<<avgval6

177 <<" , "<<avgval7<<endl ;

178 }}
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Listing A.2: C++ code main14rev2AVGslowVsetpt24bitressteps0pt05

1 /**

2 * Name : eWriteAddress . c

3 * Desc : Shows how to use the LJM_eWriteAddress func t i on

4 **/

5

6 // For p r i n t f

7 #inc lude <s td i o . h>

8

9 // For the LabJackM Library

10 #inc lude <LabJackM . h>

11

12 // input output stream that a l l ows c in and cout

13 // to read cont inuous ly

14 #inc lude <iostream>

15

16 // For LabJackM he lpe r funct i ons , such as OpenOrDie ,

17 //PrintDeviceInfoFromHandle , ErrorCheck , e t c .

18 #inc lude "LJM_Uti l i t ies . h"

19

20 // to save to csv f i l e

21 #inc lude <fstream>

22 #inc lude <s t r i ng>

23

24 #inc lude <ctime>

25 #inc lude <chrono>

26
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27 us ing namespace std ;

28

29 i n t main ( )

30 {

31 i n t reps =12;

32 i n t reps2= 30 ;

33 double s t a r t =0.85;

34 double s tart_adj= s t a r t − .05;

35 double de l t a ;

36 double value3 = start_adj+ de l t a ;

37 double curva l =0;

38 double curva l2 =0;

39 double curva l3 =0;

40

41 // c r e a t e an ofstream f o r the f i l e output

42 ofstream outputF i l e ;

43

44 // c r e a t e and open the . csv f i l e

45 outputF i l e . open ( "exampleOutput . csv " ) ;

46

47 // wr i t e the f i l e headers

48 outputF i l e << "time and date " << " , "

49 <<" po s i t i o n senso r ( v o l t s ) avg" << " , "

50 << " sense r e s i s t o r (amps) avg" << " , "

51 << "Vbias"<<" , "<<"v s e tpo i n t "<<" , "

52 <<"ambient temp vo l t avg"<<" , "<<" c o i l temp vo l t avg"

53 <<" , "<<" e r r o r term vo l t s "<<endl ;
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54

55 i n t i t r =1;

56

57 f o r ( i t r=1 ; i t r <=4*reps ; i t r ++){

58 de l t a=i t r * . 0 5 ;

59 i n t n=1;

60

61 n=n+1;

62

63 i n t err , handle , i ;

64

65 enum { NUM_FRAMES_CONFIG = 1 } ;

66 const char * aNamesConfig [NUM_FRAMES_CONFIG] = \

67 {"AIN_ALL_RESOLUTION_INDEX" } ;

68 const double aValuesConf ig [NUM_FRAMES_CONFIG] = {10} ;

69 i n t er rorAddres s = INITIAL_ERR_ADDRESS;

70

71 // Set up f o r read ing AIN value

72 double va lue ; //measurement that the LabJack i s

73 // read ing from the OKE senso r the value i s a vo l tage

74 //but i t r e p r e s en t s my po s i t i o n

75 const char * NAME = "AIN0" ;

76

77 // Open f i r s t found LabJack

78 handle = OpenOrDie (LJM_dtANY, LJM_ctANY, "LJM_idANY" ) ;

79

80 const i n t ADDRESS = 1000 ; //DAC1 i th ink
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81 const i n t TYPE = LJM_FLOAT32;

82 double value4 = 1 . 0 ; //V BIAS

83

84 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

85 ErrorCheck ( err , "LJM_Open" ) ;

86

87 e r r = LJM_eWriteAddress ( handle , ADDRESS, TYPE, value4 ) ;

88 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

89

90 double value2 ;

91 const char * NAME2 = "AIN2" ;

92

93 // wr i t e to DAC0

94 const i n t ADDRESS1 = 1002 ; // DAC0 Vsetpoint

95 const i n t TYPE1 = LJM_FLOAT32;

96 i f ( i t r <=reps )

97 { value3 = start_adj+ de l t a ;

98 curva l=value3 ;

99 }

100 // i f (x>70 && x<80)

101 e l s e i f ( i t r > reps && i t r <= reps *2)

