‘PRACTICE’ FOR ENHANCING THE PERFORMANCE OF A DEEP
REINFORCEMENT LEARNING AGENT

by

Venkata Sai Santosh Ravi Teja Kancharla

A thesis submitted to the faculty of
The University of North Carolina at Charlotte
in partial fulfillment of the requirements
for the degree of Master of Science in
Computer Science

Charlotte

2019

Approved by:

Dr. Minwoo Lee

Dr. Srinivas Akella

Dr. Min C. Shin

©2019
Venkata Sai Santosh Ravi Teja Kancharla
ALL RIGHTS RESERVED

i

il

ABSTRACT

VENKATA SAI SANTOSH RAVI TEJA KANCHARLA. ‘Practice’ for Enhancing
the Performance of a Deep Reinforcement Learning Agent. (Under the direction of
DR. MINWOO LEE)

Deep reinforcement learning has demonstrated its capability to solve a diverse array
of challenging problems, which were not able to solve previously. It has been able to
achieve human-level performance in Atari 2600 games and it has shown great potential
to self-driving cars, robotics, and natural language processing. However, it requires
long training time to learn feature representations from raw sensory data and makes
it difficult to use deep reinforcement learning in real-world applications. Transfer
learning, specifically sim-to-real transfer, has been suggested to learn features but
designing of new environments or defining an environment with similar or relevant
goals requires careful human efforts. This thesis aims to leverage practice approaches,
which do not require a new environmental design for transfer learning, to reduce the
time for training a deep reinforcement learning agent and enhance its performance.

First, this thesis introduces the use of practice approach applicable to end-to-end
models with a deep reinforcement learning algorithm. It shows that the approach im-
proves the performance of an agent and presents experimental results of this approach
in complex environments. Second, this thesis presents a novel strategy, iterative prac-
tice, which repeats short period of practice and short period of learning until desired
results are achieved. It presents experimental results and verifies that iterative prac-
tice improves learning. Last, it introduces a new strategy, shared experience for
iterative practice, which reduces the interactions with an environment. It presents
observations on this approach applied in complex environments and examines the

effect of reduced interactions on learning.

DEDICATION

To my late father, Jagadiswara Rao Kancharla

v

ACKNOWLEDGEMENTS

Firstly, a special thank to my advisor, Dr. Minwoo Lee, not only for believing in
my potential but also for his support and motivation. His suggestions and guidance
cleared many roadblocks in my path to complete this thesis.

Secondly, I would like to thank Dr. Srinivas Akella and Dr. Min C. Shin for their
valuable feedback at every milestone. Their enthusiasm in my work motivated me
to put my best efforts to accomplish this. My sincere appreciation to the University
of North Carolina at Charlotte for equipping me with necessary infrastructure and
aiding me in the entire process.

This would not be possible without the quintessential support from my mother
Saroja Kancharla, and my brother Prasanth Kancharla. I honestly thank them. A

special credit to all my friends for keeping me motivated all the time.

vi

TABLE OF CONTENTS

LIST OF TABLES ix
LIST OF FIGURES X
LIST OF ABBREVIATIONS xii
CHAPTER 1: INTRODUCTION 1
1.1. Problem Statement 2

1.2. Contributions 2
CHAPTER 2: BACKGROUND 4
2.1. Reinforcement Learning 4
2.1.1. Markov Decision Process 4

2.1.2. Policy, Value and Q-value 5

2.1.3. Model-free vs Model-based 6

2.1.4. On-Policy vs Off-Policy 6

2.1.5. Action Policies 8

2.2. Deep Learning 9
2.2.1. Artificial neural Networks 9

2.2.2. Deep Neural Networks 10

2.2.3. Convolution Neural Networks 10

2.2.4. Deep Reinforcement Learning 13

2.3. Transfer Learning 16

2.4. OpenAl Gym 18

CHAPTER 3: RELATED WORK
3.1. Transfer Learning in Reinforcement Learning
3.2. Practice
CHAPTER 4: PROPOSED METHODS
4.1. Practice for DQN
4.2. Tterative Practice
4.3. Shared Experience for Iterative Practice
CHAPTER 5: EXPERIMENTS AND RESULTS
5.1. Test Environments
5.2. Pre-processing for Atari Game Environments
5.3. Practice for DQN 1
5.3.1. Visual Maze
5.3.2. Atari Game Environments
5.4. Iterative Practice
5.4.1. Visual Maze
5.4.2. Atari Game Environments
5.5. Shared Experience for Iterative Practice
CHAPTER 6: DISCUSSIONS
6.1. Observations of Shareable Representations
6.2. Generalization through Iterative Practice
6.3. Model Learning from Practice?
CHAPTER 7: CONCLUSIONS

7.1. Future Work

vii

19

19

20

23

23

25

28

30

30

32

33

33

34

38

38

39

43

45

45

48

49

20

20

viil

REFERENCES 52

1X

LIST OF TABLES

TABLE 5.1: List of other hyperparameters and their values for Visual 34
Maze
TABLE 5.2: List of other hyperparameters and their values for Atari 36

Environments

LIST OF FIGURES

FIGURE 2.1: Reinforcement learning setup
FIGURE 2.2: Q-learning algorithm

FIGURE 2.3: SARSA algorithm

FIGURE 2.4: Artificial Neural Network

FIGURE 2.5: Deep Neural Network

FIGURE 2.6: CNN example

FIGURE 2.7: Convolution layer extraction
FIGURE 2.8: Pooling layer

FIGURE 2.9: DQN architecture

FIGURE 2.10: Transfer learning

FIGURE 2.11: Performance with transfer learning
FIGURE 2.12: OpenAl Gym environments
FIGURE 3.1: Practice network architecture
FIGURE 4.1: DQN network architecture for practice and target training
FIGURE 4.2: One step practice vs iterative practice
FIGURE 4.3: Shared experience

FIGURE 5.1: Visual Maze

FIGURE 5.2: Pong

FIGURE 5.3: Breakout

FIGURE 5.4: Freeway

FIGURE 5.5: Reward curve for practice DQN on Visual Maze

10

11

12

12

13

14

16

17

18

21

24

26

28

30

31

31

32

34

FIGURE 5.6: Epsilon for practice DQN

FIGURE 5.7: Reward curve for practice on Breakout

FIGURE 5.8: Reward curve for practice on Pong

FIGURE 5.9: Reward curve for practice on Freeway

FIGURE 5.10: Reward curve for iterative practice on Visual Maze
FIGURE 5.11: Epsilon for iterative practice

FIGURE 5.12: Reward curve for iterative practice on Breakout and
Freeway

FIGURE 5.13: Reward curve for shared experience on Breakout and
Freeway

FIGURE 6.1: Visualizing activations for Visual Maze

FIGURE 6.2: Visualizing activations for Breakout

X1

36

37

37

38

40

41

42

44

46

47

xii
LIST OF ABBREVIATIONS
ANN An acronym for Artificial Neural Networks
CNN An acronym for Convolutional Neural Networks
DQN An acronym for Deep Q-Networks
FC An acronym for Fully Connected
MDP An acronym for Markov Decision Process
RARL An acronym for Robust Adversarial Reinforcement Learning
RGB An acronym for Red, Green, Blue
RL An acronym for Reinforcement Learning
SARSA An acronym for State Action Reward State Action

SBRL An acronym for Sparse Bayesian Reinforcement Learning

CHAPTER 1: INTRODUCTION

Reinforcement Learning (RL) [1] is a computational approach to learn from inter-
actions with an environment and attain a complex task. Some RL approaches showed
their effectiveness by theoretically proving the convergence to an optimal solution for
a task [1, 2, 3]. RL is successfully applied to diverse domains such as robotics [4],
traffic network management [5|, energy [6], and finance |[7].

Deep reinforcement learning, which combines deep learning with reinforcement
learning, has demonstrated its ability to solve diverse hard problems, which were
not able to be solved previously. It has been able to beat human best players in Go
(AlphaGo) [8|, StarCraft (AlphaStar) 9], and poker games [10]. Also, it has shown
great potential in application areas like natural language processing [11], resource
management [12], and robotics [13]. These successful applications were achieved by
addressing the long-lasted challenges in the curse of dimensionality.

One of the state-of-the-art models, Deep Q networks (DQN) [14, 15] have suggested
an end-to-end model that enables an RL agent to learn directly from raw sensory data
without tedious handcrafted feature engineering. Although a DQN is successful in
solving complex problems, it takes an excessively long time to learn, as learning
directly from raw sensory inputs that require large search space |16, 17|. Therefore,
it needs a large number of steps of trial-and-errors until converge. These drawbacks
are consequential when applying RL solutions to real-world applications.

