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ABSTRACT

Z1JING LIN. Evaluating the potential use of crowdsourced bicycle data for cycling
activities and safety analysis. (Under the direction of DR. WEI FAN)

Cycling, as a healthier and greener travel mode, has been encouraged for short-
distance trips by city planners and policymakers. Since cycling provides an efficient way
to improve public health, alleviate traffic congestion, and reduce energy consumption, it
is essential to analyze the contributing factors to the cycling activities on each roadway
segment and bicyclist injury risk, so as to quantify the impact of certain attributes on
bicycle volume as well as biking safety and further provide better cycling environment
for cycliststo encourage non-motorized travels.

To map ridership, data including network characteristics, sociodemographic
factors, and temporal characteristics, are quite indispensable. There have been multiple
bicycle volume data collection methods and the most commonly used ones include
traditional manual counts, travel surveys, and crowdsourced data from the third party.
Most of the previous research efforts used the first two methods mentioned above to
collect the data of interest. However, such methods are expensive and time-consuming.
Crowdsourced data, on the contrary, are cost effective and timesaving, and therefore they
have been widely collected and used by many public agencies and private sectors in
recent years. Among all the crowdsourced data, data collected from smartphone
applications including Strava, CycleTracks, ORcycle, etc. have become more and more
prevalent. Crowdsourcing has increased the availability of data collection and provided

an efficient way to bridge the data gap for decision making and performance measures.



This research concentrates on evaluating the potential use of crowdsourced bike
data and comparing them with the traditional bike counting data that are collected in the
city of Charlotte, NC. Using the bike data from both the Strava smartphone cycling
application and the bicycle count stations, the bicycle volume models are developed.
Based on the results, a bicycle volume predictive model is presented, and a map
illustrating the bicycle volume on most of the road segments in the City of Charlotte is
generated. In addition, to gain a better understanding of the attributes that have an impact
on cycling, other supporting data are also collected and combined with the Strava bicycle
count data. Multiple discrete choice models are developed to analyze the Strava users’
cycling activities. Furthermore, bicyclist injury risk analysis is also conducted to explore
the impact factors affecting biking safety by developing a series of safety performance
functions. Several indicators for model comparison are utilized to select the best fitting
model for bicyclist injury risk modeling. Finally, recommendations are made in order to
help improve the cycling environment and safety and increase the bicycle volume in the

future.
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CHAPTER 1: INTRODUCTION

1.1.  Problem Statementand Motivation

With the increase in traffic demand, cities all over the world begin to encourage
use of non-motorized travel modes, such as cycling, especially for short distance trips. It
has been well known that cycling is an efficient way to provide healthier and greener
travel which can help alleviate traffic congestion, reduce emissions, decrease energy
consumption, and improve public health. In a safe and comfortable traveling environment,
cycling will become a normal and common choice for travelers to get around, and in
return, the city will benefit from it to have healthier and more energetic population.

According to the Charlotte Department of Transportation (CDOT) Bicycle
Program (CDOT, 2017), Charlotte is making every effort to offer an inclusive and
comfortable cycling environment for all potential bicyclists. The program provides
people of all ages and abilities the convenience to use their bicycles for traveling, fitness,
and fun. Therefore, studies on identifying what attributes might have an impact on
cycling are highly desirable and even become essential for city planners, policymakers,
and researchers.

Charlotte has been taking significant steps to become a bicycle-friendly city
during the past fifteen years. A comprehensive bicycle plan has been adopted, and
changes to the policies have been made that lead to changes on the ground for bicyclists.
The first mile of bicycle lanes was constructed in 2001. With the changes in bicycle plans
and policies, the bike network in Charlotte has increased to contain more than 90 miles of
bicycle lanes, 40 miles of greenways and off-street paths, and 55 miles of signed routes

