
SENSOR FUSION FRAMEWORK AND SIMULATION ON A TURTLEBOT

ROBOTIC VEHICLE

by

Shruti Gangadhar

A thesis submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Master of Science in

Electrical Engineering

Charlotte

2017

 Approved by:

 Dr. James Conrad

 Dr. Abasifreke Ebong

 Dr. Ronald Sass

ii

©2017

Shruti Gangadhar

ALL RIGHTS RESERVED

iii

ABSTRACT

SHRUTI GANGADHAR. Sensor fusion framework and simulation on a TurtleBot

robotic vehicle. (Under the direction of DR. JAMES M. CONRAD)

Autonomous robots are being designed and used in a wide variety of

environments and unforeseen ways. Intelligent interpretation of sensor data is the key

factor in a robot’s decision making ability while operating in such environments. Current

day robots are also expected to adapt, have human interaction and accomplish many more

tasks, than ever before. This work focuses on developing a sensor fusion framework and

achieving human robot interaction for a robot navigating an unknown terrain.

 The selective sensor fusion framework proposed in this work, combines

heterogeneous data from sensors to analyze the parameters of the environment required to

accomplish a task. It is scalable, modular and accounts for human interaction. The

framework uses fusion algorithms and develops confidence at various stages before

arriving at a decision. The framework is simulated and tested on a robotic vehicle called

the TurtleBot along with additional LIDAR (Light detection and ranging) sensors on a

simulated, unknown terrain. The vehicle navigates successfully through the terrain,

avoiding obstacles and terrain irregularities while querying the user for assistance when it

enters an uncertain mode. The framework is designed to accommodate higher levels of

decision making before deciding on an action. Furthermore, the framework can be

customized based on the application.

iv

ACKNOWLEDGEMENTS

 I thank Dr. James Conrad for the guidance offered throughout the academic

program and for the support and advice offered in the completion of this graduate thesis. I

thank Dr. Abasifreke Ebong for the positive encouragement offered throughout the

program and for accepting the position as my committee member. I thank Dr. Ronald

Sass for the interesting and engaging course lessons and for willing to be a member on

my thesis committee.

I thank my colleague, Balasubramaniyan Chandrasekaran for his insights on the

idea of this thesis and for the support offered throughout the completion of this thesis. I

thank my colleagues, Samuel Shue and Benjamin Rhoades for all their help and support.

I thank my husband, Swaroop, for believing in me and for supporting me in the

pursuit of education. I dedicate this work to the memory of my grandfather, S. Subbarao,

a teacher, a source of inspiration.

v

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 1

1.2 Problem Statement 2

1.3 Contributions 3

1.4 Organization of Thesis 3

CHAPTER 2: SENSOR FUSION OVERVIEW 4

2.1 Sensor Data Acquisition 4

2.2 Need for Sensor Fusion 5

2.3 Sensor Fusion Challenges 6

2.4 Categories of Sensor Fusion 7

2.5 Fusion Methodologies 8

2.5.1 JDL Model 9

2.5.2 Waterfall Fusion Process Model 11

2.5.3 Dasarathy’s Classification 13

2.5.4 Random Sets Based Model by Goodman et al. 14

2.5.5 Category Theory Based Model by Kokar et al. 14

2.6 Sensor Fusion Topologies 15

vi

2.6.1 Centralized 15

2.6.2 Decentralized 15

2.6.3 Hybrid 16

2.7 Categories of Fusion Algorithms 17

2.7.1 Signal Level Fusion 17

2.7.2 Decision level fusion 23

CHAPTER 3: SELECTIVE FUSION FRAMEWORK DESIGN 27

3.1 Overlap Detection 29

3.2 Preprocessor 30

3.3 Kalman Filter 33

3.4 Track-to-Track Fusion 35

3.5 Pattern Classifier 37

3.6 Terrain Classifier 38

3.7 Decision Block 40

CHAPTER 4: IMPLEMENTATION 44

4.1 Gazebo 44

4.1.1 Creation of Robot Model Using SDF 47

4.1.2 Creation of Robot’s Environment Using Heightmap 49

4.2 ROS 50

4.3 ROS Gazebo Interaction 52

vii

CHAPTER 5: SIMULATION 54

5.1 Non-Navigable Down Ramp 55

5.2 Flat Surface with No Obstacle 57

5.3 Uncertain Mode 58

5.4 Surface Obstacle Detection 60

5.5 Navigable Down Ramp 60

5.6 Non-Navigable Up Ramp 61

CHAPTER 6: CONCLUSION AND FUTURE WORK 62

REFERENCES 63

APPENDIX A: SIMULATION SETUP FOR TESTING THE FRAMEWORK 68

A.1 ROS Installation 68

A.2 Gazebo Installation 68

A.3 CATKIN Workspace Setup 69

APPENDIX B: FRAMEWORK CODE AND GAZEBO SIMULATION 71

B.1 Basic Package Creation in ROS 71

B.2 Package Directory 73

APPENDIX C: USER GUIDE 75

APPENDIX D: ROS MESSAGES 76

D.1 Laser Scan Message for LIDAR Data 76

D.2 Command Velocity for the Robot 77

D.3 Odometry Information of the Robot 78

viii

D.4 Transformation Configuration 79

APPENDIX E: TRACK-TO-TRACK FUSION TEST RUN 80

ix

LIST OF TABLES

Table 1: Summary of JDL process components 11

Table 2: JDL and waterfall fusion models 12

Table 3: Comparison between centralized and decentralized topologies 17

Table 4: Decision fusion models 24

Table 5: Pattern look-up table 38

Table 6: Feature to decision mapping 40

Table 7: Decision set to action set mapping 41

Table 8: Mass values for D-S theory 42

Table 9: User command and action set 42

x

LIST OF FIGURES

Figure 1: LIDAR data 5

Figure 2: JDL fusion model 9

Figure 3: Waterfall fusion process model 12

Figure 4: Modified waterfall fusion model 13

Figure 5: Dasarathy's classification of multi-sensor fusion 14

Figure 6: Centralized fusion topology 15

Figure 7: Decentralized fusion topology 16

Figure 8: Signal preprocessing functions 18

Figure 9: Track-to-track fusion architecture 21

Figure 10: Neural network structure for sensor fusion 22

Figure 11: Selective sensor fusion framework 28

Figure 12: Fusion framework block diagram 29

Figure 13: Region of spatial overlap for obstacle sensor 30

Figure 14: Obstacle sensor 32

Figure 15: Terrain sensor 32

Figure 16: Terrain classifier block diagram 39

Figure 17: Terrain angle 40

Figure 18: Gazebo window 45

Figure 19: Robot model 47

Figure 20: Heightmap grayscale image 49

Figure 21: Resultant 3D extrusion 50

Figure 22: rqt graph 53

xi

Figure 23: Terrain cells 54

Figure 24: Robot navigating surface obstacles on a flat ground 55

Figure 25: Non-navigable down ramp detection 56

Figure 26: Robot navigating a flat surface with no obstacle 57

Figure 27: Robot navigating a flat surface 58

Figure 28: Uncertain mode - no user input 59

Figure 29: Uncertain mode - invalid input 59

Figure 30: Surface obstacle detection 60

Figure 31: Navigable down ramp 61

Figure 32: Non-navigable up ramp 61

Figure 33: Catkin workspace directory structure 71

Figure 34: gazeboros package file structure 72

Figure 35: Package list 73

Figure 36: Robot package 74

Figure 37: Framework package 74

xii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

D-S Dempster Shafer

HRI Human Robot Interaction

LIDAR Light Detection And Ranging

ROS Robot Operating System

SDF Simulation Description Format

TTF Track-to-track fusion

CHAPTER 1: INTRODUCTION

1.1 Motivation

Autonomous robotics is an important branch of robotics and is widely researched

and reported [1]. In this branch of robotics, continuous information is obtained by the

sensors regarding the state of the environment and processed in real-time. Living beings

process multiple sensory data to reason and act. The same principle is applied in multi-

sensor data fusion for robotics. It plays a crucial role in enabling the robot to make

decisions and act. Significant applications of multi-sensor fusion can be found in mobile

robots [2] [3] [4] [5]. A variety of other applications take the benefit of sensor fusion

such as defense systems (such as target tracking [2] [6] [7] [8]), medicine [9] [10],

transportation systems [11] [12] and industry [13] [14] [15].

A detailed account of data sensor fusion for autonomous robotics is found in [1].

Navigation is one of the challenging tasks in an autonomous robot development. Obstacle

detection and estimation is the key factor for the success of navigation algorithms. This

work attempts to address that with the help of fusion algorithms. Most of the fusion

algorithms are utilized to address a specific issue in the decision-making process such as

noise filtering. There is a need to investigate the end-to-end approaches further. Also, the

fusion architectures described in Section 2.5 are derived from applications other than

robotics. Although these techniques form excellent guidelines for sensor fusion in

2

robotics, there is a need to explore frameworks that employ fusion algorithms so that the

decision-making process is scalable.

This work highlights the role of multi-sensor fusion in robot cognition while

accommodating better interaction level for human robot collaboration. The decision

framework takes into account data streamed by a group of sensors and applies fusion

algorithm to estimate the state of the surrounding with a higher confidence level. The

framework then offers decisions to the robot that are needed to execute the task. In an

event of uncertainty, the robot can query the user for assistance before executing any

further action demonstrating key interaction with the human.

This work is intended to be integrated with the “ZapataBot” project of the

Embedded Systems and Autonomous Robotics Lab at UNC-Charlotte [16].

From self-driving cars to intelligent robots in smart factories, sensors are heavily

relied upon. Sensors have narrow window of measurement, they can be faulty, can be

misguided and one sensor cannot reveal all the information about the surroundings.

Sensor fusion is the way forward and such frameworks that accomplish the fusion, will

be sought after.

1.2 Problem Statement

The problem statement of this work is formulated into the following parts:

1. Develop the selective sensor fusion framework.

2. Create the robot model with sensors for simulation.

3. Create the environment and terrain for the robot.

3

4. Integrate the fusion framework with lower level robot movement and

communication libraries.

5. Test the framework by verifying robot’s ability to navigate the unknown terrain.

1.3 Contributions

A list of main contributions of this thesis work are as follows:

1. Implemented Kalman filter and Track-to-track fusion algorithm to achieve signal

level fusion to aid in robotic navigation.

2. Designed and implemented the terrain classifier.

3. Developed the robot model along with its sensors using SDF for simulation on

Gazebo.

4. Integrated the framework package with ROS.

5. Designed the test environment for the robot to navigate.

1.4 Organization of Thesis

Chapter 1 introduces sensor fusion and provides an overview of the fusion

concept in autonomous and robotic systems. Chapter 2 details the need for sensor fusion

and some of the fusion methodologies and architectures found in literature that are

considered for this work. Chapter 3 introduces the selective sensor fusion framework and

the design of the framework. Chapter 4 focuses on the implementation of the framework.

The tools and libraries used to develop the framework are also discussed. Chapter 5

explains simulation and testing. Chapter 6 discusses the advantages of the proposed

selective fusion framework and the scope for future work.

CHAPTER 2: SENSOR FUSION OVERVIEW

Sensor fusion is a versatile topic with diverse areas of application. Fusion offers a

more unified view of the environment. Multi-sensor data fusion is the process of

combining information from individual sensors to obtain more inferences than that can be

derived from a single sensor. Multi-sensor fusion plays a crucial role in developing

robotic systems because the interaction with the environment is instrumental in

successful execution of the task.

2.1 Sensor Data Acquisition

Data acquired by sensors are in a particular format depending on the type of

sensor. Various sensors can be set to acquire data at a specified rate. Some sensors are

simple, such as a temperature sensor that outputs a temperature reading (a single

number). There are other sensors such as the LIDAR and camera that output a complex

data structure. The data format, the rate at which sensors publish data and other auxiliary

information such as the spatial sector of the environment being measured by the sensor

are all key elements to know, for applying the fusion process. Figure 1 describes a

LIDAR sweep and Appendix D Section D1 has the data structure for the same.

5

Figure 1: LIDAR data

2.2 Need for Sensor Fusion

In several current day applications ranging from surveillance, object detection,

target tracking to navigation, sensing systems are generating higher volumes of data at a

rapid rate. It is imperative to combine the data obtained from individual sensors to extract

the most useful information to effectively optimize storage and utilization of data [17].

Multi-sensor data fusion also aims at combining complementary and redundant

information. Reliable decision making requires the data obtained by the sensors to be

accurate. However, sensors are prone to errors and sensor data fusion can improve

confidence and reliability in the decision.

