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ABSTRACT 

 

 

SHRUTI GANGADHAR. Sensor fusion framework and simulation on a TurtleBot 

robotic vehicle. (Under the direction of DR. JAMES M. CONRAD) 

 

 

Autonomous robots are being designed and used in a wide variety of 

environments and unforeseen ways. Intelligent interpretation of sensor data is the key 

factor in a robot’s decision making ability while operating in such environments. Current 

day robots are also expected to adapt, have human interaction and accomplish many more 

tasks, than ever before. This work focuses on developing a sensor fusion framework and 

achieving human robot interaction for a robot navigating an unknown terrain.  

 The selective sensor fusion framework proposed in this work, combines 

heterogeneous data from sensors to analyze the parameters of the environment required to 

accomplish a task. It is scalable, modular and accounts for human interaction. The 

framework uses fusion algorithms and develops confidence at various stages before 

arriving at a decision. The framework is simulated and tested on a robotic vehicle called 

the TurtleBot along with additional LIDAR (Light detection and ranging) sensors on a 

simulated, unknown terrain. The vehicle navigates successfully through the terrain, 

avoiding obstacles and terrain irregularities while querying the user for assistance when it 

enters an uncertain mode. The framework is designed to accommodate higher levels of 

decision making before deciding on an action. Furthermore, the framework can be 

customized based on the application. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Autonomous robotics is an important branch of robotics and is widely researched 

and reported [1]. In this branch of robotics, continuous information is obtained by the 

sensors regarding the state of the environment and processed in real-time. Living beings 

process multiple sensory data to reason and act. The same principle is applied in multi-

sensor data fusion for robotics. It plays a crucial role in enabling the robot to make 

decisions and act. Significant applications of multi-sensor fusion can be found in mobile 

robots [2] [3] [4] [5]. A variety of other applications take the benefit of sensor fusion 

such as defense systems (such as target tracking [2] [6] [7] [8]), medicine [9] [10], 

transportation systems [11] [12] and industry [13] [14] [15]. 

A detailed account of data sensor fusion for autonomous robotics is found in [1]. 

Navigation is one of the challenging tasks in an autonomous robot development. Obstacle 

detection and estimation is the key factor for the success of navigation algorithms. This 

work attempts to address that with the help of fusion algorithms. Most of the fusion 

algorithms are utilized to address a specific issue in the decision-making process such as 

noise filtering. There is a need to investigate the end-to-end approaches further. Also, the 

fusion architectures described in Section 2.5 are derived from applications other than 

robotics. Although these techniques form excellent guidelines for sensor fusion in
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robotics, there is a need to explore frameworks that employ fusion algorithms so that the 

decision-making process is scalable.  

This work highlights the role of multi-sensor fusion in robot cognition while 

accommodating better interaction level for human robot collaboration. The decision 

framework takes into account data streamed by a group of sensors and applies fusion 

algorithm to estimate the state of the surrounding with a higher confidence level. The 

framework then offers decisions to the robot that are needed to execute the task. In an 

event of uncertainty, the robot can query the user for assistance before executing any 

further action demonstrating key interaction with the human. 

This work is intended to be integrated with the “ZapataBot” project of the 

Embedded Systems and Autonomous Robotics Lab at UNC-Charlotte [16]. 

From self-driving cars to intelligent robots in smart factories, sensors are heavily 

relied upon. Sensors have narrow window of measurement, they can be faulty, can be 

misguided and one sensor cannot reveal all the information about the surroundings. 

Sensor fusion is the way forward and such frameworks that accomplish the fusion, will 

be sought after. 

1.2 Problem Statement 

The problem statement of this work is formulated into the following parts:  

1. Develop the selective sensor fusion framework. 

2. Create the robot model with sensors for simulation. 

3. Create the environment and terrain for the robot. 
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4. Integrate the fusion framework with lower level robot movement and 

communication libraries. 

5. Test the framework by verifying robot’s ability to navigate the unknown terrain. 

1.3 Contributions 

A list of main contributions of this thesis work are as follows: 

1. Implemented Kalman filter and Track-to-track fusion algorithm to achieve signal 

level fusion to aid in robotic navigation. 

2. Designed and implemented the terrain classifier.  

3. Developed the robot model along with its sensors using SDF for simulation on 

Gazebo. 

4. Integrated the framework package with ROS.  

5. Designed the test environment for the robot to navigate.  

1.4 Organization of Thesis 

Chapter 1 introduces sensor fusion and provides an overview of the fusion 

concept in autonomous and robotic systems. Chapter 2 details the need for sensor fusion 

and some of the fusion methodologies and architectures found in literature that are 

considered for this work. Chapter 3 introduces the selective sensor fusion framework and 

the design of the framework. Chapter 4 focuses on the implementation of the framework. 

The tools and libraries used to develop the framework are also discussed. Chapter 5 

explains simulation and testing.  Chapter 6 discusses the advantages of the proposed 

selective fusion framework and the scope for future work.



CHAPTER 2: SENSOR FUSION OVERVIEW 

Sensor fusion is a versatile topic with diverse areas of application. Fusion offers a 

more unified view of the environment. Multi-sensor data fusion is the process of 

combining information from individual sensors to obtain more inferences than that can be 

derived from a single sensor. Multi-sensor fusion plays a crucial role in developing 

robotic systems because the interaction with the environment is instrumental in 

successful execution of the task. 

2.1 Sensor Data Acquisition 

Data acquired by sensors are in a particular format depending on the type of 

sensor. Various sensors can be set to acquire data at a specified rate. Some sensors are 

simple, such as a temperature sensor that outputs a temperature reading (a single 

number). There are other sensors such as the LIDAR and camera that output a complex 

data structure.  The data format, the rate at which sensors publish data and other auxiliary 

information such as the spatial sector of the environment being measured by the sensor 

are all key elements to know, for applying the fusion process. Figure 1 describes a 

LIDAR sweep and Appendix D Section D1 has the data structure for the same.
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Figure 1: LIDAR data 

2.2 Need for Sensor Fusion 

In several current day applications ranging from surveillance, object detection, 

target tracking to navigation, sensing systems are generating higher volumes of data at a 

rapid rate. It is imperative to combine the data obtained from individual sensors to extract 

the most useful information to effectively optimize storage and utilization of data [17]. 

Multi-sensor data fusion also aims at combining complementary and redundant 

information. Reliable decision making requires the data obtained by the sensors to be 

accurate. However, sensors are prone to errors and sensor data fusion can improve 

confidence and reliability in the decision. 
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Several sensors measuring one or more attributes of their surroundings can 

increase temporal and spatial coverage. In distributed sensor nodes, it is advantageous to 

reduce the frequency of communication and utilization of bandwidth. This can result in 

increased life of equipment, reduction in collision of data and increase in energy savings. 

By fusing the sensor data, only the result can be transmitted and the above-mentioned 

advantages can be realized [18]. 

The main goal of multi-sensor fusion is to achieve better operation of the system 

using the collective information from all sensors. This is also referred to as the 

synergistic effect [19] [20] [21]. Combining the data from a single sensor at different 

time intervals can also produce this effect [21] [22]. To have better spatial and temporal 

coverage, multiple sensors can be used. Also, with multiple sensors there is increased 

estimation accuracy and fault-tolerance [21]. 

2.3 Sensor Fusion Challenges 

Several factors make the sensor fusion process a challenging one. The majority of 

problems arise from imperfection in sensor readings, variety of sensor technologies, 

limitations imposed by the type of application and environment. These problems are 

explained in detail in [18] and is briefly summarized as follows: 

1. Data imperfection: Data from the sensors contain some amount of noise and 

imprecision. Data fusion algorithms should be able to take advantage of the 

redundant data to minimize the effects of such imperfections.  
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2. Outliers and spurious data: Ambiguity and inconsistencies in the environment that 

the sensors may not be able to distinguish, causing the measured data to be 

unreliable. Such data appear as outliers in the data set.  

3. Conflicting data: If two sensors are offering conflicting data about an aspect under 

observation, the fusion algorithm should be able to handle such conflicts to avoid 

counter-intuitive results.  

4. Data modality: The fusion process must take into consideration both qualitatively 

similar (homogeneous) and different (heterogeneous) sensor data. 

5. Data correlation: When sensors are spatially distributed in a system, some sensor 

nodes are prone to external disturbances. This can bias the sensor readings and the 

fusion result may suffer from over/under confidence. 

6. Data alignment: Data from various sensors must be brought to a common frame 

of reference before the fusion process. It deals with the calibration error induced 

by individual sensors. 

7. Operational timing: The data used for fusion may be coming from sensors that 

span a vast area or from sensors that are generating data at different rates. Out-of-

sequence arrival of data for fusion process can result in performance degradation 

especially in real time applications.  

2.4 Categories of Sensor Fusion 

Depending upon the sensor configuration, there are three main categories of 

sensor fusion: Complementary, Competitive and Co-operative [23]. These are described 

below as follows: 
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1. Complementary: In this method, each sensor provides data about different aspects 

or attributes of the environment. By combining the data from each of the sensors 

we can arrive at a more global view of the environment or situation. Since there is 

no dependency between the sensors combining the data is relatively easy [23] 

[24]. 

2. Competitive: In this method, as the name suggests, several sensors measure the 

same or similar attributes. The data from several sensors is used to determine the 

overall value for the attribute under measurement. The measurements are taken 

independently and can also include measurements at different time instants for a 

single sensor. This method is useful in fault tolerant architectures to provide 

increased reliability of the measurement [23] [24]. 

3. Co-operative: When the data from two or more independent sensors in the system 

is required to derive information, then co-operative sensor networks are used 

since a sensor individually cannot give the required information regarding the 

environment. A common example is stereoscopic vision [23] [24]. 

Several other types of sensor networks exist such as corroborative, concordant, 

redundant etc [21]. Most of them are derived from the aforementioned sensor fusion 

categories. 

2.5 Fusion Methodologies 

Generally, sensor fusion framework is designed or chosen based on the 

application. However, there are various methodologies to capture the general idea of 

fusion and set up guidelines. Some of the methodologies are discussed below [18]. 
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2.5.1 JDL Model 

 JDL stands for the US Joint Directors of Laboratories that was established under 

the guidance of Department of Defense and was proposed in 1985. The JDL model is 

functionality dependent and can be customized depending on the application. Varieties of 

applications from sensor networks to human robot interface can be implemented using 

this model [24]. JDL model is derived from the military domain. It is based on the input 

data and processed output. 

 The model uses five levels for data processing and a database. These components 

can communicate through a bus interface [24] [25] [26]. The JDL model is as shown in 

Figure 2 [25] [26]. These levels could be executed sequentially or concurrently during the 

application. 

 

Figure 2: JDL fusion model [25] [26] 

 Sources, in the JDL model can consist of sensor data or data given by the user 

such as user input, reference data or geographical data. The Man-Machine Interaction 

block, as the name suggests, enables the user to interact with the system through user 

command, reports etc. Furthermore, this block helps in providing alert messages and 
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could use multimedia tools such as displays, sounds etc. to achieve communication with 

the user. 

 The Source Pre-Processing also referred to as Level 0, performs pre-screening of 

data and then allocates it to the appropriate process [25] [26]. In the Object Refinement or 

Level 1, the following operations are performed namely, alignment of data using frame 

transformation, data association, tracking and estimation of the current and future 

position of the object. Also, Level 1 can be composed of kinematic and identity fusion 

[24]. In kinematic fusion, the velocity, acceleration of the object is determined. In 

identity fusion, the type of the object such as aircraft or missile is determined using 

parametric estimation [24] [25]. After processing the data from Level 1, based on the 

situation the contextual relationship is determined between the event and the object under 

observation. This process of refinement is called as Situation Refinement or Level 2. 

Depending on the a priori data and the future situation prediction inferences are drawn in 

Level 3 or Threat Refinement. The inferences are used to identify the vulnerabilities and 

the opportunities for the operation. This level uses game theoretic techniques [25]. 

Process Refinement or Level 4 deals with monitoring the system performance (handles 

real time constraints) and sensor allocation to satisfy mission objectives and goals. This 

level does not perform data processing operations and uses sensor management 

techniques [24] [25] [26]. The Database Management System helps monitor, update, add 

and provide information to the fusion process [24] [25] [26]. 

 Although the JDL model helps in basic understanding of the sensor fusion process 

it is data centric and hence hard to extend or reuse the applications based on this model. 