102 { de l t a=( i t r −( reps +1))* . 05 ;

103 start_adj=curva l ;

104 value3 = start_adj− de l t a ;

105 curva l2 =value3 ; }

106

107 e l s e i f ( i t r > reps *2 && i t r < reps *3)
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108 {

109

110 de l t a=( i t r −((2* reps ) −1))* . 05 ;

111 start_adj=curval2 − .05;

112 value3 = start_adj+ de l t a ;

113 curva l3=value3 ; }

114

115 e l s e i f ( i t r > reps *3 && i t r < reps *4)

116 { de l t a=( i t r −((3* reps )+1) )* . 0 5 ;

117 start_adj=curval3 − .05;

118 value3 = start_adj− de l t a ; }

119

120

121 // Open f i r s t found LabJack

122 e r r=LJM_Open(LJM_dtANY,LJM_ctANY, "LJM_idANY",&handle ) ;

123 ErrorCheck ( err , "LJM_Open" ) ;

124

125 e r r = LJM_eWriteAddress ( handle , ADDRESS1, TYPE1, value3 ) ;

126 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

127

128 f o r ( i n t i t r 2=1 ; i t r 2<=reps2 ; i t r 2++){

129

130 time_t now = time ( 0 ) ;

131 char * dt = ctime(&now ) ;

132

133 double value5 ; // ambient temp senso r

134 const char * NAME5 = "AIN3" ;
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135

136 double value6 ; //temp senso r at c o i l

137 const char * NAME6 = "AIN1" ;

138

139 double value7 ; // e r r o r term

140 const char * NAME7 = "AIN4" ;

141

142 //Setup & c a l l eWriteNames to con f i gu r e AIN0 on LabJack .

143 e r r = LJM_eWriteNames( handle , NUM_FRAMES_CONFIG,

144 aNamesConfig , aValuesConfig , &errorAddres s ) ;

145 ErrorCheckWithAddress ( err , errorAddress , "LJM_eWriteNames" ) ;

146

147 // Read AIN from the LabJack

148 e r r = LJM_eReadName( handle , NAME, &value ) ;

149 // value=senso r vo l tage

150 ErrorCheck ( err , "LJM_eReadName" ) ;

151

152 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

153 // value2=sense r e s i s t o r vo l t age

154 ErrorCheck ( err , "LJM_eReadName" ) ;

155

156 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

157 ErrorCheck ( err , "LJM_eReadName" ) ;

158

159 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

160 ErrorCheck ( err , "LJM_eReadName" ) ;

161
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162 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

163 ErrorCheck ( err , "LJM_eReadName" ) ;

164

165 i n t num=100;

166 double sum1=0, avgval1 ;

167 double sum2=0, avgval2 ;

168 double sum3=0, avgval5 ;

169 double sum4=0, avgval6 ;

170 double sum5=0, avgval7 ;

171

172 f o r ( i n t i = 1 ; i <= num; i++){

173

174 //Setup & c a l l eWriteNames to con f i gu r e AIN0 on LabJack .

175 e r r = LJM_eWriteNames( handle , NUM_FRAMES_CONFIG,

176 aNamesConfig , aValuesConfig ,& errorAddres s ) ;

177 ErrorCheckWithAddress ( err , errorAddress , "LJM_eWriteNames" ) ;

178

179 e r r = LJM_eReadName( handle , NAME, &value ) ;

180 ErrorCheck ( err , "LJM_eReadName" ) ;

181 sum1 += value ;

182

183 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

184 ErrorCheck ( err , "LJM_eReadName" ) ;

185 sum2 += value2 ;

186

187 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

188 ErrorCheck ( err , "LJM_eReadName" ) ;
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189 sum3 += value5 ;

190

191 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

192 ErrorCheck ( err , "LJM_eReadName" ) ;

193 sum4 += value6 ;

194

195 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

196 ErrorCheck ( err , "LJM_eReadName" ) ;

197 sum5 += value7 ;

198 }

199

200 avgval1 = sum1 / num;

201 avgval2 = sum2 / num;

202 avgval5 = sum3 / num;

203 avgval6 = sum4 / num;