(CDOQT, 2017). According to a cycling survey conducted by CDOT (2017), 51% of the



residents in Charlotte would be willing to travel by bike more than they currently do.
However, a majority of 62% of the respondents in this survey do not think it is easy to
bicycle in Charlotte. This survey results clearly indicate that there is still a lot to do in
order to improve cycling conditions in Charlotte. In addition, cyclists in the United States,
compared to other developed countries, have a higher probability to suffer from fatal
injuries (Pucher and Dijkstra, 2003). Based on the North Carolina Crash Data, 11,266
crashes were cyclist-involved crashes from 2007 to 2018, of which 250 cyclists were
fatally injured. It is clearly indicated that exploring the impact factors on cyclist injury
and conducting injury risk analysis are meaningful and essential. It is expected that, when
the cycling environment is properly improved, more travelers will choose cycling as their
travel mode.

To evaluate the factors that affect cycling activities on road segments and analyze
bicyclist injury risk, data including network characteristics, sociodemographic
information, location-specific elements, temporal factors, crash records and bicycle
counts are essential. There have been multiple data collection methods and the most
commonly used ones include traditional manual counts, travel surveys, and crowdsourced
data from a third party. Most of the previous research efforts used the first two methods
to collect the data of interest. However, such methods are expensive and time-consuming.
Crowdsourced data, on the contrary, are cost effective and timesaving, and therefore have
been widely collected and used by many public agencies and private sectors in recent
years. Among all the crowdsourced data, data collected from smartphone applications

including Strava, CycleTracks, and ORcycle, etc. have become more and more prevalent.



Crowdsourcing has increased the availability of data collection and provided an efficient
way to bridge the data gap for decision making and performance measures.

As an advanced data collection method, crowdsourcing enables practitioners and
scholars to collect data from a broader range of people in a shorter and more cost-
efficient way. This method was first introduced by Howe (2006) in his “The Rise of
Crowdsourcing” article. Crowdsourced data can greatly help planners develop models,
analyze the travel behavior, estimate the traffic demand, evaluate bike facilities, and
explain road traffic safety such as collisions. Different research efforts have been made
with different definitions for crowdsourcing. According to Brabham (2008),
crowdsourcing is “a strategic model to attract an interested, motivated crowd of
individuals capable of providing solutions superior in quality and quantity to those that
even traditional forms of business can.”

Crowadsourcing is especially helpful and beneficial to transportation planning and
management. It offers shared platforms and systems to invite a large amount of interested
crowds to address common problems that influence them all. Recently, crowdsourcing
techniques have developed rapidly. Some studies regarding its use in transportation have
shown its tremendous potential in enhancing or taking the place of the traditional data
collection methods. Since crowdsourcing has many advantages in data collection, it is
leveraged in this research study.

With the availability of crowdsourced data, many models have been developed,
such as linear regression models, ordered logit models, ordered probit models, (expanded)
path size logit models, recursive models, C-logit models, and safety performance

functions. These models can be applied to analyze the bicycle travels in terms of bicycle



volume estimation, bicyclist cycling behavior analysis, bicycle safety assessment and
other topics including air pollution exposure studies, bicycle level of service evaluation
and bicycling comfort analyses. To conduct these research studies, crowdsourced data are
not sufficient. Other data including road characteristics, demographic features,
geographic factors, temporal information, air pollution measures, and bicyclist involved
crash records, etc. are needed to be compiled and integrated. In the data fusion process,
software such as ArcGIS, SAS, SPSS, or R can be used to accomplish the task of data
processing.

This research is intended to systematically develop bicycle volume prediction
models, model cycling activities, and conduct bicyclist injury risk analysis with safety
performance functions. Crowdsourced bicycle data from the Strava smartphone
application are collected and combined with other relevant data (including NC road
characteristics data, demographic data, slope data, manual count data from continuous
count stations in Charlotte, temporal data, and bicycle facility data). Data comparison is
conducted to demonstrate the difference between manual count data and Strava’s bicycle
count data. Data processing and combination procedures are completed using ArcGIS and
SAS. Based on the combined data, two linear regression models are developed. The
relationship between manual count data and Strava data as well as other relevant data is
built. Bicycle volume on most of the road segments in the City of Charlotte is predicted
using the developed model. A bicycle ridership map is created to display a graphical
representation of the bicycle counts. In addition, a series of discrete choice models are
developed to analyze the Strava users’ cycling activities in the City of Charlotte. The

bicyclist injury risk analysis is conducted based on the validated bicycle volume. Finally,



the conclusion is made to summarize the whole study, and directions for future research
are also provided.
1.2.  Study Objectives

