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ABSTRACT

MATÍAS MENDIETA. Real-time Vision Methods for Deployable Pedestrian
Detection, Re-identification and Path Prediction Systems. (Under the direction of

DR. HAMED TABKHI)

This article presents two methods, REVAMPT and CARPe Posterum. REVAMPT,

or Real-time Edge Video Analytics for Multi-person Privacy-aware Tracking, is an in-

tegrated system for privacy-built-in pedestrian re-identification. REVAMPT presents

novel algorithmic and system constructs to push deep learning capabilities for pedes-

trian re-identification at the edge (i.e. the video camera). On the algorithm side, RE-

VAMPT proposes a unified computer vision pipeline for detection and re-identification

on a low-power computing device without the need for storing the streaming data.

At the same time, it avoids facial recognition, re-identifying pedestrians based on

their encoded key features at runtime. For the results and evaluation, this article also

proposes a new metric, Accuracy·Efficiency (Æ), for holistic evaluation of deployable

systems based on accuracy, performance, and power efficiency. REVAMPT outper-

forms current state-of-the-art by as much as ten-fold Æ improvement.

A symbiotic task for pedestrian re-identification is path prediction, and therefore

we also propose CARPe Posterum, a Convolutional Approach for Real-time Pedes-

trian Path Prediction. Having insight into the movement of pedestrians is not only

important for pedestrian re-identification, but also for ensuring safe operation in a

variety of applications including autonomous vehicles and social robotics. Current

works in this area utilize complex generative or recurrent methods to capture many

possible futures. However, despite the inherent real-time nature of predicting future

paths, little work has been done to explore accurate and computationally efficient ap-

proaches for this task. To this end, CARPe utilizes a variation of Graph Isomorphism

Networks in combination with an agile convolutional neural network design to form a
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fast and accurate path prediction approach. Notable results in both inference speed

and prediction accuracy are achieved, improving FPS by at least 8x in comparison to

current state-of-the-art methods while delivering competitive accuracy on well-known

path prediction datasets.
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CHAPTER 1: INTRODUCTION

Recent advances in machine learning, particularly deep learning, have driven the

development of more advanced computer vision technologies. This includes every-

thing from simple license plate scanners that search for stolen vehicles, to terrain

segmentation for satellite imagery or brain tumor detection in medical CT scans.

Until recently, the common approach for accomplishing advanced vision tasks was

to perform the operation remotely on large cloud servers and send back the results

because of the significant algorithmic computation required.

However, many emerging and societally impactful technologies like self-driving cars,

social robotics, and intelligent surveillance systems do not have the luxury to simply

rely on the traditional cloud computing paradigm. These technologies require inten-

sive artificial intelligence capabilities like object detection, pose estimation, and path

prediction, but in a deployable package with minimal power consumption. On top

of these tight device constraints, real-time performance is essential for fast decision-

making and safe operation of such systems in their deployed environments. Offload-

ing to the cloud is often not an option for such latency and scalability concerns, and

therefore the demand for real-time, edge-capable computer vision models is growing

quickly.

Particularly with intelligent surveillance technologies, it is imperative to also con-

sider the technological impact from a social privacy perspective. The broad net cast

by typical surveillance approaches means that large amounts of personal information

are incidentally collected and stored. This has led to significant push-back by privacy

advocates against any expansions to video surveillance systems. As an example, mul-
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tiple cities in the US have imposed bans on all deployment of facial recognition and

tracking technologies [5]. European Union regulators are also considering new restric-

tions on AI-driven surveillance [6]. To address both technical and ethical concerns,

novel approaches are required in deployable systems design across the entire comput-

ing stack from algorithm development to computation mapping, communication, and

system-level synchronization.

1.1 Problem Statement

In intelligent surveillance, a fundamental task is that of pedestrian re-identification

and tracking. This entails the ability to detect pedestrians in a scene, and distinguish

them across frames. Such technology serves as a basis for various scene and action

understanding applications. However, designing a functional system that meets both

ethical and technical constraints for deployment is challenging. A majority of the

work in this field heavily relies on the use of face detection [7, 8, 9], or requires offline

operation on a bank of stored video [10, 11, 12]. However, face detection and offline

operation undermine the privacy of pedestrians. To avoid the need for gathering

personally identifiable information (PII) and massive video storage, we need an end-

to-end solution that processes frames in real-time without static identity databases.

A valuable addition to a pedestrian re-identification system is the ability to perform

path prediction for the pedestrians in the scene. This assists in re-identification after

long occlusions and understanding person-scene interactions. However, this task has

many challenging properties: 1) When choosing their future steps, pedestrians typi-

cally have an intrinsic goal from which they plan accordingly. Capturing this intent

from outside observation requires a fundamental understanding of human movement.

2) Person-to-person social interactions often influence the future path of a pedestrian,

for example, when avoiding collisions or traveling in groups. Therefore, modeling this

social effect is imperative for robust path prediction. 3) Predicting the future is inher-
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ently time-sensitive, as the information is only useful for decision making if obtained

quickly. Therefore, meeting real-time processing constraints is essential for the safety

and usefulness of a path prediction algorithm.

Pioneering works have attempted to incorporate social effects in pedestrian trajec-

tory prediction [13, 14, 15]. These approaches relied mainly on hand-crafted rules, and

were often limited in scale and function. More recent works have focused on develop-

ing data-driven approaches to tackle the path prediction problem. Social LSTM [16]

formed a pooling mechanism with recurrent neural networks (RNNs) to provide social

context to the prediction. Since then, many approaches have added the use of Gen-

erative Adversarial Networks (GANs) [17] within such frameworks, aiming to model

the distribution of possible future trajectories [18, 19, 20]. Most recently, the work

of Kosaraju et al. [3] utilized a graph neural network to model the social situation in

addition to a RNN-based GAN architecture. However, the existing approaches often

have two major shortcomings. First, they rely on very complex models with many

parameters, which makes the real-time execution on embedded devices nearly impos-

sible. Second and more importantly, they use multiple runs over video frames that

inherently violate the real-time nature of path prediction and limit their applicability

to real-world problems.

1.2 Contributions

This work introduces two components: 1) REVAMPT, a system performing Real-

time Edge Video Analytics for Multi-person Privacy-aware Tracking, and 2) CARPe

Posterum, A Convolutional Approach for Real-time Pedestrian Path Prediction.

REVAMPT is a low-power system that is able to detect and re-identify pedestri-

ans within a scene without the use of personally identifiable information. We deploy

REVAMPT on cameras equipped with the NVIDIA AGX Xavier [21] embedded plat-

form, running a deep learning based video analytics pipeline, for real-time pedestrian
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detection and tracking over streaming pixels. In keeping with the concept of the "right

to be forgotten" that was recently enshrined in EU law, our system does not rely on

a static identity database. Instead, unique identities are generated when pedestrians

first enter the view of a camera in our system and forgotten when those individuals

are no longer being actively tracked by the system.

To address the challenges of real-time path prediction, this paper proposes CARPe

Posterum. CARPe is a data-driven approach which effectively captures both intrinsic

and social nonlinearities of human trajectories, within real-time constraints. Figure

1.1 shows the high-level mechanism of CARPe. Our method mainly consists of two

networks, a graph neural network and a convolutional neural network, knitted to-

gether in an end-to-end fashion with efficiency in mind. CARPe harnesses the strong

and proven discrimitaive power of recently proposed Graph Isomorphism Networks

[22] to gather social context, and an intentionally designed CNN architecture for

effective path prediction.

The combined contributions of this work are as follows:

• A deployed agile vision system for privacy-aware pedestrian re-identification.

• A novel path prediction method, which captures both nonlinear intrinsic and

social effects in real-time.