204 avgval7 = sum5 / num;

205

206 cout<<avgval1<<" "<<avgval2<<" "<<value3

207 <<" "<<avgval7<<endl ;

208

209 outputF i l e << dt /*<< " ," << n */<< " , " << avgval1

210 << " , " << avgval2 << " , " << value3 << " , " << value4

211 << " , " << avgval5 << " , " << avgval6 << " , "

212 << avgval7 << endl ;

213 }}

214 value3 = 0 ;

215 cout << " the vo l tage value i s cu r r en t l y : " << value3<< endl ;
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216 }
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Listing A.3: C++ code main15fastVsetptIncrement0pt2

1 /**

2 * Name : eWriteAddress . c

3 * Desc : Shows how to use the LJM_eWriteAddress func t i on

4 **/

5

6 // For p r i n t f

7 #inc lude <s td i o . h>

8

9 // For the LabJackM Library

10 #inc lude <LabJackM . h>

11

12 // input output stream that a l l ows c in and

13 // cout to read cont inuous ly

14 #inc lude <iostream>

15

16 // For LabJackM he lpe r funct i ons , such as OpenOrDie ,

17 //PrintDeviceInfoFromHandle ,

18 // ErrorCheck , e t c .

19 #inc lude "LJM_Uti l i t ies . h"

20

21 // to save to csv f i l e

22 #inc lude <fstream>

23 #inc lude <s t r i ng>

24

25 #inc lude <ctime>

26 #inc lude <chrono>
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27

28 us ing namespace std ;

29

30 us ing ns = chrono : : nanoseconds ;

31 us ing get_time = chrono : : steady_clock ;

32

33 i n t main ( )

34 {

35 i n t reps= 1 ;

36 i n t reps2= 10000 ;

37 double s t a r t =1.2 ;

38 double s tart_adj= s t a r t − .2;

39 double de l t a ;

40 double value3 = start_adj+ de l t a ;

41 double curva l =0;

42 double curva l2 =0;

43 double curva l3 =0;

44

45 auto start_time = get_time : : now ( ) ;

46 // use auto keyword to minimize typing s t r ok e s

47

48 // c r e a t e an ofstream f o r the f i l e output

49 ofstream outputF i l e ;

50

51 // c r e a t e and open the . csv f i l e

52 outputF i l e . open ( "exampleOutput . csv " ) ;

53
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54 // wr i t e the f i l e headers

55 outputF i l e << "time and date " << " , " <<

56 " po s i t i o n senso r v o l t s " << " , "<< " sense r e s i s t o r amps"

57 << " , " << "V se tpo i n t "<<" , "<<"V bia s "<<" , "

58 <<"ambient temp vo l tage "<<" , "<<" c o i l temp vo l tage "<<" , "

59 <<" e r r o r vo l tage "<<endl ;

60 i n t i t r =1;

61

62 f o r ( i t r=1 ; i t r <=4*reps ; i t r ++){

63 de l t a=i t r * . 2 ;

64 i n t n=1;

65

66

67 // l o ck s in to a loop cont inuo s l y

68

69 n=n+1;

70

71 i n t err , handle , i ;

72

73

74 enum { NUM_FRAMES_CONFIG = 1 } ;

75 const char * aNamesConfig [NUM_FRAMES_CONFIG] = \

76 {"AIN_ALL_RESOLUTION_INDEX" } ;

77 const double aValuesConf ig [NUM_FRAMES_CONFIG] = {5} ;

78 i n t er rorAddres s = INITIAL_ERR_ADDRESS;

79

80
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81 // Set up f o r read ing AIN value

82 double va lue ; //measurement that the LabJack i s

83 // read ing from the OKE senso r

84 const char * NAME = "AIN0" ; // vo l tage va lue

85

86 // Open f i r s t found LabJack

87 handle = OpenOrDie (LJM_dtANY, LJM_ctANY, "LJM_idANY" ) ;

88

89 const i n t ADDRESS = 1000 ; //DAC0 i th ink

90 const i n t TYPE = LJM_FLOAT32;

91 double value4 = 1 . 0 ; //v b ia s

92

93 e r r=LJM_Open(LJM_dtANY,LJM_ctANY, "LJM_idANY",&handle ) ;

