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ABSTRACT

QIUYU CHEN. Representation Learning of Image Recognition: Diversity, Aspect
Ratio, Invariance, and Composition. (Under the direction of DR. JIANPING FAN)

Deep neural networks (DNN) are proved to be effective and improve the performance

dramatically in various kinds of computer vision tasks. The end-to-end learning

manner in training DNN consistently shows the powerful modeling ability and conse-

quently mitigates the dedicated efforts for expert feature engineering. On the other

hand, it raises the issue that how to improve the black-box network with better repre-

sentation (feature) learning especially when the learned representations and classifiers

are tied together in the manner of supervised learning. In this work, representation

learning is studied in four perspectives of different fields, i.e. diversity in ensemble

learning, aspect ratio in image aesthetics assessment, invariance in identification task,

and composition in color attribute recognition.

In light of analyzing the bottleneck of black-box network and designing better

representation learning for target tasks, we introduce that: (a) Ensemble learning

relies on the diversity of the complementary neural networks, in both feature repre-

sentations and classifier representations. A diverse representation learning method,

namely learning-difficulty-aware embedding, is proposed to adaptively reconcile learn-

ing attentions for different categories by training a series of networks with diversified

representations sequentially; (b) Widely-adopted data augmentation method in image

recognition deteriorates aspect ratios, which is an important factor in image aesthet-

ics assessment. An aspect ratio representation learning method, namely adaptive

fractional dilated convolution, is proposed to explicitly preserve the learning repre-

sentation related to aspect ratios by adjusting the receptive fields adaptively and

natively; (c) Identification tasks, e.g . person re-identification, aim at learning repre-

sentations that are robust to interfering variances, e.g . lighting variances, view vari-
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ances, pose variances. An invariance representation learning method, namely anchor

loss, is proposed to train a robust feature extractor, which distills the identity-related

representations while disentangling and removing interfering variances by global su-

pervision under local mini-batch training; (d) Color recognition is entangled with

compositional representation in both visual perception and language attentions. A

compositional learning module with attention to key colors is proposed to learn bet-

ter color representations. Besides, another compositional learning method, namely

classifier as descriptor, is proposed for long-tail color recognition by incorporating

the rich knowledge in classifier representations to remove the bias from bias-trained

model.

Through extensive experiments and thorough analysis, we demonstrate some novel

insights about the impacts of four factors, i.e. diversity, receptive field, invariance,

and composition. Several methods are proposed to learn better representations for

those factors, achieving state-of-the-art results in different tasks.
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CHAPTER 1: INTRODUCTION

1.1 Representation Learning of Image Recognition

With the availability of massive training images and the rapid growth of compu-

tational powers, we are now able to develop scalable learning algorithms based on

deep convolutional neural networks to support large-scale visual recognition tasks,

e.g . image classification [6, 7, 8, 9, 10, 3, 11, 12, 13], object detection [14, 15, 16,

17, 18, 19, 20, 21] and semantic segmentation [22, 23, 24, 25]. Compared with tra-

ditional learning methods for computer vision where visual feature engineering and

data fitting are separate, deep learning provides a unified model in an end-to-end

learning manner, i.e. fitting the data directly from images to labels with loss func-

tions through iterative optimization. On the one hand, without bells and whistles,

deep neural networks result in consistent and significant improvement, achieving sat-

isfactory requirements in real-life applications and benefiting people’s life in a new

automation era. On the other hand, however, such end-to-end learning encapsulates

the models into a black box, which makes the interpretation and imposing conditions

less accessible and builds the barriers to improve representation learning. Moreover,

vanilla deep neural networks are not satisfactory solutions, and improving represen-

tation learning has demonstrated its key power in many milestones during the rapid

development of deep learning.

Representation learning is to learn representations of the data that make it easier

to extract useful information when building classifiers or other predictors [26]. Many

fundamental advances in computer vision using deep learning can be understood

from the perspective of representation learning. Residual connection [3] successfully

solves the generalization problem in deep networks by exploiting all the parameters
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in the network to learn more meaningful features without gradient vanishing [27]

and behaving like many combinations of different small networks that learn diverse

representations [28]. Dilated convolution [23, 24, 29] targets semantic (high-level)

representation learning in dense prediction while preserving the localization ability

by dilating the receptive fields in convolutional kernels without the downsampling

of feature maps. FPN [30] performs the feature fusion in a top-down manner with

lateral connections to extract better representations in the features maps at different

scales for object detection. Group feature extraction, e.g . ResNext [31], Seperable

Conv [11], ShuffleNet Unit [13], efficiently incorporates local connections with less

computational cost while preserving the strong modeling ability of networks to learn

useful representations. Tan et al . [32] systematically study the model scaling and

identify that carefully balancing network depth, width, and resolution can lead to

better representation learning under the same budget of computation and parame-

ters. Disentanglement representation learning [33, 34, 35] in generative adversarial

networks substantially improves the quality of synthetic images and enables the ma-

nipulation of semantics and variations for image generation. Dosovitskiy et al . [36]

utilize self-attention [37] with flexible receptive fields and global connections to re-

place convolutional layers which can only extract features by gradually expanding

receptive fields, achieving representation learning across the entire image even in the

lowest layers.

Despite the generality for some methods, e.g . residual connection [3] and self-

attention with block images [36], good representations could vary from different do-

mains, where some representations are more important to achieving the specific goals.

Many methods of representation learning focus on the identified important issues to

help target tasks, e.g . semantic and localization representation learning for dense

prediction [23, 24, 29], multi-scale semantic presentation learning for object detec-

tion [30], efficient representation learning [31, 11, 13, 32] for model compression,
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disentanglement representation learning [33, 34, 35] for image generation.

In light of the aforementioned success and importance of representation learning

for image recognition, we investigate four crucial factors in respecting domains: di-

verse representation learning for ensemble learning, aspect ratio representation learn-

ing for image aesthetics assessment, invariance representation learning for person

re-identification, compositional representation learning for color recognition. Specif-

ically, (a) For ensemble learning, where multiple networks are managed together to

contribute a stronger model, e.g . boosting [38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52] and stacking [53, 54, 55], we target the diversity of complemen-

tary networks in decision space and propose a difficulty-aware-embedding method to

learn a serious of networks with diversified focus in an easy-to-hard way according

to the learning complexity; (b) For image aesthetics assessment [1], where aspect

ratios and compositions are altered by widely-adopted data augmentation in general

image recognition [8], we develop a new convolution layer, called adaptive fractional

dilated convolution, that explicitly learns the representations related to aspect ratios;

(c) For person re-identification, where distance-based feature retrieval is used during

test [56, 57, 58], we introduce an anchor loss to learn better representations that distill

the identity-related features and dissect interfering variance in latent feature space.

(e) For color attribute recognition, where we identified that language attention and

visual attention are entangled, a color compositional learning module is proposed to

improve representation learning taking composition characteristics for visual atten-

tion, and debiasing method, called classifier as descriptor, is proposed for long-tail

color recognition taking composition characteristics for language attention.

In the following context, we illustrate the motivation of these methods respectively.

1.2 Diversity

Deep learning has a strong modeling ability that could even easily fit random la-

bels in large-scale training data [59]. Thus, the representation learning that models
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the training distribution perfectly does not necessarily lead to better generalization.

Diversity is an important factor about a good representation learning that alleviates

overfitting and generalizes well in testing distribution. From the perspective of opti-

mization and overfitting, diverse representations fully exploit large number of learning

parameters in deep neural network and endeavor to find a better local optimal in-

stead of a trivial optimal or complex one. A better local optimal could cover many

possible patterns from training data while a trivial optimal may extract monotonous

features and a complex optimal may simply memorize the data. As a result, diverse

representation learning could be served as an implicit regularization. From another

perspective of generalization, diverse representations can be robust to shifts and vari-

ations between training distribution and testing distribution because the final decision

considers diverse factors and reduces the uncertainty for the test of generalization.

There are mainly two streams for diverse representation learning, single network

and ensemble networks. In the single network, where only a single classifier layer is

used, diversity in representation learning is achieved by network architecture design

or regularization. For network architecture design, the methods could be related to

efficient networks, where the goal is to develop better generalization ability under

the same budget of computation cost during inference. Diversity plays a key part in

the design of efficient architecture by fully exploiting available learning parameters

and obtaining better results. For example, group convolution, e.g . ResNext [31],

Separable Conv [11], ShuffleNet Unit [13], removes global and monotonous con-

nections and attends local and grouped features, achieving diverse representation

learning while reducing the computational cost. Besides, the compose of diverse fil-

ters within network modules is another approach for diverse network architectures,

e.g . GoogleNet collections [8, 60, 61, 62] based on the combination of different ker-

nel sizes. For regularization, orthogonality is a well studied approach in diverse

representation learning through weight initialization [63, 64], SVD-based hard or-
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thogonality constraints [65, 66, 67], Gram-matrix-based soft orthogonality regulariza-

tions [64, 68, 69]. Another direction achieving diversity by regularization is through

random dropping/whitening either from input, e.g . random erasing [70], CutOut [71],

or from internal feature maps or connections, e.g . DropOut [72], DropConect [73],

DropBlock [74], DropPath [75].

In this work, we focus on the diverse representation learning in ensemble networks,

i.e. the diversity of multiple complementary networks. AdaBoost [40, 39] diversifies

complementary networks by adjusting the weights in sample level sequentially. De-

spite its success before the rise of deep learning, we discover that it is not suitable

for strong learners, i.e. deep neural networks. One reason is that AdaBoost targets

fitting data in training sample level, where a single deep neural network could already

achieve almost zero errors in the training dataset. As a result, reweighting on sam-

pling level could lead to either overfitting when only a small portion of samples are

effectively weighted in the second iteration, or random ensemble when almost all of

the training samples are equally weighted. MixDCNN [76] proposes to reweight the

aggregation coefficients at category level by dynamically guiding the diversity among

paralleling complementary networks. The diversity of complementary networks that

are trained in parallel counts on the randomness in weight initialization and stochastic

optimization. Although it shows effectiveness in fine-grained classification tasks, we

find that those randomness fails to contribute to the diversity in general image clas-

sification, producing similar effects as the average ensemble. Alternatively, DoE [77]

diversifies the complementary networks by attending to different task subspaces in

category level which contain overlapping to each other. The drawback of the method

is that it requires extra effort to carefully fuse the decisions from different subspace

into the final decision.

Based on the observation, we propose a novel network embedding method, that

learns a series of diverse complementary networks with discriminative attention on
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different categories [78]. The discriminative attention (weights) are allocated by feed-

back from the validation dataset from previous training iterations and calculated in

category level, mitigating the overfitting problem in AdaBoost [40, 39]. The guided

optimization with weighted objective function provides better promise towards a di-

verse optimal comparing to MixDCNN [76]. Specifically, we kick off the training of the

first deep neural network by an average loss function in a traditional training manner,

and then estimate the learning complexities/difficulties respecting the category accu-

racies of validation results. By assigning larger importance (weights) for hard object

classes in a weighted loss function during following iterations, the difficulty-aware em-

bedding algorithm can train multiple complementary deep networks sequentially to

achieve higher accuracy rates on recognizing different subsets of object classes in an

easy-to-hard way, so that they can compensate and enhance each other. By combin-

ing such complementary deep networks adaptively to generate a more discriminative

ensemble network, it can achieve higher overall accuracy rates on large-scale visual

recognition by effectively maintaining high accuracy rates for the easy object classes

(which can be achieved by the first deep network) while improving the accuracy rates

for the hard ones at certain degrees (which are achieved by residual complementary

networks from the consequent iterations).

1.3 Aspect Ratio

Aspect ratios of objects are handled differently in different tasks. For object de-

tection based region proposal network [15, 16, 17, 18, 19, 20, 21], where the anchor

boxes could provide estimated guidance in aspect ratio distribution of objects, aspect

ratios are contained in groundtruth annotations and predicted indirectly through the

output of offset location. For semantic segmentation, the localization is retained by

dense annotations regardless of cropping or distorting in input images, and conse-

quently, the aspect ratios could still be computed by localization prediction. Thus,

the aspect ratios in those localization tasks are directly managed by annotations. For
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general object classification tasks, aspect ratios are usually neglected, e.g . RoI Align

Pooling [16] in classifier head of object detection and random-size cropping [8] in

data augmentation for image classification. On the one hand, the data augmentation

methods proposed by [8], i.e. image cropping and resizing, are widely used for pre-

venting overfitting in the image recognition task for the sake of scale and distortion

invariance [31, 3, 79, 80, 11, 12, 13]. On the other hand, due to constraints of graphic

memory and computational efficiency, mini-batch training, i.e. concatenating several

images together into mini-batch (a 4-dimensional tensor) by sampling and updating

the model parameters by back-propagation iteratively, is adopted when training deep

convolutional neural networks.

In this work, we address the task of image aesthetics assessment, where represen-

tation learning about aspect ratios matters. When humans evaluate the aesthetics

preference of images, aspect ratios of objects and image composition are important

factors for visual perception. A robust model for accurate aesthetic assessment, where

the goal is to predict an aesthetics score or distribution given an image [1], should

learn the representations related to aspect ratios. Unfortunately, the aforementioned

general practice of data augmentation [8], alters the compositions and object as-

pect ratios, which introduces label noise and harms the task of aesthetics assessment

(Fig. 3.1). Besides, without cropping and resizing, different images with different

aspect ratios can not be concatenated together, e.g . only one original-size image can

be feed into the network at a time in [81].

To consider the representation learning of aspect ratios related to image aesthetics,

randomly cropping the images or extracting features based on sampling patches [82,

83, 84], deteriorates the composition of original images, which is another important

factor for aesthetics assessment. In order to preserve composition and adapt mini-

batch training in deep learning for image aesthetics assessment, a natural solution is

to warp the mini-batch sampling images into the same size. Then, one critical but
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unsolved issue is how to seamlessly learn representation for the information of object

aspect ratios for robust image aesthetics modeling.

By looking deeper into the neural networks at kernel level, we identify that the

representation learning of aspect ratio is related to receptive fields. In deep con-

volutional neural networks where a collection of convolution and pooling layers are

stacked sequentially, the receptive field is magnified as the layer goes deeper. This

design is inspired by that high-level semantic features (e.g . categories), which require

global receptive fields, can be extracted from the gradual aggregation of the low-

level visual features (e.g . colors), which requires local receptive fields. We propose

an adaptive fractional dilated convolution, which adaptively and dynamically adjusts

the receptive fields in accordance to the original aspect ratios [85]. The receptive

field is dilated along with the image resizing operation dynamically and adaptively,

keeping the receptive field (i.e. sampling areas) the same as the original one. It thus

can extract the object features with the consideration of original aspect ratios. As a

result, the aspect ratios are embedded seamlessly and natively at convolution level.

Specifically, for each convolutional layer whose kernel size is larger than 1× 1,i.e. the

receptive field is magnified, we dilate convolution kernels adaptively by a calculated

dilation rate regarding the original aspect ratios. Since the aspect ratio could be

fractional, such dilation rate could be fractional as well. Technically, the interpola-

tion of nearest two integer dilated kernels are used to cope with the misalignment of

fractional sampling in discrete image/feature space. We note that the dynamic and

adaptive kernel construction process in the proposed convolution uses the same learn-

ing parameters as the normal convolution and thus no extra model parameters are

introduced. Through this aspect-ratio-aware embedding, we can successfully preserve

both composition and aspect ratio in a parameter-free manner.
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1.4 Invariance

Variances of image distribution for image recognition can be attributed to object

location, image composition, contextual lighting, human pose, background, subjective

or noisy annotations, viewpoint, and et al . Some variances are beneficial for target-

ing tasks and representation learning to capture the variance is crucial. For example,

variance in generative models based on Generative Adversarial Networks [86] or Vari-

ational Auto Encoder [87], provides better interpretability in latent representation

and access for controllable manipulation. More recently, the disentanglement repre-

sentation learning distills the variance across different domains [33, 34, 88] or different

manipulations [35] demonstrates huge success for generating high-quality and diverse

images. However, many variances are considered noisy and intended to be dissected.

The representation learning that is invariant to those factors becomes important.

For a well-known example, convolutional layers [89] are designed to be translation

invariant. And the fundamental posit for data augmentation is to train a network

that is robust to different variance, e.g . lighting invariance through color jittering,

translation invariance through cropping, distortion invariance through resizing.

In this work, we investigate the representation learning that removes the variance

for person re-identification, where the goal is to train a feature extractor that extracts

the identity information and to be tested in distance-based retrieval for identifica-

tion [58, 57, 56]. Firstly, we visit the different mechanisms of invariance between the

identification task and general classification task. Comparing to general classification

task, identification shares a similar goal that learns representations to be more separa-

ble. However, person re-identification requires more separable features since different

people could have very similar identification features and interfering noises. A robust

person re-identification model relies on the representation learning that exceptionally

distills the identity-related features and is extremely invariant to interfering noises.

On the contrary, the requirement of invariance for general classification tasks is not
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comparable. Even adding some variances during the training proves to be helpful for

better representation learning and generalization, e.g . label smoothing [61] which is

further studied in [90].

To learn a better invariant representation learning for person re-identification, many

efforts are made to explicitly decouple the invariance from identity-related features.

There are mainly two directions, region-based methods, and disentanglement-based

methods. For region-based methods, the general practice is to use extra localization

information to divide the invariance representation learning into sub-regions, e.g .

vertical partition [91], pose [92], segmentation [93], foreground [94], attributes [95].

However, the difficulty of region-based methods lies in how to balance different sub-

features and aggregate local representations for final retrieval. For disentanglement-

based methods, an auto-encoder is used to decouple the latent representation into

variance code and invariance code, e.g . DGNet [96]. The disentanglement representa-

tion is useful for interpretation and visualization. However, the intention of modeling

requirement for invariance code might impair the ultimate goal for identification task,

where the invariance code is not used.

Bearing that, we attempt to develop invariance representation learning without the

explicit efforts of either localization or disentanglement. Thus, we propose a method

for invariance representation learning that attends to remove the variances exceedingly

in an end-to-end manner [97]. Specifically, we propose to extract the features from the

training samples belonging to the same identity and then aggregate them to build the

identity anchor in latent feature space. The latent anchors comply the intrinsic feature

distribution since it is extracted from the training model supervised with identity

labels. Furthermore, they dissect the variances (e.g . background, pose, lighting)

by distilling the rich knowledge from the cluster distribution in an explicit manner.

Moreover, this training process can successfully break the vision constraint under the

local mini-batch training with well-aligned supervision from the viewpoint of global
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distribution. Consequently, this method, called the identity-anchor-aware embedding,

can inhabit a more stable and guided optimization towards better representation and

generalization to learn identity representations.

1.5 Composition

Compositional representation learning is to explicitly learn a decoupled represen-

tations in latent space and resemble the representations in the compositional com-

ponents for final prediction. We note that compositional representation learning is

related to some traditional representation learning methods, e.g . dictionary learn-

ing [98], sparse encoding [99], bag of words [100]. In this work, we focus on the

representation learning approaches in deep learning.

One the most directly related field is zero-shot compositional learning (ZSCL) [101,

102, 103, 104, 104], where training and test datasets contain non-overlapping attribute

and object pairs while categories of attributes or objects are the overlapped. Through

the learning of interaction between decoupled attributes and objects during training,

the task targets to generalize the recognition of a novel combination of new attribute

and object pairs. Misra et al . [101] propose to train a transformation network that

learns to predict composed pair for a given object and attribute primitives as input.

Those visual primitives are embeddings from pre-trained classifier for attributes and

objects respectively, i.e. linear SVMs trained on features extracted from VGG net-

works [7]. In [105], attributes are modeled as multiplication operators that can be

applied to objects. where attribute primitives and object primitives are the inputs,

and the composed pair classifiers are the outputs. Purushwalkam et al . [102] propose

to train gating modular networks to produce gating vectors for the multi-layer scor-

ing model taking the attribute and object Glove embeddings [106]. Li et al . [103]

incorporate symmetry principle in Coupling Network and Decoupling Network, and

use relative moving distance in the latent feature pace after the two modules to train

the attribute change. Nan et al . [104] add reconstruction loss to compositional visual
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features besides optimization between the visual attribute-object pair embedding and

linguistic attribute-object embedding.

Another task related to compositional representation learning is unsupervised image-

to-image translation, where the goal is to translate an image into another domain

without paired annotations. Recent methods propose to learn compositional repre-

sentations in latent space, e.g . domain-invariant and domain-specific components in

[34], content and style components in [33], multi-level transformation components in

[35],

Moreover, memory networks are also related to compositional representation learn-

ing, where query representation is constructed by referencing memory components.

Memory networks are applied in the NLP research for document Q&A [107, 108],

where memorable information is separately embedded into keys (input) and values

(output) feature vectors. Keys aim to address relevant memories whose corresponding

values are returned. Recently, the memory networks have been applied to some vi-

sion problems such as personalized image captioning [109], visual tracking [110], and

video instance object [111]. More recently, self-attention [37] achieves huge success

in multiple NLP benchmarks [112], where the representation of input sequences are

attended to each other to learn better representations. In computer vision, it has

been aroused widely interests in incorporating self-attention. An natural extension

is for sequential learning tasks to leverage long-range time or spatial contextual in-

formation, e.g . video processing [113, 114, 111], image classification [115, 116, 36],

object detection [117, 118] and vision-language tasks [119, 120, 121].

In this work, we explore the problem of predicting the color attributes of identified

objects in images. Compared to most other attributes, however, each color admits a

rather specific definition, and its compositionality is well-studied. In physics, color

composition is a classic problem, which has been studied for centuries. For example,

in the 17th century, Issac Newton proposed a theory of color which includes his famous
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prism experiment, in which white light was shown to be composed of a range of color

spectrum. In the digital age, most colors can be represented by sets of coordinates in

key colors space. Motivated by the composition and interpolation theories of colors,

we design a novel attention module, where color attribute prediction is attended to the

references and interactions of key colors. Those key colors behave like the prior basis

(e.g . father colors for the color while hierarchy), spanning a decoupled spaces to make

prediction aware of color composition and learn better representation. In addition,

an effective debiasing method, called classifier as discriptor, is proposed for long-tail

color recognition, outperforming state-of-the-art methods in long-tail recognition [4]

and unbiased scene graph generation [5]. Specifically, we use the rich representations

of the output from bias-trained classifiers to remove the bias in a manner of distance

calculation.

1.6 Contribution and Outline

In summary, our contributions are summarized as:

• We investigate four important factors for representation learning of image recog-

nition: diversity, aspect ratio, invariance and composition

• In Chapter 2, a diverse representation learning method, which adaptively learns

representations in an easy-to-hard way according to the learning difficulties, is

proposed for network ensemble.

• In Chapter 3, an aspect ratio representation learning method, which intention-

ally learns representations related to aspect ratios, is proposed for image aes-

thetics assessment.

• In Chapter 4, an invariance representation learning method, which dissects the

interfering variances, is proposed for person re-identification.

• In Chapter 5, two compositional representation learning methods, one composes
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query representations from key color representations and the other leverages rich

knowledge from classifiers as representations to remove the bias, is proposed for

color recognition.



CHAPTER 2: DIVERSE REPRESENTATION LEARNING FOR NETWORK

ENSEMBLE

2.1 Problems And Motivation

2.1.1 Learning Complexity of Different Categories

With the availability of massive training images and the rapid growth of compu-

tational powers of GPUs, we are now able to develop scalable learning algorithms

to support large-scale visual recognition. By learning high-level features and a N -

way softmax in an end-to-end multi-layer manner, deep learning [6, 7, 8, 9, 10, 3]has

demonstrated its outstanding performance on large-scale visual recognition because

of its strong ability on learning highly invariant and discriminant features. Under the

scenario of large-scale visual recognition, some object classes could be harder to be

recognized than others because they have higher learning complexities and it could

be very hard for the visual recognition systems to achieve high accuracy rates for

such hard object classes, on the other hand, some object classes could be easier to be

recognized because they have lower learning complexities and it is much easier for the

visual recognition systems to achieve high accuracy rates for such easy object classes.

As a result, the errors from the hard object classes and the easy ones may have sig-

nificantly different effects on optimizing the joint objective function for deep network

training even they may have close values. Thus it is very attractive to develop new

algorithms that can treat the errors from the hard and easy object classes differently

and learn their deep networks sequentially in an easy-to-hard way.
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2.1.2 Diverse Attentions of Ensemble Learning

Before deep learning becomes so popular, ensemble learning has demonstrated good

performance by training and combining multiple complementary weak classifiers to

construct more discriminative ensemble classifier [48, 42, 126]. By assigning larger

weights to hard samples (which are misclassified by the current weak classifier), boost-

ing can learn a complementary weak classifier at the next training round by paying

more attentions on such hard samples and improving their accuracy rates dramat-

ically. By adapting the attentions of the training samples according to their error

strengths, the boosting algorithm can train multiple complementary weak classifiers

sequentially for achieving higher accuracy rates on distinguishing different subsets of

training samples in an easy-to-hard way. Thus it is very attractive to invest whether

boosting [48, 42, 126] can be integrated with deep learning [6, 7, 8, 9, 10, 3] to train

multiple complementary deep networks for achieving higher overall accuracy rates on

large-scale visual recognition.