6

Several sensors measuring one or more attributes of their surroundings can

increase temporal and spatial coverage. In distributed sensor nodes, it is advantageous to

reduce the frequency of communication and utilization of bandwidth. This can result in

increased life of equipment, reduction in collision of data and increase in energy savings.

By fusing the sensor data, only the result can be transmitted and the above-mentioned

advantages can be realized [18].

The main goal of multi-sensor fusion is to achieve better operation of the system

using the collective information from all sensors. This is also referred to as the

synergistic effect [19] [20] [21]. Combining the data from a single sensor at different

time intervals can also produce this effect [21] [22]. To have better spatial and temporal

coverage, multiple sensors can be used. Also, with multiple sensors there is increased

estimation accuracy and fault-tolerance [21].

2.3 Sensor Fusion Challenges

Several factors make the sensor fusion process a challenging one. The majority of

problems arise from imperfection in sensor readings, variety of sensor technologies,

limitations imposed by the type of application and environment. These problems are

explained in detail in [18] and is briefly summarized as follows:

1. Data imperfection: Data from the sensors contain some amount of noise and

imprecision. Data fusion algorithms should be able to take advantage of the

redundant data to minimize the effects of such imperfections.

7

2. Outliers and spurious data: Ambiguity and inconsistencies in the environment that

the sensors may not be able to distinguish, causing the measured data to be

unreliable. Such data appear as outliers in the data set.

3. Conflicting data: If two sensors are offering conflicting data about an aspect under

observation, the fusion algorithm should be able to handle such conflicts to avoid

counter-intuitive results.

4. Data modality: The fusion process must take into consideration both qualitatively

similar (homogeneous) and different (heterogeneous) sensor data.

5. Data correlation: When sensors are spatially distributed in a system, some sensor

nodes are prone to external disturbances. This can bias the sensor readings and the

fusion result may suffer from over/under confidence.

6. Data alignment: Data from various sensors must be brought to a common frame

of reference before the fusion process. It deals with the calibration error induced

by individual sensors.

7. Operational timing: The data used for fusion may be coming from sensors that

span a vast area or from sensors that are generating data at different rates. Out-of-

sequence arrival of data for fusion process can result in performance degradation

especially in real time applications.

2.4 Categories of Sensor Fusion

Depending upon the sensor configuration, there are three main categories of

sensor fusion: Complementary, Competitive and Co-operative [23]. These are described

below as follows:

8

1. Complementary: In this method, each sensor provides data about different aspects

or attributes of the environment. By combining the data from each of the sensors

we can arrive at a more global view of the environment or situation. Since there is

no dependency between the sensors combining the data is relatively easy [23]

[24].

2. Competitive: In this method, as the name suggests, several sensors measure the

same or similar attributes. The data from several sensors is used to determine the

overall value for the attribute under measurement. The measurements are taken

independently and can also include measurements at different time instants for a

single sensor. This method is useful in fault tolerant architectures to provide

increased reliability of the measurement [23] [24].

3. Co-operative: When the data from two or more independent sensors in the system

is required to derive information, then co-operative sensor networks are used

since a sensor individually cannot give the required information regarding the

environment. A common example is stereoscopic vision [23] [24].

Several other types of sensor networks exist such as corroborative, concordant,

redundant etc [21]. Most of them are derived from the aforementioned sensor fusion

categories.

2.5 Fusion Methodologies

Generally, sensor fusion framework is designed or chosen based on the

application. However, there are various methodologies to capture the general idea of

fusion and set up guidelines. Some of the methodologies are discussed below [18].

9

2.5.1 JDL Model

 JDL stands for the US Joint Directors of Laboratories that was established under

the guidance of Department of Defense and was proposed in 1985. The JDL model is

functionality dependent and can be customized depending on the application. Varieties of

applications from sensor networks to human robot interface can be implemented using

this model [24]. JDL model is derived from the military domain. It is based on the input

data and processed output.

 The model uses five levels for data processing and a database. These components

can communicate through a bus interface [24] [25] [26]. The JDL model is as shown in

Figure 2 [25] [26]. These levels could be executed sequentially or concurrently during the

application.

Figure 2: JDL fusion model [25] [26]

 Sources, in the JDL model can consist of sensor data or data given by the user

such as user input, reference data or geographical data. The Man-Machine Interaction

block, as the name suggests, enables the user to interact with the system through user

command, reports etc. Furthermore, this block helps in providing alert messages and

10

could use multimedia tools such as displays, sounds etc. to achieve communication with

the user.

 The Source Pre-Processing also referred to as Level 0, performs pre-screening of

data and then allocates it to the appropriate process [25] [26]. In the Object Refinement or

Level 1, the following operations are performed namely, alignment of data using frame

transformation, data association, tracking and estimation of the current and future

position of the object. Also, Level 1 can be composed of kinematic and identity fusion

[24]. In kinematic fusion, the velocity, acceleration of the object is determined. In

identity fusion, the type of the object such as aircraft or missile is determined using

parametric estimation [24] [25]. After processing the data from Level 1, based on the

situation the contextual relationship is determined between the event and the object under

observation. This process of refinement is called as Situation Refinement or Level 2.

Depending on the a priori data and the future situation prediction inferences are drawn in

Level 3 or Threat Refinement. The inferences are used to identify the vulnerabilities and

the opportunities for the operation. This level uses game theoretic techniques [25].

Process Refinement or Level 4 deals with monitoring the system performance (handles

real time constraints) and sensor allocation to satisfy mission objectives and goals. This

level does not perform data processing operations and uses sensor management

techniques [24] [25] [26]. The Database Management System helps monitor, update, add

and provide information to the fusion process [24] [25] [26].

 Although the JDL model helps in basic understanding of the sensor fusion process

it is data centric and hence hard to extend or reuse the applications based on this model.

The JDL model is too restrictive and tuned to the military. It is abstract and

11

interpretation could be difficult [25] [26]. It focuses more on input and output rather than

processes. Table 1 highlights the summary of various components used in JDL model.

Table 1: Summary of JDL process components [25]

SOURCES
Can include data from sensors to a priori information from

databases to human input.

PROCESS

ASSIGNMENT

Enables the data fusion process to concentrate on the data most

pertinent to the current situation as well as reducing the data

fusion processing load. Involves data pre-screening and

allocating data to appropriate processes.

OBJECT

REFINEMENT I

(Level 1)

Transforms data to a consistent reference frame and units and

estimate or predict object position, kinematics, or attributes.

Also, assigns data to objects to allow statistical estimation and

refine estimates of the objects identity or classification.

SITUATION

REFINEMENT

(Level 2)

Describes of the relationship between objects and observed

events. This processing determines the meaning of a collection

of entities and accounts for environmental information, a priori

knowledge, and observations.

THREAT

REFINEMENT

(Level 3)

Projects the current situation into the future and indicates

possible threats, vulnerabilities, and opportunities for operations.

PROCESS

REFINEMENT

(Level 4)

Monitors real-time performance of data-fusion, identifies

information required for data fusion improvement. Also,

allocates and directs sensor and sources to achieve mission

goals.

DATABASE

MANAGEMENT

SYSTEM

Most extensive ancillary function required to support data

fusion. Also features data retrieval, storage, archiving,

compression, relational queries, and data protection.

HUMAN-

COMPUTER

INTERACTION

Enables human input and communication of data fusion results

to operators and users, and includes methods of alerting human

as well as augmenting cognition.

2.5.2 Waterfall Fusion Process Model

 The Waterfall fusion process model (WFFM) deals with the low-level processing

of data and is shown in Figure 3 [25] [27]. The Waterfall model has a lot of common

features as the JDL model. The processing stages of the Waterfall models relate to the

levels of the JDL model [25] [26] [27] and the comparison is shown in Table 2.

12

Figure 3: Waterfall fusion process model [27]

Table 2: JDL and waterfall fusion models [25] [26] [27]

JDL levels Waterfall stages

Level 0 Sensing and Signal Processing

Level 1 Feature Extraction and Pattern Processing

Level 2 Situation Assessment

Level 3 Decision Making

 However, similar to the JDL model, the Waterfall fusion model is abstract and

doesn’t have feedback between the stages. It is an acyclic model. The modified WFFM is

described in [24] that provides for some feedback between the stages. This modified

model is action oriented and has the provision for control loop action or feedback loop as

shown in Figure 4.

13

Figure 4: Modified waterfall fusion model [24]

2.5.3 Dasarathy’s Classification

 This method is derived from software engineering perspective where fusion is a

data flow model characterized by input and output as well as functional entities

(processes). Figure 5 [28] shows various sensor fusion types as classified by Dasarathy.

Only a few combinations are allowed in this scheme for the inputs and outputs.

14

Figure 5: Dasarathy's classification of multi-sensor fusion [28]

2.5.4 Random Sets Based Model by Goodman et al.

This method combines uncertainties with decisions. It is a generic scheme of

uncertainty representation.

2.5.5 Category Theory Based Model by Kokar et al.

A general theory to capture all kinds of fusions- data, feature, decision and

relational information. It accounts for both data and processing. It allows consistent

15

combination of processing elements (algorithms), while offering measurable and

provable performance.

Several other fusion models exist such as the Omnibus model [29], Boyd or

OODA model [30], LAAS Architecture [31].

2.6 Sensor Fusion Topologies

There are different topologies namely, Centralized, Decentralized and Hybrid [21]

[24] [32] [25]. Each of these is described as follows:

2.6.1 Centralized

 In this architecture, a single node handles the fusion process. The sensors undergo

preprocessing before they are sent to the central node for the fusion process to take place.

Figure 6 shows a typical centralized architecture [21] [24].

Figure 6: Centralized fusion topology [32]

2.6.2 Decentralized

 In this architecture, each of the sensor processes data at its node and there is no

need for a global or central node. Since the information is processed individually at the

16

node, it is used in applications that are large and widespread such as huge automated

plants, spacecraft health monitoring etc [24]. Figure 7 shows a typical decentralized

architecture [21] [24].

Figure 7: Decentralized fusion topology [32]

2.6.3 Hybrid

This architecture is a combination of both centralized and distributed type. When

there are constraints on the system such as a requirement of less computational workload

or limitations on the communication bandwidth, distributed scheme can be enabled.

Centralized fusion can be used when higher accuracy is necessary [24] [32].

A simple comparison between the centralized and decentralized topologies is

shown below in Table 3.

17

Table 3: Comparison between centralized and decentralized topologies [21] [24]

Parameter Centralized Distributed

Communication
Central node acts

bottleneck

Data processing load

distributed

Computation

Depends on the

performance of

central processor

Can be easily scaled

Modularity
Re-programming for

new sensors
Modular in design

Fault-tolerance
Depends on the

central computer

Distributed data

processing

2.7 Categories of Fusion Algorithms

Sensor fusion can be performed at various levels based on the condition and type

of data. In this context, there are following fusion stages:

1. Signal level fusion

2. Feature level fusion

3. Decision level fusion

2.7.1 Signal Level Fusion

 In signal level fusion, data from multiple sources (sensors) are combined to obtain

better quality data and higher understanding of the environment being observed. Signal

level fusion often has either or both of the following goals:

1. Obtain a higher quality version of the input signals i.e. higher signal to noise ratio

[33]. Sensor measurements from several sensors which have same physical

properties are combined to determine the parameter being measured, more

18

accurately [21]. This minimizes and sometimes eliminates any uncertainty or

inaccurate predictions caused by measurements from faulty sensors, measurement

noise and state noise. For instance, readings from multiple temperature sensors in

close proximity in a given space can be used for this kind of fusion.

2. Obtain a feature or mid-level information about the system that a single

measuring node cannot reveal. A feature is the first stage in understanding the

state of the environment that helps the system in formulating a decision.

Heterogeneous sensors are often employed for this process. For instance, signals

from radar and images from camera are used in target recognition [25].

 For sensor data to undergo signal level fusion, it is essential to condition the

signals in the signal preprocessing phase. The signals must be in a common

representation format [21]. The stages involved in this process, as shown in Figure 8,

include but not limited to: Signal alignment, normalization and scaling [21].

Figure 8: Signal preprocessing functions [21]

There are several methods by which signal level fusion can be achieved. The

choice of method depends on various factors like the scenario and type of application,

type of data or signal, relationship between the data or the state representation of the

system. The following are some of the commonly used signal fusion methodologies:

19

2.7.1.1 Weighted Averaging

 Signal fusion can be achieved by taking an average of the various sensor signals

measuring a particular parameter of the environment. If signals from some sensors can be

trusted more than the other, a higher weight is assigned to that sensor to increase its

contribution towards the fused signal. The confidence level is a function of variance of

the sensor signal [33].

