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ABSTRACT 

 
 

KAVEH DANESHVAR.  Reciprocal regulation of Myc and microRNA miR-308 during 
Drosophila embryogenesis. (Under the direction of DR. CHRISTINE RICHARDSON) 
 
 

Myc is a conserved transcription factor with a role in the regulation of genes that 

are involved in growth and development. The abundance of Myc protein in the cells must 

be exquisitely controlled to avoid growth abnormalities caused by too much or too little 

Myc. An intriguing mode of regulation exists in which overabundance of Myc protein 

triggers a negative feedback regulation that leads to its abundance. In this study, I 

illustrate a mechanism for dMyc negative feedback regulation in Drosophila 

embryogenesis. I show that Drosophila Myc protein (dMyc) binds to the microRNA 

miR-308 locus and increases its expression. An increase in miR-308 levels leads to 

destabilization of dMyc mRNA and reduced dMyc protein levels. In vivo knockdown of 

miR-308 confirmed constant regulation of dMyc levels by miR-308 in embryos. My 

results also show that this regulatory loop is crucial for maintaining appropriate dMyc 

levels and normal development. Perturbation of the loop, either by elevated miR-308 or 

elevated dMyc, caused lethality. Combining elevated levels of both, therefore restoring 

balance between mir-308 and dMyc levels, resulted in suppression of lethality. These 

results reveal a sensitive feedback mechanism that is crucial to prevent the pathologies 

caused by abnormal levels of dMyc. Moreover, I show that the cross-regulation of dMyc 

and miR-308 has a role in regulation of dMyc target genes.  

In the second part of this study, I show that dMyc localizes in histone locus bodies 

during replication. The work that I describe here began with an observation of 
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unexpected, punctate spots of Myc protein in certain regions of Drosophila embryos.  I 

investigated the identity of these puncta and demonstrate that Myc is co-localized with 

coilin, a marker for Cajal Bodies (CBs), and Lsm11, a marker for Histone Locus bodies 

(HLBs), in embryos, larvae and ovaries.  Using the MPM-2 antibody, I show that Myc’s 

association with HLBs occurs only during replication in both endocycling and mitotic 

cells.  These results reveal a novel role for Myc in replication-dependent histone mRNA 

production and processing. 
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CHAPTER 1: INTRODUCTION 
 

Myc is a transcription factor with an indispensable function in cell proliferation 

and growth that is conserved among metazoans (Brown, Cole, & Erives, 2008)(de la 

Cova, Abril, Bellosta, Gallant, & Johnston, 2004). Since its initial discovery as an 

oncogene (Varmus, 1984), many studies have been conducted on Myc’s structure, its 

molecular mechanism of function, its potency as a stem cell inducer and, finally, it’s 

suitability as a drug target. In this chapter, I will summarize some of the basic and recent 

studies on the structure and biological function of Myc. I will explain the similarities 

between mammalian Myc, c-Myc, and its counterpart in Drosophila Melanogaster, 

dMyc, and the suitability of Drosophila embryogenesis for studying molecular 

mechanisms of Myc’s function.   

This introduction chapter is organized into two sections, corresponding to two 

separate sets of hypotheses and results. The focus of the first section is on the molecular 

mechanisms of the events that enable Myc to regulate its own protein levels in a negative 

feedback manner, and a possible role of non-coding RNAs in these events. The focus of 

the second section is on the sub-nuclear localization of dMyc in nucleolar bodies such as 

Cajal bodies and Histone Locus Bodies. In the end of each section, I will explain some of 

the current unanswered questions, and introduce my hypotheses. 

Myc functions as a transcription factor 
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Regulation of gene expression enables cells to maintain a specific biological 

program and to respond to internal and external stimuli. Cells can regulate their gene 

expression at least at four different levels: 1) at the epigenetic level, the accessibility of

certain regions of the genome to transcription machinery is variable, depending upon the 

chromatin and DNA modifications and state of the chromatin (Berger, 2007). 2) At the 

transcription level, transcription factors can recruit enhancers, blocker or basic 

transcription factors that ultimately change the transcription of a particular gene 

(Latchman, 1997). 3) After transcription, the RNA transcript is subject to certain rounds 

of splicing, editing and modifications that ultimately determine the transcript variant and 

the availability of that particular RNA for translation (Gott & Emeson, 2000). I addition, 

non-coding RNAs, such as microRNAs, can interfere with the stability and translation of 

mRNA transcripts at this stage (Bushati & Cohen, 2007). 4) After translation, proteins are 

subject to post-translational modifications that can alter the function of the protein or its 

turnover (Walsh, 2006). 

Transcription factors are groups of proteins that modulate, positively or 

negatively, the transcription of their targets genes by binding to the regulatory sequences 

of DNA (Latchman, 1997). Transcription factors are categorized based on their 

structures, their partners, their functions and their target gens. The basic helix-loop-helix 

(bHLH) family of transcription factors are involved in variety of developmental 

processes (Massari & Murre, 2000). These groups of transcription factors dimerize with 

other members of bHLH transcription factors, and together, they can bind to certain 
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motifs on DNA. Myc belongs to basic helix-loop-helix (bHLH) protein family of 

transcription factors.  

Myc is a DNA-binding transcription factor whose binding site has been found at 

the promoters of ribosome biogenesis genes in all metazoans (with the exception of 

nematodes) (Brown et al., 2008). Myc affects transcription by inducing or repressing 

hundreds, if not thousands, of target genes; it can bind to 11% of all human promoters, 

with some sites bound in almost all cells and some sites bound only at high Myc levels 

(Fernandez et al., 2003).  In addition to regulation of genes transcribed by RNA 

Polymerase II, Myc stimulates transcription by RNA Polymerases I and III, helping to 

promote protein synthesis consistent with its primordial role in ribosome biosynthesis 

(Brown et al., 2008)(Eilers & Eisenman, 2008)(van Riggelen, Yetil, & Felsher, 2010). 

20% of genes regulated by Drosophila Myc during development consist of those required 

for ribosome biogenesis and a further 12% regulate protein synthesis. Accordingly, 

mutations in RNA Polymerase I induce phenotypes resembling mutations in dmyc, and 

over-expression of dmyc dramatically increases the size of nucleoli (Grewal, Li, Orian, 

Eisenman, & Edgar, 2005). 

Molecular mechanism of gene regulation by Myc 

In a classical model, Myc dimerizes with its partner, Max, and the Myc-Max 

heterodimer binds to E-boxes (CACGTG, CATGTG and alternative sequences) in the 

promoter region of target genes (Blackwell et al., 1993; Eilers & Eisenman, 2008). There 

are different factors and pathways upstream and downstream of this dimerization and 

binding; however, the focus of this study is on the events downstream to this binding.  
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Binding of Myc-Max dimer to the E-box triggers the recruitment of other factors 

needed for enhancing transcription at the neighboring loci. At the chromatin level, it is 

shown that the binding of Myc to a specific locus recruits histone acetyl transferases 

(HATs). Addition of acetyl group to histones by HATs changes the state of chromatin 

form a closed form to a more open form. This chromatin remodeling makes the locus 

more accessible to general transcription factors and enhancers.   

Myc’s regulation of its targets occurs mainly at the transcriptional level. This is 

mainly through recruitment of chromatin remodeling factors and facilitating the 

recruitment of basic transcription machinery (Cole & Cowling, 2008).  Other studies 

show that Myc can also release cause a pause release in the elongation phase of the 

transcription (Rahl et al., 2010). It has been shown that Myc’s mechanisms of function 

also extend to regulation of translation and DNA replication (Cole & Cowling, 2008). 

Biological function of Myc 

The biological effects of gene regulation by Myc are predominantly due to its 

capability to up-regulate expression of certain groups of genes. Myc up-regulates the 

expression of the genes that are involved in increase of cell mass (Schmidt, 

1999)(Bernard & Eilers, 2006), progression of cell division (Neufeld & Edgar, 

1998)(Steiner, Rudolph, Müller, & Eilers, 1996) and increased energy metabolism 

(Morrish, Neretti, Sedivy, & Hockenbery, 2008). There are only a small number of genes 

identified as Myc repression targets. These targets are predominantly involved in 

differentiation and control of cell growth (Zeller et al., 2006). Altogether, Myc regulation 

of its target genes favors a cell growth and proliferation program.  
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Null mutations of dmyc in Drosophila result in the failure of endoreplication in 

oogenesis and larval stages, causing lethality in whole animals and infertility in females 

with germline clones (Maines, Stevens, Tong, & Stein, 2004)(Pierce et al., 2008). 

Endoreplication is important in larval muscle cells, which are multi-nucleated, and the 

size of the polyploid nuclei within muscle cells determines the size of the muscle and the 

size of the entire animal. Greater Myc accumulation in muscle cells leads to larger nuclei 

and greater overall body size (Demontis & Perrimon, 2009).  Larval growth is dependent 

on dietary amino acid availability, and 51% of gene expression changes that occur upon 

amino acid starvation overlap gene expression changes that occur in dmyc mutants.  A 

further 60% of gene expression changes that occur upon re-feeding of starved larvae also 

occur in larvae over-expressing dmyc (Li et al., 2010).  

Diploid larval cells mutant for dmyc are smaller than wild type cells and grow 

poorly, and over-expression of dmyc in these cells increases cell size independently of 

cell cycle control (Johnston, Prober, Edgar, Eisenman, & Gallant, 1999). In addition to 

changes in cell size, overexpression of dmyc in clones of imaginal discs confers a growth 

advantage to cells having greater amounts of dmyc expression than their neighbors.  The 

cells with greater Myc levels induce apoptosis in neighbors expressing less Myc (de la 

Cova et al., 2004)(Moreno & Basler, 2004). This cellular competition is mediated by 

secreted factors in a mechanism that is likely important for overall growth regulation 

(Senoo-Matsuda & Johnston, 2007). 