The objective of this research is to evaluate and utilize the potential use of
crowdsourced bicycle data in Charlotte to develop bicycle volume prediction models,
model cycling activities, and conduct injury risk analysis with safety performance
functions, as well as to map bicycle ridership and analyze biking safety influence. The
detailed objectivesare listed as follows:

1. To compile bicycle data from all the available sources including Strava data,
bicycle manual count data, NC road characteristics data, demographic data, slope
data, temporal data, bicycle facility data, and bicyclist involved crash records as
preparation of the follow-up work;

2. To combine all the collected data using ArcGIS and SAS for model estimation;

3. To develop bicycle volume prediction models based on the combined data;

4. To calculate the predicted bicycle volume based on the developed models, and
generate a bicycle ridership map for most of the road segments in the City of
Charlotte;

5. To develop discrete choice models to explore the impact of different variables on
Strava bicycle count in the city of Charlotte;

6. To develop safety performance functions based on bicycle volume for bicyclist

safety analysis.



1.3.  Expected Contributions

To provide a better cycling environment and encourage more potential bicyclists
to bike in the City of Charlotte, models need to be developed to analyze the factors that
affect bicycle volume on each roadway segment. Prediction of the bicycle volume on
most of the roadway segments in the City of Charlotte should be conducted and used to
provide guidance for the bicycle facility construction and improvement in the future. The
impacts of biking safety need to be analyzed. Along that line, the expected contributions
of this research are summarized as follows:

1. Present a systematic method for developing models to analyze the relationship
between bicycle manual count data and Strava’s bicycle count data that can be
applied to other regions;

2. Generate a bicycle ridership map in the City of Charlotte to give an overview of
the predicted bicycle volume that can be used as a reference for future bicycle
facility construction/ improvement;

3. Develop discrete choice models to analyze the factors contributing to Strava
bicycle counts in the City of Charlotte. Based on the model estimation results, the
factors that have a positive impact on bicycle volume can be identified and used
as the basis for bicycle policy recommendation;

4. Provide a method to develop safety performance functions for bicyclist injury risk
analysis and mapping bicycle-vehicle crashes.

1.4.  Research Overview
The research structure is organized as follows and Figure 1.1 will illustrate the

whole research contents in summary.



In Chapter 1, the background of this research study is introduced, and the
motivation of modeling cycling activities and conducting safety analysis are discussed. In
addition, the objectives and expected contributions are described and presented in this
chapter.

Chapter 2 provides a comprehensive review of the state-of-the-art and state-of-
the-practice on the potential use of crowdsourced bicycle data. The data collection
methods utilized for relevant research studies including crowdsourcing and other
traditional data collection methods are summarized. Representative smartphone
applications for crowdsourcing are presented and their use for different aspects of
research is discussed. Methods for bicycle volume estimation and prediction, and
bicyclistinjury risk analysis are summarized.

Chapter 3 gives an overview of the collected data and conducts a descriptive
analysis based on the data collected from Strava smartphone application in terms of users’
demographics, different trip purposes, and Strava counts for different times of day,
weekdays and weekends, months of year, and trip purposes. A simple data comparison
between bicycle counts collecting from manual count stations and Strava application is
provided. In addition, other supporting data are introduced in this chapter as well.

Chapter 4 presents a method for data processing and develops two linear
regression models to analyze the relationship between bicycle manual count data and
Strava data as well as other relevant attributes. The bicycle volume on most road
segments in the City of Charlotte is predicted using the developed model. A bicycle

ridershipmap is also created to display a graphical representation of the bicycle counts.