Overall, REVAMPT achieves a pedestrian re-identification accuracy of 77.39%

(only 9.44% below the current state-of-the-art [10]) on the DukeMTMC dataset [23],

while achieving more than two times the real-time FPS and consuming 1/6th of the

power compared to [10]. A balance was struck between algorithmic Accuracy and

system Efficiency, measured by Accuracy·Efficiency (Æ). Our system has high scal-

ability potential in a deployed environment while never sacrificing personal privacy.

In pedestrian path prediction, notable results in both inference speed and prediction



5

tβ  t1 t2 

Figure 1.1: A high-level illustration of our proposed method, CARPe. Past pedestrian
positions from t1 to the current time step tβ are fed into the model. This information
is propagated through a graph and convolutional neural network in an end-to-end
fashion, producing future predicted trajectories for the next T time steps. In the
depicted output, we show potential examples of intrinsic nonlinearities (green), as
well as social effects resulting from collision avoidance (yellow) and traveling groups
(cyan and red).

accuracy are achieved, improving FPS by at least 8x in comparison to current state-

of-the-art methods while still producing competitive accuracy results on well-known

path prediction datasets.



CHAPTER 2: RELATED WORK & BACKGROUND

2.1 Pedestrian Detection and Re-Identification

With the rapid advancements made in deep learning, a plethora of work has been

published on pedestrian detection. Such models include region proposal networks

like Faster-RCNN [24], single shot detectors like SSD [25] and YOLO [26], as well

as pose-estimation models like DeeperCut [27] and OpenPose [28]. When analyz-

ing these algorithms in light of edge-capable real-time performance, MobileNet-SSD,

TinyYOLOv3, and OpenPose show promising results.

The heart of pedestrian tracking is consistent re-identification (ReID) of those

detected pedestrians throughout the video frames. Therefore, on the re-identification

side, recent methods leverage CNNs to extract unique features among persons [29, 30,

31, 32, 33, 34, 35, 36]. The work in [37] learns the spatial and temporal behavior of

objects by translating the feature map of the Region of Interest (RoI) into an adaptive

body-action unit. [38] uses bidirectional Long Short-Term Memory (LSTM) cells in

a Recurrent Neural Network (RNN) to learn the spatial and temporal behavior of

people throughout the video. Triplet loss [39, 40, 41] is another promising technique

to train the network with the goal of clustering classes in a way that IDs of the same

category have minimum distance among each other, while examples from different

categories are separated by a large margin.

ReID approaches [11] and [12] are monocular video pedestrian tracking systems

that use offline lifted multicut and subgraph decomposition methods. [42] proposed

a method for single camera multi-target tracking in terms of the Binary Integer Pro-

gram, and can incur online, real-time results. However, the system utilizes simple
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HSV histograms for appearance features, and is not robust to a variety of environ-

ments. [43] presents a RNN-based tracking algorithm to encode long-term cues and

generate similarity scores for ReID. [44] and [45] apply single object trackers to the

multi-person tracking problem, with [45] introducing a dynamic CNN with shared

and target specific layers for appearance feature extraction. The current state-of-the-

art in complete person re-identification systems is DeepCC [10]. This approach uses

OpenPose for detections, a deep learning triplet loss ReID network for visual data

association, and trajectory tracklets.

Overall, the current state of pedestrian re-identification algorithms struggle with

lack of privacy preservation and/or limited focus. First, the idea of privacy preser-

vation and online functionality are lost with many current approaches. The previous

works typically rely on the storage of large time segments of video data or image

crops, degrading privacy preservation. Similarly, many works propose facial recogni-

tion techniques [7, 8, 9, 46, 47], which also gravely compromises the privacy of tracked

persons, requiring the pre-loaded and long-term storage of personally identifiable in-

formation like a facial database. At the same time, existing approaches typically

analyzes the data offline with the ability to move forward and backward in time to

maximize their algorithm accuracy scores, making edge deployable operation of these

approaches impractical. Second, even for current online approaches, very little inves-

tigation is done with respect to feasibility of deployment. Many of these approaches

only focus on part of the complete vision pipeline needed, and provide low inference

speeds on large, high power GPUs. In contrast to existing work, this article proposes

a shift to deployable, non-personal and data private pedestrian re-identification. RE-

VAMPT accomplishes these tasks online on low-power edge devices.



8

2.2 Pedestrian Path Prediction

Early works in pedestrian path prediction focused on the development of Gaussian

processes and energy models to understand human behavior and movement [13, 14,

15, 48, 49]. However, these methods often require many predefined rules for pedestrian

interactions, and are limited to predicting a short time into the future.

Recurrent architectures are a common option for recent works in path prediction,

given their theoretical ability to capture an infinite history of inputs [50, 51]. [16, 52]

utilize LSTM-based RNNs at the forefront of their approaches to understand and

predict human trajectories. Liang et al. [4] propose an LSTM-based joint trajectory

and activity prediction system that incorporates scene segmentation maps, pedes-

trian visual features, and person keypoints to better inform both tasks. However, in

practice, the infinite history capabilities of RNNs are largely absent and the forced

sequential operation within the RNN limits its parallelization potential in modern

hardware [53]. This challenges the effectiveness of RNNs versus purely convolutional

networks in sequence modeling tasks, and makes such RNN approaches not ideal for

deployable real-time inference.

Many recent works have focused on incorporating generative models for the path

prediction problem. In [18], Gupta et al. built on the work of [16] by integrating a

social pooling mechanism into an LSTM-based GAN network. [20] takes this work

further, combining scene-level visual features with attention modules for physical and

social relations. [19] aims specifically to capture the latent decision, or intrinsic ele-

ments, of pedestrian movements in a generative fashion with statistical sub-networks.

Most recently, Kosaraju et al. form an RNN-based generative approach that includes

the use of Bicycle-GANs [54] and Graph Attention Networks (GAT) [55]. These

generative approaches typically rely on the ability to repeatedly inference the model

and generate many samples per pedestrian, which neglects the inherent real-time
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constrains of practical path prediction.

In contrast to these works, our method relies neither on recurrent nor generative

architectures. We use a convolutional approach for hardware-friendliness and deter-

ministic real-time inference. For social context, we formulate a Graph Neural Network

(GNN) based on recent theoretical work in GNNs [22] to maximize its disciminative

power. In this way, we tackle both intrinsic and social effects of pedestrian path

prediction while achieving real-time inference capabilities on low-power devices.

2.3 Graph Neural Networks

Graph Neural Networks (GNNs) have seen great progress in recent years. Naturally,

GNNs aim to take advantage of the powerful learning ability of neural networks

for non-euclidean data. Data representations for molecular models or social media

interactions are naturally inclined to graph representations, and therefore require a

unique neural network definition. Typically, each node in the graph holds a feature,

which is operated on across the graph structure. Such operations are utilized for a

variety of objectives in the graph such as forming new node features, performing node

classification, or completing graph-level classification [56].

GNNs are implemented with two major approaches, spectral and spatial [56]. Spec-

tral methods, such as [57, 58], utilize mathematical formulations rooted in graph sig-

nal processing to perform a graph Fourier Transform and subsequent convolution.

However, these methods assume the graph to be undirected and static. This limita-

tion hinders the viability of spectral methods in many domains where dynamic graph

structures are preferred or required.

Spatial methods. e.g. [22, 59, 55], do not require such assumptions, as they op-

erate on each node relative to its neighbors, allowing for dynamic graph structures.

