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ABSTRACT

GARY WAYNE CROSBY. Optimal multiple stopping: theory and applications.
(Under the direction of Dr. Mingxin Xu)

The classical secretary problem was an optimal selection thought experiment for

a decision process where candidates with independent and identically distributed

values to the observer appear in a random order and the observer must attempt to

choose the best candidate with limited knowledge of the overall system. For each

observation (interview) the observer must choose to either permanently dismiss the

candidate or hire the candidate without knowing any information on the remaining

candidates beyond their distribution. We sought to extend this problem into one

of sequential events where we examine continuous payoff processes of a function of

continuous stochastic processes. With the classical problem the goal was to maximize

the probability of a desired occurrence. Here, we are interested in maximizing the

expectation of integrated functions of stochastic processes. Further, our problem is

not one of observing and discarding, but rather one where we have a job or activity

that must remain filled by some candidate for as long as it is profitable to do so.

After posing the basic problem we then examine several specific cases with a single

stochastic process providing explicit solutions in the infinite horizon using PDE and

change of numeraire approaches and providing limited solutions and Monte Carlo

simulations in the finite horizon, and finally we examine the two process switching

case in both finite and infinite horizon.

As our general model will include supremum of the expected value of integrated

stochastic processes, we will make use of techniques that allow us to rewrite the prob-

lem into a form without integrals. In the infinite horizon cases we will make use of a

method developed by Cissé, Patie, and Tanré [4] and change of numeraire before tak-

ing standard PDE-approaches to solving the resulting variational inequality. In finite
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horizon cases, we will use a portfolio method developed by Vec̆er̆ [16] to rewrite the

problem. For optimal stopping problems with integrated processes, the resulting PDE

before transforming the problem will have two dimensions for every integral process.

The strength of Vec̆er̆’s approach is that it effectively reduces the dimension of the

problem, although it does introduce a portfolio term that has complicated dynamics.

This makes the approach unsuited to finding closed form solutions in general, but it

does offer advantages in Monte Carlo simulations. In a general model, a numerical

simulation of the integrals will require simulations of the variables themselves, then

integration, then examinations over all possible (discrete) stopping times in the limits

of integration. With the portfolio approach, however, we only need to simulate each

variable and the portfolio itself.
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CHAPTER 1: INTRODUCTION

In this work, we examine extensions to the Secretary Problem into something more

resembling the Asian financial option. We begin by considering single candidate

formulations and try to extend this work to multiple candidates.

1.1 Classical Secretary Problem

The classical Secretary Problem is formulated as follows [7]: There are N total candi-

dates, each with an independent and identically distributed value to the interviewer

with candidates taking distinct values (no ties) according to the underlying proba-

bility distribution. That is, after all interviews are completed, the candidates can be

ranked from best to worst. Further, they arrive in a random order with all possible

orderings equally likely. These candidates are interviewed as they arrive. The inter-

viewer must decide to hire or permanently dismiss on the candidate and interview

the next candidate. If the interviewer reaches the end of the sequence, he must hire

the final candidate. The interviewer, naturally, wants to hire the best but they must

make their choice of hiring or dismissing with only the information gathered by the

candidates that have already appeared, including the one currently being interviewed.

If the interviewer chooses to pass on the candidate, they cannot be recalled and hired

later. The optimal strategy to this problem, the one that maximizes the probabil-

ity of selecting the best candidate, is to observe but preemptively dismiss the first

K < N candidates and hire the first candidate among the K + 1 remaining with a

value that exceeds those candidates that have already been seen. Notice that if the

best candidate is among the first K, the best candidate is not only not hired, but
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that only the final candidate can be hired regardless of that candidate’s overall rank.

With this problem structured thus, the optimal strategy is to choose K to be N/e,

or approximately 37% of the total candidates, and such a K will maximize the prob-

ability of choosing the best candidate. In the infinite candidate case, this converges

to 1/e, or again approximately 37% [6].

The purpose of the Secretary Problem is not to develop a reasonable or useful hir-

ing strategy, but it is rather a thought experiment to develop a strategy to maximize

the value to a decision maker who must either choose to accept or permanently reject

without perfect information. It is a discrete-time optimal selection problem and all

candidates take their value from a common underlying distribution.

1.2 Extensions to the Classical Problem

We sought to investigate a problem that is structurally similar to the Secretary Prob-

lem, but where the N candidates take their value from a stochastic process Xi,t. The

candidates’ values will continue to fluctuate in accordance with their individual un-

derlying stochastic processes even after their interview. We surmise that there will

be threshold strategies for the hiring of candidates, as well as the potential firing or

switching between successive candidates. Further, we wanted to investigate a problem

with a hiring strategy where there was always one candidate working. As is the case

in the classical secretary problem, our examinations were not necessarily intended for

use as a potential hiring strategy. Rather, we sought to examine a value process that

is the sum of continuous payoff different stochastic processes that had no overlapping

activity. Possible applications include valuation of real options in which there are

competing processes and only one can be active at any time. Another possible ap-

plication is in the valuation of American-type Asian exchange options. The general

form of such a model, in the case of n such stochastic processes each with initial value
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xi, i = 1, . . . , n would take the form

Φ(x1, x2, . . . , xn) = sup
τ1,...,τn
σ1,...,σn

Ex1,...,xn

{
n∑
i=1

∫ σi

τi

e−rsf(Xi,s) ds

}

where the supremum is taken over all starting and stopping times of process Xi,t,

denoted respectively as τi and σi, and the function f is a deterministic function of

Xi,t yielding the instantaneous payoff of the stochastic process to the observer.

1.3 Prior Work

To formulate solution strategies for our problems, we required theory and techniques

that have been previously employed to solve similarly structured problems. While our

problem has not been directly solved within existing literature, the aforementioned

techniques were instrumental in finding solutions to our problem under certain con-

ditions.

The first major work in multiple stopping problems was done by Gus W. Hag-

gstrom of the University of California at Berkley in 1967 [8]. Presenting solutions in

the discrete-time case and for sums of stochastic processes, he was able to extend the

theory of optimal one- and two-stopping problems to allow for problems where r > 2

stops were possible.

The work of René Carmona and Nizar Touzi in 2008 extended the optimal multiple

stopping theory to include valuation procedures for swing options [2]. In energy

markets, option contracts exist that allow energy companies to buy excess energy

from other companies. Such swing options typically have multiple exercise rights,

but the same underlying stochastic process and a minimal time between successive

exercises, called refraction time.

Eric Dahlgren and Time Leung in 2015 examined optimal multiple stopping in

the context of real options, such as those requiring infrastructure investments, and
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examine the effect of lead time and project lifetime under this context [5]. Their

technique illustrates the potential benefits to several smaller-scale shorter lifetime

projects over those that require significantly more investment in infrastructure. The

solution technique provided in the paper is one of backward iteration. We conjecture

that extension of our problem into the general case for N > 2 will require a similar

strategy.

Kjell Arne Brekke and Bernt Øksendal in 1994 studied the problem of finding op-

timal sequences of starting and stopping times in production processes with multiple

activities [1]. Included considerations are the costs associated with opening, main-

taining, and eventual ending of activities. Their problem was one of a single integral

process.

As we desired a numerical implementation for our single candidate results, a nat-

ural choice was the least-squares Monte Carlo method developed by Longstaff and

Schwartz [10]. Their work began with a standard Monte Carlo simulation on the

variable for the purpose of valuing American options. First, they calculated cash flow

in the final time period as if the option were European. Looking at the previous

(next-to-last) time period, they compare the value of exercising in the next-to-last

period with the value of the discounted cash flow of the expected value (calculated

via regression) of continuing, but only on those paths that were in-the-money. If the

expected value of continuing exceeded the current exercise value, the model chooses to

continue. Then they examined the next previous time period and proceed as before.

We adapted this technique to our problem, choosing as our continuation criteria as

“continue only in the case that expected future cash flows are nonnegative.”

It is our intention with this work to examine optimal stopping problems where

there are different stochastic integrals whose starting and stopping times affect each

other. To this end, in the sections that follow we build the necessary background for

a discussion of our work.
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1.4 Brownian Motion, Markov Process, Itô Process

The stochastic processes that we will use in our formulations are all assumed to be

geometric Brownian motions. A Brownian motion is a stochastic process with the

following properties [14]:

• It has independent increments,

• the increments are Gaussian random variables, and

• the motion is continuous.

Or, more precisely, we have:

Definition 1.1 (Brownian Motion, [9]). A (standard, one-dimensional) Brownian

motion is a continuous, adapted process B = {Bt,Ft; 0 ≤ t < ∞}, defined on some

probability space (Ω,F , P ), with properties that B0 = 0 a.s. For 0 ≤ s < t, the

increment Bt − Bs is independent of Fs and is normally distributed with mean zero

and variance t− s.

Definition 1.2 (d-dimensional Brownian motion, [9]). Let d be a positive integer and

µ a probability measure on (Rd,B(Rd)). Let B = {Bt,Ft; t ≥ 0} be a continuous,

adapted process with values in Rd, defined on some probability space (Ω,F , P ). This

process is a d-dimensional Brownian motion with initial distribution µ, if

(i) P [B0 ∈ Γ] = µ(Γ), ∀Γ ∈ B(Rd)

(ii) for 0 ≤ s < t, the increment Bt − Bs is independent of Fs and is normally

distributed with mean zero and covariance matrix equal to (t− s)Id where Id is

the (d× d) identity matrix.

If µ assigns measure one to some singleton {x}, we say that B is a d-dimensional

Brownian motion starting at x.
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Definition 1.3 (Markov Process, [9]). Let d be a positive integer and µ a probability

measure on (Rd,B(Rd)). An adapted, d-dimensional process X = {Xt,Ft; t ≥ 0}

on some probability space (Ω,F , P µ) is said to be a Markov process with initial

distribution µ if

(i) P µ[X0 ∈ Γ] = µ(Γ), ∀Γ ∈ B(Rd);

(ii) for s, t ≥ 0 and Γ ∈ B(Rd),

P µ[Xt+s ∈ Γ|Fs] = P µ[Xt+s ∈ Γ|Xs], P
µ-a.s.

Definition 1.4 (Markov Family, [9]). Let d be a positive integer. A d-dimensional

Markov family is an adapted process X = {Xt,Ft; t ≥ 0} on some (Ω,F ), together

with a family of probability measures {P x}x∈Rd on (Ω,F ) such that

(a) for each F ∈ F , the mapping x 7→ P x(F ) is universally measurable;

(b) P x[X0 = x] = 1, ∀x ∈ Rd;

(c) for x ∈ Rd, s, t ≥ 0 and Γ ∈ B(Rd),

P x[Xt+s ∈ Γ|Fs] = P x[Xt+s ∈ Γ|Xs], P
x-a.s.;

(d) for x ∈ Rd, s, t ≥ 0 and Γ ∈ B(Rd),

P x[Xt+s ∈ Γ|Xs = y] = P y[Xt ∈ Γ], P xX−1
s -a.e. y.

Definition 1.5 (Strong Markov Process, [9]). Let d be a positive integer and µ

a probability measure on (Rd,B(Rd)). A progressively measurable, d-dimensional

process X = {Xt,Ft; t ≥ 0} on some (Ω,F , P µ) is said to be a strong Markov

process with initial distribution µ if
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(i) P µ[X0 ∈ Γ] = µ(Γ), ∀Γ ∈ B(Rd);

(ii) for any optional time S of {Ft}, t ≥ 0 and Γ ∈ B(Rd),

P µ[XS+t ∈ Γ|FS+] = P µ[XS+t ∈ Γ|XS], P µ-a.s. on {S <∞}.

Definition 1.6 (Strong Markov Family, [9]). Let d be a positive integer. A d-

dimensional strong Markov family is a progressively measurable processX = {Xt,Ft; t ≥

0} on some (Ω,F ), together with a family of probability measures {P x}x∈Rd on

(Ω,F ), such that:

(a) for each F ∈ F , the mapping x 7→ P x(F ) is universally measurable;

(b) P x[X0 = x] = 1, ∀x ∈ Rd;

(c) for x ∈ Rd, t ≥ 0, Γ ∈ B(Rd), and any optional time S of {Ft},

P x[XS+t ∈ Γ|FS+] = P x[XS+t ∈ Γ|XS], P x-a.s. on {S <∞};

(d) for x ∈ Rd, t ≥ 0, Γ ∈ B(Rd), and any optional time S of {Ft},

P x[XS+t ∈ Γ|XS = y] = P y[Xt ∈ Γ], P xX−1
S -a.e. y.

For the strong Markov property, we will often make use of what is called a shift

operator. For a given process X = {Xt,Ft; t ≥ 0} on a measurable space (Ω,F ), we

may sometimes construct a family of shift operators θs : Ω→ Ω, s ≥ 0 such that each

θs is F/F -measurable and

Xs+t(ω) = Xt(θs(ω)); ∀ω ∈ Ω, s, t ≥ 0. (1.1)

We may use shift operators to write a generalized Markov property as follows. If

H = H(ω) is a bounded (or nonnegative) F -measurable function, then for any initial
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distribution π and for any t ≥ 0 and x ∈ E we have

Eπ
[
H ◦ θt|FX

t

]
(ω) = EXt(ω)H Px − a.s. (1.2)

However, for any stopping time τ in the family of all stopping times, we have the

strong Markov property:

Eπ
[
H ◦ θτ |FX

τ

]
(ω) = EXτ (ω)H Px − a.s. (1.3)

Definition 1.7 (Itô Process, [15]). Let Wt, t ≥ 0, be a Brownian motion, and let Ft,

t ≥ 0, be an associated filtration. An Itô process is a stochastic process of the form

Xt = X0 +

∫ t

0

∆udWu +

∫ t

0

Θudu, (1.4)

where X0 is nonrandom and ∆u and Θu are adapted stochastic processes.

All of our stochastic processes will be geometric Brownian motions with drift

αi > 0, volatility βi > 0, and initial value Xi,0 = xi > 0, they are Itô processes

satisfying

Xi,t = Xi,0 +

∫ t

0

βidWi,u +

∫ t

0

αidu,

or equivalently,

dXi,t = Xi,t (αidt+ βidWi,t) .

ForX = (Xt)t≥0 a continuous semimartingale satisfying dXt = b(Xt) dt+σ(Xt)dBt,

P(Xs = c(s)) = 0 for s ∈ (0, t], c : R+ → R a continuous function of bounded variation

and F : R+ × R→ R satisfying

F is C1,2 on C1,C1 = {(t, x) ∈ R+ × R : x > c(t)} ,

F is C1,2 on C2,C2 = {(t, x) ∈ R+ × R : x < c(t)} ,
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and the infinitessimal generator LXf = bfx + (σ2/2)Fxx, then we may write Itô’s

formula as [13]

F (t,Xt) = F (0, X0) +

∫ t

0

(Ft + LXF )(s,Xs)I(Xs 6= c(s)) ds

+

∫ t

0

Fx(s,Xs)σ(Xs)I(Xs 6= c(s))dBs

+ 1
2

∫ t

0

(Fx(s,Xs+)− Fx(s,Xs−))I(Xs = c(s))d`cs(X), (1.5)

where `cs(X) is the local time of X at the curve c given by

`cs(X) = P- lim
ε↓0

1

2ε

∫ s

0

I(c(r)− ε < Xr < c(r) + ε)d〈X,X〉r, (1.6)

and P- lim indicates limit in probability.

1.5 Optimal Stopping, Martingale Approach

There are two major approaches to continuous-time optimal stopping problems: the

martingale approach, and the Markov approach. Both approaches will be outlined

below. The main theorems from each approach are from Peskir & Shiryaev, but with

added details to their proofs.

Definition 1.8 (Martingale, Submartingale, Supermartingale, [15]). Let (Ω,F ,P)

be a probability space, let T be a fixed positive number, and let Ft, 0 ≤ t ≤ T ,

be a filtration of sub-σ-algebras of F . Consider an adapted stochastic process Mt,

0 ≤ t ≤ T .

i) If E {Mt|Fs} = Ms for all 0,≤ s ≤ t ≤ T , we say this process is a martingale.

ii) If E {Mt|Fs} ≥Ms for all 0,≤ s ≤ t ≤ T , we say this process is a submartingale.

iii) If E {Mt|Fs} ≤Ms for all 0,≤ s ≤ t ≤ T , we say this process is a supermartin-

gale.
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As we need the result of the Optional Sampling, it is stated below. There are

many different modifications on this, but we state J. Doob’s stopping time theorem

from Peskir & Shiryaev [13].

Theorem 1.1 (Optional Sampling: Doob’s Stopping Time Theorem, [13]). Suppose

that X = (Xt,Ft)t≥0 is a submartingale (martingale) and τ is a Markov time. Then

the “stopped” process Xτ = (Xt∧τ ,Ft)t≥0 is also a submartingale (martingale).

Below we build the assumptions necessary for what follows. Let G = (Gt)t≥0 be a

stochastic process on (Ω,F , (Ft)t≥0), P ) that is adapted to the filtration (Ft)t≥0 in

the sense that each Gt is Ft-measurable.

Definition 1.9 ([13]). A random variable τ : Ω → [0,∞] is called a Markov time if

{τ ≤ t} ∈ Ft for all t ≥ 0. A Markov time is called a stopping time if τ <∞ P -a.s.

Assume G is right-continuous and left-continuous over stopping times. That is, if

τn and τ are stopping time such that τn ↑ τ as n → ∞, then Gτn → Gτ as n → ∞.

Further assume that GT = 0 when T =∞, and that

E
{

sup
0≤t≤T

|Gt|
}
<∞. (1.7)

The existence of the right-continuous modification of a supermartingale is a result of

(Ft)t≥0 being a right-continuous filtration, and that each Ft contains all P -null sets

from F .

We define the family of all stopping times τ to be those stopping times satisfying

τ ≥ t. In the case of T < ∞, the family of all stopping times τ satisfies t ≤ τ ≤ T .