Drosophila Myc (dMyc) 

Drosophila Myc gene (dm) has three exons and it codes for dMyc protein that has 

717 amino acids. In Drosophila, dMyc is required for oogenesis and the proper growth of 



 
 

6 

Drosophila larvae (Maines et al., 2004; Pierce et al., 2004). Loss of dMyc has been 

shown to retard the growth of cells and cause lethality (Kappes, Deshpande, Mulvey, 

Horabin, & Schedl, 2011). Conversely, overexpression of dMyc results in increased size 

of larvae and organs of adult flies (Johnston et al., 1999).  

Despite their moderate 26% amino acid sequence similarity, Drosophila dMyc 

and human c-Myc have significant functional similarities with each other. In fact, c-Myc 

of vertebrates and dMyc of Drosophila can be reciprocally replaced in rescue assays 

(Trumpp et al., 2001)(Benassayag et al., 2005). Similar to human c-Myc, dMyc dimerizes 

with Max protein to form a heterodimer with the ability to bind to E-Boxes (P Gallant, 

2006). Drosophila Max, dMax, has 52% amino acid sequence similarity to human Max 

and they both have similar genomic organization (P Gallant, 2006). Because of its 

conserved structure and function and its vast similarity with c-Myc, dMyc as a suitable 

model for studying molecular mechanisms of gene regulation by Myc.  

Drosophila embryogenesis as model to study Myc 

It takes about ten days for a single fertilized egg cell to develop into an adult 

Drosophila. The first twenty-four hours of Drosophila embryogenesis is called 

embryogenesis (Ashburner, Golic, & Hawley, 2011). Embryogenesis of Drosophila starts 

with a single fertilized egg cell, and continues with rapid production of thousands of cells 

in a short period of time. By the middle of embryogenesis, cells start finding their identity 

according to their differentiation programs. While the growth program continues 

throughout the development, differentiation program defines the identity of the cells. The 

balance between the growth and differentiation programs has be subtly controlled in 

order to prevent developmental abnormalities.  
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It has been shown that there are vast similarities between growth program during 

development, and cancer. Certain pathways, transcription factors, non-coding RNAs and 

epigenetic marks that promote the growth and prevent differentiation, are involved in the 

tumor growth and metastasis as well. This raises the question that how the same growth 

promoting factors can regulate the normal development, without promoting tumor. The 

answer lies in the mechanisms that subtly control these growth promoting pathways and 

factors.  

Myc is shown to be one of the major transcription factors involved in promoting 

cell proliferation and growth. Myc is also one the four transcription factors that were 

introduced as inducers of pluripotency in mouse fibroblasts (Takahashi & Yamanaka, 

2006). During the Drosophila embryogenesis, dMyc levels are relatively high, despite 

some fluctuations. My colleagues and I have observed that too much or too little dMyc 

protein can cause lethality during embryogenesis. This shows the indispensible role of 

dMyc during the rapid proliferation and growth phase, and the importance of its subtle 

regulation.  

Negative feedback regulation of Myc 

Certain types of human cancers lack proper regulation of Myc levels resulting in 

uncontrolled cell proliferation and tumor formation (Eilers & Eisenman, 2008; Meyer & 

Penn, 2008). Hence, tight control and maintenance of appropriate Myc protein levels is 

crucial. My colleagues and others have demonstrated that Myc protein utilizes auto-

regulation to repress its own transcription in Drosophila and rodents (Goodliffe, 

Wieschaus, & Cole, 2005; Penn, Brooks, Laufer, & Land, 1990). However, it is likely 

that additional post-transcriptional and post-translational regulatory pathways also 
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contribute to the critical maintenance of Myc protein levels in cells. Growing evidence 

has shown that mammalian Myc uses microRNAs to partially regulate its targets (Chang 

et al., 2008; Lin, Jackson, Guo, Linsley, & Eisenman, 2009; O’Donnell, Wentzel, Zeller, 

Dang, & Mendell, 2005; Wang et al., 2011; Xiong, Du, & Liang, 2010) as well as its own 

transcript levels (Liao & Lu, 2011).  

MicroRNAs in their role in regulation of gene expression 

MicroRNAs are a group of short (21-25 nucleotides) non-coding RNAs involved 

in negative regulation of gene expression (He & Hannon, 2004). They block the 

translation of transcripts by binding to their complementary sequences in 3′ untranslated 

region (3′-UTR) regions of mRNAs (Berezikov, Cuppen, & Plasterk, 2006). In mice and 

human cell lines, Myc abundance has been shown to be associated with changes in 

expression patterns of certain microRNAs, which in turn regulate the expression of other 

genes (Chang et al., 2008; Lin et al., 2009). In addition, Myc’s mRNA itself has been 

shown to be a target of microRNAs in mice and human cell lines (Xiong et al., 2010) and 

it is also a predicted target of Drosophila “dme-miR-2a-1/6/11/13/308” microRNA 

family (Ruby et al., 2007). 

Role of microRNAs in gene regulation by dMyc 

The key hypothesis of the first section of this dissertation is that microRNAs have 

a role in gene regulation by dMyc. Myc protein regulates many genes, but only a small 

portion of those genes has a binding site for Myc. This shows the possibility of 

involvement of non-coding RNAs in regulation by Myc. A hypothetical mechanism 

would be that Myc directly regulates microRNAs and through increasing or decreasing 

their expression, it indirectly regulates the expression of its target genes at the post-
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transcriptional level. This indirect target regulation via microRNAs can be extended to 

the Myc’s transcript itself. Myc possesses a negative feedback regulation mechanism on 

its own levels. It is possible that microRNAs are part of that mechanism. A possible 

model would be that Myc binds to the locus of certain microRNAs, increasing their 

transcription, and those microRNA target the Myc’s mRNA. 

Localization of dMyc in the nucleus 

During the course of carrying out experiments by my colleagues and I, we 

observed punctate spots of dMyc protein within the embryonic cells. Given the role of 

Myc protein in growth regulation including the control of the size of nucleoli, I 

investigated whether Myc puncta corresponded with nucleoli.  Experiments shown here 

demonstrate that Myc largely does not localize to the nucleolus in Drosophila, consistent 

with previous reports of the lack of Myc association with rDNA (Grewal et al., 2005).  I 

investigated the identity of the sub-nuclear puncta of Myc and show that Myc overlaps 

coilin and Lsm11 in the Histone Locus Body (HLB) of Drosophila. 

Cajal bodies 

Cajal Bodies are organelles within the nucleus where the accumulation and some 

assembly of snRNPs occurs before mature snRNPs relocate to chromosomes for splicing 

(Z. F. Nizami, Deryusheva, & Gall, 2010).   They often appear adjacent to the nucleolus 

in Drosophila, and have been shown to transiently associate with several different loci in 

mammalian cells (Liu et al., 2006)(Matera, Izaguire-Sierra, Praveen, & Rajendra, 2009). 

The signature protein component of Cajal bodies is coilin; homozygous null coilin tissues 

lack Cajal bodies in Drosophila, and coilin knockout mice lack functional Cajal bodies 

(Liu et al., 2006)(Tucker et al., 2001). 
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Histone locus bodies 

The histone genes of Drosophila melanogaster exist as tandemly repeated sets of 

the canonical histone genes, which are transcribed during S phase of the cell cycle.  The 

resulting replication-dependent histone transcripts lack a poly-A tail, and instead the 3’ of 

histone mRNAs ends in a conserved stem-loop structure.  Metazoans share this feature 

along with the U7 snRNP that binds the stem-loop, which includes proteins SLBP, 

Lsm10 and Lsm11 (Marzluff, Wagner, & Duronio, 2008). Lsm10 and Lsm11 are 

required for histone pre-mRNA processing and are found in the Histone Locus Bodies 

(HLB), a Cajal body-like nuclear body associated with the histone gene locus (Godfrey et 

al., 2009; Liu et al., 2006).   Nascent histone transcripts associate with a Cyclin E/Cdk2 

dependent phospho-epitope localized to the HLB (White et al., 2007).  

Structure of the dissertation 

This dissertation starts with an introduction chapter, the current chapter, and will 

continue with materials and methods chapter. The results obtained in this research are 

demonstrated in two separate chapters. In the first results chapter of my dissertation, I 

will describe my findings about the regulatory relationship of Myc and microRNA 308 

(miR-308) in Drosophila. I show that miR-308 levels increase in response to elevated 

levels of dMyc through the physical interaction of dMyc with the miR-308 locus, and 

dMyc’s transcript itself is a target of miR-308. In a miR-308 knockdown study, I show 

that dMyc levels are under the control of miR-308 during embryogenesis. Furthermore, I 

show that ectopic expression of miR-308 in embryos can rescue lethality by dMyc 

overexpression. Finally, through analysis of dMyc’s targets and comparing them to the 
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predicted targets of miR-308, I propose models explaining a concerted gene regulation 

program by dMyc and miR-308.  

In the second results chapter of my dissertation, I will explain my finding of 

localization of dMyc in histone locus bodies during mitosis. My work includes the use of 

sequential elimination of markers that led my colleagues and me to the finding that dMyc 

localizes to histone locus bodies during mitosis. These findings suggest a possible role for 

dMyc in regulation or processing of the transcripts of the histone genes. I show that Myc 

associates with all HLBs that contain the same Cyclin E/Cdk2 phospho-epitope, and that 

Myc does not associate with HLBs of non-replicating cells. Our results reveal a novel 

role for Myc as a cell-cycle dependent component of HLBs.  As such, these results 

suggest that part of the impact of Myc protein on the success of growth and proliferation 

may be linked to a role in histone mRNA synthesis and/or processing. Myc’s role in this 

aspect of biology reveals even greater complexity than previously thought for Myc, and it 

opens new avenues of investigation into the biology of this important protein. 



CHAPTER 2: MATERIALS AND METHODS 
 

MicroRNA microarray 

0-24 hour old embryos form each genotype were collected on a grape agar plate.  