The JDL model is too restrictive and tuned to the military.  It is abstract and 
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interpretation could be difficult [25] [26]. It focuses more on input and output rather than 

processes. Table 1 highlights the summary of various components used in JDL model. 

Table 1: Summary of JDL process components [25] 

SOURCES 
Can include data from sensors to a priori information from 

databases to human input. 

PROCESS 

ASSIGNMENT 

Enables the data fusion process to concentrate on the data most 

pertinent to the current situation as well as reducing the data 

fusion processing load. Involves data pre-screening and 

allocating data to appropriate processes. 

OBJECT 

REFINEMENT I 

(Level 1) 

Transforms data to a consistent reference frame and units and 

estimate or predict object position, kinematics, or attributes. 

Also, assigns data to objects to allow statistical estimation and 

refine estimates of the objects identity or classification. 

SITUATION 

REFINEMENT 

(Level 2) 

Describes of the relationship between objects and observed 

events. This processing determines the meaning of a collection 

of entities and accounts for environmental information, a priori 

knowledge, and observations. 

THREAT 

REFINEMENT 

(Level 3) 

Projects the current situation into the future and indicates 

possible threats, vulnerabilities, and opportunities for operations. 

PROCESS 

REFINEMENT 

(Level 4) 

Monitors real-time performance of data-fusion, identifies 

information required for data fusion improvement. Also, 

allocates and directs sensor and sources to achieve mission 

goals. 

DATABASE 

MANAGEMENT 

SYSTEM 

Most extensive ancillary function required to support data 

fusion. Also features data retrieval, storage, archiving, 

compression, relational queries, and data protection. 

 

HUMAN-

COMPUTER 

INTERACTION 

Enables human input and communication of data fusion results 

to operators and users, and includes methods of alerting human 

as well as augmenting cognition. 

2.5.2 Waterfall Fusion Process Model 

 The Waterfall fusion process model (WFFM) deals with the low-level processing 

of data and is shown in Figure 3 [25] [27]. The Waterfall model has a lot of common 

features as the JDL model. The processing stages of the Waterfall models relate to the 

levels of the JDL model [25] [26] [27] and the comparison is shown in Table 2. 
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Figure 3: Waterfall fusion process model [27] 

Table 2: JDL and waterfall fusion models [25] [26] [27] 

JDL levels Waterfall stages 

Level 0 Sensing and Signal Processing 

Level 1 Feature Extraction and Pattern Processing 

Level 2 Situation Assessment 

Level 3 Decision Making 

 

 However, similar to the JDL model, the Waterfall fusion model is abstract and 

doesn’t have feedback between the stages. It is an acyclic model. The modified WFFM is 

described in [24] that provides for some feedback between the stages. This modified 

model is action oriented and has the provision for control loop action or feedback loop as 

shown in Figure 4. 
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Figure 4: Modified waterfall fusion model [24] 

2.5.3 Dasarathy’s Classification 

 This method is derived from software engineering perspective where fusion is a 

data flow model characterized by input and output as well as functional entities 

(processes). Figure 5 [28] shows various sensor fusion types as classified by Dasarathy. 

Only a few combinations are allowed in this scheme for the inputs and outputs. 
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Figure 5: Dasarathy's classification of multi-sensor fusion [28] 

2.5.4 Random Sets Based Model by Goodman et al. 

This method combines uncertainties with decisions. It is a generic scheme of 

uncertainty representation. 

2.5.5 Category Theory Based Model by Kokar et al.  

A general theory to capture all kinds of fusions- data, feature, decision and 

relational information. It accounts for both data and processing. It allows consistent 
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combination of processing elements (algorithms), while offering measurable and 

provable performance. 

Several other fusion models exist such as the Omnibus model [29], Boyd or 

OODA model [30], LAAS Architecture [31]. 

2.6 Sensor Fusion Topologies 

There are different topologies namely, Centralized, Decentralized and Hybrid [21] 

[24] [32] [25]. Each of these is described as follows: 

2.6.1 Centralized 

 In this architecture, a single node handles the fusion process. The sensors undergo 

preprocessing before they are sent to the central node for the fusion process to take place. 

Figure 6 shows a typical centralized architecture [21] [24]. 

 

Figure 6: Centralized fusion topology [32] 

2.6.2 Decentralized 

 In this architecture, each of the sensor processes data at its node and there is no 

need for a global or central node. Since the information is processed individually at the 
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node, it is used in applications that are large and widespread such as huge automated 

plants, spacecraft health monitoring etc [24]. Figure 7 shows a typical decentralized 

architecture [21] [24]. 

 

Figure 7: Decentralized fusion topology [32] 

2.6.3 Hybrid 

This architecture is a combination of both centralized and distributed type. When 

there are constraints on the system such as a requirement of less computational workload 

or limitations on the communication bandwidth, distributed scheme can be enabled. 

Centralized fusion can be used when higher accuracy is necessary [24] [32]. 

A simple comparison between the centralized and decentralized topologies is 

shown below in Table 3.
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Table 3: Comparison between centralized and decentralized topologies [21] [24] 

Parameter Centralized Distributed 

Communication 
Central node acts 

bottleneck 

Data processing load 

distributed 

Computation 

Depends on the 

performance of 

central processor 

Can be easily scaled 

Modularity 
Re-programming for 

new sensors 
Modular in design 

Fault-tolerance 
Depends on the 

central computer 

Distributed data 

processing 

 

2.7 Categories of Fusion Algorithms 

Sensor fusion can be performed at various levels based on the condition and type 

of data. In this context, there are following fusion stages:  

1. Signal level fusion 

2. Feature level fusion 

3. Decision level fusion 

2.7.1 Signal Level Fusion 

 In signal level fusion, data from multiple sources (sensors) are combined to obtain 

better quality data and higher understanding of the environment being observed. Signal 

level fusion often has either or both of the following goals: 

1. Obtain a higher quality version of the input signals i.e. higher signal to noise ratio 

[33]. Sensor measurements from several sensors which have same physical 

properties are combined to determine the parameter being measured, more 
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accurately [21]. This minimizes and sometimes eliminates any uncertainty or 

inaccurate predictions caused by measurements from faulty sensors, measurement 

noise and state noise. For instance, readings from multiple temperature sensors in 

close proximity in a given space can be used for this kind of fusion. 

2. Obtain a feature or mid-level information about the system that a single 

measuring node cannot reveal. A feature is the first stage in understanding the 

state of the environment that helps the system in formulating a decision. 

Heterogeneous sensors are often employed for this process. For instance, signals 

from radar and images from camera are used in target recognition [25]. 

 For sensor data to undergo signal level fusion, it is essential to condition the 

signals in the signal preprocessing phase. The signals must be in a common 

representation format [21]. The stages involved in this process, as shown in Figure 8, 

include but not limited to: Signal alignment, normalization and scaling [21]. 

 

Figure 8: Signal preprocessing functions [21] 

There are several methods by which signal level fusion can be achieved. The 

choice of method depends on various factors like the scenario and type of application, 

type of data or signal, relationship between the data or the state representation of the 

system. The following are some of the commonly used signal fusion methodologies: 
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2.7.1.1 Weighted Averaging 

 Signal fusion can be achieved by taking an average of the various sensor signals 

measuring a particular parameter of the environment. If signals from some sensors can be 

trusted more than the other, a higher weight is assigned to that sensor to increase its 

contribution towards the fused signal. The confidence level is a function of variance of 

the sensor signal [33]. 

 𝑥𝑓𝑢𝑠𝑒𝑑 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

 (1) 

where, wi = f(variance) 

2.7.1.2 Kalman Filter 

 The Kalman filter method is a common adaptive method of sensor fusion to 

remove redundancy in the system and to predict the state of the system. This is a linear 

model and the current state of the system is dependent on the previous state. The system 

is represented by the following state-space model: 

 𝑥(𝑘) = 𝐴 𝑥(𝑘 − 1) + 𝐵 𝑢 + 𝐺 𝑤 (2) 

 

 𝑧(𝑘) = 𝐶 𝑥(𝑘) + 𝑣 (3) 

 

where, x: state vector, A: state transition matrix, B: Input transition matrix, u: Input 

vector, G: Process noise transition matrix, w: process noise vector, C: Measurement 

matrix, v: measurement noise vector. The covariance matrices of w and v are Q(k) and 

R(k) respectively. There are two phases of state estimation with Kalman filter:  

 

 



20 
 

Predict phase: 

 x̂
𝑘 = 𝐴 𝑥𝑘−1 + 𝐵 𝑢𝑘 (4) 

 

 𝑃𝑘 = 𝐴 𝑃𝑘−1 𝐴𝑇 (5) 

 

Update phase: 

 𝐾𝑘 =  𝑃𝑘𝐶𝑇(𝐶𝑃𝑘𝐶𝑇 + 𝑅)−1 (6) 

 

 x̂
𝑘

=  x̂
𝑘

+  𝐾𝑘(𝑧𝑘 − 𝐶 x̂
𝑘

) (7) 

 

 𝑃𝑘 = (1 −  𝐾𝑘𝐶)𝑃𝑘 (8) 

 

where, P: estimation covariance, K: Kalman gain. 

 In the update or correction phase, the estimate from the predict phase is updated 

with the observation. If there are two sensors and both sending data simultaneously, then 

Z = [z1, z2]. If the sensors are sending data one after the other, then the reading from first 

sensor can be used as a priori information before observation from second sensor is used 

to update the prediction [33]. 

2.7.1.3 Track-to-Track Fusion 

 Track to track fusion methodology has local tracks generated by distinct local 

sensors. Then at a central node the tracks are fused as shown in Figure 9 [34]. 



21 
 

 

Figure 9: Track-to-track fusion architecture [34] 

 The local track can be individual Kalman filter nodes that provide state estimation 

at the local track level. These states are then fused into a state vector that has combined 

information from all the local sensor nodes. Sometimes, this new estimate is sent as 

feedback to the local sensor nodes. The new state estimate is obtained by the following 

formula [34]: 
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 This configuration can be extended for multiple sensors. A modified track-to-

track fusion and three sensor fusion algorithm are explained in detail in [34]. 

Several authors have used track fusion algorithm for signal level fusion to 

minimize the effects of sensor noise. However, this work explores the use of track fusion 

algorithm for extracting feature while using a basic Kalman filter for signal level fusion. 

There are other ways to define the track fusion algorithm such as taking confidence 

weighted averaging of the tracks based on variance [34]. 

2.7.1.4 Neural Networks 

An artificial neural network consists of interconnection of processing nodes called 

neurons. There is a pattern of interconnection between the neuronal layers that are 

weighted and the learning process that updates these weights. Data fusion models can be 

established using neural networks such that neurons and interconnecting weights are 

assigned based on the relationship between the multi-sensor data input and the signal 

output. The neural networks can be multilayer feed-forward or recurrent type [35]. 

Unlike Kalman filters, neural networks offer non-linear transfer functions and 

parallel processing capabilities. This can help in performing image fusion. Figure 10 

shows a basic structure of three-layer neural network with nonlinear mapping. 

 

Figure 10: Neural network structure for sensor fusion [35] 
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The fused output is a combination of input signal and corresponding weights calculated 

by the equation [35]: 

  𝑦 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

 (11) 

 

where, wi is the weight; xi is the sensor data. 

 Several fusion methodologies are used and depending on the input and outputs 

required, the stages in the model can perform either signal, feature or decision level 

fusion. These methods are either used as standalone or can be combined with other signal 

fusion methods.   

 The probabilistic approach for sensor fusion includes the use of joint probability 

distributions and Gaussian distributions [36]. Other fusion methods include Bayesian, 

least-squares for feature extraction [37] and some statistical approaches [21] [33] [38]. In 

[39] [40] [41], the authors explain various approaches for modeling sensor fusion 

architecture using neural networks. 

2.7.2 Decision level fusion 

Also known as Symbol level fusion, the decision level fusion combines several 

sub-decisions or features to yield a final or higher decision that can be used to take an 

action. Symbol could be an input decision. In this case, fusion of symbolic information 

insists the use of reasoning and inference while handling uncertainty. Symbol level fusion 

increases the confidence or truth value and is considered as decision fusion [42] [43]. 

Identity and Knowledge based methods form the two categories of decision fusion [24] 
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[43]. Table 4 [24] [43] lists few of the decision fusion methods or AI techniques for each 

category. 