Consider the optimal stopping problem

V T
t = sup

t≤τ≤T
E Gτ . (1.8)

We have two methods for solving this problem.
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i) Begin with the discrete-time problem by replacing time interval [0, T ] with Dn =

{tn0 , tn1 , . . . , tnn} where Dn ↑ D as n → ∞ and D is a countable, dense subset of

[0, T ]. Then we use backward induction methods and take limits. This method

is particularly useful for numerical approximations.

ii) Use the method of essential supremum.

For discrete time problems of finite horizon, we have a method for determining an

explicit solution from with backwards induction via the Bellman equation. For infinite

horizon problems, the Bellman equation method involves an initial guess from which

we calculate from the fixed point of the guess and then check our answer. However,

in the case of continuous time calculations, there is no time directly next to any fixed

time t, and so there is no iterative method we can use. Further, for both finite and

infinite horizon problems, there are an uncountably infinite number of times t. Infinite

horizon problems are easier as there is more likely to be a closed form solution to the

problem. This not necessarily the case for finite horizon problems [13].

We will not treat finite and infinite horizon problems differently. This allows us

to simplify notation to Vt = V T
t . Consider the process S = (St)t≥0 defined by

St = ess sup
τ≥t

E {Gτ |Ft} (1.9)

where τ is a stopping time. We call S the right modification of G. In cases of finite

horizon, we require τ ≤ T . The process S is called the Snell envelope of G.

Consider the stopping time

τt = inf{s ≥ t : Ss = Gs} (1.10)

for t ≥ 0 where inf ∅ =∞. In the case of finite horizon, we require in Equation (1.10)

that s ≤ T .
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We will require the concluding statements of the following lemma in the proof of

the main theorem for the martingale approach, stated here for completeness.

Lemma 1.2 (Essential Supremum, [13]). Let {Zα : α ∈ I} be a family of random

variables defined on (Ω,G , P ) where the index set I can be arbitrary. Then there

exists a countable subset J of I such that the random variable Z∗ : Ω→ R̄ defined by

Z∗ = sup
α∈J

Zα (1.11)

satisfies the following two properties:

P (Zα ≤ Z∗) = 1 ∀α ∈ I. (1.12)

If Z̃ : Ω→ R̄ is another random variable satisfying (1.13)

Equation (1.12) in place of Z∗, then P (Z∗ ≤ Z̃) = 1.

The random variable Z∗ is called the essential supremum of {Zα : α ∈ I} relative to

P and is denoted by Z∗ = ess supα∈I Zα. It is determined by the two properties above

uniquely up to a P -null set. Moreover, if the family {Zα : α ∈ I} is upwards directed

in the sense that

∀α, β ∈ I ∃γ ∈ I 3 Zα ∨ Zβ ≤ Zγ P -a.s, (1.14)

then the countable set J = {αn : n ≥ 1} can be chosen so that

Z∗ = lim
n→∞

Zαn P -a.s., (1.15)

where Zα1 ≤ Zα2 ≤ . . . P -a.s.

We may now state the main theorem of the martingale approach. The theorem is

Theorem 2.2 from Peskir & Shiryaev, but we add details to their proof.
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Theorem 1.3 (Martingale Approach, [13]). Consider the optimal stopping problem

Equation (1.8)

V T
t = sup

0≤τ≤T
E Gτ

upon assuming that the condition Equation (1.7)

E
{

sup
0≤t≤T

|Gt|
}
<∞

holds. Assume moreover when required below that

P (τt <∞) = 1 (1.16)

where t ≥ 0 and τt is the stopping time inf {s ≥ t : St = Gs}. (This condition is

automatically satisfied when the horizon T is finite). Then for all t ≥ 0 we have:

St ≥ E {Gτ |Ft} for each τ in the set of all stopping times, (1.17)

St = E {Gτt|Ft} . (1.18)

Moreover, if t ≥ 0 is given as fixed then we have:

(a) The stopping time τt is optimal in Equation (1.8).

(b) If τ∗ is an optimal stopping time in Equation (1.8) then τt ≤ τ∗ P -a.s.

(c) The process (Ss)s≥t is the smallest right-continuous supermartingale which dom-

inates {Gs}s≥t.

(d) The stopped process (Ss∧τt)s≥t is a right-continuous martingale.

Finally, if the condition in Equation (1.16) fails so that P (τt = ∞) > 0, then with

probability 1 there is no optimal stopping time in Equation (1.8).
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Proof:

We first establish that S = (St)t≥0 =
(
ess supτ≥t E {Gτ |Ft}

)
t≥0

is a supermartin-

gale. To this end, fix t ≥ 0 and we will show that the family {E {Gτ |Ft} : τ ≥ t}

is upwards directed in the sense that Equation (1.14) is satisfied. Note that for

σ1, σ2 ≥ tand σ3 = σ1IA + σ2IAC , where A = {E {Gσ1 |Ft} ≥ E {Gσ2|Ft}}, then

σ3 ≥ t is in the family of stopping timesand

E {Gσ3|Ft} = E {Gσ1IA +Gσ2IAC |Ft} (1.19)

= IAE {Gσ1|Ft}+ IACE {Gσ2|Ft}

= E {Gσ1|Ft} ∨ E {Gσ2|Ft} ,

which establishes that the family is upwards directed in the sense of Equation (1.14).

Since (1.14) is satisfied, we may appeal to Equation (1.15) for the existence of a

countable set J = {σk : k ≥ 1} that is a subset of all stopping times greater than or

equal to t such that

ess sup
τ ≥t

E {Gτ |Ft} = lim
k→∞

E {Gσk |Ft} , (1.20)

where E {Gσ1|Ft} ≤ E {Gσ2|Ft} ≤ . . . P -a.s.

Since St = ess supτ≥t E {Gτ |Ft} and the conditional monotone convergence the-

orem and by condition (1.7)

E
{

sup
0≤t≤T

|Gt|
}
<∞,

we must have that for all s ∈ [0, t]

E {St|Fs} = E
{

lim
k→∞

E {Gσk |Ft}
∣∣∣Fs

}
(1.21)

= lim
k→∞

E {E {Gσk |Ft}|Fs}
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= lim
k→∞

E {Gσk |Fs}

≤ Ss by the definition of S,

and hence (St)t≥0 is a martingale. Note also that the definition of S and Equation

(1.20) imply that

E St = sup
τ≥t

E Gτ , (1.22)

where τ is a stopping time and t ≥ 0.

Next we establish that the supermartingale S admits a right-continuous modifi-

cation S̃ = (S̃t)t≥0. A right-continuous modification of a supermartingale is possible

if and only if

t 7→ E St is right-continuous on R+ (1.23)

is satisfied [11]. We have by the supermartingale property of S that E St ≥ · · · ≥

E St2 ≥ E St1 , i.e. E Stn is an increasing sequence of numbers. Define L :=

limn→∞ E Stn , which must exist by the supermartingale property and as it is an

increasing sequence bounded above. Further, we have that E St ≥ L for given and

fixed tn such that tn ↓ t as n → ∞. Fix ε > 0 and by Equation (1.22) choose σ ≥ t

such that

E Gσ ≥ E Gt − ε. (1.24)

Fix δ > 0. Note that we are under no restriction to assume that tn ∈ [t, t+ δ] for all

n ≥ 1. Define stopping time σn by setting

σn =

 σ if σ > tn,

t+ δ if σ ≤ tn

(1.25)
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for n ≥ 1. For all n ≥ 1 we have

E Gσn = E GσI(σ > tn) + E Gt+δI(σ ≤ tn) ≤ E Stn (1.26)

since σn ≥ tn and Equation (1.22) holds. As n → ∞ in Equation (1.26) and using

condition (1.7) we have by the Bounded Convergence Theorem

E GσI(σ > t) + E Gt+δI(σ = t) ≤ L (1.27)

for all δ > 0. Letting δ ↓ 0 and by virtue of G being right-continuous, we have

E GσI(σ > t) + E GtI(σ = t) = E Gσ ≤ L. (1.28)

That is, L ≥ E St−ε for all ε > 0, and hence L ≥ E St. Thus L = E St and statement

(1.23) holds, and therefore S does indeed admit a right continuous modification S̃ =

(S̃t)t≥0. To simplify notation, we will denote the the right-continuous modification as

S for the remainder of the proof.

We may now establish statement (c). Denote Ŝ = (Ŝs)s≥t be another right-

continuous supermartingale dominating G = (Gs)s≥t. By the optional sampling the-

orem and using condition (1.7) we have

Ŝs ≥ E
{
Ŝτ

∣∣∣Fs

}
≥ E {Gτ |Fs} (1.29)

for all τ ≥ swhen s ≥ t. By the definition of Ss we have that Ss ≤ Ŝs P -a.s. for

all s ≥ t. By the right-continuity of S and Ŝ, this further establishes the claim that

P (Ss ≤ Ŝs for all s ≥ t) = 1. We may now establish Equations (1.17) and (1.18).

By the definition of St, Equation (1.17) follows immediately. To establish (1.18),

we consider cases. For the first case, consider Gt ≥ 0 for all t ≥ 0. Then for each
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λ ∈ (0, 1), we define the stopping time

τλt = inf{s ≥ t : λSs ≤ Gs}, (1.30)

where t ≥ 0 is given and fixed.

Note that by the right-continuity of S and G we have for all λ ∈ (0, 1)

λSτλt ≤ Gτλt
, (1.31)

τλt+ = τλt , (1.32)

Sτt = Gτt , (1.33)

τt+ = τt, (1.34)

where τt = inf{s ≥ t : Ss = Gs}, as defined earlier. The optional sampling theorem

and condition (1.7) implies

St ≥ E
{
Sτλt

∣∣∣Ft

}
(1.35)

since τλt is a stopping time greater than or equal to t. To show that the reverse

inequality hold, let us consider the process

Rt = E
{
Sτλt

∣∣∣Ft

}
(1.36)

for t ≥ 0.

For s < t we have

E {Rt|Fs} = E
{
E
{
Sτλt

∣∣∣Ft

}∣∣∣Fs

}
= E

{
Sτλt

∣∣∣Fs

}
≤ E

{
Sτλs
∣∣Fs

}
= Rs, (1.37)

where the inequality is a result of the optional sampling theorem and using condition

(1.7), since τλt ≥ τλs when s < t. Thus R is a supermartingale. Therefore E Rt+h

increases as h decreases and limh↓0 E Rt+h ≤ E Rt. But by Fatou’s lemma, condition
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(1.7), the fact that τλt+h decreases as h decreases, and S is right-continuous we have

lim
h↓0

E Rt+h = lim
h↓0

E Sτλt+h ≥ E Sτλt = E Rt. (1.38)

Thus t 7→ E Rt is right-continuous on R+, and hence R admits a right-continuous

modification. We are therefore under no restriction to make a further assumption

that R is right-continuous. To finish showing the reverse inequality, i.e. that St ≤

Rt = E
{
Sτλt

∣∣∣Ft

}
, consider the right-continuous supermartingale

Lt = λSt + (1− λ)Rt (1.39)

for t ≥ 0.

To proceed further, we require the following claim:

Lt ≥ Gt P-a.s. (1.40)

for all t ≥ 0. However, since

Lt = λSt + (1− λ)Rt

= λSt + (1− λ)RtI(τλt = t) + (1− λ)RtI(τλt > t) (1.41)

= λSt + (1− λ)E
{
StI(τλt = t)

∣∣Ft

}
+ (1− λ)RtI(τλt > t)

= λStI(τλt = t) + (1− λ)StI(τλt = t) + λStI(τλt > t)

+ (1− λ)RtI(τλt > t)

≥ StI(τλt = t) + λStI(τλt > t), as Rt ≥ 0

≥ GtI(τλt = t) +GtI(τλt > t), by definition of τλt

= Gt.

This establishes the claim. Since S is the smallest right-continuous supermartingale
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dominating G, we see that Equation (1.41) implies

St ≤ Lt P-a.s., (1.42)

and so by (1.39) we may conclude that St ≤ Rt P -a.s. Thus the reverse inequality

holds and

St = E
{
Sτλt

∣∣∣Ft

}
(1.43)

for all λ ∈ (0, 1). Thus we must have

St ≤
1

λ
E
{
Gτλt

∣∣∣Ft

}
(1.44)

for all λ ∈ (0, 1). By letting λ ↑ 1 and using the conditional Fatou’s lemma, condition

(1.7) and the fact that G is left-continuous over stopping times, we obtain

St ≤ E
{
Gτ1t

∣∣Ft

}
(1.45)

where τ 1
t is a stopping time given by limλ↑1 τ

λ
t . By Equation (1.9), the reverse in-

equality of (1.45) is always satisfied and we may conclude that

St = E
{
Gτ1t

∣∣Ft

}
(1.46)

for all t ≥ 0. To complete establishing (1.18) it is enough to verify that τ 1
t = τt. Since

τλt ≤ τt for all λ ∈ (0, 1), we have τ 1
t ≤ τt. If τt(ω) = t, τ 1

t = τt is obviously true. If

τt(ω) > t, then there exists ε > 0 such that τt(ω)− ε > t and Sτt(ω)−ε > Gτt(ω)−ε ≥ 0.

Hence we can find λ ∈ (0, 1) and close enough to 1 such that λSτt(ω)−ε ≥ Gτt(ω)−ε

showing that τλt (ω) ≥ τt(ω)−ε. If we let λ ↑ 1 and then let ε ↓ 0 we conclude τ 1
t ≥ τt.

Thus τ 1
t = τt, and the case of Gt ≥ 0 is proven.

Next we consider G in general satisfying condition (1.7)). Set H = inft≥0Gt and
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introduce the right-continuous martingale Mt = E {H|Ft} for t ≥ 0 so as to replace

the initial gain process G with G̃ = (G̃t)t≥0 defined by G̃t = Gt −Mt for t ≥ 0. Note

that G̃ need not satisfy (1.7), but M is uniformly integrable since H ∈ L1(P ). G̃ is

right-continuous and not necessarily left-continuous over stopping times due to the

existence of M , but M itself is a uniformly integrable martingale so that the optional

sampling theorem applies. Clearly G̃t ≥ 0 and the optional sampling theorem implies

S̃t = ess sup
τ≥t

E
{
G̃τ

∣∣∣Ft

}
= ess sup

τ≥t
E {Gτ −Mτ |Ft} = St −Mt (1.47)

for all t ≥ 0. The same arguments for justifying the case of Gt ≥ 0 may be applied

to G̃ and S̃ to imply Equation (1.18) and the general case is proven.

Now we establish parts (a) and (b). Part (a) follows by taking expectations in

Equation (1.18) and using (1.22). To establish (b), we claim that the optimality of τ∗

implies that Sτ∗ = Gτ∗ P -a.s. If the claim were false, then we would have Sτ∗ ≥ Gτ∗

P -a.s. with P (Sτ∗ > Gτ∗) > 0, and thus E Gτ∗ < E Sτ∗ ≤ E St = Vt where the

second inequality follows from the optional sampling theorem and the supermartingale

property of (Ss)s≥t, while the final inequality is directly from Equation (1.22). The

strict inequality contradicts the fact that τ∗ is optimal. Hence we must have that

Sτ∗ = Gτ∗ P -a.s.and the claim has been proven. That τt ≤ τ∗ P -a.s. follows from the

definition of τt.

Next we establish part (d). It is enough to show that

E Sσ∧τt = E St (1.48)

for all bounded stopping times σ ≥ t. To this end, note that the optional sampling

theorem and condition (1.7) imply E Sσ∧τt ≤ E St. However, by Equations (1.18)

and (1.33) we have

E St = E Gτt = E Sτt ≤ E Sσ∧τt . (1.49)
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Thus we see that Equation (1.48) holds and thus (Ss∧τt)s≥t is a right-continuous

martingale (right-continuity from (c)), and (d) is established.

1.6 Optimal Stopping, Markov Approach

While we have formally defined Markov process above, the following definition pro-

vides a better intuition into the process and its defining property.

Definition 1.10 (Markov Process, [15]). Let (Ω,F ,P) be a probability space, let T

be a fixed positive number, and let Ft, 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of

F . Consider an adapted stochastic process Xt, 0 ≤ t ≤ T and for every nonnegative,

Borel-measurable function f , then there is another Borel-measurable function g such

that

E {f(Xt)|Fs} = g(Xs). (1.50)

Then we say that X is a Markov process.

As we will require the strong Markov property at several points in the discus-

sion that follows, we state without proof a theorem on the Markov Property for Itô

diffusions.

Theorem 1.4 (Strong Markov Property for Itô diffusions, [12]). Let f be a bounded

Borel function on Rn, τ a stopping time with respect to Ft, τ <∞ a.s. Then,

Ex {f (Xτ+h)|Fτ} = EXτ f(Xh) for all h ≥ 0. (1.51)

Consider a strong Markov process X = (Xt)t≥0 defined on a filtered probabil-

ity space (Ω,F , (Ft)t≥0,Px) and taking values in a measurable space (E,B). For

simplicity we assume E = Rd, d ≥ 1, and B = B(Rd) is the Borel σ-algebra on

Rd. We assume that the process X starts at x at time zero under Px for x ∈ E

and that the sample paths of X are both right- and left-continuous over stopping
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times. That is, for stopping times τn ↑ τ then Xτn → Xτ Px-a.s. as n → ∞. It

is also assumed that the filtration (Ft)t≥0 is right-continuous. Further assume that

the mapping x 7→ Px(F ) is measurable for each F ∈ F , and hence x 7→ Ex Z is

measurable for each (bounded or non-negative) random variable Z. Without loss of

generality we assume (Ω,F ) = (E[0,∞),B[0,∞)) so that the shift operator θt : Ω→ Ω

is well defined by θt(ω)(s) = ω(t+ s) for ω = (ω(s))s≥0 ∈ Ω and t, s ≥ 0.