Total RNA, including small RNAs, was isolated by miRNAeasy (Qiagen, California, 

USA). Small RNAs were subject to poly-adenylation and fluorescent labeling using a 

power labeling kit (Exiqon, Copenhagen, Denmark). Dual-color labeling with common 

reference method was used. The reference sample was a cocktail of equal amounts of 

RNA from four different genotypes (Gal4, Gal4 X UAS-dm; UAs-dm, UAS-dm; UAS-

dm and wild-type Oregon-R). Reference sample was labeled with Hy5 (red) and other 

samples were labeled with Hy3 (green). Equal amounts of each sample were mixed with 

equal amount of the reference sample. Samples were hybridized on Exiqon microRNA 

microarray version 11, in a automated hybridization chamber (Tecan, Männedorf, 

Switzerland). Then run protocol was imported form Exiqon website. The experiment was 

carried out in two biological replicates and four technical replicates on each slide. Images 

of the microarray slides were taken by a laser scanner (Tecan, Männedorf, Switzerlan). 

Spot intensities were acquired and normalized by GenePix Pro (Molecular Devices, 

California, USA), using global normalization method. T-test statistical analysis was 

carried out by using Differential expression analysis module on Genepattern (Reich et al., 

2006).
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Affymetrix microarray 

Total RNA, was isolated from 0-24 hour old embryos by Trizol (Invitrogen, 

California, USA), according to manufacture’s protocol. Processing and analysis of 

microarrays were carried out by Expression Analysis (Durham, North Carolina, USA). 

RNA samples from 3 biological replicates of each group were labeled and hybridized on 

Affymetrix Drosophila Genome 2.0 Array. Data was analyzed using Two-Group 

Comparisons with Permutation Analysis for Differential Expression (PADE). Data have 

been deposited at the NCBI Gene Expression Omnibus (GEO) repository (GSE38529). 

Drosophila strains and genetics 

Flies expressing Gal4 ubiquitously in embryos were used 

(w[*];P{w[+mW.hs]=GAL4-da.G32}UH1) for all the crosses involving Gal4-UAS 

system (Fischer et al., 1988). UAS-dmyc flies (P{ry[+t7.2]=hsFLP}22, y[1] w[*]; 

P{w[+mC]=UAS-dm.Z}42) were used for generation of both doubly homozygous flies. 

Double balancer flies (w[*]; Kr[If-1]/CyO; D[1]/TM6C, Sb[1] Tb[1]) were used for 

balancing the heterozygous flies for the generation of doubly homozygous flies. Both of 

the mentioned stocks were obtained from Bloomington Stock Center (Indiana University, 

Bloomington, IN, USA). Hs-dm (Heat-shock dMyc flies) were a gift form Peter Gallant.  

Molecular cloning  

Plasmas needed for the generation of transgenic flies were made on a pUAST 

backbone. A genomic region of Drosphila containing the gene for miR-308 was 

amplified using following primers: 5- GCT ATG AAT TCG GTG ATC TTC TTG CCG 

TTC T-3 and 5- CGA TAC TCG AGG AAT CGT CCT GGA GAA GGT G-3. Primers 

had an additional 6-neclutide extensions that serve as restriction sites for restriction 
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enzymes EcoRI and XhoI. After amplification of the genomic region, the product was 

digested using EcoRI and XhoI (New England Biolabs, Massachusetts, USA). pUAST 

plasmid was also digested using the same restriction enzymes. The products of the both 

reactions were run on an agarose gel and were separated and cleaned using a DNA 

cleanup system (Promega, Wisconsin, USA). Digested products were mixed in 3:1 

(insert: plasmid) ratio and were incubated with DNA ligase (Invitorgen, California, 

USA). The product of the ligation reaction was used for bacterial transformation. 

Competent “Top10” bacteria (Invitrogen, California, USA) were transfected using heat 

shock procedure according to manufacturer recommendation. Transfected bacteria were 

grown in LB agar medium plus ampicillin, as selection marker. 12 colonies were 

randomly selected for testing the insertion of the miR-308 genomic region into the 

pUAST plasmid backbone. Using enzymatic digestion, the insertion was confirmed. The 

construct was sequenced and the insertion and the correct orientation were confirmed.  

Site-directed mutagenesis 

To generate a pUAST plasmid that carries a mutated form of the miR-308 gene, 

the original construct was used. Primers expanding the miR-308 region with random 

changes in the seed sequence was used to amplify the plasmid (Primers: 5- ATATTT 

TTG TGT TTT GTT TCG TTT TGC AAT CCA AGG ATC CGG ATT ATA CTG TGA 

GAT GAC CAG CGT G -3 and 5- CAC GCT GGT CAT CTC ACA GTA TAA TCC 

GGA TCC TTG GAT TGC AAA ACG AAA CAA AAC ACA AAA ATA T-3). 

Accuprime Pfx (Invitrogen, California, USA) high fidelity DNA polymerase was used for 

amplification of the entire construct. Amplification reaction was done a PCR machine for 

19 cycles. The amplification product was incubated with DpnI (Agilent Technologies, 
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Colorado, USA) restriction enzyme to digest the parent unmutated construct. The product 

was used for transformation of bacteria. Bacterial transformation was conducted using the 

same procedures described above.  

Generation of transgenic Drosophila 

UAS-miR-308 flies were constructed by cloning 300 base pairs of the genomic 

region of microRNA-308 into the pUAST plasmid (Brand and Perrimon, 1993) and 

injecting the construct into Drosophila embryos (BestGene, California, USA). 10 

independent lines were generated, four of which were homozygous for UAS-miR-308. 

UAS-mutated-miR-308 flies were constructed by site-directed mutagenesis using 

Accuprime Pfx (Invitrogen, California, USA) on the same UAS-miR-308 construct and 

injection as explained. All crosses were done in 25°C. 

Quantification of miR-308 by qPCR 

Total RNA including small RNAs was extracted by miRNeasy mini-kit (Qiagene, 

California, USA), according to the manufacturer’s instruction. Universal cDNA synthesis 

kit, SYBR green and specific LNA primers (all from Exiqon, Denmark) were used for 

quantification of miR-308 in ABI 7500 Fast real-time PCR system (Applied Biosystems, 

California, USA). microRNA miR-1 was used as the reference gene as it showed no 

significant change in the microarray study.  Comparative Ct method was used for 

analyzing the expression levels and relative fold changes (Schmittgen & Livak, 2008).  

Quantitative RT-PCR of mRNAs 

Total RNA was isolated using Trizol (Invitrogen, California). Power SYBR® 

Green RNA-to-CT™ 1-Step Kit and ABI 7500 Fast real-time PCR system (Applied 

Biosystems, California, USA) were used for quantification of mRNA transcripts. 
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Comparative Ct method was used for quantification of all mRNA transcripts (Schmittgen 

and Livak, 2008). Ras was used as internal reference gene for quantification, as described 

previously (Khan et al., 2009). Q-RT-PCR Primers: dMyc (F: ATG CAC ATC ACC 

GAT CAC AG, R: TGG GCC ATC TGG AAC TGT AG) dRas (F: ATA TCG GCA 

CCT ACC GTG AG, R: GT CTT GGC GGA TGT CTC AAT) RpS23 (F: CGT CCT 

GGA GAA GGT CGG CG, R: ACC TTG AAG CGC ACA CCG GG).  

MiR-308 Knockdown  

Canton-S (wild-type) embryos were collected 30 minutes after egg deposition and 

were dechorionated in 50% sodium hypochlorite solution for 2 minutes and were rinsed 

several times with water. Embryos were desiccated for an appropriate, empirically 

determined time. Embryos were then injected with a 100uM anti-miRNA-308 LNA 

inhibitor solution in PBS or PBS alone (control). The sequence of the inhibitor was 

complementary to the mature sequence of miR-308 (Exiqon, Copenhagen, Denmark). 

The embryos were allowed to develop at 18°C for 15 hours before collecting them for 

either RNA or protein extraction. 

Chromatin Immuno-precipitation 

Approximately 0.5 grams of 0-24 hours embryos were dechroniated and fixed in 

PBS/Hepatane/formaldehyde and sonicated in SDS-lysis buffer. The EZ-ChIP kit 

(Millipore, Massachusetts, USA) was used for precipitation and washes. Anti-MycN and 

anti-dMyc antibodies (SantaCruz Biotechnology, sc-28208 and sc-28207) were used for 

immuno-precipitation of Myc protein. ChIP primers: ChIP region I: 5’-

TGGCGAGATACGGCGGGACA-3’ and 5’-GGTTTGAGTCCAGGGTGGATGAACG-

3’ ChIP region II: 5’- GCGAGGCGTCGAGACGTGTT-3’ and 5’-
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TCTACAACAGGCAAGCCAAGAGGT-3’. Fibrillarin promoter region: 5’-

TTTTACGCACCTGGTTTGCCCA-3’ and 5’-CCTCTCCGCCTGGTGTTGAACTT-3’. 

Protein extraction and quantification 

Protein lysates were prepared by using RIPA buffer (Santa Cruz Biotechnology, 

California, USA). Flash frozen embryos were homogenized in 500 ul of RIPA buffer by 

using a sonicator. Debris was separated by centrifuge (12000 g, 10 minutes). Protein 

samples were stored in -20 C all the time. Protein quantification was done using BCA 

assay (Thermo Fisher Scientific, Massachusetts, USA).   

Immunoblots 

8% poly-acrylamide gels were used for separation of whole cell protein extracts. 

Detection was carried out using rabbit anti-dMyc (Santa Cruz biotechnology, California, 

USA, Catalog number: 28207) and mouse anti-rabbit HRP. Anti-beta Actin antibody 

(Abcam, Massachusetts, USA, Catalog number: ab8224) was used as loading control. 

Blots were quantified with NIH ImageJ software package (http://rsbweb.nih.gov/ij/). 

Growth and survival 

Less than hour old embryos from each studied genotypes were collected on grape 

agar plates. Embryos were counted and transferred to new grape agar plates. Growth and 

development of the animals were assessed after 24, 48, 72 and 96 hours. Fraction of live 

animals was plotted in Microsoft Excel. Fisher exact test was used for determining the 

significance of alive to dead ratio for each genotype.  