Several approaches were proposed to address these problems. Transfer learning
between two similar RL tasks was examined to improve the performance [16], however,
it requires human effort for similar task selection. Imitation learning [18|, though

promises enhanced performance of agent, has its limitations like limited performance

2
improvement and also relying on human experts for demonstrations. Practice [19, 20]
is a new paradigm of transfer learning, which overcomes the limitations of previous
methods by discarding the need for human efforts. It showed improved learning
efficiency with the knowledge gained from a non-RL source task is applied to an RL

target task.
1.1 Problem Statement

Hypothesis: The performance of the Deep Reinforcement Learning agents in solv-
ing reinforcement learning tasks can be improved with efficient practice (or pre-training)
strategies.

Although the efficacy of practice approach has been examined, applying it to end-
to-end models with deep reinforcement algorithms, which learn from raw sensory
inputs, is not well examined. Thus, the primary objective of this thesis is to develop
efficient practice strategies applicable to deep reinforcement learning algorithms. The

research is split into the following goals:

e Goal 1: Examining the efficacy of practice with a Deep Reinforcement Learning

algorithm, DQN,

e Goal 2: Developing new practice strategies and examining their effectiveness on

improving RL agent performance,

e Goal 3: Understanding practice via observation of shareable representations

between practice and a target task.

1.2 Contributions

Practice for DQN: In this thesis, I extend practice to be applicable to end-to-end
models with deep reinforcement algorithms. Practice is applied to the DQN algorithm

and the performance is evaluated by testing the model with Atari 2600 games.

3
Iterative Practice: To further improve the efficiency of practice and learning, I
present a novel strategy, iterative practice. Imitating human practice and learn-
ing model (we continuously repeat practice and learning), iterative practice repeats
practice and short-term learning until it converges. The model is applied to DQN
algorithm and empirical results are presented for this model by testing it with Atari

2600 games.

Shared Experience for Iterative Practice: Adding to the above models, I also
present a strategy, shared experience for iterative practice, which effectively reduces
the interactions between the deep reinforcement learning agent and the environment.

This model is also applied to DQN algorithm and tested upon Atari 2600 games.

CHAPTER 2: BACKGROUND

2.1 Reinforcement Learning

Reinforcement learning is a machine learning paradigm which deals with the prob-
lem of making an agent perform actions in order to achieve a goal in a given environ-
ment. It is an approach drawn from the fields of statistics, psychology, and computer
science, where an artificial agent is trained to resemble human behavior in action
selection.

RL algorithms help an agent to learn how to behave in an environment. The agent
learns to map states to actions so as to maximize the numerical reward signal by
interacting with the environment and receiving rewards for performing actions. It
is quite different from supervised learning because the agent doesn’t have labeled
examples available from which the correct action can be identified. Figure 2.1 shows

how the agent interacts with the environment.

Observation,

R Reward

Environment]

Figure 2.1: Reinforcement learning setup

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework for formalizing

decision-making in an environment. An MDP is defined as a tupleof < S, A, P, R,y >

where

e S: A set of possible states in the environment

A: A set of finite actions

P: A state transition probability, describing the probability of transition from

state s to state s'. It is given by P%, = P[Si1 = §'|S; = s, Ay =]

SS

e R: A reward function which returns reward for performing action a in state s

to move to state s’ defined as R(s, s')*

~: a discount factor, which is a multiplicative factor for future rewards to denote

their significance.

At each time step, the process is at some state s, and when action a is chosen, the
process moves to new state s’ at the next time step and gives a reward R, defined by
reward function R (s, s’')*. The probability of moving to a new state is influenced by
P¢,. Thus, the next state s" depends on current state s and action a and independent
of all previous states and actions. This shows that MDP satisfies Markov property,
which states that future is independent of past given present.

The main goal of an MDP is to find a policy (Section 2.1.2) for action selection

that can maximize the reward obtained in the task.
2.1.2 Policy, Value and Q-value

A policy is a strategy that determines the possible action from a state. A policy
can be any function, m(als) = P[A; = a|S; = s|, mapping from states to actions.
When an agent visits the states in the sequence sg, s;... with actions ag, a;... based
on a given policy, the total discounted return or long-term cumulative reward can be

defined as:

Gy = Rip1 +YRip2 + .. = ZVthJrkH
k=0

6
where R;.1 denotes the reward obtained at time ¢+ 1. An optimal policy is the policy
with which the agent can get maximum cumulative reward in an environment. A value
function V' is the function which determines the long-term return with discount. For
the given policy, the value function can be defined as:

V(s) = E[G{|S; = s].
A Q-value function is similar to the Value function, only difference being that Q-value

considers an extra parameter, the current action a. It can be defined as:

0r(s,a) = E;|G¢|S; = s, Ay = al.

2.1.3 Model-free vs Model-based

A model is a simulation of the dynamics of the environment. In model-based
algorithms, the agent learns the transition probability P2, which makes the agent
know how likely that agent enters a specific state from the current state and action.
Once the agent learns, it can use planning algorithms with the learned model to find
optimal policy [1]. However, model-based algorithms become impractical as the state
space and action space increases.

It is not necessary to learn a model of the environment to find an optimal policy
[2]. The agent can instead learn the policy directly without estimating the dynamics
of the environment, using some model-free algorithms. These algorithms rely on trail-
and-error approach to update the knowledge. The agent learns from experiences, i.e.
the agent interacts with the environment by performing an action and observes the
reward and new state. As a result, it does not require to store all the combinations

of states and actions.
2.1.4 On-Policy vs Off-Policy

An on-policy algorithm estimates the value of a policy while using the policy for
control. In other words, an on-policy agent tries to learn the value based on the

action derived from the current policy. The policy is usually ‘soft” which means that

7
the policy has an element of exploration. The policy is not strict to choose the action
which gives best reward. We will discuss more about these action policies below.

Off-policy algorithms use actions derived from a different policy which is unrelated
to the policy that is estimated and improved. The policy used to derive actions
is called behavioral policy, whereas the policy being evaluated is called estimation
policy. Here, the behavior policy is ‘soft’, which enables the off-policy algorithms to

separate exploration from control which on-policy algorithms cannot.
2.1.4.1 Q-Learning

Q-learning [1] is an off-policy, model-free algorithm based on the Q-value function
approximation. The goal of the Q-learning algorithm is to maximize the Q-value. It
iteratively updates the Q-value function using the Bellman equation:

Q(s,a) < Q(s,a) + alr + yQ(s",d') — Q(s, a)].
Figure 2.2 outlines the Q-learning algorithm.

Initialize (){s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, &
Q(s.a) — Q(s,a) + a|r + ymaxy Q(s',a") — Q(s,a)]

g — g

until s is terminal

Figure 2.2: Q-learning algorithm [1]

In the algorithm, « represents the learning rate which determines the extent to
accept the new value vs the old value. When « is zero, we are leaving the old Q-value

without updating it.

2142 SARSA

State Action Reward State Action (SARSA) algorithm [1] is similar to Q-learning
algorithm, but SARSA is an on-policy algorithm. In Q-learning, the future reward is
the value of the highest possible action, but in SARSA| the future reward is the value
of the actual action that was taken. This means that SARSA uses the control policy

with which the agent is moving, to update the action values. Figure 2.3 outlines

SARSA algorithm.

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @) (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s
Choose a’ from s" using policy derived from () (e.g.. e-greedy)
Q(s,a) — Q(s,a) + « ['r' +vQ(s',a’) — Q(s,a}l]
s & a+a;

until s is terminal

Figure 2.3: SARSA algorithm [1]

2.1.5 Action Policies

One of the challenges that arises in reinforcement learning is the trade-off between
exploration and exploitation. The agent must prefer actions which are tried in the
past and found to be effective (exploit) and at the same time it need to look for
actions it has not selected before (explore). A right balance of both exploration and
exploitation is required for the RL agent to learn successfully. One way to achieve
a good balance is to try a variety of actions while progressively favoring the actions
which can produce better rewards.

The three common policies used for action selection, which help in balancing the

trade-off between exploration and exploitation:

€

o chance of being

e c-Soft: In this, every action available for a state has at least

selected for some € > 0.

e c-Greedy: This is similar to e-soft but with a greedy action selection. A random
action is selected with a small probability of €. Every other time a greedy action
is chosen, i.e. the action which gives maximum reward. The random action is

selected uniformly, independent of the action-value estimates.

e Softmax: This method does not select random actions uniformly, but ranks each
of the actions according to their action-value estimate and a random action is
selected with regards to these ranks. This makes least ranked actions unlikely

to be chosen.

2.2 Deep Learning
2.2.1 Artificial neural Networks

Artificial Neural Networks (ANN) [21] are a set of algorithms, inspired by the hu-
man brain, which are intended to replicate the way human brain learns. Artificial
neurons are the elementary units of an ANN, which are mathematical functions con-
ceived as a model of biological neuron. A neuron consists of variables called weights
and biases. It takes an input, translates it into an output after multiplying with its
weights and adding the bias.