For a given measurable function G : E → R satisfying G(XT ) = 0 for T =∞ and

Ex
{

sup
0≤t≤T

|G(Xt)|
}
<∞ (1.52)

for all x ∈ E, we consider the optimal stopping problem

V (x) = sup
τ≥0

Ex G(Xτ ) (1.53)

where x ∈ E and the supremum is taken over all stopping times τ of X.

To consider the optimal stopping problem Equation (1.53) when T = ∞, we

introduce the continuation set

C = {x ∈ E : V (x) > G(x)} (1.54)

and the stopping set

D = {x ∈ E : V (x) = G(x)}. (1.55)

If V is lower semicontinuous and G is upper semicontinuous, then C is an open set

and D is closed. Introduce the first entry time τD of X into D by setting

τD = inf{t ≥ 0 : Xt ∈ D}. (1.56)

Then τD is a stopping (Markov) time with respect to (Ft)t≥0 when D is closed since
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both X and (Ft)t≥0 are right-continuous.

Superharmonic functions are important to solving the optimal stopping problem.

Definition 1.11 (Superharmonic, [13]). A measurable function F : E → R is said

to be superharmonic if

Ex F (Xσ) ≤ F (x) (1.57)

for all stopping times σ and all x ∈ E.

It will be verified in the proof of the next theorem that superharmonic functions

have the following property whenever F is lower semicontinuous and (F (Xt))t≥0 is

uniformly integrable:

F is superharmonic if and only if (F (Xt))t≥0 is a right- (1.58)

continuous supermartingale under Px for every x ∈ E.

This theorem presents the necessary conditions for the existence of an optimal

stopping time, quoted from Theorem 2.4 of Peskir & Shiryaev. We provide proof

with additional details for the sake of completeness.

Theorem 1.5 (Existence of optimal stopping, [13]). Let us assume that there exists

an optimal stopping time τ∗ in Equation (1.53),

V (x) = sup
τ

Ex G(Xτ ).

That is, and let τ∗ be such that

V (x) = Ex G(Xτ∗) ∀x ∈ E. (1.59)



24

Then we have:

The value function V is the smallest superharmonic (1.60)

function which dominates the gain function G on E.

Let us in addition to Equation (1.59) assume that V is lower semicontinuous and

G is upper semicontinuous. Then we have:

The optimal stopping time τD satisfies τD ≤ τ∗ Px-a.s. (1.61)

for all x ∈ E and is optimal in (1.53).

The stopped process (V (Xt∧τD))t≥0 is a right- (1.62)

continuous martingale under Px for every x ∈ E.

Proof:

First we establish Equation (1.60). Let x ∈ E, and let σ be a stopping time. Then

we have,

Ex V (Xσ) = ExEXσ G(Xτ∗) by plugging in V (Xσ).

= ExEx {G (Xτ∗ ◦ θσ)|Fσ} by strong Markov

= Ex G (Xσ+τ∗◦θσ)

≤ sup
τ

Ex G(Xτ )

= V (x),

and hence V is superharmonic. Let F be a superharmonic function dominating G on

E. Then we have

Ex G(Xτ ) ≤ Ex F (Xτ ) ≤ F (x)
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for x ∈ E and all stopping times τ . Taking the supremum over all stopping times τ ,

we see that

sup
τ

Ex G(Xτ ) = V (x) ≤ F (x).

Hence V is the smallest superharmonic function dominating G on E.

Next we establish Equation (1.61). Proceed by making the following claim:

V (Xτ∗) = G(Xτ∗) Px-a.s. for all x ∈ E.

If Px(V (Xτ∗) > G(Xτ∗)) > 0 for some x ∈ E, then Ex G(Xτ∗) < Ex V (Xτ∗) ≤ V (x)

as V is superharmonic, which contradicts the optimality of τ∗. Thus the claim is

verified.

It follows that τD ≤ τ∗ Px-a.s. for all x ∈ E.

We have that V (x) ≥ Ex V (Xτ ) since V is superharmonic. By setting σ ≡ s in

Equation (1.57), we see that

V (Xt) ≥ EXt V (Xs)

= Ex {V (Xt+s)|Ft} by Markov property

for all t, x ≥ 0 and all x ∈ E. Since V (Xt) ≥ EXt {V (Xt+s)|Ft}, we have that

(V (Xt))t≥0 is a supermartingale under Px for all x ∈ E. Since V is lower semicontin-

uous and (V (Xt))t≥0 is a supermartingale, we have that (V (Xt))t≥0 is right-continuous

by Proposition 2.5, which is stated below. Thus we have that τD ≤ τ∗ Px-a.s. for all

x ∈ E and is optimal in Equation (1.53).

Now we establish Equation (1.62). Let x ∈ E, 0 ≤ s ≤ t. By the strong Markov

property,

Ex {V (Xt∧τD)|Fs∧τD} = Ex
{
EXt∧τD {G (XτD)|Fs∧τD}

}
= Ex {Ex {G (XτD) ◦ θt∧τD |Ft∧τD}|Fs∧τD}
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= Ex {Ex {G (XτD)|Ft∧τD}|Fs∧τD}

= EXs∧τD G (XτD)

= V (Xs∧τD).

Thus V (Xt∧τD) is a martingale. The right-continuity of V (Xt∧τD) follows by the

right-continuity of (V (Xt))t≥0.

We will require the statement of the following proposition for the proof of the next

theorem.

Proposition 1.6 ([13]). If a superharmonic function F : E → R is lower semicon-

tinuous, then the superharmonic (F (Xt))t≥0 is right-continuous Px=a.s. for every

x ∈ E.

We now turn our attention to the main theorem of this section, quoted from

Theorem 2.7 of Peskir & Shiryaev. We provide proof with added details.

Theorem 1.7 (Markov Approach, [13]). Consider the optimal stopping problem

Equation (1.53),

V (x) = sup
τ

Ex G (Xτ ) ,

upon assuming that the condition Equation (1.52),

Ex
{

sup
0≤t≤T

|G(Xt)|
}
<∞,

is satisfied. Let us assume that there exists the smallest superharmonic function V̂

which dominates the gain function G on E. Let us in addition assume that V̂ is lower

semicontinuous and G is upper semicontinuous. Set D = {x ∈ E : V̂ (x) = G(x)}

and let τD be defined by Equation (1.56),

τD = inf{t ≥ 0 : Xt ∈ D}.
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We then have:

If Px(τD <∞) = 1 for all x ∈ E, then V̂ = V and τD is (1.63)

optimal in Equation (1.53).

If Px(τD <∞) = 1 for some x ∈ E, then there is no (1.64)

optimal stopping time OME in Equation (1.53).

Proof:

Since V̂ is superharmonic, we have

Ex G (Xτ ) ≤ Ex V̂ (Xτ ) ≤ V̂ (x) (1.65)

for all stopping times τ and all x ∈ E. Taking the supremum over all τ of both sides

of Ex V (Xτ ) ≤ Ex V (Xσ), for stopping times σ and τ such that σ ≤ τ Px-a.s. with

x ∈ E, we find that

G(x) ≤ V (x) ≤ V̂ (x) (1.66)

for all x ∈ E.

To establish Equation (1.63), we assume that Px(τD <∞) = 1 for all x ∈ E, and

that G is bounded. Then for given and fixed ε > 0, consider the sets

Cε = {x ∈ E : V̂ (x) > G(x) + ε}, (1.67)

Dε = {x ∈ E : V̂ (x) ≤ G(x) + ε}. (1.68)

Since V̂ is lower semicontinuous and G is upper semicontinuous, we have that Cε is

open and Dε is closed. Further, we also have that Cε ↑ C and Dε ↓ D as ε ↓ 0, where

C and D are defined by Equations (1.54) and (1.55), respectively.
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Define the stopping time

τDε = inf{t ≥ 0 : Xt ∈ Dε}. (1.69)

Since D ⊆ Dε and Px(τD < ∞) = 1 for all x ∈ E, we see that Px(τDε < ∞) = 1 for

all x ∈ E. To show that Ex V̂
(
XτDε

)
= V̂ (x) for all x ∈ E, we must first show that

G(x) ≤ Ex V̂
(
XτDε

)
for all x ∈ E. To this end, we set

c = sup
x∈E

(
G(x)− Ex V̂

(
XτDε

))
(1.70)

and note that

G(x) ≤ c+ Ex V̂
(
XτDε

)
(1.71)

for all x ∈ E. Further note that c is finite as G is bounded, and hence V̂ is bounded.

By the strong Markov property we have

Ex
{
EXσ V̂

(
XτDε

)}
= Ex

{
Ex
{
V̂
(
XτDε

)
◦ θσ

}∣∣∣Fσ

}
(1.72)

= Ex
{
Ex
{
V̂
(
Xσ+τDε◦θσ

)}∣∣∣Fσ

}
= Ex V̂

(
Xσ+τDε◦θσ

)
≤ Ex V̂ (XτDε

)

using the fact that V̂ is superharmonic and lower semicontinuous from the above

proposition, and that σ+ τDε ◦ θσ ≥ τDε since τDε is the first entry time to a set. This

shows that the function

x 7→ Ex V̂
(
XτDε

)
is superharmonic (1.73)

from E to R. Hence c+ Ex V̂
(
XτDε

)
is also superharmonic and we may conclude by
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the definition of V̂ that

V̂ (x) ≤ c+ Ex V̂ (XτDε
) (1.74)

for all x ∈ E.

Given 0 < δ ≤ ε choose xδ ∈ E such that

G(xδ)− Exδ V̂
(
XτDε

)
≥ c− δ. (1.75)

Then by Equations (1.74) and (1.75) we get

V̂ (xδ) ≤ c+ Exδ V̂
(
XτDε

)
≤ G(xδ) + δ ≤ G(xδ) + ε. (1.76)

This shows that xδ ∈ Dε and thus τDε ≡ 0 under Pxδ . Inserting this conclusion into

Equation (1.75) we have

c− δ ≤ G(xδ)− V̂ (xδ) ≤ 0. (1.77)

Letting δ ↓ 0 we see that c ≤ 0, thus establishing G(x) ≤ Ex V̂ (XτDε
) for all

x ∈ E. Using the definition of V̂ and Equation (1.73), we immediately see that

Ex V̂ (XτDε
) = V̂ (x) for all x ∈ E. And from this result, we get

V̂ (x) = Ex V̂
(
XτDε

)
≤ Ex G

(
XτDε

)
+ ε ≤ V (x) + ε (1.78)

for all x ∈ E upon using the fact that V̂ (XτDε
) ≤ G(XτDε

) + ε since V̂ is lower

semicontinuous and G is upper semicontinuous. Letting ε ↓ 0 in Equation (1.78) we

see that V̂ ≤ V and thus by Equation (1.66) we can conclude that V̂ = V . From

(1.78) we also have that

V (x) ≤ Ex G
(
XτDε

)
+ ε (1.79)
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for all x ∈ E. Letting ε ↓ 0 and using that Dε ↓ D we see that τDε ↑ τ0 where τ0 is

a stopping time satisfying τ0 ≤ τD. Since V is lower semicontinuous and G is upper

semicontinuous we see from the definition of τDε that V (XτDε
) ≤ G(XτDε

) + ε for all

ε > 0. Letting ε ↓ 0 and using that X is left-continuous over stopping times, it follows

that V (Xτ0) ≤ G(Xτ0) since V is lower semicontinuous andG is upper semicontinuous.

This shows that V (Xτ)) = G(Xτ0) and therefore τD ≤ τ0, showing that τ0 = τD. Thus

τDε ↑ τD as ε ↓ 0. Making use of the latter fact in Ex V̂
(
XτDε

)
= V̂ (x) after letting

ε ↓ 0 and applying Fatou’s lemma, we have

V (x) ≤ lim sup
ε↓0

Ex G
(
XτDε

)
(1.80)

≤ Ex lim sup
ε↓0

G
(
XτDε

)
≤ Ex G

(
lim sup

ε↓0
XτDε

)
= Ex G

(
XτDε

)
(1.81)

using that G is upper semicontinuous. This shows that τD is optimal in the case

where G is bounded.

1.7 Cissé-Patie-Tanré Method

A technique we will make use of later developed by Cissé et. al in 2012 [4]. will

allow us to transform these integral problems into ones without integrals. Consider

the optimal stopping problem

Φ(x) = sup
σ≥0

Ex
{
e−rσg(Xσ)− Cσ

}
,

Ct =

∫ t

0

e−rsc(Xs) ds,
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where r > 0, c(x) and g(x) are deterministic functions, and Xt a geometric Brownian

Motion starting at x. Denote δ(x) = Ex {C∞}. For a stopping time σ, we have the

identity C∞ = Cσ + e−rσC∞ ◦ θσ, where θ denotes the shift operator. Note that for

s = u + σ, ds = du and Xu+σ = Xu ◦ θσ for a stopping time σ. The justification of

this identity follows directly from application of properties of shift operators:

C∞ =

∫ ∞
0

e−rsc(Xs) ds

=

∫ σ

0

e−rsc(Xs) ds+

∫ ∞
σ

e−rsc(Xs) ds

=

∫ σ

0

e−rsc(Xs) ds+

∫ ∞
0

e−r(u+σ)c(Xu ◦ θσ) du

=

∫ σ

0

e−rsc(Xs) ds+ e−rσ
(∫ ∞

0

e−ruc(Xu) du

)
◦ θσ

= Cσ + e−rσC∞ ◦ θσ.

The following lemma allows us to transform our problems later. For ease of

discussion, for the purposes of this paper we will denote this as the CPT approach.

Lemma 1.8 ([4]). If δ(x) is finite on the domain E, then for any x ∈ E we have

sup
σ≥0

Ex
{
e−rσg(Xσ)− Cσ

}
= sup

σ≥0
Ex
{
e−rσ (g(Xσ)− δ(Xσ))

}
− δ(x), (1.82)

were σ is any stopping time in the set of all stopping times.

Proof:

As C∞ = Cσ + e−rσC∞ ◦ θσ, we have −Cσ = e−rσC∞ ◦ θσ − C∞. Hence by iterated

conditioning and the strong Markov property,

Ex
{
Ex
{
e−rσg(Xσ)− Cσ

∣∣Fσ

}}
= Ex

{
e−rσg(Xσ) + Ex

{
e−rσC∞ ◦ θσ − C∞

∣∣Fσ

}}
= Ex

{
e−rσg(Xσ) + e−rσEXσC∞

}
− Ex C∞
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= Ex
{
e−rσ (g(Xσ) + δ(Xσ))

}
− δ(x)

as desired.



CHAPTER 2: SINGLE VARIABLE FORMULATIONS

2.1 Problem Formulation

We begin our discussion of our extensions by examining single candidate cases with

infinite horizon. We have, in general, two approaches for the infinite horizon problem:

PDE and change of numeraire. While we use both in the two variable case, we will

only use the PDE method and the Cissé-Patie-Tanré method, which is also PDE-

based. First, we examine the case in which the single candidate arrives and is hired

immediately at time t = 0. Hence, for this case, our problem will result in an integral

from zero to stopping time σ. The value function is given by

Φ(x) = sup
σ≥0

Ex
{∫ σ

0

e−rsf(Xs)ds

}
. (2.1)

Here Φ denotes the value function that maximizes the expected value over all stopping

times σ, Xt is the candidate’s innate value, and f is the value of hte candidate to

the observer. The supremum is taken over all possible stopping times σ > 0. The

stochastic process Xt is a geometric Brownian motion with dynamics

dXt = Xt (α dt+ β dWt) , (2.2)

where Wt is a one-dimensional Brownian motion. We assume throughout that r > 0,

α > 0, β > 0, and X0 = x0 > 0. The following remark allows us to begin our search

for solutions.



34

Remark 2.9 (Øksendal [12]). Let h ∈ C2(Rn) and A be the characteristic operator

for X. Let h∗ be the optimal reward function for the optimal stopping problem

supτ E{h(Xτ )}. Define the continuation region to be

C = {x : h(x) < h∗(x)} ⊂ Rn.

Then for

U = {x : AXh(x) > 0} ,

we observe that U ⊆ C, and it is never optimal to exercise at any x ∈ U . It is only

optimal to exercise upon exiting C. However, as it may be the case that U 6= C, it

may be optimal to continue beyond the boundary of U and exercise by exiting C \ U .

As the integral of a one-dimensional Markov process is not itself Markovian, we

instead consider the following two-dimensional Markov process:

dZt =

 dXt

dYt

 :=

 αXt

e−rtf(Xt)

 dt+

 βXt

0

 dWt,

Z0 = z0 = (X0, Y0),

where Yt =
∫ t

0
e−rsf(Xs)ds. Then,

Φ(x0) = sup
σ

Ex0 {Yσ}

= sup
σ

Ex0,0 {Yσ + g(Xσ)} ,

where g(x) ≡ 0.
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Then we have

Φ(x0) = sup
σ

Ex0,0 {Yσ + g(Xσ)}

= sup
σ

Ex0,0 {g̃(Zσ)} ,

where g̃(z) := y+g(x). The characteristic operator of X isAX = 1
2
β2x2∂xx+αx∂x+∂t.

Then the characteristic operator AZ of Zt acting on a function φ is

AZφ(z) = AXφ(t, x) + e−rtf(x)
∂φ

∂y
, (2.3)

and we begin by examining a subset of the continuation region where

U =
{

(x, t) ∈ R+ × R+ : AZ g̃ > 0
}
. (2.4)

Notice that, in general,

AZ g̃ = AX g̃(x) + e−rtf(x)
∂g̃

∂y

= 0 + e−rtf(x),

and as e−rt > 0 for all t, we will primarily be investigating f(x) > 0 in our examination

of U . We can now examine several specific cases for f(x).

