
A NUMERICAL STUDY OF INHOMOGENEOUS, VARIABLE-DENSITY 
TURBULENCE AND MIXING IN PLANAR AND CONVERGENT GEOMETRIES 

 
 

by 
 

Ismael Djibrilla Boureima 
 
 
 
 

A dissertation submitted to the faculty of  
The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in  

Mechanical Engineering 
 

Charlotte 
 

2019 
 

 
 

 
 

                                                                             
  
        Approved by: 
 
 

______________________________ 
Dr. Praveen Ramaprabhu 

 
 

______________________________ 
Dr. Yuri Godin 

 
 

______________________________ 
Dr. Susan Kurien 

 
 

______________________________ 
Dr. Mesbah Uddin 

  



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

©2019 
Ismael Djibrilla Boureima 

  ALL RIGHTS RESERVED 
 



iii 
 

ABSTRACT 
 
 

ISMAEL DJIBRILLA BOUREIMA. A Numerical Study of Inhomogeneous Variable-
Density Turbulence in Planar and Convergent Geometries.  (Under the direction of DR. 

PRAVEEN RAMAPRABHU) 
 

 
Hydrodynamic instabilities govern the growth of perturbations at the interfaces 

between two fluids of different densities when subjected to an acceleration. The applied 

external acceleration can lead to the Rayleigh-Taylor (RT) instability, or when an 

impulsive acceleration in the form of an incident shock is applied, it leads to the Richtmyer-

Meshkov (RM) instability. Such hydrodynamic instabilities, when allowed to develop, 

eventually lead to a turbulent state, characterized by vigorous mixing between the fluids. 

However, since the density difference between the fluids is finite, the turbulent flow is 

referred to as variable-density turbulence and is fundamentally different from its constant 

density counterpart. Such flows are observed in several natural and man-made situations 

including mixing in the upper atmosphere, supernovae explosions, nuclear fusion and 

shock-powered propulsion devices. A broad category of such flows was investigated using 

numerical simulations, enabled by multiple continuum codes, and the results of the study 

will be discussed.  

Properties of variable density turbulence were studied in detail through the following flow 

configurations: Rayleigh-Taylor turbulence, doubly-shocked Richtmyer-Meshkov 

instability, and turbulence in a confined spherical implosion. These flows represent varying 

degrees of external forcing and anisotropy, and thus provide a framework to understand 

the response of turbulent properties to these variations of interest to engineering 

applications. Such studies can be instrumental in improving current turbulence models or 
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in manipulating mixing to achieve engineering objectives in applications. Numerical 

results from RT-turbulence including profiles of the turbulent mass flux, density-specific 

volume correlation and the turbulent kinetic energy were compared with a two-point 

spectral turbulence model. The double-shocked RM problem is of relevance to recent 

experiments at the National Ignition Facility in which multiple shocks whose strength and 

timing could be optimized, were used to maximize the fuel areal density and improve the 

neutron yield. In our hydrodynamic simulations of the double-shocked RM problem, we 

find the memory of the initial conditions at the instance of second shock recedes over a 

self-similar timescale, resulting in nearly universal growth rates at late times. Finally, we 

investigate the properties of variable-density turbulence occurring within an imploding 

mixing layer confined by spherical geometry. 
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 

 

Turbulent flows in which considerable density variations occur are of importance 

in several natural situations as well as man-made applications. Such flows play a prominent 

role in inertial confinement fusion (ICF) 1, 2, type 1a supernovae detonations3-5 , shock-

driven mixing in scramjets 6, mantle convection7, and turbulent transport and mixing in the 

upper atmosphere 8, 9. The sources of density variations in these applications can vary 

significantly, thereby affecting the mechanisms that govern the turbulent transport 

processes. Theoretical treatments and engineering models of such flows must take in to 

account these variations in turbulent mechanisms. In this work, we have investigated using 

detailed numerical simulations, the properties of variable density turbulent flows 

associated with the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. The 

RT instability 10, 11 occurs under the conditions of an applied acceleration directed from a 

light fluid in to a heavy fluid, where the two fluids are separated by a perturbed interface. 

The RM instability 12, 13 may be considered a special case of the RT problem, in which the 

acceleration is impulsive such as that generated by a passing shock wave. Three 

configurations have been studied, and represent different drive profiles and levels of 

anisotropy in the flow: (i) self-similar Rayleigh-Taylor turbulence (constant drive), (ii) 

double-shocked RM turbulence (impulsive drive) and (iii) spherical implosion 14 (variable 

drive due to geometric confinement and Bell-Plesset effects15, 16).  

The above flows have been shown to affect the outcome of imploding capsules in ICF, 

where the implosion has been initiated by laser ablation 17-25. The fuel capsules consist of 

an ablator shell encasing Deuterium (DT) gas, so that the laser ablation creates a powerful 
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imploding shock that compresses the fuel to the point of runaway thermonuclear reactions. 

However, the presence of surface imperfections at the interface between the fuel and the 

shell material seeds the above instabilities which evolve to a turbulent state. The attendant 

turbulent mixing can thus compromise the neutron yield, thereby jeopardizing ignition. 

Such processes are modeled using multiphysics codes, in which the variable density 

turbulent mixing is described using low-order engineering models. Thus, detailed 

numerical simulations such as those reported in this work are essential in the validation of 

such low-order models. In the discussion below, we briefly describe the variable-density 

turbulent flows studied in this dissertation. 

Rayleigh-Taylor Turbulence 

The Rayleigh-Taylor 10, 11 instability occurs at a perturbed interface between fluids of 

different densities, when an acceleration is directed from the light fluid (𝜌𝜌1) to the heavy 

(𝜌𝜌2) fluid. When a single-wavelength (λ) disturbance is imposed at the interface, normal 

mode analysis 11, 26 predicts an early exponential growth of the perturbation amplitude with 

a growth rate ~ �𝐴𝐴𝐴𝐴𝐴𝐴, where 𝑔𝑔 is the magnitude of the acceleration vector, 𝑘𝑘 = 2𝜋𝜋
λ

 is the 

perturbation wavenumber, and the Atwood number 𝐴𝐴 ≡ 𝜌𝜌2−𝜌𝜌1
𝜌𝜌2+𝜌𝜌1

 characterizes the strength of 

the density difference.  At late times, the mode growth transitions to a nonlinear behavior 

characterized by bubbles of light fluid penetrating and displacing the heavy fluid which 

‘descends’ as spike fingers. During this stage of development, potential flow models27-32, 

in which the two fluids are represented by distinct velocity potential functions have proven 

useful in predicting the bubble and spike velocities.  

When a spectrum of modes are present at the initial interface, individual modes with 

different wavenumbers can achieve nonlinear saturation and then merge to form larger 
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structures. The late-time flow is thus self-similar as ℎ(𝑡𝑡) ~ λ(𝑡𝑡)~𝑡𝑡2. Specifically, 

experiments33-38 and numerical simulations35, 38-47 have shown growth of the mixing layer 

consistent with ℎ(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝛼𝛼𝑡𝑡2, where 𝛼𝛼 is the self-similar growth constant. In RT 

turbulence, the production of TKE is sustained by a constant drive and an infinite reservoir 

of pure fluid to feed the mixing.  

Doubly-shocked Richtmyer-Meshkov Instability  

While RM-driven turbulent mixing has been extensively investigated, the majority of 

studies have focused on mixing from either a single incident shock or a reflected shock in 

the opposite direction. In a departure from these studies, and to shed light on pulse-shaping 

efforts recently underway that seek to exploit timed shocks in the same direction, we 

address using numerical simulations the behavior of the turbulent mixing layer in a doubly-

shocked RM flow. The timing of the second shock was varied to obtain different 

amplitudes of the mixing layer at the time of the second shock, so that the effect of varying 

the “initial” state of the interface may be ascertained.  

Thus, these simulations address recent efforts to optimize the timing and strength of shocks 

traversing the DT-ice layer to minimize the fuel entropy, while increasing 

compressibility33. In recent experiments, these ideas have been demonstrated for up to four 

shocks 48, with the ultimate goal of achieving the required areal densities to ensure ignition. 

The corresponding optimization problem will rely heavily on an accurate low-order 

description of the mix development following each shock. Our simulation results can be 

used to validate and refine such low-order models, which can then be used in multiphysics 

codes as well as in the design of target experiments. A detailed review of advances in 
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experiments, simulations and theoretical efforts related to the RM and RT instabilities was 

published recently in 49, 50. 

Spherical Implosion 

The implosion phase in inertial confinement fusion (ICF)51 can be characterized by 

aggressive turbulent mixing between the hot fuel and the shell material. The turbulent 

mixing is driven by the RM 12, 13 and RT 10, 11 instabilities, and can act to degrade the overall 

yield of the process. To address these issues, there have been a vast array of studies of such 

canonical instabilities, although most of the efforts have been directed at the simpler, planar 

configuration. The effect of spherical convergence on the nature of such instabilities has 

been treated analytically15, 16, 52 as well as through numerical simulations14, 52-56. We have 

investigated the behavior of turbulent mixing when the flow is constrained by a spherically 

confined geometry, as is the case with spherical implosions. 

The effect of geometric convergence, due to either a cylindrical or spherical geometry, on 

the growth of the RT instability was illustrated by Bell and Plesset 15, 16, and collectively 

referred to as Bell–Plesset (BP) effects. At high convergence ratios, BP effects that are also 

termed “undriven growth” can significantly enhance the development of the underlying RT 

instability. In a series of papers 52, 53, 57, Mikaelian investigated the linear growth rates of 

Rayleigh–Taylor and Richtmyer–Meshkov 12, 13 instabilities in stratified cylindrical and 

spherical shells, using a potential flow approach. For cylindrical convergence, the BP 

effects are separable from the growth of driven instabilities such as RM/RT, while more 

complex expressions for the growth rate were obtained for the corresponding spherical 

problem. Lombardini 58, 59 developed a linear model for instability growth in both 

cylindrical and spherical geometries, based on the RM impulsive model, in the limit of RM 
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growth driven by a self-similar shock 60, 61. The effect of viscosity on the linear growth of 

an RT-unstable spherical interface was examined by Terrones and Carrara 62 in the limit of 

infinite density ratio between the fluids. Finally, Ramshaw 63 developed a kinetic energy 

based model coupled with a wavelength renormalization approach to obtain expressions 

for both the linear and nonlinear growth rates of interfaces in spherical geometry.  

In the rest of the chapter, we introduce terminology and definitions associated with 

turbulent flows, and review turbulence models for constant density and variable density 

turbulence.  

1.1 Review of statistical moments 

The Navier-Stokes (NS) equations are statements of conservation of mass, momentum, and 

energy, and provide instantaneous information on the independent variables (density 𝜌𝜌 , 

the ith velocity component 𝑢𝑢𝑖𝑖, pressure 𝑝𝑝, the temperature  𝑇𝑇 and the total energy 𝐸𝐸) at any 

point (x, t): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌𝜌𝑢𝑢𝑖𝑖) = 0                    (1.1.1) 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑢𝑢𝑖𝑖) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 + 𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖 − σ𝑖𝑖𝑖𝑖� = 𝜌𝜌𝐹𝐹𝑖𝑖                 (1.1.2) 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜌𝜌𝑢𝑢𝑖𝑖 �𝐸𝐸 + 𝑝𝑝
𝜌𝜌
� − σ𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗 + 𝑞𝑞𝑖𝑖� = 𝜌𝜌𝐹𝐹𝑖𝑖 − 𝑢𝑢𝑖𝑖               (1.1.3) 

where 𝐹𝐹𝑖𝑖 is the ith component of the net external forces on the flow, σ𝑖𝑖𝑖𝑖is the viscous stress, 

and is given for a Newtonian fluid by: 

σ𝑖𝑖𝑖𝑖 = 𝜇𝜇 ��𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� − 2

3
𝛿𝛿𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝜕𝜕
�                  (1.1.4) 

Where 𝜇𝜇 is the dynamic viscosity of the fluid, 𝑞𝑞𝑖𝑖 is the heat flux and is given by Fourier’s 

Law: 
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𝑞𝑞𝑖𝑖 = −𝜅𝜅∇��⃗ 𝑇𝑇 = −𝜅𝜅 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

                    (1.1.5) 

In eq. (1.1.5), 𝜅𝜅 is the thermal conductivity of the fluid. 

For the special case of an incompressible flow, in which the density is constant, the above 

equations simplify to:  

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0                     (1.1.6) 

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 1
𝜌𝜌
𝜕𝜕σ𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

                   (1.1.7) 

σ𝑖𝑖𝑖𝑖 = 𝜇𝜇 �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� = 𝜌𝜌𝜌𝜌 �𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
+ 𝜕𝜕𝑢𝑢𝑗𝑗

𝜕𝜕𝑥𝑥𝑖𝑖
� = 2𝜌𝜌𝜌𝜌𝑠𝑠𝑖𝑖𝑖𝑖                (1.1.8) 

where 𝜈𝜈 is the kinematic viscosity of the fluid, and  

𝑠𝑠𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
�.                    (1.1.9) 

Due to the absence of closed-form solutions, the irregular and chaotic nature of turbulent 

flows are often treated statistically where the independent variables are taken as pseudo-

random functions of space and time. For instance, the Reynolds’ decomposition 64, involves 

the decomposition of each instantaneous variable in to mean and fluctuating components. 

For constant density flows, the Reynolds decomposition of the independent variables gives: 

𝑢𝑢𝑖𝑖 = 𝑢𝑢�𝑖𝑖 + 𝑢𝑢′𝑖𝑖                   (1.1.10) 

𝑝𝑝 = 𝑝̅𝑝 + 𝑝𝑝′                   (1.1.11) 

𝜌𝜌 = 𝜌̅𝜌 + 𝜌𝜌′                   (1.1.12) 

σ𝑖𝑖𝑖𝑖 = σ𝚤𝚤𝚤𝚤���� + σ′𝑖𝑖𝑖𝑖                  (1.1.13) 

where the overbar ( � ) denotes mean (averaged) quantities, while prime (′) is used to denote 

fluctuations about the mean quantity. i.e. in eq. (1.1.12), ρ is the instantaneous density, and 
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ρ′ is the density fluctuation about the mean density ρ�. For an instantaneous variable q, the 

corresponding mean value over a region 𝑑𝑑𝑑𝑑 is obtained by: 

𝑞𝑞�(𝑡𝑡) = 1
Ω ∫ 𝑞𝑞(𝑡𝑡, 𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑ΩΩ                   (1.1.14) 

Introducing the Reynolds decomposed variables from eqs. (1.1.10) - (1.1.13) into the 

incompressible NS equations (1.1.6) – (1.1.9) lead to the Reynolds-decomposed NS 

equations 

𝜕𝜕(𝑢𝑢�𝑖𝑖+𝑢𝑢′𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0                    (1.1.15) 

𝜕𝜕�𝑢𝑢�𝑖𝑖+𝑢𝑢′𝑖𝑖�
𝜕𝜕𝜕𝜕

+ �𝑢𝑢�𝑗𝑗 + 𝑢𝑢′𝑗𝑗�
𝜕𝜕�𝑢𝑢�𝑖𝑖+𝑢𝑢′𝑖𝑖�

𝜕𝜕𝑥𝑥𝑗𝑗
+ 1

𝜌𝜌
𝜕𝜕(𝑝̅𝑝+𝑝𝑝′)
𝜕𝜕𝑥𝑥𝑖𝑖

= 1
𝜌𝜌
𝜕𝜕�σ𝚤𝚤𝚤𝚤����+σ′𝑖𝑖𝑖𝑖�

𝜕𝜕𝑥𝑥𝑖𝑖
.             (1.1.16) 

1.2 Turbulence models for constant density and variable density turbulence 

The above equations can be ensemble-averaged to yield a set of equations for the mean 

flow referred as the Reynolds Averaged Navier-Stokes (RANS) equations given below:  

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0                   (1.1.17) 

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�𝑗𝑗
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 1
𝜌𝜌
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

= 1
𝜌𝜌

𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�σ𝚤𝚤𝚤𝚤���� + 𝑅𝑅𝑖𝑖𝑖𝑖�               (1.1.18) 

 𝑅𝑅𝑖𝑖𝑖𝑖 = −𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������                   (1.1.19) 

Here, 𝑅𝑅𝑖𝑖𝑖𝑖  is the turbulent Reynolds stress 65, and incorporates the effects of unresolved 

turbulent fluctuations on the mean flow, which can significantly enhance the mean 

transport. The Reynolds stress is a symmetric tensor and introduces six additional 

unknowns, leading to the widely discussed closure problem associated with the RANS 

equations. Thus, turbulence modeling refers to the class of theoretical treatments that 

develop and provide necessary closures by relating the components of 𝑅𝑅𝑖𝑖𝑖𝑖 and other high-

order terms to the mean flow quantities. 
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Extensive work has been reported in the literature on constant density turbulence including 

Eddy Viscosity Models (EVM) based on Boussinesq’s eddy viscosity approximation 66, 

consisting of the “Algebraic models” 67-69, ‘one-equation models’ 70-73 and “two-equation 

models”74-79.  Higher-order turbulence models can be obtained by deriving a full transport 

equation for the Reynolds stress tensor from the fluctuating field  equations obtained by 

subtracting the mean flow equations (1.1.17 - 1.1.18) from the Reynolds-decomposed NS 

equations (1.1.15 - 1.1.16) as detailed in 65. Such models include the second order two-

equation transport models of 80-82. 