Typically, for a given node, the features of its neighbors are aggregated, and then

combined with the current node feature. The aggregate and combine operations dif-
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fer in the various spatial GNN formulations. This process can be repeated to form

more abstract node representations, as well as increase the reach of a given node in

a sparsely-connected graph. GraphSAGE [59] proposed an inductive learning frame-

work with max-pooling aggregation across node features. Graph Attention Networks

(GAT) [55] perform the aggregation and combine steps together using a weighted

sum approach with attention. However, these GNN formulations have been largely

based on empirical evidence, without a supporting theoretical foundation for optimal

behavior. In their recent work [22], Xu et al. investigate the theoretical properties

of GNNs to determine optimal discriminative power based on the Weisfeiler-Lehman

(WL) graph isomorphism test [60]. They present a new GNN formulation, termed

Graph Isomorphism Networks (GIN), that are provably among the most expressive

GNN variants. In this work, we use the GIN operators as a basis for our graph

network and reformulate for use in path prediction.

2.4 Preliminary: Graph Isomorphism Networks

For graph convolutional operations, the typical aim is to analyze a graph structure

and the features of its nodes, producing meaningful representations in an embedding

space across different graphs. Ideally, for a GNN to be maximally discriminative,

two separate nodes should only map to the same location in the embedding space if

all aspects of node and neighborhood are identical. These aspects include both the

node features and neighborhood structure. Therefore, we expect to gather a unique

feature embedding in all other cases. Testing for discriminative power in a GNN

can be analogously drawn to the task of graph isomorphism tests, or distinguishing

whether two graphs are topologically identical.

A well known test for determining such properties is the WL isomorphism test,

as it has been found to effectively classify a broad class of graphs [60]. Therefore,

Xu et al. [22] use the WL isomorphism test as a theoretical guide in determining
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the distriminative power of GNNs. In their work, the authors find that a GNN is

as powerful as the WL isomorphism test if its aggregation (and graph level readout

operation, as used in node classification) is injective. Therefore, the authors define a

joint aggregation/combination operator as shown in Equation 2.1.

h′i = φ

(
(1 + ε) · hi +

∑
j∈N(i)

hj

)
(2.1)

Here, node features hj are from nodes in the neighborhood N(i). hi is the feature

for node i, ε is a trainable parameter, φ indicates an Multilayer Perception (MLP),

and h′i is the updated node feature. In this work, we employ the findings of [22] and

this joint aggregation/combination operator to formulate a graph for the pedestrian

path prediction problem, as will be detailed in Section 4.1.2.



CHAPTER 3: REVAMPT

3.1 Privacy Requirements and Threat Modeling

This section describes the privacy threat models which REVAMPT is designed to

address. In safeguarding privacy, we wish to protect the identities and Personally

Identifiable Information (PII) of the individuals being viewed by our system. This

is most commonly in the form of raw image data, but can also refer to meta-data

that can be used to determine the race, gender, nationality, or even identity of an

individual. There are three main threats to this that we attempt to address:

• The external threat of someone getting unintended access to the system and

retrieving image data or Personally Identifiable Information (PII).

• The internal threat of someone with authorized access to the system viewing

image data or PII - even someone who is supposed to have access to the system

and its generated meta-data should not be able to discern the identities of

individuals or have access to their personal information.

• The physical threat of someone getting physical access to the edge device.

To safeguard against these threats, we impose two major policies for designing

REVAMPT:

(1) REVAMPT will not store any image data or transfer it across the network.

As soon as the image is processed on the edge node, it is destroyed. This protects

any PII in the images from being viewed by anyone with access to the system. Even

with direct access to the edge node, image data never touches non-volatile memory,
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so accessing it is impossible without fundamentally changing the semantics of our

system.

(2) REVAMPT’s re-identification algorithm works on an encoded feature represen-

tation of an individual (without using facial recognition algorithms). These features

represent the visual and structural attributes of an individual, generating an abstract

and temporary encoding that has essentially no meaning outside the constraints of

our system. By utilizing these feature representations, REVAMPT is able to focus on

differentiation between people rather than personal identification. This is in contrast

to common methods that rely on facial recognition or other PII [7, 8, 9, 46, 47].

We design REVAMPT with respect to these defined privacy protection policies.

Section 3.2 and Section 3.3 present algorithmic constructs and deployable system

design of REVAMPT.

3.2 REVAMPT: Algorithmic Constructs

This section presents algorithmic constructs to enable real-time pedestrian re-

identification while satisfying our privacy model detailed in Section 3.1.

Figure 3.1 outlines the full algorithmic pipeline. The pipeline consists of three

primary phases: (1) Detection, (2) Feature Extraction, and (3) ID Ranking and As-

signment. For the detection part, we chose OpenPose [28] from the CMU Perceptual

Computing Lab. OpenPose is a pose prediction framework that uses part affinity fields

to understand the image input and provide person detections with marked keypoint

locations. In the feature extraction portion, discriminative features are generated for

detection representation. These features are utilized, along with spatial positioning,

to match detections in the Local Database. The rest of this section discusses the

technical details of our proposed pipeline integration.
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Figure 3.1: Algorithm Pipeline on the Edge

3.2.1 Feature Extractor Network

The core of the re-identification is the feature extraction network to extract discrim-

inative features from each detection, represented by the Ft-Ext. box in Figure 3.1.

For this task, we needed a deep convolution network capable of accurate, real-time

performance. Most deep convolution networks have a massive number of parameters

and operations, which makes them computationally expensive for use in mobile and

embedded platforms. MobileNet-V1 [61] and MobileNet-V2 [62] are two developed

light-weight deep convolution networks which effectively break down a standard con-

volution into a depth-wise and point-wise convolution to decrease the network param-

eters and operations. MobileNet-V2 further improved the MobileNet-V1 architecture

by adding linear bottleneck layers and inverted residual connections.
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In REVAMPT, we employ the feature extraction network and training method

proposed in [63]. The model is based on MobileNet-V2, with the fully connected

layer changed to a 2D average pooling with a kernel size of (8, 4) in order to make

the output of the network a 1x1280 vector as the embedded appearance features. As

in [10, 63], we also use the triplet loss function [41] to train the MobileNet-V2 for

extraction of discriminative features based on person appearance. The underlying

architecture of a triplet loss network is consisted of three identical networks which

transform the cropped RoI into embedding on a lower dimensional space. One RoI is

the anchor image, the second is a positive sample of the anchor and third is a negative

sample. The basic concept here is to minimize the distance between the anchor and

the positive samples and maximize the distance between the anchor and the negative

samples in the lower dimensional embedding space. To facilitate such learning, a

suitable loss function is used after the embeddings are extracted from the RoIs:

Loss =
n∑
i=1

[
α + ‖fai − f

p
i ‖

2 − ‖fai − fni ‖
2
]
+
, (3.1)

where α is margin, fa, fp, and fn are embedded appearance features of the anchor,

positive, and negative samples for the class i, respectively. Minimizing Loss function

will force all samples of class i to be inside of a hypersphere of radius α. The dimension

of the hypersphere is equal to the size of the network output (1280 for MobileNet-

V2). To further improve the performance of MobileNet-V2, we follow [63] and assign

error-friendly operations, such as convolution and General Matrix Multiply (GeMM)

operations, to half precision (16-bit) floating point accuracy and apply mixed precision

training [64] to minimize the potential error incurred by half precision operations.

3.2.2 Integration of Vision Pipeline

In order for the re-identification task to be accomplished on the edge, all stages

must be integrated seamlessly together. Referring back to Figure 3.1, a frame is
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inputted from the camera feed directly into the detection network. The resulting

detections are received, scaled to the appropriate size and aspect ratio, and batched

through the feature extractor (FT-Ext. box, Figure 3.1). The output of this network

provides the encoded 1x1280 feature vector for each detection. REVAMPT performs

the L2-norm operation between the features extracted from the current frame to those

of previously seen entries in the Local Database. For each detection, the bounding

box information is also propagated for IoU comparison with the stored bounding box

(from t-Υ, where Υ is the time since that entry was last seen) of N Local Database

entries. The intuition for maintaining these bounding boxes is to provide spatial

locality, such that detections are matched with entries that not only match in the

embedded space (feature vector), but also in location. Because the entire pipeline is

running many times per second, the likelihood of a pedestrian traversing a substantial

amount of distance or drastically changing trajectory between processed frames is low.