2.2 The case of f(x) = x

In the case where the candidate’s instantaneous value is f(x) = x, and we have

discounting inside the integral, so the subset of the continuation region where we

begin our investigation is

U =
{

(x, t) ∈ R+ × R+ : AXg(x) + e−rtf(x) > 0
}
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=
{

(x, t) ∈ R+ × R+ : x > 0
}
.

For candidate ability Xt a Geometric Brownian Motion with annual drift α and annual

volatility β, this subset of the continuation region is the entire domain and therefore

the continuation region is the entire domain. That is, there is no finite stopping time,

and σ =∞.

Since σ =∞ we may evaluate Φ(x) directly. In the case where α 6= r,

Φ(x0) = lim
t→∞

∫ t

0

e−rsEx0 {Xs} ds

= lim
t→∞

∫ t

0

x0e
(α−r)sds

= lim
t→∞

x0

α− r
e(α−r)s

∣∣∣∣t
0

=

 ∞ for α > r

x0
r−α for α < r

.

However, in the case where α = r we have

Φ(x0) = lim
t→∞

∫ t

0

x0ds

=∞.

Hence our complete solution to Equation (2.1) in the case of f(x) = x is given by

Φ(x) =

 ∞ for α ≥ r

x
r−α for α < r

. (2.5)
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2.3 The case of f(x) = x−K,K > 0

For f(x) = x −K where K > 0 is some known constant, we have the subset of the

continuation region as

U =
{

(x, t) ∈ R+ × R+ : AXg(x) + e−rtf(x) > 0
}

= {(x, t) : x > K} .

Thus we seek a continuation region of the form

C = {(x, t) : x > d}

for some 0 ≤ d < K. Using the AZ , we see that the partial differential equation is

1
2
β2x2φxx + αxφx + φt + e−rt(x−K) = 0 (2.6)

for x > d and 0 otherwise. In this later domain, 0 ≤ x ≤ d, we stop immediately

and have
∫ 0

0
e−rsf(Xs)ds. That is, σ = 0. We seek an overall solution of the form

φ(x, t) = e−rtψ(x). Then the PDE reduces to the ODE

1
2
β2x2ψ′′ + αxψ′ − rψ + (x−K) = 0, (2.7)

which is a nonhomogeneous Cauchy-Euler equation. The homogeneous solution is of

the form ψh(x) = C1x
γ1 + C2x

γ2 where

γ1 = β−2

[
1
2
β2 − α +

√(
1
2
β2 − α

)2
+ 2rβ2

]
> 0,

γ2 = β−2

[
1
2
β2 − α−

√(
1
2
β2 − α

)2
+ 2rβ2

]
< 0.

(2.8)
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As we assume that our solution will be continuous and smooth over the boundary

d, we use the method of Variation of Parameters to find a particular solution. In

standard form, the ODE becomes

ψ′′ + 2α
β2x

ψ′ − 2r
β2x2

ψ = −2(x−K)

β2x2

Let y1(x) = xγ1 , y2(x) = xγ2 , and g(x) = −2(x−K)/(β2x2). Hence the Wronskian is

W [y1y2](x) = (γ2 − γ1)xγ1+γ2−1.

Denote
√
· =

√(
1
2
β2 − α

)2
+ 2rβ2, and assume r > α. The assumption of r 6= α

guarantees that γ1 6= 1, and hence the following integrals do not result in logarithmic

functions.

v1(x) = −
∫

g(x)y2(x)

W [y1y2](x)
dx

=
−1√
·

[
x−γ1+1

1− γ1

−Kx−γ1

−γ1

]
v1(x)y1(x) =

−1√
·

[
x

1− γ1

+
K

γ1

]
v2(x) =

∫
g(x)y1(x)

W [y1y2](x)
dx

=
1√
·

[
x−γ2+1

1− γ2

−Kx−γ2

−γ2

]
v2(x)y2(x) =

1√
·

[
x

1− γ2

+
K

γ2

]

Thus the particular solution is

ψp(x) = v1y1(x) + v2y2(x) =
x

r − α
− K

r
, (2.9)
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and the general solution to the ODE is

ψ(x) =

 C1x
γ1 + C2x

γ2 + x
r−α −

K
r

for x > d

0 for 0 ≤ x ≤ d
(2.10)

If we suppose that there is no finite stopping time, that is σ =∞, then Φ(x) = ψp(x).

Since we would expect Φ to asymptotically approach this function as σ → ∞, we

may consider that C1 ≡ 0.

As we have assumed that ψ(x) be continuous and smooth at the boundary d, we

must have that

ψ(x) =

 C2x
γ2 + x

r−α −
K
r

for x > d

0 for 0 ≤ x ≤ d

C2 = − d−γ2+1

γ2(r − α)

d = K
γ2(r − α)

r(γ2 − 1)

Thus for r > α,

φ(x, t) =

 e−rt
(

−d
γ2(r−α)

(
x
d

)γ2 + x
r−α −

K
r

)
for x > d

0 for 0 ≤ x ≤ d
. (2.11)

So at (x, t) = (x0, 0) we have

φ(x0) =


(

−d
γ2(r−α)

(
x0
d

)γ2 + x0
r−α −

K
r

)
for x0 > d

0 for 0 ≤ x0 ≤ d
. (2.12)
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2.4 CPT Approach

For Φ(x) = supσ Ex
{∫ σ

0
e−rsf(Xs)ds

}
, rewriting this into the CPT form we have

g ≡ 0 and c(x) = −f(x). Then for a general f we have

δ(x) = Ex {C∞} = Ex
{
−
∫ ∞

0

e−rsf(Xs) ds

}
, (2.13)

and we may rewrite the problem according to Lemma 1.8 as the following optimal

stopping problem:

Φ(x) = sup
σ

Ex
{
e−rσδ (Xσ)

}
− δ(x). (2.14)

In the case of f(x) = x, we have

δ(x) = −
∫ ∞

0

e(α−r)sXs ds

=

 −
x

r−α for r > α

−∞ for r ≤ α
.

So as before, we shall see that the problem becomes trivial. When r ≤ α, we have

Φ(x) ≡ ∞. When r < α our problem can be rewritten as

Φ(x) = sup
σ

Ex
{
−e−rσ Xσ

r − α

}
−
(
− x

r − α

)
. (2.15)

Notice that the problem becomes trivial as we are taking the supremum of a strictly

negative process. That is, the optimal stopping time will be ∞ in order to have the

discounting reduce δ to zero, and our final value of Φ(x) will be x/(r − α) as seen in

Equation (2.5).

In the case of f(x) = x−K, K > 0, and r > α, we find

Ct =

∫ t

0

e−rs (K −Xs) ds
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δ(x) = Ex C∞ =
K

r
− x

r − α

Φ(x) = sup
σ

Ex
{
e−rσ

(
K

r
− Xσ

r − α

)}
− K

r
+

x

r − α

=
1

r − α
sup
σ

Ex
{
e−rσ

(
K

(
r − α
r

)
−Xσ

)}
− K

r
+

x

r − α

Recall that the infinitessimal generator of Xt is Lxf(x) = 1
2
β2x2f ′′(x) + αxf ′(x).

By examining the ODE

ψ(x) satisfies

 Lxψ(x)− rψ(x) = 0 for x ≥ x0

ψ(x) = K
(
r−α
r

)
− x for 0 ≤ x < x0

, (2.16)

we guess that the function ψ will take the form Cxγ and we require that it be con-

tinuous and smooth at x = x0. Plugging in this test function, we have that γ is the

root of the quadratic

1
2
β2γ2 +

(
α− 1

2
β2
)
γ − r = 0.

Then γ is as in Equation (2.8). As we seek a solution that approaches δ(x) asymp-

totically as x→∞, we choose γ2 from Equation (2.8). Continuity at x = x0 implies,

Cxγ20 = K

(
r − α
r

)
− x0,

C = x−γ20

[
K

(
r − α
r

)
− x0

]
.

Smoothness at x = x0 implies,

Cγ2x
γ2−1
0 = −1,

C = −x
1−γ2
0

γ2

.
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Combining these, we see that

x−γ20

[
K

(
r − α
r

)
− x0

]
= −x

1−γ2
0

γ2

,

K

(
r − α
r

)
= x0

(
γ2 − 1

γ2

)
x0 = K

(
γ2

γ2 − 1

)(
r − α
r

)
.

Then our overall solution will be

φ(x) =
1

r − α
ψ(x)− K

r
+

x

r − α

=


1

r−α

(
−x

1−γ2
0

γ2

)
xγ2 − K

r
+ x

r−α for x ≥ x0

1
r−α

[
K
(
r−α
r

)
− x
]
− K

r
+ x

r−α for 0 ≤ x < x0

=


−x0

γ2(r−α)

(
x
x0

)γ2
− K

r
+ x

r−α for x ≥ x0

0 for 0 ≤ x < x0

, (2.17)

which is precisely the solution and boundary as seen in Equation (2.12).

2.5 Optimal Hiring Time and Random Arrival Time Effects

As stated in the general model, the observer has the right to not hire immediately

but rather at some starting time τ ≥ 0. For the above two cases, f(x) = x and

f(x) = x − K, τ ≡ 0. The rationale for this is as follows: Assume the candidate

arrives at time t = 0. As Xt is a nonnegative process, when f(x) = x the value

function Φ(x) = supτ≥0,σ>0 Ex
{∫ σ

τ
e−rsXs ds

}
is always accruing positive return so

we must have τ = 0 and σ = ∞ at the supremum. In the case of f(x) = x − K,

if the starting value is below the threshold derived above, we stop immediately and

τ = σ = 0. If instead we begin at X0 inside the continuation region, the integral

process is accruing positive value for (t,Xt) for the duration of time that Xt is in the
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continuation region. As such τ = 0 and σ = inf {t > τ : (t, x) /∈ C}.

When we examine more general cases of a single candidate in which the candidate

does not arrive at time t = 0, but assume that the candidate’s arrival is a Poisson dis-

tributed arrival time ρ. When considering the instantaneous payoff functions above,

we have the following result:

Φρ(x) = sup
σ

Ex
[∫ σ

ρ

e−rsf(Xs) ds

]
= sup

σ
Ex
[
e−rρE

[∫ σ

ρ

e−r(s−ρ)f(Xs) ds

∣∣∣∣Fρ

]]
= sup

σ
Ex
[
e−rρE

[∫ σ

0

e−r(u)f(Xu ◦ θρ) du
∣∣∣∣Fρ

]]
= sup

σ
Ex
[
e−rρEXρ

[∫ σ

0

e−r(u)f(Xu) du

]]
= sup

σ
Ex
[
e−rρΦ(Xρ)

]
,

using the change of variable s = u+ ρ, and the Strong Markov property. Therefore,

Φρ(x) = sup
σ

Ex
[
e−rρΦ(Xρ)

]
. (2.18)

2.6 Finite Horizon and Portfolio Approach

If instead we wish to examine the problem with horizon T < ∞, then another ap-

proach becomes necessary. For finite horizon problems, we wish to follow Vec̆er̆’s [16]

technique and rewrite the problem in the form

sup
σ≥0

Ex
{
e−rσXσ

}
,

for some new stochastic process X. To determine the dynamics of this new process,

we use portfolio arguments. Let ∆t = ∆(t) be a function measuring the amount of
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the portfolio in the “asset” of interest to us. Then for a general function f , we have

dX t = ∆td (f(Xt)) +
[
X t −∆tf(Xt)

]
rdt. (2.19)

Let us consider the case of f(x) = x. Then we have the self-financing portfolio,

dX t = ∆tdXt +
[
X t −∆tXt

]
rdt. (2.20)

Then since d (e−rt∆tXt)− e−rtXtd∆t = e−rt (−r∆tXtdt+ ∆tdXt), we have

d
(
e−rtX t

)
= −re−rtX tdt+ e−rtdX t

= −re−rtX tdt+ e−rt
[
∆tdXt +

(
X t −∆tXt

)
rdt
]

= e−rt (∆tdXt − r∆tXtdt)

= d
(
e−rt∆tXt

)
− e−rtXtd∆t.

If we then integrate both sides from 0 to t we obtain,

∫ t

0

d
(
e−rsXs

)
=

∫ t

0

d
(
e−rs∆sXs

)
−
∫ t

0

e−rsXsd∆s

e−rtX t −X0 = e−rt∆tXt −∆0X0 −
∫ t

0

e−rsXsd∆s

e−rt
(
X t −∆tXt

)
= X0 −∆0X0 −

∫ t

0

e−rsXsd∆s.

Letting the initial wealth of the portfolio be X0 = ∆0X0, we obtain

e−rt
(
X t −∆tXt

)
= −

∫ t

0

e−rsXsd∆s. (2.21)

Recall that the function ∆t = ∆(t) is measuring the amount of an “asset” of

interest. By examining different choices of ∆ we can construct different integral

problems. For example, in the case of ∆t = T − t for fixed T > 0, ∆0 = T and
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d∆t = −dt, and we have

e−rt
[
X t − (T − t)Xt

]
=

∫ t

0

e−rsXsds, (2.22)

which is precisely the integral of interest to us in the single candidate case of f(x) = x.

Such a choice of ∆(t) and X0 allows us to express the continuous discounted payoff

without the integral. But if we instead choose ∆t = 1− t/T for fixed T > 0, ∆0 = 1

and d∆t = −(1/T )dt, and we have

e−rt
[
X t −

(
1− t

T

)
Xt

]
=

1

T

∫ t

0

e−rsXsds, (2.23)

which gives us an integral similar to the Asian Option. Here, we have expressed

something along the lines of a continuous average up to time T where we have the

right to discontinue our process at t < T , however the average is still taken over [0, T ].

That is, Xt ≡ 0 on [t, T ].

As we have seen from investigation of the subset of the continuation region U

the solution in the case of f(x) = x is trivial, that is σ = ∞ in the infinite horizon

problem, we would expect a similar result here. Intuitively this makes sense as Xt is

a nonnegative process and as such its integral must be accruing positive value over

time. In fact, from direct calculation we find

Φ(x0) = Ex0
{∫ T

0

e−rsXs ds

}
=

∫ T

0

x0e
(α−r)s ds

=
x0

α− r
(
e(α−r)T − 1

)
. (2.24)

In Table 2.1 we compare the results of the least-squares Monte Carlo approach to

the solution derived in Equation (2.24). The base Monte Carlo simulation is one of

500 independent paths of a geometric Brownian motion with α = 0.09, β = 0.2, and
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X0 = 1. The interest rate is r = 0.1, and each year is divided into 12 time periods.

The time horizon T is in years. Notice that for all but two of the simulations, the least-

squares Monte Carlo approach does yield values fairly close to those from Equation

(2.24). Furthermore, it appears from the data that given a sufficient number of paths

and long enough time horizon, these simulations will approach the solution to the

infinite horizon problem.

Table 2.1: Least-Squares Monte Carlo for f(x) = x.

T LSM Prediction Solution
1 0.997 0.995
10 9.489 9.516
20 18.501 18.127
30 26.910 25.918
40 30.516 32.968
50 38.953 39.347
60 45.896 45.119
70 48.667 50.341
80 64.847 55.067
90 46.689 59.343
100 63.487 63.212
∞ - 100

However, we may also perform a simulation on the expression containing the port-

folio X: e−rt
[
X t − (T − t)f(Xt)

]
. This portfolio simulation approach was handled

in two ways, with results of the first method yielding virtually identical results to the

simulated integral. The first portfolio method we used took the Monte Carlo simula-

tion for Xt and calculated of
∫ t

0
e−rsf(Xs) ds in the expression, then constructed X t

with the expression

X t = (T − t)f(Xt) + ert
∫ t

0

e−rsf(Xs) ds. (2.25)

The second involved using the expression for dX t to create a Monte Carlo simulation
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for X t more directly via the formula

Xn+1 = Xn + dXn

= Xn + ∆n(f(Xn+1)− f(Xn)) +
[
Xn −∆nf(Xn)

] r
N

(2.26)

where N is the number of time periods per year. That is, dt = 1/N . In the following

table we report both portfolio approaches along with direct simulation of the integral

and the actual solution value.

Table 2.2: Least-Squares Monte Carlo for f(x) = x using both direct simulation and
portfolio simulations.

T LSM Direct LSM Portfolio 1 LSM Portfolio 2 Solution
1 0.9897 0.9897 0.9887 0.9950
10 9.3141 9.3141 9.2892 9.5163
20 19.4155 19.4155 19.3337 18.1269
30 25.1279 25.1279 24.9529 25.9182
40 32.5869 32.5869 32.2858 32.9680
50 40.6267 40.6267 40.1693 39.3469
60 41.0449 41.0449 40.4512 45.1188
70 50.6306 50.6306 49.7910 50.3415
80 54.3896 54.3896 53.3559 55.0671
90 61.3689 61.3689 60.0702 59.3430
100 65.9508 65.9508 64.3293 63.2121

In Table 2.2 we compare the simulations for both the direct approach and portfolio

approaches, with the final column again containing the calculation from the derived

solution formula. Column three (Portfolio 1) uses X t generated from the method in

Equation (2.25), while column four (Portfolio 2) uses X t generated with the method

from Equation (2.26). All parameters were the same between the two approaches,

and as reported in the description of Table 2.1.

We can make one immediate observation by comparing columns two and three

of Table 2.2: They are identical. As Portfolio 1 uses an algebraically equivalent

statement to the simulated integral process, Portfolio 1 will therefore yield the same

value as the simulated integral process.
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Now let us state the problem for a general function f(x).

As differentiation of d (e−rt∆tf(Xt)) yields the relationship

d
(
e−rt∆tf(Xt)

)
− e−rtf(Xt)d∆t = e−rt [∆tdf(Xt)− r∆tf(Xt)dt] ,

we therefore have for a general function f(x) that

d
(
e−rtX t

)
= −re−rtX tdt+ e−rtdX t

= e−rt [∆tdf(Xt)− r∆tf(Xt)dt]

= d
(
e−rt∆tf(Xt)

)
− e−rtf(Xt)d∆t.