Table 4: Decision fusion models [24] [43] 

Identity based Knowledge based 

Maximum a priori 

(MAP) 

Syntax rule 

Maximum Likelihood 

(ML) 

Neural Network 

(NW) 

Dempster-Shafer etc Fuzzy Logic etc 

 

 One of the most widely used decision or inference method is Dempster-Shafer 

theory (D-S theory). This method is very useful for human-robot interaction based 

applications [42] [43] [44] [45]. The D-S theory is described in detail followed by a 

comparison with Bayesian inference which is another widely used decision fusion 

technique.  

2.7.2.1 Dempster-Shafer Theory of Evidence: 

 D-S theory is a generalization of the probability theory [42] [46] [47] [44]. In this 

method, a frame of discernment Ω is defined which is set of elementary hypotheses: 

 Ω = {𝑎𝑖}, where i = 1, . . . , n (12) 

 

 The sum of the mass function of all hypotheses is one. Belief function is used to 

express inaccurate beliefs. Mass values are assigned to the elements of the power set 2Ω   

of the frame of discernment which hold the following properties: 

belief (null) = 0                                      
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belief (hypothesis) = Sum of all mass functions for all evidence to support the 

proposition. 

 The confidence interval is upper-bounded by the plausibility value to include all 

observations that don’t rule out the proposition supported by the corresponding belief 

function. In order to combine two mass functions m1 and m2 the Dempster-Shafer theory 

defines the following rule [46] [47]:  

 𝑚1 ⨁ 𝑚2(∅)  =  0  (13) 

 

 𝑚1 ⊕  𝑚2(𝐻) =  
∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌=𝐻

1 − ∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌= ∅
 (14) 

 

2.7.2.2 Comparison of D-S and Bayesian Fusion: 

 Although both these methods are widely used in inference engines there are few 

differences between them [43] [45]. The main difference being the concept of support 

and plausibility to define uncertainty limits in Dempster-Shafer [43] [46] [47] which is 

not found in Bayesian inference. D-S theory is an evidential reasoning method where 

belief masses can be assigned to elements and sets, and on set of sets [43]. 

 Capturing ignorance or uncertainty is another strong feature of evidential 

reasoning methods which is not achievable in probabilistic methods. It is not necessary to 

have a priori probabilities and data is provided only at the time when sensor reads them 

[43] [45] during observation. Dempster-Shafer theory of evidence finds widespread use 

in human-robot interactive (HRI) applications. A review of a few applications of HRI can 

be found in [48]. 
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 By using the power set as the frame of discernment beliefs can well represented. 

However, when the set is continuous the number of subsets cannot be measured and 

hence this is a significant limitation that is found in evidential reasoning methods [42] 

[43] that work well with discrete sets.



CHAPTER 3: SELECTIVE FUSION FRAMEWORK DESIGN 

This chapter provides an overview of the selective fusion framework. The 

framework is designed for the robot to navigate an unknown terrain. The terrain map, 

features, and set of obstacles are not a priori information to the robot. The framework 

uses the concept of sensor fusion. It selectively utilizes required sensors associated with 

the task to determine the decisions required to execute the task successfully.  

The focus of this work is the decision arrived by the framework to aid in 

navigation and not the navigation algorithm itself. Any path planning or navigation 

algorithm can be used, as the framework does not intervene with the navigation. 

Several fusion frameworks found in the literature focus on using one of the signal 

level fusion algorithms mentioned in the Chapter 2 or its variants to filter out noise in the 

sensor signal. Other decision making frameworks utilize mostly soft data set and apply 

decision level fusion algorithms to arrive at a decision. This work presents a fusion 

framework that uses a combination of these algorithms at relevant stages to achieve 

higher level of cognition and increase confidence in autonomous decision making. 

A robot is normally designed to execute a set of tasks. It also has sensors to gather 

the state of environment it is operating in. According to the framework as shown in 

Figure 11, a set of sensors are mapped to a task [49] [50]. Initially, sensors are selected 

and the raw sensor data undergoes a phase of preprocessing. This data then goes through 

the fusion process and a decision is arrived to execute a task or a sub task.
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Figure 11: Selective sensor fusion framework 

 For a robot to navigate an unknown terrain, it is essential to analyze the terrain 

features and detect surface obstacles. LIDAR sensors are used for this purpose. Consider 

a robot with three sensors mounted at a 45 degree angle to the surface to get the terrain 

data and three more sensors mounted horizontal to the surface to get surface data as 

shown in Figure 19. Several such sensor configurations can be used. One sensor can be 

used for measuring surface obstacle and another one can be used to measuring terrain 

features. However, in this scenario, several sensors are used to demonstrate selection and 

scalability of the framework. The task to be taken up by the robot is movement. The robot 

used for the demonstration in this work is non-holonomic. So, movements are restricted 

to forward and turns. The movements are for fixed distances from one cell to another. 

The cell size can vary based on requirement, however, in this case, the terrain is divided 

into square cells of 1m length. So, the sensors and tasks are established, the actual fusion 
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framework is explained in detail as follows. The block diagram of the framework is as 

shown in Figure 12. 

 

Figure 12: Fusion framework block diagram 

The raw sensor data undergoes selection through the selection block. The selected 

sensor is then sampled again to get the next temporal sequence of data. This data is then 

sent to the pre-processing block for normalization and scaling. The normal data is sent 

through the Kalman filter for temporal fusion to minimize the effects of noise. This fused 

data from individual Kalman nodes is then sent to the track-to-track fusion node. The 

signal out of this node contains information of the state of the next cell under 

consideration. The pattern classifier block identifies the features of the environment and 

aids the decision level block to arrive at a decision for the robot to act on. The various 

parts of the framework are explained in detail below. 

3.1 Overlap Detection 

This block is essential to bring about spatial alignment of data. It also 

demonstrates sensor selection in the fusion process. The input to this block is the raw 

sensor data from six LIDAR sensors. Each sensor generates a stream of spatial and 
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temporal sequence of data. Three of the horizontal LIDAR sensors are mounted such that 

there is a degree of overlap between the measurements i.e., a part of each LIDAR’s data 

is a measure of the same point in space. The spatial overlap of data generates some 

amount of redundancy that is helpful to overcome some of the challenges mentioned in 

Section 2.3. Figure 13 shows the overlap region for horizontal sensors. This block uses 

the data from the region of overlap to increase confidence in the sensor’s measurement. 

The sensor data with highest degree of confidence will be selected for the fusion process. 

Figure 15 shows the region of detection for the terrain sensors. The data set with the 

maximum deviation from the ideal flat ground LIDAR data sequence is considered for 

the fusion process. The next sequence of data from these sensors are also read. 

 

Figure 13: Region of spatial overlap for obstacle sensor 

3.2 Preprocessor 

The preprocessor brings the two data sets obtained from the overlap detection 

block to a common representation format. Every sensor measurement consists of the 

following parameters: spatial position, time, value, uncertainty of the given property as 
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measured by the sensor. To achieve a common representation format, the sensor readings 

must be temporally and spatially aligned. This is taken care by the overlap detection 

block. The other requirement is that the values are normalized that is they are converted 

to a common scale. Normalization is achieved by a technique called the Min-Max method 

of normalization as defined below [21]. 

 𝑦 =  
(𝑥 − 𝑎)

(𝑏 − 𝑎)
 (15) 

 

where, a = mini(xi), b = maxi(xi). 

 Both the obstacle sensor and the terrain sensor are looking at the next cell in the 

path of the robot. The goal of the fusion process is to determine whether the cell is 

navigable or not. However, both these sensors are measuring different and independent 

attributes of the cell. Hence, there is heterogeneity in data. The obstacle sensor looking 

for a surface obstacle in the next forward cell is as shown in Figure 14 and the terrain 

sensor measuring the terrain irregularity in the next cell is as shown in Figure 15. 

 The boundary conditions for both the cases are used to determine the min and 

max values of the sensor data for normalization. The LIDAR sensors can measure up to a 

certain maximum distance based on its characteristics that is detailed in the data sheet of 

the sensor. The sensor used for this application can measure up to a maximum of 10m. 

This measure is taken as the max value for normalization for the obstacle sensor. The min 

value depends on the boundary of cell under consideration. As shown in Figure 14, the 

min value for a particular LIDAR range value is the boundary value of the cell at that 

angle.  
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Figure 14: Obstacle sensor 

 

Figure 15: Terrain sensor 

Figure 15 shows the LIDAR range values for the ideal flat ground. A deviation 

from the ideal flat ground value is used to determine the min and max values for the 

range values of terrain sensor. The obstacle sensor values have a higher difference 

between their min and max values compared to the terrain sensor. So, the obstacle sensor 

values are scaled after normalization. 



33 
 

3.3 Kalman Filter 

The input to this block is the normalized data from the preprocessing stage. A 

temporal sequence of normalized data from the obstacle sensor and that from the terrain 

sensor are processed by this block. Detailed explanation of the working of Kalman filter 

and its use in sensor fusion is in Section 2.7.1.2. 

This section focuses on implementation of Kalman filter for the fusion process. 

Two sets of temporal sequences of data obtained from the obstacle sensor are 

homogeneous in nature. Each set measures the same parameter of the environment and 

are from the same sensor. These are combined using Kalman fusion to obtain an estimate 

of the state that is free of sensor noise. This process is repeated for the data from terrain 

sensor too. 

To implement the Kalman filter for fusion process, some of the parameters must 

be initialized. The state vector, x at time instant k-1 is the first of the temporal sequence 

of normalized LIDAR data. The size of the state vector depends on the resolution of 

sensor data. If ‘M’ range values are obtained in a LIDAR sweep, size of matrix x is 

[MxN] where, N = 1. 

The state transition matrix A, is initialized to an identity matrix of size [MxM] 

because of the lack of knowledge on how the system varies. The measurement matrix, C 

is also an identity matrix of size [KxM] which indicates the sensor measurement 

contributing to observed value. The estimation covariance matrix P[MxM] is also 

initialized to an identity matrix. 

The Kalman gain matrix G[MxK] is initialized to 0.5*I[MxK] which gets updated 

on every run. The covariance of process noise Q[MxM] and the covariance of 



34 
 

measurement noise R[KxK] are initialized based on the expected levels of noise and are 

different for obstacle sensor and terrain sensor. Both these matrices are normally 

initialized to standard deviation of noise ie., σ*I[]. Since raw sensor values are not used 

for the fusion process, Q[MxM] for obstacle sensor is obtained by the following 

formulae: 

 𝑄[𝑀×𝑀] = 𝑞1 ∗ 𝐼[𝑀×𝑀] (16) 

 

 𝑞1 =  
(𝜎 − 𝑎𝑎𝑣𝑔)

(𝑏𝑎𝑣𝑔 − 𝑎𝑎𝑣𝑔)
 (17) 

 

where, 𝑎𝑎𝑣𝑔 =  ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝑀⁄ ,  𝑏𝑎𝑣𝑔 =  ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝑀⁄ ,  σ is the standard deviation of 

process noise. 

R[KxK] for obstacle sensor is obtained by the following formulae: 

 𝑅[𝐾×𝐾] = 𝑟1 ∗ 𝐼[𝐾×𝐾] (18) 

 

 𝑟1 =  
(𝜎 − 𝑎𝑎𝑣𝑔)

(𝑏𝑎𝑣𝑔 − 𝑎𝑎𝑣𝑔)
 (19) 

 

where, 𝑎𝑎𝑣𝑔 =  ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝐾⁄ ,  𝑏𝑎𝑣𝑔 =  ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝐾⁄ ,  σ is the standard deviation of 

sensor noise. 

Q[MxM] for terrain sensor is obtained by the following formula: 

 Q[M×M] = abs(q2) ∗
I[M×M]

k
 (20) 

 

 q2 =  
(σ − aavg)

(bavg − aavg)
 (21) 
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where, 𝑎𝑎𝑣𝑔 =  ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝑀⁄ ,  𝑏𝑎𝑣𝑔 =  ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝑀⁄ ,  σ is the standard deviation of 

process noise, k is the scaling factor. 

R[KxK] for obstacle sensor is obtained by the following formulae: 

 R[K×K] = abs(r2) ∗
I[K×K]

k
 (22) 

 

 r2 =  
(σ − aavg)

(bavg − aavg)
 (23) 

 

where, 𝑎𝑎𝑣𝑔 =  ∑ 𝑚𝑖𝑛𝑖(𝑥𝑖) 𝐾⁄ ,  𝑏𝑎𝑣𝑔 =  ∑ 𝑚𝑎𝑥𝑖(𝑥𝑖) 𝐾⁄ ,  σ is the standard deviation of 

sensor noise, k is the scaling factor. 