Therefore, we generate a score for each detection to database entry using a weighted

sum of the IoU and L2-norm results, such that a lower score indicates a closer match.

Final matching decisions are made using the generated scores and a re-ranking ap-

proach to ensure optimal ID assignment. As described above, the feature extraction

network was trained to maximize the euclidean distance between feature vectors of

different pedestrians, and minimize the distance between vectors of the same pedes-

trian. This training and inference methodology provides a privacy-aware approach to

ReID, as per our threat models. Rather than using specialized, personally identifi-

able blocks of information to continually re-identify a pedestrian, our model simply

encodes the current visual features of a detection to an abstract representation, and

focuses on differentiation between entries rather than personal identification. Once

all detections in the scene are assigned, the Local Database is updated with assigned

labels, keypoints, feature vectors, and bounding box from the processed frame. For

each entry in the Local Database, a gallery of feature vectors can be stored to provide
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a cluster representation for an entry. This is done to allow for more robust compar-

ison when performing the L2-norm functions. Although not depicted in Figure 3.1,

REVAMPT maintains the keypoints and confidences for assessing the quality of a

detection, as will be described in Section 3.3.1.

3.3 REVAMPT: System Constructs

Creating algorithms that can effectively solve issues while running on low-power

devices is of vital importance to enable inference on the edge. However, there are

many system-level considerations that must be taken into account when developing

a robust system. How data flows between algorithms, when and how to utilize said

algorithms, and how to map and optimize processes to and for the underlying hard-

ware available on the edge. All of these are system-level design decisions that greatly

impact the efficiency and viability of the unified system. With REVAMPT’s focus on

privacy, it was important that the system is designed around never storing any per-

sonally identifiable information. Algorithmic selections and the design of the system’s

processing flow hinged around that constraint.

3.3.1 System Hyperparameters and Processing Flow

Figure 3.2 shows the logical processing flow of one frame of data on the edge, be-

ginning when the image is extracted from the camera to when the final output is

displayed on the edge device. First, the image is run through the keypoint extrac-

tor, which outputs a vector of detections. To remove false detections, each detected

pedestrian should have a minimum percentage of keypoints equal to θkey, and each of

those keypoints a confidence value of at least θconf . Algorithm 1 demonstrates this

operation and Table 3.1 presents the system configurable hyperparameters.

For every valid detection, all possible matches for ReID are gathered from the Local

Database, as discussed in Section 3.2.2. The match scores (weighted sum scores of
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Table 3.1: System Parameters

Parameter Description
θkey Minimum percentage of keypoints for valid detection
θconf Confidence threshold for valid keypoint
θupdate Valid keypoint threshold for feature vector update
θscore Match score threshold
D̄ Detection from keypoint extractor
V̄ Valid Detections
DB̂ Local database
v Valid detection in V̄
e Entry Local Database
C̃ Candidate Table
ζ Global variable to keep track of new ID

IoU and L2-norm) for (v, e) pairs are gathered and stored in the Candidate Table

M̃ . After all detections have been processed and the Candidate Table filled, the

ReID processing is completed and IDs assigned, as shown in Algorithm 2. The lowest

Euclidean Distance score in the Candidate Table is found, the detection assigned

the ID it was matched to, and the Local Database updated accordingly. Then all

entries in the Candidate Table corresponding to that detection and Local Table entry

are removed. This process is repeated until there are no suitable matches in the

Candidate Table, after which all remaining detections are assigned new IDs.

For updating the Local Database on a successful ReID, the system always updates

the spatial location of the person (bounding box coordinates). However, it only

updates the feature vector if the new feature vector is better representative of the

object (meaning obtained with more keypoints than previously had) or has at least

θupdate valid keypoints.

3.3.2 Database

On the edge node, a Local Database is responsible for storing all pedestrians in the

current scene. This database is filled with objects that contain IDs, bounding box

coordinates, feature vectors, keypoints, and a parameter called life which keeps track
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of how many frames have passed since that pedestrian was detected. When an object

has not been seen by the system after some time (as indicated by life), the object’s

ID is removed from the Local Database. This has two main benefits. Reducing the

length of time an object’s data is stored on the edge increases the effectiveness of

spatial reasoning through IoU, as well as ensuring any single person’s data is not

stored on the edge when they are not active in the current scene. It also acts as an

efficient replacement policy without complex computation.

Algorithm 1 Validating Detections
Input: D̄, θconf , θkey
Output: V̄
1: V̄ ← ∅
2: for d in D̄ do
3: numKeyPoints = findValidKeyPoints(d, θconf )
4: if numKeyPoints ≥ θkey then
5: V̄ ← V̄ ∪ {d}
6: end if
7: end for

Algorithm 2 Finding Best Matches

Input: V̄ , DB̂
Output: newID̂, reID̂
1: newID̂ ← ∅, reID̂ ← ∅
2: C̃ = getCandidateTable(V̄ , DB̂)
3: while min(C̃) ≤ θscore do
4: reID̂ ← reID̂ ∪ {v, e}
5: removeValidDetectionAndEntry(v, e, C̃)
6: end while
7: while thereIsCandidate(C̃) do
8: ζ = ζ + 1

9: newID̂ ← newID̂ ∪ {ζ}
10: removeValidDetectionAndEntry(v,∅, C̃)
11: end while
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Figure 3.3: Mapping of Processes to Edge Resources

3.3.3 Computation and Optimization

To achieve real-time performance on the edge, we chose Nvidia AGX Xavier SoCs

[21]. The Xavier is equipped with many advanced components that are leveraged

for REVAMPT, including eight ARM Core processors, two Nvidia Deep Learning

Accelerators (NVDLA), and a Volta GPU with Tensor Cores optimized for FP16

Multiply and Accumulate.

Figure 3.3 shows the how the different processes in REVAMPT are mapped to the
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Xavier resources. REVAMPT is split into five stages with different tasks as follows - 1)

Input: Image retrieval from the camera. 2) Pre-processing: Image resizing and other

transformations. 3) Mid-processing: Detection network inference. 4) Post-processing:

keypoint formation and ReID feature extraction. 5) Output: ID assignment and

database updates.

Each stage of the detection framework is mapped to a separate ARM Core. Two

cores are kept available for the addition of transmit and receive threads in an expan-

sion to a distributed system setting as in [65]. This leaves one ARM Core free to

handle the OS and any background processes running outside of the system. Detec-

tion inference runs on the CUDA Cores of the Volta GPU. ReID inference is run on

Tensor Cores. To enable this, the ReID network model is converted from the ONNX

(Open Neural Network Exchange) format to use half precision through TensorRT.

Batch normalization layers are also fused into the convolutional layers, reducing data

migration. Detections are batched for ReID inference each frame, allowing a ReID

throughput above 20 FPS. The NVDLAs were not used for ReID due to a lack of

support for the level of group convolution in MobileNet-V2. All code on the edge was

developed in C++ for computational efficiency, enhanced execution, and mapping

control.