By integrating both sides of this expression from 0 to t, we see that

∫ t

0

d
(
e−rsXs

)
=

∫ t

0

d
(
e−rs∆sf(Xs)

)
−
∫ t

0

e−rsf(Xs)d∆s

e−rtXt −X0 = e−rt∆tf(Xt)−∆0f(X0)−
∫ t

0

e−rsf(Xs)d∆s.

Choosing X0 = ∆0f(X0) and ∆t = T − t, we then have that d∆s = −ds and

∫ t

0

e−rsf(Xs)ds = e−rt
[
X t − (T − t)f(Xt)

]
, (2.27)

and hence Φ(x) = supσ Ex
{∫ σ

0
e−rsf(Xs)ds

}
is equivalent to the problem

Φ(x, x) = sup
σ

Ex,x
{
e−rσ

[
Xσ − (T − σ)f(Xσ)

]}
. (2.28)

Notice that we have effectively increased the dimension of the problem. While we

do not pursue this line of investigation very far, we believe that investigation of

cases with more general functions f(x) in finite horizon problems may be instructive,

particularly in the case of numerical simulations. In addition, the ability to choose
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∆t = ∆(t), as shown earlier, can yield strategies for formulating problems with quite

different interpretations.

However, using our Least Squares Monte Carlo approach from earlier, we are

able to numerically gather some information on the behavior of Φ in the case of

f(x) = x − K in the finite horizon case. As before, we report the results for both

direct simulation of the problem and for the portfolio problem.

Table 2.3: Least-Squares Monte Carlo simulations for f(x) = x−K, using both direct
simulation and portfolio simulation.

T LSM Direct LSM Portfolio 1 LSM Portfolio 2
1 52.4373 52.4373 52.5302
20 1412.2776 1412.2776 1410.1104
40 2805.0327 2805.0327 2793.9662
60 4085.5901 4085.5901 4059.7381
80 4817.0127 4817.0127 4773.6173
100 5858.2174 5858.2174 5791.4500

In Table 2.3, we have a Monte Carlo simulation with 500 paths, 24 time divisions

per year, α = 0.09, β = 0.1, r = 0.1, X0 = x = 100, and K = 50. T is the

time horizon. As before, column two gives data for the simulated integral, column

three gives the portfolio simulation via Equation (2.25), and column three gives the

portfolio simulation via Equation (2.26). The infinite horizon problem in this scenario

is given by

φ(x) =


−d

γ2(r−α)

(
x
d

)γ2 + x
r−α −

K
r

for x ≥ d

0 for 0 ≤ x < d
, (2.29)

where d = 4.7383 and γ2 = −18.1047. Φ(X0) then has the value 9500 for X0 = 100,

α = 0.09, β = 0.2, r = 0.1, and K = 50. As was the case for f(x) = x, we believe

that the prediction is converging to the infinite horizon value as T →∞.



CHAPTER 3: TWO VARIABLE SWITCHING

3.1 Finite Horizon: Portfolio Approach

In the two candidate case, we consider their instantaneous value modeled by the

dynamics

dX1,t = X1,t (α1dt+ β1dW1,t) , X1,0 = x1,

dX2,t = X2,t (α2dt+ β2dW2,t) , X2,0 = x2,

where W1,t,W2,t are two Brownian motions and dW1,tdW2,t = ρdt. First we consider

Φ(x1, x2) = sup
σ

Ex1,x2
{∫ σ

0

e−rsX1,s ds+

∫ T

σ

e−rsX2,s ds

}
, (3.1)

and construct the self-financing portfolio X t with ∆i,t indicating the amount of Xi,t

in the portfolio at time t, 0 ≤ t ≤ T . We construct the portfolio’s dynamics by

dX t = ∆1,tdX1,t + ∆2,tdX2,t +
(
X t −∆1,tX1,t −∆2,tX2,t

)
rdt. (3.2)

Since

d
(
e−rt∆i,tXi,t

)
= −re−rt∆i,tXi,tdt+ e−rtXi,td∆i,t + e−rt∆i,tdXi,t

⇒ d
(
e−rt∆i,tXi,t

)
− e−rtXi,td∆i,t = −re−rt∆i,tXi,tdt+ e−rt∆i,tdXi,t,
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and we have

d
(
e−rtX t

)
= d

(
e−rt∆1,tX1,t

)
−e−rtX1,td∆1,t+d

(
e−rt∆2,tX2,t

)
−e−rtX2,td∆2,t. (3.3)

By integrating from 0 to t, we obtain

∫ t

0

d
(
e−rsXs

)
=

∫ t

0

d
(
e−rt∆1,tX1,t

)
−
∫ t

0

e−rtX1,td∆1,t

+

∫ t

0

d
(
e−rt∆2,tX2,t

)
−
∫ t

0

e−rtX2,td∆2,t,

e−rtX t −X0 = e−rt∆1,tX1,t −∆1,0X1,0 + e−rt∆2,tX2,t −∆2,0X2,0

−
∫ t

0

e−rtX1,td∆1,t −
∫ t

0

e−rtX2,td∆2,t.

By setting X0 = ∆1,0X1,0 + ∆2,0X2,0 and rearranging terms, we have

e−rt
(
X t −∆1,tX1,t −∆2,tX2,t

)
= −

∫ t

0

e−rsX1,s d∆1,s −
∫ t

0

e−rsX2,s d∆2,s. (3.4)

Notice that since

Φ(x1, x2) = Ex1,x2
{∫ t

0

e−rsX1,s ds+

∫ T

t

e−rsX2,s ds

}
= Ex1,x2

{∫ t

0

e−rsX1,s ds−
∫ t

0

e−rsX2,s ds+

∫ T

0

e−rsX2,s

}
=

X2,0

α2 − r
(
e(α2−r)T − 1

)
+ Ex1,x2

{∫ t

0

e−rsX1,s ds−
∫ t

0

e−rsX2,s ds

}
,

we may choose ∆1,t = T − t and ∆2,t = t− T to obtain

Ex1,x2
{
−
∫ t

0

e−rsX1,s d∆1,s −
∫ t

0

e−rsX2,s d∆2,s

}
= Ex1,x2

{∫ t

0

e−rsX1,s ds−
∫ t

0

e−rsX2,s ds

}
,
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and thus, denoting x = X0, we have

Φ(x, x1, x2) = Ex,x1,x2
{
e−rt

(
X t −∆1,tX1,t −∆2,tX2,t

)}
= Φ(x1, x2)− x2

α2 − r
(
e(α2−r)T − 1

)
. (3.5)

To proceed, we require the following theorem.

Theorem 3.10 ([15]). Let (Ω,F ,P) be a probability space and let Z be an almost

surely nonnegative random variable with EZ = 1. For A ∈ F , define

P̃(A) =

∫
Z

Z(ω)dP(ω). (3.6)

Then P̃ is a probability measure. Furthermore, if X is a nonnegative random variable,

then

ẼX = E [XZ] . (3.7)

If Z is almost surely strictly positive, we also have

EY = Ẽ
[
Y

Z

]
(3.8)

for every nonnegative random variable Y .

As d (X1,tX2,t) = X1,tX2,t [(α1 + α2 + β1β2ρ)dt+ β1dW1,t + β2dW2,t], letting

Zt =
e−(α1+α2+β1β2ρ)tX1,tX2,t

X1,0X2,0

, (3.9)

yields a martingale starting at 1.

Definition 3.12 (Radon-Nikodým Derivative [15]). Let (Ω,F ,P) be a probability

space, let P̃ be another probability measure on (Ω,F ) that is equivalent to P, and let

Z be an almost surely positive random variable that relates P to P̃ via (3.6). Then
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Z is called the Radon-Nikodým derivative of P̃ with respect to P, and we write

Z =
dP̃
dP
.

Thus our choice of Zt is a Radon-Nikodým derivative, and we have for 0 ≤ s ≤ t,

Ex,x1,x2
{
e−rt

(
X t −∆1,tX1,t −∆2,tX2,t

)∣∣Fs

}
= EXx,x1,x2

{
1/Zt
1/Zs

e−rt
(
X t −∆1,tX1,t −∆2,tX2,t

)∣∣∣∣Fs

}
= e−(α1+α2+β1β2ρ)sX1,sX2,s

· EXx,x1,x2

{
e(α1+α2+β1β2ρ−r)t

(
X t

X1,tX2,t

− ∆1,t

X2,t

− ∆2,t

X1,t

)∣∣∣∣Fs

}
.

where EX indicates expectation with respect to the new probability measure PX . So

for s = 0, we have

Ex,x1,x2
{
e−rt

(
X t −∆1,tX1,t −∆2,tX2,t

)}
= X1,0X2,0EXx,x1,x2

{
e(α1+α2+β1β2ρ−r)t

(
X t

X1,tX2,t

− ∆1,t

X2,t

− ∆2,t

X1,t

)}
.

We may rewrite the main problem as

ΦX(y, x1, x2) = sup
σ

EXy,x1,x2

{
e(α1+α2+β1β2ρ−r)σ

(
Xσ

X1,σX2,σ

− ∆1,σ

X2,σ

− ∆2,σ

X1,σ

)}
, (3.10)

where Yt =
X t

X1,tX2,t

, y =
x

x1x2

= (T − t)
x1 − x2

x1x2

= (T − t)

(
1

x2

− 1

x1

)
, and

ΦX(y, x1, x2) =
1

x1x2

Φ(x, x1, x2) =
1

x1x2

(
Φ(x1, x2)− x2

α2 − r
(
e(α2−r)T − 1

))
.

To adjust our Brownian motion terms to our new probability measure, we require

Girsanov’s Theorem.

Theorem 3.11 (Girsanov’s Theorem [15]). Let T be a fixed positive time, and let
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Θ(t) = (Θ1(t), . . . ,Θd(t)) be a d-dimensional adapted process. Define

Z(t) = exp

{
−
∫ t

0

Θ(u) · dW (u)− 1
2

∫ t

0

‖Θ(u)‖2 du

}
, (3.11)

W̃ (t) = W (t) +

∫ t

0

Θ(u)du, (3.12)

and assume that

E
∫ T

0

‖Θ(u)‖2 Z2(u)du <∞. (3.13)

Set Z = Z(T ). Then EZ = 1, and under the probability measure P̃ given by

P̃(A) =

∫
A

Z(ω)dP(ω) for all A ∈ F ,

the process W̃ (t) is a d-dimensional Brownian motion.

Rewriting Zt with the independent Brownian motions Bi,t where W1,t = B1,t and

W2,t = ρB1,t +
√

1− ρ2B2,t, we have

Zt = exp

{
−
∫ t

0

−β1dW1,s −
∫ t

0

−β2dW2,s − 1
2

∫ t

0

(
β2

1 + β2
2 + 2β1β2ρ

)
ds

}
= exp

{
−
∫ t

0

− (β1 + β2ρ) dB1,s −
∫ t

0

β2

√
1− ρ2dB2,s

−1
2

∫ t

0

(
β2

1 + β2
2 + 2β1β2ρ

)
ds

}

= exp

−
∫ t

0

 −(β1 + β2ρ)

−β2

√
1− ρ2

 · dBs − 1
2

∫ t

0

∥∥∥∥∥∥∥
 −(β1 + β2ρ)

−β2

√
1− ρ2


∥∥∥∥∥∥∥

2

ds

 .

Thus B̃t = dBt +

 −(β1 + β2ρ)

−β2

√
1− ρ2

 dt by Girsanov’s Theorem.

To develop a strategy, we consider the dynamics of

e(α1+α2+β1β2ρ−r)t
(

X t

X1,tX2,t

− ∆1,t

X2,t

− ∆2,t

X1,t

)
:
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d

[
e(α1+α2+β1β2ρ−r)t

(
X t

X1,tX2,t

− ∆1,t

X2,t

− ∆2,t

X1,t

)]
=
e(α1+α2+β1β2ρ−r)t

X1,tX2,t

{
(∆1,tX1,t + ∆2,tX2,t) dt

+
(
X t −∆1,tX1,t −∆2,tX2,t

) [
dB̃1,t (−β1 − β2ρ) + dB̃2,t

(
−β2

√
1− ρ2

)]}
,

(3.14)

where dB̃1,t = dW1,t− (β1 +β2ρ)dt, dB̃2,t = 1√
1−ρ2

(dW2,t − ρdW1,t − β2(1− ρ2)dt) by

the above application of Girsanov’s Theorem.

While it is enlightening to see the dynamics of the problem from this perspective,

it only lets us know that there is a subset of the continuation region by examining

where the drift,(T − t)X1,t + (t − T )X2,t, is positive. That is, our subset of the

continuation region takes the form

U = {(t, x1, x2) : (T − t)(X1,t −X2,t) > 0}

= {(t, x1, x2) : X2,t < X1,t} . (3.15)

We may, however, run numerical simulations using Least-Squares Monte Carlo.

As before, we construct the portfolio in two ways. The first via

X t = (T − t)(X1,t −X2,t) + ert
∫ t

0

e−rs(X1,s −X2,s) ds, (3.16)

and the second via

dt = 1/N

X0 = (T − 0)(X1,0 −X2,0),

dXn = (T − n · dt)(X1,n+1 −X2,n+1 −X1,n +X2,n)
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+
(
Xn − (T − n · dt)(X1,n −X2,n)

)
r · dt,

Xn+1 = Xn + dXn. (3.17)

The technique of Least-Squares Monte Carlo requires repeated use of regression tech-

niques to estimate the expected value of continuing. In the single variable case, we

followed Longstaff & Schwartz [10] in that we regressed on a degree two polynomial.

To do so here required changing to a new independent regression variable for X:

Xt = X1,t−X2,t. However, we also chose to examine the possibility of using multilin-

ear regression with X1,t and X2,t as the independent variables. The results between

the two techniques, for both portfolio construction approaches, yielded identical re-

sults, but the multilinear regression had significantly increased computation times.

Both sets of code are provided in the appendix, but the results reported below are

from the simulations with Xt.

Table 3.4: Least-Squares Monte Carlo simulations for two variable switching: Both
methods and average stopping times for each method.

T LSM Portfolio 1 Avg. σ1 LSM Portfolio 2 Avg. σ2

1 1.02021752002 0.2285 1.01292236985 0.22933333
10 9.54787902156 0.5905 9.54961813294 0.579666667
20 18.1756148417 0.95115 18.1884767641 1.000666667
30 27.5330375199 7.02 27.5217077105 7.02
40 35.2490346596 8.64 35.2284128281 8.64
50 42.5558133353 10.9 42.5182654108 10.7

In Table 3.4 500 paths and 12 time periods per year were simulated for X1,t and

X2,t where α1 = 0.05, β1 = 0.2, α2 = 0.09, β2 = 0.2, r = 0.1, ρ = 0.5, X1,0 = X2,0 = 1.

In addition to the final value Φ for each method, we also report the average value of

σ for each method. Note that for some paths, σ = 0 or σ = T .

In seeking analytical solutions to the two variable switching problem, we now

return our attention to the infinite horizon case and use the CPT method.
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3.2 Rewriting the Problem via CPT

Let us consider the infinite horizon problem; that is T =∞:

Φ(x1, x2) = sup
σ

Ex1,x2
{∫ σ

0

e−rsX1,s ds+

∫ ∞
σ

e−rsX2,s ds

}
. (3.18)

Denoting Ci,t =
∫ t

0
−e−rsXi,s ds and δi(xi) = Exi Ci,∞, we apply the following

proposition.

Proposition 3.12. If δ1(x1) and δ2(x2) are finite on the domain E, then for any

(x1, x2) ∈ E Equation (3.18) may be rewritten as

Φ(x1, x2) = sup
σ≥0

Ex1,x2
{
e−rσ (δ1(X1,σ)− δ2(X2,σ))

}
− δ1(X1,0), (3.19)

where σ is any stopping time in the set of all stopping times.

Proof:

Using the identity Ci,∞ = Ci,σ + e−rσCi,∞ ◦ θσ, iterated conditioning and the Strong

Markov property we find

Ex1,x2
{
E
{
−
∫ σ

0

−e−rsX1,s ds−
∫ ∞
σ

−e−rsX2,s ds

∣∣∣∣Fσ

}}
= Ex1,x2

{
E
{
−
∫ σ

0

−e−rsX1,s ds+

∫ σ

0

−e−rsX2,s ds

−
∫ ∞

0

−e−rsX2,s ds

∣∣∣∣Fσ

}}
= Ex1,x2 {E {−C1,σ + (C2,σ − C2,∞)|Fσ}}

= Ex1,x2
{
E
{
−C1,∞ + e−rσC1,∞ ◦ θσ + (−e−rσC2,σ ◦ θσ)

∣∣Fσ

}}
= Ex1,x2

{
e−rσE {C1,∞ ◦ θσ − C2,∞ ◦ θσ|Fσ} − EX1,σ C1,∞

}
= Ex1,x2

{
e−rσEX1,σ ,X2,σ {C1,∞ − C2,∞}

}
− Ex1,x2 C1,∞

= Ex1,x2
{
e−rσ (δ1(X1,σ)− δ2(X2,σ))

}
− δ1(X1,0),
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as desired.

Under the assumption that α1, α2 < r, both δ1 and δ2 are finite and

δi(xi) = Exi Ci,∞ =

∫ ∞
0

−e−rs Exi Xi,s ds

= − xi
r − αi

. (3.20)

And thus we rewrite the problem of Equation (3.18) into

Φ(x1, x2) = sup
σ

Ex1,x2
{
e−rσ

(
X2,σ

r − α2

− X1,σ

r − α1

)}
+

X1,0

r − α1

. (3.21)

For convenience of notation, let us denote g(x1, x2) =
(

x2
r−α2

− x1
r−α2

)
and Φ̂(x1, x2)

as supσ Ex1,x2 {e−rσg(X1,σ, X2,σ)}. Then it is sufficient to optimize Φ̂.