Besnard 83(BHRZ) expressed the Reynolds stress in the form of two-point statistical 

correlations computed at distinct points 𝒙𝒙𝟏𝟏 and 𝒙𝒙𝟐𝟐. This is often done in conjunction with 

deriving an exact but unclosed, transport equation for the Reynolds stress. The resulting 

equations are then expressed in terms of the separation distance 𝒓𝒓 = 𝒙𝒙𝟏𝟏 − 𝒙𝒙𝟐𝟐 and the center 

of mass 𝒙𝒙 = (𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐)/𝟐𝟐. These equations in (x , r)-space are Fourier-transformed with 

respect to the separation variable (r), and shell-averaged in k-space. Some of the popular 

two-point constant density turbulence models include the Eddy-Damped Quasi- Normal 

Markovian (EDQNM)  models proposed by 84-87 , and the diffusion approximation 

proposed by Besnard83.  

Unlike with constant density flows, the understanding and modeling of variable-density 

turbulence is still in its early stages. Variable-density flows can involve incompressible 

fluids of different density, where the density variation in such flows results from the mixing 

of the different fluids. Variable-density flows are better described by the Favre-Reynolds 

Averaged Navier-Stokes (FRANS) equations which provide a conservative form of the 

Reynold stress tensor in the averaged momentum equations. The FRANS equations are 
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obtained following the same steps taken in deriving the RANS equation, however mass-

weighted Favre-averaging is used instead for the calculation of mean quantities. The Favre 

mean associated with any instantaneous quantity 𝑞𝑞 is defined as 𝑞𝑞� = 〈𝜌𝜌𝜌𝜌〉/〈𝜌𝜌〉, and the 

corresponding Favre fluctuations are given by 𝑞𝑞′′ = 𝑞𝑞 −  𝑞𝑞�. The resulting FRANS 

equations from the Favre-decomposed and ensemble averaged NS equations are given by: 

𝜕𝜕𝜌𝜌�
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌̅𝜌𝑢𝑢𝚤𝚤� ) = 0                   (1.1.24) 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌̅𝜌𝑢𝑢𝚤𝚤� ) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(𝜌̅𝜌𝑢𝑢𝚤𝚤�𝑢𝑢𝚥𝚥� + 𝑝̅𝑝𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑢𝑢𝚤𝚤′′𝑢𝑢𝚥𝚥′′��������� − σ𝚥𝚥𝚥𝚥����) = 0               (1.1.25) 

Variable density extensions to single-point, two-equation transport models 84-86, 88, 89, 

transporting additional terms such as the density-specific volume correlation and the 

mass flux velocity respectively defined in eqs. (1.1.31) and (1.1.28) below. 

Similar to the constant density turbulence case, spectral models can be obtained from the 

two-point statistical treatment of the governing equations. Clark and Spitz90 (CS1995) 

define the turbulent Reynolds stress tensor as 

𝑅𝑅𝑖𝑖𝑖𝑖(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) = 1
2

[𝜌𝜌(𝑥𝑥1, 𝑡𝑡) + 𝜌𝜌(𝑥𝑥2, 𝑡𝑡)]𝑢𝑢𝚤𝚤′′(𝑥𝑥1, 𝑡𝑡)𝑢𝑢𝚥𝚥′′(𝑥𝑥2, 𝑡𝑡)������������������������������������������������� .                (1.1.26) 

The authors in (CS1995) 90 have chosen the form in (1.1.26) to satisfy symmetry in 𝑥𝑥1 and 

𝑥𝑥2, recovery of the single-point form as 𝑥𝑥1 → 𝑥𝑥2, and requiring 𝑅𝑅𝑖𝑖𝑖𝑖 vanish for |𝑥𝑥1 − 𝑥𝑥2| →

∞. They derive a full but unclosed transport equation for 𝑅𝑅𝑖𝑖𝑖𝑖 from the FRANS equations, 

which is reproduced here from (CS1995) 90: 

𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖(𝐱𝐱1,𝐱𝐱2)
𝜕𝜕𝜕𝜕

+
𝜕𝜕

𝜕𝜕𝑥𝑥1𝑛𝑛
�𝑅𝑅𝑖𝑖𝑖𝑖(𝐱𝐱1, 𝐱𝐱2)𝑢𝑢�𝑛𝑛(𝐱𝐱1)� +

𝜕𝜕
𝜕𝜕𝑥𝑥2𝑛𝑛

�𝑅𝑅𝑖𝑖𝑖𝑖(𝐱𝐱1,𝐱𝐱2)𝑢𝑢�𝑛𝑛(𝐱𝐱2)� 

+𝑅𝑅𝑖𝑖𝑖𝑖(𝐱𝐱1,𝐱𝐱2)
𝜕𝜕𝑢𝑢�𝑗𝑗(𝐱𝐱2)
𝜕𝜕𝑥𝑥2𝑛𝑛

+ 𝑅𝑅𝑛𝑛𝑛𝑛(𝐱𝐱1,𝐱𝐱2)
𝜕𝜕𝑢𝑢�𝑖𝑖(𝐱𝐱1)
𝜕𝜕𝑥𝑥1𝑛𝑛
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−
1
2
𝑅𝑅𝑖𝑖𝑖𝑖(𝐱𝐱1,𝐱𝐱2) �

𝜕𝜕𝑢𝑢�𝑛𝑛(𝐱𝐱2)
𝜕𝜕𝑥𝑥2𝑛𝑛

+
𝜕𝜕𝑢𝑢�𝑛𝑛(𝐱𝐱1)
𝜕𝜕𝑥𝑥1𝑛𝑛

� −
1
2
�𝐻𝐻𝑖𝑖𝑖𝑖𝑅𝑅

(+)(𝐱𝐱1, 𝐱𝐱2; 𝐱𝐱2) + 𝐻𝐻𝑗𝑗𝑗𝑗𝑅𝑅
(+)(𝐱𝐱2,𝐱𝐱1; 𝐱𝐱1)� 

−
1
2
𝑅𝑅𝑖𝑖𝑖𝑖

(−)(𝐱𝐱1,𝐱𝐱2) �
𝜕𝜕𝑢𝑢�𝑛𝑛(𝐱𝐱2)
𝜕𝜕𝑥𝑥2𝑛𝑛

−
𝜕𝜕𝑢𝑢�𝑛𝑛(𝐱𝐱1)
𝜕𝜕𝑥𝑥1𝑛𝑛

� −
1
2
�𝐻𝐻𝑖𝑖𝑖𝑖𝑅𝑅

(−)(𝐱𝐱1,𝐱𝐱2; 𝐱𝐱2) − 𝐻𝐻𝑗𝑗𝑗𝑗𝑅𝑅
(−)(𝐱𝐱2,𝐱𝐱1; 𝐱𝐱1)� 

+
𝜕𝜕𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅

(+)(𝐱𝐱1,𝐱𝐱2; 𝐱𝐱2)
𝜕𝜕𝑥𝑥1𝑛𝑛

+
𝜕𝜕𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑅𝑅

(+)(𝐱𝐱2, 𝐱𝐱1;𝐱𝐱1)
𝜕𝜕𝑥𝑥2𝑛𝑛

 

=
1
2
�Ψ𝑖𝑖𝑖𝑖𝑅𝑅(𝐱𝐱1, 𝐱𝐱2) + Ψ𝑗𝑗𝑗𝑗𝑅𝑅(𝐱𝐱2, 𝐱𝐱1)� 

+ 1
2
��𝑎𝑎𝑖𝑖(𝐱𝐱1,𝐱𝐱2) − 𝑚𝑚𝑖𝑖(𝐱𝐱1,𝐱𝐱2)

ρ�(𝐱𝐱2) � 𝜕𝜕σ
�𝑛𝑛𝑛𝑛(𝐱𝐱2)

𝜕𝜕𝑥𝑥2𝑛𝑛
+ �𝑎𝑎𝑗𝑗(𝐱𝐱2, 𝐱𝐱1) − 𝑚𝑚𝑗𝑗(𝐱𝐱2,𝐱𝐱1)

ρ�(𝐱𝐱1) � 𝜕𝜕σ�𝑖𝑖𝑖𝑖(𝐱𝐱1)
𝜕𝜕𝑥𝑥1𝑛𝑛

�            (1.1.27) 

 New auxiliary correlations appear in the equation for 𝑅𝑅𝑖𝑖𝑖𝑖, which some are of the same or 

lower order than 𝑅𝑅𝑖𝑖𝑖𝑖- these are 𝑎𝑎𝑖𝑖, 𝑚𝑚𝑖𝑖, and  𝑅𝑅𝑖𝑖𝑖𝑖−  given below from  (CS1995):  

𝑎𝑎𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = 𝑢𝑢𝚤𝚤′′(𝑥𝑥1, 𝑡𝑡)𝜌𝜌(𝑥𝑥1, 𝑡𝑡)𝑣𝑣(𝑥𝑥2, 𝑡𝑡)������������������������������                (1.1.28) 

𝑚𝑚𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = 𝑢𝑢𝚤𝚤′′(𝑥𝑥1, 𝑡𝑡)𝜌𝜌′(𝑥𝑥2, 𝑡𝑡)����������������������                (1.1.29) 

𝑅𝑅𝑖𝑖𝑖𝑖−(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) = 1
2

[𝜌𝜌(𝑥𝑥1, 𝑡𝑡) − 𝜌𝜌(𝑥𝑥2, 𝑡𝑡)]𝑢𝑢𝚤𝚤′′(𝑥𝑥1, 𝑡𝑡)𝑢𝑢𝚥𝚥′′(𝑥𝑥2, 𝑡𝑡)�������������������������������������������������.               (1.1.30) 

Additionally, unclosed transport equations are derived for those lower order correlations 

as well90. A new correlation, the density-specific volume correlation (𝑏𝑏), appears in both 

the equation of 𝑎𝑎𝑖𝑖 and 𝑚𝑚𝑖𝑖, and is defined as: 

𝑏𝑏 = −𝜌𝜌′(𝑥𝑥1, 𝑡𝑡)𝑣𝑣′(𝑥𝑥2, 𝑡𝑡)���������������������                  (1.1.31) 

with 𝑣𝑣 = 1
𝜌𝜌
. As explained by Livescu91, b is an indicator of mixing that takes values 

between 0 (when the flow is fully mixed) and 1 (when the fluids are segregated), and is 

responsible for setting the buoyancy production rate; the turbulent mass flux 𝑎𝑎𝑖𝑖 on the other 

hand mediates the conversion of the buoyant potential energy into turbulent kinetic energy 
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(TKE); thus both playing an important role in turbulence. The reader is referred to 

(CS1995) for the transport equations of 𝑎𝑎𝑖𝑖, 𝑚𝑚𝑖𝑖 𝑅𝑅𝑖𝑖𝑖𝑖−  and 𝑏𝑏.  

The higher order correlations appearing in the derived transport equation for of 𝑎𝑎𝑖𝑖, 𝑚𝑚𝑖𝑖 

𝑅𝑅𝑖𝑖𝑖𝑖−  and 𝑏𝑏 include the turbulent dilatation terms (H-terms: 𝐻𝐻𝑖𝑖𝑖𝑖), the triple correlations (T-

terms: 𝑇𝑇𝑖𝑖𝑖𝑖), and the fluctuating pressure-viscous strain correlations (𝜓𝜓 -terms: 𝜓𝜓𝑖𝑖𝑖𝑖). Their 

general form in the transport equation of any turbulence quantity, say 𝜙𝜙�  ( 𝜙𝜙�   can be 𝑎𝑎𝑖𝑖, 𝑚𝑚𝑖𝑖 

𝑅𝑅𝑖𝑖𝑖𝑖−  or 𝑏𝑏.), are given bellow from (CS1995): 

𝐻𝐻𝜙𝜙� (𝑥𝑥1,𝑥𝑥2; 𝑥𝑥′, 𝑡𝑡) = 𝜙𝜙(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)�������������� 𝜕𝜕𝑎𝑎𝑛𝑛(𝑥𝑥′)
𝜕𝜕𝜕𝜕′

+ 𝐻𝐻�𝜙𝜙� (𝑥𝑥1, 𝑥𝑥2; 𝑥𝑥′, 𝑡𝑡)              (1.1.30) 

𝑇𝑇…𝑛𝑛
𝜙𝜙� (𝑥𝑥1, 𝑥𝑥2; 𝑥𝑥′, 𝑡𝑡) = 𝜙𝜙…(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)𝑢𝑢𝑛𝑛′′(𝑥𝑥′)������������������������ 

     = 𝜙𝜙(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)��������������𝑎𝑎𝑛𝑛(𝑥𝑥′) + 𝑇𝑇�𝜙𝜙� (𝑥𝑥1, 𝑥𝑥2; 𝑥𝑥′, 𝑡𝑡)              (1.1.31) 

𝜓𝜓𝑖𝑖…𝑗𝑗
𝜙𝜙� (𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) = [𝜙𝜙�𝚤𝚤…(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) + 𝜙𝜙𝚤𝚤…′ (𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)]�𝜋𝜋�𝚥𝚥(𝑥𝑥2, 𝑡𝑡) + 𝜋𝜋𝚥𝚥′(𝑥𝑥2, 𝑡𝑡)������������������������������������������������������������������  

= 𝜙𝜙�𝑖𝑖…(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)𝜋𝜋�𝑗𝑗(𝑥𝑥2, 𝑡𝑡) + 𝜙𝜙𝚤𝚤…′ (𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)𝜋𝜋𝚥𝚥′(𝑥𝑥2, 𝑡𝑡)���������������������������             (1.1.32) 

Where 

 𝐻𝐻�𝜙𝜙� (𝑥𝑥1,𝑥𝑥2; 𝑥𝑥′, 𝑡𝑡) = 𝜙𝜙(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡) 𝜕𝜕𝑢𝑢𝑛𝑛
′ (𝑥𝑥′,𝑡𝑡)
𝜕𝜕𝜕𝜕′

������������������������
, 

              𝑇𝑇�…𝑛𝑛
𝜙𝜙� (𝑥𝑥1, 𝑥𝑥2; 𝑥𝑥′, 𝑡𝑡) = 𝜙𝜙…(𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡)𝑢𝑢𝑛𝑛′ (𝑥𝑥′, 𝑡𝑡)��������������������������, 

𝜋𝜋𝑗𝑗(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜎𝜎𝑛𝑛𝑛𝑛′ (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑛𝑛

�����������������
.  