Functional analysis and graphical design 

Functional analysis of gene lists was performed by Ontologizer 2.0 (Bauer et al., 

2008). Heat map of created by ArcGIS (Esri, California, USA). Schematic structure of 
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the genes was made using the CLC Genomic Workbench Utility (Aarhus, Denmark). 

Other graphics and diagrams were made using Microsoft PowerPoint. Images were 

cropped and adjusted using Adobe Photoshop (California, USA). Graphs were generated 

using GraphPad PRISM and Microsoft Excel.  

Tissue fixation  

Embryos were collected and transferred to a metal mesh. Embryos were 

dechroniated in 100% bleach for 1 minute, followed by washes with deionized water.  

Embryos were fixed in solution containing 8% paraformaldehyde, 10% PBS and heptane 

(1:0.1:3 v/v/v). Fixation was performed for 20 minutes on a horizontal shaker. Ovaries 

were fixed and stained according to Frydman and Spradling (Frydman & Spradling, 

2001). Larvae were fixed and stained according to Neufeld, Johnston and Edgar 

(Neufeld, de la Cruz, Johnston, & Edgar, 1998). Generally, the procedure for larvae 

fixation was the same as embryos, except that paraformaldehyde was used instead of 

formaldehyde. 

Immunostaining 

I used three different Myc antibodies (Santa Cruz Biotechnology, California, 

USA). Immunostaining of larvae and embryos expressing an RNAi construct specific for 

dmyc showed the absence of Myc puncta.  

Primary antibodies were used at the following concentrations:  rabbit anti-Myc 

1:500, goat anti-Myc 1:250, mouse anti-fibrillarin 1:1000 (Abcam, Massachusetts, USA), 

guinea pig anti-coilin 1:2000 (ovaries, embryos, the antibody was a gift from Joseph 

Gall) and 1:500 (larvae), rabbit anti-Lsm11 1:2000 (ovaries and embryos, gift from 
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Joseph Gall) and 1:500 (larvae), mouse anti-GFP 1:500 (Covance), chicken anti-GFP 

(Abcam, Massachusetts, USA) and mouse MPM-2 1:1000 (Millipore).  

To be certain of the validity of the co-localization observed during this study, I 

obtained the following data from control experiments: single stainings for Myc showed 

similar puncta; stainings with each primary antibody combined with the wrong secondary 

showed no staining pattern except for one case, and I eliminated that secondary antibody.  

Staining with one primary antibody and all secondary antibodies together showed the 

same patterns as with one secondary alone. For microscopy I used sequential scanning of 

each channel, ensuring that detection of each fluorophore occurred only with the correct 

excitation laser. 

Microscopy 

Images were generated using a Zeiss LSM 710 or Olympus FluoView FV1000 

confocal microscope. Images were acquired such that there were no saturated pixels, with 

minimal offset.  Modifications to images were minor, and limited to gamma adjustment 

and contrast adjustments within the Olympus FV1000 software (Figure 1A was obtained 

on the Zeiss and I did not alter those images following acquisition).  Modified images 

were cropped using Adobe Photoshop. 



CHAPTER 3: Reciprocal regulation of dMyc and miR-308 
 

The broad objective of studies explained in this chapter was to investigate a 

possible role of microRNAs in gene expression regulation by dMyc. dMyc is shown to be 

involved in regulation of thousands of genes during and after development of Drosophila. 

Despite the conventional theory that Myc regulates its target by binding to their loci, it’s 

shown that a significant number of genes don’t necessarily have a binding site for Myc. 

Based on this, I hypothesized that dMyc regulate specific microRNAs during 

embryogenesis, through which, it regulates other transcripts. I n this chapter, I first 

explain how I established an in-vivo gain-of-function system that has elevated levels of 

dMyc. Then I will explain the experiments that led me to discover the unique role of 

microRNA miR-308 in feedback regulation of dMyc as well as target regulation. 

Ectopic expression of dMyc alters the endogenous expression of dMyc.  

The first aim of this study was to identify possible microRNAs that are regulated 

by dMyc, in a gain-of-function system in which total level of dMyc is higher than normal 

conditions. However, It is shown that Myc protein in mammals and Drosophila, have a 

negative feedback regulation effect on their own levels. This feedback regulation could 

possibly serve as a barrier to ectopically increase dMyc levels. In an effort to establish a 

gain-of-function system for increasing dMyc levels in Drosophila embryo, I used an hs-

dMyc transgenic Drosophila strain. These flies express ectopic dMyc under a heat-shock
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 promoter. After inducing a 30-minute 37-Celsius heat shock, I collected embryos and 

extracted total RNA. Using RT-PCR with specific primers, I tested the levels of 

endogenous, ectopic and total (ectopic + endogenous) dMyc. Results showed that ectopic 

expression of dMyc in Drosophila embryos alters the endogenous levels of dMyc, 

balancing the total dMyc (Figure 1). Therefore, this model was ruled out for gain-of-

function studies in Drosophila embryos. Next, I used yeast UAS-Gal4 system to increase 

the total level of dMyc in embryos. The aim was to generate a transgenic Drosophila 

strain that ia homozygous for two copies of ectopic dMyc on 2nd and 3rd chromosome. I 

used two different homozygous transgenic Drosophilae with a copy of ectopic dMyc on 

2nd (+; UAS-dm/UAS-dm) and 3rd (+; +; UAS-dm/UAS-dm) chromosome. I crossed each 

strain with flies that carry chromosome balancers. The progenies were heterozygous for a 

copy of dMyc on either second or third chromosome (+; UAS-dm/Cyo and +; +; UAS-

dm/TM3sb). By crossing these two flies together, I screened for flies carrying no 

chromosome balancer/marker (+; UAS-dm/UAS-dm; UAS-dm/UAS-dm). These flies 

were viable and fertile (Figure 2).  

To test if the doubly homozygous flies are able to drive overexpression of dMyc, I 

crossed these flies to transgenic flies homozygous for Gal4. The progeny of this cross 

would have both Gal4 and two copies of ectopic dMyc. I tested the levels of transcript 

and protein of dMyc in the 0-24 hours embryos. Results showed that the two ectopic 

copies of UAS-dm are enough to overcome the barrier of dMyc’s auto-regulatory circuit. 

dMyc levels were higher than the control (flies having Gal4 only) at the mRNA and 

protein level (Figure 3). I used this transgenic gain-of-function animal model to test my 

hypotheses based on the increased levels of dMyc in embryogenesis. 
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Figure 1. Ectopic dMyc represses endogenous dMyc. Agarose gel electrophoresis shows 
the RT-PCR product for ectopic (top panel), endogenous (second form the top) and total 
dMyc (third form the top) from control embryos (no heat shock) on the left and embryos 
undergone heat shock on the right. The bottom panel shows the expression levels of Ras, 
as loading control, in control embryos and embryos with ectopic copy of dMyc.  
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Figure 2. Description of genetic crosses to make UAS-dMyc flies. Flies homozygous for 
UAS-dm on second and third chromosomes are separately crossed to flies carrying 
chromosome balancers/markers. The progeny of those separate crosses cross are 
ultimately crossed together to obtain flies homozygous for UAS-dm on second and third 
chromosome. 
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Figure 3. Two copies of UAS-dm are enough to obtain an increase in dMyc levels. Top 
Panel: Quantitative RT-PCR shows the levels of total dMyc in control embryos (Gal4 
only) and embryos with Gla4 and two ectopic copies of dMyc. Relative expression is 
normalized to Ras. The error bar indicates the standard deviation of three biological 
replicates (n=3). Bottom panel: western blot with antibody against dMyc shows the total 
levels of dMyc protein in control embryos (Gal4 only) and embryos with Gal4 and two 
ectopic copies of dMyc. An antibody against actin is used as to show the protein levels of 
actin as a loading control.  
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Elevated levels of dMyc result in an increase in miR-308 levels. 

It is generally accepted that direct regulation of gene expression by dMyc occurs 

through the direct binding of dMyc to E-boxes in the promoter region of target genes 

(Peter Gallant, 2009). However, many genes that are responsive to dMyc in Drosophila 

lack E-boxes or similar sequences (Goodliffe, Cole, & Wieschaus, 2007).  I asked to what 

extent dMyc indirectly regulates its targets via microRNAs. Using the gain-of-function 

system explained in the previous section, I increased levels of dMyc in Drosophila 

embryos. The hypothesis for this experiment was that increased levels of dMyc cause 

differential expression of microRNAs during embryogenesis. 

To study the expression of all the known microRNAs in Drosophila, I decided to 

use microarray technique. I used a microRNA microarray to measure the genome-wide 

expression of microRNAs throughout embryogenesis. The first question was, which 

microRNA transcripts are present during Drosophila embryogenesis. I observed that out 

of 152 available probes for Drosophila microRNAs, 42 microRNAs were expressed in 

embryos. The second question was if the elevated levels of dMyc cause changes (up or 

down-regulation) in the expression of microRNAs. I observed that ectopically increased 

levels of dMyc caused a significant, 1.8-fold (p-value < 0.05, fold change > 1.5) increase 

in the expression of Drosophila microRNA-308 (miR-308), compared to that of control 

(Figure 4).  

To further validate the increase in miR-308 transcript levels, I conducted a 

quantitative PCR experiment with primers specific to the mature sequence of miR-308. 