A neural network consists of an input layer, an output layer and a set of hidden
layers in between, which are all made up of multiple neurons (Figure 2.4). The neurons
from each layer are connected with neurons of other layers to transfer outputs. The
overall idea is that the input layer takes some inputs, which is carried through the
hidden layers and finally an output is given by the output layer. The neural network
creates a linear mapping from input to output. Certain activation functions like
Sigmoid, TanH are used to infuse non-linearity in the neural networks, which makes

the networks more flexible to learn mappings. Neural networks are used to recognize

10

Hidden

Input O
\ Output

Source: http://en.wikipedia.org/wiki/Artificial neural network

Figure 2.4: A representation of an artificial neural network

patterns in the data and thus can classify information, predict future outcomes or

cluster data.
2.2.2 Deep Neural Networks

Deep neural networks [22] are artificial neural networks with more than one hidden
layer. They have more depth, i.e. the number of layers the data has to go through
before generating output (Figure 2.5). Earlier versions of neural networks are shallow,
consisting of one input layer, one output layer and at the most one hidden layer in
between.

The basic idea behind deep neural networks is that each layer learns distinct set of
features from the data based on the previous layer’s output. So, as the depth of the
network increases, more complex features can be learned by the final layers as they

aggregate features from the initial layers.
2.2.3 Convolution Neural Networks

A Convolution neural Network [23] is a Deep Learning model, which can read
an input image, learn features of the image and can differentiate one image from

another. These models have the ability to learn knowledge from raw form of data

11

hidden layer 1 hidden layer 2 hidden layer 3
input layer

Source: http://neuralnetworksanddeeplearning.com

Figure 2.5: A representation of a deep neural network

(images) without any pre-processing.

The architecture of CNN is similar to the connections in the human brain with
the visual cortex. Individual neurons read only a restricted region in the image
which is similar to Visual cortex’s receptive field. Readings from each neuron overlap
collectively to cover entire image.

CNN is able to capture the spatial and temporal dependencies in a given image
which makes it preferable over normal feed forward network for images. The general
architecture of CNN consists of series of convolution layer and pooling layer together
followed by one or more fully connected layer(s) for classification. Figure 2.6 shows a
CNN architecture which classifies hand written numbers from MNIST dataset [24].

The convolution layer extracts the features of the image such as edges, color gradi-
ent. The initial convolution layers capture the low-level features of the image, while
the final layers capture high-level features in the image. This layer uses filters, vector
representation of weights, to convolve the input image. Figure 2.7 shows how a filter
is applied on an image.

The pooling layer followed by a convolution layer is used to reduce the spatial
size of the output from the convolution layer. This is performed to decrease the
computations required to process the data. It extracts the dominant features in the

data. Max pooling returns the maximum value from the portion of data defined by

12

fc_3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A /—M
[5'_‘ 5) kernel Max-Pooling (5 :_(5] kernel Max-Pooling (with
valid padding (2x2) valid padding (2x2) dropout)
e
82
" -
INPUT nlchannels nl channels n2 channels n2 channels E . 9
(28x28x1) (24 x 24 x n1) (12x12xnl) (Bx8xn2) (4x4xn2) ., OUTPUT

n3 units

Source: https://towardsdatascience.com/@ sumitsaha

Figure 2.6: Convolution neural network for classifying hand written numbers (MNIST
Dataset)

Source: https://towardsdatascience.com/@ sumitsaha

Figure 2.7: Convolution layer extraction

pooling window size. Average pooling returns the average value of all the values in the
data covered by the pooling window. Figure 2.8 depicts the working of max pooling
layer with an example.

The fully connected layers at the end is used to generate the final output, i.e.
classes for classifying the image. The output from the last pooling layer is flattened

and sent as input to fully connected layer which outputs the predicted class.

13

.3-0 3-0

3.0]3.0}3.0

3.012.0|3.0

Source: https://towardsdatascience.com/@ sumitsaha

Figure 2.8: Functioning of pooling layer

2.2.4 Deep Reinforcement Learning

Applying RL to real-world problems, where the agents need to learn from a high-
dimensional representation of data like images, is a challenging task. As deep learning
has made it possible to extract high-level features from raw data like images, music,
and videos, it is logical to think that applying deep learning techniques to RL can
be beneficial while dealing with high-dimensional data. But this approach has some
challenges.

The primary challenge is the availability of data for the deep learning models.
Deep learning models required large amount of data to learn meaningful features
from it. But, RL algorithms do not work that way. They depend on the scalar
reward returned by the environment after performing an action. Another challenge
is that deep learning models, generally, assume that data sample are independent
and have fixed distribution, but in reinforcement learning the states of the agent are
correlated. Also, the data distribution changes as the agent is learning better policies.

These challenges are addressed by the DQN algorithm [14, 15], which uses convo-

lutional neural network to learn successful policies from raw images.

14

Convolution Convolution Fully connected

g
=
rﬁ
&

o Inpu]

H

LRCEU R B B O S BN

e
— ™ {

-,
i
Y

L 'Y £
+ 0+ [0+
oooaagoo

K
+

CRC R SR R N A B R I I R I O R R N

CRC RS)

i
+

A
-

Figure 2.9: Deep Q-Network architecture [15]

2.2.4.1 Deep Q-Network

Deep Q-network (DQN) [14, 15] is a deep reinforcement learning algorithm which
combines reinforcement learning with deep neural networks to learn directly from raw
sensory data. The architecture of DQN comprises of convolutional neural network
[25], which can learn encoded feature representations from raw input images.

To overcome the challenges we discussed above, the algorithm uses two key con-

cepts:

e Experience replay: An agent’s experiences are stored in a memory called ex-
perience replay buffer and random samples of data are sent as batches to the
network during training. This removes the correlations between data and gives
greater data efficiency. It reduces sampling bias in data towards some particular

action by averaging the behavior distribution over many of its previous states.

e Target network: The algorithm uses two deep networks, one to retrieve QQ values
(online network) and the other includes all updates in the training (target net-

work). After certain number of iterations, the weights from online network are

15
updated to target network. It allows the Q-value targets temporarily so that it

does not have a moving target to chase, which makes the learning stable.

The algorithm makes Q-learning look like supervised learning. It uses a deep
convolution neural network to approximate the optimal action-value function or Q-

value function:

Q*(Stv at) - E5t+1 [T(Sh at) + ’VQ*(St—i—lv at+1)]7

where (Q* denotes optimal Q-value function.

Similar to classic RL algorithms, DQN interacts with the environment and collects
samples of state, action, reward and next state (s, as, S;11,74+1). These samples
are stored into an experience replay buffer. Mini-batches of random samples from
the buffer are used for training the online network Q°*™¢. The mini-batch gradient
update for online network minimizes the mean squared loss value defined by the

function:

L= (g — Q" (sy,ar))’ (2.1)

where the target y; is defined by using the approximation from the target network

Qtarget:
Yo =T¢ + VmEXerget(stHa a). (2.2)

As mentioned before, the target network is periodically updated with the weights
of the online network. The model considers the state s; as image pixels from the
snapshot of the environment state at time ¢. The output layer is designed to output a
single QQ value for each valid action from the current state. The algorithm is applied
to a wide range of Atari 2600 games with no adjustments in the architecture and it

achieved human-level performance.

16

Qld Classifier New Classifier

CNN Layer

CNN Layer

CNN Layer CNN Layer

CNN Layer CNN Layer

Input Input

Source: https://indico.io/blog/exploring-computer-vision-transfer-learning

Figure 2.10: Transfer learning

2.3 Transfer Learning

Transfer learning [26] is a method where the model developed and trained on prob-
lem is reused as the starting point for a model for a different but related task. For
example, a model’s knowledge, which is trained to detect a car in an image, can be
used by another model which needs to detect a red car in an image. This is very pop-
ular approach [27, 28, 29| in deep learning, especially in computer vision algorithms
which take high amount of time and computational resources.

The general idea is to utilize the knowledge already learned in one task to improve
generalization in other task. One of such approaches is simply transferring the weights
of the neural network learned by the task to other neural network of the other task.
Figure 2.10 shows how knowledge from one classifier is transferred to a new classifier
through weight transfer.

The transfer of knowledge can be complete or partial, i.e. we can transfer only
weights of some layers or weights of all the layers from one model. After the transfer,
the layers transferred can be used without fine-tuning if the source task and target
task are very close, or the layers can be fine-tuned to learn specific features of the

target task. Here are some approaches used or transfer learning:

17

higher slope higher asymptote

PEL
.I
.
.

-« With transfer
— without transfer

performance

higher start

training

Figure 2.11: Performance comparison for transfer learning vs without transfer learning
[26]

e Training a model to reuse it : In this approach, we will select a source task,

develop a model and train it. We will then use this model to train for the target

task. This approach is generally used when there is no sufficient data available

for target task and source task has abundance of data available.

e Using a pre-trained model: In this approach, we will use an already pre-trained
model available to our target task. Many pre-trained models are available online

which can be used directly upon different target tasks.