 The values are scaled down here by a factor of ‘k’ because the difference between 

minimum average and maximum average value of obstacle sensor is higher than that of 

terrain sensor. So, if the values are not scaled, the terrain sensor will have higher impact 

on the results. The scaling factor considered in this study is 1000.  

The observed state vector, z of the size [MxN] is the second in temporal sequence 

of normalized LIDAR data. 

 With the above mentioned initializations and boundary conditions in place, the 

Kalman Fusion runs separately for the obstacle sensor and the terrain sensor and obtains 

two state vectors in the update phase. The Kalman Fusion block takes signal in and 

provides signal out. This is in-line with the Dasarathy’s data flow model of fusion. 

3.4 Track-to-Track Fusion 

The working principle of track-to-track fusion process is explained in Section 

2.7.1.3. The input to this block are the state vectors of obstacle sensor and terrain sensor 
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from the Kalman fusion block. This is an extension to the Kalman fusion block and 

several parameters of the fusion equation are required in the track-to-track fusion block. 

Once the cross-covariance matrices of the two state vectors are obtained using Equation 

10, the fused state estimate is obtained from Equation 9 that contains information about 

both obstacles and terrain features of the cell in front of the robot. 

With the above-mentioned initializations and boundary conditions in place, the 

Kalman and track-to-track fusion are tested for a continuous 36 runs with random sensor 

values and different boundary conditions. The results of the test are tabulated in 

Appendix E. The first column contains the raw sensor value from obstacle sensor and the 

second column contains the next sequence of measurement from the same sensor and the 

same cell. The third column contains the measurements from the terrain sensor and the 

fourth column contains next sequence of data from the same sensor and for the same cell. 

All these data go through track-to-track fusion. The process is repeated with the same 

data for four different scaling factors in the preprocessing block i.e., n = 1, 10, 100, 1000 

and the resultant vectors are stored in column five through eight. The scaling factor is 

essential to prevent bias of single sensor on the result. The track fusion block provides a 

signal out that needs to be analyzed to determine the state of the cell. The resultant vector 

of the fusion process holds information as to whether the cell is navigable or not. It can 

be observed from the eighth column in the table in Appendix E that all the elements of 

the resultant vector lie within the range 0 and 1 if there are no obstacles and terrain 

irregularities. Cell Є {navigable}, if 0<xh[i]<1 for all xh[i]. Cell Є {non-navigable}, if 

0>xh[i] or xh[i]>1 for any xh[i]. This is marked in the table in Appendix E with a red 

shade. The other shaded blocks on the sensor reading from column one through four 
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indicate the presence of an obstacle or terrain irregularity. They are marked for 

convenience to correlate the navigability of a cell with the track-to-track fusion result 

values. Hence the fused state value classification is achieved.  

The boundary conditions for the test run are as follows: 

Obstaclemin = {0.45, 0.55, 0.7, 0.85, 0.95} 

Terrainmin = {0.5, 0.6, 0.75, 0.9, 1} 

Terrainmax = {0.55, 0.65, 0.8, 0.95, 1.05} 

 The track-to-track fusion block is sensitive to minor irregularities in terrain. The 

boundary conditions assigned as min and max values determine the limit. So, based the 

track-to-track fusion results, the terrain parameter is further classified in the terrain 

classifier block. 

3.5 Pattern Classifier 

This is the feature classification phase of the fusion process. The information 

about navigability of the cell is obtained from the signal out of the track-to-track fusion 

as described above. The framework must accumulate confidence through various stages 

to achieve higher levels of cognition. The pattern classifier is a rule based system that 

takes the results of track fusion and auxiliary information from the previous stages to 

determine features of the cell under consideration. Table 5 contains the details of these 

features. In the truth table, ‘1’ indicates that the cell is non-navigable as determined by 

that source (named in the column heading) while ‘0’ indicates navigability. Any 

uncertainty in the determination is also accounted for in this stage. 
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Table 5: Pattern look-up table 

Auxiliary 

information(Obstacle) 

Auxiliary 

information(Terrain) 

Track-to-track 

fusion result 

Pattern 

0 0 0 No obstacle 

0 0 1 Uncertain 

0 1 0 Uncertain 

0 1 1 Terrain issue 

1 0 0 Uncertain 

1 0 1 Surface obstacle 

1 1 0 Uncertain 

1 1 1 Both obstacle and 

terrain issue 

 

3.6 Terrain Classifier 

This block further classifies the terrain based on its features. If the pattern 

classifier finds that the cell is navigable or that there is a surface obstacle, then this block 

is not consulted in arriving at a decision. If the pattern classifier suggests that there are 

both surface obstacle and terrain irregularity or there is only terrain irregularity, then this 

block is used to further classify the terrain features to make appropriate navigation 

decisions. 

The data input to this block is the sensor reading from terrain sensor after 

selection and the control input is from the pattern classifier block as shown in Figure 16. 

This block takes into account the slopes of the terrain in various parts of the cell to 

determine if the cell is: overall flat, a navigable up ramp, a navigable down ramp, a non-

navigable up ramp, a non-navigable down ramp. 
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Figure 16: Terrain classifier block diagram 

 The terrain LIDAR sensor gives out [angle, range] values as marked by [θ,d] in 

Figure 17. The coordinates of points on terrain are obtained by the following formula: 

 xi = di ∗ sin (
(15 ∗ i) ∗ π

180
) (24) 

 

 yi = yh − (di ∗ cos (
(15 ∗ i) ∗ π

180
)) (25) 

 

where, (xi, yi) are the coordinates on the terrain, yh is the distance of terrain sensor from 

the ground (mounting height), di is the range data. In this case, θi = 15*i. 

The slope between two points on the terrain are determined to measure the extent of 

irregularity in the terrain. It is obtained by the following formula. 

 m =  
y2 − y1

x2 − x1
 (26) 

 

The corresponding angle of ramps are obtained by the following formula: 

 α° = (
(tan−1 m) ∗ π

180
) (27) 
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where, α is the angle of terrain surface. These angles are used to rank the cell surface for 

the features listed above. 

 

Figure 17: Terrain angle 

3.7 Decision Block 

The decision block arrives at a decision based on the evidence(features) 

determined by the pattern classifier and the terrain classifier. This block takes the features 

from the previous block as input. The mapping of feature set to the decision set is as 

shown in Table 6. The robot is programmed to act based on the result of the decision 

block. The decision to action mapping is tabulated in Table 7. 

Table 6: Feature to decision mapping 

Feature Determination block Decision 

No obstacle Pattern classifier Navigable cell 

Surface obstacle Pattern classifier Non-navigable cell 

Terrain issue Pattern classifier Inspect the terrain further 

Both surface and terrain 

issue 

Pattern classifier Non-navigable cell 

Uncertain Pattern classifier Uncertain mode 

Flat Terrain classifier Higher navigability index 

Navigable up ramp Terrain classifier Higher navigability index 

Non-navigable up ramp Terrain classifier Non-navigable cell 

Navigable down ramp Terrain classifier Higher navigability index 

Non-navigable down ramp Terrain classifier Non-navigable cell 
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Table 7: Decision set to action set mapping 

Decision Action 

Navigable cell Move forward by a cell 

Non-navigable cell & previous action: 

move forward 

Turn left by 90 degree 

Non-navigable cell & previous action: 

turn left 

Turn left by 180 degree;  

reset previous action 

 

 These sets can be expanded to account for more functionality in the robot. If a 

decision is dependent on a combination of several features, then a decision level fusion 

algorithm with higher level of cognition can be used. In this study, the parameters of 

action are held constant because the robot is traversing 1mx1m square cell. In a more 

complex scenario, exact distance of movement or turning angle can be a part of the action 

tuple. For instance, the turn angle of motors for a robotic arm. 

 Once the robot takes action based on the decision, the framework continues to re-

sample the sensors and go through the fusion process to arrive at a new decision for the 

robot to execute. 

 The framework performs autonomously for all the features except for the 

uncertain feature. The robot enters an uncertain mode when the framework has not been 

able to build sufficient confidence on the state of the environment through its process. 

Any ambiguity in the findings of the framework about the environment that it is not able 

to resolve, results in this mode. Handling such uncertainty is an important aspect of 

intelligent autonomous systems. In the uncertain mode, the robot enters the assist phase 

where a user command is requested. The framework also calculates a confidence level in 

the sensors using the Dempster-Shafer rule of combination as stated in Equation 13 and 

Equation 14. The mass values are specified in Table 8 [51]. 
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Table 8: Mass values for D-S theory 

 0<x[i]<0.06 0.06<x[i]<max x[i]>max 

T(present) 0.3 0.8 0.2 

T(not present) 0.3 0.2 0.7 

T(uncertain) 0.4 0 0.1 

 

The D-S theory accounts for uncertainty unlike the Bayesian theory or other 

probabilistic methods. The D-S theory makes the system scalable i.e., if there are many 

more hypotheses, they can be included to determine confidence. The mass table here is 

based on the sensor characteristics. The mass values can also be dynamically updated by 

the result obtained from previous stages in the framework. 

In the assist phase, the framework requests for user assistance in the form of a 

keyboard input. The action and corresponding commands are tabulated in Table 9.  

Table 9: User command and action set 

User command Action 

f Move forward 

r Turn right 

l Turn left 

 

 One of the following cases occur during execution of the framework: 

Case a: The user enters a correct command. In this case, the entered command is 

executed and the framework returns to autonomous mode once executed.  

Case b: The user enters an incorrect input. In this case, the robot takes no action and the 

user is requested again to enter a correct command. 

Case c: The user does not enter an input. The robot waits for a set timeout period and 

enters the autonomous mode on timeout. The sensors readings are acquired again 

and they go through the fusion process hoping for better confidence in this run.  
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There is a bidirectional communication between the robot and user. The 

framework offers a way for user interaction.



CHAPTER 4: IMPLEMENTATION 

The details of framework design and the principles that guide the development of 

sensor fusion framework are explained in the previous sections. This section introduces 

the actual implementation of the framework. The framework is developed using C, C++. 

The simulation environment and the robot are created using Gazebo (v 7.1), a robot 

simulation tool. Robot Operating System (ROS) (v Kinetic Kame), a collection of 

libraries that support robot software development is also used. 

4.1 Gazebo 

Gazebo is a dynamic 3D simulation engine that can simulate robots accurately in 

highly complex indoor and outdoor environments. It has a robust physics engine that 

offers physics simulation with high degree of fidelity and good quality graphic rendering. 

It offers interface for programs and users alike. The procedure to install Gazebo and 

related packages can be found in Appendix A. Figure 18 shows a basic Gazebo window. 

A list of components of Gazebo required to create a robot simulation: 

1. World files (.world): The world description file contains all the elements in a 

simulation such as robots, lights, sensors and static objects. It is formatted using 

SDF (Simulation Description Format) and has a .world extension. The Gazebo 

server (gzserver) reads this file to generate and populate a world [52]. In this case, 

the robot along with its sensors is created as a model file and during run
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time, “~/spawn_sdf_model : gazebo_msgs/SpawnModel” service is used to spawn 

the model in the Gazebo world.  

 

Figure 18: Gazebo window 

2. Model files (.sdf): A model file also used the SDF format but contains only a 

single model that starts with a <model> tag and ends with a </model> tag. This 

facilitates model reuse and simplifies world files. Once a model file is created, it 

can be included in a world file using the following SDF syntax: 

<include> 

<uri>model://model_file_name</uri> 

</include> 

3. Environment variables: Gazebo uses environment variables to locate files and set 

up communication between the server and clients. Default values are compiled in 

and they work for most cases. Some of the variables are as follows: 
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GAZEBO_MODEL_PATH, GAZEBO_RESOURCE_PATH, 

GAZEBO_MASTER_URI, GAZEBO_PLUGIN_PATH, 

GAZEBO_MODEL_DATABASE_URI. In this case, the model path variable is 

set to the workspace as explained in Appendix A. 

4. Gazebo server: The server is the workhorse of Gazebo. It parses a world file given 

on command line and then simulates the world using a physics and sensor engine. 

However, the server does not include any graphics. It is started using gzserver 

filename.world command. 