By using deep neural networks to replace the weak classifiers in the traditional

boosting framework, boosting of deep neural networks has been investigated and some

interesting researches have been done recently [43, 39, 45, 40, 47, 49, 41]. All these

existing deep ensemble algorithms simply use the weighted training errors (proposed

by Adaboost [38]) to replace the softmax errors (used in deep learning), where the

underlying deep neural networks directly weight the training errors at the sample

level but completely ignore which object classes cause such training errors, e.g ., when

the training errors caused by different object classes have close strengths, they are

assumed to have similar contributions on optimizing the joint objective function for

deep network training. As mentioned above, large numbers of object classes may have

different learning complexities, the training errors from the hard object classes and

the easy ones may play significantly different roles in optimizing their joint objective

function even they may have close strengths (values). As a result, weighting the
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training errors directly at the sample level without considering which object classes

cause such errors may not be able to optimize the joint deep network as we expect,

e.g . such joint deep network can easily be optimized by achieving lower error rates on

the easy object classes while spending less efforts on improving the accuracy rates for

the hard object classes because it is much harder to achieve the same level of error

rate reduction for the hard object classes. Therefore, it is very attractive to invest

learning-difficulty-aware embedding algorithms that can weight the training errors at

the object class level and train the deep networks for the hard object classes and

the easy ones sequentially in an easy-to-hard way, so that such complementary deep

networked can be embedded adaptively to generate more discriminative ensemble

network.

To generate more discriminative ensemble network [127], one standard approach

is to diversify the underlying deep networks being embedded, and three types of

solutions can be invested: (a) weighting the training samples according to their error

rates and most existing deep boosting algorithms [43, 39, 45, 40, 47, 49, 41] belong to

this direction; (b) learning multiple deep networks by using different model parameters

or using various sample subsets and some deep embedding algorithms [76, 128, 50, 129,

54, 55, 44] belong to this direction; (c) training multiple complementary deep networks,

e.g., such complementary deep networks are trained sequentially for achieving higher

accuracy rates on recognizing different subsets of object classes in an easy-to-hard

way, so that they can compensate and enhance each other and can be embedded

to generate more discriminative ensemble network. According to the best of our

knowledge, the third direction (i.e. training multiple complementary deep networks

sequentially and embedding them adaptively) has not been explored so far.

2.1.3 Diversifying Complementary Networks Adaptively and Sequentially

In this chapter, a learning-difficulty-aware embedding algorithm is developed to

train multiple complementary deep networks sequentially for achieving higher accu-
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racy rates on recognizing different subsets of object classes in an easy-to-hard way, so

that they can compensate and enhance each other and can be embedded to generate

more diverse ensemble network. Our proposed embedding algorithm has made the

following major contributions: (a) it can weight the training errors at the object

class level, e.g . automatically assigning larger weights to the hard object classes and

smaller weights to the easy ones; (b) it can train multiple complementary deep net-

works sequentially for achieving higher accuracy rates on recognizing different subsets

of object classes in an easy-to-hard way, so that they can compensate and enhance

each other; (c) it can embed multiple complementary deep networks adaptively to

generate more discriminative ensemble network, which can effectively maintain high

accuracy rates for the easy object classes (which can be achieved by the first deep

network) while improving the accuracy rates for the hard ones at certain degrees

(which are achieved by residual complementary networks from the second iteration);

(d) it can achieve higher overall accuracy rates on large-scale visual recognition.

2.2 Related Work

In this section, we briefly review the most relevant researches on three areas: (a)

Deep learning; (b) Deep ensemble learning; (c) Automatic machine learning.

Deep Learning. Deep learning has demonstrated its outstanding abilities on large-

scale visual recognition [6, 7, 8, 9, 10, 3]. However, large numbers of object classes may

have significant differences on their learning complexities, e.g., some object classes

may be harder to be recognized than others. As a result, learning a joint deep

network for all the object classes may not be an optimal solution for large-scale

visual recognition, e.g., even such joint deep network can achieve high accuracy rates

on recognizing the easy object classes, it may still obtain very low accuracy rates on

recognizing the hard ones. Thus it is very attractive to develop new approaches to

learn the deep networks for the easy object classes and the hard ones sequentially in

an easy-to-hard way, so that such complementary deep networks can be embedded
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adaptively to generate more discriminative ensemble network. By assigning different

weights to the training samples adaptively, boosting [38] has provided an easy-to-hard

approach to train a set of complementary weak classifiers iteratively.

Deep Ensemble learning. Some deep ensemble algorithms have been developed by

seamlessly integrating boosting with deep neural networks to improve the performance

in practice [43, 39, 45, 40, 47, 49, 41]. Schewenk and Bengio [39, 45] proposed the first

work to integrate Adaboost with deep neural networks for online character recognition

application. Zhou et al. [40] extended the Adaboosting neural networks algorithm for

credit scoring. All these methods combine the merits of boosting and deep neural

networks: they train each base network either using a different sample set by re-

sampling with a probability distribution derived from the error weight, or directly

using the weighted cost function for the base deep network.

Alternatively, Saberian at al. [51] proposed a margin enforcing loss for multi-class

boosting and presented two ways to minimize the resulting risk: (a) the coordinate de-

scent approach, which updates one predictor component at a time; (b) the directional

functional derivative approach, which updates all the components jointly. By using

the first approach (i.e., coordinate descent), Corte et al. [46] designed the ensemble

learning algorithm for binary-class classification by using deep decision trees as the

base classifiers and gave the data-dependent learning bound of the convex ensembles,

and Kuznetzov et al. [52] further extended it to multi-class version. By applying the

second approach (i.e., directional derivative descent), Moghimi et al. [43] developed

an algorithm for boosting deep CNNs (convolutional neural networks) based on the

least squares between the weights and the directional derivatives, which differs from

the original method based on the inner product of the weights and the directional

derivative in [51]. All these deep boosting algorithms focus on seeking the optimal

ensemble predictor via changing the error weights at the sample level: they either

update one component of the predictor per boosting iteration, or update all the com-
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ponents simultaneously.

All the existing deep ensemble algorithms [43, 39, 45, 40, 47, 49, 41] directly

weight the training errors at the sample level and completely ignore which object

classes cause the training errors, e.g., when the training errors caused by different

object classes have close strengths (values), they are assumed to have similar contri-

butions on optimizing the joint objective function for deep network training. Under

the scenario of large-scale visual recognition, large numbers of object classes may have

different learning complexities, even the training errors from the hard object classes

may have close values with the errors from the easy ones, they may have significantly

different effects on optimizing their joint objective function for deep network learning.

Unfortunately, weighting the training errors directly at the sample level without con-

sidering which object classes cause such training errors may not be able to achieve the

same effects as weighting the training errors at the object class level according to their

learning complexities, as a result, such joint deep network can easily be optimized by

achieving higher accuracy rates on recognizing the easy object classes but spending

less efforts on improving the accuracy rates for the hard object classes. Thus it is

very attractive to develop new approaches that can learn the deep networks for the

easy object classes and the hard ones sequentially in an easy-to-hard way.

Auto ML. Recently, instead of designing the network structures manually, there

are several efforts in developing algorithmic solutions to generate the optimal archi-

tectures by reinforcement learning [130, 131, 132], evolution [133] and differentiable

architecture search [134]. In addition, motivated by eliminating the overlap singu-

larity inherent and neuron collapses, GUNN [135] is proposed to deepen the neural

networks by using the same number of parameters and gradually computing the out-

puts in a channel-wise manner, which achieves the state-of-the-arts performances on

large-scale image recognition. However, it tends to be slow and requires more graphic

memory due to the data dependency. Recently, AdaNet [136] is developed to simulta-
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neously and adaptively learn both the network structure as well as the node weights,

which could be the first work to consider huge diversity of learning complexities for

large numbers of object classes. It is able to adapt the network architecture according

to the learning complexities for large numbers of object classes. They outperform the

manually designed architectures while large number of the computational resources

are used. In this work, we improve the algorithms from a different direction by em-

bedding the complementary networks sequentially in an easy-to-hard way, where each

complementary network used is more training efficient.

2.3 Proposed Method

For the sake of clarity, we provide the list of main mathematical symbols and the

corresponding explanation in Tab. 2.1. As illustrated in Algorithm 1, our learning-

difficulty-aware embedding algorithm contains the following key components: (a)

Training the tth (current) deep network ft(x) by focusing on achieving higher accuracy

rates for some particular object classes (i.e., hard object classes which have larger error

rates and are misclassified by the (t− 1)th (previous) deep network ft−1(x)), so that

ft(x) can be complementary with ft−1(x); (b) Estimating the weighted error function

for the tth deep network ft(x) according to the normalized distribution of importances

[ϕt(C1), ..., ϕt(CN)] for N object classes; (c) Updating the distribution of importances

[φt+1(C1), · · · , φt+1(CN)] for N object classes to push the (t + 1)th deep network

ft+1(x) at the next training round to achieve higher accuracy rates on recognizing

the hard object classes which have higher error rates and are misclassified by the

tth (current) deep network ft(x), so that ft+1(x) can be complementary with ft(x);

(d) Such iterative training process stops when the maximum number of iterations is

reached or a certain level of accuracy rates is achieved. Our proposed embedding

algorithm uses the deep CNNs (convolutional neural networks) as its weak learners,

and all the well-designed deep networks(such as AlexNet [6], VGG [7], GoogleNet [8],

ResNet [3] et al.) can be used to train the underlying weak learners (complementary
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Table 2.1: The list of main mathematical symbols and the corresponding explanation
for learning-difficulty-aware embedding.

Mathematical Symbols Explanation
xi the feature of the ith image sample
yi the class label of the ith image sample
i the index of image sample
l the index of object classes
N the number of object classes
Cl the lth class
S the training set
R the number of training image samples
Rl the number of training samples in the lth class
ft(x) the tth deep network
φt(Cl) the un-normalized importance of the lth class in the tth iteration
ϕt(Cl) the normalized importance of the lth class in the tth iteration
pt(Cl|x) the probability for the image x to be assigned into the lth object

class Cl
ht(x; θt) heatmap features for image x extracted by the tth network with

parameters θt
wlt parameters of fully connected and softmax layers for the tth network

and the lth class
εt(Cl) the error rate for the lth object class Cl
εt the error rate for the tth deep network ft(x)
λ hyper-parameter for determining hard object classes
βt an increasing function of εt
T the number of complementary deep networks or iterations
Z a normalization factor

F(x) ensemble network
% the number of hard object classes
ρ the ratio between the number of hard classes % and the total number

of classes N
X the instance space
Ω the distribution over the instance space
ξ margin between the confidences from ground-truth and incorrectly-

predicted classes
d VC-dimension
J Jacobi matrix
zlt output of fully connected layers for the tth network and the lth class

deep networks).

2.3.1 Diverse Complementary Deep Networks

To learn the tth (current) deep network ft(x), a deep CNNs is employed to obtain

more discriminative representation ht(x; θt) for the images, followed by a fully con-

nected discriminant layer and a N -way softmax layer. The output of the tth deep net-

work ft(x) is a distribution of the prediction probabilities forN object classes, denoted
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Algorithm 1: Difficulty-Aware Embedding of Complementary Deep Networks
Data: Training set for N object classes:

{
(xli, y

l
i) | l ∈ {1, ..., N}

}
, where l is

the class index;Initializing the distribution of importances over N
object classes: φ1(C1) = ... = φ1(CN) = 1

N
;Number of complementary

deep networks or iterations: T .
Result: The ensemble network: F(x) = 1

Z
∑T

t=1 log
(

1
βt

)
ft(x)

for t = 1, . . . , T do
Normalizing the distribution of importances over N object classes:
ϕt(Cl) = φt(Cl)∑N

j=1 φt(Cj)
, l = 1, ..., N ;

Training the tth deep network ft(x) according to the normalized
distribution of importances over N object classes [ϕt(C1), ..., ϕt(CN)];
Calculating the error rate εt(Cl) for each object class;
Computing the weighted error rate for the tth deep network ft(x):
εt =

∑N
l=1 ϕt(Cl)εt(Cl);

Setting the parameter βt = λεt
1−λεt ;

Updating the distribution of importances over N object classes φt+1(Cl)

as: φt+1(Cl) = φt(Cl)β
1−λεt(Cl)
t , l = 1, ..., N , so that the hard object

classes, which have larger error rates and are misclassified by the tth
(current) deep network ft(x), can receive larger weights (importances)
when we train the (t+ 1)th deep network ft+1(x) at the next round;

as ft(x) = [pt(C1|x), ..., pt(CN |x)]>, where each component pt(Cl|x) is the probability

score for the image x to be assigned into the lth object class Cl, l = 1, ..., N :

pt(Cl|x) =
exp{w>ltht(x; θt)}∑N
j=1 exp{w>jtht(x; θt)}

(2.1)

where θt and wlt are the model parameters for the tth deep network ft(x). The tth

deep network ft(x) can assign the image x into the object class ŷt with maximum

probability score:

ŷt = arg max
l
pt(Cl|x) (2.2)

Suppose that the training set for N object classes is denoted as:

S = {(xi, yi) | yi ∈ {C1, ..., CN}, i = 1, ..., R}



24

, where R is the number of training images. To train the tth deep network ft(x), its

model parameters can be obtained by maximizing the objective function in the form

of weighted margin as:

Ot(θt, {wlt}Nl=1) =
N∑
l=1

ϕt(Cl)ξlt, ϕt(Cl) =
φt(Cl)∑N
j=1 φt(Cj)

(2.3)

ξlt =
1

Rl

R∑
i=1

1(yi = Cl) log pt(Cl|xi)−
1

R−Rl

R∑
i=1

1(yi 6= Cl) log pt(Cl|xi) (2.4)

where the indication function 1(yi = Cl) is equal to 1 iff yi = Cl, Rl denotes the

number of training images for the lth object class, and
∑N

l=1Rl = R. ϕt(Cl) is the

normalized importance score for the lth object class Cl when training the tth deep

network ft(x), ξlt is used to measure the margin between the average confidences for

the correctly-classified images and the misclassified images for the lth object class Cl

by the tth deep network ft(x). If the second item in Eq.(2.4) is small enough and

negligible, it becomes:

ξlt ≈
1

R

R∑
i=1

1(yi = Cl) log pt(Cl|xi)

Then maximizing the objective function in Eq.(2.3) is equivalent to maximizing the

weighted likelihood. By using the normalized distribution of importances [ϕt(C1), ...,

ϕt(CN)] for N object classes to approximate their learning complexities (e.g., their

learning complexities are exponentially proportional to their error rates because hard

object classes result in higher error rates), our proposed embedding algorithm can

push the tth (current) deep network ft(x) to focus on achieving higher accuracy rates

for recognizing the hard object classes which are misclassified by the (t − 1)th (pre-

vious) deep network ft−1(x), so that the tth (current) deep network ft(x) can be

complementary with the (t− 1)th (previous) deep network ft−1(x).

For the tth deep network ft(x), the error rate εt(Cl) for the lth object class Cl is
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defined as:

εt(Cl) =
1

2

R∑
i=1

{
1(yi = Cl)

1− pt(Cl|xi)
Rl

+ 1(yi 6= Cl)
pt(Cl|xi)
R−Rl

}
(2.5)

The error rate in Eq.(2.5) is calculated in a soft decision way with probability;

alternatively, we can also simply compute the error rate in a hard decision way as:

εt(Cl) =
1

R

R∑
i=1

1(yi = Cl ∧ ŷti 6= Cl) (2.6)

The error rate for the tth deep network ft(x) is defined as:

εt =
N∑
l=1

ϕt(Cl)εt(Cl), ϕt(Cl) =
φt(Cl)∑N
j=1 φt(Cj)

(2.7)

For the tth deep network ft(x), the error rates are used as the criterion to determine

its hard object classes:

εt(Cl) >
1

2λ
, l ∈ {1, · · · , N} (2.8)

where the hyper-parameter λ is used to control the threshold of the expected error rate

for determining the hard object classes for the tth (current) deep network ft(x). We

set the constraint as λ > 1
2
(i.e., 1

2λ
< 1 ), e.g., larger λ corresponds to higher demand

on the accuracy rate or lower threshold of the expected error rate for determining

the hard object classes. We then compute the weighted error rate εt over all N

object classes for the tth (current) deep network ft(x) and update the distribution

of importances φt+1 to push the (t + 1)th deep network ft+1(x) at the next training

round to pay more attentions on the hard object classes which have larger error rates

and are misclassified by the tth deep network ft(x), so that the (t+ 1)th deep network

ft+1(x) at the next training round can be complementary with the tth (current) deep
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network ft(x).

The distribution of importances is initialized equally for all N object classes:

φ1(Cl) =
1

N
, l = 1, · · · , N

and it is updated iteratively along the learning process to emphasize the hard object

classes with larger error rates:

φt+1(Cl) = φt(Cl)β
1−λεt(Cl)
t

(2.9)

where βt is an increasing function of εt and its range is 0 < βt < 1, λεt(Cl) is the

product of λ and εt(Cl).

We set βt as:

βt =
λεt

1− λεt
(2.10)

The normalized distribution of importances for N object classes is defined as:

ϕt+1(Cl) =
φt+1(Cl)∑N
j=1 φt+1(Cj)

, l = 1, ..., N (2.11)

By updating the importances for N object classes according to their error rates, our

learning-difficulty-aware embedding algorithm can push the (t + 1)th deep network

ft+1(x) at the next training round to pay more attentions on the hard object classes

the tth (current) deep network ft(x) and achieve higher accuracy rates on recognizing

such hard object classes.

To learn the tth (current) deep network ft(x), our proposed embedding algorithm

optimizes both the deep CNNs (for learning discriminative representations) and a

weighted N -way softmax jointly by maximizing the objective function Ot in Eq.(2.3).
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To maximize Ot, it is necessary to calculate its gradients with respect to all the

parameters, including the weights {wlt}Nl=1 and the set of network parameters θt.

For clearance, we denote

zlt(x) = w>ltht(x; θt) , zlt(ht, wlt)

Thus the probability score in Eq.(2.1) for the image x to be assigned into the lth

object class Cl can be written as:

pt(Cl|x) =
ezlt(x)∑N
j=1 e

zjt(x)
, plt(z1t, ..., zNt)

Then the objective function in Eq.(2.3) can be denoted as:

Ot(θt, {wlt}Nl=1) , Ot(p1
t , ..., p

N
t )

From above descriptions, one can easily observe that the objective function is a

composite function. Ot is a function of multiple variables p1
t , ..., p

l
t, ..., p

N
t , whose each

component plt is a function of multiple variables z1t, ..., zNt, and each zlt is a function

of multiple variables ht, wlt, furthermore, each ht is a function of multiple variables

θt. By using the chain rule, the gradients for the objective function Ot over {wlt}Nl=1

and θt are computed from the top layer to the bottom one in a backward pass.

∂Ot
∂wlt

=
N∑
j=1

∂Ot
∂pjt

∂pjt
∂zlt

∂zlt
∂wlt

,
∂Ot
∂θt

=
N∑

j,l=1

∂Ot
∂pjt

∂pjt
∂zlt

∂zlt
∂ht

∂ht
∂θt

∂Ot
∂pjt

= ϕt(Cj)

[
1

R

R∑
i=1

1(yji = Cj)
1

pt(Cj|xji )
− 1

(N − 1)R

R∑
i=1

1(yji 6= Cj) log pt(Cj|xji )
]

∂pjt
∂zlt

=

 plt(1− plt) if j = l

−pltpjt if j 6= l
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∂zlt
∂wlt

= ht,
∂zlt
∂ht

= wlt,
∂ht
∂θt

= J

where J is Jacobi matrix. The gradients are back-propagated [15] through the tth

(current) deep network ft(x) to fine-tune the weights {wlt}Cl=1 and the set of network

parameters θt simultaneously.

2.3.2 Learning-Difficulty-Aware Embedding

After T iterations, we can obtain T complementary deep networks {f1, · · · , ft, · · · , fT},

which are sequentially trained to achieve higher accuracy rates on recognizing different

subsets of N object classes in an easy-to-hard way. For recognizing N object classes

accurately, all these T complementary deep networks are embedded adaptively to

generate more discriminative ensemble network F(x) [17-19]:

F(x) =
1

Z

T∑
t=1

log

(
1

βt

)
ft(x), βt =

λεt
1− λεt

(2.12)

where Z =
∑T

t=1 log
(

1
βt

)
is a normalization factor.

For a given test sample xtest, it first goes through all these T complementary deep

networks to obtain T deep representations {h1, · · · , hT} and then its probability score

p(Cl|xtest) for being assigned into the lth object class Cl is calculated as:

p(Cl|xtest) =
1

Z

T∑
t=1

log

(
1

βt

)
exp{w>ltht(xtest; θt)}∑N
j=1 exp{w>jtht(xtest; θt)}

(2.13)

The given test sample xtest can finally be assigned into top-1 object class with the

maximum probability score or top-k object classes with top-k scores. By training

multiple complementary deep networks sequentially (i.e., they are trained to achieve

higher accuracy rates on recognizing different subsets of N object classes in an easy-

to-hard way) and embedding them adaptively, our proposed embedding algorithm

can generate more discriminative ensemble network F(x) to achieve higher overall
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accuracy rates on large-scale visual recognition, e.g., such ensemble network can ef-

fectively achieve high accuracy rates for the easy object classes (which can be obtained

by the first deep network f1(x)) while improving the accuracy rates for the hard ones

at certain degrees (which are achieved by residual complementary deep networks

{f2(x), · · · , ft(x), · · · , fT (x)} from the second iteration).

2.4 Parameter Selection for Learning-Difficulty-Aware Embedding

In our proposed embedding algorithm, the parameter βt is used to: (a) update

the distribution of importances φ for N object classes according to their error rates;

(b) estimate the significance of the tth complementary deep network ft(x) in the

ensemble network F(x). On the other hand, the hyper-parameter λ is used to set the

threshold of the expected error rate to determine the hard object classes for the tth

complementary deep network ft(x). Thus it is very important to define the criteria

to select the optimal values for these two parameters in our proposed embedding

algorithm.

2.4.1 Selecting Optimal βt

Inspired by [38], we study the optimal parameter selection for deep embedding.

In our proposed embedding algorithm, the parameter βt is selected to be an in-

creasing function of the error rate εt with the range [0, 1]. βt is employed in two

folds: (1) As defined in Eq.(2.9), βt is used to update the distribution of importances

[φt+1(C1), · · · , φt+1(CN)] for N object classes according to their error rates, so that

the (t+ 1)th complementary deep network ft+1(x) at the next training round can pay

more efforts to achieve higher accuracy rates on recognizing the hard object classes

which are misclassified by the tth complementary deep network ft(x) and have higher

error rates; (2) As defined in Eq.(2.12) and Eq.(2.13), the reciprocal of βt is used to

determine the weight or importance of the tth complementary deep network ft(x) in

the ensemble network F(x).
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The error rate is used as the criterion for the tth deep network ft(x) to determine

its hard object classes:

εt(Cl) >
1

2λ
, l ∈ {1, · · · , N}

which means that the error rates for the hard object classes are above a threshold

1
2λ
. For the lth object class Cl, by assessing it over T complementary deep networks

{f1(x), · · · , ft(x), · · · , fT (x)}, we can further define εmin(Cl) as:

εmin(Cl) , min
t∈{1,··· ,T}

{εt(Cl)} (2.14)

If εmin(Cl) >
1

2λ
, the lth object class Cl is always hard to be recognized by all these T

complementary deep networks. The appearances of such always-hard object classes

may seriously affect the overall accuracy rates of our learning-difficulty-aware embed-

ding algorithm on large-scale visual recognition.

We use % to denote the number of such always-hard object classes:

% =
N∑
l=1

1

(
εmin(Cl) >

1

2λ

)
(2.15)

where 1(εmin(Cl) > 1
2λ

) = 1 iff εmin(Cl) > 1
2λ

is true. To achieve higher overall

accuracy rates on large-scale visual recognition, we should select suitable value for

the parameter βt in Eq.(2.10) to guarantee that ρ = %
N

is minimized (e.g., the number

of such always-hard object classes % is minimized).

For 0 < α < 1, we have xα ≤ 1− (1− x)α. According to Eq.(2.9), the importance

for the lth object class Cl is updated according to its error rate εt(Cl):

φt+1(Cl) = φt(Cl)β
1−λεt(Cl)
t
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Because
∑N

l=1 φt+1(Cl) = 1, we can get:

N∑
l=1

φt+1(Cl) =
N∑
l=1

φt(Cl)β
1−λεt(Cl)
t ≤

N∑
l=1

φt(Cl)(1− (1− βt)(1− λεt(Cl)))

=
N∑
l=1

φt(Cl)(1− (1− βt)) + λ(1− βt)
N∑
l=1

φt(Cl)εt(Cl)

(2.16)

According to Eq.(2.7) and Eq.(2.11), we can get:

N∑
l=1

φt(Cl)εt(Cl) =

(
N∑
l=1

φt(Cl)

)
εt

N∑
l=1

φt+1(Cl) ≤
N∑
l=1

φt(Cl)(1− (1− βt)) + λ(1− βt)
(

N∑
l=1

φt(Cl)

)
εt

=

(
N∑
l=1

φt(Cl)

)
[1− (1− βt)(1− λεt)]

(2.17)

Because
∑N

l=1 φ1(Cl) = 1, we can have:

N∑
l=1

φ2(Cl) ≤
(

N∑
l=1

φ1(Cl)

)
[1− (1− β1)(1− λε1)] = 1− (1− β1)(1− λε1)

N∑
l=1

φT+1(Cl) ≤ ΠT
t=1[1− (1− βt)(1− λεt)] (2.18)

By substituting Eq.(2.9) into Eq.(2.18), we can get:

ΠT
t=1[1− (1− βt)(1− λεt)] ≥

N∑
l=1

φT+1(Cl) =
N∑
l=1

(
φ1(Cl)Π

T
t=1β

1−λεt(Cl)
t

)
=

1

N

N∑
l=1

(
ΠT
t=1β

1−λεt(Cl)
t

)
≥ 1

N

∑
l:εmin(Cl)>

1
2λ

(
ΠT
t=1β

1−λεt(Cl)
t

) (2.19)

Due to εmin(Cl) >
1

2λ
, it holds that εt(Cl) > 1

2λ
and 1− λεt(Cl) < 1

2
for all N object
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classes. Recall the constraint 0 < βt < 1, we can have:

1

N

∑
εmin(Cl)>

1
2λ

(
ΠT
t=1β

1−λεt(Cl)
t

)
≥ 1

N

∑
εmin(Cl)>

1
2λ

(
ΠT
t=1β

1
2
t

)
=

%

N
ΠT
t=1β

1
2
t (2.20)

Combining Eq.(2.19) with Eq.(2.20), we can get:

ρ =
%

N
≤ ΠT

t=1[1− (1− βt)(1− λεt)]
ΠT
t=1β

1
2
t

= ΠT
t=1

1− (1− βt)(1− λεt)
β

1
2
t

(2.21)

To minimize the right-side, we set its partial derivative over βt to be zero:

∂

∂βt

(
ΠT
t=1

1− (1− βt)(1− λεt)
β

1
2
t

)
= 0

Because βt only exists in the tth factor, the above equation is equivalent to:

∂

∂βt

(
1− (1− βt)(1− λεt)

β
1
2
t

)
= 0

Solving this equation, βt can be optimized as:

βt =
λεt

1− λεt

which is used in Eq.(2.10).