Transfer learning helps in giving higher start, faster learning, and high asymptotes
(Figure 2.11). But one of the major challenges in this approach is the selection
of source and target task. When the source task is not similar to the target task,
transfer learning will give negative effects as the model needs to unlearn its knowledge
of source task and again start learning for target task. Measuring the similarity of
task is still an open problem and requires domain expertise or intuition developed via

experience.

18

(a) Atari Carnival (b) Fetch Pick and Place: (c) Bipedal Walker: Box2D
Robotics
Source: https://gym.openai.com/

Figure 2.12: Example OpenAl Gym Environments

2.4 OpenAl Gym

A survey in 2016 [30], indicated that around 70 percent of researchers in reinforce-
ment learning tried and failed to reproduce another researcher’s experiments, and
more than 50 percent have failed to reproduce their own environments. To overcome
this problem of lack of standardization in test environments, and to create a better
benchmarks by giving more varied environments, OpenAl [31] created Gym, a set of
environments. It aims to increase reproducibility in this field and provide tools which
can be easily set up.

Gym is a toolkit developed by OpenAl, which is used for developing and evaluating
reinforcement learning algorithms. It is a collection of test problems or test environ-
ments that can be used for training the reinforcement learning algorithms. These
environments have shared interface which allows us to use with general algorithms.
It has variety of environments like Algorithmic, Atari games, Box 2D, and Robotics.

Figure 2.12 shows some example OpenAl Gym environments.

CHAPTER 3: RELATED WORK

DQN algorithm is verified to be successful in solving complex problems like Atari
games [15], computer vision problems [32]. One limitation for this method is that the
training time to train a task is prohibitively long, as learning directly from raw images
requires large search space. It thus requires a large number of trail-and error steps
until it converges. These drawbacks are consequential when RL models are applied

to real world applications.
3.1 Transfer Learning in Reinforcement Learning

Transfer learning is one good solution to speed up the learning. The core idea of
transfer learning is that knowledge gained in one task can help in improving the per-
formance in a related, but different task. In reinforcement learning, transfer learning
can be performed between two RL agents, one trained on a source task and other on
the target task [33]. The knowledge shared can be a policy, Q function, actions or
model. In case of deep reinforcement learning, features learned in the neural network
can be transferred. Based on this idea, transfer between models trained on different
Atari games was examined and results showed improved learning speed [16]. However,
transfer learning requires human efforts to define source and target tasks for effective
transfer of knowledge between them.

The efficiency of learning can also be improved through imitation learning or ap-
prenticeship learning [18], which is a kind of transfer learning that learns from an
expert’s demonstration. It trains an agent to match the performance of a human
expert demonstrator in a given RL task. Recently, Deeply AggreVaTed [34] extended

imitation learning to work with deep neural networks. However, it requires the ex-

20
pert’s presence to provide proper feedback. Also, it is known that the transferred
policy cannot exceed the demonstrated policy. Deep Q-learning from demonstrations
(DQID) [35] suggests a pre-training approach to overcome the limitation of learning
from demonstrations in Deeply AggreVaTed. The pre-training stage uses temporal
difference loss along with supervised loss to learn a policy and to imitate the demon-
strator. This method effectively combines imitation learning with RL which enables
an agent to develop a superior policy than the expert. It showed acceleration in

learning, but still rely on human experts to gather demonstration data.
3.2 Practice

Practice [19, 20] suggests a new paradigm of transfer learning that does not need an
expert’s help. It is an approach that discovers shareable knowledge representations
between a source non-RL task and a target RL task to solve the complex target task
efficiently. Practice showed that learning the dynamics of an environment accelerates
the learning of deep RL agents [19]. Figure 3.1 explains the neural network archi-
tecture that implements practice to obtain suitable knowledge (network weights w)
and use it to initialize the Q function network to learn in a target environment. A
single neural network is used for both practice and target training, whose architec-
tures comprise of multiple densely connected layers. Two different output layers are
used, one gives the state difference during practice and other gives the Q-values for
the actions during target training.

To find shareable knowledge, practice sets up a regression problem that predicts
the state changes given a state. For each time step ¢, it samples the state transition
(8¢, as, S¢41), and learns a function, f(s;, a;) ~ As; = s;11 — 8¢. The inconsistency
between predicted and the target state difference is defined as the loss function. The
network is trained to minimize the mean squared loss:

L = (As; — fise, ar))’. (3.1)

Practice does not involve any RL-associated variables like rewards and goals.

21

Hidden Units Hidden Units

Output Units

Figure 3.1: Practice model for pre-training neural networks from state change pre-
diction [19]

The learned weights from practice are used as initial values for the target network.
Interacting with a target environment, the RL agent collects the state transition
samples with feedback (s, as, 441, Sev1,ar1). Mini-batches of the samples are used
for RL training with temporal difference update. RL training fine-tunes the network

weights to correctly estimate the () values. The mean squared loss is defined from

SARSA update:

L= (re+ YQ(5t41, A1) — Q (5t at))Q-

Practice has shown improved learning efficiency by reducing the time-to-convergence
and by achieving higher asymptote in diverse problems. Moreover, it does not require
human efforts for defining similar source and target tasks for transfer learning.

To verify the approach, Sparse Bayesian Reinforcement Learning (SBRL) [20] ex-
plained how the knowledge obtained from practice helps to learn a target task by
showing bases construction process in practice and their transfer and use of the trans-
ferred bases in target learning.

Another Practice approach designed for end-to-end Deep RL models learns some of
the crucial features by pre-training deep RL network’s hidden layers using supervised
learning on a small set of human demonstrations [17], showed significant improvement

in the agent’s performance. The approach is successfully applied to DQN and Asyn-

22
chronous advantage actor-critic (A3C) algorithms on Atari 2600 games. Although this
model integrated practice approach with end-to-end models, it still requires human

efforts for generating demonstration data.

CHAPTER 4: PROPOSED METHODS

Practice has shown that, without an expert’s help, an agent can learn faster in a
target task from the knowledge gained from a non-RL task. Practice is also examined
to be successful with end-to-end models, which learn from raw sensor inputs, with an
approach that uses human demonstrations. In this thesis, I suggest a new approach
for practice with end-to-end models which does not require human effort. For this,
I extend the practice approach, which predicts state differences, to be applicable to
models that use DQN algorithm. I also propose a novel strategy to further improve the
learning of an agent. It is called iterative practice, which repeats practice and short-
term training until it converges. Adding to these, I present a strategy, called shared
experience for iterative practice, which effectively reduces the interactions between

agent and environment. These models are applied to the DQN algorithm.
4.1 Practice for DQN

We leverage the existing practice approach and speed up learning in DQN. Figure
4.1 shows the DQN architecture for both practice and target RL training. The ar-
chitectures of DQN and practice networks have an identical setup of 3 convolution
layers (32 8x8 filters, 64 4x4 filters, 64 3x3 filters) followed by a fully connected layer
(512 hidden units). It is understood that practice is trained to solve a non-RL task.
Therefore, in my model, practice sets to solve a regression problem to predict the
state change given the current state. So, the output for practice is not the next pos-
sible state, but the state difference between the current state and next possible state.
Also, as there is no policy to follow for choosing actions based on states, all actions

are taken randomly in the practice stage. Unlike the original practice approach [19],

24

Input Image
Convolution Convolution Convolution Dense Cutput
(32 8x8 filters) (64 4x4 fitters) (64 3x3 filters) {512 units) (State difference)
(a) Practice Network Architecture

Input image

Cutput
(Q-values)

Convolution Convolution Convolution Dense
{32 8x8 filters) (64 4x4 filters) (64 3x3 filters) {512 units)

(b) RL Training Architecture

Figure 4.1: DQN network architecture for practice and target training

here action a; is not fed into the network along with current state s;, but it is used
during the calculation of loss. The output for the target training is the same as the
traditional DQN method, which is the Q-values for each possible action.

Since the model learns directly from raw images, image pixels are considered as a
state. The pixel value from the snapshot of the game or task at time ¢ is considered as
the state s;. The model first performs practice followed by RL training. For practice,
n, number of samples of (s¢, as, s;41) are collected and stored in a practice memory.
Mini-batches of these samples are used to train the practice network. The network is
trained to estimate the state differences As; = s;,1 — s; for all possible next states

with each action. From this, only the state difference with action a; is considered,

25
which will be the predicted state difference. The target state difference will be the
difference in the pixel values of s;,1 with s;. We use the mean squared loss (Eq. 3.1) to
measure the inconsistency between predicted and target state difference. The network
is trained with Adam optimizer to minimize this loss. The practice network is trained
for a duration of d,()?).