94 ErrorCheck ( err , "LJM_Open" ) ;

95

96 e r r=LJM_eWriteAddress ( handle ,ADDRESS,TYPE, value4 ) ;

97 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

98

99 double value2 ;

100 const char * NAME2 = "AIN2" ;

101

102 // wr i t e to DAC

103 const i n t ADDRESS1 = 1002 ; // DAC1 V se tpo i n t

104 const i n t TYPE1 = LJM_FLOAT32;

105 i f ( i t r <=reps )

106 { value3 = start_adj+ de l t a ;

107 curva l=value3 ;
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108 }

109 // i f (x>70 && x<80)

110 e l s e i f ( i t r > reps && i t r <= reps *2)

111 { de l t a=( i t r −( reps +1) )* . 2 ;

112 start_adj=curva l ;

113 value3 = start_adj− de l t a ;

114 curva l2 =value3 ; }

115

116 e l s e i f ( i t r > reps *2 && i t r < reps *3)

117 {

118

119 de l t a=( i t r −((2* reps ) −1) )* . 2 ;

120 start_adj=curval2 − .2 ;

121 value3 = start_adj+ de l t a ;

122 curva l3=value3 ; }

123

124 e l s e i f ( i t r > reps *3 && i t r < reps *4)

125 { de l t a=( i t r −((3* reps )+1) )* . 2 ;

126 start_adj=curval3 − .2 ;

127 value3 = start_adj− de l t a ; }

128

129 // Open f i r s t found LabJack

130 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

131 ErrorCheck ( err , "LJM_Open" ) ;

132

133 e r r = LJM_eWriteAddress ( handle , ADDRESS1, TYPE1, value3 ) ;

134 ErrorCheck ( err , "LJM_eWriteAddress" ) ;
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135

136 f o r ( i n t i t r 2=1 ; i t r 2<=reps2 ; i t r 2++){

137

138 auto end = get_time : : now ( ) ;

139 auto d i f f = end − start_time ;

140

141 double value5 ; // ambient temp senso r

142 const char * NAME5 = "AIN3" ;

143

144 double value6 ; //temp senso r at c o i l

145 const char * NAME6 = "AIN1" ;

146

147 double value7 ; //temp senso r at c o i l

148 const char * NAME7 = "AIN4" ;

149

150 e r r = LJM_eWriteNames( handle , NUM_FRAMES_CONFIG,

151 aNamesConfig , aValuesConfig , &errorAddres s ) ;

152 ErrorCheckWithAddress ( err , errorAddress , "LJM_eWriteNames" ) ;

153

154 // Read AIN from the LabJack

155 e r r = LJM_eReadName( handle , NAME, &value ) ;

156 // value i s the s enso r vo l tage

157 ErrorCheck ( err , "LJM_eReadName" ) ;

158

159 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

160 // value2 i s the sense r e s i s t o r vo l t age

161 ErrorCheck ( err , "LJM_eReadName" ) ;
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162

163 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

164 ErrorCheck ( err , "LJM_eReadName" ) ;

165

166 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

167 ErrorCheck ( err , "LJM_eReadName" ) ;

168

169 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

170 ErrorCheck ( err , "LJM_eReadName" ) ;

171

172 outputFi le<<chrono : : duration_cast<ns>( d i f f ) . count ( ) /*

173 << " ," << n */<< " , " << value << " , " << value2 << " , "

174 << value3 << " , " << value4 << " , " << value5 << " , " <<

175 value6 << " , " << value7 << endl ;

176 }}

177 value3 = 0 ;

178 cout << " the vo l tage value i s cu r r en t l y : " << value3<< endl ;

179 }
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Listing A.4: C++ code main4rev3avgSLOWwithDigIntegRev2

1 /**

2 * Name : eWriteAddress . c

3 * Desc : Shows how to use the LJM_eWriteAddress func t i on

4 **/

5

6 // For p r i n t f

7 #inc lude <s td i o . h>

8

9 // For the LabJackM Library

10 #inc lude <LabJackM . h>

11

12 // input output stream that a l l ows c in and

13 // cout to read cont inuous ly

14 #inc lude <iostream>

15

16 // For LabJackM he lpe r funct i ons , such as OpenOrDie ,

17 //PrintDeviceInfoFromHandle ,

18 // ErrorCheck , e t c .