We substitute βt = λεt
1−λεt into Eq.(2.21), we can obtain the upper boundary for the

ratio ρ (between the number of always-hard object classes % and the total number of

object classes N being recognized) as:

ρ =
%

N
≤ 2TΠT

t=1

√
λεt(1− λεt) (2.22)
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Figure 2.1: The relation between λεt and λεt(1 − λεt). The domain with respect to
λ is 1

2
< λ < 1

2εt
, so εt

2
< λεt <

1
2
(yellow shaded region).

2.4.2 Selecting Optimal λ

Now we discuss the range for the hyper-parameter λ. The error rate is used as the

criterion for the tth deep network ft(x) to determine its hard object classes:

εt(Cl) >
1

2λ
, l ∈ {1, · · · , N}

where λ is used to control the threshold of the expected error rate, e.g., when we

have higher demand on the accuracy rate, a smaller threshold of the expected error

rate should be used and λ should be larger, and we set the constraint for the hyper-

parameter λ as λ > 1
2
. On the other hand, the range of βt = λεt

1−λεt is 0 < βt < 1, and

it is required that λεt < 1
2
, i.e., λ < 1

2εt
. As a result, λ should be selected between

the interval [1
2
, 1

2εt
].

From the relationship between λεt and λεt(1 − λεt), as illustrated in Fig. 2.1, we

can observe the effect of λ on the upper boundary of the ratio ρ in Eq.(2.22):

• (a) When λ ∈ [1
2
, 1

2εt
], i.e., εt

2
< λεt <

1
2
, the condition 0 < βt < 1 is satisfied,

and the upper boundary for the ratio ρ in Eq.(2.22) increases when λ increases,

the reason is that when λ increases, the threshold of the expected error rate for

determining the hard object classes is smaller, thus the number of always-hard

object classes may increase (i.e., the error rates for more object classes could

be above such smaller threshold).
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• (b) When λ > 1
2εt

, i.e., λεt > 1
2
. In this case, the condition 0 < βt = λεt

1−λεt < 1

is not satisfied, thus updating the distribution of importances φt+1 in Eq.(2.9)

can not effectively push the complementary deep network ft+1(x) at the next

training round to pay more attentions on achieving higher accuracy rates on

recognizing the hard object classes. For such situation, large error rates εt tend

to result in λεt being larger than or approaching 1
2
, and βt being larger than or

approaching 1. Thus the value of λ should be smaller to alleviate large εt such

that the following constraints can still exist: λεt < 1
2
and 0 < βt < 1.

• (c) When λ < 1
2
, i.e., 1

2λ
> 1, such criterion can not be used for the tth com-

plementary deep network ft(x) to determine its hard object classes that their

error rates satisfy εt(Cl) > 1
2λ
.

2.5 Generalization Error Bound

Let X denote the instance space, Ω denote the distribution over the instance space

X , and S denote a training set {(xi, yi) | l ∈ yi{C1, ..., CN}, i ∈ {1, ..., R}} of N object

classes. The training samples are chosen i.i.d according to the distribution over the

instance space Ω. We are to investigate the gap between the generalization error on

Ω and the empirical error on S for our ensemble network F .

Suppose that the ensemble network F is the learning-difficulty-aware embedding of

T complementary deep networks, and let G =
{
x 7→∑

f∈F aff(x)|af > 0,
∑

f∈F af =

1
}
. The combination coefficients A = [a1, ..., af , ...] can be viewed as a distribution

over F . Define Ĝ =
{
x 7→ 1

Γ

∑Γ
t=1 ft(x)|ft ∈ F

}
, and each ft ∈ F may appear mul-

tiple times in the sum. For any g ∈ G, there exists a distribution A = [a1, ..., af , ...],

so we can select the complementary deep networks from F for Γ times independently

according to A and obtain ĝ ∈ Ĝ, denote ĝ ∼ A.

Note that g is a N -dimension vector, and each component of g is the confidence

of object class, i.e., gy(x) = p(y|x), y ∈ {C1, ..., CN}. Based on Eq.(2.13), the label
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of the object class for the test sample can be predicted by arg maxy gy(x) = p(y|x).

The ensemble network g predicts wrong if gy(x) ≤ maxȳ 6=y gȳ(x). The generalization

error rate for the ensemble network can be measured by the probability PΩ[gy(x) ≤

maxȳ 6=y gȳ(x)].

According to probability theory, for any events B1 and B2, P(B1) ≤ P(B2) +

P(B̄2|B1), we can have:

PΩ

[
gy(x) ≤ max

ȳ 6=y
gȳ(x)

]
≤ PΩ,ĝ∼A

[
ĝy(x) ≤ max

ȳ 6=y
ĝȳ(x) +

ξ

2

]
+

PΩ,ĝ∼A

[
ĝy(x) > max

ȳ 6=y
ĝȳ(x) +

ξ

2
| gy(x) ≤ max

ȳ 6=y
gȳ(x)

] (2.23)

where ξ > 0 measures the margin between the confidences from the ground-truth (la-

beled training samples) and the incorrectly-predicted object classes. Using Chernoff

bound [51], the second term in the right side of Eq.(2.23) is bounded as:

PΩ,ĝ∼A

[
ĝy(x) > max

ȳ 6=y
ĝȳ(x) +

ξ

2
| gy(x) ≤ max

ȳ 6=y
gȳ(x)

]
≤ e−Γξ2/8 (2.24)

Assume that the space F for the ensemble network is with VC-dimension d, which

can be approximately estimated by the number of neurons ν and the number of

weights ω in the complementary deep network, i.e., d = O(νω). Recall that S is a

sample set with R examples from N object classes. Then the effective number of

hypotheses for the ensemble network F over S is at most
∑d

i=1

(
RN
i

)
= ( eNR

d
)d. Thus,

the effective number of hypotheses over S for Ĝ =
{
x 7→ 1

Γ

∑Γ
t=1 ft(x)|ft ∈ F

}
is at

most ( eNC
d

)Γd.

Applying Devroye Lemma as in [52], it holds with the probability at least 1 − δΓ

that

PΩ,ĝ∼A

[
ĝy(x) ≤ max

ȳ 6=y
ĝȳ(x) +

ξ

2

]
≤ PS,ĝ∼A

[
ĝy(x) ≤ max

ȳ 6=y
ĝȳ(x) +

ξ

2

]
+ ∆Γ (2.25)
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where ∆Γ =
√

1
2R

[Γd log eR2N
d

+ log 4e8(Γ+1)
δΓ

].

Likewise, in probability theory for any events B1 and B2, P(B1) ≤ P(B2) +

P(B1|B̄2), we can have:

PS,ĝ∼A

[
ĝy(x) ≤ max

ȳ 6=y
ĝȳ(x) +

ξ

2

]
≤ PS

[
gy(x) ≤ max

ȳ 6=y
gȳ(x) + ξ

]
+

PS,ĝ∼A

[
ĝy(x) ≤ max

ȳ 6=y
ĝȳ(x) +

ξ

2
|gy(x) > max

ȳ 6=y
gȳ(x) + ξ

] (2.26)

Because

PS,ĝ∼A

[
ĝy(x) ≤ max

ȳ 6=y
ĝȳ(x) +

ξ

2
|gy(x) > max

ȳ 6=y
gȳ(x) + ξ

]
≤
∑
ȳ 6=y

PS,ĝ∼A

[
ĝy(x) ≤ ĝȳ(x) +

ξ

2
|gy(x) > gȳ(x) + ξ

]
≤ (N − 1)e−Γξ2/8

(2.27)

By combining Eq.(2.23−2.27) together, it can be derived that

PΩ

[
gy(x) ≤ max

ȳ 6=y
gȳ(x)

]
≤ PS

[
gy(x) ≤ max

ȳ 6=y
gȳ(x) + ξ

]
+Ne−Γξ2/8 + ∆Γ (2.28)

Thus large margin ξ over the training set corresponds to narrow gap between the

generalization error on Ω and the empirical error on S, which leads to the better

upper bound of the generalization error for our ensemble network.

2.6 Experimental Results and Discussions

In this section, we report our evaluation results for our difficulty-aware embedding

algorithm over three popular datasets: MNIST [89], CUB-200-2011 [137], CIFAR-

100 [138], and ImageNet1K [139]. We have compared our difficulty-aware embedding

algorithm with the state-of-the-art baseline methods and our comparison experiments

focus on evaluating the following factors: (a) whether the number T of complemen-

tary deep networks being embedded to generate the ensemble network has significant

impacts on improving the performance of our difficulty-aware embedding algorithm
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(a) (b)

(c)

Figure 2.2: (a) The comparison on top 1 error for MNIST dataset when different
embedding approaches are used; (b) The comparison on AP (average precision) of
the ensemble network for MNIST dataset when different numbers of complementary
networks are embedded, where the iteration ]1 corresponds to using one single deep
network (i.e., the first deep network); (c) The effects of the hyper-parameter λ on our
difficulty-aware embedding algorithm.
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Figure 2.3: The comparison on CIFAR-100 and ResNet56 is used: (a) the distri-
butions of class importances at different iterations; (b) the accuracy rates for the
complementary networks at different iterations; (c) the accuracy rates of the ensem-
ble networks when different numbers T of complementary networks are embedded,
where the iteration ]1 corresponds to using one single deep network (i.e., the first
deep network).
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(i.e., the accuracy rates for our ensemble network); (b) whether selecting different val-

ues for the hyper-parameter λ has significant impacts on improving the performance

of our difficulty-aware embedding algorithm; and (c) whether our difficulty-aware

embedding algorithm can achieve higher overall accuracy rates on large-scale visual

recognition, e.g., whether it can improve the accuracy rates for the hard object classes

in certain degrees while effectively maintaining high accuracy rates for the easy ones.

2.6.1 Experimental Results on MNIST

MNIST [89] dataset consists of 60,000 training handwritten digit samples and

10,000 test samples. The research in [39] has demonstrated the accuracy improvement

on MNIST dataset by updating the sample weights according to their error rates. For

fair comparison, we use two approaches to train multiple deep networks iteratively:

(1) our difficulty-aware embedding algorithm updates the importances of the object

classes according to their error rates; (2) traditional deep boosting approach updates

the sample weights like AdaBoost. In our experiments, we train the deep network

with the learning rate 0.01 through out the whole 120 epoches.

With our difficulty-aware embedding method, the top 1 error rate on the test

dataset decreases from 4.73% to 1.87% when three or more than three complementary

networks are embedded to generate the ensemble network (as shown in Fig. 2.2(a)).

The top 1 error of our difficulty-aware embedding method (by weighting the errors at

the class level) drops more quickly than the traditional deep boosting approach (by

weighting the errors at the sample level). Our difficulty-aware embedding method

can exploit the idea that different classes (categories) may have different learning

complexities and their errors should be treated differently, e.g., even the errors from

the hard classes may have similar values (strengths) with the errors from the easy

ones, they may have different effects on optimizing the joint objective function for

deep network learning. From Fig. 2.2(b), one can easily observe that our difficulty-

aware embedding algorithm can significantly improve the accuracy rates for the hard



39

classes while effectively maintaining the high accuracy rates for the easy ones.

2.6.2 Experimental Results on CUB-200-2011

The CUB-200-2011 [137] dataset contains 11,788 images of 200 bird species, where

5,994 training images and 5,794 testing images are used. It is one of most widely used

dataset for fine-grained classification. The dataset provides ground-truth annotations

of bounding boxes and parts of birds. In our experiments, we only use the image level

class label to train and evaluate our difficulty-aware method. In each iteration, we

use the widely used bilinear model B-CNN [140] as the weak learner.

From the results in Tab. 2.2 , we can see our difficulty-aware embedding algorithm

improves the accuracy from 84.0% to 86.9% after four iterations. It shows that our

proposed method can train a series of networks in an easy-to-hard way and improves

the performance in fine-grained classification.

2.6.3 Experimental Results on CIFAR-100

We also carry out our experiments on CIFAR-100 dataset [138]. CIFAR-100 dataset

has 60,000 images for 100 object classes. There are 500 training images and 100 test-

ing images for each class. In the training stage, we hold out 5,000 images for validation

and use 45,000 images for training. When we train the deep networks on CIFAR-100,

the initial learning rate is set to 0.1 and we train the deep networks for 300 epoches.

The experimental results for comparing our difficulty-aware embedding algorithms

with the state-of-the-art approaches are demonstrated in Tab. 2.2 when: (1) different

types of deep CNNs (ResNet56 [3], DenseNet [9], AlexNet [6], SE-Net [10]) are used

to train the underlying complementary networks in our difficulty-aware embedding

algorithm; (2) different numbers of complementary networks are embedded to gener-

ate the ensemble networks, where T = 1 corresponds to the first iteration and only

one single deep network is used (i.e., only the first deep network is used).

To train the first deep network, we treat all 100 object classes in CIFAR-100 with
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Table 2.2: The comparisons on the top-1 and top-5 error rates in parentheses.

Datasets Network T = 1 T = 3 T = 4

MNIST [89] MLP [39] 4.73% 1.87% 1.86%
CUB-200-2011 [137] B-CNN [140] 16.0% 13.9% 13.1 %

CIFAR-100 [138]
ResNet56 [3] 29.53% 24.97% 24.15%
DenseNet100 [9] 30.78% 28.95% 26.64%
SE-ResNet-110 [10] 24.31% 22.27% 21.98%

ImageNet1K [139]

ResNet50 [3] 24.18%(7.49%) 22.96%(6.81%) 22.12%(6.79%)
SE-ResNet-50 [10] 22.64%(6.24%) 20.86%(5.76%) 20.57%(5.58%)
DenseNet121 [9] 25.88%(8.38%) 23.67%(7.25%) 22.32%(6.17%)
AlexNet [6] 43.71%(21.24%) 40.83%(19.32%) 39.23%(17.78%)

equal importances as shown in Fig. 2.3(a) (straight line in blue color), and its accuracy

rates for all 100 object classes are shown in Fig. 2.3(b) (in blue color), where 100

object classes are sorted in orders of their accuracy rates. One can easily observe that

some easy object classes can achieve high accuracy rates by the first deep network

but some hard ones may have very low accuracy rates. When the percentage of such

hard object classes (with low accuracy rates) is relatively small, using one single deep

network (like traditional deep learning approaches [6, 7, 8, 9, 10, 3]) can obtain good

average accuracy rates in overall. By updating the importances of the object classes

according to their error rates as shown in Fig. 2.3(a) (orange line), our difficulty-

aware embedding algorithm can spend more efforts on the hard object classes and

improve their accuracy rates dramatically as shown in Fig. 2.3(b) (in orange color).

By increasing the importances of hard object classes and pushing the next comple-

mentary network to pay more attentions on them, one can observe that the accuracy

rates for such hard object classes may improve dramatically on the validation set (as

shown in Fig. 2.3(b)), however, the accuracy improvement on the test set is not so

significant as shown in Fig. 2.3(c) and Tab. 2.2 . The reasons for this phenomenon

(i.e., disagreement between the validation (training) set and the test set [59]) are:

(1) the hard object classes may have huge intra-class visual diversities, thus the test
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Table 2.3: The comparisons on the top-1 average error rates.

Datasets Different Approaches τ = 1 τ = 3 τ = 4

CIFAR-100 [138]

difficulty-aware embedding 29.53% 24.97% 24.15%
MixDCNN [76] 29.53% 29.35% 29.32%
BoostedCNN [43, 39] 29.53% 26.82% 26.53%

ImageNet1K [139]

difficulty-aware embedding 24.18% 22.96% 22.12%
MixDCNN [76] 24.18% 23.15% 23.08%
BoostedCNN [43, 39] 24.18% 23.98% 23.75%

images may be significantly different from the training and validation images; (2)

the hard object classes may have huge inter-class visual similarities with others, thus

they are typically hard to be distinguished; (3) from the third iteration, the larger

importances may stick on the always-hard object classes as shown in Fig. 2.3(a). As

shown in Fig. 2.3(b), one can easily observe that the upper bound for the ratio of

such always-hard object classes in CIFAR-100 dataset is close to ρ ≈ 36%. The ef-

fects of the hyper-parameter λ on the performances of our difficulty-aware embedding

algorithm are shown in Fig. 2.2(c).

2.6.4 Experimental Results on ImageNet1K

ImageNet1K dataset [139] consists 1,000 object classes, which have 1.2 million

images for training, and 50,000 for validation. When we train the deep networks

over ImageNet1K dataset, the initial learning rates are set to 0.1. The performances

of our ensemble network are shown in Tab. 2.2 when: (1) different types of deep

CNNs are used to train the underlying complementary networks in our difficulty-

aware embedding algorithm; (2) different numbers of complementary networks are

embedded to generate the ensemble network, where the iteration ]1 corresponds to

using one single deep network τ = 1 (i.e., only the first deep network is used).

When we train the first deep network, we treat all 1,000 object classes with equal

importances as shown in Fig. 2.4(a) (straight line in blue color), and its accuracy

rates for all 1,000 object classes on the validation set are shown in Fig. 2.4(b), where
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Figure 2.4: The comparison on ImageNet1K and DenseNet121 is used: (a) the dis-
tributions of class importances for different iterations; (b) the accuracy rates for the
complementary networks for different iterations; (c) the accuracy rates of the ensem-
ble networks when different numbers T of complementary networks are embedded,
where the iteration ]1 corresponds to using one single deep network T = 1 (i.e., only
the first deep network is used).
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Figure 2.5: The comparison on the average accuracy rates between one single joint
network (iteration ]1) and ensemble network by embedding two complementary net-
works (iteration ]2), where different types of deep networks are used: (a) ResNet56
on CIFR-100; (b) DenseNet100 on CIFAR-100; (c) ResNet50 on ImageNet1K; (d)
DenseNet121 on ImageNet1K.
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Figure 2.6: The comparison on the average accuracy rates of ensemble networks when
different numbers of complementary networks are embedded, where iteration ]3 when
T = 3 complementary networks are embedded and ]4 when T = 4 complementary
networks are embedded and different types of deep networks are used: (a) ResNet56
on CIFR-100; (b) DenseNet100 on CIFAR-100; (c) ResNet50 on ImageNet1K; (d)
DenseNet121 on ImageNet1K.

Table 2.4: The lists of hard object classes for first 3 complementary deep networks in
ImageNet1K dataset. The classes are sorted according to the validation errors.

Network No. Hard Object Classes
No. 1 Network maillot, screen, velvet, laptop, Appenzeller, tiger cat, water

jug, sunglass, spotlight, spatula, monitor, hook, tape player,
ladle, overskirt, letter opener, pole, cloak, sliding door, dough,
chiffonier, sweatshirt, tub, cup, English foxhound, missile,
backpack, cassette player, mushroom, bakery

No. 2 Network hook, projectile, laptop, cuirass, Appenzeller, water jug, sun-
glass, maillot, tub, letter opener, spatula, spotlight, tiger cat,
backpack, cloak, breastplate, ladle, dough, missile, sliding
door, English foxhound, cradle, soup bowl, rock crab, stove,
Windsor tie, sunglasses, CD player, minivan, drumstick

No. 3 Network spotlight, projectile, spatula, tape player, Appenzeller, sun-
glass, dough, maillot, mouse, sunglasses, screen, sweatshirt,
chiffonier, laptop, cuirass, rifle, stove, mushroom, ladle, tub,
night snake, tiger cat, sliding door, CD player, moving van,
sunscreen, letter opener, wok, bakery, carton

all 1,000 object classes are sorted in orders of their accuracy rates. One can easily

observe that some easy object classes have achieved high accuracy rates by the first

deep network but some hard ones may have very low accuracy rates. By updating the

importances of the object classes according to their error rates as shown in Fig. 2.4 (a)
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(orange line), the second complementary network can pay more attentions on the hard

object classes and their accuracy rates can be improved dramatically on the validation

set as shown in Fig. 2.4 (b). On the test set, as shown in Fig. 2.4 (c), our difficulty-

aware embedding algorithm can effectively maintain high accuracy rates for the easy

ones (that can be achieved by the first deep network) while improving the accuracy

rates for the hard object classes at certain degrees (that are achieved by residual

complementary networks from the second iteration). As shown in Fig. 2.4 (b), one

can easily observe that the number of hard object classes % in ImageNet1K dataset is

larger, % ≈ 388, thus the upper bound for the ratio ρ is close to ρ ≈ 40%. As shown in

Fig. 2.4 , we can also observe the disagreement on the accuracy improvement between

the validation (training) set and the test set [59]. Besides three reasons which we have

discussed above, another reason for this phenomenon in ImageNet1K dataset is that:

Some hard object classes are fine-grained, thus they are hard to be distinguished

because they belong to the same parent concept on the semantic ontology and they

are visually similar. As illustrated in Tab. 2.2 , the top-1 accuracy rates could be

low but the top-5 accuracy rates could be much better, e.g., such fine-grained object

classes are hard to be distinguished from each other (which may result in low top-1

accuracy rates), but such confusion could be vanished gradually when top-5 accuracy

rate is calculated.

2.6.5 Comparison with Other Ensemble Approaches

For CIFAR-100 and ImageNet1K datasets, we have compared three ensemble ap-

proaches: (1) BoostedCNN (by weighting the errors at the sample level) [43, 39]; (2)

MixDCNN (by weighting the errors dynamically during joint optimization) [76]; (3)

our difficulty-aware embedding algorithm (by weighting the errors at the class level).

In this comparison experiment, ResNet50 [3] is used to train the complementary net-

works being embedded. By embedding the same number of complementary networks

to generate the ensemble networks, we have compared their performances. As shown
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in Tab. 2.3 , one can easily observe that our difficulty-aware embedding algorithm

can achieve lower overall error rates, where the first iteration ]1 corresponds to using

one single deep CNNs (i.e., only the first deep network is used) and T = 1 in Tab. 2.3

. The reason is that our difficulty-aware embedding algorithm can adapt the impor-

tances of the object classes to their error rates and train the complementary networks

iteratively to improve the accuracy rates for the hard object classes at certain degrees

(that are achieved by the residual complementary networks from the second itera-

tion) while effectively maintaining the high accuracy rates for the easy ones (that can

be achieved at the first deep network). From Tab. 2.3 , one can also observe that

one single ResNet50 [3] has already achieved acceptable average accuracy rates. The

reason is that ResNet is also an ensemble of relatively shallow networks as pointed

out by Veit et al. [79]. Even using one single ResNet can obtain acceptable average

accuracy rates in overall, its accuracy rates for the hard object classes are still very

low; on the other hand, our difficulty-aware embedding algorithm can improve the

accuracy rates for the hard object classes at certain degrees.

2.6.6 Single Deep Network versus Ensemble One

In our difficulty-aware embedding approach, different types of deep CNNs can be

used to train the underlying complementary networks. As shown in Fig. 2.5 , one can

easily observe that: when different types of deep CNNs are used, our difficulty-aware

embedding algorithm (using ensemble network) can outperform the traditional deep

learning approaches (using one single deep CNNs) and the same conclusion can also

be observed from Tab. 2.2 and Tab. 2.3 , where the first iteration ]1 corresponds

to using one single deep CNNs (in blue color) and ]2 corresponds to embedding the

first deep CNNs and the second complementary one to generate the ensemble net-

work (in orange color). As shown in Fig. 2.6 , one can also observe that: when

more complementary networks are embedded, our difficulty-aware embedding algo-

rithm can generate more discriminative ensemble networks, where the third iteration
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Figure 2.7: Illustration for training convergence process of complementary networks
dynamically/jointly optimized on CIFAR100: the convergence process of one comple-
mentary network(a), the average precision among different networks for the first three
epochs(b,c,d). It shows that the difficult categories (small class ID) are similar even
with the randomization from the network initialization and optimization process.

]3 corresponds to embedding 3 complementary networks to generate the ensemble

network (in blue color) and ]4 corresponds to embedding 4 complementary networks

to generate the ensemble network (in orange color).

Obviously, when T complementary networks are embedded to generate the en-

semble network, the ratio of the network parameters between our difficulty-aware

embedding algorithm and traditional deep learning approach (using one single deep

CNNs) is T , which could be cost-sensitive. One potential solution for this issue is to

treat the ensemble network (obtained by our difficulty-aware embedding algorithm)

with higher accuracy rates as a teacher model and train a simple student network via

knowledge distillation [141]. By penalizing the mismatches between the predictions

from the teacher model (our ensemble network) and the student network to mini-

mize their knowledge diversity, such student network can use one single network with

much smaller number of parameters to achieve close accuracy rates effectively as our

ensemble network does.

2.6.7 Further Discussion

2.6.7.1 Weighting at Category Level

AdaBoost [38](weighting at the sample level) has achieved higher training accuracy

by combining traditional weak learning models (i.e. small networks in [43, 39]), but
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it is unsuitable for combining large networks: (a) In deep learning, the training error

could approach zero and easily suffers from overfitting [59]; (b) When the training

error rates are close to zeros, focusing on the hard samples could make the problem of

overfitting even worse because the deep networks will be trained with a small portion

of samples. For example, in our experiments on CIFAR100 dataset, the training errors

could easily approach zeros, which is in line with [59], thus we use the validation error

rates to weight the objective function in the subsequent iterations. At this scenario,

weighting at the sample level is not practical to use the validation results and would

only leave a small portion of the samples focused and may worsen the overfitting.