 𝑥𝑓𝑢𝑠𝑒𝑑 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

 (1)

where, wi = f(variance)

2.7.1.2 Kalman Filter

 The Kalman filter method is a common adaptive method of sensor fusion to

remove redundancy in the system and to predict the state of the system. This is a linear

model and the current state of the system is dependent on the previous state. The system

is represented by the following state-space model:

 𝑥(𝑘) = 𝐴 𝑥(𝑘 − 1) + 𝐵 𝑢 + 𝐺 𝑤 (2)

 𝑧(𝑘) = 𝐶 𝑥(𝑘) + 𝑣 (3)

where, x: state vector, A: state transition matrix, B: Input transition matrix, u: Input

vector, G: Process noise transition matrix, w: process noise vector, C: Measurement

matrix, v: measurement noise vector. The covariance matrices of w and v are Q(k) and

R(k) respectively. There are two phases of state estimation with Kalman filter:

20

Predict phase:

 x̂
𝑘 = 𝐴 𝑥𝑘−1 + 𝐵 𝑢𝑘 (4)

 𝑃𝑘 = 𝐴 𝑃𝑘−1 𝐴𝑇 (5)

Update phase:

 𝐾𝑘 = 𝑃𝑘𝐶𝑇(𝐶𝑃𝑘𝐶𝑇 + 𝑅)−1 (6)

 x̂
𝑘

= x̂
𝑘

+ 𝐾𝑘(𝑧𝑘 − 𝐶 x̂
𝑘

) (7)

 𝑃𝑘 = (1 − 𝐾𝑘𝐶)𝑃𝑘 (8)

where, P: estimation covariance, K: Kalman gain.

 In the update or correction phase, the estimate from the predict phase is updated

with the observation. If there are two sensors and both sending data simultaneously, then

Z = [z1, z2]. If the sensors are sending data one after the other, then the reading from first

sensor can be used as a priori information before observation from second sensor is used

to update the prediction [33].

2.7.1.3 Track-to-Track Fusion

 Track to track fusion methodology has local tracks generated by distinct local

sensors. Then at a central node the tracks are fused as shown in Figure 9 [34].

21

Figure 9: Track-to-track fusion architecture [34]

 The local track can be individual Kalman filter nodes that provide state estimation

at the local track level. These states are then fused into a state vector that has combined

information from all the local sensor nodes. Sometimes, this new estimate is sent as

feedback to the local sensor nodes. The new state estimate is obtained by the following

formula [34]:

     12111211 ˆˆˆˆ
k|kk|k

21

k|k

12

k|k

2

k|kk|kk|kk|kk|kk|k xxP+P+P+PPP+x=x 
 (9)

where, 𝑃𝑘|𝑘
𝑚 is the error covariance matrix of the corresponding state estimation �̂�𝑘|𝑘

𝑚 . 𝑃𝑘|𝑘
12

is the cross-covariance matrix of the two state vectors where 𝑃𝑘|𝑘
21 = (𝑃𝑘|𝑘

12)𝑇.

 𝑃𝑘|𝑘
12 is defined by the following equation:

       Tkk

T

kkkkk

T

kk

T

k|kkkk|k CKGQGCK+CKAPACK=P 22

111

1122

1

12

1-k1-k1

1112 1111  

 (10)

22

 This configuration can be extended for multiple sensors. A modified track-to-

track fusion and three sensor fusion algorithm are explained in detail in [34].

Several authors have used track fusion algorithm for signal level fusion to

minimize the effects of sensor noise. However, this work explores the use of track fusion

algorithm for extracting feature while using a basic Kalman filter for signal level fusion.

There are other ways to define the track fusion algorithm such as taking confidence

weighted averaging of the tracks based on variance [34].

2.7.1.4 Neural Networks

An artificial neural network consists of interconnection of processing nodes called

neurons. There is a pattern of interconnection between the neuronal layers that are

weighted and the learning process that updates these weights. Data fusion models can be

established using neural networks such that neurons and interconnecting weights are

assigned based on the relationship between the multi-sensor data input and the signal

output. The neural networks can be multilayer feed-forward or recurrent type [35].

Unlike Kalman filters, neural networks offer non-linear transfer functions and

parallel processing capabilities. This can help in performing image fusion. Figure 10

shows a basic structure of three-layer neural network with nonlinear mapping.

Figure 10: Neural network structure for sensor fusion [35]

23

The fused output is a combination of input signal and corresponding weights calculated

by the equation [35]:

 𝑦 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

 (11)

where, wi is the weight; xi is the sensor data.

 Several fusion methodologies are used and depending on the input and outputs

required, the stages in the model can perform either signal, feature or decision level

fusion. These methods are either used as standalone or can be combined with other signal

fusion methods.

 The probabilistic approach for sensor fusion includes the use of joint probability

distributions and Gaussian distributions [36]. Other fusion methods include Bayesian,

least-squares for feature extraction [37] and some statistical approaches [21] [33] [38]. In

[39] [40] [41], the authors explain various approaches for modeling sensor fusion

architecture using neural networks.

2.7.2 Decision level fusion

Also known as Symbol level fusion, the decision level fusion combines several

sub-decisions or features to yield a final or higher decision that can be used to take an

action. Symbol could be an input decision. In this case, fusion of symbolic information

insists the use of reasoning and inference while handling uncertainty. Symbol level fusion

increases the confidence or truth value and is considered as decision fusion [42] [43].

Identity and Knowledge based methods form the two categories of decision fusion [24]

24

[43]. Table 4 [24] [43] lists few of the decision fusion methods or AI techniques for each

category.

Table 4: Decision fusion models [24] [43]

Identity based Knowledge based

Maximum a priori

(MAP)

Syntax rule

Maximum Likelihood

(ML)

Neural Network

(NW)

Dempster-Shafer etc Fuzzy Logic etc

 One of the most widely used decision or inference method is Dempster-Shafer

theory (D-S theory). This method is very useful for human-robot interaction based

applications [42] [43] [44] [45]. The D-S theory is described in detail followed by a

comparison with Bayesian inference which is another widely used decision fusion

technique.

2.7.2.1 Dempster-Shafer Theory of Evidence:

 D-S theory is a generalization of the probability theory [42] [46] [47] [44]. In this

method, a frame of discernment Ω is defined which is set of elementary hypotheses:

 Ω = {𝑎𝑖}, where i = 1, . . . , n (12)

 The sum of the mass function of all hypotheses is one. Belief function is used to

express inaccurate beliefs. Mass values are assigned to the elements of the power set 2Ω

of the frame of discernment which hold the following properties:

belief (null) = 0

25

belief (hypothesis) = Sum of all mass functions for all evidence to support the

proposition.

 The confidence interval is upper-bounded by the plausibility value to include all

observations that don’t rule out the proposition supported by the corresponding belief

function. In order to combine two mass functions m1 and m2 the Dempster-Shafer theory

defines the following rule [46] [47]:

 𝑚1 ⨁ 𝑚2(∅) = 0 (13)

 𝑚1 ⊕ 𝑚2(𝐻) =
∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌=𝐻

1 − ∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌= ∅
 (14)

2.7.2.2 Comparison of D-S and Bayesian Fusion:

 Although both these methods are widely used in inference engines there are few

differences between them [43] [45]. The main difference being the concept of support

and plausibility to define uncertainty limits in Dempster-Shafer [43] [46] [47] which is

not found in Bayesian inference. D-S theory is an evidential reasoning method where

belief masses can be assigned to elements and sets, and on set of sets [43].

 Capturing ignorance or uncertainty is another strong feature of evidential

reasoning methods which is not achievable in probabilistic methods. It is not necessary to

have a priori probabilities and data is provided only at the time when sensor reads them

[43] [45] during observation. Dempster-Shafer theory of evidence finds widespread use

in human-robot interactive (HRI) applications. A review of a few applications of HRI can

be found in [48].

26

 By using the power set as the frame of discernment beliefs can well represented.

However, when the set is continuous the number of subsets cannot be measured and

hence this is a significant limitation that is found in evidential reasoning methods [42]

[43] that work well with discrete sets.

CHAPTER 3: SELECTIVE FUSION FRAMEWORK DESIGN

This chapter provides an overview of the selective fusion framework. The

framework is designed for the robot to navigate an unknown terrain. The terrain map,

features, and set of obstacles are not a priori information to the robot. The framework

uses the concept of sensor fusion. It selectively utilizes required sensors associated with

the task to determine the decisions required to execute the task successfully.

The focus of this work is the decision arrived by the framework to aid in

navigation and not the navigation algorithm itself. Any path planning or navigation

algorithm can be used, as the framework does not intervene with the navigation.

Several fusion frameworks found in the literature focus on using one of the signal

level fusion algorithms mentioned in the Chapter 2 or its variants to filter out noise in the

sensor signal. Other decision making frameworks utilize mostly soft data set and apply

decision level fusion algorithms to arrive at a decision. This work presents a fusion

framework that uses a combination of these algorithms at relevant stages to achieve

higher level of cognition and increase confidence in autonomous decision making.

A robot is normally designed to execute a set of tasks. It also has sensors to gather

the state of environment it is operating in. According to the framework as shown in

Figure 11, a set of sensors are mapped to a task [49] [50]. Initially, sensors are selected

and the raw sensor data undergoes a phase of preprocessing. This data then goes through

the fusion process and a decision is arrived to execute a task or a sub task.

28

Figure 11: Selective sensor fusion framework

 For a robot to navigate an unknown terrain, it is essential to analyze the terrain

features and detect surface obstacles. LIDAR sensors are used for this purpose. Consider

a robot with three sensors mounted at a 45 degree angle to the surface to get the terrain

data and three more sensors mounted horizontal to the surface to get surface data as

shown in Figure 19. Several such sensor configurations can be used. One sensor can be

used for measuring surface obstacle and another one can be used to measuring terrain

features. However, in this scenario, several sensors are used to demonstrate selection and

scalability of the framework. The task to be taken up by the robot is movement. The robot

used for the demonstration in this work is non-holonomic. So, movements are restricted

to forward and turns. The movements are for fixed distances from one cell to another.

The cell size can vary based on requirement, however, in this case, the terrain is divided

into square cells of 1m length. So, the sensors and tasks are established, the actual fusion

29

framework is explained in detail as follows. The block diagram of the framework is as

shown in Figure 12.

Figure 12: Fusion framework block diagram

The raw sensor data undergoes selection through the selection block. The selected

sensor is then sampled again to get the next temporal sequence of data. This data is then

sent to the pre-processing block for normalization and scaling. The normal data is sent

through the Kalman filter for temporal fusion to minimize the effects of noise. This fused

data from individual Kalman nodes is then sent to the track-to-track fusion node. The

signal out of this node contains information of the state of the next cell under

consideration. The pattern classifier block identifies the features of the environment and

aids the decision level block to arrive at a decision for the robot to act on. The various

parts of the framework are explained in detail below.

3.1 Overlap Detection

This block is essential to bring about spatial alignment of data. It also

demonstrates sensor selection in the fusion process. The input to this block is the raw

sensor data from six LIDAR sensors. Each sensor generates a stream of spatial and

30

temporal sequence of data. Three of the horizontal LIDAR sensors are mounted such that

there is a degree of overlap between the measurements i.e., a part of each LIDAR’s data

is a measure of the same point in space. The spatial overlap of data generates some

amount of redundancy that is helpful to overcome some of the challenges mentioned in

Section 2.3. Figure 13 shows the overlap region for horizontal sensors. This block uses

the data from the region of overlap to increase confidence in the sensor’s measurement.

The sensor data with highest degree of confidence will be selected for the fusion process.

Figure 15 shows the region of detection for the terrain sensors. The data set with the

maximum deviation from the ideal flat ground LIDAR data sequence is considered for

the fusion process. The next sequence of data from these sensors are also read.

Figure 13: Region of spatial overlap for obstacle sensor

3.2 Preprocessor

The preprocessor brings the two data sets obtained from the overlap detection

block to a common representation format. Every sensor measurement consists of the

following parameters: spatial position, time, value, uncertainty of the given property as

31

measured by the sensor. To achieve a common representation format, the sensor readings

must be temporally and spatially aligned. This is taken care by the overlap detection

block. The other requirement is that the values are normalized that is they are converted

to a common scale. Normalization is achieved by a technique called the Min-Max method

of normalization as defined below [21].

 𝑦 =
(𝑥 − 𝑎)

(𝑏 − 𝑎)
 (15)

where, a = mini(xi), b = maxi(xi).