After the practice network finishes its training, the weights of the RL training
network @ES) are initialized with the weights of the practice network weights ('-)j(DOT).
During the RL training, samples of s;, a;, a;+1, reward r,,; are collected in a differ-
ent experience replay memory. Unlike practice, RL training collects reward values.
Therefore, a separate replay memory is used for RL-training. Experiences from this
buffer are randomly sampled and fed to the RL training network. We use Huber loss

for training which can be described as:

(e — Qu)’ for |y, — Qt| <6
Ls(ys, Q1) = (4.1)

Oy — Qt| — £6% otherwise

N

where y; is the target output defined in Eq. 2.2 and Q; = Q°™"(s, a;). 4 is the control
parameter which can be tuned. The loss is minimized using RMSprop optimization
[36]. The network is trained to reduce the reduce the loss for d§2). The training can
be stopped when the model converges. This model is also called one step practice, as

we only perform practice once before beginning of RL training.
4.2 Tterative Practice

We, humans, generally perform short cycles of practice and actual task, as we have
limited attention span. Moving back and forth from actual task increases productiv-
ity compared to prolonged execution of actual task [37]. Motivated by this human
practice and learning model, I developed a practice framework that iterates over

short practice and short RL training until the model converges. Iterative practice

26

dy? iy
r - Bl @ (ﬂ) [- A il
[P[me m
W
0 i . k |
Ay -y iy

[Practice

Figure 4.2: One Step Practice(top) vs Iterative Practice(bottom)

fully leverages the benefits of one step practice (Practice for DQN model) and helps
learning quickly during initial phase of training.

Comparing with one step practice, Figure 4.2 illustrates the stages in iterative prac-
tice. The iterative model has two stages, initial practice and iterative training. Initial
practice is similar to the practice stage in one step practice and network architectures
will not have any modifications. Here, the same practice network is used for both
initial practice and short practice. The network architectures for practice and target
training are implemented the same as shown in Figure 4.1.

In this method, I used the same regression problem of predicting the state change
given the current state. Both initial practice and short practice are trained to solve
the same regression problem. The first stage in this model is initial practice, for
which n,, number of samples are collected by taking random actions and stored in
the practice memory. Mini-batches of these samples are used to train the practice
network, which predicts the state difference As;,. We again use the mean squared loss
(Eq. 3.1) to measure the inconsistency between predicted and target state difference.
The network is trained with Adam optimizer to minimize this loss for a duration of

d(o)

pr -

27

Algorithm 1 Iterative Practice

Input the duration of initial practice d](goT), short practice dl(;’f,), and short target
training dgf)
Initialize learning rate «, discounting factor ~
Collect practice n,, samples with random actions.
for k£ < 0, Ny, do
Train practice network with n,, samples for d,(,’f«) (Eq. 3.1)
Transfer weights from practice to target (Eq. 4.2)
Train target training network for dgf) (Eq. 4.1)
Transfer weights from target to practice (Eq. 4.3)
end for

After initial practice, weights of layers (—)I(S,) from practice network are transferred
to the target training network. Now, the iterations of short RL training and short
practice begin. Short RL training collect new experiences s;, a;, a;11, reward 741
and stores in a different replay buffer. Following short practice does not collect new
data but use the same data from the replay buffer used in initial practice.

Let the number of iterations for which short RL training and short practice are
run, be Ny... The target training network trains for duration of dgf), k € [1, Nier|
where dgf) < d,ES’. We use Huber loss for training which is described in eq 4.1, which
is minimized using RMSprop optimization [36]. Trained target network weights @i’:)

are transferred to the practice network weights @gﬁﬂ)

for short practice. The short
practice lasts for d,(,]f«) where dgf,) <K dg;). Then the weights from practice network are
transferred back to the target network. This alternative transfer continues incremen-

tally as follows:

k
e « e, (4.2)
e+ . o). (4.3)

This process continues for Ny, iterations or until the model converges, which ever
occur first. Here, we use the same short practice duration (dl(f}) = dgf}), Vi, j € [1, Niter])
and the same short training duration (dif) = dﬁi),\ﬁ, J € [1, Niter]). Algorithm 1

summarizes the short iteration of practice and target train.

dy’ dir
pr—

il
Short il

RL Training —

Figure 4.3: Delayed Practice for Shared Experience in Iterative Practice model

4.3 Shared Experience for Iterative Practice

Practice is a supervised learning model and does not involve any RL-associated
variables like rewards and goals. Therefore, in practice for DQN and iterative practice,
two memories are used for storing experiences, one to store and retrieve experiences
(8¢, ar, S¢41) during practice, and the other for the experiences (s, as, 711, S¢+1) for the
target training. Thus, collecting additional experiences during practice and iterative
practice, increases the interactions of the agent with the environment.

During practice, the agent takes random actions without depending on any policy.
In environments like Breakout game, where the game almost immediately ends if
the agent performs random actions, the practice memory is filled with experiences
covering a small set of experiences near starting states of the game.

To overcome these drawbacks, I developed a strategy called shared experience,
which increases the data distribution for practice without additional interactions with
the environment. Here, I use a common experience replay memory for both practice
and target training. As practice doesn’t store experiences with reward value, those
experiences cannot be used for target training. The experiences from the target train-
ing, however, can be used for practice by masking the reward details. To make this
strategy feasible, I introduced a method called delayed practice. Figure 4.3 illustrates
the stages in delayed practice for shared experience in iterative practice model. In

this method, the agent starts with target training instead of practice, which is called

29
©

initial training. After training for a duration of d;,,

weights from target training
@§E) are used to initialize practice network weights 61(2(7]“) and practice network start
training with mini-batches of (s, as, s;11) from the same replay buffer.

The practice network is trained for a duration of d,(,‘i). After the practice network
finishes training, the weights of the RL training network @S?) are initialized with
the weights of the practice network weights @I(DOT) and the RL training resumes again.
When applied with the iterative practice model, it starts with short RL training

instead of initial practice. The first short practice is replaced with initial practice,

and the following short RL training and short practice will as usual.

CHAPTER 5: EXPERIMENTS AND RESULTS

5.1 Test Environments

The efficiency and efficacy of extended practice for DQN and iterative practice
are tested Visual Maze and Atari game environments. Details about each of the

environment used in this thesis are presented below.

Visual Maze : It is a navigation (8x8/16x16 blocks) task having RGB image rep-
resentations as states (80x80x3/160x160x3). An agent starts from the start position
(pink block) and moves towards the goal position (green block). The maze has ob-
stacles in between, which are represented by black blocks. The environments have 4
discrete actions, left, right, up and down. The reward —1 for each movement, —5 for
hitting a block or moving out of boundary, or +30 for reaching the goal is given to

the agent. The task terminates when the agent reaches the goal.

IIJ

Figure 5.1: Visual Maze(8x8)

Pong : In this environment, the agent controls the green paddle to bounce the white
ball back to the left while not passing it to right. The game has 5 possible actions,

stay still, up, down, move up faster, and move down faster. The reward is defined

31
as +1 if the ball goes past the brown paddle (bot controlled) to the left and —1 if
the ball goes past green paddle to the right, which means +1 for the bot. The game

terminates when either the bot or agent gets 21 reward points.

Figure 5.2: Atari 2600 Pong

Breakout : The objective of this game is to clear the bricks at the top by hitting
each brick with the ball. Here the agent controls the paddle at the bottom to keep
the ball in play. The game has three actions, stay still, left, and right. The reward is
defined as +1/ + 4/ + 7 if the ball hits a brick (based on color of brick). The game
terminates when paddle misses the ball and it goes down and out of the screen. The

total reward will be the score before the game ends.

Figure 5.3: Atari 2600 Breakout

Freeway : The objective of the game is to make the chicken cross the ten lane

highway from one side to other side. The highway is filled with traffic which the

32
chicken should avoid. The player gets a point every time a chicken gets across to
other side. If hit by a car, the chicken is forced back slightly or entirely down. The
player can score as much as he can in 2 minutes 16 seconds. The game has 2 actions

either to jump ahead or stay still. The game terminates after the time runs out.

Figure 5.4: Atari 2600 Freeway

5.2 Pre-processing for Atari Game Environments

Atari game simulations are implemented using the OpenAl Gym library. It provides
raw frames, which are 210 x 160 pixel images with a 128-color palette. This can be
demanding in terms of computation and memory requirements. To reduce the input
dimensionality, I used Atari wrappers provided by OpenAl Baselines [38], to re-scale
the images to 84x84 and also make them gray-scale.

Following the previous approaches to playing Atari 2600 games, I also use a frame-
skipping technique based on the frame-skipping parameter, which is set to 4. This
means that only every 4 frame is considered and remaining are skipped. Atari games
are rendered at a rate of 60 frames per second and it is not needed to calculate Q
values for every frame. This reduces the computational cost and gathers more frames.

Also, the the most recent four frames (after frame skipping) are pre-processed and
stacked together to be used as an input for the training network. This will allow the
agent to choose action depending on the prior sequence of game frames. For example,

in Breakout, knowing the direction of the ball gives better idea regarding next action

33

than just knowing the ball position. The same strategy is applied while training the

practice network.
5.3 Practice for DQN !