Overall, weighting at the sample level may impair the generation ability of strong

complementary learning models (ResNet56/ResNet50 in Tab. 2.3). Weighting at

the category level provides an effective alternative which acts as a regularization

method and guides the optimization process (SGD) to pay more attention on difficult

categories by optimizing the weighted objective function subsequently (Fig. 2.3 2.4).

2.6.7.2 Sequentially Guided Optimization

Combining multiple complementary deep networks dynamically/jointly [76, 128] is

indeed a reasonable alternative for embedding and it has shown improved results on

fine-grained tasks [76] and small neural networks [128], but the improved margin is

small with dynamic weighting on non-fine-grained task (CIFAR-100/ImageNet) with

deep neural networks (ResNet56/ResNet50) in our experiments (Tab.2.3). The diver-

sity of dynamic weighting is based on randomization from network initialization and

optimization process (SGD) while our proposed method is based on learning difficulty

of categories. For difficult categories which are hard to learn and converge slowly for

all networks, i.e. small ID categories in Fig.2.7a for all complementary networks (

Fig.2.7b,2.7c,2.7d), the weights/occupations could be distributed almost equally for

the complementary networks if optimized jointly and behaves like average ensemble.

However, such hard categories would be focused and learned by guided objective
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function in the subsequent networks with the proposed method (Fig. 2.3 2.4). In

addition, we have proven the theoretical convergence of our proposed method (Sec.

2.4.1&Eq. 2.22).

2.6.7.3 Generalization Error Bound

As stated before, the training errors of single deep neural network could even

approach zeros, which has been investigated in [59]. However, our proposed difficulty-

aware embedding could further improve the test accuracy through multiple iterations

(Tab. 2.2) and a good selection of λ. It is in line with the theoretical analysis in

generalization error bound (Sec. 2.5&Sec. 2.4.2).

In Eq. 2.28, the divergence between training errors PΩ [gy(x) ≤ maxȳ 6=y gȳ(x)] and

validation errors PS [gy(x) ≤ maxȳ 6=y gȳ(x) + ξ], is narrowing along the iterations Γ.

Thus, though training errors could approach zeros even in the first iteration, the

validation errors could still decrease with our difficulty-aware embedding.

For theoretical deduction in Sec. 2.4.2, we introduce a new parameter λ to maintain

the convergence of the algorithms and provide the theoretical discussion about the

range and meaning of the new parameter λ. The value of λ should be set small

with bad single model (relatively weak learner) learning result to alleviate large εt to

maintain the theoretical convergence. In experiment, we found the value of εt should

not be set too small because it could make the weights more discriminative and cause

the accuracy drop for some easy classes (Fig.2.2(c) 2.3(a) 2.4(a)).

2.7 Conclusions

In this chapter, a diverse representation learning method, namely difficulty-aware

embedding, is developed to train multiple diverse complementary deep networks se-

quentially in an easy-to-hard way. During the iterative training process, the distri-

bution of importances for different object classes is updated such that the current

trained network spends more efforts on distinguishing the hard object classes which



49

are not classified well by the previous trained network. Each individual network focus

on a subset of object classes for achieving higher accuracy rates and all these deep net-

works compensate by learning to recognize different subsets of object classes. These

complementary deep networks with diverse capabilities are seamlessly combined to

generate more discriminative ensemble classifier. As for the future network, we would

like to investigate the adaptive network structures in the difficulty-aware embedding.



CHAPTER 3: ASPECT RATIO REPRESENTATION LEARNING FOR IMAGE

AESTHETICS ASSESSMENT

3.1 Problems and Motivation

3.1.1 Aspect Ratio in Image Aesthetic Assessment

Image aesthetics assessment, where the goal is to predict the given image an aes-

thetic score, has many applications such as album photo recommendation, auxiliary

photo editing, and multi-shot photo selection. The task is challenging because it

entails computations of both global cues (e.g . scene, exposure control, color combi-

nation, etc) and localization information (composition, photographic angle, etc).

Early approaches extract aesthetic features according to photographic rules (light-

ing, contrast) and global image composition (symmetry, rule of thirds), which require

extensive manual designs [142, 143, 144, 145, 146, 147]. However, manual design

for such aesthetic features is not a trivial task even for experienced photographers.

Recent work adopts deep convolutional neural networks for image aesthetics assess-

ment by learning models in an end-to-end fashion. The models mainly use three

types of formulations: binary classification labels [148, 82, 81, 149, 150, 151, 84],

scores [152, 2, 83], and rankings [153, 154].

In the aforementioned methods, the backbone networks are usually adopted from

an image classification network. The data augmentation methods, i.e. image cropping

and warping, are widely used for preventing overfitting in the image recognition task.

However, a shortcoming is that the compositions and object aspect ratios are altered,

which may introduce label noise and harm the task of aesthetics assessment (Fig. 3.1).

A succinct solution proposed in MNA-CNN [81] is to feed one original-size image
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Figure 3.1: Image warping and cropping are widely used for data augmentation,
but they alter the object aspect ratios and composition, causing different aesthetics
perceptions. Assigning the groundtruth aesthetic score of the original image to the
altered image may introduce label noise and deteriorate the discriminative ability.

into the network at a time during training and test (bottom stream in Fig. 3.2). A

major constraint of the approach is that images with different aspect ratios cannot be

concatenated into batches because the aspect ratio of each image should be preserved.

Thus it slows down the training and inference.

3.1.2 Learning Aesthetics Representations About Aspect Ratios

In this chapter, we aim to develop a novel adaptive fractional dilated convolution

that is mini-batch compatible. As shown in the top row in Fig. 3.2, our network

adaptively dilates the convolution kernels to the composition-preserving warped im-

ages according to the image aspect ratios such that the effective receipt field of each

dilated convolution kernel is the same as the regular one. Thus we may assign the

ground truth aesthetic score of the original image to the wrapped image without

introducing label noise. Specifically, as illustrated in Fig. 3.4, the fractional dilated

convolution kernel is adaptively interpolated by the nearest two integer dilated kernels

with the same kernel parameters. Thus no extra learning parameters are introduced.

The benefits of our method can be summarized as follows: (a) By embedding
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Figure 3.2: Overview of adaptive fractional dilated CNN (above) and the comparison
with vanilla CNN (below): Each fractional dilated Conv (above) operated on wrapped
input adaptively dilates the same receptive field as the vanilla Conv (below) operated
on the original image. It thus helps with the problems: (a) Becomes mini-batch
compatible by composition-preserving warping instead of feeding original-size image
(b) Preserves aesthetic features related to aspect ratios by adaptive kernel dilation.

the information of aspect ratios to construct the convolution layers adaptively, it can

explicitly relate the aesthetic perception to the image aspect ratios while preserv-

ing the composition; (b) It is parameter-free and thus can be easily plugged into

the popular network architectures; (c) Through the deduction, we show that our pro-

posed method can be mini-batch compatible and easily implemented by common deep

learning libraries (e.g . PyTorch, Tensorflow); (d) A grouping strategy is introduced

to reduce the computational overhead for efficient training/inference; (e) We achieve

state-of-the-art performance for image aesthetics assessment on the AVA dataset [1].

3.2 Related Work

In this section, we provide a brief review of some of the most relevant works on:

(a) image aesthetics assessment; (b) preserving image aspect ratios and compositions;

(c) dilated convolution; (d) dynamic kernels.

Image Aesthetics Assessment The existing methods on image aesthetics assess-

ment can be mainly categorized into three formulations:

(1) Binary (or mean) aesthetic label : Murray et al . [1] introduced the AVA dataset

which was widely used as the training and testing dataset for state-of-the-art bench-
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marks. Several methods proposed using binary aesthetic labels (high or low) or mean

score labels. Kao et al . [148] propose a hierarchical convolutional neural network de-

signed adaptively for three subclasses: scene, object and texture. They also proposed

a multi-task CNN, A&C CNN, which joint learns category classification and aesthetic

classification. Overall, the A&C CNN outperforms the hierarchical structure due to

more training data and less weights in the unified network as opposed to the SVM

classifier in the hierarchical structure. Mai et al . [81] address the composition in photo

aesthetics assessment and propose a method that aggregates multiple sub-networks

with different adaptive pooling layer sizes of 12 ∗ 12, 9 ∗ 9, 6 ∗ 6, 4 ∗ 4 and 2 ∗ 2 and

further incorporates a scene category probability prediction to output final aesthetic

binary label. Ma et al . [82] select multiple patches from the saliency map of the orig-

inal image as local feature inputs to feed into VGG16 [7] and an aggregation layer.

They further encode the patch localization information in a layer-aware subnet and

combine it with a local feature aggregation output to get the final prediction.

(2) Ranking score: Some methods propose using ranking among images instead of

formulating image aesthetics as an overall binary classification or regression problem.

Kong et al . [153] trained a joint Euclidean and ranking loss and appended attributes

and content category classification layers to perform joint optimization. Schwarz

et al . [154] introduced triplet loss to reduce the score prediction distance between

neighbor image pairs and increase the margin between distant image pairs. They also

add ranking loss to lead triplet loss by reducing the norms of encodings belonging to

less visual pleasing images which increases the norms of well crafted images.

(3) Score distribution: Since the aesthetic assessment is somewhat subjective and

binary aesthetic label is sensitive near the boundary, there are some methods proposed

to leverage score distribution information. To address the ordered score distribution,

Hossein Talebi and Peyman Milanfar [2] introduce Earth Mover’s Distance as a loss

function to train 10-scale score distribution. Since aesthetics is a subjective property



54

and outlier opinions are likely, Naila Murray and Albert Gordo [152] introduce the

Huber Loss to train 10-scale score distribution. In addition to using the mean score

label of multiple raters, Ren et al . [150] proposed a sub-network to learn a personal

rating offset along the generic aesthetic network and output the personalized score

prediction.

Preserving Image Aspect Ratios and CompositionsMulti-patch sampling over

the original images is used to preserve the aspect ratios and proves to be effec-

tive [82, 84, 83]. The widely used data augmentation method in training classification

networks, scaling and cropping, modifies the composition of original image. Several

methods have been proposed to address the issue but they also have their limitations.

He et al . [155] proposed the SPP(spatial pyramid pooling) to handle arbitrarily sized

input. In the training stage, they feed multiple cropped sized images in order to

increase scale-invariance and reduce overfitting. They originally used that training

technique in classification and object detection task;however, in order to preserve the

complete information of the image, e.g . photography viewing angle, some distraction

objects, and partial overexposure, the random cropped is not applicable in image aes-

thetic assessment. Kao et al . [148] compare padding with wrapping into fixed sized

input and found that wrapping slightly outperforms padding; however, through our

experiments we found that it suffers from overfitting due to the absence of data aug-

mentation. In addition to the overfitting, padding and wrapping modifies the original

aesthetic information by importing the border and object distortion respectively. Mai

et al . [81] feed the original sized image into the SPP [155]. We note that it is not

suitable for batch training, which requires same size aspect ratio and slows down the

training if the mini-batch size is set to 1. Ma et al . [82] proposed multiple fixed-size

patches selected from the saliency map. The patches sampled from the original image

changes the some information related to the area, e.g . color histogram and the ratio

of salient object and background, which impacts the photo aesthetics. In addition,
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the photos that contain partial bad factors, such as distraction objects and partial

overexposure, should not be filtered out in the pre-selection phase. The method is

convoluted and contains an extra attention model to generate a saliency map, uses

complicated path sampling strategy, requires manually designed aggregation struc-

ture, and slow training and inference speed(50 patches per image).

A major concern is that sampling patches from the original image may alter essen-

tial aesthetic factors (color histogram, object-background ratio) of the original image

and the complete aesthetics features are lost. In contrast, our proposed method adap-

tively restores the original receptive fields from the composition-preserving warping

images in an end-to-end fashion. The approach of MNA-CNN [81] is the most re-

lated to ours, as they proposed to preserve image aspect ratios and compositions by

feeding the original image into the network, one at a time. A major constraint of

the approach is that images with different aspect ratios cannot be concatenated into

batches because the aspect ratio of each image should be preserved. Thus it tends

to slow down the training and inference processes. On the other hand, our proposed

method is mini-batch compatible and can be easily implemented by common deep

learning libraries.

Dilated Convolution Our adaptive fractional dilated convolution is motivated by

the dilated convolution [23] and atrous convolution [24] in semantic segmentation, but

it differs from them in several aspects: (a) The motivation of our adaptive fractional

dilated convolution is to dilate the receptive fields to the same one for the normal

convolution kernels that are operated on the images with original aspect ratios; (b)

The dilation rate can be fractional for our proposed method and be consistent with the

fractional aspect ratios of the original images. To achieve this objective, we interpolate

two nearest kernels to approximate the misalignment of fractional sampling; (c) The

construction of fractional dilated kernel is dynamic and adaptive to the image aspect

ratios.



56

Dynamic Kernel Deformable convolution [156] is proposed to construct the re-

ceptive fields dynamically and adaptively by learning better sampling in the con-

volutional layer. Our proposed method differs from deformable convolution in the

following points: 1) Motivation: The deformable convolution is proposed to learn

better sampling in the convolutional layer, on the other hand, our proposed method

adapts the receptive fields in the convolution layers into the original aspect ratios.

2) Supervision: Our proposed method, which is supervised by the strong prior that

the aspect ratio is an important factor for image aesthetics assessment, is parameter-

free while the deformable convolution requires extra layers to produce the sampling

index map. 3) Adaptation: Our method is adaptive in kernel level for each image

while the deformable convolution is adaptive in the feature point level for each sliding

window convolution. 4) Implementation: Our proposed method provides a concise

formula for the mini-batch training and could be easily implemented by the common

deep learning frameworks. On the other hand, the deformable convolution requires

to rewrite the convolution operation in CUDA and tends to be slow. Our proposed

method actually interpolates the convolutional layers instead of the feature maps (the

sampling operation in the deformable convolution).

3.3 Proposed Method

In this section, we first explain the impacts of aspect ratios for image aesthetics

assessment. Then, we introduce the adaptive kernel interpolation to tackle the mis-

alignment due to fractional sampling in the proposed method. In addition, we derive a

concise formulation for it in the setting of mini-batch and discuss their computational

overhead. Finally, we describe the loss function and an additional composition-aware

structure for the composition-preserving warping batch.
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(b) Creatures: different wrapping patch could have similar effect of different photography
angle.

Figure 3.3: Illustration for aesthetics change related to aspect ratios and the compari-
son of discrimination ability. Different aspect ratio has different aesthetics perception
and thus an accurate model should be discriminative to the change of aspect ratios.

3.3.1 Image Aspect Ratios

Warping imports distortion and modifies the aspect ratios of original images and

their objects. The distorted random-size image cropping for data augmentation,

which is introduced by Christian et al . [8] and widely used by [31, 9, 10], proves to

be effective for the task of image classification. Image cropping has minor effects

for identifying the salient objects in the images(Fig. 3.1), and it modifies the crit-

ical aesthetic information. As shown in Fig. 3.3, the distorted images modify the

aspect ratios of objects and bring different aesthetic perception. Specifically, for the

manually-designed objects, e.g . architectures and cups(Fig. 3.3a), different warping

patches could reflect the objects that are designed with different ratios, thus image

warping should result in different aesthetic perception.

For the creatures which have well-formed aspect ratios, e.g . persons Fig. 3.3b and

animals, different warping patches could have similar effects of different photography
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angles. We admit that the real object, which is captured from different photography

angles, cannot be transformed by using a simple 2D interpolation, i.e. the change of

image’s aspect ratio, but it could have similar perception effects from the sampled

images. The photography angle is an important factor for image aesthetics perception,

which is highly related to the changes of image aspect ratios. Overall, a model,

which can learn such aesthetic information completely, should be discriminative to

the changes of aspect ratios.

3.3.2 Adaptive Kernel Interpolation

As stated in Section 3.1, cropping modifies the composition of the original image

and causes the loss of some critical aesthetics information. As a result, image cropping

introduces somewhat label noises in the training stage. To preserve the composition,

we firstly warp the image into a fixed size. For network training, such a simple

image warping approach suffers from the problem of overfitting due to the absence of

data augmentation. Motivated by SPP [157], we adopt random-size warping during

the training stage and feed the mini-batch into the networks with global pooling or

SPP modules, which can naturally handle arbitrary-size batch inputs. Overall, the

random-size warping provides effective data augmentation for training scale-invariant

networks while preserving the image compositions.

To cope with the distortion induced by warping, the receptive field of the convolu-

tion kernel should be consistent with the receptive field of the convolution kernel that

is operated on the image with original aspect ratio. Our proposed approach tackles

the distortion issue by adaptively dilating the kernels to the original aspect ratio, as

illustrated in Fig. 3.2. Since the aspect ratio could be fractional, the dilation rate

could be a fraction as well. To tackle the misalignment of feature sampling, we use

the linear interpolation of two nearest integer dilation rates to construct the fractional

dilation kernel.

Suppose that w and h represent the width and height of original images, respec-
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Figure 3.4: Illustration of kernel interpolation: linear interpolation of the nearest two
integer dilated kernels shared same kernel parameters are used to tackle the sampling
misalignment from fractional dilation rates.

tively. If h > w and h
w

is not a integer, as illustrated in Fig. 3.4, AFDC (adaptive

fractional dilated convolution) kernel knAFDC in n-th layer is constructed as:

knAFDC = (dre−r)kn(1,brc) + (r−brc)kn(1,dre) (3.1)

where r = h
w
. For any non-integer r, it is in the interval

[
brc, dre

]
whose length is

equal to 1. brc and dre are two integers nearest to r. kn(1,brc) and k
n
(1,dre) are two dilated

kernels with the nearest integer dilation rates brc and dre for nth layer, respectively.

More specifically, as shown in Fig. 3.4, r ∈ [1, 2], brc = 1, dre = 2. We note that both

kn(1,1) and k
n
(1,2) inherit the same learning parameters from the original kernel.

Likewise, if w > h and w
h
is not an integer, then we choose:

knAFDC = (dre−r)kn(brc,1) + (r−brc)kn(dre,1) (3.2)

If r = h
w
is an integer, it is enough for us to employ integer dilated kernel.

Therefore, the fractional dilated kernel is adaptively constructed for each image
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Figure 3.5: Illustration for mini-batch compatibility: the distributive property of
convolution operation (c.f . Eq. (3.3)) makes the fractional dilated conv easily im-
plemented and compatible for mini-batch computation with a zero-padded weight
vector/matrix (c.f . Eq. (3.5))

with respect to w and h as shown in Fig. 3.4. In addition, all the integer dilation

kernels share the same kernel parameters and thus no extra learning parameters are

introduced.

3.3.3 Mini-Batch Computation and Implementation

To implement the dynamic kernel interpolation in Eq. (3.1) and Eq. (3.2) directly,

we need to rewrite the kernel-level code due to the diverse kernels in mini-batch.

However, through the following deduction, we show that the proposed method can be

easily implemented by common deep learning libraries, e.g . PyTorch and TensorFlow.
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Using the distributive property of convolution operation, the transformation of the

feature maps generated by the adaptive fractional dilated Conv kernels in Eq. (3.1)

can be formulated as:

fn+1 = knAFDC ∗ fn

=

[
(dwh e−wh )kn

(1,bwh c) + (w
h
−bwh c)kn(1,dwh e)

]
∗ fn

= (dwh e−wh )kn
(1,bwh c) ∗ fn + (w

h
−bwh c)kn(1,dwh e) ∗ fn

(3.3)

where fn denotes the feature maps for the nth layer and ∗ denotes convolution.

In mini-batch training and inference, we can construct multiple kernels with dif-

ferent dilation rates (rateik, rate
j
k) from the same kernel parameters and then use a

zero-padded interpolation weight vector w to compute the operation adaptively for

each image as:

fn+1 = knAFDC ∗ fn

=
∑
k

w(rateik,rate
j
k)k

n
(rateik,rate

j
k)
∗ fn

= wf̃n

(3.4)

which is just the inner product of two vectors:

w = [w(ratei1,rate
j
1), ..., w(rateiK ,rate

j
K)] (3.5)

and

f̃n = [kn
(ratei1,rate

j
1)
∗ fn, ..., kn(rateiK ,ratejK)

∗ fn]> (3.6)

where the number of dilation kernels is K. As shown in Fig. 3.5, the interpolation
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weight w(rateik,rate
j
k) for each instance is either w(rateik,1) or w(1,ratejk), defined as follows:

w(ratei,1) =


r − (ratei − 1), if ratei − r ∈ [0, 1)

(ratei + 1)− r, if ratei − r ∈ (−1, 0)

0, else

w(1,ratej) =


r − (ratej − 1), if ratej − r ∈ [0, 1)

(ratej + 1)− r, if ratej − r ∈ (−1, 0)

0, else

(3.7)

In mini-batch in size B and K dilation kernels , the computation of n+ 1th feature

maps Fn+1 can be formulated as:

Fn+1 =

[
w0>F0 w1>F1 . . . wI>FB

]>
(3.8)

where the weight vector for bth instance in mini-batch is:

wb =

[
wb

(ratei1,rate
j
1)

wb
(ratei2,rate

j
2)

... wb
(ratebK ,rate

j
K)

]>
(3.9)

and the feature vector Fb is the row vector in:

kn
(ratei1,rate

j
1)
∗ f 1

n kn
(ratei2,rate

j
2)
∗ f 1

n ... kn
(rateiK ,rate

j
K)
∗ f 1

n

kn
(ratei1,rate

j
1)
∗ f 2

n kn
(ratei2,rate

j
2)
∗ f 2

n ... kn
(rateiK ,rate

j
K)
∗ f 2

n

...
...

...
...

kn
(ratei1,rate

j
1)
∗ fBn kn

(ratei2,rate
j
2)
∗ fBn ... kn

(rateiK ,rate
j
K)
∗ fBn


(3.10)

The computation of the above Eq. (3.10) can be done efficiently in the mini-batch as:

[
kn

(ratei1,rate
j
1)
∗ Fn kn

(ratei2,rate
j
2)
∗ Fn . . . kn

(rateiK ,rate
j
K)
∗ Fn

]
(3.11)
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Table 3.1: Computation comparison: training batch size is set to 16, test batch size
is set to 32. The speed is the average result for 100 iterations from the test on single
GTX 1080Ti. The fractional dilated Conv is embedded for all BottleNets in ResNet50
while * denotes additional embedding dilation for the first 7× 7 Conv layer as well.

Network #Params #Mult-Adds Speed (train) Speed (test)
VGG16 138M 15.3G 8.14 it/s 12.91 it/s
2-dilation 138M 30.7G 2.70 it/s 3.85 it/s
3-dilation 138M 46.1G 1.75 it/s 2.28 it/s
7-dilation 138M 109.1G 0.73 it/s 0.93 it/s

ResNet50 25.6M 3.5G 12.49 it/s 22.80 it/s
2-dilation 25.6M 5.6G 8.32 it/s 14.81 it/s
2-dilation* 25.6M 6.5G 6.20 it/s 9.88 it/s
3-dilation 25.6M 7.5G 6.28 it/s 10.68 it/s
3-dilation* 25.6M 8.9G 4.35 it/s 6.92 it/s
7-dilation 25.6M 10.6G 3.22 it/s 5.28 it/s
7-dilation* 25.6M 18.8G 2.08 it/s 3.12 it/s

We note that the activation function and batch normalization are omitted in the

formulas for concise illustration.

The formula in Eq. (3.8) can be interpreted as a dot production followed by a sum

reduction between interpolation weight matrix W and Eq. (3.11), which thus can be

efficiently implemented by common deep learning frameworks (Pytorch, Tensorflow,

etc.). Each integer dilated Conv, kn
(rateik,rate

j
k)
∗ Fn in Eq. (3.11), is computed as a

normal dilated Conv layer with the shared learning parameters.

Computational overhead The computational overhead is determined by the num-

ber of integer dilated kernels and the number of convolutional layers whose kernel

sizes are not 1 × 1. As shown in Table 3.1, the BottleNet in ResNet50 [3] contains

two 1× 1 kernels and one 3× 3 kernel. Since only 3× 3 kernel introduces the compu-

tational overhead, the computational cost for 2 integer dilations is roughly 1.5 times

of the original model, while VVG16 [7] consists of the majority of 3 × 3 kernels and

thus the computation cost is approximately 2 times. Some additional computational

overhead is caused by the interpolation operation of different dilation kernels.
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Figure 3.6: Grouping strategy to reduce computational overhead: The integer dilated
Convs can be shared by properly grouped images according to aspect ratios.

Reducing overhead with a grouping strategy In practice, the aspect ratios, w
h
,

of most of images would fall into [1
2
, 2], e.g . 97.8% of the training and testing images

in the AVA [1] dataset. Training efficiency can be optimized by grouping batches,

e.g . training with three dilation kernels for the most batches, DilationRates =

{(2, 1), (1, 1), (1, 2)} for the images whose aspect ratios fall into [1
2
, 2]. For the datasets

with more diverse aspect ratios, a more fine-grained grouping strategy could be ap-

plied. As illustrated in Fig. 3.6, images with aspect ratio range [4, 3] (above) and

[1
2
, 1] (below) share the valid integer dilated Convs in the grouped batches.

Parallel optimization The calculation of multiple integer dilated kernels in each

convolutional layer is equivalent to broadening the output channel size by the num-

ber of dilation kernels. In another words, the computation of dilated Conv group,

{kn
(rateik,rate

j
k)
∗ Fn}, can be optimized through parallel computing. WideResNet [80]

claims that increasing the width of Conv layers is more accommodating to the na-

ture of GPU computation and helps effectively balance computations more optimally.