3.4 Experimental Results and Evaluation

The experimental setups and results will be split into three subsections: Algorithm,

System, and Design Flexibility. All project code for simulations and full system

implementation is provided on GitHub1.
1https://github.com/TeCSAR-UNCC/Edge-Video-Analytic
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3.4.1 Algorithm Evaluation

In order to validate the accuracy of the full algorithm pipeline, the edge algorithms

were ported to Python and compiled into a simulation testbed to gather results. For

these experiments, we used the DukeMTMC dataset, which includes 85 minutes of

1080p footage from 8 different cameras on the Duke University campus. Specifically,

the trainval_mini frame set was used for validation. For comparison, we also ran the

current state-of-the-art in complete pedestrian re-identification systems, DeepCC, on

the same trainval_mini validation set. For all experiments, we measure Identification

Precision (IDP), Identification Recall (IDR), and Identification F1 (IDF1) with truth-

to-result matching, as proposed in [66]. This metric maps one ground truth ID to one

generated ID from the system, and measures how long the tracker correctly matches

pedestrians. The one-to-one mapping of ground truth ID to generated ID is chosen

using a bipartite matching method. Intuitively, IDP measures how often a generated

ID matches to its mapped ground truth ID, and IDR measures how often a ground

truth ID matches to its mapped generated ID. IDF1 is simply the harmonic mean

of IDP and IDR. Detection misses are computed in accordance to the truth-to-result

matching method, with the IoU threshold at 0.3. In accordance with Table 3.1, the

values for system hyperparameters are as follows: θkey = 0.4, θconf = 0.35, θmatch =

2.25, θupdate = 0.8. Note that θkey, θconf , and θupdate are percentages expressed from

zero to one.

3.4.1.1 Accuracy

Figure 3.4 shows the IDF1 for each camera individually, as well as the average

across all cameras (Avg) for both approaches. Overall, REVAMPT only drops 9.44%

average IDF1 compared to DeepCC, with DeepCC at 86.83% and REVAMPT at

77.39%. We expect that REVAMPT will have a slightly lower accuracy because, as

an online system, it performs ReID within a short temporal window in accordance
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with the spontaneous nature of online operation. On the other hand, the offline

DeepCC algorithm is able to look forward and backward in time across the entire

video set, allowing for further optimizations in ID matching and assignment without

the constraints of real-time operation. However, on further analysis of the results, we

find that REVAMPT performs very comparatively to DeepCC with the exception of

cameras 4 and 6. Quantitatively, REVAMPT is only 5.33% lower in average IDF1

compared to DeepCC in all other cameras.

To obtain further insight into the performance of REVAMPT, Figure 3.5 shows IDP

versus IDR for REVAMPT and DeepCC. DeepCC maintains groupings around 85%

for both IDP and IDR. REVAMPT maintains high IDP, around 90%; however, the

IDR is less consistent across cameras. This means that the system generally minimizes

false positives, but is less effective at minimizing false negatives. One major cause for

this result is simply failing to detect the pedestrian in the frame. If the person is not

detected, the ground truth instance will have no match, and therefore incur a false

negative. The second reason for lower IDR performance is ID switching. When a

pedestrian is occluded for a longer period of time, REVAMPT is unable to maintain
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spatial correlation with the pedestrian and its last known location. Therefore, once

the pedestrian reappears, REVAMPT may give the pedestrian a new ID and incur

false negatives for the ground truth instance relative to its original generated ID. To

maintain spatial correlation under long occlusion, REVAMPT will require a method

for predicting the future position of the pedestrian based on previous observations,

and therefore be able make sense of the pedestrian’s movement and location during

occlusion. We will discuss a proposed path prediction method for eventual integration

with REVAMPT in Chapter 4.

We note that cameras 4 and 6 are noticeably lower in IDR than most others. This

is consistent with the results in Figure 3.4, and indicate that much of the accuracy

drop is caused by low IDR in these cameras. Table 3.2 reports the number of person-

to-person occlusions that occur for each camera within the trainval_mini set, as well

as the average ground truth bounding box area. Cameras 4 and 6 have the lowest

average bounding box areas, indicating that they require detection at longer ranges

with pedestrians being smaller in the images. Because of this, a higher detection

resolution is needed to avoid missed detections. We chose to run the detection network
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at a relatively low resolution at an attempt to balance reasonable runtime speed

and detection accuracy, but we study different resolutions further in Section 3.4.3.

Additionally, the scene dynamics of camera 6 make occlusions particularly common, as

shown by the large number of person-to-person occlusions in Table 3.2. Maintaining

spatial correlation with a path prediction method will likely improve the IDR in

camera 6 and others by improving ID retention from person-to-person occlusions, as

well as potential person-object occlusions that occur in the cameras.

3.4.2 System Evaluation

For all system evaluation measurements, the complete end-to-end REVAMPT pipeline

was inferenced. We also compare against DeepCC [10]. Because DeepCC is not inte-

grated into a deployable system, we used OpenPose at the maximum accuracy con-

figuration to simulate it for power and FPS measurements. This simplified represen-

tation provides a favorable scenario for DeepCC, as its ResNet-50 feature extraction

and gallery matching functions would incur additional latencies and power require-

ments. Real-time candidate matching is built into REVAMPT, so it is included in all

reported measurements.

3.4.2.1 Power Consumption and Computation Efficiency

For measuring the power consumption on the Xavier, Tegrastats was used. For

power consumption on the Titan V and V100 GPUs, we utilized the NVIDIA System

Management Interface. AMD µProf was used to measure CPU (Ryzen Threadripper

1920X) idle power for the Titan V and V100 systems. For both methods, 1080p 60

FPS video was read frame-by-frame from memory. A brief warm up of 20 frames

Table 3.2: Camera Scene Analysis

Measurement Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Cam 6 Cam 7 Cam 8
Occlusions (IoU ≥ 0.5) 7845 1230 4029 1341 3104 39434 2677 4040

Avg Area (pixels) 21092 18450 26344 15150 23118 14037 22693 16667
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was allowed before power was sampled over 100 frames. Measurements for FPS were

taken directly from the OpenPose GUI.

Table 3.3: FPS and Power Consumption of Real-Time Inference

System REVAMPT DeepCC DeepCC DeepCC
Device Xavier Titan V 2xTitan V V100
FPS ↑ 5.1 2.5 4.7 2.7

Power ↓ 33.31W 200W 365W 224W
Detailed Xavier Power Consumption

CPU GPU DDR SOC Total
2.67W 19.49W 2.60W 8.55W 33.31W

Table 3.3 presents the power consumption and FPS for REVAMPT and DeepCC.

Here we can see that for real-time applications, REVAMPT outperforms DeepCC on

each GPU setup we tested. Even using two Titan V’s, DeepCC is only able to reach

4.7 FPS. Meanwhile, REVAMPT can reach 5.1 FPS on an embedded GPU platform.

In addition, REVAMPT consumes only 17% of the power of DeepCC on a single

Titan V, or 9% for the dual Titan setup. Figure 3.6 presents computation efficiency,

which is FPS processing per watt. DeepCC has an Efficiency between 0.012 and 0.013

FPS/Watt in all configurations. In comparison, REVAMPT has an Efficiency of 0.153

FPS/Watt. When looking at Efficiency, REVAMPT performs an order of magnitude

better than DeepCC for real-time applications. This is because REVAMPT was built

from the ground up to perform in real-time, both algorithmically and systemically.
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Figure 3.6: Efficiency of each test case.
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3.4.2.2 Accuracy·Efficiency (Æ)

To enable real-time AI applications on the edge, we propose a new metric with

which to measure edge performance: that is Accuracy·Efficiency (Æ). With Æ, we

combine the algorithmic measurement of Accuracy with the systemic measurement

of Efficiency to measure how well an application will perform in a real-time edge

environment. Æ has two parts: an Æ mark, which is a score measured by the product

of Accuracy and Efficiency, and Æ coverage, which is measured in area, as determined

by all the components of an Æ mark. The components in Æ coverage, when not

already reported as a percentage, are normalize to be so. In the case of power, this

normalized value is subtracted from one, as lower power consumption is preferable.