In this section, the experimental setup and results for the Practice for DQN model
are presented. For comparison, the base DQN with no practice model is also imple-

mented and tested on the same environments.
5.3.1 Visual Maze

Practice for DQN is first tested on the Visual Maze task. It is a simple environment
compared to the other environments used in this thesis. For the practice stage in this
task, the practice network is trained for d](g(fn) = 10* steps. Mini-batches of 50 samples
are used to train the practice network. For this task, I assigned the weights of the
three convolution layers to the G)](D?,), which means that the weights of the 3 convolution
layers are transferred to the RL training network. After practice, weights @;‘P are
transferred to the target training network. As there is no transfer of the weights of
the dense layer in training network, they are initialized randomly. Mini-batches of
size 50 are fed to the training network which is run for d,ﬁff) = 300 episodes, with
each episode allowing a maximum of 500 steps for the agent to reach the goal. The
accumulated reward after each episode is collected. The list of other hyperparameters
used for this task are presented in Table 5.1

Figure 5.5 depicts the accumulated rewards earned from training base DQN with no
practice and DQN with practice (Practice DQN) in simple 8x8 Visual Maze environ-
ment. Assuming the threshold performance value as 0, we can observe that practice
with DQN reaches threshold (dotted line) earlier than base DQN. The asymptotic

performance, which is the overall performance of a model after training, cannot be

compared in this case, as the maximum possible reward is limited and both the mod-

!Source code for the proposed models is available at https://github.com /kvssraviteja/Practice-
for-Deep-Reinforcement-Learning.git

34

Comaprision of Reward curve

—200

—400

—600

Reward

—800

—1000

Base DQN

Practice DQN
—— Base DQN (Mean over 5 episodes)
= Practice DQMN (Mean over 5 episodes)

—=1200

0 50 100 150 200 250 300
Episodes

Figure 5.5: Reward curve for Practice with DQN and Base DQN (without practice)
in Visual Maze (8x8).

els achieved that value after training. So, it can be seen that practice helps to learn

the optimal solution faster than the base DQN.

Table 5.1: List of other hyperparameters and their values for Visual Maze

Hyperparameter Value
Mini-batch size 50
Replay buffer size 1000
Target network update frequency 1
Discount factor 0.9
Learning rate (practice) 0.0001
Learning rate (RL training) 0.001
Epsilon 0.99 times episode number

5.3.2 Atari Game Environments

To test the performance of the model on complex problems, I moved on to the Atari

2600 games: Breakout, Pong and Freeway. For the practice stage in these tasks, the

35
practice network is trained for d},?’ = 10° steps. Mini-batches of 64 samples are used
to train the practice network. Similar to the Visual Maze task, I assigned the weights
of the three convolution layers to the @éOT). After practice, weights G);?,) are transferred
to the target training network and the weights of fully connected layer are initialized
randomly. Mini-batches of size 64 are fed to the training network which is run for
dgg) = 2 x 10% steps, but early stopping is performed when convergence is achieved.
During the training, once the agent reaches the end of a game, it is recorded as an
episode and the accumulated reward for that episode is also recorded. The game is
then reset to start position for the next iteration. There are no adjustments in the
network architecture or hyper-parameters for each Atari environment. The epsilon €
(exploration rate) used in this model compared to base DQN model is presented in
Figure 5.6. The exploration rate is brought down from 1.0 to 0.1 after less number of
steps compared to the base DQN model, as this model already learned features from
practice and requires less exploration. The list of other hyperparameters, used in this
model, and their values are given in Table 5.2.

Here, the model is trained for very high number of episodes when compared to the
previous task and the reward after each episode is highly fluctuating. Therefore, to
better understand the performance of the agent, I considered the mean reward for
the last 100 episodes as an evaluation metric. Figure 5.7, 5.8 and 5.9 depicts the
accumulated mean rewards from training base DQN with no practice and DQN with
practice (Practice DQN) in Breakout, Pong and Freeway.

For Pong and Freeway, in Figure 5.8 and 5.9, it can be observed that the practice
for DQN model reached the threshold value earlier than the base DQN model. As the
maximum reward that can be obtained in these environments is limited, asymptotic
performance cannot be compared. In Breakout, Figure 5.7, in addition to achieving
threshold (lower dotted line) earlier its asympotic performance is very high compared

to the baseline. The lower dotted line represents the convergence level of base DQN

36

—— Base DON
— Practice DQN

08

06

Epsilon

0.4

0.2

_

000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095 100
Steps le7

0.0

Figure 5.6: Epsilon used for practice DQN and base DQN

model, and the upper dotted line represents convergence level of practice for DQN
model. It shows that even in complex problems, practice helps in faster learning and

higher reward (Breakout).

Table 5.2: List of other hyperparameters and their values for Atari Environments

Hyperparameter Value
Mini-batch size 64
Replay buffer size 1000000
Frame stack size 4
Target network update frequency 10000
Discount factor 0.99
Learning rate (practice) 0.001
Learning rate (RL training) 0.0001

37

Comaprision of Reward curve(Mean reward of 100 episodes)

400

300
-
2
H
g 200
o

100

—— Practice for DQN
4] —— Base DQN
tIJ 20|00 40|00 6()'00 SOIOO 10600
Episodes

Figure 5.7: Reward curve for practice with DQN and base DQN (without practice)
on Breakout.

Comaprision of Reward curve(Mean reward of 100 episodes)

20

15 B e mmmm———mm—mmmmmmmmmmmmmeem————m—m————————————————

10

Reward

—— Practice for DQN
—— Base DON

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Episodes

Figure 5.8: Reward curve for practice with DQN and base DQN (without practice)
on Pong.

38

Comaprision of Reward curve(Mean reward of 100 episodes)

—— Practice for DQN
30{ — Base DON

25

20

15

Reward

10

0 500 1000 1500 2000 2500 3000
Episodes

Figure 5.9: Reward curve for practice with DQN and base DQN (without practice)
on Freeway.

5.4 Tterative Practice

In this section, the experimental setup and results for the iterative practice for
DQN model are presented. For comparison, the results from practice for DQN model

and base DQN model with no practice are used.
5.4.1 Visual Maze

The iterative model is tested initially on the both the 8x8 and 16x16 visual maze
environments. For the initial practice stage, the practice network is trained for d;‘i) =
10* with mini-batches of 50 samples from the practice experience replay. For this
task, I assigned the weights of the three convolution layers to the @1(,9). After practice,
weights @}},1) are transferred to the target training network, but unlike practice for
DQN model, the weights @EE) are locked after transferred from @;‘3), i.e. the weights

are not fine tuned during followup practice and training (k > 1). This is based on the

observations from our first model which we present in the following chapter. For the

39
successive iterative training, we only fine-tune dense layers and transfer them between
practice and training networks.

For the iterative training, the maximum iteration is set N;ter = 20. Short RL
training duration dgf) = 20 episodes, with each episode allowing a maximum of 500
steps for the agent to reach the goal, and short practice duration déﬁ) = 10® steps.
Mini-batches of size 50 are fed to the training network during short RL training. The
accumulated is collected for each episode.

The results are presented in Figure 5.10. Although there is no significant im-
provement in simple 8x8 Maze (comparable to one-step practice) (Figure 6.2a), it
can be observed that the learning speed of iterative practice surpass that of one-step
practice when the search space of environment is increased by changing the maze
to 16x16 (Figure 6.2b). Iterative practice reaches threshold of 0 after 50 episodes,
which is much earlier than the other two methods. It indicates that iterative practice

improves performance over one step practice.
5.4.2 Atari Game Environments

To test the performance of the model on complex problems, I moved on to the
Atari 2600 games: Breakout, and Freeway. For the initial practice stage in these
tasks, the practice network is trained for dz(,(,)n) = 10° steps. Mini-batches of 64 samples
are used to train the practice network. I assigned the weights of the three convolution
layers to the 91(3)‘ After practice, weights @1(12) are transferred to the target training
network. For these environments, the weights @ﬁf) are not locked, i.e. the weights
are fine-tuned during followup training and practice.

For the successive iterative training, we fine-tune both, convolution layers and
dense layers, but we transfer only the dense layers them between practice and training
networks. I ran some initial experiments to select optimum values for the parameters

N;ter, dgf) and dl(,'fn). For the iterative training, the maximum iteration is set to

Niter = 40, but early stopping is performed when convergence is achieved. Mini-

—200

—400

—600

Reward

—800

—1000

—1200

—500

—1000

—1500

Reward

—2000

—2500

—3000

—3500

Comaprision of Reward curve

Base DQN

Practice DQN

Iterative Practice
—— Base DQN (Mean over 5 episodes)
—— Practice DQN (Mean over 5 episodes)
= Iterative Practice (Mean over 5 episodes)

50 100 150 200 250 300
Episodes

(a) Visual maze(8x8)

Comaprision of Reward curve

VT vV T

Base DQN

Practice DQN

Iterative Practice
= Base DQN (Mean over 5 episodes)
Practice DQN (Mean over 5 episodes)
= |terative Practice (Mean over 5 episades)

50 100 150 200 250 300
Episodes

(b) Visual maze(16x16)

40

Figure 5.10: Reward curve for iterative practice method vs practice with DQN method
vs base DQN method (without practice) on visual maze

batches of size 64 are fed to the training network during Short RL training for a

duration dﬁf) = 5 x 10° steps followed by short practice for a duration d,(g’? = 107 steps.