As explained above, spectral models are obtained by a transformation of coordinate from 

[𝒙𝒙𝟏𝟏; 𝒙𝒙𝟐𝟐] to [𝒓𝒓 = 𝒙𝒙𝟏𝟏 − 𝒙𝒙𝟐𝟐; 𝒙𝒙 = (𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐)/𝟐𝟐], and by Fourier transformation with respect 

to 𝒓𝒓. The components of the resulting Fourier transformed correlations equations 

evolving the real spectrum are shell-averaged90 (Imaginary terms and terms multiplied 

𝑖𝑖𝑘𝑘𝑛𝑛 are dropped); consequently  
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No transport equations are derived for these higher order terms, but their final forms in 

the shell averaged transport equations for 𝑎𝑎𝑖𝑖, 𝑚𝑚𝑖𝑖 𝑅𝑅𝑖𝑖𝑖𝑖−  and 𝑏𝑏 in k-space will be modeled. the 

𝐻𝐻�𝜙𝜙� -terms which represent the production or destruction (or both) of turbulence due to the 

dilation of the fluctuating velocity field are modeled as diffusive/dissipative terms; the 

𝑇𝑇�…𝑛𝑛
𝜙𝜙� -terms are modeled as an advection/diffusion terms with the possibility of an 

altercation of cascade due to the presence of density fluctuation in k-space, and The 𝜓𝜓 -

terms are modeled based on dimensional consistency, physical arguments and analogy 

with the constant density case. The resulting model for the 𝜓𝜓 –terms include a ‘slow part’ 

that mimic tendency to isotropy which is modeled in direct analogy to constant-density83 

and a ‘rapid part’ that couples spectral tensor to mean flow velocity gradient. Other 

modeling strategies are varied and include approaches in 88, 89, 92-106. Steinkamp106, 107  

(SCH) proposed an extension of the two-point spectral model of (CS1995) to 

inhomogeneous variable density flows given below: 

𝜕𝜕𝑅𝑅𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝑅𝑅𝑛𝑛𝑛𝑛ũ𝑦𝑦
𝜕𝜕𝜕𝜕

+ � 2𝑎𝑎𝑥𝑥
∞

−∞

𝜕𝜕𝑝̅𝑝
𝜕𝜕𝜕𝜕

(𝑘𝑘 exp(−2𝑘𝑘|𝑥𝑥′ − 𝑥𝑥|))𝑑𝑑𝑥𝑥′ − 2𝑅𝑅𝑥𝑥𝑥𝑥
𝜕𝜕ũ𝑥𝑥
𝜕𝜕𝜕𝜕

 

+ 𝐶𝐶𝑑𝑑
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜈𝜈𝑡𝑡
𝜕𝜕𝑅𝑅𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘Ɵ−1 �−𝐶𝐶𝑟𝑟1𝑅𝑅𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑟𝑟2𝑘𝑘
𝜕𝜕𝜕𝜕𝑛𝑛𝑛𝑛
𝜕𝜕𝜕𝜕

�� 

     −2𝜈𝜈𝑘𝑘2𝑅𝑅𝑛𝑛𝑛𝑛                  (1.1.33) 

𝜕𝜕𝑅𝑅𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝑅𝑅𝑥𝑥𝑥𝑥𝑢𝑢𝑥𝑥�
𝜕𝜕𝜕𝜕

+ � 2𝑎𝑎𝑥𝑥
∞

−∞

𝜕𝜕𝑝̅𝑝
𝜕𝜕𝜕𝜕

(𝑘𝑘 exp(−2𝑘𝑘|𝑥𝑥′ − 𝑥𝑥|))𝑑𝑑𝑥𝑥′ − 2𝑅𝑅𝑥𝑥𝑥𝑥
𝜕𝜕ũ𝑥𝑥
𝜕𝜕𝜕𝜕

 

+ 𝐶𝐶𝑑𝑑
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜈𝜈𝑡𝑡
𝜕𝜕𝑅𝑅𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘Ɵ−1 �−𝐶𝐶𝑟𝑟1𝑅𝑅𝑥𝑥𝑥𝑥 + 𝐶𝐶𝑟𝑟2𝑘𝑘
𝑅𝑅𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

�� 

      + 𝐶𝐶𝑚𝑚 ∫ �𝑘𝑘𝑅𝑅𝑛𝑛𝑛𝑛
𝑝̅𝑝

𝑑𝑑𝑑𝑑 �1
3
𝑅𝑅𝑛𝑛𝑛𝑛 − 𝑅𝑅𝑥𝑥𝑥𝑥�

𝑘𝑘
0                (1.1.34) 
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𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

= −ũ𝑥𝑥
𝜕𝜕𝑎𝑎𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝑏𝑏
𝜌̅𝜌
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝜕𝜕

− �𝐶𝐶𝑟𝑟𝑟𝑟1𝑘𝑘2�𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛 + 𝐶𝐶𝑟𝑟𝑟𝑟2Ɵ−1�𝑎𝑎𝑥𝑥 −
𝑅𝑅𝑥𝑥𝑥𝑥
𝜌̅𝜌2

𝜕𝜕𝜌̅𝜌
𝜕𝜕𝜕𝜕

 

      + 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘Ɵ−1 �−𝐶𝐶𝑎𝑎1𝑎𝑎𝑥𝑥 + 𝐶𝐶𝑎𝑎2𝑘𝑘

𝜕𝜕𝑎𝑎𝑥𝑥
𝜕𝜕𝜕𝜕
�� + 𝐶𝐶𝑑𝑑

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜈𝜈𝑡𝑡

𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

              (1.1.35) 

         
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
2𝜌̅𝜌 − 𝜌𝜌1 − 𝜌𝜌2

𝜌𝜌1𝜌𝜌2
�
𝜕𝜕𝜌̅𝜌𝑎𝑎𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝐶𝐶𝑓𝑓𝑓𝑓 �𝜈̅𝜈2
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜌̅𝜌
𝜈𝜈
��
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

 

        + 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘Ɵ−1 �−𝐶𝐶𝑏𝑏1𝑏𝑏 + 𝐶𝐶𝑏𝑏2𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�� 

        +𝐶𝐶𝑑𝑑
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜈𝜈𝑡𝑡

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐶𝐶𝑑𝑑𝑑𝑑𝑘𝑘2𝐷𝐷𝐷𝐷                  (1.1.36) 

In the above set of equations, 𝜈𝜈𝑡𝑡 = ∫ �𝑘𝑘𝑘𝑘𝑛𝑛𝑛𝑛
𝜌𝜌�

𝑑𝑑𝑑𝑑
𝑘𝑘2

∞
0  is the turbulent eddy viscosity, and Ɵ−1 =

�∫  𝑘𝑘
2𝑅𝑅𝑛𝑛𝑛𝑛
𝜌𝜌

𝑑𝑑𝑑𝑑𝑘𝑘1
0  is the eddy turn over. 𝐶𝐶𝜙𝜙1 and 𝐶𝐶𝜙𝜙2 are dimensionless model constants that 

appear in the model for the cascade terms (𝑇𝑇�…𝑛𝑛
𝜙𝜙� -terms), 𝐶𝐶𝑟𝑟𝑟𝑟1 and 𝐶𝐶𝑟𝑟𝑟𝑟2 appear in the model 

for the fluctuating pressure term, which is modeled as drag, and 𝐶𝐶𝑑𝑑 appears in the model 

for the 𝐻𝐻�𝜙𝜙� -terms, modeled as diffusive dissipative terms. The reader is referred to (SCH) 

and (CS1995) for additional details on modeling. 

The Local Wavenumber (LWN) model, which is derived from the model proposed by 

(SCH)106, 107 is under active development at LANL, and was recently validated for the case 

of homogeneous variable density turbulence by 108 using high resolution DNS data. In 

Chapter 3, we will discuss early results of our efforts in the validation of the LWN model 

for inhomogeneous turbulent flow case (RT turbulence) in the Boussinesq limit using ILES 

simulations.  
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CHAPTER 2 : NUMERICAL METHODS 

 

In this chapter, we briefly review the numerical methods employed in the 

investigation of variable density turbulent flows. For additional details on these methods 

and codes, the reader is referred to 109-112 (FLASH) and 113-116 (MOBILE).  

FLASH: The compressible flow simulations including the double-shocked RM, spherical 

RM and implosion cases were performed using the astrophysical FLASH109-112 code 

developed at the University of Chicago’s FLASH center. FLASH is a multi-physics code 

in which compressible gas dynamics is described as solutions to the Euler equations. A 

split version of the direct Eulerian Piecewise Parabolic Method (PPM) 117 solver was used 

in this study. Discontinuities between grid cells were treated by solving a local Riemann 

problem across the boundaries separating adjacent computational cells. The conservative 

flow variables are advanced in time using the fluxes obtained from solving the local 

Riemann problem, using an explicit forward in time difference scheme. The resulting 

algorithm is 2nd order accurate both in time and space, and has been demonstrated to be 

well suited to describing flows involving shocks and contact discontinuities such as sharp 

material interfaces.  

Thermodynamic properties in FLASH are calculated using a multi-gamma ideal gas 

equation of state capable of handling multiple species. FLASH is also equipped with 

Adaptive Mesh Refinement (AMR) capability (through the PARAMESH 118 software suite 

which allows for the allocation of mesh resources to localized regions of interest within the 

flow, identified by a threshold value of the second derivatives of the flow variables. All the 

above features are also available in curvilinear coordinates, which is taken advantage of in 
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the current study to investigate turbulent RM and implosions in spherical geometries. It 

was shown in 54 from a comparison of implosion studies using Cartesian and curvilinear 

geometry codes that during periods of high convergence in the flow, misalignments 

between the interface and the mesh boundaries can render the interface more unstable to 

numerical errors and perturbations. FLASH is a massively parallel code, where the 

parallelism is achieved using the Message Passing Interface (MPI) protocol, and has 

demonstrated (near-linear) scaling on over 64k processor cores, and across multiple 

computing platforms 111. 

MOBILE: The incompressible RT simulations described in chapter 3 were performed 

using MOBILE 113-116, a three-dimensional, hydrodynamic Navier-Stokes solver, 

developed at the University of Bristol. In MOBILE, computational expediency is achieved 

through splitting the incompressible governing equations (1.1.1 - 1.1.2) in to hyperbolic 

(advective transport), and non-hyperbolic (diffusion and viscous dissipation) and elliptic 

(pressure and velocity correction) components. MOBILE employs a split, high-order 

advection scheme using a fractional step approach comprised of a sequence of one-

dimensional updates of the conserved variables. This is accomplished in the sequence of 

sweeps [X-Y-Z-Z-Y-X], which results in a net truncation error that is second order 119. 

Fluxes of conserved variables are obtained by solving a local Riemann problem at each 

cell-interface with the left and right states obtained from a piecewise polynomial 

reconstruction of the most recent cell-centered values from neighboring cells.  

Pressure correction to enforce the solenoidal property of the velocity field is achieved 

through a projection step, in which solution acceleration of the Poisson equation is 

accomplished using a multi-grid solver. MOBILE uses a uniform mesh, while MPI 
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protocol coupled with domain decomposition ensures highly scalable parallel performance. 

MOBILE has been validated for several fluid mixing and transport problems including 

single-mode and multimode Rayleigh-Taylor flows 113-116, Kelvin-Helmholtz instability 

113, and lock-release gravity currents 113.  

Implicit Large Eddy Simulations: Both MOBILE and FLASH are capable of handling 

simulations in which viscous and mass diffusion effects are included with fidelity. We refer 

to these simulations as Navier-Stokes calculations, although the term Direct Numerical 

Simulations is often used (and misused) in the literature. In certain cases, such as the shock-

driven RM flows, a significant economy in computational costs can be achieved by solving 

the Euler equations instead. Such calculations are referred to as Implicit Large Eddy 

Simulations (ILES) 120, where the numerical scheme is tailored to ensure that for turbulent 

flows, simulated energy dissipation is consistent with a real fluid. This removes the need 

to simulate additional viscous diffusive terms that would reduce the range of dynamically 

significant scales that can be captured. 

In ILES, small-scale dissipation is modeled numerically, thus eliminating the need for an 

explicit sub-grid filter with tunable coefficients. Aspden121 developed a scaling analysis for 

the grid-dependent, numerical dissipation observed in such methods, from which an 

effective Kolmogorov scale was inferred, which can then be used to infer an equivalent 

numerical viscosity and Reynolds number. A similar approach was adopted in the code 

comparison study by 47, who deduced an effective numerical dissipation εnumerical from the 

implied Kolmogorov scales in the energy spectra. MOBILE and FLASH when operating 

as ILES codes, produce dissipative spectra consistent with the expected E(k) ~ k-3 scaling 

observed in experiments and DNS122 calculations.  
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One attractive feature of ILES methods relevant to RT and RM simulations is their ability 

to preserve monotonicity of the solution, even in the presence of discontinuous sharp flow 

features such as shocks or material interfaces. In contrast, when such sharp interfaces and 

contact lines are described using methods classified as DNS, oscillations due to Gibbs 

phenomena may often occur. To avoid these oscillations, DNS calculations of RT flow are 

often initialized with diffuse interfaces, resulting in an initial instability growth rate 

modified by the thickness of the interface. Note that the accurate description of the initial 

growth rate is critical since it determines the initial saturation amplitudes of the dominant 

modes, and thus the overall amplitude trajectory to self-similarity.  
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CHAPTER 3 : BOUYANCY DRIVEN VARIABLE-DENSITY TURBULENCE. 

 

 In this section, we describe detailed numerical simulations of the Rayleigh-Taylor 

(RT) instability-driven variable density turbulence using MOBILE, the results from 

which are then compared with the predictions of the LWN model. The simulations were 

carried out in the Boussinesq regime, with an Atwood number, A = 0.05. RT turbulence 

has extensively been studied 39-41, 115, 116, 122-128 and hence serves as a benchmark problem 

to validate our simulation techniques. In § 3.1, we describe the problem setup, followed 

by a discussion of ILES results and comparison with the LWN model in § 3.3. 

3.1 Problem Description and Numerical Setup 

The 3D simulations were performed in a rectangular domain shown in figure 3.1, with 

dimensions of 𝐿𝐿0 = 2𝜋𝜋 cm in the homogeneous (y-, z-) directions, and 4𝐿𝐿0 in the direction 

of the applied acceleration (x-). Periodic boundary conditions were employed in the 

homogeneous directions, while the x-boundaries were treated as outflow surfaces. A 

uniform mesh resolution of 512 zones/𝐿𝐿0 was employed in all directions. The flow was 

initialized with a light fluid of density 𝜌𝜌1 and a heavy fluid of density 𝜌𝜌2 as shown in Figure 

3.1, with a density ratio of 𝜌𝜌2
𝜌𝜌1

= 1.10526 (Atwood number of 0.05), initially interfacing 

at 𝑥𝑥𝑐𝑐 = 𝐿𝐿𝑥𝑥/2. The light fluid is accelerated into the heavier fluid with an applied 

acceleration 𝑔𝑔𝑥𝑥 = −2 𝑐𝑐𝑐𝑐. 𝑠𝑠−2, and a multimode perturbation is imposed at the interface 

separating the two fluids, given by the function 47 :  

ℎ(𝑦𝑦, 𝑧𝑧, 𝑡𝑡 = 0) = ∑

⎢
⎢
⎢
⎢
⎡
𝑎𝑎𝑘𝑘 cos(𝑘𝑘𝑦𝑦 𝑦𝑦) cos(𝑘𝑘𝑧𝑧 𝑧𝑧) +
𝑏𝑏𝑘𝑘 sin(𝑘𝑘𝑦𝑦 𝑦𝑦) si𝑛𝑛(𝑘𝑘𝑧𝑧 𝑧𝑧) +
𝑐𝑐𝑘𝑘 cos 𝑦𝑦 𝑦𝑦) cos(𝑘𝑘𝑧𝑧 𝑧𝑧) +
𝑑𝑑𝑘𝑘 sin(𝑘𝑘𝑦𝑦 𝑦𝑦) sin(𝑘𝑘𝑧𝑧 𝑧𝑧) ⎥

⎥
⎥
⎥
⎤

𝑘𝑘𝑦𝑦 𝑘𝑘𝑧𝑧      (3.1.1) 
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Figure 3. 1 Schematic of the computational domain for the turbulent RT simulations. 

Image represents a cross-section and shows the initial fluids and the direction of the 

applied acceleration. 

 

where 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝑐𝑐𝑘𝑘, and 𝑑𝑑𝑘𝑘 are random amplitudes. The perturbation modes in eq. (3.1.1) 

were chosen to be from a narrow-band spectrum in modenumber space in the range (32 - 

64). Such an initial perturbation adapted from 47  ensures the development of self-similar 

turbulence through growth and early-onset saturation and mode-coupling of nonlinear 

modes. 

 

 
Figure 3. 2 Representation of the initial perturbation spectrum in (a) physical space and 

(b) wavenumber space. Images are reproduced from 47 . 
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3.2 Results and Discussion 

 
Figure 3. 3 Contours of volume fraction at the center (x-y) plane, showing the growth of 

the turbulent RT mixing layer at different non-dimensional times. 

 

Contours of the volume fraction of the light fluid on the center plane (x-y) at different times 

in our simulation are plotted in figure 3.3. Since the simulations were performed in the 

Boussinesq limit, the growth of bubble and spike fronts are symmetric at late times. The 

process of mode-coupling is evident in these figures as fine-scale features that appear at 

early times undergo pairing across k-space so that at late times, only a few bubble and spike 

structures remain.  

As before, plots of the density-specific volume covariance b, turbulent mass flux 𝑎𝑎𝑥𝑥, and 

the turbulent kinetic energy 𝑘𝑘� = 𝑅𝑅𝑛𝑛𝑛𝑛/(2𝜌𝜌 � ) are plotted in non-dimensional time 𝜏𝜏 in figure 

3.4 (a) – (c) respectively. These quantities were computed by averaging over the 

homogeneous directions at the mid-plane. We follow the widely used non-

dimensionalization for time defined as: 
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𝜏𝜏 = 𝑡𝑡�𝐴𝐴𝐴𝐴/𝐿𝐿0           (3.2.1) 

and similarly, we define a characteristic velocity as: 

𝑈𝑈0(𝜏𝜏) = �𝐴𝐴𝐴𝐴𝐴𝐴(𝜏𝜏),          (3.2.3) 

and scale 𝑎𝑎𝑥𝑥 and 𝑘𝑘�  with 𝑈𝑈0 and 𝜌𝜌0𝑈𝑈02 respectively, where 𝜌𝜌0 = 𝜌𝜌1+𝜌𝜌2
2

 in eq. (3.2.3), 𝑊𝑊(𝜏𝜏) 

is the mixing layer width at scaled time τ, and is computed from volume fraction of light 

and heavy fluids respectively 𝑓𝑓1 and 𝑓𝑓2, using 129: 

𝑊𝑊(𝜏𝜏) = 6∫𝑓𝑓1�𝑓𝑓2�𝑑𝑑𝑑𝑑,         (3.2.4) 

where �  denote planar averages in the y-z plane. 