In the case of REVAMPT, Accuracy would take the form of F1, while Efficiency

is measured in FPS/Watt. Figure 3.7 shows the Æ Coverage for REVAMPT and

DeepCC (Titan V). Here you can see that while DeepCC outperforms REVAMPT in

terms of IDR and IDF1 Accuracy, REVAMPT has a significantly higher Æ Mark

(11.85 vs 1.13) and more than 1.75x the total Æ Coverage (81.53% vs 46.57%). This

is because our optimizations allow us to operate at twice the framerate, 17% of the

power, and only 9.4% lower in F1 accuracy.

Table 3.4: Design Configuration Analysis

Measurement P2 P3 CD R480 R192 R128

Power(W) ↓ 7.91 12.08 33.30 34.42 29.12 25.71

FPS ↑ 1 3 5 3 10 15

Accuracy ↑ 76.95% 77.00% 77.39% 82.33% 50.64% 10.18%

3.4.3 Design Flexibility and Adaptation

REVAMPT can further be configured to prioritize accuracy, FPS, or power con-

sumption, as illustrated in Table 3.4. The default configuration of REVAMPT is
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shown as CD, with an input resolution of 576x320 for the keypoint extractor, and

power consumption as seen in Table 3.3. We analyze five additional design configura-

tions by modifying the input resolution, as well as the power restriction levels on the

Xavier device. Configuration R480, R192, and R128 are the proposed REVAMPT with

modified input resolutions at 848x480, 336x192, and 224x128. Configuration P2 and

P3 are the proposed REVAMPT configured with Power Mode 2 and 3 (CD uses Power

Mode 0) provided by the Xavier device [67].

R480 does provide a higher accuracy than other configurations, with a reduction

in FPS and slight increase in power consumption. This configuration particularly

improves the IDR of cameras 4, 6, and 8, which require the longest detection range
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as found in Table 3.2. This configuration confirms the intuitions discussed in Sec-

tion 3.4.1.1, bringing the accuracy of REVAMPT just 4.5% below the offline DeepCC

algorithm.

The keypoint extraction resolution for R128 properly extract keypoints for only

persons close to the camera, resulting in low accuracy for DukeMTMC. R192 offers an

option for additional throughput at an accuracy loss. For its balance across all areas,

configuration CD was chosen for the analyses of this report. With deployment in an

edge environment, CD would likely require PoE Type 3. The P3 and P2 configurations

show how REVAMPT could be adapted to the power levels of PoE Type 2 and Type

1 for deployment, with minimal loss in accuracy.

3.5 Discussion

Overall, REVAMPT is a deployable pedestrian detection and re-identification sys-

tem capable of low-power, privacy-aware operation. However, there are areas for

improvement, particularly on the accuracy front. As discussed in Section 3.4.1.1,

REVAMPT would benefit most from reduction in false negatives during inference.

Currently, REVAMPT can be configured to run at higher resolutions to mitigate false

negatives incurred by missed detections. However, reducing false negatives incurred

by ID switching still remains a challenge. Therefore, in the next chapter (Chapter 4),

we will propose CARPe Posterum: A Convolutional Approach for Real-time Pedes-

trian Path Prediction. This method serves as a potential solution to the loss of spatial

context after occlusions for REVAMPT, and stretches beyond this into applications

like ensuring safe navigation of social robots and self-driving vehicles.



CHAPTER 4: CARPe Posterum

4.1 CARPe Posterum: Method

The task of pedestrian path prediction is to predict the position of a pedestrian for

T time steps in the future given the past β observed positions of the pedestrian. The

goal is to accomplish this task as accurately as possible, while maintaining real-time

inference capabilities. Two major factors that contribute to the future trajectory of a

pedestrian are the intrinsic location goal of that pedestrian and the social context of

the environment. We therefore aim to develop a model to capture these factors using

the observed trajectories of all P pedestrians in the scene at a given time step.

For the remainder of this chapter, we will distinguish these various elements

as follows: Past pedestrian trajectories take the form of absolute coordinates A

and relative coordinates R, defined as Ai = {(xti, yti) |t = 1, · · · , β} and Ri =

{(xti − x1i , yti − y1i ) |t = 1, · · · , β}, ∀i ∈ {1, 2, · · · , P}. The future trajectories Y

of the pedestrians are predicted, and output as Yi = {(xti, yti) |t = β + 1, · · · , T},

∀i ∈ {1, 2, · · · , P}. These predictions are compared with the ground truth future

trajectories Ŷ for evaluation.

4.1.1 CARPe Posterum: Model Overview

Overall, CARPe’s model consists of two main segments: 1) the Graph Module

and 2) the Prediction Module. Figure 4.1 visualizes the full data mechanisms and

module internals of CARPe. The role of the graph module is to produce features

for each observed pedestrian that incorporate a broader social context across the

scene. These features, along with the original observed trajectories of the pedestrians
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are both utilized by the prediction module to produce the future trajectories for

each pedestrian. In this task, all trajectories for all pedestrians in the scene are

inferred simultaneously, taking P pedestrian features as input and outputting P future

trajectories in a single pass. We will explain each module and their functional details

in the following sections.

4.1.2 CARPe Posterum: Graph Module

4.1.2.1 Graph Formulation

A graph G = (V,E) is constructed, where V and E are the sets of nodes and

edges respectively. All P pedestrians in the scene are represented as nodes in

V = {V0, V1, · · · , VP}. Each pedestrian in the graph has a corresponding node

feature hi held within the graph structure. The GNN performs joint aggrega-

tion and combination operations on G to produce an output set of node features

h′ = {h′0, h′1, · · · , h′P}.

To form the input node feature, Ai and Ri are concatenated for a given pedestrian,

and inferenced through a single fully-connected layer ρ. The absolute coordinates

define the global position of the pedestrian, while the relative features act as a nor-

malized form of input to better understand the pedestrian’s past movement pattern.

4.1.2.2 Graph Operation

Upon obtaining the node features, the graph is constructed as previously described.

In order to maintain global context, the graph is fully connected. This allows the

network to learn the relevant information needed, rather than predefining with hand-

crafted rules how relational connections should be made. To collect information across

the graph, we define an aggregation and combination operation. The joint operation is

represented in Equation 4.1, based on the GIN operation described in Section 2.4. In

[22], Xu et al. only employ one MLP in their base operation. However, we reason that
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then utilizes these features along with the relative coordinates of each pedestrian
to produce informed future trajectory predictions. In streaming applications, these
trajectories are predicted every frame (equivalent to a time step) by appending the
current frame information with a stored coordinate history to form the observation,
and then inferencing the model.
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abstracting the representation of the target node and the social context separately

before combining will enable a deeper understanding and integration of neighboring

nodes in context. Therefore, CARPe’s graph operator performs an MLP operation on

the summed neighborhood features and the node features with two separate MLPs

φ0 and φ1. The MLP architectures are of two layers each for φ0 and φ1 in order to

satisfy the universal approximation theorem [68, 69] and the recommendations for

GIN operations as defined in [22].

h′i = φ0

(
α · hi

)
+ φ1

( ∑
j∈N(i)

hj

)
(4.1)

This process is illustrated in the top portion of Figure 4.1, where α = 1 + ε from

Equation 2.1. Only a single graph operation is completed across the graph. This

is done for two reasons. First, because the graph is fully connected, all pedestrians

are accounted for in a single operation. Second, in aiming for real-time feasibility,

limiting the number of operations allows our method to efficiently operate at scale.

The output node features h′i ∀i ∈ {1, 2, · · · , P} are subsequently employed in the

Prediction Module.