 Both the obstacle sensor and the terrain sensor are looking at the next cell in the

path of the robot. The goal of the fusion process is to determine whether the cell is

navigable or not. However, both these sensors are measuring different and independent

attributes of the cell. Hence, there is heterogeneity in data. The obstacle sensor looking

for a surface obstacle in the next forward cell is as shown in Figure 14 and the terrain

sensor measuring the terrain irregularity in the next cell is as shown in Figure 15.

 The boundary conditions for both the cases are used to determine the min and

max values of the sensor data for normalization. The LIDAR sensors can measure up to a

certain maximum distance based on its characteristics that is detailed in the data sheet of

the sensor. The sensor used for this application can measure up to a maximum of 10m.

This measure is taken as the max value for normalization for the obstacle sensor. The min

value depends on the boundary of cell under consideration. As shown in Figure 14, the

min value for a particular LIDAR range value is the boundary value of the cell at that

angle.

32

Figure 14: Obstacle sensor

Figure 15: Terrain sensor

Figure 15 shows the LIDAR range values for the ideal flat ground. A deviation

from the ideal flat ground value is used to determine the min and max values for the

range values of terrain sensor. The obstacle sensor values have a higher difference

between their min and max values compared to the terrain sensor. So, the obstacle sensor

values are scaled after normalization.

33

3.3 Kalman Filter

The input to this block is the normalized data from the preprocessing stage. A

temporal sequence of normalized data from the obstacle sensor and that from the terrain

sensor are processed by this block. Detailed explanation of the working of Kalman filter

and its use in sensor fusion is in Section 2.7.1.2.

This section focuses on implementation of Kalman filter for the fusion process.

Two sets of temporal sequences of data obtained from the obstacle sensor are

homogeneous in nature. Each set measures the same parameter of the environment and

are from the same sensor. These are combined using Kalman fusion to obtain an estimate

of the state that is free of sensor noise. This process is repeated for the data from terrain

sensor too.

To implement the Kalman filter for fusion process, some of the parameters must

be initialized. The state vector, x at time instant k-1 is the first of the temporal sequence

of normalized LIDAR data. The size of the state vector depends on the resolution of

sensor data. If ‘M’ range values are obtained in a LIDAR sweep, size of matrix x is

[MxN] where, N = 1.

The state transition matrix A, is initialized to an identity matrix of size [MxM]

because of the lack of knowledge on how the system varies. The measurement matrix, C

is also an identity matrix of size [KxM] which indicates the sensor measurement

contributing to observed value. The estimation covariance matrix P[MxM] is also

initialized to an identity matrix.

The Kalman gain matrix G[MxK] is initialized to 0.5*I[MxK] which gets updated

on every run. The covariance of process noise Q[MxM] and the covariance of

34

measurement noise R[KxK] are initialized based on the expected levels of noise and are

different for obstacle sensor and terrain sensor. Both these matrices are normally

initialized to standard deviation of noise ie., σ*I[]. Since raw sensor values are not used

for the fusion process, Q[MxM] for obstacle sensor is obtained by the following

formulae:

 𝑄[𝑀×𝑀] = 𝑞1 ∗ 𝐼[𝑀×𝑀] (16)

 𝑞1 =
(𝜎 − 𝑎𝑎𝑣𝑔)

(𝑏𝑎𝑣𝑔 − 𝑎𝑎𝑣𝑔)
 (17)

where, 𝑎𝑎𝑣𝑔 = ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝑀⁄ , 𝑏𝑎𝑣𝑔 = ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝑀⁄ , σ is the standard deviation of

process noise.

R[KxK] for obstacle sensor is obtained by the following formulae:

 𝑅[𝐾×𝐾] = 𝑟1 ∗ 𝐼[𝐾×𝐾] (18)

 𝑟1 =
(𝜎 − 𝑎𝑎𝑣𝑔)

(𝑏𝑎𝑣𝑔 − 𝑎𝑎𝑣𝑔)
 (19)

where, 𝑎𝑎𝑣𝑔 = ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝐾⁄ , 𝑏𝑎𝑣𝑔 = ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝐾⁄ , σ is the standard deviation of

sensor noise.

Q[MxM] for terrain sensor is obtained by the following formula:

 Q[M×M] = abs(q2) ∗
I[M×M]

k
 (20)

 q2 =
(σ − aavg)

(bavg − aavg)
 (21)

35

where, 𝑎𝑎𝑣𝑔 = ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝑀⁄ , 𝑏𝑎𝑣𝑔 = ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝑀⁄ , σ is the standard deviation of

process noise, k is the scaling factor.

R[KxK] for obstacle sensor is obtained by the following formulae:

 R[K×K] = abs(r2) ∗
I[K×K]

k
 (22)

 r2 =
(σ − aavg)

(bavg − aavg)
 (23)

where, 𝑎𝑎𝑣𝑔 = ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝐾⁄ , 𝑏𝑎𝑣𝑔 = ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝐾⁄ , σ is the standard deviation of

sensor noise, k is the scaling factor.

 The values are scaled down here by a factor of ‘k’ because the difference between

minimum average and maximum average value of obstacle sensor is higher than that of

terrain sensor. So, if the values are not scaled, the terrain sensor will have higher impact

on the results. The scaling factor considered in this study is 1000.

The observed state vector, z of the size [MxN] is the second in temporal sequence

of normalized LIDAR data.

 With the above mentioned initializations and boundary conditions in place, the

Kalman Fusion runs separately for the obstacle sensor and the terrain sensor and obtains

two state vectors in the update phase. The Kalman Fusion block takes signal in and

provides signal out. This is in-line with the Dasarathy’s data flow model of fusion.

3.4 Track-to-Track Fusion

The working principle of track-to-track fusion process is explained in Section

2.7.1.3. The input to this block are the state vectors of obstacle sensor and terrain sensor

36

from the Kalman fusion block. This is an extension to the Kalman fusion block and

several parameters of the fusion equation are required in the track-to-track fusion block.

Once the cross-covariance matrices of the two state vectors are obtained using Equation

10, the fused state estimate is obtained from Equation 9 that contains information about

both obstacles and terrain features of the cell in front of the robot.

With the above-mentioned initializations and boundary conditions in place, the

Kalman and track-to-track fusion are tested for a continuous 36 runs with random sensor

values and different boundary conditions. The results of the test are tabulated in

Appendix E. The first column contains the raw sensor value from obstacle sensor and the

second column contains the next sequence of measurement from the same sensor and the

same cell. The third column contains the measurements from the terrain sensor and the

fourth column contains next sequence of data from the same sensor and for the same cell.

All these data go through track-to-track fusion. The process is repeated with the same

data for four different scaling factors in the preprocessing block i.e., n = 1, 10, 100, 1000

and the resultant vectors are stored in column five through eight. The scaling factor is

essential to prevent bias of single sensor on the result. The track fusion block provides a

signal out that needs to be analyzed to determine the state of the cell. The resultant vector

of the fusion process holds information as to whether the cell is navigable or not. It can

be observed from the eighth column in the table in Appendix E that all the elements of

the resultant vector lie within the range 0 and 1 if there are no obstacles and terrain

irregularities. Cell Є {navigable}, if 0<xh[i]<1 for all xh[i]. Cell Є {non-navigable}, if

0>xh[i] or xh[i]>1 for any xh[i]. This is marked in the table in Appendix E with a red

shade. The other shaded blocks on the sensor reading from column one through four

37

indicate the presence of an obstacle or terrain irregularity. They are marked for

convenience to correlate the navigability of a cell with the track-to-track fusion result

values. Hence the fused state value classification is achieved.

The boundary conditions for the test run are as follows:

Obstaclemin = {0.45, 0.55, 0.7, 0.85, 0.95}

Terrainmin = {0.5, 0.6, 0.75, 0.9, 1}

Terrainmax = {0.55, 0.65, 0.8, 0.95, 1.05}

 The track-to-track fusion block is sensitive to minor irregularities in terrain. The

boundary conditions assigned as min and max values determine the limit. So, based the

track-to-track fusion results, the terrain parameter is further classified in the terrain

classifier block.

3.5 Pattern Classifier

This is the feature classification phase of the fusion process. The information

about navigability of the cell is obtained from the signal out of the track-to-track fusion

as described above. The framework must accumulate confidence through various stages

to achieve higher levels of cognition. The pattern classifier is a rule based system that

takes the results of track fusion and auxiliary information from the previous stages to

determine features of the cell under consideration. Table 5 contains the details of these

features. In the truth table, ‘1’ indicates that the cell is non-navigable as determined by

that source (named in the column heading) while ‘0’ indicates navigability. Any

uncertainty in the determination is also accounted for in this stage.

38

Table 5: Pattern look-up table

Auxiliary

information(Obstacle)

Auxiliary

information(Terrain)

Track-to-track

fusion result

Pattern

0 0 0 No obstacle

0 0 1 Uncertain

0 1 0 Uncertain

0 1 1 Terrain issue

1 0 0 Uncertain

1 0 1 Surface obstacle

1 1 0 Uncertain

1 1 1 Both obstacle and

terrain issue

3.6 Terrain Classifier

This block further classifies the terrain based on its features. If the pattern

classifier finds that the cell is navigable or that there is a surface obstacle, then this block

is not consulted in arriving at a decision. If the pattern classifier suggests that there are

both surface obstacle and terrain irregularity or there is only terrain irregularity, then this

block is used to further classify the terrain features to make appropriate navigation

decisions.

The data input to this block is the sensor reading from terrain sensor after

selection and the control input is from the pattern classifier block as shown in Figure 16.

This block takes into account the slopes of the terrain in various parts of the cell to

determine if the cell is: overall flat, a navigable up ramp, a navigable down ramp, a non-

navigable up ramp, a non-navigable down ramp.

39

Figure 16: Terrain classifier block diagram

 The terrain LIDAR sensor gives out [angle, range] values as marked by [θ,d] in

Figure 17. The coordinates of points on terrain are obtained by the following formula:

 xi = di ∗ sin (
(15 ∗ i) ∗ π

180
) (24)

 yi = yh − (di ∗ cos (
(15 ∗ i) ∗ π

180
)) (25)

where, (xi, yi) are the coordinates on the terrain, yh is the distance of terrain sensor from

the ground (mounting height), di is the range data. In this case, θi = 15*i.

The slope between two points on the terrain are determined to measure the extent of

irregularity in the terrain. It is obtained by the following formula.

 m =
y2 − y1

x2 − x1
 (26)

The corresponding angle of ramps are obtained by the following formula:

 α° = (
(tan−1 m) ∗ π

180
) (27)

40

where, α is the angle of terrain surface. These angles are used to rank the cell surface for

the features listed above.

Figure 17: Terrain angle

3.7 Decision Block

The decision block arrives at a decision based on the evidence(features)

determined by the pattern classifier and the terrain classifier. This block takes the features

from the previous block as input. The mapping of feature set to the decision set is as

shown in Table 6. The robot is programmed to act based on the result of the decision

block. The decision to action mapping is tabulated in Table 7.

Table 6: Feature to decision mapping

Feature Determination block Decision

No obstacle Pattern classifier Navigable cell

Surface obstacle Pattern classifier Non-navigable cell

Terrain issue Pattern classifier Inspect the terrain further

Both surface and terrain

issue

Pattern classifier Non-navigable cell

Uncertain Pattern classifier Uncertain mode

Flat Terrain classifier Higher navigability index

Navigable up ramp Terrain classifier Higher navigability index

Non-navigable up ramp Terrain classifier Non-navigable cell

Navigable down ramp Terrain classifier Higher navigability index

Non-navigable down ramp Terrain classifier Non-navigable cell

41

Table 7: Decision set to action set mapping

Decision Action

Navigable cell Move forward by a cell

Non-navigable cell & previous action:

move forward

Turn left by 90 degree

Non-navigable cell & previous action:

turn left

Turn left by 180 degree;

reset previous action

 These sets can be expanded to account for more functionality in the robot. If a

decision is dependent on a combination of several features, then a decision level fusion

algorithm with higher level of cognition can be used. In this study, the parameters of

action are held constant because the robot is traversing 1mx1m square cell. In a more

complex scenario, exact distance of movement or turning angle can be a part of the action

tuple. For instance, the turn angle of motors for a robotic arm.

 Once the robot takes action based on the decision, the framework continues to re-

sample the sensors and go through the fusion process to arrive at a new decision for the

robot to execute.

 The framework performs autonomously for all the features except for the

uncertain feature. The robot enters an uncertain mode when the framework has not been

able to build sufficient confidence on the state of the environment through its process.

Any ambiguity in the findings of the framework about the environment that it is not able

to resolve, results in this mode. Handling such uncertainty is an important aspect of

intelligent autonomous systems. In the uncertain mode, the robot enters the assist phase

where a user command is requested. The framework also calculates a confidence level in

the sensors using the Dempster-Shafer rule of combination as stated in Equation 13 and

Equation 14. The mass values are specified in Table 8 [51].