19 #inc lude "LJM_Uti l i t ies . h"

20

21 // to save to csv f i l e

22 #inc lude <fstream>

23 #inc lude <s t r i ng>

24

25 #inc lude <ctime>

26 #inc lude <chrono>
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27

28 #inc lude <uni s td . h>

29 #inc lude <vector>

30 #inc lude <numeric>

31

32 us ing namespace std ;

33

34 i n t main ( )

35 {

36 double value4 = 1 . 3 ; // v s e tpo in t commanded

37 double error_old = 0 ;

38

39 // c r e a t e an ofstream f o r the f i l e output

40 ofstream outputF i l e ;

41

42 // c r e a t e and open the . csv f i l e

43 outputF i l e . open ( "exampleOutput . csv " , f s t ream : : app ) ;

44

45 // wr i t e the f i l e headers

46 outputF i l e << "time and date "<< " , "<<

47 " po s i t i o n senso r ( v o l t s ) avg" << " , "<<

48 " sense r e s i s t o r (amps) avg" << " , " << " vbias " << " , "

49 << "v s e tpo i n t " << " , " << "ambient temp vo l t avg"

50 << " , " << " c o i l temp vo l t avg" << " , " <<

51 " e r r o r term vo l t s " << " , " << "commanded s e tpo i n t "

52 <<endl ;

53
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54 double j =0;

55 vector<double> vec ;

56 double b ;

57 double a ;

58 double c ;

59 double d ;

60 double e ;

61 double k ;

62

63 i n t n=1;

64

65 whi l e ( t rue ){

66

67 n=n+1;

68

69 i n t err , handle , i ;

70

71 enum { NUM_FRAMES_CONFIG = 1 } ;

72 const char * aNamesConfig [NUM_FRAMES_CONFIG] = \

73 {"AIN_ALL_RESOLUTION_INDEX" } ;

74 const double aValuesConf ig [NUM_FRAMES_CONFIG] = {9} ;

75 i n t er rorAddres s = INITIAL_ERR_ADDRESS;

76

77 // Set up f o r read ing AIN value

78 double va lue ; //measurement that the LabJack

79 // i s read ing from the OKE senso r

80 const char * NAME = "AIN0" ; // vo l tage va lue
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81

82 // Open f i r s t found LabJack

83 handle = OpenOrDie (LJM_dtANY, LJM_ctANY, "LJM_idANY" ) ;

84

85 // Read AIN from the LabJack

86 e r r = LJM_eReadName( handle , NAME, &value ) ;

87 ErrorCheck ( err , "LJM_eReadName" ) ;

88

89 j++;

90 s l e e p ( 1 ) ; // s l e e p s f o r 1 second

91

92 vec . push_back ( value ) ;

93 b=accumulate ( vec . begin ( ) , vec . end ( ) , 0 . 0 ) ;

94 // ^^adds the va lues that are being s to r ed

95 a=b/50 ; // the average when accumulating the past 50 va lue s

96

97 i f ( j >=50)

98 {vec . e r a s e ( vec . begin ( ) ) ;

99 // ^^e r a s e s a l l va lue s past the l a s t 50

100 c=0.7* value +0.3*a ; // weight ing the average

101

102 double value2 ;

103 const char * NAME2 = "AIN2" ;

104 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

105 ErrorCheck ( err , "LJM_eReadName" ) ;

106

107 double value8 = −1.3; // de s i r ed s e tpo i n t
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108

109 double error_new = value8 − c ;

110

111 double k i = 0 . 0 1 ;

112

113 const i n t ADDRESS = 1002 ; //DAC1

114 const i n t TYPE = LJM_FLOAT32;

115 value4 = value4 − ( k i *error_new + error_old ) ;

116 // ^^commanded s e tpo i n t

117

118 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

119 ErrorCheck ( err , "LJM_Open" ) ;

120

121 error_old = error_new ;