3.3 Infinite Horizon: PDE Approach

The infinitesimal generator for this two dimensional problem, with the assumed dy-

namics, is given by

Lf(x1, x2) = 1
2
β2

1x
2
1

∂2f

∂x2
1

+β1β2ρx1x2
∂2f

∂x1∂x2

+ 1
2
β2

2x
2
2

∂2f

∂x2
2

+α1x1
∂f

∂x1

+α2x2
∂f

∂x2

(3.22)

for a twice differentiable function f . We seek a solution Φ̂ of the form

φ(x1, x2) =

 ψ(x1, x2) for x2 < µx1

g(x1, x2) for x2 ≥ µx1

, (3.23)

and a continuation region of the form C = {(x1, x2) : x2 < µx1}. Our solution

ψ ∈ C2(D) will satisfy

Lψ(x1, x2) = rψ(x1, x2) for x2 < µx1,
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ψ(x1, x2) = g(x1, x2) for x2 = µx1,

∇ψ(x1, x2) = ∇g(x1, x2) for x2 = µx1,

Lg(x1, x2) ≤ rg(x1, x2) for x2 > µx1,

ψ(x1, x2) > g(x1, x2) for x2 < µx1,

and we guess that ψ will take the form ψ(x1, x2) = Cx1−λ
1 xλ2 for some constants

C, λ > 0. When placed into the equation Lψ(x1, x2) = rψ(x1, x2), we see that

λ =
1
2
β2

1 − β1β2ρ+ 1
2
β2

2 + α1 − α2

β2
1 − 2β1β2ρ+ β2

2

+

√
(1

2
β2

1 − β1β2ρ+ 1
2
β2

2 + α1 − α2)2 + 4(1
2
β2

1 − β1β2ρ+ 1
2
β2

2)(r − α1)

β2
1 − 2β1β2ρ+ β2

2

. (3.24)

Denote b = 1
2
β2

1 − β1β2ρ+ 1
2
β2

2 and a = α1 − α2. Then we have

λ =
b+ a+

√
(b+ a)2 + 4b(r − α1)

2b
.

For α1, α2 < r and ρ ∈ [−1, 1], this λ is real.

Examining Lg(x1, x2), we find

Lg(x1, x2) = α1x1
−1

r − α1

+ α2x2
1

r − α2

< r

(
x2

r − α2

− x1

r − α1

)
,

which holds for g > 0 automatically as, by the prior assumptions necessary for

C1,∞, C2,∞ to be finite, we have α1, α2 < r. The function g is positive for x2
r−α2

> x1
r−α1

,

i.e. x2 > x1

(
r−α2

r−α1

)
, and so we can expect that µ will be proportional to r−α2

r−α1
.

At x2 = µx1 we have

ψ(x1, µx1) = Cx1−λ
1 (µx1)λ = Cµλx1
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g(x1, x2) = x1

(
µ

r − α2

− 1

r − α1

)
⇒ C = µ−λ

(
µ

r − α2

− 1

r − α1

)
,

and

∇ψ(x1, µx1) = C(1− λ)x−λ1 (µx1)λ~e1 + Cλx1−λ
1 (µx1)λ−1~e2

= C(1− λ)µλ~e1 + Cλµλ−1~e2

∇g(x1, µx1) =
−1

r − α1

~e1 +
1

r − α2

~e2

⇒

 C(1− λ)µλ = −1
r−α1

Cλµλ−1 = 1
r−α2

Combining this information, we have

C =
µ−λ

λ− 1

(
1

r − α1

)
, (3.25)

µ =
λ

λ− 1

(
r − α2

r − α1

)
. (3.26)

So our overall solution to equation (3.18) is

φ(x1, x2) =


1

λ−1

(
x1

r−α1

)(
x2
µx1

)λ
+ x1

r−α1
for x2 < µx1,

x2
r−α2

for x2 ≥ µx1.
(3.27)

In Figure 3.1, we see a three dimensional surface plot of φ(x1, x2) as each variable

ranges from 0 to 100. The scale of each axes is in units of 10. As is evident from the

graph, the surface slopes down sharply as (X1,0, X2,0) approach (0, 0). It also slopes

up sharply as either X1,0 or X2,0 approach 100. There is no significant amount of

curvature visible in the graph. However, we do find visible evidence of curvature in

the next plot.
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Figure 3.1: A sample plot of φ(x1, x2) in which α1 = 0.05, α2 = 0.09, β1 = 0.3,
β2 = 0.1, and ρ = 0.1.

Figure 3.2: A sample plot of φ(x1, x2) in which α1 = 0.05, α2 = 0.06, β1 = 0.3,
β2 = 0.4, and ρ = 0.5.

In Figure 3.2 we have another sample plot of φ(x1, x2) over the same range, but

the processes X1,t and X2,t are assumed to have dynamics that are similar to one

another. While the end behavior slope is similar to the last plot, we see some evidence

of curvature as X1,0 and X2,0 increase together.

3.4 Infinite Horizon: Change of Numeraire Approach

Beginning from the transformed problem, Equation (3.21), we define Zt = e−α1tX1,t/X1,0.

As Zt is a positive martingale starting at one, it satisfies the hypothesis of the

Theorem 3.10.

Since the conditions on Zt of Theorem 3.10 are satisfied, let P̃ be as in (3.6). Then
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Zt is the Radon-Nikodým derivative of P̃ with respect to P. Further, since the process

X2,t is nonnegative, we have for t < T

Ex1,x2
{
Zt
ZT

e−rT
(
X2,T

r − α2

− X1,T

r − α1

) ∣∣∣∣Ft

}
=

(
e−α1tX1,t

r − α2

)
Ẽx1,x2

{
e(α1−r)T

(
X2,t

X1,t

− r − α2

r − α1

) ∣∣∣∣Ft

}
.

Letting Yt = X2,t/X1,t, Y0 = y = x2/x1, we have for t = 0

Φ(x1, x2) =

(
x1

r − α2

)
sup
σ

Ẽy
{
e(α1−r)σ

(
Yσ −

r − α2

r − α1

)}
+

x1

r − α1

. (3.28)

Let us denote ΦY (y) as

ΦY (y) = sup
σ

Ẽy
{
e(α1−r)σ

(
Yσ −

r − α2

r − α1

)}
. (3.29)

The stochastic process Yt has dynamics

dYt = Yt
[
(−α1 + α2 + β2

1 − β1β2ρ)dt− β1dW1,t + β1dW2,t

]
, (3.30)

which may be verified by either application of Itô’s formula to X2,t/X1,t or by direct

calculation since Yt = y exp
{

(α2 − α1 − 1
2
β2 + 1

2
β1)t− β1W1,t + β2W2,t

}
.

For the problem at hand, we require independent Brownian motions to proceed

so let W1,t =
√

1− ρ2B1,t + ρB2,t and W2,t = B2,t. These Brownian motions are

independent as dW1,tdW2,t = dt. Let B(t) = (B1,t, B2,t). Then

Zt = exp

{
−
∫ t

0

−β1dW1,s − 1
2

∫ t

0

β2
1ds

}

= exp

−
∫ t

0

 −β1

√
1− ρ2

−β1ρ

 dB(s)− 1
2

∫ t

0

∥∥∥∥∥∥∥
 −β1

√
1− ρ2

−β1ρ


∥∥∥∥∥∥∥

2

ds

 ,
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so we have under after the change of measure

dB̃1,t = dB1,t − β1

√
1− ρ2dt =

dW1,t − ρdW2,t√
1− ρ2

− β1

√
1− ρ2dt,

dB̃2,t = dB2,t − β1ρdt = dW2,t − β1ρdt.

That is,

dW1,t =
√

1− ρ2dB̃1,t + ρdB̃2,t + β1dt,

dW2,t = dB̃2,t + β1ρdt.

Thus we have for the dynamics of Yt after the change of measure

dYt = Yt

[
(−α1 + α2)dt− β1

√
1− ρ2dB̃1,t + (−β1ρ+ β2)dB̃2,t

]
.

For convenience, we wish to express the Brownian motion terms as a single Brownian

motion.

(cdB̃3,t)(cdB̃3,t) =
(
−β1

√
1− ρ2dB̃1,t + (−β1ρ+ β2)dB̃2,t

)2

=
(
β2

1(1− ρ2) + β2
1ρ

2 − 2β1β2ρ+ β2
2

)
dt

=
(
β2

1 − 2β1β2ρ+ β2
2

)
dt

⇒ c =
√
β2

1 − 2β1β2ρ+ β2
2 .

Then B̃3,t is a Brownian motion starting at 0 and

B̃3,t =
−β1

√
1− ρ2dB̃1,t + (−β1ρ+ β2)dB̃2,t√

β2
1 − 2β1β2ρ+ β2

2

. (3.31)
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We then discover that the dynamics of Yt take the form

dYt = Yt

[
(−α1 + α2)dt+

√
β2

1 − 2β1β2ρ+ β2
2dB̃3,t

]
, (3.32)

which yields the infinitesimal generator

Lf(y) = (−α1 + α2) y d
dy
f(y) +

(
1
2
β2

1 − β1β2ρ+ 1
2
β2

2

)
y2 d2

dy2
f(y) (3.33)

for any twice differentiable function f . As Φ(x1, x2) = x1
r−α2

ΦY (y)+ x1
r−α1

, it suffices to

optimize ΦY . To this end, we assume a solution of the form φY (t, y) = e(α1−r)tψY (y)

which leads us to examine the ordinary differential equation


(α1 − r)ψY (y) + (−α1 + α2) y d

dy
ψY (y)

+
(

1
2
β2

1 − β1β2ρ+ 1
2
β2

2

)
y2 d2

dy2
ψY (y) = 0 for 0 ≤ y < y0,

ψY (y) =
(
y − r−α2

r−α1

)
for y ≥ y0,

and we look for a solution of the form Cyλ. Plugging this function into the above

yields precisely the value as in Equation (3.24). Further, since it we seek solutions

that are bounded as y → 0+, as before we will only consider the root λ = (b + a +√
(b+ a)2 + 2b(r − α1))/(2b). As we want our solution to be continuous at y0, we

have

Cyλ0 = y0 −
r − α2

r − α1

,

C = y−λ0

(
y0 −

r − α2

r − α1

)
,

⇒ψY (y) =

(
y0 −

r − α2

r − α1

)(
y

y0

)λ
.
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And since we seek a solution that is smooth at y0, we have

λ

(
1

y0

)(
y0 −

r − α2

r − α1

)(
y0

y0

)λ−1

= 1,

λ

(
y0 −

r − α2

r − α1

)
= y0,

y0 (λ− 1) = λ

(
r − α2

r − α1

)
,

y0 =

(
λ

λ− 1

)(
r − α2

r − α1

)
.

Notice that this is precisely the same threshold as in the prior approach, there denoted

µ. We now demonstrate that the two approaches, when written out as the full value

function φ, yield algebraically equivalent functions. For the piecewise domains, and

noting that both x1, x2 > 0,

x2 < µx1 ⇒
x2

x1

< µ

⇒ 0 ≤ y < µ = y0,

x2 ≥ µx1 ⇒
x2

x1

≥ µ

⇒ y ≥ µ = y0.

The complete value function for this method, φY (x1, x2), is

φY (x1, x2) =


(

x1
r−α2

)(
y0 − r−α2

r−α1

)(
y
y0

)λ
+ x1

r−α1
for 0 ≤ y < y0(

x1
r−α2

)(
y−

r−α2

r−α1

)
+ x1

r−α1
for y ≥ y0

,

=


(

x1
r−α2

)(
µ− r−α2

r−α1

)(
x2/x1
µ

)λ
+ x1

r−α1
for 0 ≤ x2

x1
< µ(

x1
r−α2

)(
x2
x1
− r−α2

r−α1

)
+ x1

r−α1
for x2

x1
≥ µ

,

=


1

λ−1

(
x1

r−α1

)(
x2
µx1

)λ
+ x1

r−α1
forx2 < µx1(

x2
r−α2

− x1
r−α1

)
+ x1

r−α1
for x2 ≥ µx1

,
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where in the final equality we take advantage of the fact that

x1

r − α2

(
µ− r − α2

r − α1

)
=

x1

r − α2

(
λ

λ− 1

)(
r − α2

r − α1

)
− x1

r − α1

=
x1

r − α1

(
λ

λ− 1
− 1

)
=

x1

r − α1

(
1

λ− 1

)
.



CHAPTER 4: VERIFICATION THEOREMS

In the final chapter we will work through theorems verifying our derived solutions to

the single candidate f(x) = x−K case and the two variable switching case.

4.1 Single Candidate, f(x) = x−K

Recall that the optimal stopping problem for this case was

Φ∗(x) = sup
σ

Ex
{∫ σ

0

e−rs (Xs −K) ds

}
, (4.1)

where X = (Xt)t≥0 satisfies dXt = Xt (αdt+ βdWt), and that the infinitessimal

generator of X is given by LXf = 1
2
β2x2f ′′ + αxf ′.

Theorem 4.13. The solution to Equation (4.1) is given by

Φ(x) =


−d1−γ
γ(r−α)

xγ + x
r−α −

K
r

for x > d

0 for 0 ≤ x ≤ d
, (4.2)

where

d = K
γ(r − α)

r(γ − 1)
,

γ = β−2

[
1
2
β2 − α−

√(
1
2
β2 − α

)2
+ 2rβ2

]
.
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Furthermore, the stopping time

σd = inf {t ≥ 0 : Xt ≤ d} (4.3)

is optimal.

Proof:

It is relatively easy to verify that Φ from Equation (4.2) satisfies the variational

inequality 

LXφ(x)− rφ(x) = −(x−K) for x > d

φ(x) = 0 for 0 ≤ x ≤ d

φ(d) = 0 continuity at d

φx(d) = 0 smoothness at d

.

Applying Itô’s formula from Peskir & Shiryaev [13], Equation (1.5), we find that

∫ t

0

e−rs(Xs −K) + e−rtΦ(Xt)

=

∫ t

0

e−rs(Xs −K) ds+ Φ(x) +

∫ t

0

e−rs [LXΦ− rΦ] (Xs)I(Xs 6= d) ds

+

∫ t

0

e−rsβXsΦ
′(Xs)I(Xs 6= d) dWs

+ 1
2

∫ t

0

e−rs (Φ′(Xs+)− Φ′(Xs−)) I(Xs = d)d`cs(X)

= Φ(x) +

∫ t

0

e−rs(Xs −K) ds+

∫ t

0

e−rs [LXΦ− rΦ] (Xs)I(Xs 6= d) ds

+

∫ t

0

e−rsβXsΦ
′(Xs)I(Xs 6= d) dWs,

as Φ is smooth at d.

Notice that by Φ being a solution the variational equality, we have that (LXΦ−

rΦ)(Xt) = −Xt+K on the set {(t,Xt) : Xt ≥ d} and 0 otherwise, and that Xt−K < 0

on the set {(t,Xt) : 0 ≤ Xt ≤ d}. Therefore, we must have that everywhere on (0,∞)
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but d

∫ t

0

e−rs(Xs −K) ds+

∫ t

0

e−rs [LXΦ− rΦ] (Xs)I(Xs 6= d) ds ≤ 0.

However, Px(Xs = d) = 0 for all x and s.

Denote M = (Mt)t≥0 by Mt =
∫ t

0
e−rsβX2Φ′(Xs)I(Xs 6= d) dWs. This Mt is a

continuous local martingale.

Let (σn)n≥1 be a localization sequence of bounded stopping times for M . Then as

∫ t

0

e−rs(Xs −K) ds ≤
∫ t

0

e−rs(Xs −K) ds+ e−rtΦ(Xt) ≤ Φ(x) +Mt,

we have for every stopping time σ of X

∫ σ∧σn

0

e−rs(Xs −K) ds ≤ Φ(x) +Mσ∧σn .

Taking Px-expectation and using the Optional Sampling Theorem we must con-

clude that ExMσ∧σn = 0 for all n, and as n→∞ we find by Fatou’s Lemma

Ex
{∫ σ

0

e−rs(Xs −K) ds

}
≤ Φ(x).

By taking the supremum over all stopping times σ of X we have Φ∗(x) ≤ Φ(x).

But by the Optional Sampling Theorem we also have

Ex
{∫ σd∧σn

0

e−rs(Xs −K) ds+ e−r(σd∧σn)Φ(Xσd∧σn)

}
= Φ(x)

for all n ≥ 1. Letting n → ∞, we notice that Φ(Xσd) ≡ 0 by construction and we

have by the Dominated Convergence Theorem that

Ex
{∫ σd

0

e−rs(Xs −K) ds

}
= Φ(x),
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and so σd is optimal, and Φ = Φ∗ for all x > 0.

4.2 Two Variable Switching

For convenience, we shall state the equivalent optimization problem after the CPT

transformation. Recall that the optimal stopping problem after the transformation

is given by

Φ∗(x1, x2) = sup
σ

Ex1,x2
{
e−rσ

(
X2,σ

r − α2

− X1,σ

r − α1

)}
. (4.4)

Theorem 4.14. The solution to Equation (4.4) is given by

Φ(x1, x2) =


1

µλ(λ−1)(r−α1)
(x1)1−λ(x2)λ for x2 < µx1

x2
r−α2

− x1
r−α1

for x2 ≥ µx1

, (4.5)

where

a = α1 − α2,

b = 1
2
β2

1 − β1β2ρ+ 1
2
β2

2 ,

λ =
b+ a+

√
(b+ a)2 + 4b(r − α1)

2b
,

µ =
λ

λ− 1

(
r − α2

r − α1

)
,

and the switching time

σµ = inf {t ≥ 0 : X2,t ≥ µX1,t} (4.6)

is optimal.