42

Table 8: Mass values for D-S theory

 0<x[i]<0.06 0.06<x[i]<max x[i]>max

T(present) 0.3 0.8 0.2

T(not present) 0.3 0.2 0.7

T(uncertain) 0.4 0 0.1

The D-S theory accounts for uncertainty unlike the Bayesian theory or other

probabilistic methods. The D-S theory makes the system scalable i.e., if there are many

more hypotheses, they can be included to determine confidence. The mass table here is

based on the sensor characteristics. The mass values can also be dynamically updated by

the result obtained from previous stages in the framework.

In the assist phase, the framework requests for user assistance in the form of a

keyboard input. The action and corresponding commands are tabulated in Table 9.

Table 9: User command and action set

User command Action

f Move forward

r Turn right

l Turn left

 One of the following cases occur during execution of the framework:

Case a: The user enters a correct command. In this case, the entered command is

executed and the framework returns to autonomous mode once executed.

Case b: The user enters an incorrect input. In this case, the robot takes no action and the

user is requested again to enter a correct command.

Case c: The user does not enter an input. The robot waits for a set timeout period and

enters the autonomous mode on timeout. The sensors readings are acquired again

and they go through the fusion process hoping for better confidence in this run.

43

There is a bidirectional communication between the robot and user. The

framework offers a way for user interaction.

CHAPTER 4: IMPLEMENTATION

The details of framework design and the principles that guide the development of

sensor fusion framework are explained in the previous sections. This section introduces

the actual implementation of the framework. The framework is developed using C, C++.

The simulation environment and the robot are created using Gazebo (v 7.1), a robot

simulation tool. Robot Operating System (ROS) (v Kinetic Kame), a collection of

libraries that support robot software development is also used.

4.1 Gazebo

Gazebo is a dynamic 3D simulation engine that can simulate robots accurately in

highly complex indoor and outdoor environments. It has a robust physics engine that

offers physics simulation with high degree of fidelity and good quality graphic rendering.

It offers interface for programs and users alike. The procedure to install Gazebo and

related packages can be found in Appendix A. Figure 18 shows a basic Gazebo window.

A list of components of Gazebo required to create a robot simulation:

1. World files (.world): The world description file contains all the elements in a

simulation such as robots, lights, sensors and static objects. It is formatted using

SDF (Simulation Description Format) and has a .world extension. The Gazebo

server (gzserver) reads this file to generate and populate a world [52]. In this case,

the robot along with its sensors is created as a model file and during run

45

time, “~/spawn_sdf_model : gazebo_msgs/SpawnModel” service is used to spawn

the model in the Gazebo world.

Figure 18: Gazebo window

2. Model files (.sdf): A model file also used the SDF format but contains only a

single model that starts with a <model> tag and ends with a </model> tag. This

facilitates model reuse and simplifies world files. Once a model file is created, it

can be included in a world file using the following SDF syntax:

<include>

<uri>model://model_file_name</uri>

</include>

3. Environment variables: Gazebo uses environment variables to locate files and set

up communication between the server and clients. Default values are compiled in

and they work for most cases. Some of the variables are as follows:

46

GAZEBO_MODEL_PATH, GAZEBO_RESOURCE_PATH,

GAZEBO_MASTER_URI, GAZEBO_PLUGIN_PATH,

GAZEBO_MODEL_DATABASE_URI. In this case, the model path variable is

set to the workspace as explained in Appendix A.

4. Gazebo server: The server is the workhorse of Gazebo. It parses a world file given

on command line and then simulates the world using a physics and sensor engine.

However, the server does not include any graphics. It is started using gzserver

filename.world command.

5. Graphical client: The graphical client connects to a running gzserver and

visualizes the elements. It provides options to modify a running simulation. It is

started using the gzclient command. The server and the client can be started using

a single command gazebo filename.world

6. Plugins: Plugins provide a convenient way to interface with Gazebo. They can be

specified on the command line or in the world/model file. Plugins specified on the

command line are loaded before those specified in the world/model file. Some of

the plugins used for this work are related to sensors and motors to drive the robot.

These are specified in the model file. Other plugin to spawn the robot in Gazebo

is issued on the command line. These plugins are from the gazebo_ros package. A

set of ROS packages called the gazebo_ros_pkgs provide wrappers around

standalone Gazebo to achieve integration with ROS. The details of this package

are found in the weblink:

http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros

47

 SDF is an XML format that describes objects and environments for robot

simulators, visualization, and control [53]. The SDF specification can be found in this

weblink: http://sdformat.org/spec

 As discussed in the earlier sections, a robot model with six LIDAR sensors must

be created on Gazebo to verify the framework. A robot using iRobot Create® as the base,

akin to a TurtleBot v1 is created. Instead of the Microsoft Kinect sensor, this model has

LIDAR sensors, three of them mounted on the top plate that look for surface obstacles

and three others mounted on the mid plate at a tilt angle of 45 degrees to scan the terrain

as shown in Figure 19.

Figure 19: Robot model

4.1.1 Creation of Robot Model Using SDF

An SDF file is a collection of elements that describe the model so that the Gazebo

server can generate the model. These models can range from simple static objects to

complex robots. The elements are enclosed in a <model> tag and are described as follows

[54]:

1. Link: It contains the physical properties of a part of the model. Normally parts

with movable joints are considered as different links. Parts without movable joints

are grouped under same link.

48

Collision: A collision element encapsulates a geometry that is used to collision

checking. This can be a simple shape (which is preferred), or a triangle mesh

(which consumes greater resources). A link may contain many collision elements.

Visual: This is used to visualize a part of the link. This element need not be

present.

Inertial: It describes the dynamic properties of the link such as mass, rotational

inertia matrix.

Sensor: This element collects data from the world.

2. Joint: It connects two links and one of the link is the parent link and the other

child link. Other parameters such as joint limits and axis of rotation are mentioned

in this element.

3. Plugin: A plugin is a third party shared library to control the model.

In this case, nine links are defined; one for the base itself (including chassis), one

for each wheel (left and right) and one for each sensor (total of six). Each sensor link has

the range and angular resolution, min and max values defined. The type of noise modeled

by the sensor is Gaussian noise and the standard deviation of noise can be varied in the

<noise> tag in the sensor link. The sensor link also has a plugin element that uses a

library called the “libgazebo_ros_laser.so” to publish the sensor readings via ROS. A

unique topic name is defined for every sensor and the reason for this is detailed in Section

4.3. A differential drive controller plugin called the “libgazebo_ros_diff_drive.so”

controls the wheels with the help of topics such as cmd_vel, odom, base_footprint.

49

 All of the above mentioned elements are put together in an model.sdf file (here,

IRobotCreateHokuyo.sdf). This is placed in the ROS workspace (catkin_ws) as detailed

in Appendix B and is launched using the “ROS Service Call Spawn Method”. [55]

4.1.2 Creation of Robot’s Environment Using Heightmap

Gazebo visualization has a flat surface by default, for the robot to navigate. It is

essential to test the robot on an uneven terrain and check the framework’s behavior. In

this case, a heightmap is used to generate a non-flat terrain in Gazebo. [56]

A heightmap is essentially an extrusion of 2D grayscale image to produce a 3D

surface. Black color (hex: #000000) represents the lowest point in the plane whereas,

white color (hex: #ffffff) represents the highest. The grayscale in between these two

colors represents relative heights on the 3D terrain.

Figure 20 shows the heightmap used for this work and its resultant 3D terrain is in

Figure 21. Gazebo requires the heightmap image to be a square image and has (2n)+1

pixels, for instance, 129x129, 257x257 etc. Each pixel color represents a height value in

the terrain. The heightmap image is a .png file without alpha channel.

Figure 20: Heightmap grayscale image

50

Figure 21: Resultant 3D extrusion

 A .world file has to be created to load the heightmap on Gazebo. In this case, a

model.world file is created that has a single link with a collision element and a visual

element. Under a <heightmap> tag, the location of heightmap.png and the length, width

and height of the surface is specified. In this case, it is 200mx200mx10m. This means

that the highest point is 10m while the lowest being 0m. The visual element holds the

various textures of the ground such as grass and dirt, and the blending indices. A lunch

file is also created that opens up the model.world file using the roslaunch command as

explained in Appendix B.

4.2 ROS

Robot Operating System (ROS) is a collection of libraries that support robot

software development. It provides hardware abstraction, device drivers and message-

passing mechanisms that enable robot application frameworks.

The procedure to install ROS is explained in Appendix A. A ROS workspace

must be set up to install user programs. The procedure to set up the workspace (called the

catkin) is also explained in Appendix A. The sequence of steps to install the custom

fusion framework related packages are detailed in Appendix B. Every package in a catkin

51

workspace consists of a source folder that has the source files, a CMakeLists.txt file and a

package.xml file. The dependencies to build and run the package are listed in these two

files. In this case, the package named “gazeboros” that consists of robot’s world, as

explained in the previous section, has the following build and run time dependencies:

<build_depend>gazebo_msgs</build_depend>

<build_depend>gazebo_plugins</build_depend>

<build_depend>gazebo_ros</build_depend>

<build_depend>gazebo_ros_control</build_depend>

<build_depend>roscpp</build_depend>

<build_depend>rospy</build_depend>

<build_depend>std_msgs</build_depend>

<run_depend>gazebo_msgs</run_depend>

<run_depend>gazebo_plugins</run_depend>

<run_depend>gazebo_ros</run_depend>

<run_depend>gazebo_ros_control</run_depend>

<run_depend>roscpp</run_depend>

<run_depend>rospy</run_depend>

<run_depend>std_msgs</run_depend>

 The package named “lab2” that consists of actual fusion framework has the

following dependencies: nav_msgs, sensor_msgs, laser_geometry, geometry_msgs, tf,

roscpp, rospy, std_msgs, genmsg.

Since catkin should compile the framework code and create and executable, the

details of the executable have to be mentioned in the CMakeLists.txt file.

52

The following are terminologies used to describe the working principle of ROS

framework [57]:

1. Node: An executable that uses ROS to communicate with other nodes.

2. Master: Provides naming and registration services to rest of the nodes in ROS,

facilitating communication. ROS master is started by the command “roscore”.

3. Topic: Nodes can publish messages to a topic or can subscribe to a topic to

receive messages.

4. Message: ROS data type used for publishing and subscribing to a topic. Some of

the message types used for this work are mentioned in Appendix D.

4.3 ROS Gazebo Interaction

The two main nodes, in this simulation running on Gazebo are “framework” and

“gazebo”. Every sensor publishes data onto a unique topic specified in the

IRobotCreate.sdf model file at a specified rate of 4Hz. The published data is in the form

of ROS message type specified in Appendix D. The ROS computation graph is shown in

Figure 22. It depicts the interaction of ROS and Gazebo during run time. All of the nodes

run in parallel.

53

Figure 22: rqt graph

CHAPTER 5: SIMULATION

When the robot starts navigating, the state of the cells in the terrain are initially

“unknown” (as shown in Figure 23) to the robot because there is no a priori information

given to the robot. The framework is tested on a flat ground with surface obstacles as

well as uneven ground with surface obstacles.

Figure 23: Terrain cells

 On the flat ground, the frameworks ability to recognize presence of surface

obstacle in a cell under consideration, irrespective of the state of the terrain is tested. The

robot successfully navigates the flat ground with surface obstacles and the simulation at

some of the key time instances are shown in Figure 24.

55

Figure 24: Robot navigating surface obstacles on a flat ground

 On an uneven terrain, the robot must be able to detect terrain features along with

surface obstacles. The irregular terrain created using heightmap as described in Section

4.1.2 is used to test the robot. The following are some of the scenarios encountered by the

robot while navigating the terrain:

5.1 Non-Navigable Down Ramp

As marked in Figure 25, the robot detects a steep down ramp in the latter half of

the cell. So, the cell is only partially flat and is not navigable.

56

Figure 25: Non-navigable down ramp detection

57

5.2 Flat Surface with No Obstacle

In Figure 26, although the LIDAR picks up the presence of a surface obstacle in

the near vicinity, the framework decides that the next cell in the robot’s path is flat and

free of obstacles.

Figure 26: Robot navigating a flat surface with no obstacle

Figure 27 shows another scenario where the robot finds a flat surface without

obstacles. It can be observed that the track-to-track fusion result is different from that in

Figure 26, while they are both in the range for classification as “no obstacle”.

58

5.3 Uncertain Mode

When the robot enters an uncertain mode, the framework prompts for user

assistance. As shown in Figure 28, the user does not respond within a preset time period.