5. Graphical client: The graphical client connects to a running gzserver and 

visualizes the elements. It provides options to modify a running simulation. It is 

started using the gzclient command. The server and the client can be started using 

a single command gazebo filename.world 

6. Plugins: Plugins provide a convenient way to interface with Gazebo. They can be 

specified on the command line or in the world/model file. Plugins specified on the 

command line are loaded before those specified in the world/model file. Some of 

the plugins used for this work are related to sensors and motors to drive the robot. 

These are specified in the model file. Other plugin to spawn the robot in Gazebo 

is issued on the command line. These plugins are from the gazebo_ros package. A 

set of ROS packages called the gazebo_ros_pkgs provide wrappers around 

standalone Gazebo to achieve integration with ROS. The details of this package 

are found in the weblink: 

http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros 
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 SDF is an XML format that describes objects and environments for robot 

simulators, visualization, and control [53]. The SDF specification can be found in this 

weblink: http://sdformat.org/spec 

 As discussed in the earlier sections, a robot model with six LIDAR sensors must 

be created on Gazebo to verify the framework. A robot using iRobot Create® as the base, 

akin to a TurtleBot v1 is created. Instead of the Microsoft Kinect sensor, this model has 

LIDAR sensors, three of them mounted on the top plate that look for surface obstacles 

and three others mounted on the mid plate at a tilt angle of 45 degrees to scan the terrain 

as shown in Figure 19. 

       

Figure 19: Robot model 

4.1.1 Creation of Robot Model Using SDF 

An SDF file is a collection of elements that describe the model so that the Gazebo 

server can generate the model. These models can range from simple static objects to 

complex robots. The elements are enclosed in a <model> tag and are described as follows 

[54]: 

1. Link: It contains the physical properties of a part of the model. Normally parts 

with movable joints are considered as different links. Parts without movable joints 

are grouped under same link.  
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Collision: A collision element encapsulates a geometry that is used to collision 

checking. This can be a simple shape (which is preferred), or a triangle mesh 

(which consumes greater resources). A link may contain many collision elements. 

Visual: This is used to visualize a part of the link. This element need not be 

present. 

Inertial: It describes the dynamic properties of the link such as mass, rotational 

inertia matrix. 

Sensor: This element collects data from the world. 

2. Joint: It connects two links and one of the link is the parent link and the other 

child link. Other parameters such as joint limits and axis of rotation are mentioned 

in this element. 

3. Plugin: A plugin is a third party shared library to control the model. 

In this case, nine links are defined; one for the base itself (including chassis), one 

for each wheel (left and right) and one for each sensor (total of six). Each sensor link has 

the range and angular resolution, min and max values defined. The type of noise modeled 

by the sensor is Gaussian noise and the standard deviation of noise can be varied in the 

<noise> tag in the sensor link. The sensor link also has a plugin element that uses a 

library called the “libgazebo_ros_laser.so” to publish the sensor readings via ROS. A 

unique topic name is defined for every sensor and the reason for this is detailed in Section 

4.3. A differential drive controller plugin called the “libgazebo_ros_diff_drive.so” 

controls the wheels with the help of topics such as cmd_vel, odom, base_footprint. 
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 All of the above mentioned elements are put together in an model.sdf file (here, 

IRobotCreateHokuyo.sdf). This is placed in the ROS workspace (catkin_ws) as detailed 

in Appendix B and is launched using the “ROS Service Call Spawn Method”. [55] 

4.1.2 Creation of Robot’s Environment Using Heightmap 

Gazebo visualization has a flat surface by default, for the robot to navigate. It is 

essential to test the robot on an uneven terrain and check the framework’s behavior. In 

this case, a heightmap is used to generate a non-flat terrain in Gazebo. [56] 

A heightmap is essentially an extrusion of 2D grayscale image to produce a 3D 

surface. Black color (hex: #000000) represents the lowest point in the plane whereas, 

white color (hex: #ffffff) represents the highest. The grayscale in between these two 

colors represents relative heights on the 3D terrain.  

Figure 20 shows the heightmap used for this work and its resultant 3D terrain is in 

Figure 21. Gazebo requires the heightmap image to be a square image and has (2n)+1 

pixels, for instance, 129x129, 257x257 etc. Each pixel color represents a height value in 

the terrain. The heightmap image is a .png file without alpha channel. 

 

 

Figure 20: Heightmap grayscale image 
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Figure 21: Resultant 3D extrusion 

 A .world file has to be created to load the heightmap on Gazebo. In this case, a 

model.world file is created that has a single link with a collision element and a visual 

element. Under a <heightmap> tag, the location of heightmap.png and the length, width 

and height of the surface is specified. In this case, it is 200mx200mx10m. This means 

that the highest point is 10m while the lowest being 0m. The visual element holds the 

various textures of the ground such as grass and dirt, and the blending indices. A lunch 

file is also created that opens up the model.world file using the roslaunch command as 

explained in Appendix B. 

4.2 ROS 

Robot Operating System (ROS) is a collection of libraries that support robot 

software development. It provides hardware abstraction, device drivers and message-

passing mechanisms that enable robot application frameworks.  

The procedure to install ROS is explained in Appendix A. A ROS workspace 

must be set up to install user programs. The procedure to set up the workspace (called the 

catkin) is also explained in Appendix A. The sequence of steps to install the custom 

fusion framework related packages are detailed in Appendix B. Every package in a catkin 
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workspace consists of a source folder that has the source files, a CMakeLists.txt file and a 

package.xml file. The dependencies to build and run the package are listed in these two 

files. In this case, the package named “gazeboros” that consists of robot’s world, as 

explained in the previous section, has the following build and run time dependencies: 

<build_depend>gazebo_msgs</build_depend> 

<build_depend>gazebo_plugins</build_depend> 

<build_depend>gazebo_ros</build_depend> 

<build_depend>gazebo_ros_control</build_depend> 

<build_depend>roscpp</build_depend> 

<build_depend>rospy</build_depend> 

<build_depend>std_msgs</build_depend> 

<run_depend>gazebo_msgs</run_depend> 

<run_depend>gazebo_plugins</run_depend> 

<run_depend>gazebo_ros</run_depend> 

<run_depend>gazebo_ros_control</run_depend> 

<run_depend>roscpp</run_depend> 

<run_depend>rospy</run_depend> 

<run_depend>std_msgs</run_depend> 

 The package named “lab2” that consists of actual fusion framework has the 

following dependencies: nav_msgs, sensor_msgs, laser_geometry, geometry_msgs, tf, 

roscpp, rospy, std_msgs, genmsg. 

Since catkin should compile the framework code and create and executable, the 

details of the executable have to be mentioned in the CMakeLists.txt file.  
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The following are terminologies used to describe the working principle of ROS 

framework [57]: 

1. Node: An executable that uses ROS to communicate with other nodes. 

2. Master: Provides naming and registration services to rest of the nodes in ROS, 

facilitating communication. ROS master is started by the command “roscore”. 

3. Topic: Nodes can publish messages to a topic or can subscribe to a topic to 

receive messages. 

4. Message: ROS data type used for publishing and subscribing to a topic. Some of 

the message types used for this work are mentioned in Appendix D. 

4.3 ROS Gazebo Interaction 

The two main nodes, in this simulation running on Gazebo are “framework” and 

“gazebo”. Every sensor publishes data onto a unique topic specified in the 

IRobotCreate.sdf model file at a specified rate of 4Hz. The published data is in the form 

of ROS message type specified in Appendix D. The ROS computation graph is shown in 

Figure 22. It depicts the interaction of ROS and Gazebo during run time. All of the nodes 

run in parallel. 
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Figure 22: rqt graph 



CHAPTER 5: SIMULATION 

When the robot starts navigating, the state of the cells in the terrain are initially 

“unknown” (as shown in Figure 23) to the robot because there is no a priori information 

given to the robot. The framework is tested on a flat ground with surface obstacles as 

well as uneven ground with surface obstacles. 

 

Figure 23: Terrain cells 

 On the flat ground, the frameworks ability to recognize presence of surface 

obstacle in a cell under consideration, irrespective of the state of the terrain is tested. The 

robot successfully navigates the flat ground with surface obstacles and the simulation at 

some of the key time instances are shown in Figure 24.
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Figure 24: Robot navigating surface obstacles on a flat ground 

 On an uneven terrain, the robot must be able to detect terrain features along with 

surface obstacles. The irregular terrain created using heightmap as described in Section 

4.1.2 is used to test the robot. The following are some of the scenarios encountered by the 

robot while navigating the terrain: 

5.1 Non-Navigable Down Ramp 

As marked in Figure 25, the robot detects a steep down ramp in the latter half of 

the cell. So, the cell is only partially flat and is not navigable. 
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Figure 25: Non-navigable down ramp detection 
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5.2 Flat Surface with No Obstacle 

In Figure 26, although the LIDAR picks up the presence of a surface obstacle in 

the near vicinity, the framework decides that the next cell in the robot’s path is flat and 

free of obstacles. 

 

Figure 26: Robot navigating a flat surface with no obstacle 

Figure 27 shows another scenario where the robot finds a flat surface without 

obstacles. It can be observed that the track-to-track fusion result is different from that in 

Figure 26, while they are both in the range for classification as “no obstacle”. 
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5.3 Uncertain Mode 

When the robot enters an uncertain mode, the framework prompts for user 

assistance. As shown in Figure 28, the user does not respond within a preset time period.  

So, the robot takes sensor readings again to go through the fusion process. This time, the 

framework acquires higher confidence and estimates the state of the cell accurately as 

shown in Figure 28. In the second case, as shown in Figure 29, the user does not input a 

valid command. So, the framework prompts for a valid command again. 

 

Figure 27: Robot navigating a flat surface 
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Figure 28: Uncertain mode - no user input 

 

Figure 29: Uncertain mode - invalid input 
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5.4 Surface Obstacle Detection 

In this case, the robot recognizes the surface obstacle in the next cell. The robot is 

closer to the obstacle, so the terrain sensor also detects the obstacle as an up ramp 

towards the end of the cell as shown in Figure 30. 

5.5 Navigable Down Ramp 

Figure 31 explains this case where the robot encounters a navigable down ramp. 

A part of the cell is flat and then it slopes down as determined by the framework. 

 

Figure 30: Surface obstacle detection 
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Figure 31: Navigable down ramp 

5.6 Non-Navigable Up Ramp 

Figure 32 shows a scenario where the robot encounters a non-navigable up ramp. 

The framework’s estimate is also marked. 

 

Figure 32: Non-navigable up ramp 



CHAPTER 6: CONCLUSION AND FUTURE WORK 

The simulation results discussed in Chapter 5, show that the framework can 

analyze LIDAR data to determine the state of cells in a terrain, aiding in autonomous 

robot navigation. The framework efficiently uses fusion algorithms (Kalman filter, track-

to-track) to fuse the sensor signals and determine various features of the environment 

under consideration. The combination of methods used in the framework and the modular 

approach simplifies any customization efforts. It also makes the framework scalable to 

add more features, decisions and action sets. The framework works for various scenarios 

encountered in robot navigation as discussed in Chapter 5. It also accounts for human 

interaction while switching to autonomous mode if there is no response from the user. 

The framework is implemented on popular opensource platforms such as Gazebo and 

ROS.  

There is a scope to develop the framework further by adding several other types 

of sensors like camera, IMUs, GPS and so on. Although fusion of camera and ranging 

technology (RADAR, LIDAR etc.) is a well explored area, it may be useful to include a 

variety of sensors depending on the application. A real-time decision evaluation would 

make the framework more robust and that data can be used to train the framework if such 

methods are considered. It would be useful to further classify the uncertain phase for the 

cause, for instance, sensor error, imbalance in weights in the fusion algorithm and so on. 

Robust fusion frameworks form the backbone of future autonomous system development.



63 
 

REFERENCES 

 

[1]  S. S. Özer Çiftçioğlu, "Data Sensor Fusion for Autonomous Robotics," in Serial 

and Parallel Robot Manipulators - Kinematics, Dynamics, Control and 

Optimization, InTech, DOI: 10.5772/33139, 2012.  

[2]  R. Joshi and A. C. Sanderson, "Multisensor fusion: A minimal representation 

framework," World Scientific, vol. 11, 1999.  

[3]  R. C. Luo and C. C. Lai, "Multisensor fusion-based concurrent environment 

mapping and moving object detection for intelligent service robotics," IEEE 

Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4043-4051, 2014.  