Proof:

Denote the function g(x1, x2) = x2
r−α2

− x1
r−α1

. Any solution φ(x1, x2) to Equation
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(4.4) will satisfy the variational inequality



Lx1,x2φ− rφ = 0 for x2 < µx1

φ = g for x2 = µx1

∇φ = ∇g for x2 = µx1

Lx1,x2g − rg ≤ 0 for x2 > µx1

φ > g for x2 < µx1

where Lx1,x2f = 1
2
β2

1x
2
1
∂2f
∂x21

+ β1β2ρx1x2
∂2f

∂x1∂x2
+ 1

2
β2

2x
2
2
∂2f
∂x22

+ α1x1
∂f
∂x1

+ α2x2
∂f
∂x2

, and

dX1,t = X1,t(α1dt+ β1dB1,t) and dX2,t = X2,t(α2dt+ β2ρdB1,t + β2

√
1− ρ2dB2,t) for

B1,t and B2,t independent Brownian Motions.

By Itô’s formula we have

e−rtΦ(X1,t, X2,t) = Φ(x1, x2)

+

∫ t

0

e−rs (Lx1,x2Φ− rΦ) (X1,s, X2,s)I(X2,s 6= µX1,s) ds

∫ t

0

e−rs

 β1 + β2ρ

β2

√
1− ρ2

 ·
 X1,s

∂Φ
∂x1
dB1,s

X2,s
∂Φ
∂x2
dB2,s

 I(X2,s 6= µX1,s),

(4.7)

as Φ is smooth at X2,t = µX1,t. We notice that (Lx1,x2Φ− rΦ) (X1,t, X2,t) ≤ 0 on R+

by construction.

Denote M = (Mt)t≥0 by

Mt =

∫ t

0

e−rs

 β1 + β2ρ

β2

√
1− ρ2

 ·
 X1,s

∂Φ
∂x1

(X1,s, X2,s)dB1,s

X2,s
∂Φ
∂x2

(X1,s, X2,s)dB2,s

 I(X2,s 6= µX1,s).
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Since,

∂Φ

∂x1

(X1,t, X2,t) =


−1
r−α1

(
X2,t

µX1,t

)λ
for X2,t < µX1,t

−1
r−α1

for X2,t ≥ µX1,t

∂Φ

∂x2

(X1,t, X2,t) =


1

r−α2

(
X2,t

µX1,t

)λ−1

for X2,t < µX1,t

1
r−α2

for X2,t ≥ µX1,t

and λ > 0, these partial derivatives are bounded. Mt is a continuous local martingale.

Let (σn)n≥1 be a localization sequence of bounded stopping times for M . Then since

e−rt
(

X2,t

r − α2

− X1,t

r − α1

)
≤ e−rtΦ(X1,t, X2,t) ≤ Φ(x1, x2) +Mt. (4.8)

Then for any switching time σ of (X1,t, X2,t) we have

e−r(σ∧σn)

(
X2,σ∧σn
r − α2

− X1,σ∧σn
r − α1

)
≤ Φ(x1, x2) +Mσ∧σn (4.9)

for all n ≥ 1. Taking Px1,x2-expectation and using the Optional Sampling Theorem

we must conclude that Ex1,x2Mσ∧σn for all n and as n→∞ we find by Fatou’s Lemma

Ex1,x2
{
e−rσ

(
X2,σ

r − α2

− X1,σ

r − α1

)}
≤ Φ(x1, x2). (4.10)

Taking the supremum over all switching times σ of (X1,t, X2,t) we have Φ∗ ≤ Φ. But

by the Optional Sampling Theorem we have

Ex1,x2
{
e−r(σµ∧σn)Φ(X1,σµ∧σn , X2,σµ∧σn)

}
= Φ(x1, x2) (4.11)

for all n ≥ 1. Letting n→∞ we notice that Φ = g at the boundary by construction
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and we have by the Dominated Convergence Theorem that

Ex1,x2
{
e−rσµ

(
X2,σµ

r − α2

−
X1,σµ

r − α1

)}
= Φ(x1, x2), (4.12)

and so σµ is optimal and Φ = Φ∗ for all x > 0.
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APPENDIX A: SINGLE CANDIDATE CODE

The first appendix will contain all Python code responsible for the single candidate

materials, while the second will contain code responsible for the two candidate mate-

rials. The Python code used throughout was generated using Python 3.5 through the

Anaconda distribution, available at https://www.continuum.io/downloads. Please

understand that, as Python is a white space language, certain formatting changes

were necessary to fit the code within the margins of the document. That is, the

scripts will not run as they are presented below. When carriage returns have been

inserted there were immediately followed by tabs. It is our hope that this information

when combined with some familiarity with the language, or at least an error checking

IDE, that any reader will be able to replicate our results with little trouble.

The following is the code that generated the data seen in Table 2.1.

# LSM for f(x) = x, single candidate.

import numpy as np

import scipy as spy

def MonteCarlo(M,N,T,S0,A,B):

dt = 1/N

S = np.zeros((M,int(T*N)+1))

S[:,0] = S0

eps = np.random.normal(0, 1, (M,int(N*T)))

S[:,1:] = np.exp((A-0.5*B**2)*dt + eps*B*np.sqrt(dt));

S = np.cumprod(S, axis = 1);

return S
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def LSM(M,N,T,S,Z,R):

C = np.zeros((M,int(T*N)+1))

for m in range(M):

C[m,T*N] = np.max([S[m,T*N],0]) #K-S[m,T*N],0])

X = np.zeros((M,int(T*N)))

Y = np.zeros((M,int(T*N)))

Exercise = np.zeros((M,int(T*N)))

Continue = np.zeros((M,int(T*N)))

for n in range(int(T*N),1,-1):

x = np.zeros(0)

y = np.zeros(0)

for i in range(M):

if S[i,n-1] > 0: #K-S[i,n-1] > 0:

X[i,n-1] = Z[i,n-1]

# independent variable of regression

# should be the underlying Monte

# Carlo simulation

Exercise[i,n-1] = S[i,n-1]

# Exercise value if exercise now.

x = np.append(x,X[i,n-1])

Y[i,n-1] = C[i,n] #df * C[i,n]

y = np.append(y,Y[i,n-1])

if len(x) == 0:

p = np.array([0,0,0])

else:

p = spy.polyfit(x,y,2)

for i in range(M):
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if S[i,n-1] > 0: #K-S[i,n-1] > 0:

# Expected value of continuing,

# calculated with degreee 2 regression.

Continue[i,n-1] =

p[0]*X[i,n-1]**2 + p[1]*X[i,n-1] + p[2]

for i in range(M):

# Exercise now only if expected value

# of continuing is negative.

if Continue[i,n-1] < 0:

C[i,n-1] = Exercise[i,n-1]

C[i,n:] = 0

return C

# Parameters for running the model.

M = 500

N = 12

alpha = 0.09

beta = 0.3

r = 0.1

Z0 = 1

K = 0

t = np.linspace(10,100,10)

# Store Output for Table 2.1.

Output = np.zeros((11,3))

T = 1
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# Build the Monte Carlo simulation for X when T=1.

Z = MonteCarlo(M,N,T,Z0,alpha,beta)

# Calculation of integral of e^{-rs}(X_s - K) along each path

# Integration with trapezoidal rule (for non-uniform widths)

dt = 1/N

S = np.zeros((M,T*N+1))

for m in range(M):

for n in range(T*N):

S[m,n+1] =

S[m,n]+0.5*dt*(np.exp(-r*dt*(n+1))*(Z[m,n+1]-K)

+np.exp(-r*dt*n)*(Z[m,n]-K));

# Run LSM for T=1.

C = LSM(M,N,T,S,Z,r)

Output[0,:] =

T, np.mean(C[:,N*T]), Z0/(alpha-r)*(np.exp((alpha-r)*T)-1)

for k in range(len(t)):

T = int(t[k])

Z = MonteCarlo(M,N,T,Z0,alpha,beta)

S = np.zeros((M,T*N+1))

for m in range(M):

for n in range(int(T*N)):

S[m,n+1] =
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S[m,n]+0.5*dt*(np.exp(-r*dt*(n+1))

*(Z[m,n+1]-K)+np.exp(-r*dt*n)*(Z[m,n]-K));

C = LSM(M,N,T,S,Z,r) #, cont, exer

Output[k+1,:] =

T, np.mean(C[:,N*T]), Z0/(alpha-r)*(np.exp((alpha-r)*T)-1)

The following is the code used in generating the data for Table 2.3.

#LSM for x-K, single candidate

import numpy as np

import scipy as spy

import pylab as pl

def MonteCarlo(M,N,T,S0,A,B):

dt = 1/N

S = np.zeros((M,int(T*N)+1))

S[:,0] = S0

eps = np.random.normal(0, 1, (M,int(N*T)))

S[:,1:] = np.exp((A-0.5*B**2)*dt + eps*B*np.sqrt(dt));

S = np.cumprod(S, axis = 1);

return S

def LSM(M,N,T,S,Z,R):

C = np.zeros((M,int(T*N)+1))

for m in range(M):

C[m,T*N] = np.max([S[m,T*N],0]) #K-S[m,T*N],0])

X = np.zeros((M,int(T*N)))
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Y = np.zeros((M,int(T*N)))

Exercise = np.zeros((M,int(T*N)))

Continue = np.zeros((M,int(T*N)))

for n in range(int(T*N),1,-1):

x = np.zeros(0)

y = np.zeros(0)

for i in range(M):

if S[i,n-1] > 0:

X[i,n-1] = Z[i,n-1]

# independent variable of regression

# should be the underlying Monte

# Carlo simulation.

Exercise[i,n-1] = S[i,n-1]

# exercise value if

# exercise now (current

# value of integral).

x = np.append(x,X[i,n-1])

Y[i,n-1] = C[i,n]

y = np.append(y,Y[i,n-1])

if len(x) == 0:

p = np.array([0,0,0])

else:

p = spy.polyfit(x,y,2)

for i in range(M):

if S[i,n-1] > 0: #K-S[i,n-1] > 0:

Continue[i,n-1] = p[0]*X[i,n-1]**2

+ p[1]*X[i,n-1] + p[2]
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# Expected value of continuing,

# calculated with

# degreee 2 regression.

for i in range(M):

if Continue[i,n-1] < 0:

# Exercise now if negative expected

# value of continuing

# from the current point.

C[i,n-1] = Exercise[i,n-1]

C[i,n:] = 0

return C, Continue, Exercise

def Sigma(M,N,T,C):

sigma = np.zeros(M)

for m in range(M):

for n in range(int(T*N)):

if C[m,n+1] != 0:

sigma[m] = n+1

return sigma

# Parameters for running the model.

M = 500

T = 10

N = 24

alpha = 0.09

beta = 0.1

r = 0.1
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Z0 = 100

K = 50

# Build the Monte Carlo simulation for X.

Z = MonteCarlo(M,N,T,Z0,alpha,beta)

# Calculation of integral of e^{-rs}(X_s - K) along each path

# Integration with trapezoidal rule (for non-uniform widths)

dt = 1/N

S = np.zeros((M,T*N+1))

for m in range(M):

for n in range(T*N):

S[m,n+1] =

S[m,n]+0.5*dt*(np.exp(-r*dt*(n+1))*(Z[m,n+1]-K)

+np.exp(-r*dt*n)*(Z[m,n]-K));

# Run LSM

C , cont, exer = LSM(M,N,T,S,Z,r)

sigma = np.zeros(M)

#sigma = np.flatnonzero(C[0,:])[0]

for i in range(M):

if C[i,:].any() != 0:

sigma[i] = np.flatnonzero(C[i,:])[0]

cvec = np.zeros(M)
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for i in range(M):

for j in range(N*T+1):

if C[i,j] != 0:

cvec[i] = C[i,j]

if K == 0:

calculated = np.mean(C[:,N*T])

predicted = Z0/(alpha-r)*(np.exp((alpha-r)*T)-1)

print(’As K=0 was chosen, the following are the calculated

and predicted values:’)

print(’Calculated by averaging final values:’, calculated)

print(’Predicted by direct calculation:’, predicted)

Here we have the code used for the single candidate portfolio data.

#LSM for f(x) = x-K, single candidate, portfolio simulations included.

import numpy as np

import scipy as spy

import pylab as pl

from sklearn import linear_model

def f(x,K):

return x-K

def delta(t,T):

return T-t
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def phi(Z,barZ,t,T):

return barZ-delta(t,T)*f(Z,K)

def MonteCarlo(M,N,T,S0,A,B):

dt = 1/N

S = np.zeros((M,int(T*N)+1))

S[:,0] = S0

eps = np.random.normal(0, 1, (M,int(N*T)))

S[:,1:] = np.exp((A-0.5*B**2)*dt + eps*B*np.sqrt(dt));

S = np.cumprod(S, axis = 1);

return S

def LSM(M,N,T,Phi,Z,R):

C = np.zeros((M,int(T*N)+1))

for m in range(M):

C[m,T*N] = np.max([Phi[m,T*N],0]) #K-S[m,T*N],0])

X = np.zeros((M,int(T*N)))

Y = np.zeros((M,int(T*N)))

Exercise = np.zeros((M,int(T*N)))

Continue = np.zeros((M,int(T*N)))

for n in range(int(T*N),1,-1):

x = np.zeros(0)

y = np.zeros(0)

for i in range(M):

if Phi[i,n-1] > 0:

X[i,n-1] = Z[i,n-1]

# x variable of regression should be the underlying
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# Monte Carlo simulation

Exercise[i,n-1] = Phi[i,n-1]

# exercise value if exercise now

x = np.append(x,X[i,n-1])

Y[i,n-1] = C[i,n] #df * C[i,n]

y = np.append(y,Y[i,n-1])

if len(x) == 0:

p = np.array([0,0,0])

else:

p = spy.polyfit(x,y,2)

for i in range(M):

if S[i,n-1] > 0: #K-S[i,n-1] > 0:

Continue[i,n-1] =

p[0]*X[i,n-1]**2 + p[1]*X[i,n-1] + p[2]

# Expected value of continuing,

# calculated with degreee 2 regression.

for i in range(M):

if Continue[i,n-1] < 0:

# If exercise now value exceeds expected

# value of continuing.

C[i,n-1] = Exercise[i,n-1]

C[i,n:] = 0

return C, Continue, Exercise

def Sigma(M,N,T,C):

sigma = np.zeros(M)

for m in range(M):
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for n in range(int(T*N)):

if C[m,n+1] != 0:

sigma[m] = n+1

return sigma

# Parameters for running the model.

M = 500

T = 1

N = 24

dt = 1/N

alpha = 0.09

beta = 0.1

r = 0.1

Z0 = 100

K = 50

# Build the Monte Carlo simulation for X.

Z = MonteCarlo(M,N,T,Z0,alpha,beta)

# Calculation of integral of e^{-rs}(X_s - K) along each path

# Integration with trapezoidal rule (for non-uniform widths)

S = np.zeros((M,T*N+1))

for m in range(M):

for n in range(T*N):

S[m,n+1] = S[m,n]+0.5*dt*(np.exp(-r*dt*(n+1))*f(Z[m,n+1],K)

+np.exp(-r*dt*n)*f(Z[m,n],K));
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barZ0 = delta(0,T)*f(Z0,K)

barZ = np.zeros((M,T*N+1))

barZ[:,0] = barZ0

for n in range(T*N):

barZ[:,n+1] = delta((n+1)*dt,T)*f(Z[:,n+1],K)

+np.exp(r*(n+1)*dt)*S[:,n+1]

barZ2 = np.zeros((M,T*N+1))

barZ2[:,0] = barZ0

for n in range(T*N):

barZ2[:,n+1] = barZ2[:,n] + delta((n)*dt,T)

*(f(Z[:,n+1],K)-f(Z[:,n],K))

+(barZ2[:,n]-delta((n)*dt,T)*f(Z[:,n],K))*r*dt

# Value function with simulated integral.

Phi0 = S

# Value function with portfolio 1

Phi1 = np.zeros((M,T*N+1))

Phi1[:,0] = barZ0-T*f(Z0,K)

for m in range(M):

for t in range(T*N):

Phi1[m,t+1] = np.exp(-r*(t+1)*dt)

*phi(Z[m,t+1],barZ[m,t+1],(t+1)*dt,T)

# Value function with portfolio 2

Phi2 = np.zeros((M,T*N+1))
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Phi2[:,0] = barZ0-T*f(Z0,K)

for m in range(M):

for t in range(T*N):

Phi2[m,t+1] = np.exp(-r*(t+1)*dt)

*phi(Z[m,t+1],barZ2[m,t+1],(t+1)*dt,T)

# Run LSM

C0, con0,exe0 = LSM(M,N,T,Phi0,Z,r)

C1 , con1, exe1 = LSM(M,N,T,Phi1,Z,r)

C2, con2, exe2 = LSM(M,N,T,Phi2,Z,r)

sigma = np.zeros(M)

#sigma = np.flatnonzero(C[0,:])[0]

for i in range(M):

if C0[i,:].any() != 0:

sigma[i] = np.flatnonzero(C0[i,:])[0]

if C1[i,:].any() != 0:

sigma[i] = np.flatnonzero(C1[i,:])[0]

if C2[i,:].any() != 0:

sigma[i] = np.flatnonzero(C2[i,:])[0]

cvec0 = np.zeros(M)

cvec1 = np.zeros(M)

cvec2 = np.zeros(M)

for i in range(M):

for j in range(N*T+1):
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if C0[i,j] != 0:

cvec0[i]= C0[i,j]

if C1[i,j] != 0:

cvec1[i] = C1[i,j]

if C2[i,j] != 0:

cvec2[i] = C2[i,j]

if K == 0:

sim0 = np.mean(C0[:,N*T])

sim1 = np.mean(C1[:,N*T])

sim2 = np.mean(C2[:,N*T])

predicted = Z0/(alpha-r)*(np.exp((alpha-r)*T)-1)

print(’As K=0 was chosen, the following

are the simulated (3 approaches) and predicted values:’)

print(’Simulated0 by averaging final values:’, sim0)

print(’Simulated1 by averaging final values:’, sim1)

print(’Simulated2 by averaging final values:’, sim2)

print(’Predicted by direct calculation:’, predicted)

if K > 0:

g1 = beta**(-2)*(0.5*beta**2 - alpha

+ np.sqrt((0.5*beta**2-alpha)**2 +2*r*beta**2))

g2 = beta**(-2)*(0.5*beta**2 - alpha

- np.sqrt((0.5*beta**2-alpha)**2 +2*r*beta**2))

d = K*g2*(r-alpha)/(r*(g2-1))

C = -d**(-g2+1)/(g2*(r-alpha))

sim0 , sim1, sim2 = np.mean(cvec0), np.mean(cvec1), np.mean(cvec2)
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print(’As K>0 was chosen,

the following are the simulated values with all 3 approaches:’)

print(’Simulated0 by averaging final values:’, sim0)

print(’Simulated1 by averaging final values:’, sim1)

print(’Simulated2 by averaging final values:’, sim2)

print(’Infinite horizon problem has parameters C, d, gamma2:’

, d, g2)

Phiinf = -d/(g2*(r-alpha))*(Z0/d)**(g2) + Z0/(r-alpha) - K/r

print(’Infinite horizon problem has solution

for these parameters:’, Phiinf)



APPENDIX B: TWO CANDIDATE CODE

Here we provide the Python code used to generate the 3-dimensional plot of

ψ(x1, x2) seen in Figure 3.1.