However, from Table 3.1, the actual training and testing speeds are approximately

linearly correlated with # Muti-Adds, which could be attributed to the current im-
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plementation of the framework (TensorFlow) and can be improved by further parallel

optimization.

We note that many base networks are stacked mainly with the permutation of

1× 1 and 3× 3 kernels and they can be applicable to embed AFDC in terms of the

training and inference speed, i.e. [3, 9, 10, 80, 31] in ResNet stream and [11, 12, 13] in

MobileNet stream. Besides, the adaptation is easy because our method is parameter-

free. Overall, the random-size warping preserves the composition of the original

image and also provides data augmentation to train the network with scale invariance.

AFDC can adaptively construct fractional dilated kernels according to the spatial

distortion information in a computation-efficient manner.

3.3.4 Composition-Aware Structure and Loss

The commonly-used network structures for the task of image classification usually

incorporate global pooling before the fully connected layers [31, 3, 9, 8, 10]. The global

pooling eliminates spatial variance which is helpful for the task of image recognition

by training the networks with spatial invariant ability, but it causes the loss of local-

ization information for image aesthetics assessment. Motivated by spatial pyramid

pooling [157], MNA-CNN-Scene [81], several efforts are made to learn the information

of spatial image compositions. First, we use multiple adaptive pooling modules [157]

to output gi ∗ gi grids and feed them into the fully-connected layers (c.f . Fig. 3.2).

The localization factors for image aesthetics assessment are highly correlated with

the image symmetry and the overall image structure. Then, we aggregate the out-

puts after the fully-connected layers by concatenation. To limit the number of model

parameters and prevent from overfitting, the module of each adaptive pooling layer

outputs numfeatures
numgrids

channels.

Following the work in [2], we train our network to predict 10-scale score distribution

with a softmax function on the top of the network. To get both the mean score

prediction and the binary classification prediction, we calculate the weighted sum of
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score distribution
∑10

i=1 i · pi. We use the ordered distribution distance, Earth Mover

Distance [2], as our loss function:

EMD(p, p̂) = (
1

N

N∑
k=1

|CDFp(k)− CDFp̂(k)|r)1/r (3.12)

where CDFp(k) is the cumulative distribution function as
∑k

i=1 pi. As stated in Sec-

tion 3.1 and the results in [2], predicting the score distribution can provide more

information about image aesthetics compared to the mean scores or binary classifica-

tion labels.

3.4 Experimental Results

Following [2, 152, 82, 81, 148], we have evaluated our proposed method over AVA

dataset [1]. The AVA contains around 250,000 images and each image contains the

10-scale score distribution rated by roughly 200 people. For a fair comparison, we use

the same random split strategy in [2, 154, 152, 82, 81, 1] to generate 235,528 images

for training and 20,000 images for test.

3.4.1 Implementation Details

We use ResNet-50 [3] as the backbone network due to its efficiency on computation

and graphic memory as discussed in Section 3.3.3. We replace all the 3 × 3 Conv

layers in each BottleNet with our proposed adaptive fraction dilation Conv layers. It

is easy to plug AFDC into the common CNN architectures since it does not introduce

any extra model parameters. We use the same EMD loss in Eq. (3.12) with r = 2

for better back propagation. To accelerate training, we use the grouping strategy

discussed in Section 3.3.3. For the first 12 epochs, we train the model with three

dilation kernels, 1× 2, 1× 1, 2× 1 on the grouped images since the aspect ratios for

97.8% training and validation images fall between [1
2
, 2]. Then we train the model

with seven dilation kernels, 1×4, 1×3, 1×2, 1×1, 2×1, 3×1, 4×1, for the remaining
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6 epochs and select the best model from the results in the validation dataset. We note

that the training and test speed could be further accelerated by a more fine-grained

grouping strategy. We transfer the network parameters (pre-trained on ImageNet)

before the fully connected layer and set the initial learning rate to 0.01 for the first 6

epochs. Then we dampen the learning rate to 0.001 for the rest of the training epochs.

We find that setting initial learning rate to 0.001 with a decay rate 0.95 after every 10

epochs can produce comparable results but converges more slowly. The weight and

bias momentums are set to 0.9. We transfer the network parameters (pre-trained on

ImageNet) before fully connected layer. During the test, we average the prediction

results from four warping size {224× 224, 256× 256, 288× 288, 32× 320}.

3.4.2 Ablation Study

In this section, we introduce the steps to build the final model and analyze the

effects of each module step by step: (1) Replacing random cropping with composition-

preserving random warping; (2) Replacing vanilla Conv with AFDC in the aspect-

ratio-preserving pre-trained model on ImageNet; (3) Adding SPP modules to learn

image composition.

Random Warping. For the data augmentation, input images in NIMA [2] are

rescaled to 256× 256, and then a crop of size 224× 224 is randomly extracted. They

also report that training with random crops without rescaling produces the results

that are not compelling due to the inevitable changes in image compositions. In

order to preserve the complete composition, we replace the random-cropping with

random-size warping by randomly warping each batch into square size in [224, 320]

during each iteration. The network suffers from overfitting without using random

warping. We note that non-square-size warping may further help with generalization

and potentially train AFDC more robustly.

From Table 3.2, we generate slightly better results (Vanilla Conv (ResNet50)) com-

pared with NIMA [2]. We use the same loss (EMD loss) and network (ResNet50, our
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Table 3.2: Test result comparison on AVA [1]: The evaluation metrics are following
[2]. Reported accuracy values (cls. acc.) are based on binary image classification.
MSE (mean squared error), LCC (linear correlation coefficient) and SRCC (Spear-
man’s rank correlation coefficient) are computed between predicted and ground truth
mean scores. EMD measures the closeness of the predicted and ground truth rat-
ing distributions with r = 1 in Eq. (3.12). AFDC (random-size cropping) transfers
the model trained with widely used data augmentation method in ImageNet, while
AFDC (aspect-ratio-preserving pretrain) transfers the model trained with aspect-
ratio-preserving data augmentation.

network cls. acc. MSE EMD SRCC LCC
NIMA(VGG16)[2] 0.8060 - 0.052 0.592 0.610
NIMA(Inception-v2)[2] 0.8151 - 0.050 0.612 0.636
NIMA(ResNet50, our implementation) 0.8164 0.3169 0.0492 0.6166 0.6388
Vanilla Conv (ResNet50) 0.8172 0.3101 0.0481 0.6002 0.6234
AFDC (random-size cropping pretrain) 0.8145 0.3212 0.0520 0.6134 0.6354
AFDC (aspect-ratio-preserving pretrain) 0.8295 0.2743 0.0445 0.6410 0.6653
AFDC + SPP 0.8324 0.2706 0.0447 0.6489 0.6711

implementation) as NIMA [2]. Comparable results have shown that random warping

is an effective data augmentation alternative and it preserves the image composition.

Aspect-Ratio-Preserving Pretrain. We replace the vanilla convolution layers

with AFDC in ResNet50. In our experiments, we find that, fine-tuning the fractional

dilated convolution network results in similar validation accuracy compared to the

original network (c.f . AFDC (random-size cropping pretrain) in Table 3.2). Com-

patible validation results might be attributed to the pre-trained model which has a

distortion-invariant ability. The widely used data augmentation [8] for network train-

ing on ImageNet contains random cropping on a window whose size is distributed

evenly between 8% to 100% of the original image area with the aspect ratio con-

strained to [3
4
, 4

3
]. The model is trained with distortion invariance, which has the

opposite interest of our method that tries to preserve the original aspect ratio.

For better transfer learning, we pre-train the ResNet50 [3] on ImageNet [139] with-

out distortion augmentation. Specifically, we sample the 8% to 100% crop size to

the image area with a square window, which is slightly modified comparing to the

data augmentation method in [8]. As in Table 3.2, transferring the model from the
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Figure 3.7: The cropping results for the model trained with global pooling (left) and
SPP (right). The two cropping samples are obtained by using a sliding window with
the lowest score (green) and the highest score (red). The image is firstly resized to
256. A sliding window search with size 224 and stride 10 is applied.

aspect-ratio-preserving pre-train, we improve the overall test results (AFDC (aspect-

ratio-preserving pre-train)) by a margin from the vanilla Conv counterpart.

Composition-Aware Structure. For better representation learning of composition,

we use three different scales for SPP, {1 × 1, 2 × 2, 3 × 3}. The network with a

global pooling layer is equivalent to using only one scale, 1× 1. From Table 3.2, the

network with SPP modules (AFDC+SPP) generates better results comparing to the

network with the global pooling layer (AFDC). The experimental results have shown

that incorporating the localization information could benefit the learning of image

compositions. In Fig. 3.7, the automatic cropping example demonstrates that the

ability of localization/composition discrimination is important to find a good cropping

result when the global cue in each cropping box has a similar distribution (color,

lighting et al .). The model leaned with SPP modules can infer cropping respecting

the image compositions, e.g . the relative position of eye and face in the example. We

also tried numgrids = 5 and found that the results were not compelling due to the
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Figure 3.8: The comparison of learning curves: the backbone networks here are all
ResNet-50 [3].

overfitting from extra model parameters. Three different scales are quite consistent

with the common aesthetic rules (global information, symmetrical composition in

horizontal and vertical direction, the rules of the thirds).

3.4.3 Effectiveness of AFDC

Learning Representation and Generalization From the experiments in Fig. 3.8,

we argue that preserving aspect ratio information is essential for learning photo aes-

thetics since our method not only improves the validation results but also improves

the training results. Without extra learning parameters, AFDC improves both learn-

ing representation and generalization ability. As discussed in Section 3.1, preserving

the image aesthetics information completely omits the label noises caused by random

warping and thus facilitates the learning process. The additional aesthetic features

related to the aspect ratios allow the model to be more robust and discriminative.

To further probe the effects of embedding aspect ratio, we compare different ways to

incorporate the dilated convolution and the results are reported in Table 3.3. When

trained with vanilla Conv (top rows in Table 3.3), AFDC is superior to other dilated

Conv methods during the test. It implies the potential optimal between nearest two

integer dilated kernels. After training with AFDC (bottom rows in Table 3.3), it fur-

ther validates the effectiveness of AFDC, which is guided by the helpful supervision
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Figure 3.9: The top 20 images with the biggest difference between the AFDC and
Vanilla CNN. The scores are represented as FracDilated/Vanilla(GroundTruth). The
activation maps from AFDC change along the aspect ratios. The activation is gener-
ated by a sliding blocking window and average the score change in the output space.

of aspect ratios. We note that such experiments are accessible because our method

is parameter-free.

Overall, our proposed AFDC can learn more discriminative and accurate represen-

tations related to aesthetics perception, resulting in better generalization by leverag-

ing extra supervision from the information of image aspect ratios.

Discriminative to Aspect Ratios As shown in the right plots from Fig. 3.3, along

the change of objects’ aspect ratios by different wrapping size, the proposed frac-

tional dilated Conv can be discriminative(blue dashed line) while the vanilla model

infers similar scores(green dashed line). Moreover, the proposed method produces a

multi-modal score distribution, which reflects it learns complex interpretation about

the relation between aspect ratio and aesthetic perception. It is consistent with that

designing a better aspect ratio of the architectures/cups or finding a good photogra-

phy angle is a complex process. From the activation maps in Fig. 3.9, we can see the

model actually activates different spatial parts along the change of the texture in im-

ages while the vanilla model can not differentiate it due to the same-sized wrapping.

In addition, the proposed method captures the noticeable trend about aesthetic per-

ception. For example, the left-side images from row 3 cause more unpleasing aesthetic

perception than the right-side images, while the images from row 4 do the opposite.
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For the images from row 2, the change of aesthetic perception caused by distortion is

not significant and the proposed model generates less differential scores.

Figure 3.10: Comparison of discrimination to the change of aspect ratios.

To further investigate the response to aspect ratios, we resize the same image into

different aspect ratios and test the results on different trained models. As shown in

Fig. 3.10, AFDC (blue line) is discriminative to the change of aspect ratios. The

small fluctuation of vanilla Conv (green line) is attributed to sampling change from

resizing process. The model with random-size cropping pretrain on Imagenet (orange

line) is less discriminative to capture the aesthetics perception related to aspect ratio

due to its distortion-invariant pretrain. Moreover, the proposed method produces a

multi-modal score distribution, which reflects that it learns complex relation between

the aspect ratio and the aesthetics perception. It is in line with the notion that

designing better aspect ratios or finding aesthetically pleasing photography angles is

not trivial.

Due to the constraint of training dataset, we admit that the learned perception

related to the aspect ratios is not satisfactory yet even the model learns from different

aspect ratios. As a matter of factor, the learning ability is available for our proposed

method when training on a more specific targeted dataset. It could be utilized in
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Table 3.3: The test result comparison of different convolutions: The results are ob-
tained with trained parameters by vanilla Conv (above) and AFDC (below). Test
processes are conducted by different calculation methods for interpolation weights,
w in Eq. (3.5). Vanilla Conv, constant dilation, nearest integer dilation and second
nearest integer dilation can be interpreted as feeding one-hot interpolation weight
vector into the networks.

Train Test cls.acc. MSE EMD

vanilla

vanilla 0.8172 0.3101 0.0481
constant dilation rate = [2,1] 0.8072 0.5163 0.0610
second nearest integer dilation 0.8091 0.5368 0.0620
mean of nearest two integer dilations 0.8117 0.4558 0.0576
nearest integer dilation 0.8114 0.4322 0.0562
adaptive fractional dilation 0.8132 0.4133 0.0553

AFDC

vanilla 0.8085 0.3210 0.0581
constant dilation rate = [2,1] 0.8132 0.3182 0.0576
second nearest integer dilation 0.8156 0.3003 0.0476
mean of nearest two integer dilations 0.8274 0.2771 0.0457
nearest integer dilation 0.8277 0.2757 0.0457
adaptive fractional dilation 0.8295 0.2743 0.0445

automatic/auxiliary photo enhancement with not only color space transformation

but also with spatial transformation, e.g . profile editing, multi-shot selection and

automatic resizing.

3.4.4 Comparison With the State-of-the-Art Results

We have compared our adaptive fractional dilated CNN with the state-of-the-art

methods in Table 3.4. The results of these methods are directly obtained from the

corresponding papers. As shown in Table 3.4, our proposed AFDC outperforms other

methods in terms of cls.acc and MSE, which are the most widely targeted metrics.

Compared with NIMA(Inception-v2) [2] which uses the same EMD loss, our experi-

mental results have shown that preserving the image aesthetic information completely

results in better performance on image aesthetics assessment. We follow the same

motivation from MNA-CMM-Scene [81], while our proposed method is applicable to

mini-batch training which contains images with different aspect ratios. The experi-

mental results have shown adaptive embedding at kernel level is an effective way to
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Table 3.4: Comparison with the SOTA methods: The four patches are warping size
{224, 256, 288, 320}.The single patch is warping size 320 selected from the best results.

Method cls. acc. MSE SRCC
MNA-CNN-Scene [81] 76.5% - -
Kong et al . [153] 77.3% - 0.558
AMP [152] 80.3% 0.279 0.709
Zeng et al . (resnet101) [151] 80.8% 0.275 0.719
NIMA (Inception-v2) [2] 81.5% - 0.612
MP-Net [82] (50 cropping patches) 81.7% - -
Hosu et al . [83] (20 cropping patches) 81.7% - 0.756
A-Lamp [82] (50 cropping patches) 82.5% - -
MPada [84](≥ 32 cropping patches) 83.0% - -
ours (single warping patch) 82.98% 0.273 0.648
ours (4 warping patches) 83.24% 0.271 0.649

learn more accurate aesthetics perception. Compared with multi-patch based meth-

ods [82, 83, 84], our unified model, which learns the image aesthetic features directly

from the complete images in an end-to-end manner, can better preserve the original

aesthetic information and alleviate the efforts to aggregate sampling prediction, e.g .

complicated path sampling strategy and manually designed aggregation structure in

[82]. Moreover, our method is much more efficient without feeding multiple cropping

patches sampled from original images and could be more applicable for the applica-

tion. Furthermore, it is much succinct due to its parameter-free manner and can be

easily adapted to popular CNN architectures.

3.5 Conclusion

In this chapter, an adaptive dilated convolution network is developed to explicitly

learn representations of aspect ratios for image aesthetics assessment. Our proposed

method does not introduce extra model parameters and can be plugged into popular

CNN architectures. Besides, a grouping strategy has been introduced to reduce com-

putational overhead. Our experimental results have demonstrated the effectiveness

of our proposed approach. Even our adaptive dilated convolution network was pro-
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posed to support image aesthetics assessment, it can also be applied in other scenarios

when image cropping or warping may introduce label noises. Moreover, adaptive ker-

nel construction in a parameter-free manner provides an intuitive approach to design

dynamic embedding at kernel level, which aims at better learning representation and

generalization.



CHAPTER 4: INVARIANCE REPRESENTATION LEARNING FOR PERSON

RE-IDENTIFICATION

4.1 Problems and Motivation

4.1.1 Variances of Person Re-Identification

Person re-identification (ReID) is an essential component of intelligent computer

vision systems. It has drawn increasing interest in many applications, such as surveil-

lance, activity analysis and long-term tracking. Given an image of a person-of-interest

captured by one camera, the goal is to re-identify this person from images captured

by multiple cameras without overlapping viewpoints. As an instance-level recogni-

tion problem, the ReID task is inherently challenging. First, intra-class variations

are typically huge due to significant changes of visual appearances caused by camera

viewing conditions, human pose variations, occlusions, et al . Second, the inter-class

variations can be quite small because people may wear similar clothes.

To address these challenges of intra-class diversity and inter-class inseparability,

a lot of efforts have been devoted to deep learning for its strong capability on dis-

criminative feature extraction. Most of existing methods put the training process

of person ReID under classification framework, where intermediate features are ex-

tracted to compute the similarity between query and gallery images during test. Some

tailor-made neural networks are proposed to incorporate localization/attention or dis-

entanglement for feature alignment. The former one aligns features in 2D spatial di-

mension and the latter one targets latent semantic alignment, but the essence of those

approaches is instance-level alignment (c.f . Fig. 4.1 left). In addition, a large variety

of loss functions have been proposed for metric learning in person ReID. For exam-
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Figure 4.1: From the view of alignment modality: instance-level alignment (top) and
cluster-level alignment (bottom).

ple, the two most prevalent loss functions are classification loss, e.g . cross entropy

loss, and metric-learning based loss, e.g . hard-negative mining triplet loss [158]. For

those advanced networks driven by such popular loss definitions, although successful,

we argue that they can still be categorized as instance-level alignment (c.f . Fig. 4.1

left). The intrinsic reason of such constraint is attributed to the adoption of general

classification framework, where the interaction it builds can only dwell within the

sampled mini-batch but cannot see more neighbors in the distribution of the whole

dataset. As a result, it inhibits the growth of intra-class compactness and inter-class

separability.

4.1.2 Invariance Representations From a Global Viewpoint

Aiming to break through the aforementioned limitations and step beyond the

instance-level feature alignment, we propose a succinct and efficient method to enable

cluster-level interaction in feature space, targeting the alignment from an overview of

latent feature distribution (c.f . Fig. 4.1 right). ReID is in essential a metric learning
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(b)(a) (d)(c)

Figure 4.2: From the view of optimization: Anchor loss provides more stability and
consistency for optimization. (a) Classification loss pulls feature sample fi towards
the corresponding classifier vector pj in fully connected layer; (b) Triplet loss probes
the interaction within sampled mini-batch (denoted as solid color); (c-d) Anchor loss
enables the sampled mini-batch to see the anchors aggregated from all the siblings
through iterative aggregation(c) and alignment(d).

problem. When projected to the learned feature space, feature points are expected to

gather into compact clusters respecting their labels and such cluster-level interaction

may inhabit better formulation of the clusters. We define the center of each feature

cluster as the anchor. In a computational efficient manner, the anchors generated

from aggregation serve as a supervision from the distribution of whole dataset and

enable the model to see other training images in the dataset indirectly. In practice,

after the saturation of traditional training, we manipulate two iterative steps to fur-

ther intensify the cluster compactness: (a) Aggregate cluster features across dataset,

stepping beyond the limitation of a classification framework; (b) Align features under

the guidance from aggregated anchors. We claim such cluster-level feature alignment

is much more promising for identity-related representation.

Besides the view of feature alignment modality (c.f . Fig. 4.1), the proposed method,

called anchor loss, provides consistent optimization for metric learning which bene-

fits training as well as generalization process. The classification loss tries to align

the features in orders according to the classification labels. Specifically, the inner

product f>i pj between classifier pj in the full-connected layer and the feature vec-

tor fi is increased as pj and fi pulling towards each other (c.f . Fig. 4.2(a)). It has

promising convergence but unnecessary penalize the intra-class variance if classifier
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diversifies channel-wise focus on decision. Also, it handles training mini-batch sam-

ples by simply averaging individual losses, thus can only build sample connection

from the identity implicitly. Triplet loss [158] tries to align features in more explicitly

way. It optimizes the intra-class and inter-class distance by mini-batch interaction

with proper sampling. From Fig. 4.2(b), we can see that the optimization direction

of triplet loss is highly dependent on the mini-batch sampling and inevitably intro-

duces uncertainty and inconsistency. On the other hand, anchor loss enables the

sampled mini-batch to see the anchors aj aggregated from all the siblings, bearing

more consistency (c.f . Fig. 4.2(c-d)). Anchors generated from aggregation provide

strong guidance and propagate the global information from the distribution of dataset

to local mini-batch training. Based on extensive experiments, we demonstrate that

anchor loss can consistently boost the generalization.

Overall, in this proposed paper, we learn a metric to overcome intra-class diversity

and inter-class confusion for person ReID based on anchor-based min-batch training.

Although each mini-batch of samples is a small subset of the dataset, we can success-

fully capture the global information during training through anchors which play key

roles in the proposed cluster-level feature alignment. A small number of represen-

tative anchors propagate rich knowledge from the distribution of dataset into local

training batch in a computational efficient manner.

4.2 Related Work

Person Re-Identification A large group of person re-identification network focuses

on feature alignment. In general, there are two kinds of feature alignment: (a) spa-

tial feature alignment by attention and localization (b) latent feature alignment by

disentanglement.

In spatial feature alignment, it can be categorized as self-supervised and extra-

supervised methods. We consider hand-crafted splitting as one representation of

self-supervision. Sun et al . [91] propose PCB to split the intermediate features hor-
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izontally in order to align the feature in local spatial parts and is widely used by

[159, 160, 161, 162, 163]. They have a strong assumption that the spatial distribu-

tions of human bodies and human poses are exactly matching. Besides, self-derived

attention serves as a tool to bias the allocation of available resources towards the most

informative parts of an input. Quite some works [164, 165, 166, 167] proposed sim-

ilar and effective part-aligning CNN networks for locating context regions and then

extract these regional features for ReID. Extra-supervision leverages human part de-

tector [168], human pose [169] or human body parsing [170] to provide more accurate

localization. For example, [92, 171, 172, 167] incorporate external pose attention

maps to align the feature in deformable spatial space of human body. SPReID [170]

utilizes a parsing model to generate five different predefined human part masks to

compute more reliable part representations, which achieves promising results on vari-

ous person ReID benchmarks. Dense semantic alignment [93] went one step further, it

addressed the body misalignment by leveraging the estimation of the dense semantics

of a person image, and constructed a set of densely semantically aligned part images

for re-identification. Other methods for spatial alignment include the attention from

attribute [173], forground mask [94], et al .

For latent feature alignment, DG-net [96] proposed a disentanglement solution by

GAN and Autoencoder to decouple input into appearance code and structure code,

and extract pose-invariant features. Whereas, there has been a growing interest in

using generative models to augment training data and enhance the invariance to input

changes [174, 175, 176].

Metric Learning: Center Loss and Triplet Loss In end-to-end learning process,

several methods propose to explore iteration within mini-batch for feature alignment

. Zheng et al . [177] propose a verification loss to align the pairwise features. Her-

mans et al . [158] target the triplet samples and point out the triplet loss on hard

examples mining is superior to batch-all triplet loss. In face recognition, parametric
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center loss [178] is proposed to align the intra-class distance and it is used by [179] for

person reID, which looks similar to our proposed anchors. Whereas, our motivation is

essentially different. Center loss treats the parametric center as an auxiliary decision

factor similar to the classifier pj in Fig. 4.2(a), which is jointly optimized under clas-

sification framework and only builds the connection from identity label implicitly. On

the contrary, our proposed anchor loss complies the embedded feature distribution

and distills the knowledge from sibling samples (c.f . Fig. 4.2(c)) to enable the inter-

action in cluster level explicitly. More recently, Wen et al . [180] revisit center loss and

propose to use the classifier layer as the center for each class, which further validates

our motivation difference. Moreover, it suffers from large instability due to random

initialization for parametric center. On the other hand, our method provides constant

improvement because the aggregation distills knowledge from dataset distribution.

In summary, those methods never push towards the constraint of classification

framework in mini-batch training and scrutinize the modality in cluster-level fea-

ture alignment. Probably due to the concern about training efficiency, cross-dataset

aggregation is not fully investigated in deep CNN methods. However, we conduct

a comprehensive study on different variants of the cluster-level interaction, which

has demonstrated our method could be trained effectively and efficiently with small

training efforts.