[4]  C. Axenie and J. Conradt, "Cortically inspired sensor fusion network for mobile 

robot egomotion estimation," Robotics and Autonomous Systems, vol. 71, pp. 69-

82, 2015.  

[5]  F. Matía and Jiménez, "A. Multisensor fusion: an autonomous mobile robot," 

Journal of Intelligent and robotic systems, vol. 22, no. 2, pp. 129-141, 1998.  

[6]  B. Khaleghi, A. Khamis, F. O. Karray and S. N. Razavi, "Multisensor data fusion: 

A review of the state-of-the-art," Information Fusion, vol. 14, no. 1, pp. 28-44, 

2013.  

[7]  A. Dallil, M. Oussalah and A. Ouldali, "Sensor fusion and target tracking using 

evidential data association," IEEE sensors journal, vol. 13, no. 1, pp. 285-293, 

2013.  

[8]  Y. Bar-Shalom, P. K. Willett and X. Tian, Tracking and data fusion, YBS 

publishing, 2011.  

[9]  T. P. Banerjee and S. Das, "Multi-sensor data fusion using support vector machine 

for motor fault detection," Information Sciences, vol. 217, pp. 96-107, 2012.  

[10]  A. P. James and B. V. Dasarathy, "Medical image fusion: A survey of the state of 

the art," Information Fusion, vol. 19, pp. 4-19, 2014.  

[11]  N. E. El Faouzi, H. Leung and A. Kurian, "Data fusion in intelligent transportation 

systems: Progress and challenges–A survey," Information Fusion, vol. 12, no. 1, pp. 

4-10, 2011.  



64 
 

[12]  H. Cho, Y. W. Seo, B. V. Kumar and R. R. Rajkumar, "A multi-sensor fusion 

system for moving object detection and tracking in urban driving environments," in 

IEEE International Conference on Robotics and Automation (ICRA), pp. 1836-

1843, 2014. 

[13]  E. Cardarelli, L. Sabattini, C. Secchi and C. Fantuzzi, "Multisensor data fusion for 

obstacle detection in automated factory logistics," in 2014 IEEE International 

Conference on Intelligent Computer Communication and Processing (ICCP), pp. 

221-226. 

[14]  W. Wan, F. Lu, Z. Wu and K. Harada, "Teaching robots to do object assembly 

using multi-modal 3d vision," in arXiv preprint arXiv:1601.06473, 2016.  

[15]  J. Zhang, C. Song, Y. Hu and B. Yu, "Improving robustness of robotic grasping by 

fusing multi-sensor," in IEEE Conference on Multisensor Fusion and Integration 

for Intelligent Systems (MFI), pp. 126-131, 2012. 

[16]  J. Conrad, "ZapataBot - An Autonomous Robotic ATV," [Online]. Available: 

https://webpages.uncc.edu/~jmconrad/zapatabot.html. 

[17]  J. Dong, D. Zhuang, Y. Huang and J. Fu, "Advances in Multi-Sensor Data Fusion: 

Algorithms and Applications," Sensors, vol. 9, no. 10, pp. 7771-7784, 2009.  

[18]  B. Khaleghi et al., "Multisensor data fusion: A review of the state-of-the-art," 

Informat. Fusion, p. doi: 10.1016/j.inffus.2011.08.001, 2011.  

[19]  R. C. Luo and M. G. Kay, "Multisensor integration and fusion in intelligent 

systems," in IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 901-931, 

1989. 

[20]  N. Xiong and P. Svensson, "Multi-sensor management for information fusion: 

issues and approaches," Information fusion, vol. 2, no. 3, pp. 163-186, 2002.  

[21]  H. B. Mitchell, "Multi-sensor data fusion: an introduction," Springer Science & 

Business Media, 2007.  

[22]  B. Chandrasekaran, S. Gangadhar and J. M. Conrad, "A Survey of Multisensor 

Fusion Techniques, Architectures and Methodologies," in IEEE SoutheastCon 

2017, Charlotte, NC, 2017.  

[23]  H. F. Durrant-Whyte, "Sensor models and multisensor integration," The 

international journal of robotics research, vol. 7, no. 6, pp. 97-113, 1988.  



65 
 

[24]  J. R. Raol, "Multi-Sensor Data Fusion with MATLAB®," CRC Press, 2009.  

[25]  D. L. Hall and J. Llinas, "An introduction to multisensor data fusion," Proceedings 

of the IEEE, vol. 85, no. 1, pp. 6-23, 1997.  

[26]  W. Elmenreich, "An introduction to sensor fusion," Vienna University of 

Technology, Austria, 2002. 

[27]  M. Markin, C. Harris, M. Bernhardt, J. Austin, M. Bedworth, P. Greenway, R. 

Johnston, A. Little and D. Lowe., "Technology foresight on data fusion and data 

processing," Publication, The Royal Aeronautical Society, 1997. 

[28]  B. V. Dasarathy, "Decision fusion," IEEE Computer Society Press, Los Alamitos, 

CA, 1994. 

[29]  O'Brien, J. and M. D. Bedworth, "The omnibus model: A new architecture for data 

fusion," in Proceedings of the 2nd International Conference on Information Fusion 

(FUSION'99), Helsinki, Finnland, July 1999.  

[30]  J. R. Boyd, "A discourse on winning and losing," Maxwell Air Force Base, AL: Air 

University. Library Document No. MU, 43947, 79, 1987. 

[31]  R. Alami, R. Chatila, S. Fleury, M. Ghallab and F. Ingrand, "An architecture for 

autonomy," International Journal of Robotics Research, vol. 17, no. 4, pp. 315-337, 

April 1998.  

[32]  F. Castanedo, "A review of data fusion techniques," The Scientific World Journal, 

2013.  

[33]  M. A. Abidi and R. C. Gonzalez, Data fusion in robotics and machine intelligence, 

Academic Press Professional, Inc, 1992.  

[34]  S. Jingwei, Z. Yongjie, Z. Haiyun, Z. Tao, W. Leigang, R. Wei and L. Huifeng, "A 

multi-MEMS sensors information fusion algorithm," in The 26th Chinese Control 

and Decision Conference (2014 CCDC), pp. 4675-4680, IEEE, 2014. 

[35]  Y. Wang and S. Goodman, "Data Fusion with Neural Networks," in International 

Conference on Systems Man and Cybernetics IEEE 1994, vol. 1, pp. 640-645, Oct 

1994. 



66 
 

[36]  M. Kok., "Probabilistic modeling for sensor fusion with inertial measurements," 

Linköping studies in science and technology, Dissertations.No. 1814, ISBN 978-91-

7685-621-5, 2016. 

[37]  N. Kovvali, C. Prior, K. Cizek, M. Galik, A. Diaz, E. Forzani and R. Tsui, "Least-

squares based feature extraction and sensor fusion for explosive detection," in IEEE 

International Conference on Acoustics, Speech and Signal Processing Proceedings. 

ICASSP, pp. 2918-2921, 2010. 

[38]  G. D. Hager, S. P. Engelson and S. Atiya, "On comparing statistical and set-based 

methods in sensor data fusion," in Proceedings IEEE International Conference on 

Robotics and Automation, pp.352-358, vol.2, Atlanta, GA, 1993. 

[39]  H. Chen, "Research on multi-sensor data fusion technology based on PSO-RBF 

neural network," in Advanced Information Technology, Electronic and Automation 

Control Conference (IAEAC), Dec 2015.  

[40]  Y. H. Liang and W. M. Tian, "Multi-sensor Fusion Approach for Fire Alarm Using 

BP Neural Network," in International Conference on Intelligent Networking and 

Collaborative Systems (INCoS), pp. 99-102, Ostrawva, 2016. 

[41]  Q. Liu, X. Wang and N. S. V. Rao, "Artificial neural networks for estimation and 

fusion in long-haul sensor networks," in 18th International Conference on 

Information Fusion (Fusion), pp. 460-467, Washington, DC, 2015. 

[42]  M. Munz, K. Dietmayer and M. Mählisch, "Generalized fusion of heterogeneous 

sensor measurements for multi target tracking," in 13th Conference on Information 

Fusion (FUSION), pp. 1-8, 2010. 

[43]  B. Siciliano and O. Khatib, (Eds.). Springer handbook of robotics. Springer Science 

& Business Media, 2008. 

[44]  H. Wu, M. Siegel, R. Stiefelhagen and J. Yang, "Sensor fusion using Dempster-

Shafer theory [for context-aware HCI]," in Proceedings of the 19th IEEE In 

Instumentation and Measurement Technology Conference. IMTC/2002. vol. 1, pp. 

7-12, 2002. 

[45]  S. K. D. Challa, "Bayesian and dempster-shafer fusion," Sadhana, 29(2), 145-174, 

2004. 

[46]  P. Dempster, "A Generalization of Bayesian Inference," Journal of the Royal 

Statistical Society B, vol. 30, no. 2, pp. 205–247, 1968.  



67 
 

[47]  A. Shafer, "Mathematical Theory of Evidence," Princeton University Press, 

Princeton, NJ, USA, 1976. 

[48]  B. Chandrasekaran and J. M. Conrad, "Human-robot collaboration: A survey," in 

IEEE SoutheastCon 2015, pp. 1-8, 2015. 

[49]  B. Chandrasekaran and J. M. Conrad, "Sensor fusion using a selective sensor 

framework to achieve decision and task execution," in IEEE SoutheastCon 2016, 

2016. 

[50]  B. Chandrasekaran and J. M. Conrad, "Complete Coverage Planning: Achieving 

Human Interaction and Maximum Coverage During an Autonomous Robotic 

Vehicle Navigation of an Unknown Terrain," in AAAI Workshops, 2017.  

[51]  Z. Rubo, G. Guochang and Z. Guoyin, "AUV obstacle-avoidance based on 

information fusion of multi-sensors," in IEEE International Conference on 

Intelligent Processing Systems, 1997.  

[52]  "Gazebo Components," Open Source Robotics Foundation, 2014. [Online]. 

Available: http://gazebosim.org/tutorials?tut=components. 

[53]  [Online]. Available: http://sdformat.org/. 

[54]  "Gazebo: Make a model," [Online]. Available: 

http://gazebosim.org/tutorials?tut=build_model. 

[55]  [Online]. Available: http://sauravag.com/category/tutorial/. 

[56]  [Online]. Available: http://playerstage.sourceforge.net/doc/Gazebo-manual-svn-

html/tutorial_terrain.html. 

[57]  [Online]. Available: http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes. 

 



68 
 

APPENDIX A: SIMULATION SETUP FOR TESTING THE FRAMEWORK 

ROS Kinetic Kame distribution requires the Ubuntu Xenial (16.04) platform to 

run on. This version of ROS interfaces with Gazebo v 7.1. 

A.1 ROS Installation 

The installation guide and documentation for the “Desktop-Full Install” 

configuration can be found at http://wiki.ros.org/kinetic/Installation/Ubuntu. The 

commands are as follows: 

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 

/etc/apt/sources.list.d/ros-latest.list' 

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 

0xB01FA116 

$ sudo apt-get update 

$ sudo apt-get install ros-kinetic-desktop-full 

$ sudo rosdep init 

$ rosdep update 

$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 

$ source ~/.bashrc 

$ sudo apt-get install python-rosinstall 

A.2 Gazebo Installation 

The installation guide for Gazebo 7 can be found at: 

http://gazebosim.org/tutorials?tut=install_ubuntu&cat=install 
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$ sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable 

`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list' 

$ wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add - 

$ sudo apt-get update 

$ sudo apt-get install gazebo7 

$ sudo apt-get install libgazebo7-dev 

The ROS package to connect Gazebo and ROS is present in “gazebo_ros_pkgs”. The 

installation instructions can be found at 

http://gazebosim.org/tutorials?tut=ros_installing&cat=connect_ros.  

The required packages can be installed with the following command: 

sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-ros-control 

A.3 CATKIN Workspace Setup 

Catkin is used to build packages for ROS. A set of detailed instructions to set up 

the Catkin workspace can be found at http://wiki.ros.org/ROS/Tutorials. The following 

commands will set up the Catkin workspace in /home/username folder. 