122

123 e r r = LJM_eWriteAddress ( handle , ADDRESS, TYPE, value4 ) ;

124 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

125

126 // wr i t e to DAC0

127 const i n t ADDRESS1 = 1000 ; // DAC0

128 const i n t TYPE1 = LJM_FLOAT32;

129 double value3 = 1 . 0 ; // vb ias

130

131 // Open f i r s t found LabJack

132 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

133 ErrorCheck ( err , "LJM_Open" ) ;

134
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135 e r r = LJM_eWriteAddress ( handle , ADDRESS1, TYPE1, value3 ) ;

136 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

137

138 time_t now = time ( 0 ) ;

139 char * dt = ctime(&now ) ;

140

141 double value5 ; // ambient temp senso r

142 const char * NAME5 = "AIN3" ;

143 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

144 ErrorCheck ( err , "LJM_eReadName" ) ;

145

146 double value6 ; //temp senso r at c o i l

147 const char * NAME6 = "AIN1" ;

148 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

149 ErrorCheck ( err , "LJM_eReadName" ) ;

150

151 double value7 ; // e r r o r term

152 const char * NAME7 = "AIN4" ;

153 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

154 ErrorCheck ( err , "LJM_eReadName" ) ;

155

156 //Setup & c a l l eWriteNames to con f i gu r e AIN0 on LabJack .

157 e r r = LJM_eWriteNames( handle , NUM_FRAMES_CONFIG,

158 aNamesConfig , aValuesConfig , &errorAddres s ) ;

159 ErrorCheckWithAddress ( err , errorAddress , "LJM_eWriteNames" ) ;

160

161 i n t num=1; // f o r averag ing
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162 double sum1=0, avgval1 ;

163 double sum2=0, avgval2 ;

164 double sum3=0, avgval5 ;

165 double sum4=0, avgval6 ;

166 double sum5=0, avgval7 ;

167

168 f o r ( i n t i = 1 ; i <= num; i++){

169 e r r = LJM_eReadName( handle , NAME, &value ) ;

170 ErrorCheck ( err , "LJM_eReadName" ) ;

171 sum1 += value ;

172

173 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

174 ErrorCheck ( err , "LJM_eReadName" ) ;

175 sum2 += value2 ;

176

177 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

178 ErrorCheck ( err , "LJM_eReadName" ) ;

179 sum3 += value5 ;

180

181 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

182 ErrorCheck ( err , "LJM_eReadName" ) ;

183 sum4 += value6 ;

184

185 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

186 ErrorCheck ( err , "LJM_eReadName" ) ;

187 sum5 += value7 ;

188 }
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189

190 avgval1 = sum1 / num;

191 avgval2 = sum2 / num;

192 avgval5 = sum3 / num;

193 avgval6 = sum4 / num;

194 avgval7 = sum5 / num;

195

196 cout<<value<<" "<<c<<" "<<error_new<<endl ;

197

198 outputF i l e << dt << " , " << avgval1 << " , " << avgval2

199 << " , " << value3 << " , " << value4 << " , " << avgval5

200 << " , " << avgval6 << " , " << avgval7 << " , " << c << endl ;

201 }}}
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Listing A.5: C++ code main4rev3avgSLOWwithDigIntegRev3

1 /**

2 * Name : eWriteAddress . c

3 * Desc : Shows how to use the LJM_eWriteAddress func t i on

4 **/

5

6 // For p r i n t f

7 #inc lude <s td i o . h>

8

9 // For the LabJackM Library

10 #inc lude <LabJackM . h>

11

12 // input output stream that a l l ows c in and

13 // cout to read cont inuous ly

14 #inc lude <iostream>

15

16 // For LabJackM he lpe r funct i ons , such as OpenOrDie ,

17 //PrintDeviceInfoFromHandle ,

18 // ErrorCheck , e t c .