So, the robot takes sensor readings again to go through the fusion process. This time, the

framework acquires higher confidence and estimates the state of the cell accurately as

shown in Figure 28. In the second case, as shown in Figure 29, the user does not input a

valid command. So, the framework prompts for a valid command again.

Figure 27: Robot navigating a flat surface

59

Figure 28: Uncertain mode - no user input

Figure 29: Uncertain mode - invalid input

60

5.4 Surface Obstacle Detection

In this case, the robot recognizes the surface obstacle in the next cell. The robot is

closer to the obstacle, so the terrain sensor also detects the obstacle as an up ramp

towards the end of the cell as shown in Figure 30.

5.5 Navigable Down Ramp

Figure 31 explains this case where the robot encounters a navigable down ramp.

A part of the cell is flat and then it slopes down as determined by the framework.

Figure 30: Surface obstacle detection

61

Figure 31: Navigable down ramp

5.6 Non-Navigable Up Ramp

Figure 32 shows a scenario where the robot encounters a non-navigable up ramp.

The framework’s estimate is also marked.

Figure 32: Non-navigable up ramp

CHAPTER 6: CONCLUSION AND FUTURE WORK

The simulation results discussed in Chapter 5, show that the framework can

analyze LIDAR data to determine the state of cells in a terrain, aiding in autonomous

robot navigation. The framework efficiently uses fusion algorithms (Kalman filter, track-

to-track) to fuse the sensor signals and determine various features of the environment

under consideration. The combination of methods used in the framework and the modular

approach simplifies any customization efforts. It also makes the framework scalable to

add more features, decisions and action sets. The framework works for various scenarios

encountered in robot navigation as discussed in Chapter 5. It also accounts for human

interaction while switching to autonomous mode if there is no response from the user.

The framework is implemented on popular opensource platforms such as Gazebo and

ROS.

There is a scope to develop the framework further by adding several other types

of sensors like camera, IMUs, GPS and so on. Although fusion of camera and ranging

technology (RADAR, LIDAR etc.) is a well explored area, it may be useful to include a

variety of sensors depending on the application. A real-time decision evaluation would

make the framework more robust and that data can be used to train the framework if such

methods are considered. It would be useful to further classify the uncertain phase for the

cause, for instance, sensor error, imbalance in weights in the fusion algorithm and so on.

Robust fusion frameworks form the backbone of future autonomous system development.

63

REFERENCES

[1] S. S. Özer Çiftçioğlu, "Data Sensor Fusion for Autonomous Robotics," in Serial

and Parallel Robot Manipulators - Kinematics, Dynamics, Control and

Optimization, InTech, DOI: 10.5772/33139, 2012.

[2] R. Joshi and A. C. Sanderson, "Multisensor fusion: A minimal representation

framework," World Scientific, vol. 11, 1999.

[3] R. C. Luo and C. C. Lai, "Multisensor fusion-based concurrent environment

mapping and moving object detection for intelligent service robotics," IEEE

Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4043-4051, 2014.

[4] C. Axenie and J. Conradt, "Cortically inspired sensor fusion network for mobile

robot egomotion estimation," Robotics and Autonomous Systems, vol. 71, pp. 69-

82, 2015.

[5] F. Matía and Jiménez, "A. Multisensor fusion: an autonomous mobile robot,"

Journal of Intelligent and robotic systems, vol. 22, no. 2, pp. 129-141, 1998.

[6] B. Khaleghi, A. Khamis, F. O. Karray and S. N. Razavi, "Multisensor data fusion:

A review of the state-of-the-art," Information Fusion, vol. 14, no. 1, pp. 28-44,

2013.

[7] A. Dallil, M. Oussalah and A. Ouldali, "Sensor fusion and target tracking using

evidential data association," IEEE sensors journal, vol. 13, no. 1, pp. 285-293,

2013.

[8] Y. Bar-Shalom, P. K. Willett and X. Tian, Tracking and data fusion, YBS

publishing, 2011.

[9] T. P. Banerjee and S. Das, "Multi-sensor data fusion using support vector machine

for motor fault detection," Information Sciences, vol. 217, pp. 96-107, 2012.

[10] A. P. James and B. V. Dasarathy, "Medical image fusion: A survey of the state of

the art," Information Fusion, vol. 19, pp. 4-19, 2014.

[11] N. E. El Faouzi, H. Leung and A. Kurian, "Data fusion in intelligent transportation

systems: Progress and challenges–A survey," Information Fusion, vol. 12, no. 1, pp.

4-10, 2011.

64

[12] H. Cho, Y. W. Seo, B. V. Kumar and R. R. Rajkumar, "A multi-sensor fusion

system for moving object detection and tracking in urban driving environments," in

IEEE International Conference on Robotics and Automation (ICRA), pp. 1836-

1843, 2014.

[13] E. Cardarelli, L. Sabattini, C. Secchi and C. Fantuzzi, "Multisensor data fusion for

obstacle detection in automated factory logistics," in 2014 IEEE International

Conference on Intelligent Computer Communication and Processing (ICCP), pp.

221-226.

[14] W. Wan, F. Lu, Z. Wu and K. Harada, "Teaching robots to do object assembly

using multi-modal 3d vision," in arXiv preprint arXiv:1601.06473, 2016.

[15] J. Zhang, C. Song, Y. Hu and B. Yu, "Improving robustness of robotic grasping by

fusing multi-sensor," in IEEE Conference on Multisensor Fusion and Integration

for Intelligent Systems (MFI), pp. 126-131, 2012.

[16] J. Conrad, "ZapataBot - An Autonomous Robotic ATV," [Online]. Available:

https://webpages.uncc.edu/~jmconrad/zapatabot.html.

[17] J. Dong, D. Zhuang, Y. Huang and J. Fu, "Advances in Multi-Sensor Data Fusion:

Algorithms and Applications," Sensors, vol. 9, no. 10, pp. 7771-7784, 2009.

[18] B. Khaleghi et al., "Multisensor data fusion: A review of the state-of-the-art,"

Informat. Fusion, p. doi: 10.1016/j.inffus.2011.08.001, 2011.

[19] R. C. Luo and M. G. Kay, "Multisensor integration and fusion in intelligent

systems," in IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 901-931,

1989.

[20] N. Xiong and P. Svensson, "Multi-sensor management for information fusion:

issues and approaches," Information fusion, vol. 2, no. 3, pp. 163-186, 2002.

[21] H. B. Mitchell, "Multi-sensor data fusion: an introduction," Springer Science &

Business Media, 2007.

[22] B. Chandrasekaran, S. Gangadhar and J. M. Conrad, "A Survey of Multisensor

Fusion Techniques, Architectures and Methodologies," in IEEE SoutheastCon

2017, Charlotte, NC, 2017.

[23] H. F. Durrant-Whyte, "Sensor models and multisensor integration," The

international journal of robotics research, vol. 7, no. 6, pp. 97-113, 1988.

65

[24] J. R. Raol, "Multi-Sensor Data Fusion with MATLAB®," CRC Press, 2009.

[25] D. L. Hall and J. Llinas, "An introduction to multisensor data fusion," Proceedings

of the IEEE, vol. 85, no. 1, pp. 6-23, 1997.

[26] W. Elmenreich, "An introduction to sensor fusion," Vienna University of

Technology, Austria, 2002.

[27] M. Markin, C. Harris, M. Bernhardt, J. Austin, M. Bedworth, P. Greenway, R.

Johnston, A. Little and D. Lowe., "Technology foresight on data fusion and data

processing," Publication, The Royal Aeronautical Society, 1997.

[28] B. V. Dasarathy, "Decision fusion," IEEE Computer Society Press, Los Alamitos,

CA, 1994.

[29] O'Brien, J. and M. D. Bedworth, "The omnibus model: A new architecture for data

fusion," in Proceedings of the 2nd International Conference on Information Fusion

(FUSION'99), Helsinki, Finnland, July 1999.

[30] J. R. Boyd, "A discourse on winning and losing," Maxwell Air Force Base, AL: Air

University. Library Document No. MU, 43947, 79, 1987.

[31] R. Alami, R. Chatila, S. Fleury, M. Ghallab and F. Ingrand, "An architecture for

autonomy," International Journal of Robotics Research, vol. 17, no. 4, pp. 315-337,

April 1998.

[32] F. Castanedo, "A review of data fusion techniques," The Scientific World Journal,

2013.

[33] M. A. Abidi and R. C. Gonzalez, Data fusion in robotics and machine intelligence,

Academic Press Professional, Inc, 1992.

[34] S. Jingwei, Z. Yongjie, Z. Haiyun, Z. Tao, W. Leigang, R. Wei and L. Huifeng, "A

multi-MEMS sensors information fusion algorithm," in The 26th Chinese Control

and Decision Conference (2014 CCDC), pp. 4675-4680, IEEE, 2014.

[35] Y. Wang and S. Goodman, "Data Fusion with Neural Networks," in International

Conference on Systems Man and Cybernetics IEEE 1994, vol. 1, pp. 640-645, Oct

1994.

66

[36] M. Kok., "Probabilistic modeling for sensor fusion with inertial measurements,"

Linköping studies in science and technology, Dissertations.No. 1814, ISBN 978-91-

7685-621-5, 2016.

[37] N. Kovvali, C. Prior, K. Cizek, M. Galik, A. Diaz, E. Forzani and R. Tsui, "Least-

squares based feature extraction and sensor fusion for explosive detection," in IEEE

International Conference on Acoustics, Speech and Signal Processing Proceedings.

ICASSP, pp. 2918-2921, 2010.

[38] G. D. Hager, S. P. Engelson and S. Atiya, "On comparing statistical and set-based

methods in sensor data fusion," in Proceedings IEEE International Conference on

Robotics and Automation, pp.352-358, vol.2, Atlanta, GA, 1993.

[39] H. Chen, "Research on multi-sensor data fusion technology based on PSO-RBF

neural network," in Advanced Information Technology, Electronic and Automation

Control Conference (IAEAC), Dec 2015.

[40] Y. H. Liang and W. M. Tian, "Multi-sensor Fusion Approach for Fire Alarm Using

BP Neural Network," in International Conference on Intelligent Networking and

Collaborative Systems (INCoS), pp. 99-102, Ostrawva, 2016.

[41] Q. Liu, X. Wang and N. S. V. Rao, "Artificial neural networks for estimation and

fusion in long-haul sensor networks," in 18th International Conference on

Information Fusion (Fusion), pp. 460-467, Washington, DC, 2015.

[42] M. Munz, K. Dietmayer and M. Mählisch, "Generalized fusion of heterogeneous

sensor measurements for multi target tracking," in 13th Conference on Information

Fusion (FUSION), pp. 1-8, 2010.

[43] B. Siciliano and O. Khatib, (Eds.). Springer handbook of robotics. Springer Science

& Business Media, 2008.

[44] H. Wu, M. Siegel, R. Stiefelhagen and J. Yang, "Sensor fusion using Dempster-

Shafer theory [for context-aware HCI]," in Proceedings of the 19th IEEE In

Instumentation and Measurement Technology Conference. IMTC/2002. vol. 1, pp.

7-12, 2002.

[45] S. K. D. Challa, "Bayesian and dempster-shafer fusion," Sadhana, 29(2), 145-174,

2004.

[46] P. Dempster, "A Generalization of Bayesian Inference," Journal of the Royal

Statistical Society B, vol. 30, no. 2, pp. 205–247, 1968.

67

[47] A. Shafer, "Mathematical Theory of Evidence," Princeton University Press,

Princeton, NJ, USA, 1976.

[48] B. Chandrasekaran and J. M. Conrad, "Human-robot collaboration: A survey," in

IEEE SoutheastCon 2015, pp. 1-8, 2015.

[49] B. Chandrasekaran and J. M. Conrad, "Sensor fusion using a selective sensor

framework to achieve decision and task execution," in IEEE SoutheastCon 2016,

2016.

[50] B. Chandrasekaran and J. M. Conrad, "Complete Coverage Planning: Achieving

Human Interaction and Maximum Coverage During an Autonomous Robotic

Vehicle Navigation of an Unknown Terrain," in AAAI Workshops, 2017.

[51] Z. Rubo, G. Guochang and Z. Guoyin, "AUV obstacle-avoidance based on

information fusion of multi-sensors," in IEEE International Conference on

Intelligent Processing Systems, 1997.

[52] "Gazebo Components," Open Source Robotics Foundation, 2014. [Online].

Available: http://gazebosim.org/tutorials?tut=components.

[53] [Online]. Available: http://sdformat.org/.

[54] "Gazebo: Make a model," [Online]. Available:

http://gazebosim.org/tutorials?tut=build_model.