Because of their short length, mature microRNAs cannot be utilized as a template for 

PCR amplification. Therefor, addition of a poly-A tail and a tag sequence is necessary 
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before amplification. After addition of poly-A tail by poly-A polymerase enzyme, and 

addition of a tag according to manufacturer’s protocol (Exiqon, Denmark), I amplified 

the mature sequence of miR-308 in a real-time PCR. Quantitative RT-PCR of miR-308 

confirmed 2.9-fold (+/- 0.9, n=3) increase in miR-308 in response to elevated levels of 

dMyc (Figure 5). Since microRNAs are involved in post-transcriptional regulation of the 

genes and microRNA miR-308 responds to the elevated levels of the dMyc, this result 

suggests a possible role for miR-308 in dMyc’s regulation of gene expression. This is 

particularly interesting because not all the known genes that are affected my perturbed 

levels of Myc have a binding site for Myc. 
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Figure 4. microRNA microarray in control embryos vs. embryos with high dMyc. 
MicroRNA microarray analysis of expression of microRNAs responding to elevated 
dMyc protein. X-axis indicates only those microRNAs that are expressed in embryos. Y-
axis indicates relative fold change of each microRNA compared to that of control. Data 
are presented as means ± standard deviation of two independent biological replicates 
Asterisk represents the significant difference based on t-test (cutoff: P-value < 0.05, fold 
change > 1.5). 
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Figure 5. Quantitative PCR validation of of microRNA microarray. Quantitative RT-PCR 
analysis of miR-308 expression in control vs. embryos with elevated amounts of dMyc, 
normalized to miR-1. Data are presented as means ± standard deviation of three 
independent biological replicates. 
  

dMyc physically interacts with miR-308 and its host gene locus 

To further elucidate the molecular mechanisms involved in regulation of miR-308 

by dMyc, I studied the locus of miR-308 gene. miR-308 gene is located in the second 

intron of the ribosomal protein S23 (RpS23) gene. I identified two non-canonical E-boxes 

(CATGTG) upstream of the miR-308 gene (Figure 6). Since miR-308 levels increases in 

response to and increase in dMyc protein levels, I asked whether dMyc directly binds to 

the locus of miR-308 gene. I carried out chromatin Immunoprecipitation (ChIP) using 

two different dMyc antibodies. Results show a strong association (5.2-fold enrichment 

relative to IgG) of dMyc to the intronic region of the RpS23 gene (Figure 7). I also 

observed a lower association of dMyc (3.6-fold enrichment compared to IgG) to the 

upstream region of RpS23 transcription start site. I used the locus of Fibrillarin gene as a 

positive control because it has multiple canonical E-boxes and is a known target of dMyc 

(Orian et al., 2003).  
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Figure 6. Locus of miR-308 gene in the intronic region of RpS23. miR-308 locus is 
shown in the second intron of the RpS23 gene. Arrows in the upstream region of the miR-
308 gene indicate the positions of non-canonical E-boxes (CATGTG). 
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Figure 7. Chromatin immuonoprecipitatoion of dMyc at the miR-308 locus. (A) 
Chromatin immuno-precipitation of dMyc by two different anti-dMyc antibodies and 
IgG, followed by agarose gel electrophoresis electrophoresis of PCR product. (B) 
Quantification of ChIP by qPCR. Data is shown as fold enrichment compared to that of 
the IgG control. Data are presented as means ± standard deviation of three independent 
biological replicates. 
  

Elevated levels of dMyc result in an increase in RpS23 levels. 

It has been shown that intronic microRNAs are co-expressed with their host genes 

(Baskerville & Bartel, 2005; Truscott, Islam, López-Bigas, & Frolov, 2011). I asked 

whether dMyc binding to the locus of miR-308 changes the expression of RpS23 as well. 
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Quantitative RT-PCR analysis showed that the transcript levels of RpS23 increase in 

response to increased levels of dMyc (Figure 8). Overall, this result suggests that dMyc 

regulates the expression of miR-308 and its host gene, RpS23, by binding to their shared 

locus. 

 

Figure 8. Expression of RpS23 in control versus dMyc+ embryos. Effect of elevated level 
of Myc on the transcript levels of RpS23, the gene that hosts miR-308. Data are presented 
as means ± standard deviation of three independent biological replicates. 
 

MiR-308 belongs to the conserved miR-2a microRNA family 

MiR-308 belongs to the Drosophila miR-2 conserved family of microRNAs. 

Members of miR-2 family (miR-2a, miR-6, miR-11, miR-13 and miR-308) are 

predominantly expressed during embryogenesis and share a vast number of predicted 

targets based on their common 6 nucleotide seed sequence (5ʹ′-AUCACA-3ʹ′) (Aravin et 

al., 2003). Prediction of the targets of the members of this family is based on the 

complementary sequence alignment of this seed sequence with the 3′-UTR region of the 

mRNA transcripts. Members of the Drosophila miR-2 family are involved in the 

repression of apoptosis by inhibiting the expression of pro-apoptotic genes grim, hid, 

reaper and skl (Ge et al., 2011)(Goyal, McCall, Agapite, Hartwieg, & Steller, 2000). A 
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member of miR-2s family, the genomic sequence of miR-308 stem-loop gene is highly 

conserved across 10 species. MicroRNA miR-308 is expressed in low amounts during the 

early and mid stages of Drosophila embryogenesis (Figure 9). 
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Figure 9. MiR-308 gene is conserved among 11 Drosophila species. Locus of the miR-
308 gene is shown in the second intron of RpS23 gene, on the second chromosome of 
Drosophila melanogaster. Gray peaks indicate the highly conserved regions in different 
Drosophila species. Diagram is generated by UCSC genome browser.     
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dMyc’s transcript is a predicted target of miR-308 

miR-308 belongs to the Drosophila miR-2 conserved family of microRNAs. 

Members of miR-2 family (miR-2a, miR-6, miR-11, miR-13 and miR-308) are 

predominantly expressed during embryogenesis and share a vast number of predicted 

targets based on their common 6 nucleotide seed sequence (5ʹ′-AUCACA-3ʹ′) (Aravin et 

al., 2003). I identified the predicted targets of mir-308 by using two available algorithms, 

TargetScanFly (Ruby et al., 2007) and microRNA.org (Enright et al., 2003). Both 

indicated that a conserved sequence in the 3′-UTR region of dMyc’s transcript is a 

putative target of miR-308 (Figure 10) and other members of the miR-2 microRNA 

family (Figure 11). 

 

 

 

Figure 10. miR-308 has a conserved seed sequence match for dMyc mRNA. The full 
mature sequence of microRNA miR-308 is shown on the top and part of the untranslated 
transcript of dMyc is shown at the bottom. The number 292 denotes the number of 
nucleotide form the last translated nucleotide on the dMyc mRNA. The box and vertical 
lines indicate the alignment of the complementary seed sequence in the conserved region 
of the miR-308 and dMyc mRNA.  
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Figure 11. Conservation of miR-2a family seed sequence match with dMyc mRNA. Each 
row of the table shows one of the miR-2a family members and their conserved sequence 
seed match for dMyc mRNA. 7mer-1A denotes the type of the seed sequence (6 
nucleotide starting with an A). Scores denote the strength of the prediction and are 
calculated based on conservation and thermodynamic stability of RNA-RNA double helix 
(Target scan).  
 

Based on the computational prediction, I hypothesized that dMyc’s transcript is a 

target of miR-308 and that miR-308 is part of the negative feedback regulation of dMyc. 

To test the effect of miR-308 on the expression of dMyc in vivo, I chose to use a gain-of-

function approach to increase levels of miR-308 in the embryos. 
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Generation of UAS-miR-308 transgenic Drosophila 

Eukaryotic microRNAs are transcribed by RNA-Pol-II. Therefore, a system in 

which the full sequence of the microRNA stem-loop is under a strong RNA-Pol-II 

promoter can be used for a gain-of-function study. I designed this gain-of-function 

system by cloning a 300 bp genomic region containing the gene for miR-308, and 

ligation of this fragment into a pUAST plasmid. pUAST is an efficient tool, based on 

transposition of a p-element, for integration of a DNA fragment into the germ cells of 

Drosophila embryos (Figure 12)(Figure 13). The generated transgenic Drosophila lines 

express miR-308 under the control of the yeast Gal4 UAS enhancer. As a control, I 

generated flies expressing a mutated form of miR-308 with a change in the seed sequence 

from 5’-AUCACA-3’ to 5’-GGAUCC-3’ (Figure 12). I crossed these flies to those 

carrying Gal4 and confirmed the over-expression miR-308 and in embryos carrying 

UAS-miR-308 , but not in embryos carrying mutated-miR-308, by quantitative RT-PCR 

(Figure 14). 
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Figure 12. Generation of transgenic Drosophila expressing ectopic miR-308. Two 
transgenic Drosophila strains were designed based on the yeast UAS-Gal4 system. The 
diagram shows the structure of the transgenes miR-308 and mutated miR-308* under the 
heat shock promoter and UAS enhancer. The mutated miR-308* gene has 5 random 
mutations in its seed sequence.   
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Figure 13. Map of the UAS-miR-308 construct in a pUASt plasmid backbone. The 
genomic region of the miR-308 or mutated miR-308* (Orange) is digested and ligated 
into a pUAST plasmid between the EcoRI and XhoI restriction sites, downstream to the 
heat shock promoter (Yellow) and five UAS enhancer regulatory sequences (Blue), and 
upstream to a poly-A sequence. The backbone plasma has a bacterial resistance gene 
(ampicillin) and a gene coding for the White protein that is the red eye marker (Purple). 
Two p-element sequences are used for integration of the region in between them into the 
Drosophila genome, by the enzyme transposase.   
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Figure 14. Ectopic expression of miR-308 in transgenic Drosophila. Bar chart shows the 
transcript levels of miR-308 in embryos with background levels (Control), embryos 
expressing ectopic miR-308 under UAS enhancer (miR-308+) and embryos expressing 
ectopic mutated miR-308* under the UAS enhancer (mut-miR-308+). Relative 
expression of miR-308 is normalized to miR-1. P-value is calculated base on student t-
test in three independent biological replicates. 
  