19 #inc lude "LJM_Uti l i t ies . h"

20

21 // to save to csv f i l e

22 #inc lude <fstream>

23 #inc lude <s t r i ng>

24

25 #inc lude <ctime>

26 #inc lude <chrono>
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27

28 #inc lude <uni s td . h>

29 #inc lude <vector>

30 #inc lude <numeric>

31

32 us ing namespace std ;

33

34 i n t main ( )

35 {

36 i n t in i t ia l_lpd_set_pt=1;

37 i n t f inal_lpd_set_pt=12;

38 double scaled_lpd_set_point ;

39

40 f o r ( in i t ia l_lpd_set_pt ; in i t ia l_lpd_set_pt<=final_lpd_set_pt ;

41 in i t ia l_lpd_set_pt++){

42 scaled_lpd_set_point=in i t ia l_lpd_set_pt * . 1 ;

43 cout<<" sca l ed looped s e tpo i n t : "<<scaled_lpd_set_point<<endl ;

44 double total_lpd_set_point= 1+scaled_lpd_set_point − .5 ;

45 cout<<" t o t a l looped s e tpo i n t : "<< total_lpd_set_point<< endl ;

46

47 double j =0;

48

49 double value4 = total_lpd_set_point ; // v s e tpo in t

50 double error_old = 0 ;

51

52 // c r e a t e an ofstream f o r the f i l e output

53 ofstream outputF i l e ;
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54

55 // c r e a t e and open the . csv f i l e

56 outputF i l e . open ( "exampleOutput . csv " , f s t ream : : app ) ;

57

58 // wr i t e the f i l e headers

59 outputF i l e << "time and date "<< " , "<<

60 " po s i t i o n senso r ( v o l t s ) avg" << " , "<<

61 " sense r e s i s t o r (amps) avg" << " , " << " vbias " << " , "

62 << "v s e tpo i n t " << " , " << "ambient temp vo l t avg" << " , "

63 << " c o i l temp vo l t avg" << " , " << " e r r o r term vo l t s "

64 << " , " << "commanded s e tpo i n t " <<endl ;

65

66 vector<double> vec ;

67 double b ;

68 double a ;

69 double c ;

70 double d ;

71 double e ;

72 double k ;

73

74 i n t n=1;

75

76 whi l e ( j <150){

77

78 n=n+1;

79

80 i n t err , handle , i ;
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81

82 enum { NUM_FRAMES_CONFIG = 1 } ;

83 const char * aNamesConfig [NUM_FRAMES_CONFIG] = \

84 {"AIN_ALL_RESOLUTION_INDEX" } ;

85 const double aValuesConf ig [NUM_FRAMES_CONFIG] = {9} ;

86 i n t er rorAddres s = INITIAL_ERR_ADDRESS;

87

88 // Set up f o r read ing AIN value

89 double va lue ;

90 //measurement that the LabJack i s read ing from the OKE senso r

91 const char * NAME = "AIN0" ; // vo l tage va lue

92

93 // Open f i r s t found LabJack

94 handle = OpenOrDie (LJM_dtANY, LJM_ctANY, "LJM_idANY" ) ;

95

96 // Read AIN from the LabJack

97 e r r = LJM_eReadName( handle , NAME, &value ) ;

98 ErrorCheck ( err , "LJM_eReadName" ) ;

99

100 j++;

101 cout<< " i t e r a t o r j : "<< j<< endl ;

102 s l e e p ( 1 ) ; // s l e e p s f o r one second

103

104 vec . push_back ( value ) ;

105 b=accumulate ( vec . begin ( ) , vec . end ( ) , 0 . 0 ) ;

106 // ^^adds the va lue s that are being s to r ed

107 a=b/50 ; // the average when accumulating the past 50 va lues
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108

109 i f ( j >=50)

110 {vec . e r a s e ( vec . begin ( ) ) ;

111 // ^^e r a s e s a l l s t o r ed va lue s past the l a s t 50

112 c=0.7* value +0.3*a ; // weight ing the average

113

114 double value2 ;

115 const char * NAME2 = "AIN2" ;

116 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

117 ErrorCheck ( err , "LJM_eReadName" ) ;

118

119 double value8 = −total_lpd_set_point ;

120

121 double error_new = value8 − c ;

122

123 double k i = 0 . 0 1 ;

124

125 const i n t ADDRESS = 1002 ; //DAC1

126 const i n t TYPE = LJM_FLOAT32;