 

 
Figure 3. 4 Time evolution of centerline planar averages of (a) the density-specific 

volume correlation b, (b) the mass flux in the x-direction ax scaled by U0, and (c) the trace 

of the turbulent stress tensor Rnn scaled by ρ0U0
2 

 

At early times in figure 3.4 (a), the initially low values of b is an artifact of the initialization 

procedure in our simulations, and does not indicate the presence of completely mixed 

fluids. The initial amplitude perturbations from eq. (3.1.1) are converted to volume fraction 

perturbations with a sub-cell resolution using a linear interpolation procedure. Thus, within 

a cell, the density of the fluid is computed (based on f1) and registers as a ‘mixed’ fluid in 



22 
 

the definition of b. As the flow develops, and structures on the interface grow to occupy 

multiple cells, the definition of b becomes a more reliable indicator of mixing. As the flow 

becomes nonlinear and transitions to turbulence, the attendant mixing results in an increase 

in b. At late times, the mid-plane features large bubble and spike plumes which transport 

pure fluid within them, leading to higher values of b.  

We scale the x-direction mass flux 𝑎𝑎𝑥𝑥 with the characteristic RT velocity 𝑈𝑈0, which 

represents the nonlinear velocity of dominant structures within the mixing layer. The time 

evolution of the scaled mass flux is shown in figure 3.4 (b). Note that the initial spike is 

associated with the linear stage of growth, and is due to initially low values of the scaling 

velocity 𝑈𝑈0. As the flow transitions to self-similarity, 𝑎𝑎𝑥𝑥/𝑈𝑈0 is dominated by leading 

bubble and spike structures (with velocities ~ τ), and saturates to a constant value as 

expected. At late times, there is a gradual increase in the scaled mass flux due to the effect 

of the exit boundaries on the edges of the mixing layer. The scaled TKE in figure 3.4 (c) 

exhibits similar features as the mass flux: initial spike due to the linear growth rate 

exceeding the self-similar scaling, later saturation as the flow enters self-similarity and the 

late-time increase due to boundary effects. RT-turbulence is observed to be driven and 

sustained by the persistent acceleration and continuous supply of fresh material from the 

infinite reservoirs of pure fluid present outside the mixing zone. 
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3.3 Comparison with LWN Model 

 

    
Figure 3. 5 Comparison of ILES simulation results (solid lines) from MOBILE with the 

LWN model of (SCH) 106, 107 at different non-dimensional times 𝜏𝜏. x-coordinate is scaled 

by the time-dependent mix width 𝑊𝑊(𝜏𝜏) and centered at centerline xc. Shown are (a) 

profiles of b, (b) profiles of ax scaled by U0, (c) profiles of Rxx scaled by ρ0U0
2 and (d) 

profiles of Rnn scaled by ρ0U0
2.  

 

In figures 3.5 (a) - (d), we compare ILES results from MOBILE (solid lines) with two-

point spectral model proposed by (SCH)106, 107 at different non-dimensional times 𝜏𝜏 after 

the flow has achieved self-similarly. When scaled by the time-dependent mix-width, the 

ILES and model profiles collapse in the x-direction. Good agreement between the model 
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and simulation results for 𝑎𝑎𝑥𝑥 is shown in Figure 3.5(b). However, the (scaled) turbulent 

stress 𝑅𝑅𝑥𝑥𝑥𝑥 and trace 𝑅𝑅𝑛𝑛𝑛𝑛 are overpredicted by the LWN model as observed in Figures 3.5 

(c) and 3.5 (d). We believe these differences are due to the initial conditions employed in 

each calculation. MOBILE was initialized with a narrowband power spectrum, while the 

model computation reported in (SCH)106, 107used a broadband ~ k-2 power spectrum to 

initialize the calculations. Previous studies125 have shown that RT mix growth is sensitive 

to the structure of the initial conditions, and that broadband perturbation spectra lead to a 

more aggressive growth of the mixing layer. Additional simulations in which the initial 

conditions are matched to those reported in 106, 107 will be reported in the future.  

Next, we present a preliminary comparison of our ILES results with the modified LWN 

models derived from the two-point spectral model proposed by (SCH)106, 107 discussed in 

section 1.2. The modified LWN model uses a non-local form for the turbulence frequency 

in the modeling of the cascade term  (CS1995 and Sandoval130), and the employed 

calibration coefficients in the comparison are given below in table 3.1: 

 

Table 3. 1 Table summarizing the calibration coefficients used in the calculation of the 
LWN model (SCH) 106, 107 . 

 

 

In figure 3.6 (a)-(n), we compare results from MOBILE simulations with the LWN 

model. The model was initialized at 𝜏𝜏 = 1.89, with data from the simulations at that time. 

This avoids integrating the model through the initial transition between the linear and 
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nonlinear stages of the flow. Several quantities are compared in figure 3.6, and show 

encouraging agreement between the model and the simulations. The LWN prediction of 

the evolution of the mixing layer width, according to figure 3.6 (a), is in excellent 

agreement with the simulation (MOBILE) results. We also compare the scaled mass flux 

in figures 3.6 (b)-(e), b in figures 3.6 (f)-(j), and the scaled kinetic energy in figures 3.6 

(k)-(n). We find that while the LWN model prediction of these quantities are in excellent 

agreement with MOBILE’s simulation results at early times, quickly , the model 

overpredicts  𝑎𝑎𝑥𝑥 and Rnn as seen respectively in figures 3.6 (c)-(e) and in figures 3.6 (l)-

(n). Meanwhile, the model’s prediction for b remains excellent as seen in figures 3.6 (g)-

(i) until late times when oscillations rise in the region around the edges of the TMZ as we 

can see in figure 3.6 (j). These oscillations are believed to be caused by high and sharp 

gradients in 𝑎𝑎𝑥𝑥.developing around the edges of the mixing layer as seen in figure 3.6 (e). 

High gradients in  𝑎𝑎𝑥𝑥  can cause spikes in the equation of b, e.q (1.1.36), through the 

production term 𝜕𝜕𝜌𝜌�𝑎𝑎𝑥𝑥
𝜕𝜕𝜕𝜕

; consequently destabilizing the numerical solution if the employed 

numerical scheme is not robust to sharp gradients.  
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𝜏𝜏 = 1.89                           𝜏𝜏 = 1.95                          𝜏𝜏 = 2.5                        𝜏𝜏 = 3.85 

 

 

 
Figure 3. 6 Comparison of MOBILE simulation results with the LWN model initialized 

with simulation data at 𝜏𝜏 = 1.89 : (a) Time evolution of mixing layer width, (b)-(c) 

profiles of ax scaled by U0 at 𝜏𝜏=[1.89, 1.95, 2.5,3.85], (f)-(i) profiles of b at 𝜏𝜏=[1.89, 1.95, 

2.5,3.85], and (j)-(m) profiles of Rnn scaled by ρ0U0
2 at 𝜏𝜏=[1.89, 1.95, 2.5,3.85]. x-

coordinate is scaled by the time-dependent mix width 𝑊𝑊(𝜏𝜏) and centered at centerline xc. 
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Next, the LWN model was initialized with corresponding simulation data at 𝜏𝜏 = 0, and the 

production term in the b-equation ((2𝜌𝜌�−𝜌𝜌1−𝜌𝜌2)
𝜌𝜌1𝜌𝜌2

𝜕𝜕𝜌𝜌�𝑎𝑎𝑦𝑦
𝜕𝜕𝜕𝜕

) was neglected due to the negligible value 

of (2𝜌𝜌� − 𝜌𝜌1 − 𝜌𝜌2). An improvement is observed in the comparison of 𝑊𝑊(𝜏𝜏) as seen in figure 

3.7 (a), also we note that the model is not able to capture the linear growth of the mixing 

layer width (𝜏𝜏 < 1). Further, an overall improvement in the prediction of scaled profiles 

of 𝑎𝑎𝑥𝑥, 𝑏𝑏, Rnn and 𝑅𝑅𝑥𝑥𝑥𝑥, by the model are observed in figures 3.7 (c)-(f): Note the vanishing 

of the oscillations at late time in the LWN calculation of the profile of b in figure 3.7(c) 

even when the profile of 𝑎𝑎𝑥𝑥 is sharp near the edges of the TMZ as seen in figure 3.7 (d); 

also note an improvement in the shape of the profiles of 𝑎𝑎𝑥𝑥 in figure 3.7 (d) compared to 

its previous shape in figure 3.6(e). 

In conclusion, preliminary comparisons with the LWN model for RT turbulence are 

encouraging, and include good agreement in quantities such as the mix width and the 

density-specific volume correlation. However, at late times, the LWN prediction of scaled 

mass flux and TKE are in disagreement with the simulations results.  
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Figure 3. 7 Comparison of MOBILE simulation results with the LWN model initialized 

with simulation data at 𝜏𝜏 = 0: (a) Time evolution of mixing layer width, (b) initial 

profiles of b, (c) late time (𝜏𝜏=2.9) profile of b, (d) late time profile of ax scaled by U0, (e) 

late time profiles of Rxx scaled by ρ0U0
2, and (f) late time profiles of Rnn scaled by ρ0U0

2. 

x-coordinate is scaled by the time-dependent mix width 𝑊𝑊(𝜏𝜏) and centered at centerline 

xc. 
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CHAPTER 4 : DOUBLE-SHOCKED RICHTMYER-MESHKOV TURBULENCE 

 

We describe results from numerical simulations of the turbulent Richtmyer-

Meshkov instability subjected to successive shocks in the same direction. The single-

shock RM driven turbulence has been previously studied in several theoretical, 

experimental and numerical58, 115, 125, 131, 132 studies. Most recently, the so-called Theta 

group study 133  was a code-comparison effort involving multiple shock-physics codes to 

investigate the self-similar behavior of RM turbulence at late times. To allow for the flow 

to develop to a mature state of self-similarity, and to trigger the onset of self-similarity at 

earlier non-dimensional times, the initial conditions were comprised of short wavelength 

perturbations and referred as the quarter-scale problem in 133. In a follow-up study134, 

energy budgets were computed from simulation data to quantify the relative importance 

of terms in the transport equation, as well as terms arising from the compressibility of the 

flow such as the pressure-dilatation term. 

The multiply-shocked RM problem is relevant to ICF implosions, where the interface 

between fuel and shell material is subjected to a cascade of shocks during both the 

implosion and post-stagnation stags. Similarly, in SCRAMJET applications, to satisfy the 

requirement of minimal residence times for the fuel jets, a shock train is used to repeatedly 

shock and achieve turbulation of the flow. Thus, we have extended the scope of these 

earlier studies 133 , to investigate the effect of multiple shocks originating in the heavier 

fluid, and their effect on the subsequent evolution of RM-driven turbulent mixing layer. 

Note that the double-shock configuration reported here is fundamentally different from the 

extensively studied reshock problem135-143in which the transmitted shock from the first 
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shock-interface interaction is reflected from an end wall, and allowed to impinge on the 

nonlinear mixing layer. In the current configuration (suggested by Mikaelian144), both 

shocks originate in the same fluid so that each interaction corresponds to a slow-fast (𝐴𝐴 <

 0) shock-contact problem. Thus, following each shock-interface interaction, the negative 

RM growth rate will trigger an indirect phase inversion due to the negative Atwood number 

132. However, the precise nature of this transition is unclear for the following reason: If the 

second shock interaction occurs at early non-dimensional times (when individual modes 

are still linear in their amplitudes; with respect to their wavelengths), we can expect these 

modes to invert phase completely. In contrast, when the interaction occurs at a time such 

that the dominant modes have already become nonlinear, the phase reversal could be 

complicated by the presence of lagging structures which might lead to ‘shredding’ of the 

reversed bubble and spike structures. The simulations reported in this chapter are an 

attempt to clarify these issues. The details of the phase reversal and subsequent growth are 

of substantial interest to turbulence modelers seeking to develop low-order descriptions of 

mix development in ICF capsule implosions in which a series of timed shocks are used to 

maximize yield 48. 

Our objective is to investigate the effect of the second shock arrival time on several 

turbulent flow features. By varying the time of second shock impact, we control the 

properties of the interface (composition of perturbation wavelengths and amplitudes) prior 

to this event. The simulations were all initialized with a perturbation front dominated by 

short wavelength signals, and obtained from the quarter-scale problem in the theta group 

study 133. The second shock was initialized using the procedure described in § 4.1, while 

the second shock arrival time at the interface was systematically varied.  
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The problem configuration is shown in figures 4.1 (a) – (b), and depict the pre-shock and 

post-shock states respectively. The terminology describing the different regions in fig. 4.1 

is adapted from 145, and can be generalized to multiple shocks. Figure 4.1a describes the 

flow configuration immediately before the arrival of an incident shock of strength 𝑀𝑀, and 

moving to the right with an incident shock speed (in the frame of the interface) of 𝑈𝑈𝑠𝑠. 

Region 3 refers to the state of the shocked material, while Regions 2− and 1− refer to the 

unshocked states associated with heavy and light fluids on either side of the perturbed 

interface. The superscripts ‘-‘ indicate pre-shocked states, while ‘+’ refer to fluid states 

immediately following the passage of the shock. Similarly, ‘--‘ and ‘++’ indicate the 

corresponding states preceding and following the passage of the second shock in the same 

direction. The fluid states and velocities following shock passage are shown in Figure 4.1b 

in the laboratory frame of reference. The interface acquires a jump velocity 𝑑𝑑𝑈𝑈 from the 

shock interaction, while the incident shock has split in to transmitted and reflected waves 

with velocities of 𝑈𝑈𝑡𝑡 and 𝑈𝑈𝑟𝑟 respectively.  

 
Figure 4. 1 Schematic of the initial flow configuration. Problem terminology adapted 

from Mikaelian145. (a) Pre-shock flow configuration, (b) post-shock flow configuration. 
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We briefly describe the notation employed in this chapter to describe flow behavior 

following each shock. Pre- and post-shocked states are denoted by superscripts ‘-‘ and ‘+’ 

respectively. Subscripts can refer to the initial state ‘0’, or the region of the flow. Thus, 𝑝𝑝2− 

refers to the pressure in region ‘2’ before the first shock, while 𝑊̇𝑊0
++ refers to the initial 

growth rate of the mixing layer following the second shock. We non-dimensionalize time 

using 

𝜏𝜏 = 𝑡𝑡𝑊̇𝑊0\𝜆̅𝜆                  (4.1) 

where 𝑊̇𝑊0 ≈ 1264.9 𝑐𝑐𝑐𝑐/𝑠𝑠 (for conditions of the theta group problem) is the predicted 

initial growth rate of the mixing layer width after the first shock, 𝑡𝑡 is the time in seconds, 

and 𝜆̅𝜆 = 2𝜋𝜋/𝑘𝑘�. The averaged wavenumber 𝑘𝑘� is associated with the initial quarter-scale 

perturbation (detailed in § 4.1 below) and given by  

𝑘𝑘� = �7/12𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚             (4.2) 

In eq. (4.2), the maximum wave number is given by 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝜋𝜋/𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 with  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿/32 

for the initial conditions in Thornber133 , and 𝐿𝐿 is the width of the shock tube cross section.   

4.1 Problem Description and Numerical Setup 

We report results from three simulations (cases 1 – 3), summarized in table 4.1 

corresponding to different instances of second shock arrival (𝜏𝜏2 = 1, 3, 𝑎𝑎𝑎𝑎𝑎𝑎  6 

respectively). The simulations were performed using the FLASH code (details in Chapter 

2), and initialized with fluids with densities 𝜌𝜌2− = 0.003 𝑔𝑔/𝑐𝑐𝑚𝑚3 and 𝜌𝜌1− = 0.001 𝑔𝑔/𝑐𝑐𝑚𝑚3 

(see figure 4.1), resulting in an initial Atwood number 𝐴𝐴 = −0.5. The initial pressure was 

chosen to be 𝑝𝑝2− = 𝑝𝑝1− = 100 𝑘𝑘𝑘𝑘𝑘𝑘, while the compressibility of both fluids was taken 

as 𝛾𝛾2− = 𝛾𝛾1− = 5/3 (to match the problem parameters from the theta group study 133. The 
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initial incident shock  𝑆𝑆1 was of strength 𝑀𝑀1 = 1.83, while the second shock 𝑆𝑆2 was 

initialized with 𝑀𝑀2 = 1.5 and reached the interface at non-dimensional times of 𝜏𝜏2 = [1, 3, 

and 6]. The simulations were performed with a Cartesian mesh of 256 zones/ 𝐿𝐿, where 𝐿𝐿 =

2𝜋𝜋 is the domain cross-sectional length.  

Table 4. 1 Summary of second shock simulations. 

 

 

 

 

 

 

 

4.2 Results and Discussion 

4.2.1 Unperturbed, 1D Simulations 

Figure 4.2 is an x-t diagram showing significant events from one of our simulations, in 

which the second shock arrived at the interface at 𝜏𝜏2 = 6. The initial interface is given a 

negative velocity −𝑈𝑈0 computed by requiring the final (post-second shock) interface 

velocity should be zero. Following the interaction with the first shock, the interface velocity 

(in the fixed frame of reference) was 𝑈𝑈1 = −22855.6 𝑐𝑐𝑐𝑐/𝑠𝑠. Once the reflected rarefaction 

from the first shock exited the outflow boundary at x = 0, the guard cells were filled with 

material corresponding to the second shock. The second shock was then ‘released’ at a time 

such that it would reach the moving interface at 𝜏𝜏2 = 6, as required for this case. From the 

 Second 
shock Mach 

number 
𝑀𝑀2 

Time of 
Second shock 

𝜏𝜏2 

Case 1 1.5 1 

Case 2 1.5 3 

Case 3 1.5 6 
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calculations presented in chapter A.4.1.3, this results in a stationary interface following the 

second shock interaction.  