During the training, once the agent reaches the end of a game, it is recorded as an

episode and the accumulated reward for that episode is also recorded. The game is

then reset to start position for the next iteration. Here also, there are no adjustments

41

1.0 —— Base DQN
— Practice DQN
— lterative Practice

08

06

Epsilon

0.4

0.2

e ——
0.0

000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095 100
Steps le7

Figure 5.11: Epsilon used for iterative practice vs other models

in the network architecture or hyper-parameters for each Atari environment. The
epsilon € used for this model is presented in Figure 5.11. Here also, the exploration
rate is reduced from 1.0 to 0.1 in less number of steps as in practice for DQN. The list
of other hyperparameters, used in this model, and their values are similar to practice
for DQN model and are given in Table 5.2.

From Fig 5.12, it can be observed that iterative practice shows slight improvement
in performance of the agent compared to one step practice and base DQN, in complex
environments as well. Results in Breakout environment show that, iterative practice
also achieves high asymptotic performance compared to baseline. It can be noticed
that iterative model reaches the threshold little earlier than the other two models. In
Freeway, although there is an initial dip in the performance of the agent, it recovers
well enough to match the performance of the one step practice model. It is clear that
iterative practice is promising and it is possible to achieve better results with further

hyperparameter tuning.

Comaprision of Reward curve(Mean reward of 100 episodes)
400
300 -
b=
H
& 200+
100 -
—— Practice for DQN
—— |terative Practice
0+ —— Base DQN
0 2000 4000 6000 8000
Episodes
(a) Breakout
Comaprision of Reward curve(Mean reward of 100 episodes)
30 -
25 -

204
B
£
154
&
10 4
5 4
—— Practice for DQN
= |terative Practice
01 —— Base DQN
0 500 1000 1500 2000 2500 3000
Episodes

(b) Freeway

Figure 5.12: Reward curve for iterative practice method vs practice with DQN vs
base DQN method (without practice) on Breakout and Freeway.

42

43
5.5 Shared Experience for Iterative Practice

The idea behind shared experience model is to reduce the interactions between the
agent and the environment, and at the same time it helps the practice network to
train with data from large state space. As visual maze is not a complex task, this
method is tested on the Atari environments, Breakout and Freeway, to examine the
benefits of this model.

For the initial practice stage in these tasks, the practice network is trained for
dﬁf) = 5 x 10° steps which is one round of short training. After the initial training,
the weights of the first three convolution layers @2(7?,) are transferred to the weights
91()?“) in practice network. The practice network is trained for d§,9) = 25 x 10* steps.
After the practice, weights @;ﬁ) are transferred back to the target training network
and iterative training follows. For the iterative training, the maximum iteration is
set to Nyer = 39 (one step of Short RL training and practice is completed already),
but early stopping is performed when convergence is achieved. Short RL training
runs for a duration dg’:) = 5 x 10° steps followed by short practice for a duration
dgﬁ = 10% steps. Here, there are no adjustments in the network architecture or
hyper-parameters for each Atari environment. The list of other hyperparameters,
used in this model, and their values can be referred from Table 5.2.

The results are presented in Figure 5.13. It can be observed that, shared experience
for iterative practice approach suffers with slow learning initially when compared to
iterative practice and one step practice. This can be attributed to the delayed initial
practice. The agent starts with a short RL training session without initialization from
practice, so the learning is hampered initially. It can be seen that, the performance

of the agent matches with iterative practice belatedly which indicates that the overall

performance is not affected due to shared experience.

Comaprision of Reward curve(Mean reward of 100 episodes)

400
300 4
T | e AN
M
4
4 200
100 4
Practice for DON
Iterative Practice
Shared Experience lterative Practice
0+ Base DQN
(I) 2D|00 4DIOO EDIOO 8600
Episodes
(a) Breakout
Comaprision of Reward curve(Mean reward of 100 episodes)
30 4
25 4
204
B
£
15 A
&
10 4
51 —— Practice for DQN
—— lterative Practice
= Shared Experience lterative Practice
01 —— Base DQN
0 500 1000 1500 2000 2500 3000
Episodes

(b) Freeway

44

Figure 5.13: Reward curve for shared experience for iterative practice compared to

other models on Breakout and Freeway.

CHAPTER 6: DISCUSSIONS

6.1 Observations of Shareable Representations

Improvement in the performance by practice with DQN model is attributed to the
shared knowledge from the practice network transferred to the RL training network.
To understand how practice is helping the target RL training, it is important to
observe the shareable representations. For this, I visualized the outputs of the con-
volution layers and FC layer, whose weights are transferred, of both practice network
and training network using activation heat maps. This gives a better understanding
of which areas in the image are activated during practice and during RL training.

Figure 6.1 and 6.2 shows the visualizations of filters of third convolution layer,
after practice and after RL training, for Visual Maze task and Breakout. I observed
that the activations are identical mostly, except for a few filters (marked in red).
This indicates that practice provides good perception knowledge for target learning.
So, the convolution layers of the training network, when initialized with the practice
network weights, are less likely fine-tuned. However, in other observations I made,
there is no significant similarity between FC layer outputs after practice and after
training. This motivated me to propose an iterative model that helps training the
FC layer for further improvement as I achieved.

In the case of Visual Maze, the CNN layers are locked from the fine-tuning based
on my observations of shareable representation. But in the case of Atari games,
locking the CNN layer from fine-tuning didn’t give desirable results. This observation
indicated that, for Atari games, where the state space is very large, fine-tuning of CNN
layers is necessary.

Similar observations of shareable knowledge are previously made [39]. They showed

46

Filter 0 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5
— =

(a) Practice

Filter 0
o N ——— —

Filter 2 Filter 3 Filter 5
o —— — —

N [[][]

(b) Target RL training

Figure 6.1: Visualizing activations for some of the filters in the last convolution layer
in the networks for Visual Maze(8x8)

that higher layers have general or less specific features, while lower layers learn more
specific features of the task the network is trained upon. In transfer learning, general
features from a source task help the learning of a target task rather than specific
features. In another work [17], up to 3 convolution layers were transferred between
two different Atari games. They compared the performance of the agent in the target
Atari, after transferring 1, 2 and 3 convolution layers from the source Atari game.

Among all the three transfers, transfer of 3 CNN layers had edge over other transfers.

47

Filter 2 Filter 3 Filter 4 Filter 5

5
10
15
0
0 5 o 15 ™

Filter 10

Filter 0 Filter 1

3

Filter 11

Filter 8 Filter 9

Filter 6 Filter 7
L} 0) o
5 5 5
10 10 1 10
15 15 1 15
0 pis} x 20
0 5 pul 15 2

]

Filter 12 Filter 13 Filter 14 Filter 15 Filter 16 Filter 17
L] 0
5 5 5
10 10 u 10
15 15 1 15
Pl 20 2 20

0 0 5 pul 15 bl [}
Filter 0 Filter 1 Filter 2 Filter 4 Filter 5

[} o
5 5
1 10
15 15
20 20
[} 5 1 15 2
Filter 10
o o
5 5
0 0
5 5
0 0
[5 1 15 20
Filter 16

0 [

5 5

0 10

5 15

0 20
5 O E]

Figure 6.2: Visualizing activations for some of the filters in third convolution layer in
the networks for Breakout

-]

Filter 11

Filter 9

Filter 8

Filter 7

Filter 6

B & 5 n

8

Filter 17

Filter 14 Filter 15

Filter 13

Filter 12

8 & 5 = B

(b) Target RL training

48
6.2 Generalization through Iterative Practice

Humans have the ability to adapt to new, unseen situations and environments, like
adjusting to driving a car in a new city with different roads and weather conditions.
This can be attributed to the generalized representations of the world that humans
have. On the other hand, RL algorithms are generally trained and tested in same or
similar environments and thus they will not learn representations that can generalize
to unseen situations. This can have serious implications when RL is applied to real-
world systems, like self-driving cars, where situations are not always familiar.

Generalization is not new in deep learning architectures. Dropout regularization
[40] in deep learning models reduces the co-complex adaptations or specialization of
the weights of the network to specific features. This reduces the overfitting of the
model to the training data and provides generalization. L1, L2 regularization [41]
also helps in reducing the complexity in the model and solves the overfitting prob-
lem. Similar methodologies are required for RL to improve generalization. Robust
adversarial reinforcement learning (RARL) [42] helps the agent to learn generalized
policies as the method is robust to differences in training and test conditions. It uses
an adversarial agent to impede disturbances to the RL agent, which makes the RL
agent learn robust policies.