127 value4 = value4 − ( k i *error_new + error_old ) ;

128

129 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

130 ErrorCheck ( err , "LJM_Open" ) ;

131

132 error_old = error_new ;

133

134 e r r = LJM_eWriteAddress ( handle , ADDRESS, TYPE, value4 ) ;
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135 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

136

137 // wr i t e to DAC0

138 const i n t ADDRESS1 = 1000 ; // DAC0

139 const i n t TYPE1 = LJM_FLOAT32;

140 double value3 = 1 . 0 ; // vb ias

141

142 // Open f i r s t found LabJack

143 e r r = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY" , &handle ) ;

144 ErrorCheck ( err , "LJM_Open" ) ;

145

146 e r r = LJM_eWriteAddress ( handle , ADDRESS1, TYPE1, value3 ) ;

147 ErrorCheck ( err , "LJM_eWriteAddress" ) ;

148

149 time_t now = time ( 0 ) ;

150 char * dt = ctime(&now ) ;

151

152 double value5 ; // ambient temp senso r

153 const char * NAME5 = "AIN3" ;

154 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;

155 ErrorCheck ( err , "LJM_eReadName" ) ;

156

157 double value6 ; //temp senso r at c o i l

158 const char * NAME6 = "AIN1" ;

159 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

160 ErrorCheck ( err , "LJM_eReadName" ) ;

161
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162 double value7 ; // e r r o r term

163 const char * NAME7 = "AIN4" ;

164 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

165 ErrorCheck ( err , "LJM_eReadName" ) ;

166

167 //Setup & c a l l eWriteNames to con f i gu r e AIN0 on LabJack .

168 e r r = LJM_eWriteNames( handle , NUM_FRAMES_CONFIG,

169 aNamesConfig , aValuesConfig , &errorAddres s ) ;

170 ErrorCheckWithAddress ( err , errorAddress , "LJM_eWriteNames" ) ;

171

172 i n t num=1; // f o r averag ing

173 double sum1=0, avgval1 ;

174 double sum2=0, avgval2 ;

175 double sum3=0, avgval5 ;

176 double sum4=0, avgval6 ;

177 double sum5=0, avgval7 ;

178

179 f o r ( i n t i = 1 ; i <= num; i++){

180 e r r = LJM_eReadName( handle , NAME, &value ) ;

181 ErrorCheck ( err , "LJM_eReadName" ) ;

182 sum1 += value ;

183

184 e r r = LJM_eReadName( handle , NAME2, &value2 ) ;

185 ErrorCheck ( err , "LJM_eReadName" ) ;

186 sum2 += value2 ;

187

188 e r r = LJM_eReadName( handle , NAME5, &value5 ) ;
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189 ErrorCheck ( err , "LJM_eReadName" ) ;

190 sum3 += value5 ;

191

192 e r r = LJM_eReadName( handle , NAME6, &value6 ) ;

193 ErrorCheck ( err , "LJM_eReadName" ) ;

194 sum4 += value6 ;

195

196 e r r = LJM_eReadName( handle , NAME7, &value7 ) ;

197 ErrorCheck ( err , "LJM_eReadName" ) ;

198 sum5 += value7 ;

199 }

200

201 avgval1 = sum1 / num;

202 avgval2 = sum2 / num;

203 avgval5 = sum3 / num;

204 avgval6 = sum4 / num;

205 avgval7 = sum5 / num;

206 cout<<value<<" "<<c<<" "<<error_new<<endl ;

207

208 outputF i l e << dt << " , " << avgval1 << " , " << avgval2

209 << " , " << value3 << " , " << value4 << " , " << avgval5

210 << " , " << avgval6 << " , " << avgval7 << " , " << c << endl ;

211 }}}}
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APPENDIX B: Mathcad Analysis

Flexure Stiffness Calculation for a Notch-Hinge Flexure
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APPENDIX C: Matlab Analysis

Analysis of the �exure design is based on considering each segment of the �exure

as a simple cantilever beam. Delta bending 1, 2, and 3 calculate the displacement of

each segment given a force. The displacement of each segment is then added together

to give a total displacement of the �exure.
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