                  
Figure 4. 2 x-t diagram showing the trajectory of the interface (blue), transmitted (pink) 

and reflected waves (light green and orange) following 1st (not shown) and 2nd (red) 

shocks for case 3 ( 𝜏𝜏2 = 6). 
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4.2.2 Multimode, 3D Simulations 

 

 

 
Figure 4.3 Isosurfaces of 50% mass fraction of the heavy fluid showing (a) - (c) the 

compression of the mixing layer by the 2nd, followed by (d) - (f) phase reversal sand by 

(g) - (i) late time regrowth . 
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The evolution of the mixing layer from case 3 is tracked in figure 4.3 (a) – (i) using 

isosurfaces of the 50% mass fraction of the heavy fluid. The compression of the mixing 

layer induced by the second shock is visible through figures 4.3 (a) - (c), where the 

thickness of the mixing layer reduces sharply in response to compression (6 < 𝜏𝜏 ≤ 6.2). 

Bubbles and spikes appear to undergo phase reversal in figures 4.3 (d) – (f) (6.2 < 𝜏𝜏 ≤ 6.5 ), 

although this process is complicated by the high mixing caused by “shredding” of the non-

linear structures (see figure 4.6 below and corresponding discussion). At late times (figures 

4.3 (g)-(i)), the mixing layer appears to grow to a self-similar state, leading eventually to 

increased mixing between the fluids.  

In figure. 4.6, we provide a closer look at the partial phase reversal observed during the 

passage of the second shock by plotting contours of the density field before, during and 

immediately following shock passage for case 1. We focus our attention on two 

bubble/spike pairs identified by the green and white circles. The bubble/spike pair ‘A’ is 

still at a linear stage of evolution at the time of arrival of the second shock, while the pair 

labelled ‘B’ appeared to have entered nonlinear saturation. This difference in the maturity 

of the structures produces very different outcomes associated with the shock passage. 

Bubbles and spikes associated with ‘A’ appear to undergo a complete phase reversal. In 

contrast, leading structures in ‘B’ initially reverse direction, but are then shredded by 

lagging structures in their wake, preventing a complete phase reversal. This process of 

shredding is accompanied by a significant increase in the appearance of small-scale 

structures, and in the corresponding atomic mix fraction (discussed below). The dynamics 

are similar to the observations in accel-decel-accel problems studied in 115, where the onset 

of deceleration resulted in (i) an initial phase reversal of leading structures, (ii) ‘shredding’ 
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of dominant bubbles and spikes as the reversed structures encounter lagging features in the 

flow and (iii) an accompanying increase in mixing parameters. With increasing  𝜏𝜏2, we 

expect increased shredding and atomic mixing as the highly nonlinear state of the flow 

implies a wider hierarchy of leading/lagging structures within the bubble/spike fronts. 

Finally, note that in this heavy-to-light interaction, bubbles encounter a nearly planar 

incident shock, while the shock is likely distorted by the mixing layer before reaching the 

spike structures. This could result in a weaker shock impacting the spike structures 

resulting in a partial phase reversal and slower growth rate.  

 

 
Figure 4. 4 Density contours (a) before (b) during and (c) after the passage of the second 

shock for case 1 (τ2 =1)  

 

Based on these qualitative observations, we list the following preliminary conclusions: (i) 

Individual structures appear to undergo phase reversal, but this process depends 

extensively on the state of the structures prior to shock interaction (ii) Structures that have 

evolved to nonlinearity, are less likely to survive the phase reversal process and instead are 
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‘shredded’ by lagging structures which the reversed bubbles/spikes encounter. This process 

is similar to the shredding of leading bubbles and spikes observed in the accel-decel-accel 

(RT) problem 115 . (iii) The shredding leads to the breakup of large-scale structures in to 

smaller-scale features, with a corresponding increase in atomic mixing, while the mass 

transport across the mixing layer is decreased. In addition to this partial phase reversal, the 

mixing layer is also compressed by the shock. This results in an initial reduction in the 

mixing layer width, and associated densification which might partially stabilize the mixing 

layer146. Thus, these dynamic processes represent a complex set of phenomena occurring 

simultaneously, which will be investigated in greater detail in subsequent studies. For the 

purposes of the analysis presented here, we take the mix width (or amplitude) at the end of 

the compression/phase reversal process as the initial amplitude that seeds the subsequent 

growth.  

 

 
Figure 4. 5: (a) Comparison of the evolution of the scaled turbulent mixing layer width 

plotted against the non-dimensional time τ for cases 1 – 3 along with the benchmark theta 

group result from Thornber133. (b) Evolution of the non-dimensional mixing layer widths 

scaled by the post-second shock amplitude W0
++ = W(τ++) plotted against the local scaled 

time τ - τ++. 



39 
 

The evolution of the mix width (𝑊𝑊(𝑡𝑡) = ∫ 〈𝑓𝑓1〉
𝐿𝐿𝑥𝑥
0 〈𝑓𝑓2〉𝑑𝑑𝑑𝑑) from FLASH simulations of cases 

1 – 3 are compared with results from the theta-group study (quarter-scale problem) which 

is included here as a benchmark in figure 4.5(a). The mixing layer width is scaled by 𝜆̅𝜆, 

and plotted against the non-dimensional time 𝜏𝜏 as defined earlier. Following the second 

shock, the turbulent mixing zones (TMZ) experience an amplitude compression, followed 

by rapid growth culminating in an asymptotic self-similar stage. For cases 1-3, the 

simulations report a compression of the mixing layer width of 𝑊𝑊0
++/𝑊𝑊0

−− = 0.45, 0.53, 

and 0.53 respectively. These values are close to the expected value of Richtmyer’s 

compression factor12, 132 based on incident shock and interface velocities of  χ ≡ 1 −

𝑑𝑑𝑑𝑑
𝑊𝑊0

−− = 0.49, although this process appears to be complicated by a partial phase reversal 

process as discussed earlier.  

When scaled by the post-second shock amplitudes 𝑊𝑊0
++ = 𝑊𝑊(𝜏𝜏++), and plotted against 

the origin-shifted non-dimensional time 𝜏𝜏 − 𝜏𝜏++, the mixing widths from cases (1 – 3) in 

figure 4.5(b) appear to be nearly parallel at late times. The initial post-shock growth rates 

appear to depend on the modal content of the interface at the time of the second shock. For 

simulations in which the second shock was delayed, the perturbation front is likely 

dominated by larger structures (i.e. 𝜆̅𝜆3 >  𝜆̅𝜆1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘�3 <  𝑘𝑘�1) leading to a relatively slower 

linear growth rate for case 3 compared with case 1 and consistent with the Meyer-

Blewett147 formula: 

𝑊𝑊(𝑡𝑡)
𝑊𝑊0

++ ~ 1 + 𝑘𝑘�𝐴𝐴++∆𝑈𝑈(𝑡𝑡 − 𝑡𝑡++).          (4.3) 

The scaled mix widths in figure 4.5 (b) appear to satisfy eq. (4.3) over a time 𝜏𝜏𝑁𝑁𝑁𝑁, after 

which a transition to self-similar (~ 𝜏𝜏𝜃𝜃) behavior is observed. The RM dependence on 



40 
 

initial conditions manifests in the initial linear growth rate and the turnover time, while the 

late-time curves in figure 4.5(b) are nearly parallel (the linear stage is thus directly 

influenced by the applied drive, while the late-stage decaying behavior can be treated as a 

return to isotropy in the absence of the drive 146).  

These observations are confirmed in figure 4.6, where we plot the self-similar growth 

exponent θ computed from the mix width using146  𝜃𝜃−1 = 1 − 𝑊̈𝑊𝑊𝑊/𝑊̇𝑊2 from cases 1 – 3 

and the θ-group test problem. The large spikes in each case are due to shock compression, 

and correspond to the arrival times of the second shock. Following the transients (due to 

the initial linear growth discussed above), θ saturates to a universal late time value of ~ 

0.25 regardless of the initial conditions present at the time of the second shock. While more 

detailed investigations of initial condition effects are currently under way, these second 

shock simulations suggest initial conditions significantly influence the linear growth 

regime and the nonlinear transition time, but not the late-time asymptotic behavior.  

 
Figure 4. 6 The time-dependent RM growth exponent θ from cases 1 – 3 and the 

benchmark θ-group case 133. 
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Figure 4. 7 (a) Comparison in origin-shifted non-dimensional time (τ - τ++) of (a) the 

bubble amplitudes scaled by hbu
++ and (b) spike amplitudes scaled by hsp

++, for cases 1-3. 

 

We compare the bubble and spike amplitude evolution for cases 1 - 3 respectively in fig. 

4.7 (a) and fig 4.7 (b). The bubble and spike amplitudes are defined from our simulations 

using ℎ𝑏𝑏𝑏𝑏 = �𝑥𝑥|〈𝑓𝑓1〉=1% − 𝑥𝑥|〈𝑓𝑓1〉=50%� and ℎ𝑠𝑠𝑠𝑠 = �𝑥𝑥|〈𝑓𝑓1〉=99% − 𝑥𝑥|〈𝑓𝑓1〉=50%� where 〈∙〉 denote 

planar averages in the directions perpendicular to shock traverse (both quantities are then 

scaled by the corresponding amplitudes at the end of the shock compression). Note that 

these planar-averaged definitions of bubble and spike amplitudes are insensitive to phase 

reversals by individual bubble and spike structures if they occur. Hence, while individual 

bubbles and spikes might undergo an indirect phase reversal, this does not cause the 

amplitudes based on planar-averaged quantities to ‘zero-out’ in fig. 4.7 (a)-(b). The results 

are similar to the mix width behavior discussed earlier, while spike growth outpaces 

bubbles as expected at this Atwood number.  

In fig. 4.8 (a) – (b), we plot the development of the streamwise (𝑎𝑎𝑥𝑥 = −𝑢𝑢𝑥𝑥′′����) and spanwise 

(𝑎𝑎𝑧𝑧 = −𝑢𝑢𝑧𝑧′′����) mass fluxes evaluated at the mid-plane of the mixing layer (𝑥𝑥|〈𝑓𝑓〉=0.5). Fig. 4.8 
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(a) shows an initial spike in the streamwise mass flux due to the shock-compression and 

phase reversal process. Thus, the largest increase is observed for case 1 ( 𝜏𝜏2 = 1), in which 

a nearly complete phase reversal is expected for bubbles and spikes. In contrast, case 3 

( 𝜏𝜏2 = 6) shows the smallest increase in the initial streamwise flux, since the compression 

and phase reversal process is interrupted by shredding as discussed above. Following the 

passage of the shock, the net streamwise mass flux shows an asymptotic decay for cases 1 

– 3, as expected for a decaying flow. At late times, the streamwise mass flux appears to 

saturate to a positive asymptotic limit, suggesting a net mass flux across the mixing layer 

in favor of the spikes in this heavy-to-light flow. This is consistent with observations and 

models of the single-mode RMI 148, in which the ratio of the nonlinear spike velocity to the 

corresponding bubble velocity increased with the Atwood number.  

 

 
Figure 4. 8 Time evolution of the centerline (a) streamwise mass flux 𝑎𝑎𝑥𝑥 scaled by 𝑊̇𝑊0

++  

and (b) spanwise mass flux 𝑎𝑎𝑧𝑧 = −𝑢𝑢𝑧𝑧′′���� scaled by 𝑊̇𝑊0
++, in local scaled time (τ - τ++). 

 

Figure 4.8 (b) shows (as expected) that there is no net spanwise mass flux at late stages in 

the flow. However, the decay to this state appears to be modulated by acoustic waves with 
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a time period that increases with  𝜏𝜏2 and the wavelength of the dominant structures at the 

time of the second shock impact. We believe these modulations are linked to acoustic 

waves generated by the passage of the distorted shock wave through the mixing layer. The 

initially planar shock is distorted through its interaction with the bubble front. As the 

distorted shock passes through the mixing layer, it is likely refracted by the lagging 

structures and density gradients leading to locally generated transmitted and reflected 

waves. The reflected rarefactions travel at an angle to the streamwise direction and are 

further reflected or weakened by other structures within the mixing layer. Eventually, these 

acoustic waves decay over a timescale that is proportional to λ
�(𝜏𝜏2)
∆𝑈𝑈

, where λ�(𝜏𝜏2) is the 

wavelength of the dominant structure at the time of the second shock.  

Cross-stream profiles of the streamwise mass flux 𝑎𝑎𝑥𝑥 are plotted in figure 4.9, where they 

have been scaled by the RM initial growth rate immediately following the second shock 

event. By scaling the coordinate according to 
𝑥𝑥−𝑥𝑥|〈𝑓𝑓〉=0.5

𝑊𝑊(𝑡𝑡)
, we find the profiles obtained at 

different times appear to collapse suggesting a self-similar behavior at late times. 

Additionally, the profiles are skewed towards the bubble side, since bubbles transport more 

mass in variable density flows, an effect that is likely to increase with the Atwood number. 

 

 



44 
 

 

Figure 4. 9 Cross-stream profiles of the streamwise mass flux ax for (a) cases 1, (b) case 

2, and (c) case 3, at different non-dimensional times. x-coordinate is scaled by the time-

dependent mix width 𝑊𝑊(𝜏𝜏) and centered at TMZ centerline xc. 

 

Cross-stream profiles of the density-specific volume correlation (𝑏𝑏 = −𝜌𝜌′𝑣𝑣′������) are plotted 

against the scaled coordinate 
𝑥𝑥−𝑥𝑥|〈𝑓𝑓〉=0.5

𝑊𝑊(𝑡𝑡)
 for cases 1 – 3 in figure 4.10. As the flow evolves 

to a self-similar state, b-profiles at different times collapse to a single functional form, 

while the peak values observed in all three cases are in agreement. The time evolution of b 

is plotted for cases 1 – 3 in fig. 4.11 and shows a decay to a near-constant value at late 

times.  
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Figure 4. 10 Cross-stream profiles of the density-specific volume self-correlation b for (a) 

cases 1, (b) case 2, and (c) case 3 at different non-dimensional times. x-coordinate is 

scaled by the time-dependent mix width 𝑊𝑊(𝜏𝜏) and centered at TMZ centerline xc. 

 
Figure 4. 11 Time evolution of TMZ centerline planar average of the density-specific 

volume self-correlation b for cases 1 – 3, in local scaled time (τ - τ++). 

In figure 4.12, we plot the development in time of the atomic mix fraction, Θ defined by 

Θ = ∫〈𝑓𝑓1𝑓𝑓2〉𝑑𝑑𝑑𝑑
∫〈𝑓𝑓1〉〈𝑓𝑓2〉𝑑𝑑𝑑𝑑

              (4.4) 

where 𝑓𝑓1 and 𝑓𝑓2 are the volume fraction of the light and heavy fluids respectively. The 

initial spike in Θ is associated with shock compression, and the breakup of larger structures 
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due to shredding leading to atomization and enhanced local mixing. This is followed by a 

short-lived drop in the value of Θ, likely due to the ‘de-mixing’ occurring as the 

homogenized mixing layer from compression and phase reversal begins to grow sorting in 

to newly formed bubbles and spikes. However, at late times the atomic mix fraction from 

the three cases asymptote to a constant value approaching ~ 0.8 consistent with reported 

values from single-shock RM studies 133 . Thus, figures 4.10 – 4.12 suggest that in all the 

simulations, following initial transients associated with the shock compression, there is a 

return to self-similarity at late times. This is evident in asymptotic values of the atomic 

mix, scaled mass flux and the density-specific volume correlations.  

 

 
Figure 4. 12 Time evolution of TMZ centerline atomic mix fraction 𝛩𝛩 for cases 1 – 3 in 

local scaled time (τ - τ++). 
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Figure 4. 13 Evolution of TMZ centerline averages of (a) TKE streamwise component 

Rxx, (b) TKE cross-stream component Rzz, and (c) total TKE Rnn, for cases 1-3. Plots are 

scaled by the squared growth of the mixing layer measured at τ++ (𝑊̇𝑊0
++) and in local 

scaled time (τ - τ++). 

 

In figures 4.13 (a)-(c), we plot the development in time of the streamwise (𝑅𝑅𝑥𝑥𝑥𝑥) and the 

spanwise (𝑅𝑅𝑧𝑧𝑧𝑧) Reynolds stress components and the total TKE computed at the center of 

the mixing layer and with appropriate non-dimensionalization. Following the second 

shock, 𝑅𝑅𝑥𝑥𝑥𝑥, 𝑅𝑅𝑧𝑧𝑧𝑧, and 𝑅𝑅𝑛𝑛𝑛𝑛 are observed to rapidly decay at a rate inversely proportional to 

𝜏𝜏2. The self-similar regime at late time is observed by the asymptotic collapse in 𝑅𝑅𝑥𝑥𝑥𝑥, 𝑅𝑅𝑧𝑧𝑧𝑧, 

and 𝑅𝑅𝑛𝑛𝑛𝑛 for all three cases. The inhomogeneity in the flow is also persistent, as indicated 

by 𝑅𝑅𝑥𝑥𝑥𝑥 being an order of magnitude larger than 𝑅𝑅𝑧𝑧𝑧𝑧 for all the double-shock cases. Cross-
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stream profiles of 𝑅𝑅𝑛𝑛𝑛𝑛 at different times are plotted in figures 4.14 (a)-(c) below. While the 

collapse of the scaled profiles at late times suggests the flow reaching a self-similar regime, 

the inhomogeneity in the flow is also visible and indicated by higher values of 𝑅𝑅𝑛𝑛𝑛𝑛 at the 

left (heavy side) of the TMZ.  