4.1.3 CARPe Posterum: Prediction Module

Typically, Recurrent Neural Networks (RNNs) are employed as the basis for state-

of-the-art path prediction methods. Given the theoretical ability of RNNs to capture

information along infinitely many time steps, such architectures have been frequently

chosen for sequence-based problems, particularly the LSTM variant. However, recent

works in the sequence modeling domain [53, 70] have found convolutional architectures

to be advantageous over RNNs in many ways. Convolutional approaches to sequence

modeling often form conceptually simpler networks, have more stable gradients and

allow for greater parallelization, while producing comparable or improved accuracies
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on sequence data. Additionally, CNNs are well established for effectively capturing

correlations in the spatial domain [71]. The task of path prediction presents itself

as both a spatially and temporally sensitive task, receiving and predicting (xti, y
t
i)

coordinate values across time. Therefore, we find that utilizing a convolutional archi-

tecture rather than an RNN may be more effective for the path prediction problem,

while offering desirable hardware-friendly characteristics for real-time inference.

To this end, we form our Prediction Module with a simple CNN design to maxi-

mize spatial and temporal understanding, taking full advantage of the convolutional

architecture approach. In our model, we first provide as input Si ∈ Rβ×2×2, formed

from the relative feature for a pedestrian Ri ∈ R2β and their corresponding output

node feature h′i ∈ R2β concatenated together. In Si, the (xti, y
t
i) coordinate pairs

are mapped with temporal order in the rows. We therefore map both the spatial

coordinate information and temporal context into the 2D domain, where the CNN

can advantageously correlate. This input structure provides the ability to naturally

analyze the observed trajectory at various time granularites, adjusting filter size and

stride, in a hardware-friendly fashion. In RNNs, such analysis would be impractical

and computationally inefficient, requiring multiple LSTMs per pedestrian. To pro-

vide additional social context to the input of the Prediction Module, the output node

feature h′i is placed as the second channel in Si ∈ Rβ×2×2.

The layers of the network are designed to capture changes in velocity and posi-

tion with a bottom-up approach. First, a 2x2 filter is convolved across the input, as

illustrated in Figure 4.1. By convolving across just two time steps for each kernel,

we emphasis model awareness of the high frequency movement and velocity changes

over the observed period. As the feature progresses through the network, 2x1 filters

are employed to find lower frequency trends, gathering the context of the trajectory

across more time steps in the subsequent compressed representations. After the third

network layer, CARPe produces a tensor in R
β
8
×1×2T that obtains a holistic under-
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standing of the observed trajectory. A subsequent 1x1 convolution transforms this

feature into the predicted trajectory.

4.2 Experiments

4.2.1 Evaluation Methodology

We evaluate our model on two widely-used datasets in the path prediction domain,

ETH [1] and UCY [2]. The ETH dataset is split into two portions (ETH, HOTEL),

and UCY is split into three portions (UNIV, ZARA1, ZARA2). All portions are

from distinct scenes other than ZARA1 and ZARA2, which are the same scene at

different times. These datasets consist of a variety of pedestrian navigation situations,

including many nonlinear behaviours and social interactions. We utilize the same data

and evaluation procedures as in [18], and commonly used in path prediction works

[3, 4, 16, 20]. Therefore, a leave-one-out approach is applied for training and testing

among the five scenarios. The data is collected as real-world coordinates in meters,

with observations taken for 8 time steps (3.2 seconds) and predictions made for the

next 12 time steps (4.8 seconds). Two metrics are utilized for quantitative evaluation

on the ETH/UCY datasets:

• Average Displacement Error (ADE) - The average L2 distance between the

ground truth (x, y) positions Ŷ and predicted Y for all T predicted time steps

over all P pedestrians.

ADE =

∑P
i=1

∑T
t=1

∥∥∥Ŷ t
i − Y t

i

∥∥∥
2

P ∗ T
(4.2)

• Final Displacement Error (FDE) - The average L2 distance between the ground

truth (x, y) positions Ŷ and predicted Y for only the final time step T over all
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P pedestrians.

FDE =

∑P
i=1

∥∥∥Ŷ T
i − Y T

i

∥∥∥
2

P
(4.3)

All inference timing analyses are run with a frame batch size of one to accurately

measure latency and throughput for a realistic streaming input scenario. Note that

all pedestrians in a scene at time t are processed simultaneously, and therefore each

singular frame input still inherently requires a pedestrian batch of P trajectories.

4.2.2 Implementation Details

For the dimensions mentioned in Figure 4.1, β = 8 and T = 12, in accordance to

the evaluation methodology. The MLPs φ0 and φ1 contain two hidden layers with

input dimensions of 4β and 2β. The embedding layer ρ has an input dimension of 2β

and upscales by 2. We implemented the model in PyTorch and trained it on an Nvidia

Titan V GPU. An open-source PyTorch extension library for graph convolution [72]

was used as the basis for implementing the Graph Module. The model was trained

end-to-end with a frame batch size of 64 for 80 epochs. We use the Adam [73]

optimizer with a learning rate of 0.01 and a gradient clip of 5. A mean squared error

loss was used for training.

4.2.3 Quantitative Results

4.2.3.1 Comparison Approaches

We compare our model to common baseline methods and current state-of-the-art

approaches in path prediction. Baseline methods include Linear, a simple linear

regressor, and Social LSTM [16] (S-LSTM ), a classic method utilizing LSTMs and

social pooling. Social GAN [18] adds generative models to the Social LSTM approach.

SGAN-P and SGAN indicate the variants with and without the social pooling module

as reported in [18]. Sophie [20] employs an LSTM-based GAN module with social
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and physical attention. Social BiGAT [3] (S-BiGAT ) incorporates LSTMs, Bicycle-

GANs [54] and physical attention, with GAT [55] networks to model social elements.

Next [4] is a state-of-the-art approach that employs visual pedestrian features and

scene segmentation maps for an LSTM-based prediction module with focal attention

to make informed trajectory predictions.

4.2.3.2 Accuracy Analysis

ADE and FDE results are reported in Table 4.1. It is common for generative

approaches in this domain to predict 20 possible trajectories for each pedestrian,

and use the closest prediction to ground truth in evaluation. However, since we are

considering evaluation within a real-time context, an analysis of the single trajectory

prediction results is much more applicable. Therefore, we compare with the K=1

results for all approaches, where K is the number of predictions per pedestrian.

As seen in Table 4.1, CARPe performs very well against all other methods. In

ADE, CARPe achieves within 0.02 meters of the best state-of-the-art approach Next

on average. In FDE, our approach outperforms all other methods. The Prediction

Module design to emphasize understanding of velocity change across both the coor-

dinate and social context features allows our method to adjust the final prediction

positions accordingly.

Similar to S-BiGAT, CARPe employs a GNN for gathering insight into the so-

Table 4.1: ADE and FDE results for all five scenarios in the ETH [1] and UCY [2]
datasets. Results followed by * are the K=1 accuracies as reported in the analyzes of
[3].

Dataset Linear S-LSTM SGAN-P SGAN Sophie Next S-BiGAT CARPe

ETH 1.33 / 2.94 1.09 / 2.35 – 1.13 / 2.21 – 0.88 / 1.98 – 0.80 / 1.48
HOTEL 0.39 / 0.72 0.79 / 1.76 – 1.01 / 2.18 – 0.36 / 0.74 – 0.52 / 1.00
UNIV 0.82 / 1.59 0.67 / 1.40 – 0.60 / 1.28 – 0.62 / 1.32 – 0.61 / 1.23
ZARA1 0.62 / 1.21 0.47 / 1.00 – 0.42 / 0.91 – 0.42 / 0.90 – 0.42 / 0.84
ZARA2 0.77 / 1.48 0.56 / 1.17 – 0.52 / 1.11 – 0.34 / 0.75 – 0.34 / 0.69

AVG 0.79 / 1.59 0.72 / 1.54 0.85 / 1.76* 0.74 / 1.54 0.71 / 1.46* 0.52 / 1.14 0.61 / 1.33* 0.54 / 1.05
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cial context. S-BiGAT uses GAT operations in its graph, which operate with sim-

ple single-layer operations on node features. However, as mathematically shown in

[22], such single-layer operations are insufficient for robust graph learning. Instead,

CARPe employs a GIN-based formulation with MLP operations to maximize the dis-

criminative power of its graph module. This design choice in GNN gives CARPe a

competitive edge over S-BiGAT, as revealed in the average ADE and FDE results of

Table 4.1.