4.3 Proposed Method

Person ReID aims to establish the identity correspondences between each query

image and gallery images across different cameras. We use Convolutional neural

network (CNN) to extract image features due to its strong representation power. To

learn discriminative representation that is robust against intra-class variation and

interclass confusion, we take advantage of three different loss functions to train the

model: (1) cross-entropy classification loss Lcls (Fig. 4.2(a)); (2) triplet loss Ltrip

(Fig. 4.2(b)); (3) anchor loss Lanchor (Fig. 4.2(d)). Lcls and Ltrip [158] are widely
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used for person ReID, and they are both instance-level optimization as illustrated

in Fig. 4.2(a-b). To propagate rich knowledge from outside samples into each mini-

batch, the designed anchor loss Lanchor targets cluster-level supervision which has two

options:

(a) Anchor Loss for Intra-Class Compactness: Lanchor pulls the feature vector to-

wards the anchor where its label belongs:

Lanchor =
1

|B|
∑
i∈B

C∑
j=1

δ(yi = j)D(fi, aj) (4.1)

where |B| denotes the number of samples in the mini-batch B, and C is the number of

classes. fi and yi are the feature vector and the label of the sample i in B, respectively.

aj is the anchor for the j−th class. D(fi, aj) is the distance between the sample fi

and the anchor aj. δ(yi = j) = 1 if the condition is satisfied, i.e. the label of sample

i in the mini-batch equals j; otherwise, δ(yi = j) = 0.

(b) Triplet Anchor Loss for Intra-Class Compactness & Inter-Class Separability:

Motivated by hard sample mining [158], we add extra inter-class penalty to target

the hard/confused anchor mining:

LTripletAnchor =
1

|B|
∑
i∈B

C∑
j=1

δ(yi = j)[D(fi, aj)−min
k 6=j

D(fi, ak) +margin] (4.2)

Triplet anchor loss not only pulls the samples to the anchor in the same class close,

but also pushes the negative samples further away than the distance between anchor

and positive samples. It could be more discriminative by simultaneously taking into

account intra-class compactness and inter-class separability. On the other hand, it

may import inconsistency during the optimization in a similar way as triplet loss (c.f .

Fig. 4.2(b)).
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Figure 4.3: Two training stages of the proposed metric learning framework. Stage
I (top): instance-level alignment with Lcls + Ltrip. Stage II (bottom): feature ag-
gregation respecting class label to generate anchors, and cluster-level alignment with
Lcls + Lanchor.

4.3.1 Two-Staged Training

As shown in Fig. 4.2, anchors generated from aggregation contribute more con-

sistent optimization and less noisy guidance during training process. However, it is

based on the assumption that distribution of embedded features is approximately

cluster-formed. During the early training phase when the feature distribution is still

random and stochastic, such aggregated anchors may contain misleading information

and impair the training process. The cluster-level supervision could be more effective

after the saturation of traditional training stage, and therefore our training consists

of two stages:

Stage I: Train the model in the traditional manner with loss function L = Lcls +

Ltrip, cultivating the initial formulation of clusters (c.f . Fig. 4.3(left));
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Stage II: Train the model under the cluster level supervision with loss function

L = Lcls+Lanchor, capturing distribution of whole dataset in embedded feature space

(c.f . Fig. 4.3(right)).

4.3.2 Generation and Update of Anchors

During the learning process, we take the anchors as the global supervision from

data distribution to align feature towards a better representative embedding in local

mini-batch training, i.e. pushing towards the target anchor (Eq. (4.1)) and pulling

samples away from the confusion anchor (Eq. (4.2)). Aggregation and alignment

are iteratively performed to further reduce the intra-class variance and inter-class

entanglement.

4.3.2.1 Generation

When the latent features are extracted over training dataset respecting their labels,

we consider two approaches to estimate optimal anchors during aggregation:

(a) Average aggregation: When the embedded features are approximately cluster-

formed, aggregate the embedded features fi for each class in training dataset T :

aj =

∑
i∈T δ(yi = j)fi∑
i∈T δ(yi = j)

(4.3)

(b) Voting by confidence: Taking the prediction probability P (j|i) for class j as

the contribution, aggregate the embedded features by a weighted mean:

aj =

∑
i∈T δ(yi = j)P (j|i)fi∑
i∈T δ(yi = j)P (j|i) (4.4)

Eq. (4.3) treats each sample’s contribution to anchor equally and could be an

effective estimation to eliminate the variance of latent feature distribution caused by

pose, camera view condition, background, et al . It may work well supposing the

training samples are equally distributed in terms of variance. Eq. (4.4) takes the
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classifier confidence as the contribution and help to revealing the early portrait of

anchors. Intuitively, when the feature cluster distribution is still stochastic in the

early training stage, easy samples, which may contains less noise and variance thus

converges faster, could be close to optimal anchors and guide the hard samples moving

towards the estimated optimal centers.

4.3.2.2 Update Frequency

Ideally, we should calculate anchors by either Eq. (4.3) or Eq. (4.4) after each

forward and backward process when the training parameters are updated. However,

such a process is unrealistic in terms of training efficiency and thus we consider three

options for the update frequency:

(a) Constant (Algorithm 2): When the model is trained until initial convergence,

the cluster-level feature aggregation is calculated and serves as the fixed anchors

during the following fine-tuning process;

(b) Each Epoch (Algorithm 3): When the model is trained until some epoch, Estart,

the anchors cj are updated after each following training epoch by either Eq. (4.3) or

Eq. (4.4);

(c) Each Iteration (Algorithm 4): In each iteration trained with anchor loss, the

anchor for class j is updated as:

at+1
j = [1− η ·

∑
i∈B

δ(yi = j)] · atj + η ·
∑
i∈B

δ(yi = j)fi (4.5)

where atj and at+1
j are the anchors for class j at the t−th and t + 1−th iterations

respectively. To approximate the anchors calculated per iteration, we design the

weight as η = 1∑
i∈T δ(yi=j)

where T is the total training dataset.

Option (a) take the anchors calculated from the initial convergence as the optimal

one and only one aggregation process is performed. It is based on the observation that

the clusters are almost formed after the convergence of Stage I training and thus
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Algorithm 2: Fix Anchors
for i← 1 to StartEpoch Estart do

Update model parameter W by L = Ltrip + Lcls;
Update cj for each class j;
for i← Estart to EndEpoch Eend do

for each iteration do
Update model parameter W by L = Lanchor + Lcls;

Algorithm 3: Update Anchors Each Epoch
for i← 1 to StartEpoch Estart do

Update model parameter W by L = Ltrip + Lcls;
for i← Estart to EndEpoch Eend do

for each iteration do
Update model parameter W by L = Lanchor + Lcls;

Update cj for each class j;

Algorithm 4: Update Anchors Each Iteration
for i← 1 to StartEpoch Estart do

Update model parameter W by L = Ltrip + Lcls;
for i← Estart to EndEpoch Eend do

for each iteration do
Update model parameter W by L = Lanchor + Lcls;
Update cj for each class j;

may provide stable optimization. Option (b) adaptively updates the anchors after

each training epoch in a manner similar to EM optimization: Estimate the anchor

location according to the current feature cluster distribution in aggregation step and

maximize the cluster compactness in alignment step. Option (c) is a trade-off option

between training efficiency and adaptive estimation for anchors, which can be viewed

as an approximate approach to option (b). From our experiments demonstrated later,

we show this method could have comparable performance with option (b) and thus

provides an alternative when the size of training samples are large or in the context

of online learning.
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4.4 Experiments and Analysis

4.4.0.1 Experiment Setup

We adopt the bag of tricks proposed by [179], i.e. warm-up learning rate scheduler,

random erasing augmentation [70], label smoothing, no stride down-sampling in last

bottleneck of ResNet50 and bnneck (one additional batch normalization layer after

classifier). We use L2 distance for the anchor loss and its variants, which benefits

stable training. We experiment our methods on three datasets, Market1501 [56],

DukeMTMC-ReID [58] and CUHK03 [57]. Market-1501 have 12,936 training images

with 751 different identities. Gallery and query sets have 19,732 and 3,368 images

respectively with another 750 identities. DukeMTMC-ReID includes 16,522 training

images of 702 identities, 2,228 query and 17,661 gallery images of another 702 iden-

tities. CUHK03-NP is a new training-testing split protocol for CUHK03, it contains

two subsets which provide labeled and detected (from a person detector) person im-

ages. The detected CUHK03 set includes 7,365 training images, 1,400 query images

and 5,332 gallery images. The labeled set contains 7,368 training, 1,400 query and

5,328 gallery images respectively. The new protocol splits the training and testing

sets into 767 and 700 identities. We note that our method is only used during the

training stage and the evaluation methods stay the same with previous approaches.

Firstly, we present the experimental comparison without triplet loss to analyze

three factors: starting time, aggregation methods and anchor loss functions. Secondly,

we delve into the effects of aggregation anchors from a reconstruction experiments.

Thirdly, the comparison, when triplet loss is incorporated in the Stage I training

until convergence, will be further analysed. Lastly, we demonstrate the advantages

of our method comparing to the parametric center loss [178].

4.4.1 Ablation Study for Three Factors

From the experimental results in Table 4.1, we conclude the impacts of three factors:
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Table 4.1: Ablation study for three factors on Market1501 dataset: start-
ing epoch Estart, aggregation methods (Eq. (4.3)&Eq. (4.4)) and anchor loss
choices(Eq. (4.1)&Eq. (4.2)). f and y denote the extracted feature and its la-
bel. Before Estart L = Lcls is used in the first stage training. Afterwards, either
L = Lcls + LAnchor or L = Lcls + LTripletAnchor is applied. We updates the anchors
each epoch as in Algorithm 3.

Estart
Rank@1

LAnchor(f, y, aavg) LAnchor(f, y, aweighted) LTripletAnchor(f, y, aavg)
- 93.79% 93.79% 93.79%
0 93.85% 94.06% 83.86%
10 93.32% 93.29% 93.29%
40 93.97% 93.91% 94.09%
70 94.09% 94.09% 94.15%
120 94.18% 94.03% 94.09%

Estart
mAP

LAnchor(f, y, aavg) LAnchor(f, y, aweighted) LTripletAnchor(f, y, aavg)
- 84.69% 84.69% 84.69%
0 83.93% 84.95% 67.48%
10 83.77% 83.59% 83.65%
40 85.49% 85.45% 85.43%
70 85.75% 85.89% 85.81%
120 85.98% 85.96% 85.90%

(a) When to start Attributed to better cluster distribution, stating aggregation

and alignment after the convergence of initial training results in better generalization.

From Fig. 4.4, one can see the anchors change rapidly during the early training phase.

The transition becomes steady as the training process towards saturation. It is in

line with our analysis that anchor loss may impose unexpected prior and abet densely

distributed clusters when applied early during training, impairing the generalization

consequently.

(b) How to calculate anchors When the feature alignment is still stochastic, i.e.

early training phase, calculating anchors with probability contribution (Eq. (4.4)) pro-

duces better results. Easy samples, which converge earlier, may contain less noises and

variance, revealing the approximation of optimal anchors, e.g . the anchors generated

from reconstruction in Fig. 4.5. After the initial training approaches convergence, the
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Figure 4.4: The change of sampled anchors (id = 0,1,...,7,8) along training epochs
(i.e. 0, 10, 20, ... 120): Each image corresponds to an ID (0,1,...,7,8). Each row in
image represents the anchor feature vector (2048 dimension) in the sampled epoch.
Total 13 epochs from 0 to 120 with step of 10 is sampled. Zoom in to see the details.
The sampled anchors are calculated from the checkpoints of training without anchor
loss.
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benefits of voting by confidence become less significant.

(c) How to look at anchors Triplet anchor loss and intra-class anchor loss achieve

comparable results when starting the aggregation and alignment in the intermediate

stage of training convergence. After the initial training saturation, intra-class anchor

loss performs slightly better, implying the consistency weights more in training Stage

II. In experiments, we also find triplet anchor loss needs a proper tuning for the

margin hyper-parameter. Training is unstable when set to a high margin while easily

saturated when set to a low one. The best results are found when margin = 0,

where however training converges slower comparing to intra-class anchor loss. It

validates our initial assumption that, when the anchors are well aggregated after

Stage I training convergence, optimization with consistency provides more benefits

for generalization.

4.4.2 What Would the Anchors Look Like

In order to further validate our assumption about the benefits of aggregation, we

train a decoder network to reconstruct the images from the feature maps before GAP

(global average pooling), where encoder is the well-trained model without anchor loss.

A decoder structure slightly modified from DG-Net [96] is used. Then we generate

anchors in image space by feeding the average aggregated feature maps before GAP

Figure 4.5: Reconstruction results of anchors in the training dataset
(ID=0,1,2,3...,19).
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Figure 4.6: Reconstruction pipeline of anchors in image space: Encoder is trans-
fered and frozen during the training of decoder. During the inference, the decoder
reconstructs the anchor into image space.

into trained decoder (c.f . Fig. 4.6). We note that GAP applied anchor feature map

produce the same as anchor feature vector and 2D maps are used to preserve the

spatial information for better reconstruction. This anchor feature vector can be taken

as the initial anchor during the start of training Stage II. As the results in Fig. 4.5,

the anchors could be a feature vector which dissects the view-variance, pose-variance

as well as background-variance. Comparing to the sample images from same class

(c.f . Fig. 4.6), anchors generated from aggregation acts like a implicit regularization

to remove noise and variance. It complies that the average aggregation distills the

constitutional id-related features over the sampling distribution.

4.4.3 Further Discussion

Triplet Loss From the results in Table 4.3, our methods consistently improve the

results over the original model no matter which variant is chosen. As in Fig. 4.7,

our methods boost the generalization after the training Stage I converges, where the

triplet loss reaches saddle point and there is still room to further intensify the cluster
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Figure 4.7: Test result of anchor loss from checkpoints: Without bells and whistles,
anchor losses boost the performance significantly after the initial training is saturated.

compactness (Fig. 4.8 left). After the Stage II training, the intra-class distance is

further reduced (Fig. 4.8 right) and boost the generalization in terms of both rank@1

accuracy and mAP (Table 4.3). As illustrated in Fig. 4.2 and the experiments in

Section 4.4.1, our methods perform more effectively after the training Stage I is

converged, where a stable feature distribution is provided for aggregation. On the

other hand, triplet loss may provide beneficial effects during the initial stochastic

training process. Triplet loss can inhabit more compacted feature embedding for

each class in euclidean space than cross-entropy loss, which has been discussed in

BNNeck [179]. Consequently, the improvement that the proposed anchor loss brings,

is more significant for the model trained with Ltrip than the one trained without Ltrip

(c.f . Table 4.3&Fig. 4.7). In summary, anchor loss stimulates stable and effective
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Figure 4.8: T-SNE visualization of the samples (ID=0,1,...99) on training dataset:
Training result of Stage I with Ltrip (left) v.s. Stage II with Lanchor (right). Zoom in
to see details.

optimization to find better local optimal when triplet loss suffers from stochastic

saddle point (c.f . Fig. 4.8).

Table 4.3: Ablation study of applying anchor loss after the initial training stage, i.e.
epoch 120.

Frequency Market1501 DukeMTMC
rank@1 mAP rank@1 mAP

constant 95.34% 87.91% 88.3% 78.9%
epoch 95.37% 87.99% 88.3% 79.1%

iteration 95.25% 88.11% 88.5% 79.1%
Stage I Stage II aggregation method Rank@1 mAP

Lcls
- - 93.79% 84.69%

Lcls + LAnchor avg 94.18% 85.98%

Lcls + Ltriplet

- - 94.42% 86.18%
Lcls + LAnchor avg 95.37% 87.99%
Lcls + LAnchor weighted 95.04% 87.95%

Lcls + LTripletAnchor avg 95.25% 87.84%
Lcls + LTripletAnchor weighted 95.13% 87.87%

Lcls + LAnchor + Ltriplet avg 95.16% 87.87%
Lcls + LTripletAnchor + Ltriplet avg 95.04% 87.94%
Lcls + LTtripletAnchor + Ltriplet weighted 95.28% 88.07%

Applicability In terms of the comparison about update frequency for anchors, three

methods (Algorithm 2,Algorithm 3,Algorithm 4) derive comparable results as shown

in Table 4.2. Considering the cluster formulation, the anchors generated at the end of

traditional training are already well-complied with data distribution regarding their
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Table 4.4: The performance of different models is evaluated on cross-domain datasets.
Market1501 −→ DukeMTMC means that we train the model on Market1501 and eval-
uate it on DukeMTMC-reID. () denotes the models trained and tested with input
size 384× 192.

Methods Market1501 −→ DukeMTMC DukeMTMC −→ Market1501
Rank@1 mAP Rank@1 mAP

Resnet50 27.9%(24.3%) 15.5%(13.0%) 47.7%(47.2%) 21.7%(21.1%)
Resnet50(ours) 35.3%(33.3%) 20.9%(18.6%) 49.6%(47.3%) 23.0%(21.8%)
Resnet50-ibn-a 40.7%(37.9%) 25.9%(23.2%) 56.0%(50.6%) 27.8%(24.5%)

Resnet50-ibn-a(ours) 46.1%(46.0%) 30.3%(29.1%) 55.3%(52.0%) 28.2%(25.2%)

identity labels (c.f . Fig. 4.8 left). After Stage II fine-tuning, the aggregated anchors

stay close to the initial one since all the samples are pulled towards their anchors in

the optimization (c.f . Fig. 4.8 right). From another perspective, those three methods

in Table 4.2 are alternatives concerning computational cost and training availability

while provide comparable result. For example, when training with large training

dataset or in the context of online learning, Algorithm 2 and Algorithm 4 would be

preferred with little sacrifice of performance. Hence, our proposed method could be

tremendously flexible and widely applicable in terms of training efficiency.

Robustness A natural question about the Stage II fine-tuning is that whether the

further cluster-level alignment tends to be domain dependent and overfit the domain

distribution. From the cross-domain testing experiments in Table 4.4, our methods

invariably outperform the baseline model. It verifies the proposed methods are an

effective and robust approach to embed images into identity-related space for metric

learning.

4.4.4 Non-Parametric Anchor vs Parametric Center

Although anchors in our work looks like the centers proposed in [178], they are

intrinsically not the same: the former is non-parametric while the latter is parametric.

In fact there is no essential difference between the center loss mincj ||fi−cj||2 and the

classification loss maxpj(f
>
i pj), both of which are distance metrics, i.e. L2 distance

and inner product. The role played by centers cj [178] corresponds to the role of
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the hyperplanes pj in traditional classification. As a result, parametric center loss

still conforms to instance-level alignment similar to classification loss under the local

mini-batch training framework, and cannot build the global connection in cluster

level. On the other hand, in the proposed anchor loss (Eq. (4.1)&Eq. (4.2)), anchors

aj are not optimization variables but calculated from cluster distribution instead.

The anchors are iteratively updated from the aggregation of dataset features, which

enables them to have the global view of feature distribution during the local mini-

batch training.
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Figure 4.9: Test result comparison between our method and parametric center loss:
We train 12 models independently for each method on Market1501 dataset.

We train 12 models independently using the the proposed anchor loss in compar-

ison with another 12 independently trained models using the center loss [178] on

Market1501 dataset. Fig. 4.9 illustrates the model performance histogram in terms

of mAP (left) and rank1 (right). As can be observed, our proposed anchor loss con-

sistently outperform those center loss [178]. It validates that anchor loss distills the

knowledge in latent feature space from the images belonging to the same identity and

aggregate them into anchors to guide the training towards well-aligned embedding.

Such embedding complies intrinsic feature distribution and thus helps the both train-

ing and generalization. Furthermore, the result variance of parametric center loss is

much higher than anchor loss, implying the dependency to random initialization for

parametric center which may impose some stochastic prior to the cluster formulation.

On the contrary, our methods consistently outperform center loss with small variance.
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Table 4.5: Comparison with SOTA on CUHK03: CUHK03 evaluation with the setting
of 767/700 training/test split on both the labeled and detected images. * denotes our
implementation.

Methods Labeled Detected
Rank@1 mAP Rank@1 mAP

MLFN(CVPR2018) [181] 49.2% 54.7% 47.8% 52.8%
PCB(ECCV2018) [91] - - 57.5% 63.7%

Mancs(ECCV2018) [182] 69.0% 53.9% 65.5% 60.5%
MGN [183] 67.4% 68.0% 66.0% 68.0%

Mltb [184](CVPR2019) 66.5% 70.1% 64.2% 66.6%
CASN+PCB [185] (CVPR2019) 73.7% 68.0% 71.5% 64.4%
MHN-4 (PCB) [186](ICCV2019) 75.1% 70.6% 71.6% 66.1%

Resnet50 [179]* 63.36% 61.60% 60.07% 51.79%
Resnet50(ours) 76.36% 74.50% 72.36% 70.32%

Table 4.6: Comparison of SOTA on Market1501 dataset and DukeMTMC-reID
dataset. () denotes the results with a larger input size 384× 192.

Methods Venue Market-1501 DukeMTMC-reID
Rank@1 mAP Rank@1 mAP

Mancs ECCV2018 93.1% 82.3% 84.9% 71.8%
PCB+RPP [91] ECCV2018 93.8% 81.6% 83.3% 69.2%
VPM [162] CVPR2019 93.8% 80.8% 83.6% 72.6%
AANet152 [173] CVPR2019 93.9% 83.4% 87.7% 74.3%
IANet [187] CVPR2019 94.4% 83.1% 87.1% 73.4%
MltB [184] CVPR2019 94.7% 84.5% 85.8% 72.9 %
DG-Net [96] CVPR2019 94.8% 86.0% 86.6% 74.8 %
MVP Loss [188] ICCV2019 91.4% 80.5% 83.4% 70.0%
Auto-ReID [161] ICCV2019 94.5% 85.1% - -
OSNet [189] ICCV2019 94.8% 84.9% 88.6% 73.5%
MHN-6 [186] ICCV2019 95.1% 85.0% 89.1% 77.2%
P 2-Net [160] ICCV2019 95.2% 85.6% 86.5% 73.1%
BDB+Cut [190] ICCV2019 95.3% 86.7% 89.0% 76.0%
ABD-Net [69] ICCV2019 95.6% 88.3% 89.0% 78.6%
Resnet50 [179] CVPRW2019 94.1%(93.6%) 85.7%(85.8%) 86.2%(86.9%) 75.9%(76.8%)
Resnet50 [179] CVPRW2019 94.5% 85.9% 86.4% 76.4%
Resnet50(ours) - 95.4%(94.9%) 88.0% 88.3%(89.1%) 79.1%(79.6%)
Resnet50-ibn-a [179] CVPRW2019 95.2%(95.5%) 87.2%(88.2%) 89.0%(89.7%) 79.4%(80.0%)
Resnet50-ibn-a [179] CVPRW2019 95.0% 87.2% 89.4% 78.8%
Resnet50-ibn-a(ours) - 95.7%(95.8%) 88.9%(89.7%) 90.2%(91.0%) 80.6%(81.8%)

4.5 Comparison with the State-of-the-Art Methods

We compare our method with the recent state-of-the-art methods in Table 4.5

and Table 4.6. Comparing to spatial alignment by either attention or localiza-

tion [91, 173, 187, 184, 160, 190], our method is much succinct without extra modules

or classifier heads to handle subspace alignment. We have made several attempts
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to incorporate spatial alignment in our baseline model, e.g . PCB [91], only to find

slightly worse results. Based on our observation from reconstruction experiment (c.f .

Fig. 4.6), we notice that decoder can be trained well to reconstruct images in both

training and test dataset, implying spatially diversified features are preserved in fea-

ture maps before GAP (global average pooling). However, the feature vectors ag-

gregated after GAP is aligned, meaning GAP could effectively eliminate the spatial

variance while preserving the channel-wise diversity when a unified strong model is

well trained, e.g . the strong baseline model[179]. Hence, we infer that the benefits

of spatial alignment is marginal in our context. Comparing to channel attention

and several variants [189, 186, 69] which aim to generate diverse and uncorrelated

feature embedding with the efforts on convolution filters in self-supervised manner,

our methods achieve the cluster encoding with focus on feature space by an explicit

supervision of aggregated anchors from other images. DG-Net [96] endeavors to dis-

entangle appearance code and structure code by GAN and auto-encoder, our method

accomplishes similar effect that dissects the variance and preserves the identity-related

features in the direction towards aggregated anchors (c.f . Fig. 4.5). IBN-Net [191] is

proposed to reduce appearance variance and keep discriminative feature extraction by

unifying both instance batch normalization and batch normalization. Luo et al . [179]

apply it as the backbone network for person re-identification and we report our im-

plementation result in Table 4.6. We note that resnet50-ibn-a network has the same

parameter size and computational cost with original resnet50. Without bells and

whistles, our method consistently boosts the performance in terms of both Rank@1

and mAP comparing to corresponding baseline (resnet50 and resnet50-ibn-a [179]),

achieving the state-of-the-art results on Market-1501, DukeMTMC-reID(Table 4.6)

and CUHK03(Table 4.5) datasets.. Specially, due to further reduce of intra-class vari-

ance towards a compact cluster in latent feature space, our method improves mAP

significantly and benefits the robustness for the application of person re-identification.
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In summary, comparing to the recent state-of-the-art methods, our methods provide

a representation learning method with global invariance supervision, validating that

exploration of interaction of clusters observed from dataset feature distribution im-

proves both training and generalization.

4.6 Conclusion

In this chapter, we investigate the person re-identification from the view of align-

ment and find an interesting and effective approach to delve in invariance represen-

tation learning with a global supervision of cross-instance feature distribution. By

performing aggregation and alignment iteratively, our proposed anchor loss is enabled

to interact with more images indirectly from aggregated anchors, which pass the dis-

tilled knowledge from the feature distribution and provide a consistent optimization

to further boost the performance significantly after traditional training convergence.

It shows the representation learning with global invariance guided by the aggregation

of dataset distribution, which steps beyond the general classification framework, is

essential and beneficial for identity-related representations.



CHAPTER 5: COMPOSITIONAL REPRESENTATION LEARNING FOR

COLOR ATTRIBUTE RECOGNITION1

5.1 Problems and Motivation

The study of color has a rich history. Many scientific breakthroughs were the result

of color research, from Newton’s theory in optics to Planck’s black-body radiation law

that started the quantum revolution in the early 20th century. In the digital era, color

is a fundamental attribute in almost all visual understanding systems, being especially

useful for search, since color is one of the most used properties when describing an

image. Digital image libraries like Google Photo host an enormous and ever-increasing

number of images (10 billion images in 2010 to four trillion images in 2020) making

the need for accurate and scalable training of color prediction models increasingly

important for color-based indexing and search tasks. Although there have been many

works dedicated to understanding different attribute types of objects in images [192,

193, 193, 193, 194, 195], color attribute prediction, has not received the same level of

attention and in-depth analysis. In this work, we show the benefits of a joint language

and vision pipeline for creating datasets to train new color prediction models that are

scalable and use color-specific properties to improve color-recognition performance.