MiR-308 overexpression results in reduced dMyc transcript levels 

microRNAs regulate the expression of their target genes primarily by inhibition of 

their translation. However, microRNAs can also destabilize their target mRNA (Baek et 

al., 2008). I tested whether the ectopic expression of miR-308 results in a decrease in 

dMyc transcript and protein levels. I collected 0-24 hour embryos from a cross of 

daughterless-Gal4 females and UAS-miR-308 males, and measured dMyc levels by q-

RT-PCR. I observed a modest 14% (+/-5, n=5) reduction of dMyc transcripts in embryos 

expressing ectopic miR-308 compared to that of control (Figure 15).   
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Figure 15. dMyc transcript levels decreases in response to an increase in miR-308 levels. 
Box and whisker plot shows the levels of dMyc transcript measured by q-RT-PCR in 
Drosophila embryos with elevated levels of mutated miR-308* (Blue) and embryos with 
elevated levels of miR-308 (Yellow), compared to that of control (dotted line). Relative 
expression of miR-308 is normalized to Ras. Results are shown as median (middle line) 
range (the upper and lower limits of the boxes) and standard deviations (error bars). P-
value is calculated based on student t-test in four biological replicates.  
 

miR-308 overexpression results in reduced dMyc protein levels. 

MicroRNAs are known to repress the translation of their target transcripts by 

forming a double helix to their matching seed sequence. To test if miR-308 lowers the 

expression of dMyc protein, I carried out western blot with an antibody specific to dMyc 

protein. Despite the modest reduction in transcript levels, I observed a substantial 68% 

decrease in dMyc protein levels in embryos expressing ectopic miR-308, compared to 

that of control (Figure 16).  

MiR-308 overexpression causes lethality in embryos. 

I asked whether these animals show reduced survival, potentially caused by the 

reduction in dMyc protein accumulation. Our survival assay showed that these animals 

have a reduced survival rate. 19% (+/-9, n=97, P-value=1.1E-15, Fisher exact test) of 

them survived past 96 hours after egg deposition, compared to 77% (+/-6, n=81) of 
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control. Together, these data suggest that miR-308 is sufficient to mediate a negative 

regulatory mechanism controlling dMyc in vivo.  

 

 

Figure 16. dMyc protein levels decreases in response to an increase in miR-308 levels. 
Western blot with antibody specific to dMyc (Top panel) shows a decrease in dMyc 
protein level in response to an increase in elevated levels of miR-308, but not mutated-
miR-308. Anti-actin antibody is used as a loading control (Bottom panel). 
 

In vivo knockdown of miR-308 leads to overexpression of dMyc. 

To determine whether dMyc transcripts are normally repressed by miR-308, I 

depleted miR-308 in early embryos by injecting LNA (Locked Nucleic Acids)- modified 

oligonucleotides complimentary to the sequence of miR-308. LNAs are modified DNAs 

with higher stability and specificity that can effectively inhibit microRNAs (Ørom, 

Kauppinen, & Lund, 2006). Wild-type embryos 30 minutes after egg deposition were 

injected with either a LNA inhibitor against miR-308 or with injection buffer. 

Quantitative RT-PCR showed that the inhibition of miR-308 causes an 18% (+/-4, n=3) 

increase in dMyc mRNA levels (Figure 17). Immunoblotting showed a 47% increase in 

dMyc protein accumulation after inhibition of miR-308, compared to control (Figure 18). 

These results show that miR-308, despite its low abundance (Aravin et al., 2003), 
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constantly represses dMyc levels during embryogenesis. These data, taken with our 

chromatin-IP study demonstrating dMyc binding to the locus of miR-308 in wild-type 

embryos, suggests a constant feedback loop between dMyc and miR-308 that limits the 

accumulation of dMyc protein during embryogenesis. Since other members of miR-2 

family share the same seed sequence, it would be interesting to determine whether dMyc 

is under repression by other members of miR-2 family. 

 

 

Figure 17. Knockdown of miR-308 causes an increase in dMyc mRNA level. Levels of 
dMyc transcript in embryos injected with injection buffer (Blue) and embryos injected 
with anti-miR-308 LNA (Green) measured by q-RT-PCR. The error bar indicates the 
standard deviation of three biological replicates (n=3). 
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Figure 18. Knockdown of miR-308 causes an increase in dMyc protein level. Western 
blot with antibody specific to dMyc in in embryos injected with PBS and embryos 
injected with inhibitor of miR-308. Actin is used as loading control. Bar graph shows the 
normalized quantification of the western blot bands of only one replicate, using ImageJ 
software. Bar graph is shown for indicating the difference between observed quantities 
and has no statistical implication. 
 

MiR-308 can rescue the dMyc overexpression phenotype. 

Overexpression of dMyc can cause lethality. It is believed that this lethality is due 

to the induction of apoptosis by dMyc (Montero, Müller, & Gallant, 2008). In our 

experiments, dMyc protein levels decrease upon overexpression of miR-308. As 

previously reported, I also observed that dMyc overexpressing embryos do not survive 

beyond 72 hours after egg deposition (Khan et al, 2009). I sought to determine whether 

miR-308 could rescue the dMyc overexpression lethal phenotype. By meiotic 
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recombination of the two transgenes on third chromosome, I generated flies expressing 

both dMyc and miR-308 under the control of separate UAS enhancers that are responsive 

to the Gal4 transcription factor. Doubly transgenic flies were crossed to flies expressing 

Gal4 protein ubiquitously in embryos (daughterless-Gal4). Immunoblotting showed that 

dMyc protein accumulation was balanced by the addition of UAS-miR-308; it resembled 

wild type levels rather than ectopic levels (Figure 19). Consistent with these results, when 

crossed to Gal4 expressing flies, 40% (+/-12, n=84) of these double UAS transgenic 

animals survived beyond 72 hours, compared to 0% (n=94, p-value=9.7E-14, Fisher 

exact test) UAS-dmyc alone and 19% (+/-9, n=97, p-value=4E-4, Fisher exact test) UAS-

miR-308 alone (Figure 20). Overall, these results show a role for miR-308 to secure the 

balanced accumulation of dMyc during development. miR-308’s response to elevated 

dMyc levels shows that this regulation is not passive and is precisely correlated to 

dMyc’s levels.  

 

Figure 19. Levels of dMyc protein can be balanced by ectopic expression of miR-308. 
Western blot showing the dMyc protein level in control embryos, embryos with 
overabundance of dMyc and embryos with overabundance of both dMyc and miR-308 
(Top panel). Actin is used as loading control (Bottom panel). 
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Figure 20. miR-308 can rescue the dMyc+ phenotype. Survival assay of the four 
genotypes: control (Blue), miR-308 overexpressing animals (Green), dMyc 
overexpressing animals (Red) and animals having overexpression of dMyc and miR-308 
(Purple). Data are presented as means ± standard deviation of three independent 
replicates. P-values are calculated by Fisher exact test. 
 

Functional relationship between dMyc targets and miR-308 targets. 

In an effort to understand the broader significance of the feedback regulation 

between dMyc and miR-308, I examined the degree to which dMyc’s transcriptional 

regulation of downstream targets may be antagonized by miR-308. I analyzed the targets 

of dMyc in embryogenesis using whole genome expression profiling. By crossing flies 

carrying Gal4 to flies carrying two ectopic copies of UAS-dmyc, I obtained embryos with 
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elevated levels of Myc. Total RNA from this cross and the control wild-type embryos 

was obtained and analyzed using Affymetrix GeneChip Drosophila Genome 2.0 Array. 

Differentially expressed transcripts were selected (P<0.05, FDR= 17%) for downstream 

functional analysis. Out of 624 affected genes, 607 transcripts were up-regulated and 17 

transcripts were down-regulated. I considered the function of up-regulated targets of 

dMyc. I used a MGSA Byesian network model (Bauer, Gagneur, & Robinson, 2010) in 

Ontologizer 2.0 software to categorize those predicted targets according to their 

annotation of biological process (Bauer, Grossmann, Vingron, & Robinson, 2008). This 

model categorizes a set of genes based on their functional annotation and assigns each 

category a score that corresponds with the significance of enrichment. Results show that 

dMyc’s targets in embryogenesis are mainly involved in ribosome biogenesis, t-RNA 

metabolism and RNA modification, consistent with previous reports (Grewal et al., 2005) 

(Figure 22).  

Given our observed inverse relationship between miR-308 and dMyc, I then 

determined whether predicted targets of miR-308 are functionally related to targets of 

dMyc in the context of its over-expression. I identified 729 conserved targets of miR-308 

using microrna.org tools (Enright et al., 2003), and classified these predicted targets using 

the method described above. Results show that miR-308 predicted targets are mainly 

involved in organ morphogenesis and development (Figure 22). This potential role of 

miR-308 in repression of sensory differentiation and morphogenesis is consistent with 

dMyc function in promoting a growth and proliferation program. Our analysis suggests 

that dMyc and miR-308 may have an overlapping role in orchestrating the complex series 

of events that balance growth and differentiation during development. 
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Between the identified 624 dMyc targets and 730 miR-308 predicted targets, I 

identified 26 common targets (Supplementary Fig. 1). This overlap was significantly 

different from any overlap that could occur randomly by this analysis (P-value<0.008, 

hypergeometric distribution) (Figure 21). Functional analysis of miR-308 and dMyc’s 

common targets showed a significant enrichment in bristle morphogenesis (Figure 22). 

The observation that mir-308 may decrease expression of these genes while Myc 

activates them suggests a specific role for miR-308 in fine-tuning dMyc’s function as an 

inhibitor of morphogenesis. 

 

Figure 21. Overlap between dMyc and miR-308 targets. Overlap of dMyc targets and 
miR-308 predicted targets. P-value shows the statistical analysis of significance of the 
overlap using hypergeometrical distribution. 
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Figure 22. Functional analysis of dMyc and miR-308 targets. Heat map MGSA functional 
analysis for dMyc up-regulation targets (Left column), miR-308 predicted targets 
(Middle column) and their common targets (Right column). Yellow color shows a weaker 
support and dark brown color shows stronger support for enrichment. 



CHAPTER 4: LOCALIZATION OF DMYC IN HISTONE LOCUS BODIES 

 

Despite its established role in regulation of transcription by binding to the target 

loci, new roles are being discovered for Myc. During the antibody stainings to examine 

Myc protein levels in our lab, I observed clusters of cells containing punctate spots of 

dMyc.  As a transcription factor, the general nuclear localization that I observed in most 

cells was expected, however I was curious to determine the identity of the dMyc puncta. 