# 3-D Plot of Two Candidate Switching Solution

import numpy as np

import scipy as spy

import pylab as pl

import mpl_toolkits.mplot3d.axes3d as p3

# Dynamics of first process, X_1,t

alpha1 = 0.05 # drift

beta1 = 0.3 # volatility

# Dynamics of second process, X_2,t

alpha2 = 0.09 # drift

beta2 = 0.1 # volatility

# Discount (interest) rate

r = 0.1

# Correlation

rho = 0.5 # Must be between -1 and 1
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b = (0.5)*(beta1**2 -2*beta1*beta2*rho + beta2**2)

a = alpha1-alpha2

# Calculation of exponent lambda

l = (b+a+np.sqrt((b+a)**2+4*b*(r-alpha1)))/(2*b)

# Calculation of cuttoffs for both methods

mu = l*(r-alpha2)/((l-1)*(r-alpha1))

# Calculation of constant for both methods

C = mu**(-l)/((l-1)*(r-alpha1))

x1 = np.linspace(0,10,101)

x2 = np.linspace(0,10,101)

psi = np.zeros((101,101))

for i in range(len(x2)):

for j in range(len(x1)):

if x2[i] < mu*x1[j]:

psi[i,j] = C*(x1[j]**(1-l))*x2[i]**l + x1[j]/(r-alpha1)

else:

psi[i,j] = x2[i]/(r-alpha2)

# Generate grid for 3-D plot.

X, Y = pl.meshgrid(x1,x2)
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# Generate 3-D plot.

fig = pl.figure()

ax = p3.Axes3D(fig)

ax.plot_surface(X,Y,psi)

ax.set_xlabel(’X1’)

ax.set_ylabel(’X2’)

ax.set_zlabel(’psi’)

fig.add_axes(ax)

pl.show()

Below we include both sets of code used in generating the portfolio value for the

finite horizon switching case. First is the code using multilinear regression.

# Two variable switching simulation, f(x)=x.

import numpy as np

import scipy as spy

import pylab as pl

import pandas

# For 3d plots. This import is necessary to have 3D plotting below

from mpl_toolkits.mplot3d import Axes3D

# For statistics. Requires statsmodels 5.0 or more

from statsmodels.formula.api import ols

def MonteCarlo(M,N,T,S0,A,B):
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dt = 1/N

S = np.zeros((M,int(T*N)+1))

S[:,0] = S0

eps = np.random.normal(0, 1, (M,int(N*T)))

S[:,1:] = np.exp((A-0.5*B**2)*dt + eps*B*np.sqrt(dt));

S = np.cumprod(S, axis = 1);

return S

def phi(xbar,x1,x2,t,T):

return xbar - (T-t)*(x1-x2)

# Initial parameters

M = 500 # No. of paths per simulation

N = 12 # No. of time periods per year

T = 1 # No. of years

dt = 1/N

rho = 0.5

r = 0.1

a1 = 0.05

b1 = 0.2

a2 = 0.09

b2 = 0.2



96

X10 = 1

X20 = 1

X1, X2 = MonteCarlo(M,N,T,X10,a1,b1), MonteCarlo(M,N,T,X20,a2,b2)

#X2 = np.zeros((M,T*N+1))

S1,S2 = np.zeros((M,T*N+1)),np.zeros((M,T*N+1))

for m in range(M):

for n in range(T*N):

S1[m,n+1] = S1[m,n]+0.5*dt*(np.exp(-r*dt*(n+1))*X1[m,n+1]

+np.exp(-r*dt*n)*X1[m,n]);

S2[m,n+1] = S2[m,n]+0.5*dt*(np.exp(-r*dt*(n+1))*X2[m,n+1]

+np.exp(-r*dt*n)*X2[m,n]);

barX0 = T*(X10-X20)

barX = np.zeros((M,T*N+1))

barX[:,0] = barX0

for n in range(T*N):

barX[:,n+1] = (T-(n+1)*dt)*(X1[:,n+1]-X2[:,n+1])

+ np.exp(r*(n+1)*dt)*(S1[:,n+1]-S2[:,n+1])

Phi = np.zeros((M,T*N+1))

Phi[:,0] = barX0-T*(X10-X20) #+ X20/(a2-r)*(np.exp((a2-r)*T)-1)

for m in range(M):

for t in range(T*N):

Phi[m,t+1] = np.exp(-r*(t+1)*dt)

*phi(barX[m,t+1],X1[m,t+1],X2[m,t+1],(t+1)*dt,T)
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barX2 = np.zeros((M,T*N+1))

barX2[:,0] = barX0

dbarX = np.zeros((M,T*N))

for n in range(T*N):

dbarX[:,n] = (T-n*dt)*(X1[:,n+1]-X1[:,n])

+ (n*dt-T)*(X2[:,n+1]-X2[:,n])

+ (barX2[:,n]-(T-n*dt)*X1[:,n]-(n*dt-T)*X2[:,n])*r*dt

barX2[:,n+1] = barX2[:,n] + dbarX[:,n]

Phi2 = np.zeros((M,T*N+1))

Phi2[:,0] = barX0-T*(X10-X20) #+ X20/(a2-r)*(np.exp((a2-r)*T)-1)

for m in range(M):

for t in range(T*N):

Phi2[m,t+1] = np.exp(-r*(t+1)*dt)

*phi(barX2[m,t+1],X1[m,t+1],X2[m,t+1],(t+1)*dt,T)

# LSM

C1, C2 = np.zeros((M,int(T*N)+1)), np.zeros((M,int(T*N)+1))

for m in range(M):

C1[m,T*N], C2[m,T*N] = np.max([Phi[m,T*N],0]),

np.max([Phi2[m,T*N],0])

regX1 = np.zeros((M,int(T*N)))

regX2 = np.zeros((M,int(T*N)))

regY1, regY2 = np.zeros((M,int(T*N))), np.zeros((M,int(T*N)))

Exercise1, Exercise2 = np.zeros((M,int(T*N))), np.zeros((M,T*N))

Continue1, Continue2 = np.zeros((M,int(T*N))), np.zeros((M,int(T*N)))
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for n in range(int(T*N),1,-1):

x1 = np.zeros(0)

x2 = np.zeros(0)

y1, y2 = np.zeros(0), np.zeros(0)

for i in range(M):

if Phi[i,n-1] > 0:

regX1[i,n-1] = X1[i,n-1] # x1 Monte Carlo on X1

regX2[i,n-1] = X2[i,n-1] # x2 Monte Carlo on X2

Exercise1[i,n-1] = Phi[i,n-1]

Exercise2[i,n-1] = Phi2[i,n-1]

# exercise value if exercise now

x1 = np.append(x1,regX1[i,n-1])

x2 = np.append(x2,regX2[i,n-1])

regY1[i,n-1] = C1[i,n] #df * C[i,n]

y1 = np.append(y1,regY1[i,n-1])

regY2[i,n-1] = C2[i,n]

y2 = np.append(y2,regY2[i,n-1])

X = regX1.flatten()

Y = regX2.flatten()

Z1 = regY1.flatten()

Z2 = regY2.flatten()

data1 = pandas.DataFrame({’x1’: X, ’x2’: Y, ’Phi’: Z1})

data2 = pandas.DataFrame({’x1’: X, ’x2’: Y, ’Phi2’: Z2})

# Fit the model

model1 = ols("Phi ~ x1 + x2", data1).fit()

model2 = ols("Phi2 ~ x1 + x2", data2).fit()
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for i in range(M):

if Phi[i,n-1] > 0:

Continue1[i,n-1] = model1._results.params[0]

+ model1._results.params[1]*X1[i,n-1]

+ model1._results.params[2]*X2[i,n-1]

Continue2[i,n-1] = model2._results.params[0]

+ model2._results.params[1]*X1[i,n-1]

+ model2._results.params[2]*X2[i,n-1]

# Expected value of continuing,

# calculated with multilinear regression.

for i in range(M):

if Continue1[i,n-1] < 0:

# If exercise now value exceeds

# expected value of continuing.

C1[i,n-1] = Exercise1[i,n-1]

C1[i,n:] = 0

if Continue2[i,n-1] < 0:

C2[i,n-1] = Exercise2[i,n-1]

C2[i,n:] = 0

sigma1, sigma2 = np.zeros(M), np.zeros(M)

for i in range(M):

if C1[i,:].any() != 0:

sigma1[i] = np.flatnonzero(C1[i,:])[0]

if C2[i,:].any() != 0:

sigma2[i] = np.flatnonzero(C2[i,:])[0]
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x1sigma1, x2sigma1 = np.zeros(M), np.zeros(M)

x1sigma2, x2sigma2 = np.zeros(M), np.zeros(M)

for i in range(M):

x1sigma1[i], x2sigma1[i] = X1[i,sigma1[i]], X2[i,sigma1[i]]

x1sigma2[i], x2sigma2[i] = X1[i,sigma2[i]], X2[i,sigma2[i]]

cvec1 = np.zeros(M)

cvec2 = np.zeros(M)

for i in range(M):

for j in range(N*T+1):

if C1[i,j] != 0:

cvec1[i] = C1[i,j]

if C2[i,j] != 0:

cvec2[i] = C2[i,j]

sim1, sim2 = np.mean(cvec1)+X20/(a2-r)*(np.exp((a2-r)*T)-1)

, np.mean(cvec2)+X20/(a2-r)*(np.exp((a2-r)*T)-1)

print(sim1, sim2)

print(’Method 1 average switch time at t=’,

np.mean(sigma1)/N)

print(’Method 1 average value of x1 and x2 at stop:’,

np.mean(x1sigma1), np.mean(x2sigma1))

print(’Method 2 average switch time at t=’,

np.mean(sigma2)/N)

print(’Method 2 average value of x1 and x2 at stop:’,

np.mean(x1sigma2), np.mean(x2sigma2))
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Next we have the Python code for the finite horizon switching problem, but with

degree two polynomial regression on Xt = X1,t −X2,t.

# Two Variable Switch with X=X1-X2

import numpy as np

import scipy as spy

import pylab as pl

import pandas

# For 3d plots. This import is necessary to have 3D plotting below

from mpl_toolkits.mplot3d import Axes3D

# For statistics. Requires statsmodels 5.0 or more

from statsmodels.formula.api import ols

def MonteCarlo(M,N,T,S0,A,B):

dt = 1/N

S = np.zeros((M,int(T*N)+1))

S[:,0] = S0

eps = np.random.normal(0, 1, (M,int(N*T)))

S[:,1:] = np.exp((A-0.5*B**2)*dt + eps*B*np.sqrt(dt));

S = np.cumprod(S, axis = 1);

return S

def LSM(M,N,T,Phi,Z,R):

C = np.zeros((M,int(T*N)+1))

for m in range(M):
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C[m,T*N] = np.max([Phi[m,T*N],0]) #K-S[m,T*N],0])

X = np.zeros((M,int(T*N)))

Y = np.zeros((M,int(T*N)))

Exercise = np.zeros((M,int(T*N)))

Continue = np.zeros((M,int(T*N)))

for n in range(int(T*N),1,-1):

x = np.zeros(0)

y = np.zeros(0)

for i in range(M):

if Phi[i,n-1] > 0:

X[i,n-1] = Z[i,n-1]

Exercise[i,n-1] = Phi[i,n-1]

x = np.append(x,X[i,n-1])

Y[i,n-1] = C[i,n]

y = np.append(y,Y[i,n-1])

if len(x) == 0:

p = np.array([0,0,0])

else:

p = spy.polyfit(x,y,2)

for i in range(M):

if S[i,n-1] > 0: #K-S[i,n-1] > 0:

Continue[i,n-1] =

p[0]*X[i,n-1]**2 + p[1]*X[i,n-1] + p[2]

# Expected value of continuing,

# calculated with degreee 2 regression.

for i in range(M):

if Continue[i,n-1] < 0:
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C[i,n-1] = Exercise[i,n-1]

C[i,n:] = 0

return C#, Continue, Exercise

def phi(xbar,x,t,T):

return xbar - (T-t)*(x)

# Initial parameters

M = 500 # No. of paths per simulation

N = 12 # No. of time periods per year

T = 50 # No. of years

dt = 1/N

rho = 0.5

r = 0.1

a1 = 0.05

b1 = 0.2

a2 = 0.09

b2 = 0.2

X10 = 1

X20 = 1
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X1, X2 = MonteCarlo(M,N,T,X10,a1,b1), MonteCarlo(M,N,T,X20,a2,b2)

#X2 = np.zeros((M,T*N+1))

X = X1-X2

#S1,S2 = np.zeros((M,T*N+1)),np.zeros((M,T*N+1))

S = np.zeros((M,T*N+1))

for m in range(M):

for n in range(T*N):

S[m,n+1] = S[m,n]+0.5*dt*(np.exp(-r*dt*(n+1))*X[m,n+1]

+np.exp(-r*dt*n)*X[m,n]);

barX0 = T*(X10-X20)

barX = np.zeros((M,T*N+1))

barX[:,0] = barX0

for n in range(T*N):

barX[:,n+1] = (T-(n+1)*dt)*(X[:,n+1])

+ np.exp(r*(n+1)*dt)*(S[:,n+1])

Phi1 = np.zeros((M,T*N+1))

Phi1[:,0] = barX0-T*(X10-X20)

for m in range(M):

for t in range(T*N):

Phi1[m,t+1] = np.exp(-r*(t+1)*dt)

*phi(barX[m,t+1],X[m,t+1],(t+1)*dt,T)

barX2 = np.zeros((M,T*N+1))
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barX2[:,0] = barX0

dbarX = np.zeros((M,T*N))

for n in range(T*N):

dbarX[:,n] = (T-n*dt)*(X[:,n+1]-X[:,n])

+ (barX2[:,n]-(T-n*dt)*X[:,n])*r*dt

barX2[:,n+1] = barX2[:,n] + dbarX[:,n]

Phi2 = np.zeros((M,T*N+1))

Phi2[:,0] = barX0-T*(X10-X20)

for m in range(M):

for t in range(T*N):

Phi2[m,t+1] = np.exp(-r*(t+1)*dt)

*phi(barX2[m,t+1],X[m,t+1],(t+1)*dt,T)

# LSM

C1, C2 = LSM(M,N,T,Phi1,X,r), LSM(M,N,T,Phi2,X,r)

sigma1, sigma2 = np.zeros(M), np.zeros(M)

for i in range(M):

if C1[i,:].any() != 0:

sigma1[i] = np.flatnonzero(C1[i,:])[0]

if C2[i,:].any() != 0:

sigma2[i] = np.flatnonzero(C2[i,:])[0]

x1sigma1, x2sigma1 = np.zeros(M), np.zeros(M)

x1sigma2, x2sigma2 = np.zeros(M), np.zeros(M)
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for i in range(M):

x1sigma1[i], x2sigma1[i] = X1[i,int(sigma1[i])],

X2[i,int(sigma1[i])]

x1sigma2[i], x2sigma2[i] = X1[i,int(sigma2[i])],

X2[i,int(sigma2[i])]

cvec1 = np.zeros(M)

cvec2 = np.zeros(M)

for i in range(M):

for j in range(N*T+1):

if C1[i,j] != 0:

cvec1[i] = C1[i,j]

if C2[i,j] != 0:

cvec2[i] = C2[i,j]

sim1, sim2 = np.mean(cvec1) + X20/(a2-r)*(np.exp((a2-r)*T)-1),

np.mean(cvec2) + X20/(a2-r)*(np.exp((a2-r)*T)-1)

b = 0.5*b1**2 - b1*b2*rho + 0.5*b2**2

a = a1-a2

l = (b+a + np.sqrt((b+a)**2 +4*b*(r-a1)))/(2*b)

mu = l/(l-1)*(r-a2)/(r-a1)

stop1 = mu*np.mean(x1sigma1)

stop2 = mu*np.mean(x1sigma2)

print(sim1, sim2)

print(’Method 1 average switch time at t=’, np.mean(sigma1)/N)
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print(’Method 1 average value of x1 and x2 at stop:’,

np.mean(x1sigma1), np.mean(x2sigma1))

print(’Method 2 average switch time at t=’, np.mean(sigma2)/N)

print(’Method 2 average value of x1 and x2 at stop:’,

np.mean(x1sigma2), np.mean(x2sigma2))

print(’Predicted stop (infinite horizon) at x2>mu*x1 and avg.

value of mu*x1 for each method is:’, stop1, stop2)