Chapter 5 develops a series of discrete choice models for conducting the analysis
of impacts on cycling activities. In addition, the model comparison is conducted based on
several indexes, and the best-fit model is also identified.

Chapter 6 provides a method to develop safety performance functions for bicyclist
injury risk analysis. The method is based on the bicycle volume from previous chapter
and other factors including bicycle facilities, annual average daily traffic (AADT), road
characteristics, and the presence of bus stops. The indicators for model comparison are
utilized to identify the best-fit model for bicyclist injury risk analysis.

Chapter 7 concludes this research with a summary of the methods for modeling
cycling activities and conducting bicyclist injury risk analysis, and a discussion of the

directions for future research.
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CHAPTER 2: LITERATURE REVIEW

2.1.  Introduction

This chapter presents a comprehensive literature review of current state-of-the-art
and state-of-the-practice of relevant non-motorized transportation research studies,
especially bicycle volume estimation and prediction, its impacts on bicycle activity, and
bicyclist injury risk analysis. This literature review also summarizes the data utilized for
the research studies, methods applied for bicycle volume estimation, prediction, and
injury risk analysis and results concluded from previous and ongoing research.

The remainder of this chapter is structured as follows. Section 2.2 introduces
different types of data collection methods such as crowdsourcing, open data, big data, and
other traditional data collection ones including travel survey and count data. Section 2.3
summarizes the most prevalent smartphone crowdsourcing applications (e.g.,
CycleTracks, Cycle Atlanta, Mon Ré&oVé@o, Strava, and ORcycle) and their use in
different research aspects. Section 2.4 details the bicycle volume estimation and
prediction methods based on both traditional data collection methods and crowdsourcing.
Section 2.5 presents the approach to bicyclist injury risk analysis based on different types
of data. Finally, section 2.6 concludes this chapter with a summary.

2.2.  Data Collection

This section summarizes both the advanced and traditional data collection

methods utilized for relevant research studies. An introduction to each type of data and

the advantages and disadvantages of novel data and traditional data are provided.
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2.2.1. Crowdsourcing

Crowdsourcing is an innovative sourcing model which brings new developments
to data collection and the data-driven research studies. Crowdsourcing techniques have
evolved rapidly since they emerged approximately ten years ago. Crowdsourcing was
first introduced by Howe (2006) in “The Rise of Crowdsourcing”, which was published
in Wired Magazine in 2006 and was defined as follows:

“Crowdsourcing represents the act of a company or institution taking a function
once performed by employees and outsourcing it to an undefined (and generally large)
network of people in the form of an open call. This can take the form of peer-production
(when the job is performed collaboratively) but is also often undertaken by sole
individuals. The crucial prerequisite is the use of the open call format and the large
network of potential laborers.” (Howe, 2006)

“Crowdsourcing is the act of taking a job traditionally performed by a designated
agent (usually an employee) and outsourcing it to an undefined, generally large group of
people in the form of an open call.” (Howe, 2008)

Crowdsourcing is a mixture of two components which are crowd and outsourcing.
Based on the definition of crowdsourcing provided by Howe (2006), numerous scholars
have been interested in the new concept of data collection method. Different definitions
have emerged based on their understanding of crowdsourcing. According to Brabham
(2008), crowdsourcing is “a strategic model to attract an interested, motivated crowd of
individuals capable of providing solutions superior in quality and quantity to those that
even traditional forms of business can”. Later in Brabham’s (2013) book, crowdsourcing

was defined as “an online, distributed problem-solving and production model that
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leverages the collective intelligence of online communities to serve specific
organizational goals”. Vukovic (2009) defined crowdsourcing as “a new online
distributed problem-solving and production model in which networked people collaborate
to complete a task”. Instead of interpreting crowdsourcing as a model that solves the
problems of the crowd through an online platform, Chanal and CaronFasan (2008)
defined crowdsourcing as “the opening of the innovation process of a firm to integrate
numerous and disseminated outside competencies through web facilities”. Kleeman et al.
(2008) found that the spirit of crowdsourcing is the intentional mobilization. The authors
defined crowdsourcing as “a form of the integration of users or consumers in internal
processes of value creation”. To explain it simply, La Vecchia and Cisternino (2010)
describe crowdsourcing as “a tool for addressing problems in organizations and business”.