We also identify and analyze subtle but important problems around color recognition,

from the difference between human perception and language description to the skewed

nature of color distributions for image objects.

We present analysis and results to draw more attention to the important, but

often overlooked problem of color recognition and prediction, and set some interesting

directions for future research.
1This work was done during an internship at Adobe Research
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Figure 5.1: Illustration of color attribute prediction for detected objects in images.

Object color prediction is a well-constrained yet not-trivial problem. There are

major difficulties in large-scale color prediction. First, color depends not only on

human perception, but also on human language. Color perception by humans is sur-

prisingly complex, ranging from color-shift due to luminance changes (e.g ., Purkinje

shift [196]) to the unique human ability to maintain color constancy despite changes

in the illuminant [196]. Human language concepts for colors are even more diverse

i.e. people give different names to the perceived colors. Thus, training a model to

predict colors that is in agreement with a majority of users is nontrivial. This clearly

necessities the creation of a large-scale color dataset, which encompasses the distri-

bution of colors as expressed by human language. Hence, following several recent

works [197, 198, 199, 200], we use extracted color-object pairs from captions. We

then ground each color-object pairs to a best candidate localized bounding box from

an object detection model. Despite some noise due to either caption or object de-

tection, this method corresponds well to human color annotations that we collected

for test dataset and results in good predictions that align with the distribution of

human colors. Through the relation study from three annotators and comprehensive

experiments for color recognition, this work will enable future work to benchmark



101

the color recognition model aligned with visual perception and human textual color

concept. The second major difficulty for color prediction is dataset bias. Most objects

annotated will have common colors which makes the dataset biased toward common

colors. In this work, we also propose a succinct and effective solution to remove the

bias from the bias-trained model.

Color recognition has some unique properties compared to other attributes. First,

unlike many attribute types such as actions and compositions, in general, color classes

admit more consistent visual forms. Thus, it seems intuitive that we can inject our

prior understanding of color into the recognition model by giving it a typical example

(prototype) of each color. Furthermore, it has been shown that colors can be achieved

through mixing and transforming several key colors. Thus, if we force the model to

learn the relation between the object in question and the prior colors, the model

can recognize the relative similarity between the color classes, and thus, may have

better performance. We test this idea using an attention-based architecture, which

significantly outperforms the baseline.

In this work, our contributions are as follows:

• We introduce a large-scale dataset for color attribute prediction consisting of

213, 180 auto-generated color-object pairs with grounding and fully human-

annotated gold-standard test sets which benefits the analysis for understanding

the color recognition and color description.

• We proposed a compositional representation learning module using some unique

properties of colors that allow it to significantly outperform the baseline. The

comparisons and analysis also open up potential future research directions.

• We propose a new method to solve data bias in color prediction, which leverages

representations in the classifier, outperforming current state-of-the-arts methods

proposed for long-tail recognition.
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5.2 Related Work

Attribute Prediction Color attribute prediction is a subset of general attribute

prediction which has been widely studied. [201, 202, 203] train typical multi-label

classification models to predict the attributes. [204, 205] incorporate attributes with

object labels in a multi-task training manner. Attribute recognition in various do-

mains has been investigated for face attributes [192], people attributes [193], pedes-

trian attributes [194], action [195], person Re-ID [95], and et al . Therefore, attribute

recognition is a fundamental problem to promote visual concept understanding. How-

ever, the recognition of color, which is one of the most common and important at-

tributes, has yet be studied. More recently, Zero-shot compositional learning (ZSCL)

is an important sub-area in attribute prediction research [101, 102, 103, 104, 104], the

test set consists of compositionally novel object-attribute pairs that are not found in

the training set and the algorithm must learn to decouple and compose objects and

attribute to properly generalize to ZSCL setting. Although relationship and interac-

tion learning between objects and attributes are important in ZSCL, we found that

extra object information is not helpful for color recognition because color attributes

are less object-dependent comparing to other attributes.

Memory Networks and Self-Attention Memory networks are applied in the NLP

research for document Q&A [107, 16, 108] . where memorable information is sepa-

rately embedded into keys (input) and values (output) feature vectors. Keys aim to

address relevant memories whose corresponding values are returned. Recently, the

memory networks have been applied to some vision problems such as personalized

image captioning [109], visual tracking [110], and video instance object [111]. An-

other similar approach to our key color attention module is self-attention [37], which

is a highly successful technique in multiple NLP benchmarks [112]. Self-attention

is also widely applicable in several computer vision problems, e.g . video process-

ing [113, 114, 111], image classification [115, 116], object detection [117, 118] and
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vision-language tasks [119, 120, 121]. Different from existing methods, our attention

module works by anchoring the attention prediction with reference to known color

priors.

Long-Tail Recognition and Model Bias There are several advances for long-tail

recognition during training stage, e.g ., re-sampling [206, 207, 208, 209] and cate-

gory balancing losses [20, 210, 211]. More recently, post-training calibration methods

have also shown success in long-tail recognition benchmarks [4] and unbiased scene

graph detection benchmarks [5]. This direction has several advantages: (a) Agnostic

to training paradigm; (b) Not dependent on any hypothesis about data distribution

or optimization – based solely on analysis of the learned model; (c) Balancing per-

formance of head and tail categories do not require model retraining Kang et al . [4]

posit that the norms of classifier weights are correlated to the bias in model predic-

tion, and propose tau normalization to classifier weights. Despite its success in several

long-tail recognition tasks, it ignores the bias from feature extractors and our exper-

iments show that the debiasing by τ normalization is sup-par on our long-tail color

recognition tasks. Instead, our debiasing method considers the bias from both feature

extractor and classifiers by utilizing the prediction from the bias-trained model. Tang

et al . [5] report that the prediction of mean features from training data shows the

prior bias from the trained model, and therefore, deducting the mean feature could

effectively remove the bias. However, it is based on the assumption that the bias of

the model is in line with training data distribution. Instead, our method calculated

the mean features for each category that are more robust to the change of training

data distribution.

5.3 Stock Color Dataset

5.3.1 Dataset Building and Annotations

As described above, color prediction is not a trivial task given the variance in hu-

man perception and language concepts. Thus, training a model that agrees with the
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(m1)

(a) (b) (c)

(m2)
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(d)

Figure 5.2: Comparison of different models and collected labels in test dataset of
Stock Color: (m1) 1D DCNN (Color Histogram), (m2) Detection backbone network,
(m3) Attention module; (a&b) Ambiguity of color attribute collection and illustration
of language attention for color description, which differs in color lexicon and number
of colors; (c) Color histogram failure cases: loss of contextual information (left) and
semantic features (right); (d) Failure cases of auto-extracted labels due to either
caption (left) or object detection (right). Three labels collected are illustrated under
the image region: auto-extracted color and object (top), extra labels collected by
human language description for referring objects (middle) and extra labels collected
by human perception to referenced RGB color plates (bottom).

majority of users requires the use of large-scale datasets. Large-scale human annota-

tion is cost-prohibitive, thus we need to design a scalable method of obtaining color

object pairs. Recently, large scale image captions corpus such as Google’s Conceptual

Captions [212] have been used successfully to obtain a large amount of data to train

joint vision language models. We follow the same path and use a language parser to

get the object-attribute relations. The object is then grounded into the image using

an object detection model, and the object-attribute pairs are filtered to contain only

object-color pairs. The whole process depends on the quality of the caption, thus we

rely on the Stock Captions dataset, which is our own large-scale per-image captioning

dataset with precise and compact descriptions.
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Caption: 

selfie of yellow flower on 

Colors: (Yellow,)
Object: Flower

Object Detection

Caption Parser

Alignment and 
Grounding

Flower

Color: Yellow

Figure 5.3: Illustration of grounding color attributes to detected bounding box

More specifically, we build a color attribute dataset by the following steps: (1)

We collected 150M image captions from the Stock Captions dataset. We then fur-

ther processed to extract 4.52M color-object pairs by our language parser; (2) An

object detection model, namely EfficientNet-B3-FPN [32] pre-trained on Open Im-

ages dataset V4 [213], is used to localize objects from images; (3) Non-ambiguous

grounding rules are applied to associate parsed color-object pairs with detected ob-

ject bounding boxes, resulting in 219, 911 of bounding boxes with multi-color attribute

and object labels from 219, 033 images. In the following, we illustrate the details for

each step and demonstrate the final dataset.

Caption Parsing We use a basic NLP pipeline [214] to parse each caption into

a computation graph structure [215] where candidate caption object nodes are ex-

tracted and then grounded to the corresponding image object bbox or mask. Each

object node consists of zero or more attributes defined in an attribute type hierar-

chy. Type categories includes: color, material, shape, and texture. The NLP pipeline

performs the following operations: Step 1: perform part-of-speech tagging, phrase

chunking, and shallow semantic parsing to identify noun and verb phrases and ob-

ject dependencies. Step 2: generate a computation graph from the semantic parse

structure that identifies the objects and their attributes of interest. Step 3: Extract

the descriptors for candidate objects from the computation graph and provide each
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to the Color-Object grounding process described next.

Color-Object Grounding As shown in Fig. 5.3, the parsed objects from the caption

are compared with detected objects from the image, resulting in the grounded color-

object labels with detected bounding boxes. To make the grounded labels clean, we

remove images where multiple multiple instances of the same object are detected. As

shown in Fig. 5.2, some errors of the grounded labels are attributed to two factors:

(a) The color description in the caption is wrong; (b) Object detection detects a

non-referring object.

Extra Human Annotations As discussed in the earlier section, our dataset is

constructed automatically by grounding detected objects with object names used in

the caption and some errors are identified. Additionally, as discussed before, color

description from different people differs in number of colors and color lexicon used.

Caption-derived colors often include only one (main) color for multi-colored objects

To solve this, we label all object instances in the test set using human-annotators

without reference to auto-extracted labels. We require annotation of all distinct col-

ors. Furthermore, color names applied to objects do not always one-to-one correspond

with their canonical appearance. To study this, we ask annotators to not only label

the color name for a given object but also select the closest color-hue as it appears

in the image with reference to color plates. This annotation gives us color perception

without language features. After the extra annotations, we obtain the following ob-

servations: (1) Three annotations differ in color lexicons (Fig. 5.2 (a)) and number of

colors (Fig. 5.2 (b)); (2) Human annotations corrects some errors in auto-extracted

labels (Fig. 5.2 (d)).

5.3.2 Evaluation

Dataset Splits In addition to the auto-extracted dataset, we also investigate color

recognition on a subset of Visual Genome (VG) [216] dataset, where 30 most frequent

color attributes and 150 object categories are selected. For VG dataset, we follow the
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Table 5.1: Dataset Splits: * denotes bounding boxes with no more than two attributes.

VG Color Stock Color
train val test total train val test total

Images 51,116 3,996 22,371 77,483 181,576 9,600 21,284 212,460
BBoxes 176,557 13,953 78,303 268,813 182,280 9,640 21,376 213,296
BBoxes* 170,793 13,692 76,143 260,628 182,178 9,635 21,367 213,180

same splits as Scene Graph Detection [217, 218, 219, 5], where 70% training and 30%

test out of total 108k images are used. 5K validation images are held from training

splits. For Stock Color, we select 27 colors which have at least 30 samples in the

whole dataset and randomly split them into training (90%) and test (10%) subsets.

Table 5.1 shows the final dataset we created for color recognition study.

Evaluation Metrics We formulate the color attribute prediction as a multi-label

prediction problem, i.e. each object could have more than 1 color. Therefore, we

evaluate model performance in a way of query and retrieval according to the ranking

of predictions, where Precision@K and Recall@K are used. Suppose ỹtopKi are top K

predictions for instance i in test dataset T , and yi are the ground truth colors, then

Precision@K and Recall@K are:

Precision@K =
1

|T |
∑
i∈T

|ỹtopKi ∩ yi|
|ỹtopKi |

=
1

|T |
∑
i∈T

|ỹtopKi ∩ yi|
|K|

(5.1)

and

Recall@K =
1

|T |
∑
i∈T

|ỹtopKi ∩ yi|
|yi|

(5.2)

, where | ∗ | denotes the number of elements in the set.

Since 96.7% of instances from VG dataset and 99.9% of instances from Stock Color

dataset contain no more than 2 color attributes we adopt Precison@1 and Recall@2 for

the performance evaluation. We consider the mean recall of all the color categories as
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Table 5.2: Annotation study on Stock Color Dataset: Oracle test takes the ground
truth labels as the query to test the accuracy. Because extra human annotation is
required to label colors with sequence respecting the priority, the sequence is adjusted
in favor of tail colors to get better mRecall@1 and mRecall@2 during the oracle test.

Caption (Auto-Extracted) Human Language Human RGB
Precision@1 Recall@2 Precision@1 Recall@2 Precision@1 Recall@2

Oracle Test 100% 99.99% 100% 96.97% 100% 97.29%
Caption (Auto-Extracted) 100% 99.99% 73.78% 61.37% 63.83% 53.20%
Human Language 64.31% 72.57% 100% 96.97% 80.60% 75.81%
Human RGB 56.75% 63.17% 82.58% 76.04% 100% 97.29%

Caption (Auto-Extracted) Human Language Human RGB
mRecall@1 mRecall@2 mRecall@1 mRecall@2 mRecall@1 mRecall@2

Oracle Test 99.35% 99.99% 82.81% 97.23% 83.70% 97.63%
Caption (Auto-Extracted) 99.35% 99.99% 26.60% 26.95% 24.14% 24.46%
Human Language 32.79% 40.52% 58.38% 86.53% 34.12% 49.70%
Human RGB 29.37% 35.07% 36.82% 53.91% 60.88% 89.92%

the evaluation metrics for long-tail color recognition, imitating category-balanced test

settings. Specifically, the category-balanced variation can be derived from Eq. (5.2)

for the total color category set C as:

mRecall@K =
1

|C|
∑
c∈C

∑
i∈T

δ(c ∈ yi)∑
i∈T δ(c ∈ yi)

|ỹtopKi ∩ yi|
|yi|

(5.3)

where δ(c ∈ yi) = 1 if the color category c in yi and otherwise δ(c ∈ yi) = 0. And

mRecall@1 and mRecall@2 are used for evaluation.

5.3.3 Annotation Study

We evaluate the model on our dataset with three labels: auto-extracted labels

from the caption, extra human language annotation, and extra human RGB color with

reference to color plate. In order to test the agreement among three labels, we evaluate

the accuracy using different combinations of labels as prediction and ground truth. As

shown in Table 5.2, we can see that there is disagreement among three labels, which

are in line with our analysis that the number of colors selected and the color lexicon

used can vary from different annotations (c.f . Fig. 5.2 (a&b&c)). Furthermore, we can

further conclude that the ambiguity for color attribute description lies in additional
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Color Attribtues

Generate Mask
(DeepLassoCut) HSV Color Hisgtogram

(256*8*8)

Hue

3D Conv 
with circular padding

1D Conv ResNet 18
with circular padding

Figure 5.4: Baseline: 1D Conv network for predicting color attributes from 3D color
histogram.

two folds: (a) The top1 picked color from extra human language annotation dissents

largely to auto-extracted labels from caption (64.31% precision@1). Since we annotate

the extra human language labels with sequence respecting the priority, the dominant

colors picked from extra human language annotation, i.e. top1 color, do not match

well the caption-driven description from our auto-extracted labels. Besides, another

potential reason is due to different task purposes when describing colors. It could

be attributed to the distribution divergence between caption-driven color description

and attended-color description. Caption-driven color descriptions could be served for

different and diverse purposes. (b) On the other hand, due to more completeness of

color description from extra human language annotation, Precision@1 is better when

using caption labels to test against human language labels. It suggests that this

annotation could be more reliable and useful in terms of testing the generalization of

colors since more candidates are chosen.

5.4 Benchmarking

Vision Features and Object Labels For color prediction given the localization

(bounding box) and referring object category, the vision features can be extracted

from image Ii and localization bounding box loci for instance i. Supposing referring

object label is obj which is given for additional contextual information, the final

prediction ỹi in a query ranking sequence is denoted as:

ỹi = {ỹci}c∈C = f(Ii, loc, obj)
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. If only use the obj for the prediction and ignore the vision features, a reasonable

prediction matches the color distribution for the object category obj within the train-

ing dataset. This test result, named language only test from Table 5.3, provides a

naive baseline for our color attribute prediction. Because Stock Color dataset con-

tains more diverse objects (321 object categories) and the samples in each category

could be sparse, this language-only model performs better in VG Color dataset where

there are 150 object categories.

Vision Baseline 1: Color Histogram Because color prediction is related to low-

level features and color histogram could effectively preserve such low-level features, it

is interesting to begin with a baseline experiment over 3D HSV color histogram (c.f .

Fig. 5.4). We adopt 256 ∗ 8 ∗ 8 HSV bins by preserving values on Hue channel which

contains more color-related information and grouping Saturation and Value channels

into 8 bins respectively. To remove the background of the detected bounding box, we

first use instance segmentation to predict the object masks given the bounding box

and then perform the color histogram calculation over the mask region. A 2D Conv

with kernel size 3∗8∗8 is applied to aggregate histogram features into 1D vector and

then a Resnet-18 model, where all 2D Conv kernels are replaced by 1D Conv kernels

with symmetrical padding, is used to extract the features. We note that a fully

connected layer instead of the global pooling layer is connected before the classifier

layer since spatial location along Hue channel is important for color recognition.

As shown in Table 5.3, this baseline model results in 63.92% and 68.52% preci-

sion@1 on VG Color dataset and Stock Color (Caption) dataset respectively. Since

the segmentation model used is never trained on two datasets, there are some er-

rors for extracting the object masks. We experimented on calculating the color his-

togram without segmentation masks, observing worse precision@1 (around 5%) than

incorporating masks. Taken some errors from the masks, it shows that the 1D CNN

model could effectively learn the color category information from the color histogram.
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Figure 5.5: Common failure cases of color histogram baseline: It demonstrates the
constraints of predicting colors from color histogram due to either loss of semantic
information (left) or contextual information, e.g . environmental lighting (middle) and
photography filter (right)

Table 5.3: Benchmarking Results: VG Color and Stock Stock

VG Color Stock Color (Caption)
Precision@1 Recall@2 Precision@1 Recall@2

Oracle Test 100% 97.24% 100% 99.99%
Language Only 46.84% 59.43% 39.97% 57.01%
Resnet18 1D Conv (color histogram) 63.92% 74.51% 68.52% 83.01%
Faster RCNN ResNext101 FPN 75.35% 83.40% 81.85% 91.59%
+ Weighted BCE Loss 76.60% 84.72% 82.45% 91.69%
+ Detection pretrain w/ attribute loss 78.83% 85.79% 83.52% 92.53%
Task modules w/o object embedding gating [102] 78.36% 85.59% 83.26% 92.47%
Task modules w/ object embedding gating [102] 78.39% 85.57% 83.00% 92.37%
Key-Color Attention 79.11% 86.31% 85.19% 93.17%

However, it has two major downfalls: (a) The loss of semantic information: Color

attributes are affected by human visual attention and language attention, both of

which are related to semantic information. As shown in Fig. 5.5 left, we naturally

describe colors of chassis instead of the screen when referring to the laptop. (b) The

loss of contextual information: The color histogram from object region could easily

vary as the environmental lighting (Fig. 5.5 middle) and photography filter (Fig. 5.5

right) change. However, humans tend to describe the original colors of objects despite

the change of those factors.
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Figure 5.6: Pipeline of detection backbone for color attribute prediction

Vision Baseline 2: Object Detection Backbone As analyzed above, color at-

tributes prediction should preserve semantic features and global contextual features.

Therefor, we use Faster R-CNN PFN [15] with ResNext101 backbone [31], which

are widely used for Scene Graph Detection [217, 218, 219, 5] and Visual Question

Answering [119, 120, 121] to extract object features given the groudtruth bounding

boxes. In order to extract features that are object-aware and background-excluded,

the detection model is pretrained on VG (Visual Genome dataset [216]) using the

same training and test splits of attribute prediction task. For multi-label classifica-

tion, we use binary cross entropy as our loss function. Due to the human description

attention from either VG annotation or Stock captions, some negative labels are not

necessarily negative but just not annotated. Hence, we adopt a weighted binary cross

entropy loss to emphasize the positive labels. In addition, other attributes (e.g . tex-

ture, materials) could be correlated to colors, we pretrain the object detection model

with attribute loss, where the 400 attributes more than colors in VG dataset are

used. Following the widely used pretrain manner from VQA tasks [220, 119, 120],

the attribute prediction branch concatenates the box features and Glove embedding

of object labels. As shown Table 5.3, pre-training with other attributes, which could

be potentially correlated to color attributes, benefits the presentation pretraining of

feature extractor for color prediction. Moreover, it could be an effective label aug-

mentation method for robust pretrained feature extractors especially when the color

labels used for training are noisy.

Additional Object Labels Besides the vision features provided, i.e. image and
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Table 5.4: Benchmarking Results: tested on cross-domain annotations

Stock Color (Human Language) Stock Color (Human RGB)
Precision@1 Recall@2 Precision@1 Recall@2

Oracle Test 100% 96.97% 100% 97.29%
Language Only 41.25% 45.71% 36.61% 40.55%
Resnet18 1D Conv (color histogram) 67.08% 68.63% 59.26% 60.20%
Faster RCNN ResNext101 FPN 75.86% 74.03% 65.61% 63.84%
+ Weighted BCE Loss 76.03% 74.05% 65.64% 63.95%
+ Detection pretrain w/ attribute loss 76.40% 74.58% 65.93% 64.34%
Task modules w/o object embedding gating [102] 76.17% 74.60% 65.81% 64.50%
Task modules w/ object embedding gating [102] 76.03% 74.42% 65.69% 64.33%
Key-Color Attention 75.91% 73.53% 65.44% 63.89%

the object localization, it is attempting to see the impacts of additional object labels.

Following the success of constructing dynamic gating modules according to the object

embedding in zero-shot attribute object compositional learning [102], an attention

module with a gating network is added before the final classifier layers. Specifically,

we use 3-layer gating modules, each of which contains 24 gating layers. As shown

in Table 5.3, the performance is on par with the baseline. Moreover, for better

comparison for additional object labels, a counterpart with the same task modular

but without the object gating network is tested, i.e. adding additional fully connected

layers, which is comparable to the task modules with object gating network. Different

from [102], the detection model is pretrained on VG dataset and should contain the

object-related features. Besides, color attributes are much less correlated with object

categories comparing to other attributes, e.g . materials, textures and actions. For

instance, standing, sitting, and walking attributes could only be applied to animals

and humans. On the other hand, color is more universally applicable though it

definitely could have an object-related distribution as shown in the language-only

test.

Final Result Analysis From Table 5.3, the model trained from caption-parsed la-

bels, could generalize well for human language and human RGB annotations, even

outperforming the test using groundthruth caption labels (c.f . Table 5.2). The hu-

man language annotations for colors are more attended, accurate, and completed,
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while the caption-parsed labels are more short and noisy. Taken that our labels are

auto-extracted from the captions and the cost of label collection could be neglected,

it shows the promising results towards the learning with a reconciliation between hu-

man color annotations and color description of captions. Although the features of

color histogram model could be more aligned with human RGB annotations, color

histogram model is trained with parsed-caption labels, which digresses from human

RGB annotations. Thus, it is still inferior to the detection model.

5.5 Color Compositional Learning Through Attention

Most colors can be represented by sets of coordinates in key colors space. So, it

should be possible and beneficial to force the model to produce its prediction based

on the relations between the extracted features and key reference colors. We call it

as color composition hypothesis.

To test the hypothesis, we design a module that can learn the relation between

key/prior knowledge examples and the query object for color recognition. One in-

tuitive way to achieve this is through the attention mechanism similar to memory

networks which is widely used in Q&A [107, 108]. Different from memory networks in

Q&A where the keys are changed respecting input reference documents, our method

attends to the color prior keys which are intentionally plugged in. Those prior keys

serves as primitive visual color words in latent feature space, which behaves like pri-

mary colors in RGB space. The specific implementation and analysis are detailed in

the following subsections.

5.5.1 Color Composition Module

In our experiments, we choose all the colors in the target dataset as it might span a

decoupled space in agreement with the classifiers. To match the colors to the features

from the images, however, we need to transform the color to the feature space. To

do this, we consider two approaches to extract the feature vectors for the key colors:
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Figure 5.7: Attention module with references to key color features: The computa-
tion between query object feature fi and key color features {kc}c∈C is illustrated in
Eq. (5.5). Each key color feature fi denotes one key color corresponding to the color
c in the total colors of prediction C. Value, key and query layer are linear transfor-
mations with learning parameters.

(a) Pure RGB color images: According to the definition of color names and their

corresponding RGB values, the images filled with monotonous RGB values and a

center bounding box are fed into the feature extractor to obtain the primary key color

features; (b) Mean features of sampled bounding boxes: We extract the features from

the sampled bounding boxes with the same color attribute and calculate the mean of

those features for the representation of respecting key color. In the implementation,

to save graphic memories and avoid the turbulence from sampling, we adopt the
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Table 5.5: Ablation study for primary key colors on Stock Color dataset: * Denotes
degeneration, i.e. model always predicts most common colors, white and red, in top 2
predictions. The key colors are all 26 colors from Stock Color, and the representation
keys are extracted by random initialization, features from monotonous RGB images,
and mean features from the corresponding color labels.