In this chapter, I will explain a sequence of experiments that led me and my colleagues to 

discover sub-cellular localization of dMyc protein and propose a possible role for it in 

transcription and processing of histone transcripts.  

 dMyc rarely localizes to the nucleolus 

Although in vitro experiments have not shown dMyc to be associated with 

ribosomal DNA in Drosophila, dMyc abundance correlates with the size and integrity of 

nucleoli (Marinho, Casares, & Pereira, 2011)(Grewal et al., 2005).  Therefore, I began 

my investigation by double staining ovaries, larval salivary glands and embryos with 

antibodies specific for dMyc and fibrillarin, a marker for nucleoli.   

In ovaries, I observed broad dMyc accumulation with many dMyc puncta located 

within the nuclei of nurse cells. Myc appeared excluded from nucleoli in both nurse cells 

and follicle cells.  Different from the nurse cells, I observed no dMyc puncta but general 

nuclear staining of dMyc in follicle cells (Figure 23).  In the salivary glands of larvae and 
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stage 10 embryos, dMyc dMyc localized to the nucleus and was largely excluded from 

the nucleolus (Figure 24) and (Figure 25).  

 

Figure 23. dMyc rarely localizes to nucleolus of follicle cells. dMyc (green), fibrillarin 
(red) and DAPI label stage 8 (top) and 10 (lower) egg chambers. Arrows label a nurse 
cell, and arrowheads label a follicle cell.  
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Figure 24. dMyc rarely localizes to nucleolus of salivary gland cells. A larval salivary 
gland nucleus labeled with DAPI (blue), dMyc (green) and Fibrillarin (red) shows the 
exclusion of dMyc from the nucleolus. 

 

 

Figure 25. dMyc rarely localizes to nucleolus of embryo cells. A stage 10 embryo labeled 
with dMyc (green), fibrillarin (red) and DAPI (blue) showing minimal overlap of dMyc 
and fibrillarin (bottom three panels, note the cell within the yellow circles with a bright 
fibrillarin domain that lacks dMyc). 
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Fibrillarin is present in a sub-nuclear organelle known as the Cajal Body (Liu et 

al., 2006).  In embryos, dMyc infrequently overlapped fibrillarin (Figure 1C, at stage 8, 

63 dMyc puncta also contained fibrillarin, n=213).  The overlap that I observed with 

dMyc and fibrillarin in both larvae and embryos coincided with the Cajal Body, not the 

nucleolus. 

dMyc protein co-localizes with coilin 

Given the presence of fibrillarin in CBs and the minimal overlap of Myc and 

fibrillarin, I next hypothesized that the Myc puncta were localized to CBs.  Therefore, I 

double stained ovaries, larvae and embryos with anti-Myc and anti-coilin antibodies (a 

gift from Dr. Joseph Gall).  

In salivary glands of third instar larvae, I observed co-localization of dMyc with 

most of the large coilin bodies (dMyc appeared in 22 out of 27 large coilin bodies) 

(Figure 26). During embryogenesis, dMyc puncta appeared following the onset of 

cellularization.  In the cellular blastoderm, dMyc puncta almost always overlapped coilin 

(75 Myc positive CBs, n=78 CBs). In cells of the early postblastoderm mitotic domains, 

dMyc protein exhibited puncta that overlapped the CBs of those cells (39 Myc positive 

CBs, n=41, Figure 2B, upper panels) (Figure 27).  Later, at approximately stage 11, Myc 

protein appeared diffuse in cells of the endoderm and the visceral musculature of the 

mesoderm.  In the head regions and ectoderm, Myc protein appeared in puncta that 

overlapped CBs (32 Myc positive CBs, n=37) (Figure 29).  

In ovaries, Myc and coilin localized to the same nuclear bodies in nurse cells. 

Beyond stage 2 of oogenesis, Myc bodies almost always contained coilin (49 in 50 Myc 

bodies contained coilin), although less than half of Cajal bodies contained Myc (21 Myc 
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positive CBs, n=57, Figure 2A).  In the germarium and in follicle cells, Myc appeared 

diffuse and not obviously localized to any coilin-containing body (Figure 28). 

These data show that dMyc and coilin co-localize broadly in Drosophila tissues, 

and the localization may correspond to CBs, HLBs or both.  I investigated the possibility 

that the Myc and coilin overlap occurs in HLBs. 

 

Figure 26. dMyc co-localizes with large coilin bodies in salivary glands. A larval salivary 
gland cell labeled with dMyc (green), fibrillarin (red), coilin (orange) and DAPI, showing 
that Myc, fibrillarin and coilin overlap outside of the nucleolus. 
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Figure 27. dMyc localizes in most of the coilin bodies in early embryos. A stage 6 
embryo labeled with dMyc (green), fibrillarin (red), coilin (white) and DAPI, showing 
that locations where dMyc and fibrillarin overlap are puncta containing coilin (shown by 
the white arrow in the higher magnification boxes below). dMyc does not overlap with 
fibrillarin in the nucleolus (shown by the orange arrow). 
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Figure 28. Overlap of dMyc and coilin in the ovaries. A stage 9 egg chamber labeled with 
Myc (green) and coilin (orange). The light gray arrow points to a nurse cell, and 
arrowhead points to a follicle cell. A nurse cell lacking overlap of Myc with coilin is 
shown (nurse cell in the green boxes, panels below and left), and a nurse cell with Myc 
and coilin containing puncta is also shown (nurse cell in the light gray boxes, panels 
below and right) 
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Figure 29. dMyc colocalizes with coilin in stage 8 and 11 embryos. A stage 8 embryo 
(top) and stage 11 embryo (bottom) labeled with Myc (green), coilin (red) and DAPI 
(blue). Myc is generally diffuse throughout nuclei at stage 8 except for parts of the 
cephalic furrow (higher magnification boxes below the top embryo; the region magnified 
is indicated in the yellow box) and future ectoderm. By stage 11, Myc appears in puncta 
of the ectoderm and head regions, the latter is shown magnified in the yellow box. These 
puncta contain coilin. 
 

Myc and coilin localization occurs mainly in HLBs 

The Histone Locus Body (HLB) is a similar nuclear body to Cajal Bodies, 

however it is distinct in that it contains the U7 snRNP and associates with the histone 
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gene loci in Drosophila (Liu et al., 2006)(Z. F. Nizami et al., 2010). HLBs and CBs can 

reside adjacent to each other or apart from each other, and both contain coilin (Liu et al., 

2006)(Liu et al., 2009). Because I observed Myc and coilin together in the nucleus, I 

investigated whether Myc puncta were HLBs rather than CBs.  To visualize HLBs along 

with coilin, I obtained transgenic flies expressing an HLB marker, Lsm11-EYFP under 

the control of Gal4 (a gift from Dr. Joseph Gall). Lsm11 is a protein component of the U7 

snRNP, which is specific for HLBs (Z. Nizami, Deryusheva, & Gall, 2010). I induced 

expression of the transgene and triple-stained tissues with anti-Myc, anti-coilin and anti-

GFP (embryos).  In additional experiments, I stained wild type larvae and ovaries with 

anti-Lsm11 (also from Dr. Gall), anti-Myc and anti-coilin. 

In salivary glands of third instar larvae, immuno-staining against Myc and GFP or 

Lsm11 showed the localization of Myc to HLBs; 81% of Lsm11 and coilin-containing 

HLBs included Myc (n=27) (Figure 30).  Myc localization to CBs containing coilin but 

no Lsm11 was less common; Myc appeared in 20% of non-Lsm11 Cajal Bodies, n=29. In 

Drosophila egg chambers, Myc overlapped coilin and Lsm11 in nurse cell nuclei (Figure 

31).  

Similarly, in embryos, Myc puncta frequently contained both coilin and Lsm11 

(Figure 32), suggesting that the majority of embryonic Myc bodies are HLBs (in 221 

Myc puncta, 208 also contained both coilin and Lsm11).  The degree of Myc and Lsm11 

overlap depended on the germ layer and/or region of the embryo.  For instance, 86% of 

HLBs were Myc positive in the ventral ectoderm of stage 10 embryos (n=117), however 

13% of HLBs were Myc positive in the endoderm of the posterior midgut at the same 

stage (n=52). 
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These data show that Myc occurs in the HLB of both mitotic and endoreplicating 

cells.  However, Myc does not localize to HLBs in all nurse cells of an egg chamber, nor 

does it localize to all HLBs in the cells of an embryo and larval salivary glands.  

 

Figure 30. Myc localizes to histone locus bodies in salivary glands. A larval salivary 
gland nucleus labeled with Myc (white), coilin (red), Lsm11 (green) and DAPI (blue) 
shows overlap of Myc with coilin in the largest coilin-containing body. 
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Figure 31. dMyc localizes to HLBs in ovaries. Two egg chambers, ~stages 5-6, labeled as 
indicated and showing that Myc, coilin and Lsm11 co-localize in nurse cells and the 
oocyte nucleus (the arrow labels a nurse cell and arrowhead labels a follicle cell; the 
oocyte nucleus is within the light blue dashed circle). The panels on the right show a 
nurse cell with Myc, coilin and Lsm11 in the same bodies; a nurse cell lacking Myc in a 
coilin-Lsm11 body; the oocyte with all three co-localized (right panels). 
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Figure 32. dMyc localizes to HLBs in stage 8-9 embryos. A wild type, stage 8-9 embryo 
labeled with Myc (green), coilin (red), Lsm11-EYFP (white) and DAPI (blue) showing 
that dMyc, coilin and Lsm11 co-localize to the majority of the bodies occurring in these 
embryos (lower panels show the cells in the orange box). 
 