[55] [Online]. Available: http://sauravag.com/category/tutorial/.

[56] [Online]. Available: http://playerstage.sourceforge.net/doc/Gazebo-manual-svn-

html/tutorial_terrain.html.

[57] [Online]. Available: http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes.

68

APPENDIX A: SIMULATION SETUP FOR TESTING THE FRAMEWORK

ROS Kinetic Kame distribution requires the Ubuntu Xenial (16.04) platform to

run on. This version of ROS interfaces with Gazebo v 7.1.

A.1 ROS Installation

The installation guide and documentation for the “Desktop-Full Install”

configuration can be found at http://wiki.ros.org/kinetic/Installation/Ubuntu. The

commands are as follows:

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key

0xB01FA116

$ sudo apt-get update

$ sudo apt-get install ros-kinetic-desktop-full

$ sudo rosdep init

$ rosdep update

$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

$ sudo apt-get install python-rosinstall

A.2 Gazebo Installation

The installation guide for Gazebo 7 can be found at:

http://gazebosim.org/tutorials?tut=install_ubuntu&cat=install

69

$ sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable

`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

$ wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

$ sudo apt-get update

$ sudo apt-get install gazebo7

$ sudo apt-get install libgazebo7-dev

The ROS package to connect Gazebo and ROS is present in “gazebo_ros_pkgs”. The

installation instructions can be found at

http://gazebosim.org/tutorials?tut=ros_installing&cat=connect_ros.

The required packages can be installed with the following command:

sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-ros-control

A.3 CATKIN Workspace Setup

Catkin is used to build packages for ROS. A set of detailed instructions to set up

the Catkin workspace can be found at http://wiki.ros.org/ROS/Tutorials. The following

commands will set up the Catkin workspace in /home/username folder.

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

$ cd ~/catkin_ws/

$ catkin_make

$ cd

$ gedit ~/.bashrc

70

The following commands are to be saved in the .bashrc file:

source /opt/ros/kinetic/setup.bash

source ~/catkin_ws/devel/setup.bash

 Additional ROS packages specific for navigation, mapping, visualization and

robot control can be installed using the following command: sudo apt-get install pkgname

A list of some of the popular ROS packages:

ros-distro-navigation

ros-distro-slam-gmapping

ros-distro-rviz

ros-distro-ros-control

To understand the basic working of a ROS node, the following tutorial package will be

useful: ros-distro-ros-tutorials

71

APPENDIX B: FRAMEWORK CODE AND GAZEBO SIMULATION

There are three main components required for the sensor fusion framework

simulation. One, the robot itself, in this case a TurtleBot with 6 LIDARs. The description

of the robot along with all its sensors is present in IRobotCreateHokuyo.sdf file. A robot

has to navigate an irregular, unknown terrain. The description of the robot’s world and

terrain is in model.world file. It is launched by the custom_heightmap.launch file in

Gazebo via ROS. That forms the second component. The third component is the sensor

fusion framework itself. The source code for the framework is present in lab2/src folder

in framework.cpp. Other dependencies are found in the same folder.

B.1 Basic Package Creation in ROS

ROS Catkin workspace has the following directory structure:

Figure 33: Catkin workspace directory structure

A new package is created in the ~/catkin_ws/src folder. Detailed procedure to

create a package is explained in

72

http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage. The following commands will

create the gazeboros package for making the robot’s world:

$ cd ~/catkin_ws/src

$ catkin_create_pkg gazeboros gazebo_msgs gazebo_plugins gazebo_ros

gazebo_ros_control std_msgs rospy roscpp

 The above command creates a gazeboros folder in the catkin_ws/src directory that

contains an include folder, a src folder, a Package.xml file and a CMakeLists.txt file.

Package.xml contains the meta information whereas CmakeLists.txt contains the build

information for the package.

Figure 34: gazeboros package file structure

73

Gazeboros package intends to include the information of the terrain that the robot

navigates. The gazeboros package created by the catkin_create_pkg command does not

hold this information. So, relevant files are included in the gazeboros package as shown

in the file structure above. A world folder and a lunch folder is created and model.world

and custom_heightmap.launch files are added respectively. A heightmap.png is placed in

the materials/textures sub folder. model.sdf and model.config files are also added to the

gazeboros folder. The Package.xml and CmakeLists.txt files are modified as required to

include these changes. The following commands will build the new gazeboros package in

the Catkin workspace:

$ cd ~/catkin_ws

$ catkin_make install

 The above mentioned procedure is repeated to install other parts of the sensor

fusion framework package.

B.2 Package Directory

The directory structure for the entire framework in the catkin workspace is as

shown below:

Figure 35: Package list

/ create – package that holds information about the robot model.

74

/lab2 – package that contains the entire sensor fusion framework code.

/gazeboros – package that contains files to launch a terrain in gazebo for the robot to

navigate.

The file structure for some of the key packages of the framework:

1. create

Figure 36: Robot package

2. lab2

Figure 37: Framework package

75

APPENDIX C: USER GUIDE

To run the simulation,

1. Initiate roscore in a terminal with the following command:

$ roscore

2. In another terminal, specify the path for the Gazebo files related to the robot

environment model using the following command:

$ export GAZEBO_MODEL_PATH=/home/username/catkin_ws/src/

Then invoke Gazebo through roslaunch using the following command:

$ roslaunch gazeboros custom_heightmap.launch

This should launch Gazebo with the custom terrain.

3. In a third terminal, bring up the robot model at a specific coordinate position on the

custom terrain with the following command:

$ rosrun gazebo_ros spawn_model -file

/home/username/catkin_ws/src/create/IRobotCreateHokuyo.sdf -sdf -x 0 -y 5 -z 5 -model

create

If coordinate is not mentioned, Gazebo will spawn the model at origin. The z coordinate

must be mentioned so that the robot is on the custom terrain surface.

4. In the above terminal, run the framework package using rosrun to examine the sensor

fusion framework.

$ rosrun lab2 framework

Note: “username” in the commands should be replaced with the actual user name of the

machine.

76

APPENDIX D: ROS MESSAGES

D.1 Laser Scan Message for LIDAR Data

sensor_msgs/LaserScan.msg

Single scan from a planar laser range-finder

If you have another ranging device with different behavior (e.g. a sonar

array), please find or create a different message, since applications

will make fairly laser-specific assumptions about this data

Header header # timestamp in the header is the acquisition time of

 # the first ray in the scan.

 #

 # in frame frame_id, angles are measured around

 # the positive Z axis (counterclockwise, if Z is up)

 # with zero angle being forward along the x axis

float32 angle_min # start angle of the scan [rad]

float32 angle_max # end angle of the scan [rad]

float32 angle_increment # angular distance between measurements [rad]

float32 time_increment # time between measurements [seconds] - if your

 # scanner is moving, this will be used in interpolating

 # position of 3d points

float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]

float32 range_max # maximum range value [m]

float32[] ranges # range data [m] (Note: values < range_min or >

range_max should be discarded)

float32[] intensities # intensity data [device-specific units]. If your

 # device does not provide intensities, please leave

 # the array empty.

77

std_msgs/Header.msg

D.2 Command Velocity for the Robot

geometry_msgs/Twist.msg

geometry_msgs/Vector3.msg

Standard metadata for higher-level stamped data types.

This is generally used to communicate timestamped data

in a particular coordinate frame.

sequence ID: consecutively increasing ID

uint32 seq

Two-integer timestamp that is expressed as:

* stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called

'secs')

* stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called

'nsecs')

time-handling sugar is provided by the client library

time stamp

Frame this data is associated with

0: no frame

1: global frame

string frame_id

This expresses velocity in free space broken into its linear and angular parts.

Vector3 linear

Vector3 angular

This represents a vector in free space.

It is only meant to represent a direction. Therefore, it does not

make sense to apply a translation to it (e.g., when applying a

generic rigid transformation to a Vector3, tf2 will only apply the

rotation). If you want your data to be translatable too, use the

geometry_msgs/Point message instead.

float64 x

float64 y

float64 z

78

D.3 Odometry Information of the Robot

nav_msgs/Odometry.msg

geometry_msgs/PoseWithCovariance.msg

geometry_msgs/Pose.msg

geometry_msgs/Point.msg

This represents an estimate of a position and velocity in free space.

The pose in this message should be specified in the coordinate frame given by

header.frame_id.

The twist in this message should be specified in the coordinate frame given by the

child_frame_id

Header header

string child_frame_id

geometry_msgs/PoseWithCovariance pose

geometry_msgs/TwistWithCovariance twist

This represents a pose in free space with uncertainty.

Pose pose

Row-major representation of the 6x6 covariance matrix

The orientation parameters use a fixed-axis representation.

In order, the parameters are:

(x, y, z, rotation about X axis, rotation about Y axis, rotation about Z axis)

float64[36] covariance

A representation of pose in free space, composed of position and orientation.

Point position

Quaternion orientation

This contains the position of a point in free space

float64 x

float64 y

float64 z

79

geometry_msgs/Quaternion.msg

geometry_msgs/TwistWithCovariance.msg

D.4 Transformation Configuration

geometry_msgs/Transformation.msg

This represents an orientation in free space in quaternion form.

float64 x

float64 y

float64 z

float64 w

This expresses velocity in free space with uncertainty.

Twist twist

Row-major representation of the 6x6 covariance matrix

The orientation parameters use a fixed-axis representation.

In order, the parameters are:

(x, y, z, rotation about X axis, rotation about Y axis, rotation about Z axis)

float64[36] covariance

This represents the transform between two coordinate frames in free space.

Vector3 translation

Quaternion rotation

80

APPENDIX E: TRACK-TO-TRACK FUSION TEST RUN

Obstacl

e sensor

(r1)

Obstac

le

sensor

(r2)

Terrai

n

senso

r (r1)

Terrai

n

sensor

(r2)