 

 
Figure 4. 14 Profiles of the total TKE scaled by (𝑊̇𝑊0

++)2 for (a) cases 1, (b) case 2 and (c) 

case 3, at different non-dimensional times. x-coordinate is scaled by the time-dependent 

mix width 𝑊𝑊(𝜏𝜏) and centered at TMZ centerline 𝑥𝑥𝑐𝑐. 

 

4.3 Summary and Conclusions 

The behavior of twice-shocked RM mixing layer was studied using high resolution 

numerical simulations. The problem configuration is fundamentally different from several 

reshock studies, in which the second shock event is associated with a reflected shock from 

the endwall. In the current configuration, both shocks travel in the same direction and is 

thus relevant to recent interest in high energy density experiments in which timed shocks 

were used to manipulate the mixing and the neutron yield.  

Since both shocks traverse the interface in a heavy-to-light interaction, a complex sequence 

of events unfolds particularly if the interface is already nonlinear. This occurs when the 

second shock is released much later in time, so that the bubbles and spikes have been 



49 
 

allowed to develop to nonlinear amplitudes. In such cases, leading structures at the 

bubble/spike front appear to initially reverse direction but the phase reversal is interrupted 

by collision with slower, lagging structures. The phenomena is not unlike bubble shredding 

previously observed in accel-decel-accel studies  115 of the Rayleigh-Taylor flow.  

The variation in second shock times can be treated as an initial condition problem, in which 

the spectral content of the interface skews towards longer wavelengths/larger amplitudes 

as the time of second shock is increased. Accordingly, the initial linear growth rate and the 

nonlinear transition time are dependent on 𝜏𝜏2, but the late time mix widths are parallel for 

all the cases. This late-time universal behavior can also be extracted by plotting the power 

law exponent θ which asymptotes to ~ 0.25 for all the cases regardless of the value of 𝜏𝜏2. 

The nonlinear transition time may be interpreted as the time at which the flow recovers 

from the initial conditions and reverts to an asymptotic behavior. Several quantities of 

interest to turbulence modelers were also presented, including turbulent mass fluxes (in the 

shock- and lateral directions), density-specific volume self-correlation, Reynolds stresses 

and turbulent kinetic energy.  
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CHAPTER 5 : RICHTMYER-MESHKOV TURBULENCE IN A SPHERICALLY 

CONVERGENT GEOMETRY 

 

 An interface separating two distinct fluids is susceptible to the Richtmyer-

Meshkov 12, 13 (RM) Instability, when an impulsive acceleration is applied. The instance of 

a planar interface accelerated by a planar shock has been investigated extensively in the 

literature through theory, experiments and numerical simulations (see 149 for detailed 

summary and references). The evolution of the single-mode RM has also been treated 

theoretically 53, 57, 58, 149 and through numerical simulations 58, 59, 150 in cylindrical and 

spherical geometries. However, a detailed description of the corresponding turbulent 

mixing layer growth confined by a spherically convergent geometry has not been treated 

exhaustively due to challenges in computationally resolving the turbulent mix or in 

experimentally diagnosing a convergent mixing layer. Through detailed simulations using 

an ALE code, Youngs et al. 14 investigated a turbulent mixing layer initialized by random 

perturbations, and driven by a time-varying implosion history. The same implosion history 

was employed in a comparative study54 of several codes (and numerical methods), which 

concluded that when convergence effects are significant, an aligned numerical grid is 

critical to preventing the appearance of spurious, grid-generated, numerical modes in the 

simulation. Lombardini and Pullin 55, 56 performed 3D Large Eddy Simulations of turbulent 

RM accelerated by a self-similar Chisnell 151 shock wave. In this chapter, we report on 

results from numerical simulations of a spherically convergent, turbulent mixing layer 

energized through the RM instability from a Chisnell-type60, 151 convergent shock. The 3D 

simulations were performed using the FLASH 109 code, in spherical coordinates that are 
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always in alignment with the mixing layer and the shock, while the use of Adaptive Mesh 

Refinement (AMR) ensures local mesh volumes scale with the sharpest features of the 

flow. In addition to qualitative results, we describe the evolution of mean quantities 

associated with RM turbulence in a convergent geometry. 

5.1 Numerical Details and Problem Definition 

The problem configuration is depicted schematically in figure 5.1, which shows a spherical 

wedge defined by 
2 5
π π

− ≤ (θ,φ) ≤ 
2 5
π π

+  , and extending to r = 20 cm in the radial 

direction. The interface between the two gases is situated at r = 15 cm, while the spherical 

shock originates at r = 15.2 cm in the heavy gas (Air, r ≥ 15 cm). As the shock crosses the 

interface, a transmitted shock is generated in the lighter gas (He, r < 15 cm), while a 

reflected rarefaction is returned in the heavy fluid. Outflow boundary conditions at r = 20 

cm ensure the rarefaction (and any other acoustic waves) exit the boundary without 

spurious reflections. Periodic boundary conditions are enforced on the lateral boundaries, 

while the origin is modeled as a reflecting surface at r = dr (so that the singularity at r = 0 

is excluded from our computational domain). The flow properties on either side of the 

initial shock are computed using Rankine-Hugoniot relations found in 145, while the 

shocked region is described using the self-similar solution of Chisnell 151 given in Figure 

5.2. We track all other shocks and rarefaction waves subsequently generated in the flow 

through a shock detection algorithm.  

The interface in the 3D simulations was initialized with a multimode perturbation, along 

the lines of the alpha-group47 collaboration, with energetic modes confined to 20 ≤ (mθ, 

mφ) ≤ 40. We randomize the initial amplitudes and phases with a Gaussian distribution, 

thereby ensuring the initial perturbation surface is devoid of concentrated peaks and 
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valleys. The choice of an initial perturbation concentrated in the high mode numbers, also 

minimizes the impact of Bell-Plesset effects in our simulation 15, 16, so that the growth is 

largely due to the baroclinic instability. The RMS amplitude of the initial perturbation was 

chosen to be 0.005 cm, corresponding to ~ 0.03 % of R0. The surface perturbations within 

a cell volume are converted to corresponding perturbations of the mass fraction Y of air 

and He. For this preliminary study, a resolution of 256 zones was used in each angular 

direction of the (θ,φ) and 1024 zones in the radial direction. 

 

         
Figure 5. 1 Schematic of the problem setup. 
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Figure 5. 2 Plots of Chisnell’s self-similar in the form of ratios of particle properties: 

radial velocity (blue), pressure (red) and density (black), to shock properties, as a 

function of ratio of shock radial location to particle radial location. 

 

5.2 Results and Discussion 

5.2.1  Unperturbed, 1D Simulations 

  
Figure 5. 3(a) Radial trajectories of the interface and shocks from an unperturbed 1D 

simulation. (b) Radial profile of the transmitted shock Mach number. 
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In Figure 5.3 (a), we show the radial trajectory of an unperturbed interface from 1D 

numerical simulations using the FLASH code. The r-t diagram shows the incident shock 

originating at   r = 15.2 cm, and immediately interacting with the interface located at r = 

15 cm. The pre-shock Atwood number is approximately equal to -0.75, which increases to 

~ 0.82 following the initial shock compression of the fluids. The interaction results in a 

reflected rarefaction that exits the computational domain through the outflow surface at r 

= 20 cm. The transmitted shock continues to strengthen as it converges towards r = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 

reaching a maximum Mach number of ~6 (Figure 5.3 (b)) before reflecting from the surface 

near the origin. The reflected shock once again interacts with the interface, so that the 

interface stagnates at r ~ 8cm from the reshock. The reshock event (Light  Heavy) 

generates additional reflected waves, which bounce back from the origin and shock the 

interface several times during the course of the simulation, as shown in Figure 5.3 (a).  

For the example shown in Figure 5.3(a), the convergence ratio may be computed as 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

~ 2. As pointed out by 55, in the heavy-light configuration, the flow evolves largely under 

RM, while the corresponding light-heavy configuration in a spherical geometry is also 

influenced by stretches of RT-dominated growth when the interface is 

accelerating/decelerating.  

5.2.2 Multimode, 3D Simulations 

The corresponding radial trajectories computed from the 3D simulation are plotted in 

Figure 5.4. We identify as bubble and spike locations, the radial extents where the surface-

averaged mass fraction values reach 1 % and 99 % respectively. Since the Atwood number 

for the initial shock is negative, we expect a local phase inversion of the imposed 

perturbations at the interface. However, the surface-averaging is not capable of detecting 
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localized phase inversions of the perturbations, and this is not explicitly observed in Figure 

5.4. During the initial collapse, the growth resulting from the initial conditions dominated 

by small scales, is muted. However, the reshock event at t ~ 100 µs deposits significant 

energy to the already nonlinear interface, thereby spurring rapid growth of perturbations 

during this phase of development. We also observe distinct asymmetry between bubble and 

spike locations (referenced to the unperturbed interface location), during the reshocked 

phase. By t ~ 250 μs, the interface has been reshocked a second time, which further 

accelerates perturbation growth. However, these subsequent shocks are progressively 

weaker in strength. 

 
Figure 5. 4 Bubble and spike locations from 3D FLASH simulations of spherically 

convergent RM. The unperturbed interface trajectory is shown for reference. 

 

Figures 5.5 (a) – (d) are plots of isosurfaces of the mass fraction (corresponding to surface 

averaged value of 50%), realized at key instances in the interface evolution shown earlier 

in Figure 5.3. Figure 5.5 (a) shows the interface shortly after the incident shock has 
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impacted the interface, and is marked by the presence of short wavelength modes. By t = 

87.5 μs (Figure 5.5 (b)), these modes appear to have reached nonlinearity, but most of the 

energy is still concentrated in the high modenumbers. Shortly following the first reshock 

(Figure 5.5 (c)) at t = 107.5 μs, significant nonlinearity is observed along with cross-modal 

interaction which will eventually lead to mixing. The nonlinearity also results in 

asymmetric growth of spikes and bubbles in this high Atwood number flow. Note that the 

asymmetry is enhanced by convergence effects (Bell-Plesset effects 15, 16, 152, 153), which 

accelerate the spikes disproportionately, since rspike < rbubble for this configuration. We 

expect these effects to be more pronounced at late times due to the higher convergence, as 

well as the appearance of larger wavelengths on the bubble/spike fronts. Figures 5.5 (d)-

(e) show the mixing layer immediately following the second reshock at t = 211.5 μs, with 

the interface characterized by significant turbulent mixing, and asymmetry between 

bubble/spike structures.  

In Figure 5.6 we plot the time evolution of bubble and spike amplitudes separately, and 

evaluated as hBu = r1% - rint, and hSp = rint – r99%, where rint is the radial location of the 

corresponding unperturbed interface obtained from Figure 5.3(a). Consistent with Figures 

5.4 – 5.5, the interface retains symmetry following the first shock event, where the 

perturbation growth is confined to the linear stage. Significant asymmetry is observed for 

t > 90 μs (first reshock), with spikes outpacing bubble growth. Both bubble and spike 

amplitudes appear to saturate at late times, as the turbulent state decays as the effects of 

the shock recede.  
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                      (a)           (b) 

 
        (c)            (d) 

 
(e) 

Figure 5. 5 Isosurfaces of mass fraction corresponding to the 50% level at (a) t = 58 μs, 

(b) 87.5 μs, (c) 107.5 μs and (d) 211.5 μs. Figure (e) displays iso-surfaces of 1%, 50% 

and 99% at t=211.5 μs.    
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Figure 5. 6 Time evolution of bubble and spike amplitudes from FLASH simulation of 

spherically convergent Air/He interface. 

 

5.3 Summary and Conclusions 

We report on 3D ILES computations using the FLASH software, of a spherically 

convergent mixing layer, driven by a converging shock satisfying the Chisnell151 self-

similar solution. The configuration corresponds to a heavy-to-light RM instability, 

confined by a convergent geometry. The instability-driven mixing layer is shocked by a 

train of progressively weaker shocks reflected from the surface approximating the origin 

in our simulations. Significant mix development and asymmetry between bubble and spike 

structures (compounded by convergence effects) is observed in our simulations. Higher 

resolution simulations are planned for the future and will investigate the effect of initial 

shock strength and the role played by initial conditions in mix development. 
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CHAPTER 6 : IMPLOSION-DRIVEN VARIABLE-DENSITY TURBULENCE 

 

We describe in this chapter the behavior of a spherical interface that degenerates in 

to a turbulent mixing layer when subjected to a spherical implosion. Results are presented 

from three-dimensional (3D) numerical simulations performed using the astrophysical 

FLASH code, while the underlying problem description is adopted from Youngs and 

Williams (YW). During the implosion, perturbations at the interface are subjected to 

growth due to the Richtmyer–Meshkov (RM) instability, the Rayleigh–Taylor (RT) 

instability, as well as the Bell–Plesset (BP) effects. We report on several quantities of 

interest to the turbulence modeling community, including the turbulent kinetic energy 

(TKE), components of the anisotropy tensor, density self-correlation, and atomic mixing, 

among others.  

Youngs and Williams (YW) 14 defined an implosion problem in spherical geometry, as an 

idealization of the ICF process. In particular, Youngs and YW 14 used the Lagrange-remap 

code TURMOIL 41, 154 to perform high resolution, 3D numerical simulations of the 

implosion in a spherical wedge, with multimode perturbations prescribed at the interface 

between the gases. Joggerst et al. 54 performed a code comparison study to examine the 

effect of different meshes on instability growth at various stages of the implosion defined 

by 14. They found the growth rates of short wavelength modes, in particular were affected 

by the choice of mesh, and a grid that is aligned with the interface was less susceptible to 

the rise of spurious modes at late times. Lombardini et al. 55, 56 used Large Eddy Simulations 

to investigate RM-driven turbulent mixing in a spherical geometry, where the drive was 

provided by a self-similar shock wave defined in 60, 151. In this chapter, we report results 
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from high-resolution simulations of the implosion problem 14 using the FLASH 109 code, 

and describe in detail the behavior of several turbulent quantities at various stages of the 

implosion history.  

The rest of the Chapter is organized in to numerical details and problem definition (section 

6.1), results and discussion (section 6.2) and a summary (section 6.3).  

6.1 Numerical Details and Problem Definition 

We briefly review the problem definition from Refs. 14 and 54, before highlighting specific 

modifications required to simulate the problem with the capabilities embedded in FLASH. 

The problem configuration is adapted from 14, where the spherical implosion is driven by 

a time-dependent pressure drive (shown in Figure 6.2) applied to a moving boundary 

initially located at r = 12 cm. The interface between dense, “shell” (ρ = 1.0 g/cm3, 10 cm 

≤ r < 12 cm) and light, “inner” (ρ = 0.05 g/cm3, r < 10 cm) gases is initially at 𝑅𝑅0 = 10 

cm, and can support a prescribed, multimode perturbation. Since FLASH is an Eulerian 

code, we introduce a third layer of a fictitious “outer” fluid (12 cm ≤ r < 15 cm), whose 

purpose is to support the pressure drive, so that the interface between the outer and shell 

materials provides the required piston action. Following54, the boundary location is forced 

to satisfy: 

𝑅𝑅𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑅𝑅𝑜𝑜𝑜𝑜𝑡𝑡(1 − 𝑢𝑢𝑏𝑏𝑏𝑏𝑡𝑡),            (6.1) 

where 𝑅𝑅𝑏𝑏𝑏𝑏(𝑡𝑡) refers to the time-dependent trajectory of the boundary, 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 is its initial 

location, and 𝑢𝑢𝑏𝑏𝑏𝑏 is a constant (0.2 s-1).  

Figure 6.1 is a cross-section of the spherical wedge
( ),

2 8 2 8
π π π πθ φ − ≤ ≤ + 

   investigated 

here, and shows the arrangement involving the three fluids, along with the corresponding 
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dimensions of the problem (in cgs units). Periodic boundary conditions were employed in 

the lateral directions, while the surface at r = 15 cm was treated as an outflow boundary to 

allow the reflected rarefaction (and other acoustic waves) to exit the computational domain 

without triggering spurious reflections. A reflecting boundary is placed at r = dr, so that 

the singularity at r = 0 is excluded from the computational domain. The fluid properties 

are listed in table 1. We use 𝑅𝑅0 as a length scale, the initial interface jump velocity 𝛥𝛥𝛥𝛥 as 

a velocity scale, and 𝑅𝑅0/𝛥𝛥𝛥𝛥 as the time scale for normalizing the variables. 