With the development of crowdsourcing, researchers have analyzed various
definitions of crowdsourcing from different articles/papers to find out the features and
common elements. Estellé&-Arolas and Gonzdez-Ladr&-De-Guevara (2012) reviewed
and summarized the studies on crowdsourcing in terms of the information about the
crowd and crowdsourcer, the tasks need to be conducted by the crowd, the benefit for the
crowd and crowdsourcer, and the process of crowdsourcing. A definition of
crowdsourcing integrated using the critical elements extracted from the previous
literature was created which defined crowdsourcing as “a type of participative online
activity in which an individual, an institution, a non-profit organization, or company
proposes to a group of individuals of varying knowledge, heterogeneity, and number, via
a flexible open call, the voluntary undertaking of a task” (Arolas and Gonzdez-Ladrn-

De-Guevara, 2012). Other analysis as well as the summary of crowdsourcing can be
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found in (Swieszczak and Swieszczak, 2016, Estellés-Arolas, Navarro-Giner, and
Gonzdez-Ladrdn-de-Guevara, 2015, Hosseini et al., 2014).

To summarize, most of the crowdsourcing definitions contain three main features
which are the crowd itself, the outsourcing procedure, and an internet-based platform
(Saxton, 2013). It can be interpreted that crowdsourcing implied that individuals
participate voluntarily to achieve the task which would tend to motivate both the experts
and the individuals to find solutions to the tasks (Schenk, 2011). Table 2.1 presents a
summary of the definitions of crowdsourcing in chronological order.

Table 2.1: Summary of Crowdsourcing Definitions

Author Year Definition

Howe 2006 “The act of a company or institution taking a function once performed by
employeesand outsourcing it to an undefined (and generally large) network of
people in the form of an open call.”

Brabham 2008 “A strategic model to attract an interested, motivated crowd of individuals

capable of providing solutions superior in quality and quantity to those that
even traditional forms of business can.”

Chanal and 2008 “The opening of the innovation process of a firm to integrate numerous and
CaronFasan disseminated outside competencies through web facilities.”
Howe 2008 “The actof takinga job traditionally performed by a designated agent (usually

an employee) and outsourcing it to an undefined, generally large group of
people in the form of an open call.”

Kleeman et al. 2008 “A form of the integration of usersor consumers in internal processes of value
creation.”
Vukovic 2009 “Anew onlinedistributed problem-solving and production model in which

networked people collaborate to complete a task.”

La Vecchiaand 2010 “Atool foraddressing problems in organizations and business.”
Cisternino

Brabham 2013  “Anonline, distributed problem-solving and production model that leverages
the collective intelligence of online communities to serve specific
organizational goals.”

With the development of crowdsourcing, it has brought improvement and benefit
in data collection. This type of innovative data collection method shows its potential to
augment the traditional data collection methods. Recently, Misra et al. (2014) studied

how crowdsourcing was applied in transportation research area. In addition, as the
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number of GPS-enabled smartphones increases, crowdsourcing with smartphones
(Chatzimilioudis et al., 2012) sees more possibilities in transportation related research
studies. A comprehensive summary of the existing smartphone applications utilized for
different aspects of transportation research will be provided in the following section.
2.2.2. Open Data

Open data is another critical type of data that researchers might use for their
studies. It can be easy to interpret that open data is open for anyone to use freely, and to
reuse or redistribute it flexibly (Kitchin, 2014). In other words, an open data format
should be “platform independent, machine readable, and made available to the public
without restrictions that would impede the re-use of that information” (Attard et al.,
2015). Therefore, open data should be available for anyone with no additional restrictions
or limitations.