4.2.4 Qualitative Results

Figure 4.2 illustrates the function of CARPe with qualitative examples. The first

row of Figure 4.2 shows cases of solely intrinsic nonlinearities. In these examples,

the pedestrian takes indirect paths with changes in direction and/or speed. In the

failure case (b.3), the observed path seems to foreshadow a change in speed alone,

but the ground truth indicates that the pedestrian will soon change direction dras-

tically. This abrupt adjustment is not anticipated by CARPe. However, with some

additional information a few time steps later, CARPe is able to understand the non-

linear behavior and anticipate the future positions of the pedestrian as shown in (a.2).

Examples (a.1) and (a.3) illustrate how CARPe captures an understanding of speed

and direction variations to predict the pedestrian’s navigation intent.

The first two columns of Figure 4.2 provide samples encompassing intrinsic and

social nonlinearities. Examples (a.5) and (a.6) show situations where the depicted

pedestrian alters their trajectory in response to simple social states, including non-

linear change of direction in response to their neighbor’s movement as they travel

together. Sample (a.4) shows a complex crowd scenario, where CARPe is able to

determine a likely path through the crowd and achieve a correct prediction.

In (b.1), we show a failure case in which CARPe predicts the pedestrian navigating

behind a stationary group. However, the pedestrian actually chooses to navigate in
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(a) Successful examples

(b) Failure examples

Figure 4.2: Red indicates the observed trajectory, blue is the predicted trajectory,
and green is the ground truth. Images are referenced in to the text as (a.1) to (a.6)
and (b.1) to (b.3) from top-left to bottom right.

front of the group instead. The complex crowd scenario, illustrated in (b.2), contains

many pedestrians moving individually and in groups. The observed trajectory of

the individual traveller is varied in directional intent, and the traveller is nearing

collision with a group of pedestrians moving left to right. It is difficult to predict

a deterministic route under this intense uncertainty, and therefore CARPe takes the

safe bet and assumes a path consistent with the social norm (moving left to right

with the group). However, the person decides to travel in front of the group and

progress upward across the pathway. In samples (b.1) and (b.2), we note that having

visual features of the pedestrians would provide insight into their body position and

intended direction. Such modeling would potentially assist in prediction for such

scenarios, and real-time capable integration of this information may be a worthwhile

direction for future work.
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4.2.5 Real-time Analysis

Path prediction is inherently a time-sensitive task. A crucial characteristic of a

path prediction algorithm is its ability to perform real-time inference, particularly on

low-power embedded devices. Every fraction of a second is crucial for improving the

safety of deployable technologies like self-driving cars and social robots. Therefore,

we analyze CARPe in comparison to current state-of-the-art approaches for such

characteristics. In Table 4.2, we first compare the FPS of CARPe on an Nvidia P100

GPU as a baseline. CARPe far surpasses the performance of all other methods, by

at least 38x across the board.

CARPe achieves such improvements for two reasons. First, CARPe is designed

with real-time inference in mind, eliminating extraneous operations and focused on

optimizing the computation expense to accuracy ratio. Second, CARPe employs

a convolutional rather than recurrent architecture. All other methods base their

approach on LSTM cells, which limit their hardware utilization capabilities. Instead,

CARPe is able to take full advantage of the parallel computing capacities of modern

hardware, and is thereby well suited for real-world deployment.

Sophie and S-BiGAT do not have their models or latency numbers publicly avail-

able, and therefore we do not report their FPS performance. However, it can be noted

that both Sophie and S-BiGAT add additional layers of complexity to the SGAN ap-

proach. These include the addition of scene-level feature extraction directly on the

image using the computationally heavy VGG-19 [74] network, as well as additional

scene and social attention mechanisms. Therefore, we can conclude that not only

Table 4.2: FPS comparison on the Nvidia P100 GPU. Numbers are report as an
average per frame across both ETH and UCY datasets.

Device S-LSTM SGAN-P SGAN Next CARPe

P100 0.38 6.67 20.00 19.46 762.14
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will these approaches experience similar computational difficulties as the other RNN-

based architectures, they will also incur additional latencies due to the use of large

scene feature extractors and attention networks.

In Table 4.3, we thoroughly compare real-time performance of CARPe against the

best state-of-the-art approach Next. First, we analyze the number of floating point

operations (FLOPs) and parameters for each approach. CARPe is substantially more

efficient, reducing the number of FLOPs and parameters by more than 97%. We also

consider the FPS performance on a low-power embedded device, the Nvidia Jetson

Nano. For both GPU and single core CPU inference, CARPe provides an over 17x

and 8x speedup respectively in comparison to Next.

Because of its RNN-based design, Next is not able to effectively utilize the parallel

capabilities of modern hardware, as evident by its almost equal CPU and GPU FPS

numbers. In all reported numbers in Tables 4.2 and 4.3, we only consider the tra-

jectory generator portion of the Next approach. However, this trajectory generator

relies on additional scene segmentation features and visual pedestrian features, both

of which require large networks for extraction (Xception [75] and ResNet-101 [76]

based architectures). Therefore, we compare using an optimistic scenario for Next.

Table 4.3: Detailed comparison with Next [4]. FPS numbers reported on the Nvidia
Jetson Nano embedded device for both GPU and single core CPU. The Nano a 128-
core Maxwell GPU and ARM A57 CPU with a power consumption of approximately
10 Watts in our tests.

Approach MFLOPs Parameters FPS (GPU) FPS (CPU)

Next 53.08 3.95M 5.61 5.50

CARPe 1.14 0.10M 95.87 48.11



CHAPTER 5: CONCLUSIONS

Overall, REVAMPT is a deployable pedestrian detection and re-identification sys-

tem capable of low-power, privacy-aware operation. For the results and evalua-

tion, this article introduces a new two-part metric, Accuracy·Efficiency (Æ). RE-

VAMPT outperforms current state-of-the-art more than ten-fold in Æ. We also pro-

posed CARPe Posterum, a convolutional approach for real-time pedestrian path pre-

diction. Distinct from prior work, CARPe is able to produce accurate future trajectory

predictions within real-time constraints. CARPe is an agile CNN that operates across

the temporal context of observations in the spatial domain, maximizing both feature

correlation and parallel hardware utilization. We also employ a discriminative graph

neural network based on GIN operators to gather social context features, providing

additional insight into the predictive model. Through quantitative and qualitative

evaluations, we show that CARPe has the ability to capture nonlinear intrinsic and

social effects within its novel architecture design, achieving competitive accuracy re-

sults in comparison with the current state-of-the-art methods while enabling 8x to

38x improvements in FPS.

Future directions include integrating CARPe into REVAMPT, and improving for

resilience against noise in detections. Also, the keypoint information gathered by

REVAMPT could be useful to integrate into CARPe to better understand pedestrian

directional intent. For REVAMPT specifically, designing an intelligently-scaled hu-

man pose estimator using very recent network concepts like EfficientNet [77] could

replace OpenPose and provide similar accuracy at higher inference rates.
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