 

Figure 6. 1 Schematic of the numerical setup for the implosion problem defined by YW 
14. 
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In the 3D simulations, the interface between the inner and shell materials was initialized 

with a multimode perturbation suggested by 14 (consisting of a superposition of cosine 

waves), with wavenumbers confined to min max( , ) / 2k k k k drθ ϕπ π= ≤ ≤ = . The initial 

amplitudes and phases are randomized with a Gaussian distribution, thereby avoiding 

local pileups of peaks and valleys.  

 

Figure 6. 2 Profiles of pressure applied in the third outer layer acting like a piston in time. 

 

Table 6. 1 Simulation details and fluid properties 
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Following 14, the power spectrum of the perturbation field satisfies 
2( )p k Ck −=  for 

min max( , )k k k kθ ϕ< < , and ( ) 0p k =  otherwise. The constant C is chosen so that 

2. . ( )s d p k dk= ∫ , where . . 0.005s d =  is the standard deviation of the perturbation field. 

Surface perturbations within a cell volume are converted to corresponding perturbations of 

the mass fraction Y. When more than a single fluid is present in a cell, the fluids are 

assumed to be numerically mixed leading to a corresponding cell mass fraction. Thus, we 

do not explicitly track the interface between the fluids, an approach that has been shown to 

be successful in the handling of flows with sharp discontinuities and shocks.  

The resulting perturbation field is shown in Figure 6.3. The radial cell containing the 

perturbation is further sub-sampled to adequately resolve perturbation growth during the 

linear stages. In the next section, we present results from three simulations with grid 

resolutions in (θ,ϕ, r) of 128x128x384, 256x256x786 and 512x512x1536 zones. The AMR 

mesh is locally derefined to 64x64x192 in the region r < 1.5cm, to avoid the significant 

computational costs associated with tracking the convergent shock in that region at late 

times. From an examination of results from the two approaches, we found radial profiles 

of pressure, density and other quantities are in excellent agreement, and the maximum 

discrepancy in local values does not exceed 10% at any radial location and at any time. 
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Figure 6. 3 Contours of the initial perturbation field. 

 

6.2 Results and Discussion 

6.2.1 Unperturbed, 1D Simulations  

 

Figure 6. 4 Radial trajectories of the unperturbed interface, shocks and boundary from 
1D, FLASH simulations. Results are compared with data from 14. 

We verify our numerical problem setup by comparing results from a 1D, unperturbed 

simulation (768 zones in r-direction) with corresponding data from 14. Figure 6.4 is a plot 



65 
 

of the trajectories of the inner/shell interface, as well as the external boundary between the 

shell and outer material which follows eq. (6.1). We also track the location of the driving 

shock in each case through local maxima of the pressure gradients. Thus, for 𝜏𝜏 ≤ 0.24, we 

plot the trajectory of the incident shock, while we track the transmitted and reflected shocks 

from the origin for 𝜏𝜏 > 0.24. 

The unperturbed, interface location from FLASH is compared with corresponding results 

from 14, and shows excellent agreement in Figure 6.4. Following the incident shock impact 

at 𝜏𝜏 = 0.24, the interface is initially RM-unstable, while the large initial radius likely 

implies the effects of convergence will be limited at this stage. For the initial heavy  light 

interaction, the Atwood number associated with the inner/shell interface is – 0.905. The 

shock impact results in a transmitted shock and a reflected rarefaction, while the interface 

appears to coast with a nearly constant radial velocity. However, the transmitted shock is 

reflected from the origin, and shocks the collapsing interface several times in a light  

heavy configuration. These interactions cause the interface to stagnate at 𝜏𝜏 ~ 1.2, followed 

by a slight rebound. The flow development at this stage is complex and involves stages of 

RM instability immediately following each shock, interspersed with durations of RT 

instability subjected to variable acceleration. For the flow conditions investigated here, a 

radial convergence ratio of ~4 is observed in the FLASH simulations. As shown in 54, the 

use of an aligned coordinate mesh in FLASH here eliminates the formation of spurious, 

grid-seeded modes even at high convergences.  

6.2.2 Multimode, 3D Simulations  

The simulations were repeated in 3D with multimode perturbations described in section 2, 

and at the three different mesh resolutions to establish grid convergence. In Figure 6.5, we 
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plot the time history of the extents of the mixing layer defined as the r-locations where the 

planar-averaged mass fractions achieve values of 1 % and 99 %. The FLASH results shown 

are at the maximum mesh resolution employed in this study (512 512 1536× × ) and 

compared with the corresponding data from 14. From Figure 6.5, it is clear the initial RM 

phase of evolution produces scant growth, since the small amplitudes of the imposed 

perturbations ensure modes remain in linear growth at this stage. Significant amplitude 

growth is observed beginning at around 𝜏𝜏 ~ 0.96 following the first reshock event, which 

re-energizes the nonlinear mixing layer.  

 

Figure 6. 5 Radial trajectories of the 1% and 99% angular-averaged iso-surfaces of the 

mass fraction, plotted from the 3D FLASH simulations with multimode initial 

perturbations. Results are compared with data from YW 14. 

This is followed by aggressive growth of the mixing layer driven by a combination of 

reshock-driven RM growth, variable acceleration RT growth as well as BP effects due to 

the high convergences at late times. Figure 6.6 (a)–(e) represent iso-surfaces of mass 

fraction of the inner fluid satisfying the condition 𝑌𝑌𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤�������� = 0.5 where the <•> denotes 



67 
 

planar-averaging along (θ,ϕ). At 𝜏𝜏 = 0.87, the interface growth favors shorter wavelengths, 

which have the highest linear RM growth rates. The shape of the mass fraction iso-surface 

immediately following reshock is illustrated in Figure 6.6 (b), and shows that once 

individual modes have reached nonlinear saturation (h ~ λ), larger wavelengths are formed 

through mode-coupling. By 𝜏𝜏 =1.08 (Figure 6.6(c)), we observe the onset of cross-modal 

interactions and mode coupling which will eventually lead to mixing. Figure 6.6 (d) – (e) 

show the turbulent mixing layer at late times, when multiple reflected shocks have passed 

through the interface. At these late times, the iso-surface is characterized by significant 

levels of mixing, and asymmetry between the bubble and spike fronts. The bubble-spike 

asymmetry is a result of the large density contrasts between the fluids, but also due to 

convergence effects which favor inward pointing spikes.  

We plot the angular-averaged mass fraction (inner fluid) profiles 𝑌𝑌𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤�������� across the mixing 

layer in Figure 6.7 (a), corresponding to the times shown in Figure 6.6. When the radial 

coordinate is scaled as shown in Figure 6.7 (a), the profiles are anchored at (r-rc)/W ~ 0.5. 

At late times, the flow appears to settle down to a self-similar state, evidenced by the 

collapse of the mass fraction profiles for 𝜏𝜏 > 0.96. As the reflected shocks repeatedly 

impact the flow at late times, the underlying self-similarity of the flow does not appear to 

be affected. The corresponding product 𝑌𝑌𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝑌𝑌𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒��������������is plotted as a radial function in Figure 

6.7 (b). At late times, <YinnerYshell> peaks at the centerline at ~ 0.18, where a value of 0.25 

would indicate perfect mixing. Once again, the profiles collapse at late times (𝜏𝜏 > 0.96) 

suggesting the flow reaches a self-similar state when subjected to mixing from repeated 

shocks and RT. 
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a) 𝜏𝜏 = 0.87                                                                                b) 𝜏𝜏 = 1.00 

 
c) 𝜏𝜏 = 1.08                                                                                d) 𝜏𝜏 = 1.22 

              e) 𝜏𝜏 = 1.44 
 

Figure 6. 6 Iso-surfaces of the mass fraction corresponding to the 50% level at (a) 𝜏𝜏 = 

0.87, (b) 𝜏𝜏 = 1.00, (c) 𝜏𝜏 = 1.08, (d) 𝜏𝜏 = 1.22 and (e) 𝜏𝜏 = 1.44. 
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                                             (a)                                                                        (b) 

Figure 6. 7 Radial profiles at different times of (a) <Yinner> and (b) <Yinner Yshell>. 
 

For RM flows, the amplitude of the mixing layer is typically defined as 𝑟𝑟99% − 𝑟𝑟1%  where 

𝑟𝑟99% (𝑟𝑟1%) denotes the radial location of the surface <Yinner> = 99% (1%). In Figure 6.8, 

we plot the time evolution of the mixing layer amplitude from FLASH simulations with 

mesh resolutions of 256 256 768× ×  and 512 512 1536× × . The results are compared with 

corresponding data from 14, and show good agreement. Consistent with the images of the 

iso-surfaces discussed above, the growth rate of the mixing layer falls in the linear regime 

until the first reshock event 𝜏𝜏 ~ 0.96. Significant nonlinear growth and mixing is observed 

at late times, due to the combination of RM/RT/BP effects. In Figure 6.8, we also show 

results from the simulations at lower resolutions (128 zones and 256 zones). At late time, 

following reshock the simulations show good mesh convergence and are in agreement with 

the results from 14. At early times, the simulation with 128 zones (and to a lesser extent the 

256 zone calculation) shows a larger mixing width compared with the highest-resolution 

case. At these early times, the growth of the mixing width is due to the linear growth of 



70 
 

individual modes, so that the larger width observed in the poorly resolved (128 zone) case 

is attributable to the numerical diffusion dominating over the linear growth.  

We track the fraction of molecularly mixed fluid through the atomic mix parameter  

Θ(𝑡𝑡) = ℘(𝑡𝑡)
𝛿𝛿(𝑡𝑡)

= ∫ <𝑌𝑌(1−𝑌𝑌)>𝑑𝑑𝑑𝑑∞
0

∫ 〈𝑌𝑌〉〈1−𝑌𝑌〉 𝑑𝑑𝑑𝑑∞
0

 ,            (6.2) 

where ℘(t) and δ(t) represent the actual chemical product thickness and the maximum 

thickness product formed with complete mixing respectively 56. Thus, the measure in eq. 

(6.2) compares large-scale stirring with small-scale mixing that is associated with a 

numerical diffusivity.  

 

Figure 6. 8 Time evolution of the turbulent mixing amplitude W in a spherical implosion. 

Results from FLASH are compared with TURMOIL data from 14. 
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                                          a)                                                                      (b) 

   
    c) 

Figure 6. 9 Time evolution of a) the maximum molecular mixing thickness δ(t), b) the 

total molecular mixing thickness ℘(t), and c) the atomic mix parameterΘ. 

 

Note that Θ(t) is related to the intensity of segregation I(t) through Θ(t) = 1 – I(t), and can 

change from 0  1 to indicate variation from segregated to completely mixed states. In 

Figure 6.9, we plot the evolution of the atomic mix parameter Θ(t), as well as ℘(t) and δ(t) 
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from our highest resolution simulations. The high values of Θ(t) observed at early times (𝜏𝜏 

< 0.96) during which the linear mixing layer exhibits little mixing, are an artifact of the 

discrete representation of the initial interface in our simulations. At early times, when the 

interface is confined to within a cell, the only contribution to the integral in eq. (6.2) is 

from the presence of both fluids in a given cell volume 115. After reshock (𝜏𝜏 > 0.96), the 

nonlinear growth spreads the interface across multiple mesh zones, so that the atomic mix 

becomes a more reliable indicator of the fraction of molecularly mixed fluid within the 

mixing layer. At late times, the atomic mix parameter approaches a value of ~ 0.7, 

consistent with earlier findings of mixing in RT and RM flows. 

The behavior of the widths ℘(t) and δ(t) from the lower resolution simulation (128 zones) 

is consistent with the trend observed in Figure 6.8 for the mixing layer amplitude – 

discrepancies at early time due to the dominance of numerical diffusion over linear growth 

of modes, and convergence to the high-resolution results at late times when the flow is 

dominated by nonlinear growth and turbulence. Simulations at the lower mesh resolution 

show the same qualitative trend in the behavior of the atomic mix parameter, while the 

transition from the initial (artificial) Θ value occurs at different times in each case. 

Specifically, the higher resolution simulations show this transition earlier, since these 

calculations had much smaller mesh sizes that the nascent flow can outgrow at an earlier 

time. When this occurs, the value of Θ transitions from the artificial initial value to a 

measure that is reflective of the fraction of atomically mixed fluid within the flow. 
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Figure 6. 10 Time evolution of the centerline density-specific volume correlation b in (a) 

and the radial mass flux 𝑎𝑎𝑟𝑟 and turbulent kinetic energy 𝑘𝑘 in (b). 

 

The time evolution of the density-specific volume correlation 𝑏𝑏 = −〈𝜌𝜌′𝑣𝑣′〉 computed at 

the centerline of the turbulent mixing zone is plotted as a function of the non-dimensional 

time in Figure 6.10(a). As the mixing layer grows, there is a concomitant increase in b. 

Following the first reshock at 𝜏𝜏~0.96, a sharp decrease in b occurs, due to compression of 

the mixing layer by the reflected shock. At late times, the turbulent mixing layer grows due 

to repeated re-shocking events, as well as Bell-Plessett 15, 16 effects due to confinement. 

This results in increased mixing, and is observed here as a late-time increase in b. In Figure 

6.10(b), we plot the time evolution of the radial turbulent mass flux 𝑎𝑎𝑟𝑟 =< 𝑢𝑢𝑟𝑟′′ > and the 

TKE, k computed at the center of the mixing layer. Following 14, we use the definition  

𝑘𝑘 = 1
2

〈𝜌𝜌��𝑢𝑢𝑟𝑟′′�
2
+𝑢𝑢𝜃𝜃

2+𝑢𝑢𝜑𝜑2 �〉

〈𝜌𝜌〉
,           (6.3) 

where 𝑢𝑢𝑟𝑟′′ is the fluctuation about the mass-averaged radial velocity. Once again, 

compression due to reshocks are evident as short-lived spikes in these quantities, while the 
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intensification of the turbulence due to confinement and baroclinic vorticity deposition 

produces a more secular growth in time.   

The radial profile of the turbulent kinetic energy at 𝜏𝜏 ~1.44 is plotted in Figure 6.11 from 

the FLASH simulations at different mesh levels.  The radial coordinate is scaled as 

(𝑟𝑟 − 𝑟𝑟𝑐𝑐)/𝑊𝑊, where 𝑟𝑟𝑐𝑐 denotes the radial location with <Y> = 0.5, and W is the amplitude 

of the mixing layer. In Figure 6.11, the two simulations with the highest resolutions show 

the TKE has converged across the mixing layer, while the coarsest simulation yields 

marginally higher values. In Figure 6.12(a) and Figure 6.12(b), we plot cross-stream 

profiles of the anisotropy tensor at the instance of stagnation, and at the final time 

respectively.  

The anisotropy tensor is defined according to: 

𝐵𝐵𝑖𝑖𝑖𝑖 =
〈𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗〉

2𝑇𝑇𝑇𝑇𝑇𝑇
− 1

3
𝛿𝛿𝑖𝑖𝑖𝑖            (6.4) 

where 〈𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗〉 are components of the Reynolds stress tensor. For isotropic turbulence, Bij = 

0, while strong anisotropy suggests Bij  2/3 in the dominant direction (and Bij  -1/3 in 

the other directions) 91. The diagonal components of the anisotropy tensor are plotted as a 

function of the non-dimensional radial coordinate at stagnation (Figure 6.12(a)) and at the 

end of the simulation (Figure 6.12(b)). Both plots suggest strong anisotropy in the radial 

direction with Brr ~ 0.27 ±0.01 and 0.38 ± 0.01 at 𝜏𝜏 ~ 1.22 and 𝜏𝜏 ~ 1.44 respectively. In 

contrast, the angular components are restricted to 18.5 % of the total energy at those times. 

However, the levels of anisotropy observed here is lower than in other directed flows such 

as RT 115, and could be due to the repeated realignment (scrambling) of the mixing layer 

from multiple reshock events. 
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Figure 6. 11 Cross-stream profiles of the turbulent kinetic energy (TKE) scaled by 𝑘𝑘0 =
1
2
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎∆𝑈𝑈2 from FLASH simulations at different mesh resolution, and plotted at 𝜏𝜏 = 1.44. 

 

In variable density flows such as RT and RM turbulent flows, quantities such as the 

normalized mass flux 𝑎𝑎𝑖𝑖 and the density specific volume correlation parameter 𝑏𝑏 are 

important in understanding turbulent transport within the mixing layer 91, 123. In particular, 

in the non-Boussinesq limit, these quantities can develop asymmetries across the mixing 

layer, in proportion to the density contrast between the fluids. The normalized mass flux in 

the ith direction is defined as 𝑎𝑎𝑖𝑖 = <𝜌𝜌′𝑣𝑣𝑖𝑖
′>

<𝜌𝜌>
  , and has been recognized to be a critical quantity 

in the conversion of potential energy to kinetic energy in buoyancy-driven flows 91, 123. In 

Figure 6.13(a), we plot the cross-stream profiles of the normalized mass flux in the radial 

direction (𝑎𝑎𝑟𝑟), for the two highest resolved cases at the end of the simulation (𝜏𝜏 ~1.44).  