Most of the open data are provided by institutions or local government. The
government-related data is also called open government data which is a specific type of
open data (Kucera et al., 2013). This type of data is provided by the government and is
released openly to the public which usually contains public transportation information,
crash records, population, infrastructure, and land use, etc.

2.2.3. Big Data

Big data is a general type of data that refers to large volumes of data from various
sources that need to be cleaned and pre-processed before being utilized for research
studies (McAfee et al., 2012). The primary attributes of big data are the ‘3Vs’ which are
volume (representing the size of the data), velocity (indicating the speed of the data

collection or generation), and variety (referring to a synthetic range of sources) (Laney,
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2001). Besides these three Vs, other researchers (Kitchin, 2014) have added other
attributes to define big data including veracity demonstrating the quality of the data.

However, most of the big data utilizing in the transportation research area are
under the “volume” feature, since the data sources of a large number of data are from a
single application, internet platform or data provider. In the transportation research area,
the expansion and development of the smart card system for transit in several major cities
(Pelletier et al., 2011), the increasing popularity of smartphone applications, the
availability of GPS devices, and the broad range of online information (Romanillos et al.,
2016) have made great contribution to the development of big data.

2.2.4. Traditional Data Collection Methods

Traditional traffic data collection methods are the basic approach for data
extraction which may not be replaced by some of the advanced data collection methods,
since traditional data can provide accurate and useful information for relevant
transportation research studies. Basically, there are two categories of traditional data
collection methods which are data collected from traffic counting equipment and
differentkinds of travel surveys.

The commonly used traffic counting equipment include piezo-electric sensors,
inductive loops, microwave, radar, video image detection, and manual observation, etc.
(Skszek, 2001). Using the equipment to collect data may cost a lot for installation and
may be time consuming during the whole time of the collection process.

The travel survey method can be divided into two categories which are web-based
and paper-based travel surveys. The most well-known traditional travel survey is the

household survey (Kagerbauer et al. 2015). Information relevant to their travel patterns
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are collected through questionnaires. The process of filling out paper-based surveys and
selecting useful and suitable answers usually takes a lot of time. The web-based travel
surveys, on the other hand, are utilized later with smart filter management features.
However, bias and other issues associated with this type of travel survey cannot be
addressed and neglected. One of the problems with data collected from travel surveys
may come from the respondents. Since young participants are able to get access to the
internet more easily compared to old respondents, the proportion of young respondents
might be higher than older ones. In addition, not all the questionnaires can be collected
back, as the receiving rate can be lower than travel surveys conducted in person. Other
traditional transportation survey methods such as workplace surveys, longitudinal and
panel surveys, transit on-board ridership surveys, commercial vehicle (truck) surveys and
external station surveys, usually have similar disadvantages.

From another perspective, travel surveys can be divided as two categories, which
are stated preference surveys (i.e., SP surveys) and revealed preference surveys (i.e., RP
surveys) (Guan, 2004). The SP survey is to receive decision-making results of the
respondents in terms of certain different conditions. And the RP survey refers to the
survey of completed selective behavior. The differences between these two kinds of
travel survey are: (1) the questions of SP survey usually contain the investigation content
which has not really occurred yet or is intentionally designed for the specific research
topics, while the RP survey is a questionnaire regarding investigation questions which
has already taken place; (2) the scenario in SP survey can be designed flexibly with
assumed values of choices and attributes that are needed for the research studies, while

the results of choices and choice conditions in the RP survey are based on actual travel
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choice behavior. According to the features of these two types of surveys, the advantages
of them are revealed. SP surveys are able to arbitrarily design the questionnaires and the
corresponding scenarios for the future conditions which will benefit transportation
planning and design especially for upcoming constructions and establishments. RP
surveys are able to show the results or phenomenon hidden in each individual’s choice
which reflects the contribution of the impact factors and how individuals value these
factors.