Learnable Precision@1 Recall@2

Pure RGB images 7 85.19% 93.17%
3 85.00% 93.08%

Category mean features 7 85.03% 92.95%
3 84.10% 92.28%

Random keys 7 23.88%∗ 38.69%∗

3 23.88%∗ 38.69%∗

calculation as the update with momentum λ:

kc =


(1− λ)kc + λfi, if c ∈ yi

kc, otherwise
(5.4)

where kj denotes the color feature key for attribute color c and is initialized from all

training features with respecting color labels extracted from the pre-trained detection

model before the training. With the key color representations defined, we design the

model using the attentions as:

f̃i =
∑
c∈C

exp(fTi k̄c)∑
c∈C exp(f

T
i k̄c)

k̃c (5.5)

where k̄c and k̃c are transformed keys and values from reference prior keys kc by

linear key layer and value layer respectively (c.f . Fig. 5.7, ). Following the success of

transformer [37], we use multi-head attention to calculate contributions of key color

features in 16 grouped features.

From Table 5.6, we can see that the attention module improves the results from the

baseline, i.e. the final detection baseline model. As shown in Table 5.5, pure RGB

color keys outperform mean feature variation, which is in line with our motivation
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that the simplicity benefits the compositional learning from color keys. Succinct and

primitive color keys (i.e. pure RGB key colors) decoupled the variations and noises

from other factors (e.g . lighting and filtering) and provide better representation learn-

ing through the aggregation in the attention module. Although simplicity matters in

the compositional learning from color keys, the meaningful embedding, and proper

priors are crucial. The model can degenerate if using the random initialized color

keys (c.f . Table 5.5).

Learnable Key Colors. To save the computations for feeding reference images in

monotonous RGB values during every training iteration which consumes large graphic

memory for the detection network, we fix the key color vectors by extracting them

from a pre-trained network. Since most feature learners are not designed to handle

pure color images and it might result in sub-optimal, we explore variants of the model

using learnable keys. In specific, we initialize key color vectors with the calculated

values as illustrated above and update the key color vectors by backpropagation along

with the training. From Table 5.5, one can see the learnable version of key colors

are comparable to the fixed version, implying that the transformation of attention is

powerful enough to learn a good embedding for prior key colors. Besides, since the

key layer transformation is linear and sharable across all keys, the gradients through

the key layer might guide the keys moving close to each other and harm the diversity

of the key colors.

5.5.2 The Mechanism of Attention

Compositional Representations by Diverse Attention From Figure 5.8 left, it

is clear that the attention hike does not correspond to target classes. Instead, the

activation on the attention of keys diversifies in two folds, group-wise diversity in

different attention heads and sample-wise diversity in different query images. With

deeper analysis, we add additional auxiliary key loss to reinforce the color concept

learning in the attention module. Specifically, we get the each key color prediction by
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Reference Key 

Prediction

Activation of-
Multi-Head Atten-
tion 

Attention Module w/o Key Loss Attention Module w/ Key Loss

Figure 5.8: Visualization of sampled heatmaps from attention and prediction: The
first line illustrates the RGB value of the reference key colors. The second line denotes
the prediction including the background in first element. The rest of lines shows the
heatmap from multi-head attention modulue to each corresponding key color.

Table 5.6: Ablation study for the number of key colors: The key color features are
extracted from the corresponding pure RGB color images. Head and tail categories
are defined according to the sample distribution from the whole dataset, i.e. head
categories are the most common categories.

Colors Number Precision@1 Recall@2
All categories 26 85.19% 93.17%
head categories 8 84.84% 93.11%
tail categories 8 85.06% 92.75%
head categories 3 85.03% 93.08%
head categories 1 22.38%∗ 38.69%∗

using the key feature kc as query feature in Fig. 5.7 and Eq. (5.5). Then the key loss

with its corresponding key colors is added. As result in Fig. 5.7 right, the attention

resembles a mixture of colors still. Hence, we conclude that with our design, the

model will automatically learn compositional representation, even with the guidance

of the key-loss. As a result, it effectively probes all the provided prior key colors

and transforms query box features into a better representation that benefits color

recognition by diverse attention.

Cardinality of Prior Color Space From Table 5.6, we can see that different num-

bers of key colors chosen (3, 8, and 26 colors) result in comparable results. Moreover,

the choices of the key color set (head categories and tail categories) do not affect the
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Figure 5.9: Dataset category distribution and the results from benchmark model for
VG Color dataset (top) and Stock Color (bottom).

performance very much. We infer that the cardinality in prior color spaces, i.e. the

number of keys composing the attention, is small in order to learn effective repre-

sentation for color recognition. In addition, we note that multi-head attention with

diverse activation would augment the cardinality in prior color space.

Future Work In summary, we exhibit an attention module based on the the color

composition hypothesis and find it could effectively improve the performance for color

recognition by a diverse activation that effectively interacts with prior keys. Through

some experiments and analysis, we conclude that the simplicity benefits the attention

module in two folds: (a) The features of a pure RGB image are effective which serves as

primitive visual words to generate diverse representation; (b) The cardinality required

in the multi-head attention module for effective learning is small. In this work, we

target color recognition and the further extensions of this attention in other tasks will

be left for future work.

5.6 Proposed Method for Long-Tailed Color Recognition

Due to imbalance distribution from the dataset, we found many tail-colors are

never predicted in the top2 predictions, i.e. recall@2 for those colors are zeros (c.f .
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Fig. 5.9), which is not acceptable for most applications.

We consider mean recall (c.f . Eq. (5.3)) of all the color categories as the evaluation

metrics for long-tail color recognition, imitating category-balanced test setting. Due

to the label distribution discussed in Section 5.4, we take mRecall@1 and mRecall@2

for evaluation.

5.6.1 Bias in Classifiers

0 1 2 3 4 5 6 7 8
 ( -norm)

40

50
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90

precision@1
recall@2
mRecall@1
mRecall@2
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Figure 5.10: Comparison of removing bias on Stock Color: Plots shows the model
evaluation results in validation dataset as the change of debiasing factor tau for τ -
norm [4] (left) and p for ours (right).

Kang et al . [4] found the bias lies in the classifier and normalization for the classifier

weights Ŵ could effectively be used to remove the bias for long-tail recognition.

Specifically, it scales each row wj in the classifier weights by:

ŵj =
wj

||wj||τ
(5.6)

where τ is a controling debias factor. And then unbias prediction for sample i becomes

ˆ̃yi = Ŵfi.

Despite some effects for τ -norm, the mRecall values saturate even when the τ value

reaches high value (c.f . Fig. 5.10), which is different from the peak phenomenon from

three long-tail recognition tasks in [4], where the optimal tau values were found in

[1, 2]. It shows that removing the bias only from the classifier solely can not effectively
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Stock Color (before TDE) Stock Color (after TDE) 

Figure 5.11: The prediction of mean features in the training Stock Color dataset and
the illustration of co-activation after removing the bias in features by TDE [5]: Each
row denotes the model prediction (in column) by feed the mean features of all training
data in each belonging to the same category (left). After applying TDE [5] to each
prediction, it activates the corresponding category while co-activating the correlated
head colors (right).

remove the bias for our color. Kang et al . [4] found the bias lies in the classifier and

a normalization operation for the classifier weights Ŵ could effectively be used to

remove the bias for long-tail recognition. Specifically, it scales each row wj in the

classifier weights by:

ŵj =
wj

||wj||τ
(5.7)

where τ is a controling debias factor. And then unbias prediction for sample i becomes

ˆ̃yi = Ŵfi.

Despite some effects for τ -norm, the mRecall values saturate even when the τ value

reaches high value (c.f . Fig. 5.10), which is different from the peak phenomenon from

three long-tail recognition tasks in [4], where the optimal tau values were found in

[1, 2]. It shows that removing the bias only from the classifier solely can not effectively

remove the bias for our color.
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5.6.2 Bias in Trained-Model, Entangled Features, and Co-Activation

Based on TDE (total direct effect), Tang et al . [5] propose to remove the bias

by the prediction of mean features from the whole training dataset. They achieve

state-of-the-art in unbiased scene graph detection task by identifying the bias in

object features. In the context of color recognition, the bias might lie in box features

before the classifier. Thus, we applied TDE [5] to the prediction of mean features

for each category k, which provides representative outputs despite the hard samples

in the training dataset. Supposing fi is the feature vector of the instance i and the

prediction of mean feature in color category c is:

ỹc = W

∑
i∈T δ(k ∈ yi)fi∑
i∈T δ(k ∈ yi)

+ B (5.8)

where W and B denotes the weights and bias in classifier layer. And after removing

the bias, the prediction of mean feature is:

ŷc = ỹc − (W

∑
i∈T fi
|T | + B) (5.9)

We note that this would be equivalent to calculate the mean predictions for all the

samples belonging to the same category since both of the classifier and averaging

operation are linear.

From Fig. 5.11 left, the mean features of tail colors are not activated well to the

corresponding ground truth. It implies that those tail-color samples in the training

dataset are underfitted under normal instance-balanced sampling and the bias in the

training dataset dominates the model prediction. After removing the bias by TDE,

it successfully removes the bias in some degree and activates those tail colors (c.f .

Fig. 5.11 right). As shown in Fig. 5.11, each row denotes the prediction of the corre-

sponding color feature after removing the bias from TDE. And the features still tend
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to co-activate some correlated head colors besides themselves. It implies the entan-

gled features and co-activation between head colors and tail colors. Similar to the tail

distribution of the relation in scene graph detection, the tailed color distribution is

also correlated to some head colors due to the language attention. For example, the

head relation "on" is highly correlated to tailed relations, "sitting on", "walking on",

"standing on". And head color "red" is linked to the tail color "scarlet". Moreover,

some samples in head colors could be described to the corresponding "tail" color if

different language perference or different people’s comments are used. Even after

removing the bias, such co-activation and feature entanglement can not be effectively

reduced by only removing the bias in features.

5.6.3 Compositional Representations in Classifier

Besides the co-activation illustrated above, such co-activation is asymmetrical and

bias towards head colors, i.e. the majority of activation lies in the lower-left areas (c.f .

Fig. 5.11). If taking the prediction of the output layer as a sparse encoded feature,

it demonstrates that the model tends to describe the colors using head colors, which

has been effectively trained from the sufficient data. Moreover, the mean prediction

is sparse and separable, which could be effectively used as centers for distance-based

classification. Based on the observation above, we take the prediction as the feature

and calculate the distance to each center c for the prediction of color c as:

ŵci = −||ỹi − ỹc||p (5.10)

where p is a debiasing factor which is L2 distance when p = 2 and the || ∗ || denotes

the norm. Then use unbiased prediction above to off the original prediction to get

the final prediction as:

ŷi = {ỹc + ŵc}c∈C (5.11)
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. Comparing to TDE [5], our method calculates the feature bias for each category,

which could be more robust to the change of data distribution. As analyzed before,

because the classifier layer is linear, the prediction of mean features is the same

as mean prediction of the sampled features. For TDE, it supposes the bias totally

depends on the feature distributions of the whole training dataset {fi}i∈T , which, in

another view, equals to prediction of the whole training dataset {ỹi}i∈T . However,

the change of mean prediction of the whole training samples can not necessarily lead

to the change of bias in model training. For example, taking a trained model which

predicts perfectly on the head colors and overfits the training samples in head colors,

adding more trivial samples for those head colors in the fine-tune training would only

slightly affect the model training when the gradients are too small. In that scenario,

the bias calculation in TDE will be changed and not in line with the effects of the

trained model. On the contrary, our method incorporates the mean features for each

category, which is more robust to the change of the data distribution.

As shown in Fig. 5.10 right, the ability to remove the bias for our method could

be stronger than τ -norm, which only removes the bias from classifiers. Through the

change of controlling factor p in Eq. (5.11), we can find the optimal value for the

balance-category test condition. on the other hand, the mRecall saturates even using

a large tau. Our method considers the bias in the classifier by leveraging the sparse

encoding ability in the classifier layer. Besides, the mean features calculated for each

category reflect bias in the feature extractor.

5.6.4 Further Discussion: Classifier as Descriptor

As discussed before, we observe that the color description for referenced object

differs in the human preference of color used, which might lead to the bias prediction

of the bias-trained model.

In the view of optimization for classifiers, the rich information in this preference

distribution is backpropagated through classifiers. Specifically, many samples labeled
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Table 5.7: Results of removing the bias: VG Color and Stock Color

VG Color Stock Color
Precision@1 Recall@2 mRecall@1 mRecall@2 Precision@1 Recall@2 mRecall@1 mRecall@2

Benchmark(Attention) 78.79% 85.88% 24.98% 34.80% 85.19% 93.17% 41.40% 53.08%
NCM [4] 61.93% 68.85% 28.70% 49.45% 70.48% 79.19% 50.23% 63.92%
τ -normalized [4] 76.06% 84.52% 27.24% 36.27% 83.70% 92.78% 41.20% 54.01%
TDE [5] 72.87% 78.25% 29.09% 40.93% 81.40% 88.62% 49.09% 62.94%
ours 72.59% 75.60% 29.86% 52.61% 76.95% 83.80% 55.19% 73.29%

as head colors could reasonably be labeled as tail colors from different preferences

will be trained only through head classifier but not tail classifier. Hence, for those

tail-color classifiers which are not effectively trained due to under-sampling, those

head-color classifiers would also contain some information in respecting correlated tail

colors which are under-preferred from labels. Such preference encodes the correlation

between different colors and will be reflected by the prediction of bias-trained model.

As shown in Fig. 5.11, tail-color mean features (bottom rows) are heavily activates bias

towards the correlated head colors by the corresponding classifier (left columns). For

example, the mean feature of platinum (in the last row) is activated by the correlated

head classifiers, black, gold, and silver. And our method, classifier as descriptor,

effectively exploiting the correlations from the classifiers.

In another view of visual descriptor, the tail colors would describe themselves

through the selection to other related colors as keywords. Moreover, the representa-

tion encoded by classifiers are sparse and separable (c.f . Fig. 5.11) due to different

preference description for difference color. Through the descriptor from the classifiers

which learns the information of color preference distribution, we can obtain mean-

ingful representations where the tail-color samples could take effectively trained head

colors as visual words to represent themselves.

5.6.5 Experimental Results

As shown in Table 5.7 and, our method outperforms other methods in mRecall@1

and mRecall@2, showing the strong ability to remove the bias from bias-trained

model. Kang et al . [4] also studied Nearest Class Mean classifier (NCM) and Classi-
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Table 5.8: Results of removing the bias: tested on cross-domain annotations

Stock Color (Human Language) Stock Color (Human RGB)
Precision@1 Recall@2 mRecall@1 mRecall@2 Precision@1 Recall@2 mRecall@1 mRecall@2

Benchmark(Attention) 75.91% 73.53% 26.89% 38.41% 65.44% 63.89% 24.89% 31.94%
NCM [4] 66.62% 64.93% 31.28% 34.40% 59.59% 60.46% 27.71% 30.21%
τ -normalized [4] 74.78% 72.92% 27.09% 37.18% 64.19% 63.16% 25.19% 33.37%
TDE [5] 73.91% 71.29% 29.33% 46.49% 63.69% 64.08% 26.46% 41.74%
ours 71.21% 68.98% 30.66% 47.05% 61.69% 62.09% 26.81% 42.62%

fier Re-training (cRT). NCM is to first compute the mean feature representation for

each class on the training set and then perform the nearest neighbor search either

using cosine similarity or the Euclidean distance computed on L2 normalized mean

features. Despite its simplicity, they found it is a strong baseline and it is very similar

to our method. Our method differs from it in two folds: (a) It neglects the trained

classifier, which could contain useful information. On the contrary, our method takes

the classifier as a meaningful sparse encoder, which takes the classifier as a descriptor.

We tried only to use the head-color classifier as the sparse encoder, which could still

result in good performance though the accuracy will be slightly dropped. Besides,

as shown in Fig. 5.11, the poorly-trained tail-color classifier could be still useful to

activate the tail colors. (b) We introduce a controlling factor p, which could balance

the recall and mRecall in an effective and flexible manner. cRT re-trains the classifier

with class-balanced sampling. We found it provides marginal improvement comparing

to other methods.

In summary, we investigate the different methods to remove the bias for long-

tail color recognition, and proposed a succinct and effective method to remove the

bias in the bias-trained model. Through the analysis and experiments, it shows the

bias-trained classifier could serve as a meaningful descriptor and be used as a sparse

encoder to describe the visual anchors (mean features) in a separable space. Though

the classifier as a descriptor by feeding visual anchors to classifiers, it distills the rich

knowledge in both feature extractors and classifiers, spanning a space that removes

the bias. Beyond the color recognition, We will leave the generalization study for this
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method for more tasks in future work.

5.7 Conclusion

In this chapter, we investigated color attribute prediction by learning a language

description from caption and grounding these to image objects identified by our com-

puter vision system. We introduce a benchmark dataset with automatically generated

labels and golden labels corresponding to human language color concepts. Further-

more, we explore techniques to improve color recognition performance through com-

positional representation learning that is inspired by color decomposition. For the

long tail color recognition, we propose another method by incorporating the com-

positional representations in classifier, outperforming the state-of-the-arts debiasing

methods on the benchmark dataset. We hope this dataset, along with our analysis of

color decomposition and debiasing can help set up new directions for future research

into this problem.



CHAPTER 6: SUMMARY AND FURTURE DIRECTION

6.1 Summary

In this dissertation, we investigated four factors in representation learning of image

recognition, i.e. diversity, aspect ratio, invariance, and composition. We summarized

the works in recent advances of deep learning that is related to the four factors and

demonstrated some insights by diving deep into different tasks respectively.

In Chapter 1, we introduced the four factors in representation learning of im-

age recognition. Despite some generality of some methods, good representations

could vary from different domains, where some representations are more important

to achieve the specific goals. Many methods of representation learning focus on the

identified important issues to help target tasks. We walked through different domains

and recent research advances that are related to the four factors. For diversity, di-

verse representation learning plays an important role in the development of single

network architectures (e.g . group convolution, diverse filters, regularization et al .)

and ensemble algorithms (e.g . boosting, re-weighting, task division et al .). And we

aimed at ensemble learning in this work and introduced motivation of the diverse

representation learning with discriminative attention on different categories. For as-

pect ratio, we visited the impacts of aspect ratios for different tasks. Some tasks do

not require implicit efforts about the representation learning of aspect ratios because

of direct supervision of the annotation, e.g . object detection, and semantic segmen-

tation. Many general tasks even treat the variations of aspect ratios as an effective

way for data augmentation, e.g . classification. However, image aesthetics assessment

should take the representation learning about aspect ratios into consideration. And

we briefly went through the drawbacks of some previous methods to address the
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issues. For invariance, some tasks implicitly learn the representations of variances

(e.g . generative model) and some tasks only require the representations where the

variances are dissected (e.g . data augmentation, identification). Then we unfolded

the invariance representation learning in the task of person re-identification and il-

lustrated some previous methods that require explicit efforts of either localization

or disentanglement. For composition, it is well studied in many different tasks, e.g .

zero-shot compositional learning, unsupervised image-to-image translation, document

Q&A. We introduced the compositional representation learning for the task of color

attribute recognition, where the motivation of two methods are illustrated, i.e. one

for general color recognition and the other for debiasing.

In Chapter 2, a diverse representation learning method, namely learning-difficulty-

aware embedding, was proposed for ensemble learning. We provided the theoretical

analysis for the proposed method. Through extensive experiments, it consistently

outperforms the previous methods. In addition, the analysis and experiments re-

vealed the drawbacks of previous methods and insights for diversity,. Guided opti-

mization (comparing to MixDCNN) and regularization in category level (comparing

to AdaBoost) are the important mechanisms for the success of diverse representation

learning for our ensemble learning method.

In Chapter 3, an aspect ratio representation learning method, namely adaptive

fractional dilated convolution, was developed for explicitly learning aesthetics repre-

sentations related to aspect ratios for image aesthetics assessment. We embed the

aspect ratios seamlessly into kernel level by adaptive construction of kernels in a

parameter-free approach and solve the issues of aspect ratio representation learn-

ing natively and efficiently in an end-to-end manner. Through the experiments, we

showed that our representation learning method outperforms the previous methods

that are convoluted and slow.

In Chapter 4, an invariance representation learning method, namely anchor loss,
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was introduced to further reduce the intra-class variances for person re-identification.

We demonstrated that the global supervision from the feature distribution of cross-

instance aggregation provided an effective way for invariance representation learning

that distills the identity-related features and removes interfering variances. The in-

variance was learned without extra supervision or explicit priors through only extra

epochs of fine-tuning with anchor loss. This succinct method boosted the performance

significantly and achieved state of the art in multiple benchmark datasets.

In Chapter 5, two compositional representation learning methods, i.e. attention

module with reference to key colors and a debiasing method, were presented for color

attribute recognition. We introduced the dataset building and annotations for this

new task, i.e. color attribute recognition. This overlooked problem was entangled

with both language attention and visual attention. In visual attention, global contex-

tual information and high-level semantic features were important for accurate color

recognition that is aligned with language description from the comparison experi-

ment with 1D Conv color histogram. The proposed color compositional modular,

which was motivated by color theory, learned better presentations for color recog-

nition. In language attention, the bias in annotations due to language preferences

could be revealed by the classifier representations in the bias-trained model. And our

debiasing method by incorporating the representations from classifiers improves the

performance for long-tail color recognition significantly.

6.2 Future Direction

Representation learning is always involved with the development of deep learn-

ing methods for image recognition. The research of representation learning is an

open-ended journey along with the advances with deep learning in different image

recognition tasks. In this dissertation, we summarized the related methods from the

perspective of representation learning for captured four factors in Chapter 1 and delve

into some specific points for the algorithm development. To our best knowledge, the
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systematic reviews and mechanism research for the four factors are still remained to

be visited yet. Due to the rapid development of computer vision and the quick adop-

tion of applications, many methods were proposed and widely used before the well

understanding of their mechanisms. In other words, the understanding of algorithms

is often behind the proposal and application. For example, Label Smoothing [61] was

proposed in 2016 and has been widely used throughout different state-of-the-art meth-

ods. However, until recently, the mechanisms and understanding of Label Smoothing

began to been researched from the perspectives of representation distribution [90],

label noise [221], knowledge distillation [222], and et al . As the benchmarking of

different tasks for computer vision becomes saturated, the research of explanation

has aroused interests. Besides, due to large-scale learning parameters and stochastic

optimization, the general approach to understand the mechanisms is based on experi-

mental validation. Specifically, designing some interesting experiments to verify some

hypotheses is more practical. For example, the research for validating the hypothesis,

that deep networks have a strong ability to memorize large-scale training samples

even without pattern recognition, is based on an experimental design of random la-

bel fitting [59]. And the understanding of mechanisms of residual connections from

the perspective of ensemble learning is based on the experimental validation of layer

re-ordering and deletion [28].

Representation learning provides a good perspective to look into the underlying

mechanisms. In the following, we briefly illustrate some potential research problems

related to the four factors of representation learning.

Diversity Though the research works about diverse representation learning are scat-

tered around different domains, e.g . regularization, model compression, ensemble

learning, and et al ., the systematic reviews and analysis about the diversity have

not been fully studied, neither for single network or ensemble learning. For single

networks, how to measure the diversity of learned representations and what kind of
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diverse representations are beneficial to improve the generalization ability of single

networks, are remained to be delved deep into. For ensemble networks, some inter-

esting but unresolved questions are: (a) How to compare and measure the diversity of

complementary networks? In this work, we measure the diversity directly according

to test accuracy in each category. Another possible approach that is more general

and intuitive is to design the measurement of alignment and disagreement of different

complementary networks in both decisions and learned features, e.g . appending some

transformation layers to learn a shared latent embedding. (b) What factors could

impact the diversity of complementary networks and what are the mechanisms of

each factor? For example, the factors that could potentially impact the diversity are

network architecture, weight initialization, dataset distribution, optimization meth-

ods, and et al . It is attempting to conduct comprehensive experiments to get some

observations and design the following experiments to verify the explainable hypoth-

esis. (c) How to balance the diversity of individual networks and the aggregation

for ensemble networks? In this work, we derived the reweighting formulas for the

balance between diversity and aggregation where the training of each complementary

network is managed and involved. However, is there a more clever and automatic way

to ensemble multiple existing networks? One obvious approach is to train an extra

layer to calibrate the output decisions of multiple complementary networks. Another

direction is to use meta-learning to train a meta-network for decision aggregation or

feature fusion.

Aspect Ratio Representation learning of aspect ratios is proved to be important

for image aesthetics assessment. To our best knowledge, it has not been fully un-

derstood in other fields. For example, aspect ratio representation learning could be

beneficial for the detection algorithm of face manipulation. It is unknown that how

the learned presentations of aspect ratios could contain the artifacts information of

the face manipulation.
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Invariance Invariance plays an important part in representation learning. How to

test the invariance has not been thoroughly delved into yet. An interesting direction

is to test the sensibility in the activation of classifiers to different variation input. On

the other hand, the disentanglement and image reconstruction could provide another

perspective to recover the variance representations that have been dissected and to

compare the representations between recovered variance representations and original

invariance representations. In addition, the disentangle learning is actively researched

in image-to-image translation where both invariance and variance representations are

important, and whether it is beneficial for the tasks that care the only invariance could

be further researched into. In another word, does the extra modeling of variances

could help with the modeling of invariance presentations?

Composition The aggregation of compositional representation learnings varies from

different methods, e.g . feature fusion, attention, addition, concatenation et al . In this

work, we adopt the attention for color compositional learning modular and distance

calculation for debiasing method. It is important to systematically compare the

different aggregation methods to obtain some understanding of mechanisms.

Overall, as the algorithms of deep learning have achieved applicable results in

many benchmark tasks, representation learning could be a promising perspective to

unfold some underlying mechanisms of the algorithms. In return, it could contribute

to the further development of more efficient algorithms and provide more structured

guidance in applying the algorithms and problem identification in real-world scenarios.
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