0

0.005

0.01

0.015

0.02

0.025

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

(k/k
0
)
128

(k/k
0
)
256

(k/k
0
)
512

(r-r
c
)/W



76 
 

 
     (a)                                                                    (b) 

Figure 6. 12 Cross-stream profiles of diagonal components of the anisotropy tensor at (a) 
𝜏𝜏 = 1.2 (stagnation), and (b) at 𝜏𝜏 = 1.4. 

 

The obtained 𝑎𝑎𝑟𝑟 profiles are asymmetric and skew towards the spikes, suggesting greater 

mass flux associated with the spikes due to the large density differences. This velocity 

increase on the spike side is also compounded by greater geometric convergence 

experienced by the spikes, which are directed inward towards the origin.  

In 56, 123, the authors show the density specific volume correlation parameter 𝑏𝑏 =

−〈𝜌𝜌′ �1
𝜌𝜌
� ′〉, can modify the production term in the radial mass flux equation. In Figure 

6.13 (b), we plot the radial profile of the b parameter at 𝜏𝜏 ~ 1.44, and at the two highest 

mesh resolutions. The peak values obtained here (~0.28) are similar to values reported by 

Lombardini and Pullin 56 for their heavylight simulation in a spherical geometry. Once 

again, the profiles are skewed towards the light side of the mixing layer, suggesting the 

flow is highly non-Boussinesq and requiring the solution of variable density equations in 

modeling transport 123.  
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(a)                                                                    (b) 

Figure 6. 13: Cross-stream profiles of (a) the radial normalized turbulent mass flux ar, 
and (b) of the density-specific volume correlation b. Both quantities are plotted at 𝜏𝜏 = 

1.44. 

 

Following 155, we compute the turbulent kinetic energy spectra associated with variable 

density flow as 

𝐸𝐸(𝑘𝑘) = 1
2∬∑ (𝜌𝜌𝑣𝑣𝚤𝚤� 𝑣𝑣𝚤𝚤�

∗ + 𝜌𝜌𝑣𝑣𝚤𝚤�
∗𝑣𝑣𝚤𝚤�),3

𝑖𝑖=1            (6.5) 

where ‘ � ’ indicates a two-dimensional Fourier transform operation performed on a (θ,ϕ) 

plane of statistically homogeneous data, while ‘*’ represents the corresponding complex 

conjugate. Thus, the 2D FFT operations were performed on (θ,ϕ) planes corresponding to 

the radial location 𝑟𝑟|𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=0.5, while the double integral in the above equation indicates 

averaging over a circular region in wavenumber space, thus resulting in a 1D kinetic energy 

spectrum. In Figure 6.14, we plot energy spectra from three critical moments in the flow, 

viz: following the initial shock as modes achieve nonlinearity (Figure 6.14(a)), 

immediately following reshock (Figure 6.14(b)), and at late time (Figure 6.14(c)). In each 

case, the kinetic energy spectra are compensated by the coefficient k5/3 to highlight the 
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inertial range, while the wavenumber axis is non-dimensionalized with R(t), the radius of 

the corresponding unperturbed interface at that time.  

 
a)                                                                  (b) 

 
(c) 

Figure 6. 14 Compensated kinetic energy spectra obtained from radial locations where 

Yinner = 50%: (a) 𝜏𝜏 = 0.77, (b) 𝜏𝜏 = 0.95 and (c) 𝜏𝜏 = 1.44. 

 

The energy spectrum shown in Figure 6.14(a) was obtained at τ = 0.77, following the 

incident shock and still shows the imprint of the initial conditions. At this early time, a 
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narrow band of modes appear to have evolved to nonlinearity (h ~ λ), while the long 

wavelengths have not filled in. At  τ = 0.95 (Figure 6.14(b)), the appearance of an inertial 

range is evident as the flow has clearly transitioned to turbulence following the reshock 

event. However, the inertial range at this time is narrow, and represents a flow developing 

in to an eventual self-similar state. Figure 6.14(c) is obtained from the 𝑟𝑟|𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=0.5 surface 

at late time (τ = 1.44), and shows an inertial range spanning a decade, with a slope 

approaching k-5/3. The broadband nature of the spectrum, and the existence of a substantial 

inertial range suggests the flow exhibits a self-similar state at these late times. From the 

kinetic energy spectra, we determine the inner viscous length scale λν as the intersection 

point between the fiducials corresponding to the inertial and the dissipation ranges. For τ 

= 1.44, we find kν R(t) ~ 220, where kν = 2π/λν and R(t) is the location of the corresponding 

unperturbed interface. The outer length scale is given by δ ~ W(t), where W(t) is the 

amplitude of the turbulent mixing layer, so that the effective Reynolds number is obtained 

as 156-159 𝑅𝑅𝑅𝑅 = �50 𝛿𝛿 λν
� �

4/3
~ 1.1𝑒𝑒4. A similar analysis conducted at τ = 0.95, yields kν 

R(t) ~ 410 and Re ~ 1.25e3. 

 

6.3 Summary and Conclusions 

We have discussed results from numerical simulations of a spherical implosion of 

relevance to the ICF application. The problem statement was originally defined by YW 14, 

and also serves as a benchmark for evaluating different numerical algorithms. The 

simulations were performed here with the widely used FLASH code, for two different 

conditions: unperturbed interface, and an interface initialized with multimode 
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perturbations. The flow conditions and initialization was chosen to match parameters in 14, 

54, while the problem setup had to be modified to introduce an outer layer of fluid that could 

serve to support the driving shock. Thus, the interface between the outer fluid and shell 

material in the Eulerian simulations discussed here serve the purpose of the moving 

boundary in the ALE code TURMOIL 41, 154. Nevertheless, we find several quantities of 

interest including the radial trajectory of the unperturbed interface, and the mixing width 

of the turbulent flow to be in very good agreement with results from 14.  

The implosion of a spherical interface is susceptible to multiple instabilities, resulting in a 

complex evolution over time. The initial growth is driven by the convergent shock, and can 

be attributed to RM growth of linear modes. At late times, the nonlinear mixing layer is 

repeatedly impacted by shocks reflected at the origin, interspersed with stages of RT-driven 

growth. This is also reflected in the atomic mix parameter, which saturates to ~ 0.7 at late 

times following the interactions of the interface with the reflected shocks. In addition, at 

the convergence ratios achieved here BP effects are expected to play a role, thus 

contributing preferentially to the growth of the spike front. At late times, the flow evolves 

to higher levels of anisotropy, with much of the turbulent kinetic energy residing in the 

radial component.  

In the future, we plan to extend this work by comparing results from the FLASH 

simulations with turbulent mix models 52, 123, 155. Future studies will also include detailed 

investigations in to the effects of the convergence ratio, the initial conditions, and the shock 

strength on the development of the turbulent mixing layer properties discussed in this 

paper. 
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CHAPTER 7 : SUMMARY AND CONCLUSIONS 

 

A broad class of variable density turbulent flows have been investigated using detailed 

and carefully designed numerical simulations. The turbulent flow in each case was 

generated as the culmination of hydrodynamic instabilities associated with perturbed 

interfaces separating fluids of different densities. The flows may be categorized based on 

the persistence and form of the applied drive as well as the degree of anisotropy. The RT 

instability was investigated for multimode perturbations driven by a constant acceleration. 

In the RM instability, the drive is impulsive and is usually provided by shock passage 

through the interface of interest. We have investigated the special case of twice-shocked 

RM instability, in which both shocks were directed from the heavy fluid towards the light. 

A spherical implosion problem, in which the drive may be considered to be complex and 

variable was also investigated. We briefly summarize key results from each investigation 

below:  

1. Rayleigh-Taylor Turbulence: In these simulations, a narrow-band perturbation 

spectrum47 was imposed on the interface, accelerated by applied gravitational acceleration. 

In our simulations, the flow appeared to reach self-similarity for τ > 1, where 𝜏𝜏 =

𝑡𝑡�𝐴𝐴𝐴𝐴/𝐿𝐿0. The self-similar state of the flow is characterized by constant, late-time values 

of the streamwise mass flux, density-specific volume correlation and the TKE, as well as 

the collapse of cross-stream profiles of these quantities when plotted on appropriate self-

similar coordinates. Results from these simulations were compared with the LWN model 

of (SCH) 106, 107 , described in §3.2.3. Preliminary comparison with the model results of 

Steinkamp106, 107  showed that the mix width and b-profiles to be in good agreement 
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between the simulation and the model. However, differences in the mass flux and TKE 

profiles were observed between ILES and the LWN model. These discrepancies may be 

due to the manner in which the inviscid limit is treated in the ILES calculations and the 

model, where the implicit numerical dissipation of TKE in the simulations is not included 

in the model. Follow-on simulations with an added physical viscosity are planned to 

address these discrepancies.  

2. Double-Shocked Richtmyer-Meshkov turbulence: In contrast to most studies of RM 

turbulence in which the interface was processed by a single-shock, or by incident and 

reflected shocks, we have studied the configuration in which both shocks were in the same 

direction. The specific case of heavy-to-light (slow-fast) interaction was examined using 

high-resolution numerical simulations using the FLASH code. The problem was suggested 

by Mikaelian144 and is of relevance to recent efforts at the National Ignition Facility (NIF) 

to exploit precisely-timed shocks to achieve improvements in the fuel areal density and 

neutron yield. Similarly, in Scramjet combustion, the short fuel residence times are 

overcome by the use of shock trains that increase mixing160.  

In our simulations, the time of arrival of the second shock was varied as a control 

parameter, to isolate the effect of the interface initial conditions at the time of the second 

shock on late-time self-similarity. Simulations in which the second shock arrived at scaled 

times of τ = 1, 3 and 6 were performed, where 𝜏𝜏 = 𝑡𝑡𝑊̇𝑊0\𝜆̅𝜆. At τ = 0, the interface was 

perturbed with a k-2 perturbation defined in the “θ-group collaboration”, which was also 

used as a baseline for comparison. Since both shocks traversed the interface from the heavy 

fluid to the light, the negative Atwood number associated with these interactions lead to a 

negative RM growth rate132, accompanied by phase reversal of the interface. However, 
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when the interface is already nonlinear at second shock, the phase reversal of leading 

bubble or spike structures can be hindered by the presence of lagging structures. This leads 

to collapse and breakup of such structures, which we term ‘shredding’ after a similar 

phenomenon observed in accel-decel-accel studies of the Rayleigh-Taylor instabilities. The 

outcome of shredding is a transition to small-scale structures, and a momentary increase in 

the atomic mixing (or decrease of b). The dynamics of shredding complicates the initial 

conditions for the post-second shock growth of the mixing layer, and deserves further 

analysis. In particular, a detailed modal analysis of the interface immediately before and 

following the second shock would be instructive.  

In spite of these uncertainties associated with the second shock initial conditions, we find 

the behavior of the late-time mixing layer to conform to self-similarity. The initial 

conditions appear to determine the initial linear growth rate, and the transition time to self-

similar behavior. However, at late-times all the simulations approach a growth exponent θ 

~ 0.25, similar to the original θ-group study. This is in contrast to earlier studies of the role 

of initial conditions on RT turbulence125, 161, which showed growth rates to retain their 

dependence on the initial perturbations through the self-similar stage.  

3. Spherical Implosions: To investigate the properties of variable density turbulence when 

it is distorted by geometric confinement, simulations of the spherical implosion problem 

defined by Youngs14 were performed using FLASH. To optimize the use of mesh 

resources, the transmitted shock is tracked using azimuthally-fused cells in the region near 

the origin (see Appendix A2). Since FLASH is an Eulerian code, the outer moving 

boundary driving the implosion was modeled by adding an extra layer of fictitious fluid 

with a prescribed pressure history. This creates a radial trajectory of the boundary between 



84 
 

the outer layer and the shell material. The interface of interest actually separates the shell 

from the inner fluid, and supports multimode perturbations in the simulations. Unperturbed 

simulations showed a convergence ratio of ~ 4, while the radial trajectory is affected by 

RM, variable-g RT as well as Bell-Plessett effects.  

Together, these effects constitute a variable drive with a complex acceleration history 

applied to the perturbed interface. The initial stages of the interface development are 

dominated by RM instability from the incident shock interaction. During this stage, bubble 

and spike growth is symmetric. As the interface approaches the origin, it is repeatedly 

reshocked by the reflected shocks, resulting in deceleration (with a variable g) and 

stagnation. During the deceleration, the interface is Rayleigh-Taylor unstable, leading to 

additional growth of the mixing layer. In addition, BP effects are observed due to spherical 

convergence and contribute significantly to the growth of the mixing layer. These effects 

create considerable stretching of the coherent structures within the mixing layer, as 

observed in the increase of b at late times. Similarly, cross-stream profiles of the 

components of the anisotropy tensor reveal significant levels of anisotropy within the late-

stage mixing layer. Such simulations provide a hydrodynamic baseline of implosion 

physics, that can be used in the validation of mix models that are used in multiphysics 

codes.  
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APPENDIX: NUMERICAL CONVERGENCE STUDY & CHARACTERISATION OF 

NUMERICAL VISCOSITY IN ILES CALCULATIONS 

 

A.1 Grid Resolution Convergence Study: 

In this section, we discuss the numerical convergence of the spherical implosion simulation 

results obtained in chapter 6. We note the highest resolution cases (256 zones and 512 

zones) are converged with respect to several quantities such as the mixing width δ(t) shown 

in Figure 6.9(a) and the product mixing widths ℘(t), shown in Figure 6.9(b), with the 

lowest resolution case (128 zones), as expected, showing some discrepancy. Similarly, in 

Figure 6.11, the TKE profiles are in reasonable agreement for the simulations with 256 and 

512 zones, while the lower resolution case is considerably different. We further 

demonstrate the 512 zone case presented here is converged by comparing with results from 

a simulation with 1024 zones in the figures below. (The 1024 zone simulation dataset is 

not included in chapter 6 results, but will be the focus of a separate paper).  

 
Figure A1 (a) Time histories of the radial locations of the 1% and 99% surfaces from 

simulations with 512 and 1024 zones respectively. (b) Time evolution of the mixing layer 

amplitude from simulations with 512 zones and 1024 zones respectively. 
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A.2 Study of the Effect of Fusing Mesh Cells near the Origin: 

As the transmitted shock approaches the origin point, an AMR mesh would mandate CFL 

numbers  0, thereby making the computations prohibitively expensive. We address this 

issue by azimuthally fusing the mesh cells near the origin, while maintaining sufficient 

radial resolution to resolve the shock. This strategy ensures the 1D radial shock continues 

to be adequately resolved, while avoiding additional computational overhead. Care is also 

taken to fused-mesh region is never breached by the turbulent mixing layer.  

We quantify the error from the fused mesh approach in figures A2 below. The maximum 

discrepancy between the local values of pressure between the two cases never exceeds 10% 

at any time. At all other times, the two cases are in excellent agreement as demonstrated in 

the series of figures below. In figs. A2 (a) – (e), we plot the radial profiles of pressure and 

density from simulations with local de-refinement and full resolution, and at times 

corresponding to the interface images in Figure 6.6 (a) – (b). In each of these images, the 

pressure and density profiles are in excellent agreement for the two. Further, we compare 

the time history of the unperturbed interface from the simulations with and without the 

local mesh de-refinement in figure A3. Both simulations are in excellent agreement with 

each other for Runperturbed(t).  
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 (a) (b)  

(c)   (d)  

(e)  

Figure A2 (a) – (e) Radial profiles of pressure and density at the times corresponding to 
figure 6.6 (a) – (e) in Chapter 6. 
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Figure A3 Time history of the location of the unperturbed interface from simulations with 
the full resolution and local mesh de-refinement. 

 

A.3 Characterization of Numerical Viscosity in ILES Calculations: 

The simulations presented here fall under the definition of Implicit Large Eddy Simulations 

(ILES), where the mixing between fluids is numerical. In these methods, small-scale 

dissipation is modeled numerically, thus eliminating the need for an explicit sub-grid filter 

with tunable coefficients. Such approaches have been widely used in the study of flows 

with sharp discontinuities and shocks, and have been considered desirable in such 

applications due to their monotonicity-preserving attributes. In contrast, the use of Direct 

Numerical Simulation (DNS) approaches would require the interfaces between fluids to be 

diffuse initially, to avoid oscillations.  

The following approach can be used to infer a numerical viscosity and effective Reynolds 

numbers from our ILES simulations. From the kinetic energy spectra, we determine the 

inner viscous length scale λν as the intersection point between the fiducials corresponding 

to the inertial and the dissipation ranges in figure 6.14. For τ = 1.44, we find kνR(t) ~ 220, 
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where kν = 2π/λν and R(t) is the location of the corresponding unperturbed interface. The 

outer length scale is given by δ ~ W(t), where W(t) is the amplitude of the turbulent mixing 

layer, so that the effective Reynolds number is obtained as 156-159 𝑅𝑅𝑅𝑅 =

�50 𝛿𝛿 λν
� �

4/3
~ 1.1𝑒𝑒4. A similar analysis conducted at τ = 0.95, yields kνR(t) ~ 410 and 

Re ~ 1.25e3. 
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