To summarize the traditional data collection methods, Figure 2.1 shows a clear

structure of the traditional data collection methods mentioned in this section.
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2.3.  Smartphone Crowdsourcing Applications

As mentioned in Section 2.2.1, there are numerous forms of crowdsourcing.
Based on the literature review on bicycle-related research utilizing crowdsourced data,
smartphone crowdsourcing applications are most prevalent for this innovative data
collection method. There are multiple smartphone crowdsourcing applications that have
been utilized for relevant research studies. This section provides a comprehensive
summary of the cycling applications and their use to conduct different aspects of research
studies.
2.3.1. CycleTracks

The CycleTracks application is the first smartphone crowdsourcing application
developed for collecting crowdsourced bicycle data for bicycle-related research studies
(Blanc et al., 2016). It was designed by the San Francisco County Transportation
Authority (SFCTA) in 2009 to utilize the built-in GPS in smartphones to collect cycling
information and users space trajectories. In addition, some of the users’ demographic
information can be collected (users optional answers to the demographic questions) to
analyze the distinctive individual attributes for cycling behavior. The reported
demographic information can be gender, age, home zip code, commute locations, and the
frequency of cycling activities, etc. The comments field is provided for users to report
their cycling trip purposes (e.g., commute, non-commute, recreational, exercise, shopping,
school, work, social, etc.) during each trip (SFCTA, 2013). This information is also
optionallyfilled in by CycleTracks users (Charlton et al., 2011).

Most of the studies used CycleTracks to analyze cyclists cycling behavior.

Charlton et al. (2011) collected the cycling data from CycleTracks from November 12,
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2009 to April 18, 2010 to analyze these cyclists’ route choice in San Francisco. A total of
7,096 cycling trips generated by 1,083 cyclists were collected and selected as the chosen
routes in the modeling procedure. A doubly-stochastic choice set generation method was
utilized for modeling cyclists’ route choice. The impacts of the length of the route, turns
per mile, proportion of the route on wrong-way links, proportion on bike paths, bike lanes,
and bike routes, infrequent cyclists, and average up-slope were considered in the path
size multinomial logit model (Hood et al., 2011). Results revealed that the length of the
route, turns per mile, proportion of route on wrong-way links, and average up-slope
affected the cyclist’s route choice negatively, while other explanatory variables had
positive impacts on route choice.

Chen and Shen (2016) collected data from CycleTracks to analyze the impacts of
road characteristics and land use on cyclists’ route choice. Labeling route approach and
the K-shortest mean approach were utilized to create the route choice set to conduct the
cyclist route choice analysis. A path size logit model was developed, and results were
concluded that cyclists selected their cycling routes based on the consideration of utility,
cycling safety, and suitability. Subsequently, Chen et al. (2018) explored the influences
of built environment on cyclist route choice based on the same dataset. Another
comprehensive discrete choice model (i.e., path-size-based mixed logit model) was
developed in this research study.

As the first application developed for cycling studies, researchers have compared
this dataset with other data sources including traditional count data and data collected
from other smartphone applications. Griffin and Jiao (2019) compared CycleTracks with

traditional count data from five selected locations in Austin, Texas, and data provided by
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Strava fitness application. The relationship between CycleTracks and count data, and the
relationship between Strava and count data were examined utilizing ordinary least
squares regression. In addition, spatial autocorrelation was also evaluated with
OpenGeoDa software.

Based on the first smartphone crowdsourcing applications, other applications
designed for cycling including AggieTracks, Cycle Atlanta, Mon Ré&oVéo, RenoTracks,
CyclePhilly, Toronto Cycling App, ORcycle, CycleSac, and C-Vill Bike mAPP, etc. were
developed subsequently (Blanc et al., 2016). Some of the applications that were utilized
for bicycle-related research studies are introduced in detail as follows.

2.3.2. AggieTracks

As mentioned in the previous section, AggieTracks was developed based on the
open source code of CycleTracks by Texas A&M University to collect the cycling
information on the users in the university area (Hudson et al. 2012). Travel purposes were
collected after the cycling trips by filling the corresponding questions optionally.
Classifications (e.g., student, faculty, or staff) were asked to be identified by the
AggieTracks users. Additional information such as users’ living locations (on campus or
not) and the car ownership was also collected. Since this application was developed to
track cycling patterns within the university area, few research studies choose to utilize
this data source.