Myc localizes to HLBs only during replication 

Because many different cell types showed dMyc in the HLB, however not 

uniformly within an egg chamber or embryo, I investigated whether dMyc localization to 

HLBs is cell cycle dependent.  I stained embryos, larvae and ovaries with the monoclonal 

antibody MPM-2, which cross-reacts with phospho-epitopes of mitotic cells in many 

organisms (Edgar et al., 2001). In Drosophila embryos, MPM-2 recognizes the phospho-
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epitope of a protein present in HLBs, but only in cells with active Cyclin E/Cdk2 

(Frydman & Spradling, 2001).   

I first examined all coilin-containing bodies, which may be CBs or HLBs, by 

staining embryos with MPM-2, anti-coilin and anti-Myc antibodies.  dMyc appeared in 

100% of the coilin and MPM-2 positive bodies (n=30).  dMyc appeared in just 10% of 

CBs or HLBs lacking MPM-2, n=30 (Figure 33).  I found similar results in ovaries, that 

Myc overlapped MPM-2 in all nurse cells containing puncta positive for MPM-2 (n=30 

nurse cells), and overlap with coilin was limited to MPM-2 positive bodies (Figure 34), 

all of which are HLBs later in oogenesis (Liu et al., 2009). 

To examine bodies identifiable as HLBs in cells undergoing replication, I stained 

ovaries and embryos with MPM-2, anti-Lsm11 (or anti-GFP) and anti-dMyc.  dMyc and 

Lsm11 co-localized only in the presence of the MPM-2 epitope. HLBs containing both 

Lsm11 and MPM-2 were positive for dMyc (Figure 36).  HLBs lacking the MPM-2 

epitope also lacked dMyc (Figure 34) and (Figure 36).  In embryos, replicating cells were 

identified with MPM-2 positive HLBs, and those bodies always included Myc (n=27).  

Myc was never observed in MPM-2 negative HLBs (n=33) (Figure 35) and (Figure 36).   
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Figure 33. dMyc localizes to MPM2 containing HLBs in gastrulating embryo. The 
surface of an embryo at the onset of gastrulation, labeled with Myc (green), coilin (red) 
and MPM-2 (white) and DAPI, with a higher magnification of the merged image above. 
MPM-2 positive cells are replicating, and the MPM-2 bodies contain Myc and coilin 
(note cell in the purple boxes). One CB is evident with no MPM-2 or Myc present (in 
white box, HLB is labeled with an arrow, and the CB is labeled with a diamond-headed 
arrow). 
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Figure 34. dMyc localizes to MPM2 containing HLBs in ovaries. (A) A stage 10 egg 
chamber is shown, labeled with Myc (green), coilin (red), MPM-2 (white) and DAPI, and 
a nurse cell is labeled with the light gray arrow. Myc, coilin and MPM-2 overlap in the 
HLB of the nurse cell in the yellow boxes, and MPM-2 and Myc overlap although coilin 
staining is weak in the HLB of the nurse cell in the gray boxes. (B) A stage 8 egg 
chamber, labeled with Myc (green), MPM-2 (red), Lsm-11 (white) and DAPI shows that 
Myc puncta are the HLBs of replicating nurse cells. A nurse cell is shown with MPM-2 
positive HLBs (cell in yellow boxes and magnified below), and Myc appears in those 
HLBs. A nurse cell is shown with Lsm11, non-MPM-2 staining HLBs, and Myc is absent 
(cell in light gray boxes, magnified below in the right-most panels). 
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Figure 35. dMyc overlaps LSM11, only in the presence of MPM2, in embryo. A 
germband-retracted embryo labeled with Myc (white), MPM-2 (red), Lsm11 (green) and 
DAPI showing that HLBs containing MPM-2 and Lsm11 also contain Myc (white 
arrows), and HLBs that contain Lsm11 but not MPM-2 do not contain Myc (light blue 
arrows). 
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Figure 36. Quantification of dMyc overlap. A chart showing the numbers reported in the 
text of Myc-overlapping (green bars) and non-Myc-overlapping puncta containing coilin 
(C), Lsm11 (L), and MPM-2 in embryos (E and the third and fifth sets of bars), larvae (L) 
and nurse cells (NC and also the fourth set of bars). 



CHAPTER 6: DISCUSSION AND FUTURE DIRECTION 
 

In Caenorhabditis elegans, microRNAs are shown to participate in feedback 

circuits with key transcription factors, and these networks have a high capacity for 

regulation of target genes (Martinez et al., 2008). Here, I report the novel finding of a 

feedback circuit between dMyc, a key transcription factor in animal biology, and miR-

308, a member of the conserved Drosophila miR-2 family. My results suggest three 

models for dMyc and miR-308 interaction (Figure 37). In the first model, supported by 

our loss-of-function and gain-of-function studies, I show that dMyc and miR-308 are in a 

direct cross-talk with each other and that miR-308 responds to dMyc levels and regulates 

dMyc’s protein levels. In the second model, I identified common targets between dMyc 

and miR-308. This model shows a possible role for miR-308 in specific fine-tuning of 

regulation by dMyc. It would be interesting to determine the extent to which levels of 

these common targets respond to different proportions of dMyc and miR-308. In the third 

model, I suggest a functional relationship between dMyc and miR-308 in the 

determination of a cell growth versus a differentiation program. In this model, I suggest 

collaboration between dMyc and miR-308 in programming cells into rapid proliferation 

and cessation of morphogenesis. All together, these results reveal a crucial role for miR-

308 in feedback regulation of dMyc, and fine-tuning of target regulation by dMyc during 

development.
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Figure 37. Models of gene regulation by Myc. Three proposed models for the cross-talk 
of dMyc and miR-308 and its role in feedback regulation (top panel), target regulation 
(middle panel) and cell proliferation programming (bottom panel). 
 

Localization of dMyc in histone locus bodies 

Data obtained form my and my colleague’s work show that dMyc is a component 

of the histone locus bodies along with Lsm11 and the MPM-2 epitope-containing protein 

during replication, the time at which the canonical histone genes are transcribed 

(Daneshvar, Khan, & Goodliffe, 2011) (Figure 38). I observed little cell-type specificity 

of dMyc puncta, since we identified dMyc puncta throughout the embryo and in larval 
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and ovary tissues. One exception is the lack of Myc puncta in the germarium and follicle 

cells of the ovary. 

What could be the function or consequence of Myc in the HLB? One obvious 

possibility is that Myc helps boost transcription of the histone genes, consistent with its 

localization during replication when those genes are transcribed. In human embryonic 

stem cells and fibroblasts, HLBs contain the U7 snRNP in addition to a histone gene 

coactivator protein, p220NPAT, during mid-late G1 through S phase of the cell cycle 

(Marzluff et al., 2008). These data suggest that HLBs are capable of histone gene 

transcription initiation. It is therefore logical to consider that Myc's role in the HLB is 

related to transcriptional activation. If this is indeed the case, Myc loss-of-function 

mutants should have decreased histone gene expression. Short-term knock-down of Myc 

by RNAi should address this question, as long as pleiotropic effects are minimized. The 

reciprocal should also be informative; over-expression of Myc may induce higher levels 

of histone gene expression. In our previous experiments expressing ectopic Myc 

(Goodliffe et al., 2007)(Goodliffe et al., 2005), we have not found dramatic changes in 

the levels of histone gene transcripts, however. Over-expression of Myc may not lead to 

increased levels of Myc in HLBs; that would have to be determined before conclusions 

can be drawn about the effect of elevated Myc on histone gene expression. 

In human primary cells as in Drosophila, the U7 snRNP localizes to the HLB. In 

most human cancer cell lines, however, the U7 snRNP often localizes to the Cajal Body 

rather than the HLB, and therefore an intriguing delocalization of the U7 snRNP occurs 

in cancerous cells (Matera et al., 2009). Elevated telomerase activity is a hallmark of 

cancer cells (de Lange, 1994), and Cajal Bodies play a role in telomere length regulation; 
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human telomerase RNA and the telomerase reverse transcriptase, hTERT, localize to CBs 

near telomeres during S phase (Matera et al., 2009). Myc protein has been found to bind 

directly to TRF/PIN2, a DNA binding protein involved in telomere capping and 

telomerase inhibition. Expression of the TRF/PIN2 interaction domain of Myc, the 

protein's C-terminus that lacks its trans-activation domain, led to increased telomere 

length in vivo (Kim & Chen, 2007). It would be informative to determine the localization 

of Myc with respect to HLBs, CBs and TRF/PIN2 in wild type and cancerous cells. 

How might Myc be targeted to the HLB? Myc has been shown to be 

phosphorylated by cyclin E/Cdk2, altering Myc function, at mammalian c-Myc residue 

Ser-62 (Kupsco, Wu, Marzluff, Thapar, & Duronio, 2006). Drosophila Myc is not 

identical in this region of the protein, Myc Box I, however it does harbor a serine residue 

at the site next to the Ser-62 orthologous site (Cowling & Cole, 2006). An intriguing 

hypothesis is that cyclin E/Cdk2 phosphorylation of Myc causes subsequent localization 

to the HLB. Mutations eliminating potential phosphorylation sites of Myc in Drosophila 

would be informative in addressing this hypothesis. If a Ser-62 to alanine-62 mutant 

protein is unable to localize to the HLB, then phosphorylation of that site may have a role 

in Myc's localization to the HLB. Alternatively, ectopic cyclin E expression may drive 

constitutive localization of Myc in the HLB. We are pursuing this experiment. 

Recently, White and colleagues identified several novel components of HLBs in 

Drosophila. Using biochemical and genetic approaches in S2 culture cells, the group 

identified Spt6 and the Drosophila NPAT homolog, Mxc, as novel components of the 

HLB. Myc was not identified as a component of the HLB in these experiments, but 

neither were two known components of HLBs: Lsm10 and Lsm11 (White et al., 2011). 
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Despite this fact, the new knowledge of HLB components, including Myc as described in 

this study, will help determine the function of HLBs, whose complete set of functions 

remains unclear. 

 

 

 

 

Figure 38. Localization of Myc in histone locus body. Cartoon shows the localization of 
dMyc in histone locus bodies during replication.  
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