$ mkdir -p ~/catkin_ws/src 

$ cd ~/catkin_ws/src 

$ catkin_init_workspace 

$ cd ~/catkin_ws/ 

$ catkin_make 

$ cd 

$ gedit ~/.bashrc 
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The following commands are to be saved in the .bashrc file: 

source /opt/ros/kinetic/setup.bash 

source ~/catkin_ws/devel/setup.bash 

 Additional ROS packages specific for navigation, mapping, visualization and 

robot control can be installed using the following command: sudo apt-get install pkgname  

A list of some of the popular ROS packages: 

ros-distro-navigation 

ros-distro-slam-gmapping 

ros-distro-rviz 

ros-distro-ros-control 

To understand the basic working of a ROS node, the following tutorial package will be 

useful: ros-distro-ros-tutorials 
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APPENDIX B: FRAMEWORK CODE AND GAZEBO SIMULATION 

There are three main components required for the sensor fusion framework 

simulation. One, the robot itself, in this case a TurtleBot with 6 LIDARs. The description 

of the robot along with all its sensors is present in IRobotCreateHokuyo.sdf file. A robot 

has to navigate an irregular, unknown terrain. The description of the robot’s world and 

terrain is in model.world file. It is launched by the custom_heightmap.launch file in 

Gazebo via ROS. That forms the second component. The third component is the sensor 

fusion framework itself. The source code for the framework is present in lab2/src folder 

in framework.cpp. Other dependencies are found in the same folder. 

B.1 Basic Package Creation in ROS 

ROS Catkin workspace has the following directory structure: 

 

Figure 33: Catkin workspace directory structure 

A new package is created in the ~/catkin_ws/src folder. Detailed procedure to 

create a package is explained in 
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http://wiki.ros.org/ROS/Tutorials/catkin/CreatingPackage. The following commands will 

create the gazeboros package for making the robot’s world: 

$ cd ~/catkin_ws/src 

$ catkin_create_pkg gazeboros gazebo_msgs gazebo_plugins gazebo_ros 

gazebo_ros_control std_msgs rospy roscpp 

 The above command creates a gazeboros folder in the catkin_ws/src directory that 

contains an include folder, a src folder, a Package.xml file and a CMakeLists.txt file. 

Package.xml contains the meta information whereas CmakeLists.txt contains the build 

information for the package. 

 

Figure 34: gazeboros package file structure 
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Gazeboros package intends to include the information of the terrain that the robot 

navigates. The gazeboros package created by the catkin_create_pkg command does not 

hold this information. So, relevant files are included in the gazeboros package as shown 

in the file structure above.  A world folder and a lunch folder is created and model.world 

and custom_heightmap.launch files are added respectively. A heightmap.png is placed in 

the materials/textures sub folder. model.sdf and model.config files are also added to the 

gazeboros folder. The Package.xml and CmakeLists.txt files are modified as required to 

include these changes. The following commands will build the new gazeboros package in 

the Catkin workspace: 

$ cd ~/catkin_ws 

$ catkin_make install 

 The above mentioned procedure is repeated to install other parts of the sensor 

fusion framework package. 

B.2 Package Directory 

The directory structure for the entire framework in the catkin workspace is as 

shown below: 

 

Figure 35: Package list 

/ create – package that holds information about the robot model. 
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/lab2 – package that contains the entire sensor fusion framework code.  

/gazeboros – package that contains files to launch a terrain in gazebo for the robot to 

navigate. 

The file structure for some of the key packages of the framework: 

1. create 

 

Figure 36: Robot package 

2. lab2 

 

Figure 37: Framework package
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APPENDIX C: USER GUIDE 

To run the simulation, 

1. Initiate roscore in a terminal with the following command: 

$ roscore 

2. In another terminal, specify the path for the Gazebo files related to the robot 

environment model using the following command: 

$ export GAZEBO_MODEL_PATH=/home/username/catkin_ws/src/ 

Then invoke Gazebo through roslaunch using the following command: 

$ roslaunch gazeboros custom_heightmap.launch 

This should launch Gazebo with the custom terrain. 

3. In a third terminal, bring up the robot model at a specific coordinate position on the 

custom terrain with the following command: 

$ rosrun gazebo_ros spawn_model -file 

/home/username/catkin_ws/src/create/IRobotCreateHokuyo.sdf -sdf -x 0 -y 5 -z 5 -model 

create 

If coordinate is not mentioned, Gazebo will spawn the model at origin. The z coordinate 

must be mentioned so that the robot is on the custom terrain surface. 

4. In the above terminal, run the framework package using rosrun to examine the sensor 

fusion framework. 

$ rosrun lab2 framework 

Note: “username” in the commands should be replaced with the actual user name of the 

machine.
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APPENDIX D: ROS MESSAGES 

D.1 Laser Scan Message for LIDAR Data 

sensor_msgs/LaserScan.msg 

 

 

 

# Single scan from a planar laser range-finder 

# 

# If you have another ranging device with different behavior (e.g. a sonar 

# array), please find or create a different message, since applications 

# will make fairly laser-specific assumptions about this data 

 

Header header   # timestamp in the header is the acquisition time of  

                           # the first ray in the scan. 

                           # 

                           # in frame frame_id, angles are measured around  

                           # the positive Z axis (counterclockwise, if Z is up) 

                           # with zero angle being forward along the x axis 

                          

float32 angle_min  # start angle of the scan [rad] 

float32 angle_max   # end angle of the scan [rad] 

float32 angle_increment # angular distance between measurements [rad] 

 

float32 time_increment # time between measurements [seconds] - if your 

                           # scanner is moving, this will be used in interpolating 

                           # position of 3d points 

float32 scan_time  # time between scans [seconds] 

 

float32 range_min  # minimum range value [m] 

float32 range_max  # maximum range value [m] 

 

float32[] ranges  # range data [m] (Note: values < range_min or >  

# range_max should be discarded) 

float32[] intensities  # intensity data [device-specific units].  If your 

                           # device does not provide intensities, please leave 

                           # the array empty. 
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std_msgs/Header.msg 

 

D.2 Command Velocity for the Robot 

geometry_msgs/Twist.msg 

geometry_msgs/Vector3.msg 

# Standard metadata for higher-level stamped data types. 

# This is generally used to communicate timestamped data  

# in a particular coordinate frame. 

#  

# sequence ID: consecutively increasing ID  

uint32 seq 

# Two-integer timestamp that is expressed as: 

# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called  

# 'secs') 

# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called  

# 'nsecs') 

# time-handling sugar is provided by the client library 

time stamp 

# Frame this data is associated with 

# 0: no frame 

# 1: global frame 

string frame_id 

 

# This expresses velocity in free space broken into its linear and angular parts. 

Vector3  linear 

Vector3  angular 

# This represents a vector in free space.  

# It is only meant to represent a direction. Therefore, it does not 

# make sense to apply a translation to it (e.g., when applying a  

# generic rigid transformation to a Vector3, tf2 will only apply the 

# rotation). If you want your data to be translatable too, use the 

# geometry_msgs/Point message instead. 

 

float64 x 

float64 y 

float64 z 
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D.3 Odometry Information of the Robot 

nav_msgs/Odometry.msg 

geometry_msgs/PoseWithCovariance.msg 

geometry_msgs/Pose.msg 

geometry_msgs/Point.msg 

 

 

# This represents an estimate of a position and velocity in free space.   

# The pose in this message should be specified in the coordinate frame given by  

# header.frame_id. 

# The twist in this message should be specified in the coordinate frame given by the  

# child_frame_id 

Header header 

string child_frame_id 

geometry_msgs/PoseWithCovariance pose 

geometry_msgs/TwistWithCovariance twist 

# This represents a pose in free space with uncertainty. 

 

Pose pose 

 

# Row-major representation of the 6x6 covariance matrix 

# The orientation parameters use a fixed-axis representation. 

# In order, the parameters are: 

# (x, y, z, rotation about X axis, rotation about Y axis, rotation about Z axis) 

float64[36] covariance 

# A representation of pose in free space, composed of position and orientation.  

Point position 

Quaternion orientation 

# This contains the position of a point in free space 

float64 x 

float64 y 

float64 z 
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geometry_msgs/Quaternion.msg 

geometry_msgs/TwistWithCovariance.msg 

 

D.4 Transformation Configuration 

geometry_msgs/Transformation.msg 

# This represents an orientation in free space in quaternion form. 

 

float64 x 

float64 y 

float64 z 

float64 w 

# This expresses velocity in free space with uncertainty. 

 

Twist twist 

 

# Row-major representation of the 6x6 covariance matrix 

# The orientation parameters use a fixed-axis representation. 

# In order, the parameters are: 

# (x, y, z, rotation about X axis, rotation about Y axis, rotation about Z axis) 

float64[36] covariance 

# This represents the transform between two coordinate frames in free space. 

 

Vector3 translation 

Quaternion rotation 
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APPENDIX E: TRACK-TO-TRACK FUSION TEST RUN 

Obstacl

e sensor 

(r1) 

Obstac

le 

sensor 

(r2) 

Terrai

n 

senso

r (r1) 

Terrai

n 

sensor 

(r2) 

Track 

fusion w 

n=1 

Track 

fusion w 

n=10 

Track 

fusion w 

n=100 

Track 

fusion w 

n=1000 

70 71 0.5 0.492 0.717014 0.717014 0.717014 0.717014 

70 70.3 0.58 0.57 0.603262 0.603262 0.603262 0.603262 

70 72 0.76 0.771 0.867614 0.867614 0.867614 0.867614 

70 75 0.91 0.922 0.894381 0.894381 0.894381 0.894381 

70 70.8 1 1.014 0.824363 0.824363 0.824363 0.824363 

70 70.99 0.6 0.595 1.052728 1.052728 1.052728 1.052728 

70 68.4 0.5 0.499 0.063133 0.063133 0.063133 0.063133 

70 70 0.5 0.5 -0.694836 -0.694836 -0.694836 -0.69483 

70 70 0.5 0.501 -1.441198 -1.441198 -1.441198 -1.44119 

70 70 0.5 0.48 -1.831603 -1.831603 -1.831603 -1.83160 

70 74 0.5 0.517 0.667229 0.667229 0.667229 0.667229 

70 65.89 0.7 0.686 1.373856 1.373856 1.373856 1.373856 

70 73 0.88 0.893 1.337094 1.337094 1.337094 1.337094 

70 72.86 1.2 1.219 2.149016 2.149016 2.149016 2.149016 

70 70 1.5 1.483 3.336988 3.336988 3.336988 3.336988 

71 70.5 0.5 0.504 0.706144 0.706144 0.706144 0.706144 

72 70 0.58 0.573 0.680001 0.680001 0.680001 0.680001 

70 70 0.76 0.758 0.774396 0.774396 0.774396 0.774396 

73.8 71.54 0.91 0.917 0.774373 0.774373 0.774373 0.774373 

75 73.44 1 1.01 0.713521 0.713521 0.713521 0.713521 

71 70 0.6 0.605 8.741328 8.741328 8.741328 8.741328 

72 70 0.5 0.488 7.848506 7.848506 7.848506 7.848506 

70 70 0.5 0.499 7.020599 7.020599 7.020599 7.020599 

73.8 70.21 0.5 0.485 6.400338 6.400338 6.400338 6.400338 

75 72.09 0.5 0.501 5.828516 5.828516 5.828516 5.828516 

71 70 0.5 0.501 1.476156 1.476156 1.476156 1.476156 

72 72 0.7 0.699 1.98412 1.98412 1.98412 1.98412 

70 70 0.88 0.886 2.083873 2.083873 2.083873 2.083873 

73.8 72.9 1.2 1.185 3.069411 3.069411 3.069411 3.069411 

75 74.44 1.5 1.517 3.911797 3.911797 3.911797 3.911797 

70 74.01 0.5 0.513 0.507794 0.507794 0.507794 0.507794 

3.4 3.41 0.58 0.578 0.025165 0.025165 0.025165 0.025165 

70 70.02 0.76 0.747 0.717631 0.717631 0.717631 0.717631 

9 10 0.91 0.914 0.179159 0.179159 0.179159 0.179159 

70 73.08 1 0.989 0.635053 0.635053 0.635053 0.635053 

70 70 0.6 0.58 0.313611 0.313611 0.313611 0.313611 

3.4 3.38 0.5 0.52 -1.387129 -1.387129 -1.387129 -1.38712 
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70 71 0.5 0.509 -1.621879 -1.621879 -1.621879 -1.62187 