Although iterative practice method is quite different from RARL, it also serves the
purpose of providing generalization to RL agents. Iterative practice also helps the
agent to learn better-generalized policies than base DQN or one step practice. As
discussed above, prolonged RL training tunes the hidden weights to specific features
of the task. Iterative model prevents this by shifting from RL training to practice
and vice versa periodically. This aspect of iterative training needs to be investigated

further with suitable experiments and this plan is discussed in the future work.

49
6.3 Model Learning from Practice?

Combining practice with RL training helps the RL training network to learn fea-
tures faster than otherwise. In a way, practice is preparing the learning and reusing
it during training to find an optimal policy. In similar lines, Dyna-Q [43] is an al-
gorithm which combines Q-learning with planning. It learns a model while learning
the value/policy for a task. The model is improved during training and at the same
time used for planning the next state. Thus, Dyna-Q prepares a model and uses it
to improve RL training, unlike practice which does not learn a model but only state
transitions. Also, preparation and improvement go parallel in Dyna-Q which is not
the case with practice. Another algorithm called Value Iteration Networks [44], uses
a differential planning module to learn policies, embedded to a feed-forward neural
network which predicts the actions. The planning module uses value iteration to
compute optimal policy using reward function and transition probability, which is
used by the neural network to output the probabilities for possible actions.

In similar lines, another approach uses auxiliary losses [45] to improve the agent
performance in a task. This approach considers learning the RL task by augmenting
the loss of RL training with losses from auxiliary tasks. The auxiliary tasks are chosen
in such a way that they support navigation or planning of agent in the environment
and thus they help the agent get richer training signals for RL task. Unlike practice,
the agent is jointly trained on goal-driven RL problem and auxiliary tasks.

All these approaches are similar in perspective that they prepare learning and use
the learning in improving RL training. But, they are significantly different in the way
they are implemented. Practice fundamentally focuses on transfer of knowledge from
non-RL task to assist feature learning in RL task which is unlike the above discussed

approaches.

CHAPTER 7: CONCLUSIONS

Practice for DQN, showed that practice approach can be applied to deep reinforce-
ment learning algorithms. The method is tested on Visual Maze and Atari environ-
ments, and empirical results were provided to show that practice helps an agent learn
faster and achieve higher asymptote. I also proposed a novel practice strategy called
iterative practice, which further improves the performance of the agent. The efficacy
of this approach is tested on Visual Maze and Atari environments. Although the
improvement is not astounding, it enables further research into different configura-
tions of the network and hyperparameters for better performance. Adding to these
two methods, I also proposed a method called shared experience for iterative prac-
tice, which effectively reduces interactions between agent and environment, without
affecting the performance of the agent. I examined this method on Breakout and
Freeway games and showed that despite a slight drop of performance initially, the
model achieves convergence as the iterative practice model. Additional experiments
for this method can further strengthen that it accomplishes its objective.

I discussed possible reasons for the success of practice with DQN by presenting my
observations of the abstract knowledge representations in the deep neural network

layers after practice and target RL training.
7.1 Future Work

Examining the adaptability of practice and iterative practice framework in other
deep reinforcement learning algorithms and experimenting on diverse environments
can be a natural next step. As discussed in Section 6.2, this research can be extended

to understand the generalization provided by the iterative practice. Also, leveraging

51
iterative practice in developing meta-learning models for reinforcement learning can

be an interesting direction for future research.

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

52
REFERENCES

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
pp- 279-292, May 1992.

D. Silver, Reinforcement Learning and Simulation-based Search in Computer Go.
PhD thesis, Edmonton, Alta., Canada, 2009.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A sur-
vey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238—
1274, 2013.

X. Bu, J. Rao, and C. Xu, “A reinforcement learning approach to online web
systems auto-configuration,” in 2009 29th IEEE International Conference on
Distributed Computing Systems, pp. 2-11, June 2009.

Z. Wen, D. OaNeill, and H. Maei, “Optimal demand response using device-
based reinforcement learning,” IEEFE Transactions on Smart Grid, vol. 6, no. 5,
pp. 2312-2324, 2015.

J. Moody and M. Saffell, “Learning to trade via direct reinforcement,” IEEFE
Transactions on Neural Networks, vol. 12, pp. 875-889, July 2001.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” Nature, vol. 550, pp. 354-359, 10 2017.

O. Vinyals, 1. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M. Czar-
necki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan,
M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sul-
sky, S. Vezhnevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang,
T. Pfaff, T. Pohlen, Y. Wu, D. Yogatama, J. Cohen, K. McKinney, O. Smith,
T. Schaul, T. Lillicrap, C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Sil-
ver, “AlphaStar: Mastering the Real-Time Strategy Game StarCraft I1.” Avail-
able: https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-
starcraft-ii/, 2019. Accessed: 2018-09-20.

J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in
imperfect-information games,” arXiv preprint arXiw:1603.01121, 2016.

J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky, “Deep rein-
forcement learning for dialogue generation,” arXiv preprint arXiv:1606.01541,
2016.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

21]

22]

23]

53

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with
deep reinforcement learning,” in Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, (New York, NY, USA), pp. 50-56, ACM, 2016.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,
“Target-driven visual navigation in indoor scenes using deep reinforcement learn-
ing,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3357-3364, May 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,
vol. 518, pp. 529-533, 2015.

G. de la Cruz, Y. Du, J. Irwin, and M. Taylor, “Initial progress in transfer for
deep reinforcement learning algorithms,” in 25th International Joint Conference

on Artificial Intelligence (IJCAI), 07 2016.

G. V. de la Cruz, Y. Du, and M. E. Taylor, “Pre-training neural net-
works with human demonstrations for deep reinforcement learning,” CoRR,
vol. abs/1709.04083, 2017.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey
of learning methods,” ACM Computing Surveys (CSUR), vol. 50, pp. 21:1-21:35,
Apr. 2017.

C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning after
pretraining deep networks to predict state dynamics,” 2015 International Joint
Conference on Neural Networks (IJCNN), pp. 1-7, 2015.

M. Lee and C. W. Anderson, “Can a reinforcement learning agent practice before
it starts learning?,” in 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 40064013, May 2017.

J. M. Zurada, Introduction to artificial neural systems, vol. 8. West publishing
company St. Paul, 1992.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural net-
works, vol. 61, pp. 85-117, 2015.

Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and
time series,” The handbook of brain theory and neural networks, vol. 3361, no. 10,
p. 1995, 1995.

[24]

[25]

[26]

27]

28]

29]

[30]

[31]

32]

[33]

[34]

[35]

54

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEFE, vol. 86, pp. 2278—
2324, Taipei, Taiwan, 1998.

K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”
ArXww e-prints, 11 2015.

L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pp. 242—
264, 1GI Global, 2010.

S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. J. Mooney, and K. Saenko,
“Translating videos to natural language using deep recurrent neural networks,”
CoRR, vol. abs/1412.4729, 2014.

H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers, “Deep convolutional neural networks for computer-aided de-
tection: Cnn architectures, dataset characteristics and transfer learning,” IFFFE
Transactions on Medical Imaging, vol. 35, pp. 1285-1298, May 2016.

M. M. Ghazi, B. Yanikoglu, and E. Aptoula, “Plant identification using deep neu-
ral networks via optimization of transfer learning parameters,” Neurocomputing,
vol. 235, pp. 228-235, 2017.

M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol. 533,
p. 4524454, May 2016.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

F. Liu, S. Li, L. Zhang, C. Zhou, R. Ye, Y. Wang, and J. Lu, “3dcnn-dqn-
rnn: A deep reinforcement learning framework for semantic parsing of large-scale

3d point clouds,” in 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 5679-5688, Oct 2017.

M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains:
A survey,” Journal of Machine Learning Research (JMLR), vol. 10, pp. 1633—
1685, Dec. 2009.

W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell, “Deeply
aggrevated: Differentiable imitation learning for sequential prediction,” in Pro-

ceedings of the 34th International Conference on Machine Learning, vol. 70,
pp. 3309-3318, 2017.

T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan,
J. Quan, A. Sendonaris, I. Osband, et al., “Deep g-learning from demonstrations,”
in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[36]

37]
38

[39]

[40]

[41]

[42]

143

[44]

[45]

55

T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude.” COURSERA: Neural Networks for
Machine Learning, 2012.

A. D. Baddeley, Human memory: Theory and practice. Psychology Press, 1997.

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines.”
https://github.com/openai/baselines, 2017.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?,” in Advances in neural information processing systems,
pp. 3320-3328, 2014.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature detec-
tors,” arXw preprint arXiv:1207.0580, 2012.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267288,
1996.

L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial re-
inforcement learning,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2817-2826, JMLR. org, 2017.

R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and re-
acting,” ACM SIGART Bulletin, vol. 2, no. 4, pp. 160-163, 1991.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration net-
works,” in Advances in Neural Information Processing Systems, pp. 2154-2162,
2016.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex
environments,” arXiv preprint arXw:1611.03673, 2016.