Track

fusion w

n=1

Track

fusion w

n=10

Track

fusion w

n=100

Track

fusion w

n=1000

70 71 0.5 0.492 0.717014 0.717014 0.717014 0.717014

70 70.3 0.58 0.57 0.603262 0.603262 0.603262 0.603262

70 72 0.76 0.771 0.867614 0.867614 0.867614 0.867614

70 75 0.91 0.922 0.894381 0.894381 0.894381 0.894381

70 70.8 1 1.014 0.824363 0.824363 0.824363 0.824363

70 70.99 0.6 0.595 1.052728 1.052728 1.052728 1.052728

70 68.4 0.5 0.499 0.063133 0.063133 0.063133 0.063133

70 70 0.5 0.5 -0.694836 -0.694836 -0.694836 -0.69483

70 70 0.5 0.501 -1.441198 -1.441198 -1.441198 -1.44119

70 70 0.5 0.48 -1.831603 -1.831603 -1.831603 -1.83160

70 74 0.5 0.517 0.667229 0.667229 0.667229 0.667229

70 65.89 0.7 0.686 1.373856 1.373856 1.373856 1.373856

70 73 0.88 0.893 1.337094 1.337094 1.337094 1.337094

70 72.86 1.2 1.219 2.149016 2.149016 2.149016 2.149016

70 70 1.5 1.483 3.336988 3.336988 3.336988 3.336988

71 70.5 0.5 0.504 0.706144 0.706144 0.706144 0.706144

72 70 0.58 0.573 0.680001 0.680001 0.680001 0.680001

70 70 0.76 0.758 0.774396 0.774396 0.774396 0.774396

73.8 71.54 0.91 0.917 0.774373 0.774373 0.774373 0.774373

75 73.44 1 1.01 0.713521 0.713521 0.713521 0.713521

71 70 0.6 0.605 8.741328 8.741328 8.741328 8.741328

72 70 0.5 0.488 7.848506 7.848506 7.848506 7.848506

70 70 0.5 0.499 7.020599 7.020599 7.020599 7.020599

73.8 70.21 0.5 0.485 6.400338 6.400338 6.400338 6.400338

75 72.09 0.5 0.501 5.828516 5.828516 5.828516 5.828516

71 70 0.5 0.501 1.476156 1.476156 1.476156 1.476156

72 72 0.7 0.699 1.98412 1.98412 1.98412 1.98412

70 70 0.88 0.886 2.083873 2.083873 2.083873 2.083873

73.8 72.9 1.2 1.185 3.069411 3.069411 3.069411 3.069411

75 74.44 1.5 1.517 3.911797 3.911797 3.911797 3.911797

70 74.01 0.5 0.513 0.507794 0.507794 0.507794 0.507794

3.4 3.41 0.58 0.578 0.025165 0.025165 0.025165 0.025165

70 70.02 0.76 0.747 0.717631 0.717631 0.717631 0.717631

9 10 0.91 0.914 0.179159 0.179159 0.179159 0.179159

70 73.08 1 0.989 0.635053 0.635053 0.635053 0.635053

70 70 0.6 0.58 0.313611 0.313611 0.313611 0.313611

3.4 3.38 0.5 0.52 -1.387129 -1.387129 -1.387129 -1.38712

81

70 71 0.5 0.509 -1.621879 -1.621879 -1.621879 -1.62187

9 9.01 0.5 0.501 -2.776353 -2.776353 -2.776353 -2.77635

70 74 0.5 0.501 -2.875135 -2.875135 -2.875135 -2.87513

70 69.87 0.5 0.509 0.584901 0.584901 0.584901 0.584901

3.4 3.391 0.7 0.697 1.649815 1.649815 1.649815 1.649815

70 72.34 0.88 0.887 1.927661 1.927661 1.927661 1.927661

9 8.99 1.2 1.202 3.712918 3.712918 3.712918 3.712918

70 72 1.5 1.495 5.749237 5.749237 5.749237 5.749237

2 2.8 0.5 0.511 0.573909 0.573909 0.573909 0.573909

70 70 0.58 0.565 0.335452 0.335452 0.335452 0.335452

70 69.5 0.76 0.769 0.645258 0.645258 0.645258 0.645258

70 72 0.91 0.898 0.645131 0.645131 0.645131 0.645131

3.4 3.6 1 1.013 0.573262 0.573262 0.573262 0.573262

2 1.99 0.6 0.598 2.883175 2.883175 2.883175 2.883175

70 70 0.5 0.514 0.787328 0.787328 0.787328 0.787328

70 70.7 0.5 0.48 -0.761037 -0.761037 -0.761037 -0.76103

70 70.7 0.5 0.518 -2.30888 -2.30888 -2.30888 -2.30888

3.4 3.4 0.5 0.519 -3.309816 -3.309816 -3.309816 -3.30981

2 2.01 0.5 0.502 -0.746924 -0.746924 -0.746924 -0.74692

70 70 0.7 0.698 0.253327 0.253327 0.253327 0.253327

70 70.36 0.88 0.878 0.562955 0.562955 0.562955 0.562955

70 72.41 1.2 1.187 2.317433 2.317433 2.317433 2.317433

3.4 3.05 1.5 1.504 4.412834 4.412834 4.412834 4.412834

70 70 0.5 0.495 0.733685 0.644195 -0.250708 -9.19974

0.2 0.1999 0.58 0.56 0.559998 0.477335 -0.349291 -8.61555

0.3 0.3054 0.76 0.741 0.869433 0.785001 -0.059318 -8.50250

70 75 0.91 0.912 0.836999 0.747509 -0.147395 -9.09642

70 72 1 1.004 0.733773 0.644283 -0.25062 -9.19965

70 69.28 0.6 0.591 2.63059 2.592554 2.212192 -1.59142

0.2 0.205 0.5 0.503 0.599365 0.568157 0.256077 -2.86472

0.3 0.4 0.5 0.504 -0.948944 -0.981912 -1.311598 -4.60846

70 70.33 0.5 0.48 -2.529881 -2.567917 -2.948279 -6.75189

70 73.22 0.5 0.483 -3.561908 -3.599944 -3.980306 -7.78392

70 71 0.5 0.484 -0.201502 -0.240792 -0.633689 -4.56266

0.2 0.28 0.7 0.709 0.863591 0.831137 0.506594 -2.73883

0.3 0.28 0.88 0.881 1.172959 1.138725 0.796387 -2.62699

70 74.05 1.2 1.212 2.894978 2.855688 2.462791 -1.46618

70 70.69 1.5 1.491 4.958947 4.919658 4.52676 0.597784

70 70 0.5 0.517 -15.03566 -15.52219 -20.38747 -69.0403

70 73.49 0.58 0.582 -15.24214 -15.72866 -20.59392 -69.2464

0 0.09 0.76 0.757 -14.89981 -15.38001 -20.18199 -68.2017

70 70 0.91 0.915 -14.93252 -15.41905 -20.28430 -68.9367

71 72.06 1 1.011 -15.03616 -15.52268 -20.38796 -69.0407

70 65 0.6 0.589 0.959364 0.9585 0.949859 0.86345

82

70 68 0.5 0.483 -1.106415 -1.107279 -1.11592 -1.20232

0 0.2 0.5 0.504 -2.621958 -2.616322 -2.559962 -1.99636

70 73.91 0.5 0.49 -4.204949 -4.205813 -4.214454 -4.30086

71 72.18 0.5 0.48 -5.238415 -5.239279 -5.24792 -5.33432

70 69.19 0.5 0.503 -0.461712 -0.482869 -0.694439 -2.81013

70 70 0.7 0.712 0.570478 0.549321 0.337751 -1.77794

0 0 0.88 0.879 0.912834 0.898007 0.749729 -0.73304

70 70.6 1.2 1.18 2.634478 2.613321 2.401751 0.286055

71 70.21 1.5 1.519 4.698512 4.677355 4.465785 2.350089

70 71 0.5 0.492 0.766627 0.766627 0.766627 0.766627

70 70.3 0.58 0.57 0.560189 0.560189 0.560189 0.560189

70 72 0.76 0.771 0.869986 0.869986 0.869986 0.869986

70 75 0.91 0.922 0.870026 0.870026 0.870026 0.870026

70 70.8 1 1.014 0.766787 0.766787 0.766787 0.766787

70 70.99 0.6 0.595 3.338835 3.338835 3.338835 3.338835

70 68.4 0.5 0.499 1.274676 1.274676 1.274676 1.274676

70 70 0.5 0.5 -0.27342 -0.27342 -0.27342 -0.27342

70 70 0.5 0.501 -1.821533 -1.821533 -1.821533 -1.82153

70 70 0.5 0.48 -2.853768 -2.853768 -2.853768 -2.85376

70 74 0.5 0.517 -1.301534 -1.301534 -1.301534 -1.30153

70 65.89 0.7 0.686 -0.269769 -0.269769 -0.269769 -0.26976

70 73 0.88 0.893 0.04013 0.04013 0.04013 0.04013

70 72.86 1.2 1.219 1.79471 1.79471 1.79471 1.79471

70 70 1.5 1.483 3.858574 3.858574 3.858574 3.858574

71 70.5 0.5 0.504 0.729088 0.729088 0.729088 0.729088

72 70 0.58 0.573 0.522101 0.522101 0.522101 0.522101

70 70 0.76 0.758 0.832724 0.832724 0.832724 0.832724

73.8 71.54 0.91 0.917 0.830978 0.830978 0.830978 0.830978

75 73.44 1 1.01 0.72725 0.72725 0.72725 0.72725

71 70 0.6 0.605 3.038085 3.038085 3.038085 3.038085

72 70 0.5 0.488 0.973315 0.973315 0.973315 0.973315

70 70 0.5 0.499 -0.573762 -0.573762 -0.573762 -0.57376

73.8 70.21 0.5 0.485 -2.123812 -2.123812 -2.123812 -2.12381

75 72.09 0.5 0.501 -3.156317 -3.156317 -3.156317 -3.15631

71 70 0.5 0.501 -1.408945 -1.408945 -1.408945 -1.40894

72 72 0.7 0.699 -0.377352 -0.377352 -0.377352 -0.37735

70 70 0.88 0.886 -0.066726 -0.066726 -0.066726 -0.06672

73.8 72.9 1.2 1.185 1.685844 1.685844 1.685844 1.685844

75 74.44 1.5 1.517 3.749707 3.749707 3.749707 3.749707

70 74.01 0.5 0.513 0.386843 0.386843 0.386843 0.386843

3.4 3.41 0.58 0.578 0.21223 0.21223 0.21223 0.21223

70 70.02 0.76 0.747 0.489896 0.489896 0.489896 0.489896

9 10 0.91 0.914 0.519449 0.519449 0.519449 0.519449

70 73.08 1 0.989 0.386656 0.386656 0.386656 0.386656

83

70 70 0.6 0.58 2.818546 2.818546 2.818546 2.818546

3.4 3.38 0.5 0.52 0.785978 0.785978 0.785978 0.785978

70 71 0.5 0.509 -0.793631 -0.793631 -0.793631 -0.79363

9 9.01 0.5 0.501 -2.313143 -2.313143 -2.313143 -2.31314

70 74 0.5 0.501 -3.373945 -3.373945 -3.373945 -3.37394

70 69.87 0.5 0.509 -0.585928 -0.585928 -0.585928 -0.58592

3.4 3.391 0.7 0.697 0.477402 0.477402 0.477402 0.477402

70 72.34 0.88 0.887 0.75579 0.75579 0.75579 0.75579

9 8.99 1.2 1.202 2.538968 2.538968 2.538968 2.538968

70 72 1.5 1.495 4.574401 4.574401 4.574401 4.574401

2 2.8 0.5 0.511 0.594133 0.594133 0.594133 0.594133

70 70 0.58 0.565 0.355717 0.355717 0.355717 0.355717

70 69.5 0.76 0.769 0.665513 0.665513 0.665513 0.665513

70 72 0.91 0.898 0.665385 0.665385 0.665385 0.665385

3.4 3.6 1 1.013 0.593487 0.593487 0.593487 0.593487

2 1.99 0.6 0.598 4.518887 4.518887 4.518887 4.518887

70 70 0.5 0.514 2.423045 2.423045 2.423045 2.423045

70 70.7 0.5 0.48 0.874682 0.874682 0.874682 0.874682

70 70.7 0.5 0.518 -0.673159 -0.673159 -0.673159 -0.67315

3.4 3.4 0.5 0.519 -1.674094 -1.674094 -1.674094 -1.67409

2 2.01 0.5 0.502 -0.330007 -0.330007 -0.330007 -0.33000

70 70 0.7 0.698 0.670244 0.670244 0.670244 0.670244

70 70.36 0.88 0.878 0.979872 0.979872 0.979872 0.979872

70 72.41 1.2 1.187 2.734349 2.734349 2.734349 2.734349

3.4 3.05 1.5 1.504 4.82975 4.82975 4.82975 4.82975

70 70 0.5 0.495 0.978172 0.956245 0.736969 -1.45578

0.2 0.1999 0.58 0.56 0.804484 0.789385 0.638386 -0.87159

0.3 0.3054 0.76 0.741 1.113919 1.09705 0.928359 -0.75855

70 75 0.91 0.912 1.081486 1.059558 0.840283 -1.35247

70 72 1 1.004 0.97826 0.956332 0.737057 -1.45569

70 69.28 0.6 0.591 15.601486 15.030738 9.323252 -47.7516

0.2 0.205 0.5 0.503 13.57028 13.006363 7.367196 -49.0244

0.3 0.4 0.5 0.504 12.021955 11.456274 5.799464 -50.7686

70 70.33 0.5 0.48 10.441041 9.870297 4.162858 -52.911

70 73.22 0.5 0.483 9.408993 8.838245 3.130768 -53.9439

70 71 0.5 0.484 0.449672 0.449412 0.446803 0.420723

0.2 0.28 0.7 0.709 1.516391 1.523137 1.590593 2.265153

0.3 0.28 0.88 0.881 1.825994 1.830916 1.880134 2.37231

70 74.05 1.2 1.212 3.548562 3.548301 3.545693 3.519612

70 70.69 1.5 1.491 5.614137 5.613876 5.611268 5.585187

70 70 0.5 0.517 0.644774 0.623722 0.4132 -1.69201

70 73.49 0.58 0.582 0.438278 0.417226 0.206704 -1.89851

0 0.09 0.76 0.757 0.780657 0.765943 0.6188 -0.85262

70 70 0.91 0.915 0.747897 0.726845 0.516323 -1.58889

84

71 72.06 1 1.011 0.644273 0.623221 0.412699 -1.69252

70 65 0.6 0.589 2.956377 2.93566 2.728494 0.656831

70 68 0.5 0.483 0.892201 0.871484 0.664318 -1.40734

0 0.2 0.5 0.504 -0.622959 -0.637334 -0.781079 -2.21853

70 73.91 0.5 0.49 -2.203929 -2.224646 -2.431812 -4.50347

71 72.18 0.5 0.48 -3.236582 -3.257299 -3.464465 -5.53612

70 69.19 0.5 0.503 -0.66732 -0.692992 -0.949704 -3.51682

70 70 0.7 0.712 0.364835 0.339164 0.082451 -2.48467

0 0 0.88 0.879 0.707146 0.687797 0.494309 -1.44057

70 70.6 1.2 1.18 2.428766 2.403095 2.146383 -0.42073

71 70.21 1.5 1.519 4.492732 4.46706 4.210348 1.643226