9 9.01 0.5 0.501 -2.776353 -2.776353 -2.776353 -2.77635 

70 74 0.5 0.501 -2.875135 -2.875135 -2.875135 -2.87513 

70 69.87 0.5 0.509 0.584901 0.584901 0.584901 0.584901 

3.4 3.391 0.7 0.697 1.649815 1.649815 1.649815 1.649815 

70 72.34 0.88 0.887 1.927661 1.927661 1.927661 1.927661 

9 8.99 1.2 1.202 3.712918 3.712918 3.712918 3.712918 

70 72 1.5 1.495 5.749237 5.749237 5.749237 5.749237 

2 2.8 0.5 0.511 0.573909 0.573909 0.573909 0.573909 

70 70 0.58 0.565 0.335452 0.335452 0.335452 0.335452 

70 69.5 0.76 0.769 0.645258 0.645258 0.645258 0.645258 

70 72 0.91 0.898 0.645131 0.645131 0.645131 0.645131 

3.4 3.6 1 1.013 0.573262 0.573262 0.573262 0.573262 

2 1.99 0.6 0.598 2.883175 2.883175 2.883175 2.883175 

70 70 0.5 0.514 0.787328 0.787328 0.787328 0.787328 

70 70.7 0.5 0.48 -0.761037 -0.761037 -0.761037 -0.76103 

70 70.7 0.5 0.518 -2.30888 -2.30888 -2.30888 -2.30888 

3.4 3.4 0.5 0.519 -3.309816 -3.309816 -3.309816 -3.30981 

2 2.01 0.5 0.502 -0.746924 -0.746924 -0.746924 -0.74692 

70 70 0.7 0.698 0.253327 0.253327 0.253327 0.253327 

70 70.36 0.88 0.878 0.562955 0.562955 0.562955 0.562955 

70 72.41 1.2 1.187 2.317433 2.317433 2.317433 2.317433 

3.4 3.05 1.5 1.504 4.412834 4.412834 4.412834 4.412834 

70 70 0.5 0.495 0.733685 0.644195 -0.250708 -9.19974 

0.2 0.1999 0.58 0.56 0.559998 0.477335 -0.349291 -8.61555 

0.3 0.3054 0.76 0.741 0.869433 0.785001 -0.059318 -8.50250 

70 75 0.91 0.912 0.836999 0.747509 -0.147395 -9.09642 

70 72 1 1.004 0.733773 0.644283 -0.25062 -9.19965 

70 69.28 0.6 0.591 2.63059 2.592554 2.212192 -1.59142 

0.2 0.205 0.5 0.503 0.599365 0.568157 0.256077 -2.86472 

0.3 0.4 0.5 0.504 -0.948944 -0.981912 -1.311598 -4.60846 

70 70.33 0.5 0.48 -2.529881 -2.567917 -2.948279 -6.75189 

70 73.22 0.5 0.483 -3.561908 -3.599944 -3.980306 -7.78392 

70 71 0.5 0.484 -0.201502 -0.240792 -0.633689 -4.56266 

0.2 0.28 0.7 0.709 0.863591 0.831137 0.506594 -2.73883 

0.3 0.28 0.88 0.881 1.172959 1.138725 0.796387 -2.62699 

70 74.05 1.2 1.212 2.894978 2.855688 2.462791 -1.46618 

70 70.69 1.5 1.491 4.958947 4.919658 4.52676 0.597784 

70 70 0.5 0.517 -15.03566 -15.52219 -20.38747 -69.0403 

70 73.49 0.58 0.582 -15.24214 -15.72866 -20.59392 -69.2464 

0 0.09 0.76 0.757 -14.89981 -15.38001 -20.18199 -68.2017 

70 70 0.91 0.915 -14.93252 -15.41905 -20.28430 -68.9367 

71 72.06 1 1.011 -15.03616 -15.52268 -20.38796 -69.0407 

70 65 0.6 0.589 0.959364 0.9585 0.949859 0.86345 
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70 68 0.5 0.483 -1.106415 -1.107279 -1.11592 -1.20232 

0 0.2 0.5 0.504 -2.621958 -2.616322 -2.559962 -1.99636 

70 73.91 0.5 0.49 -4.204949 -4.205813 -4.214454 -4.30086 

71 72.18 0.5 0.48 -5.238415 -5.239279 -5.24792 -5.33432 

70 69.19 0.5 0.503 -0.461712 -0.482869 -0.694439 -2.81013 

70 70 0.7 0.712 0.570478 0.549321 0.337751 -1.77794 

0 0 0.88 0.879 0.912834 0.898007 0.749729 -0.73304 

70 70.6 1.2 1.18 2.634478 2.613321 2.401751 0.286055 

71 70.21 1.5 1.519 4.698512 4.677355 4.465785 2.350089 

70 71 0.5 0.492 0.766627 0.766627 0.766627 0.766627 

70 70.3 0.58 0.57 0.560189 0.560189 0.560189 0.560189 

70 72 0.76 0.771 0.869986 0.869986 0.869986 0.869986 

70 75 0.91 0.922 0.870026 0.870026 0.870026 0.870026 

70 70.8 1 1.014 0.766787 0.766787 0.766787 0.766787 

70 70.99 0.6 0.595 3.338835 3.338835 3.338835 3.338835 

70 68.4 0.5 0.499 1.274676 1.274676 1.274676 1.274676 

70 70 0.5 0.5 -0.27342 -0.27342 -0.27342 -0.27342 

70 70 0.5 0.501 -1.821533 -1.821533 -1.821533 -1.82153 

70 70 0.5 0.48 -2.853768 -2.853768 -2.853768 -2.85376 

70 74 0.5 0.517 -1.301534 -1.301534 -1.301534 -1.30153 

70 65.89 0.7 0.686 -0.269769 -0.269769 -0.269769 -0.26976 

70 73 0.88 0.893 0.04013 0.04013 0.04013 0.04013 

70 72.86 1.2 1.219 1.79471 1.79471 1.79471 1.79471 

70 70 1.5 1.483 3.858574 3.858574 3.858574 3.858574 

71 70.5 0.5 0.504 0.729088 0.729088 0.729088 0.729088 

72 70 0.58 0.573 0.522101 0.522101 0.522101 0.522101 

70 70 0.76 0.758 0.832724 0.832724 0.832724 0.832724 

73.8 71.54 0.91 0.917 0.830978 0.830978 0.830978 0.830978 

75 73.44 1 1.01 0.72725 0.72725 0.72725 0.72725 

71 70 0.6 0.605 3.038085 3.038085 3.038085 3.038085 

72 70 0.5 0.488 0.973315 0.973315 0.973315 0.973315 

70 70 0.5 0.499 -0.573762 -0.573762 -0.573762 -0.57376 

73.8 70.21 0.5 0.485 -2.123812 -2.123812 -2.123812 -2.12381 

75 72.09 0.5 0.501 -3.156317 -3.156317 -3.156317 -3.15631 

71 70 0.5 0.501 -1.408945 -1.408945 -1.408945 -1.40894 

72 72 0.7 0.699 -0.377352 -0.377352 -0.377352 -0.37735 

70 70 0.88 0.886 -0.066726 -0.066726 -0.066726 -0.06672 

73.8 72.9 1.2 1.185 1.685844 1.685844 1.685844 1.685844 

75 74.44 1.5 1.517 3.749707 3.749707 3.749707 3.749707 

70 74.01 0.5 0.513 0.386843 0.386843 0.386843 0.386843 

3.4 3.41 0.58 0.578 0.21223 0.21223 0.21223 0.21223 

70 70.02 0.76 0.747 0.489896 0.489896 0.489896 0.489896 

9 10 0.91 0.914 0.519449 0.519449 0.519449 0.519449 

70 73.08 1 0.989 0.386656 0.386656 0.386656 0.386656 



83 
 

70 70 0.6 0.58 2.818546 2.818546 2.818546 2.818546 

3.4 3.38 0.5 0.52 0.785978 0.785978 0.785978 0.785978 

70 71 0.5 0.509 -0.793631 -0.793631 -0.793631 -0.79363 

9 9.01 0.5 0.501 -2.313143 -2.313143 -2.313143 -2.31314 

70 74 0.5 0.501 -3.373945 -3.373945 -3.373945 -3.37394 

70 69.87 0.5 0.509 -0.585928 -0.585928 -0.585928 -0.58592 

3.4 3.391 0.7 0.697 0.477402 0.477402 0.477402 0.477402 

70 72.34 0.88 0.887 0.75579 0.75579 0.75579 0.75579 

9 8.99 1.2 1.202 2.538968 2.538968 2.538968 2.538968 

70 72 1.5 1.495 4.574401 4.574401 4.574401 4.574401 

2 2.8 0.5 0.511 0.594133 0.594133 0.594133 0.594133 

70 70 0.58 0.565 0.355717 0.355717 0.355717 0.355717 

70 69.5 0.76 0.769 0.665513 0.665513 0.665513 0.665513 

70 72 0.91 0.898 0.665385 0.665385 0.665385 0.665385 

3.4 3.6 1 1.013 0.593487 0.593487 0.593487 0.593487 

2 1.99 0.6 0.598 4.518887 4.518887 4.518887 4.518887 

70 70 0.5 0.514 2.423045 2.423045 2.423045 2.423045 

70 70.7 0.5 0.48 0.874682 0.874682 0.874682 0.874682 

70 70.7 0.5 0.518 -0.673159 -0.673159 -0.673159 -0.67315 

3.4 3.4 0.5 0.519 -1.674094 -1.674094 -1.674094 -1.67409 

2 2.01 0.5 0.502 -0.330007 -0.330007 -0.330007 -0.33000 

70 70 0.7 0.698 0.670244 0.670244 0.670244 0.670244 

70 70.36 0.88 0.878 0.979872 0.979872 0.979872 0.979872 

70 72.41 1.2 1.187 2.734349 2.734349 2.734349 2.734349 

3.4 3.05 1.5 1.504 4.82975 4.82975 4.82975 4.82975 

70 70 0.5 0.495 0.978172 0.956245 0.736969 -1.45578 

0.2 0.1999 0.58 0.56 0.804484 0.789385 0.638386 -0.87159 

0.3 0.3054 0.76 0.741 1.113919 1.09705 0.928359 -0.75855 

70 75 0.91 0.912 1.081486 1.059558 0.840283 -1.35247 

70 72 1 1.004 0.97826 0.956332 0.737057 -1.45569 

70 69.28 0.6 0.591 15.601486 15.030738 9.323252 -47.7516 

0.2 0.205 0.5 0.503 13.57028 13.006363 7.367196 -49.0244 

0.3 0.4 0.5 0.504 12.021955 11.456274 5.799464 -50.7686 

70 70.33 0.5 0.48 10.441041 9.870297 4.162858 -52.911 

70 73.22 0.5 0.483 9.408993 8.838245 3.130768 -53.9439 

70 71 0.5 0.484 0.449672 0.449412 0.446803 0.420723 

0.2 0.28 0.7 0.709 1.516391 1.523137 1.590593 2.265153 

0.3 0.28 0.88 0.881 1.825994 1.830916 1.880134 2.37231 

70 74.05 1.2 1.212 3.548562 3.548301 3.545693 3.519612 

70 70.69 1.5 1.491 5.614137 5.613876 5.611268 5.585187 

70 70 0.5 0.517 0.644774 0.623722 0.4132 -1.69201 

70 73.49 0.58 0.582 0.438278 0.417226 0.206704 -1.89851 

0 0.09 0.76 0.757 0.780657 0.765943 0.6188 -0.85262 

70 70 0.91 0.915 0.747897 0.726845 0.516323 -1.58889 



84 
 

71 72.06 1 1.011 0.644273 0.623221 0.412699 -1.69252 

70 65 0.6 0.589 2.956377 2.93566 2.728494 0.656831 

70 68 0.5 0.483 0.892201 0.871484 0.664318 -1.40734 

0 0.2 0.5 0.504 -0.622959 -0.637334 -0.781079 -2.21853 

70 73.91 0.5 0.49 -2.203929 -2.224646 -2.431812 -4.50347 

71 72.18 0.5 0.48 -3.236582 -3.257299 -3.464465 -5.53612 

70 69.19 0.5 0.503 -0.66732 -0.692992 -0.949704 -3.51682 

70 70 0.7 0.712 0.364835 0.339164 0.082451 -2.48467 

0 0 0.88 0.879 0.707146 0.687797 0.494309 -1.44057 

70 70.6 1.2 1.18 2.428766 2.403095 2.146383 -0.42073 

71 70.21 1.5 1.519 4.492732 4.46706 4.210348 1.643226 

 

 