2.3.3. Cycle Atlanta

Similar to AggieTracks, Cycle Atlanta was developed based on the open source

code of CycleTracks application by the Georgia Tech research team (Figliozzi and Blanc,

2015). In addition to the cycling route data, Cycle Atlanta can collect other information,
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such as demographic information including gender, email, age, ethnicity, income, zip
codes of home, school, or workplace, etc., and selection information including issues
(e.g., pavement issue, traffic signal issue, bicycle lane design issue, enforcement request,
bicycle parking request, and custom entry) and amenities (e.g., water fountains, bike
parking facilities, bike shops, and public restrooms).

Like other data collected from smartphone applications, cycling information data
extracted from Cycle Atlanta were compared with other types of cycling data including
manual count data as well as data from other applications. Watkins et al. (2016)
conducted a study to compare data collected from Cycle Atlanta and Strava in terms of
demographic data, cycling trip information, time of day, and different road segments to
examine the ability of GPS data from smartphone applications for mapping cyclist
ridership. In addition, manual count data were compared with data from Cycle Atlanta to
investigate the proportion of Cycle Atlanta users to the total cyclists.

Later on, Cycle Atlanta data were utilized for route choice modeling, street
segment choice, evaluating bicycle level of service (BLOS), and measuring level of
traffic stress (LTS). In a USDOT final report named “Using Crowdsourcing to Prioritize
Bicycle Route Network Improvements”, LaMondia and Watkins (2017) conducted a
research study on calculating BLOS, measuring LTS, modeling bicyclist route choice,
and route segment choice using data collected from three smartphone applications which
were Strava, CycleDixie and Cycle Atlanta. An ordinal logistic regression model was
developed to analyze the route segment choice of Cycle Atlanta users. Explanatory
variables including roadway characteristics, access groups, and socio-demographic

accessibility were included in the model. To analyze the willingness of a bicyclist to



23

choose a detour over the shortest route, a binary logistic choice model was developed
based on the alternative choice (i.e., shortest route) created by the A-star algorithm.

In addition, different perspectives of bicyclist route choice modeling research
studies were conducted. Misra and Watkins (2018) investigated the differences of
bicyclist route choice between different genders and age groups. Multiple path size logit
models were developed for different segmentations in terms of age and gender. Also, a
pooled path size logit model based on the entire Cycle Atlanta cycling data were
developed for comparison. Results revealed that traffic characteristics including annual
average daily traffic (AADT) and speed might affect the cyclist route choice differently
for different genders and ages of cyclists.

2.3.4. Cycle Lane

Cycle Lane is another smartphone application that is built on the code developed
for CycleTracks (Roll, 2014). In order to collect the bicycle trip information, Central
Lane Metropolitan Planning Organization (CLMPO) developed this Cycle Lane
application in 2011. Demographic information (including age and gender) on the cyclists
using this application can be collected through questions that are asked to fill out in the
application. Additional information such as the frequency of riding is also collected
before cycling.

Zimmermann et al. (2017) modeled the bicyclist route choice using the Cycle
Lane data to analyze the trade-offs that cyclists made while selecting cycling routes.
Zimmermann et al. developed a recursive logit model for the bicyclist route choice
modeling since this type of link-based route choice model does not require one to

generate route choice sets compared to the path-based models such as path size logit
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model. According to the results concluded, this recursive logit model may save a lot of
computational time.
2.3.5. Mon Ré&oVédo

Mon Ré&oVédo is also a smartphone application for collecting bicyclist route
information in the City of Montreal based on CycleTracks as well as Cycle Atlanta.
Cycling trip information including travel distance, travel time, cycling route are collected.
In addition, socio-demographic information and other attributes of the cyclists using this
application are obtained through an anonymous questionnaire. Different from the two
applications that Mon Ré&oVé&o was built on, this application adds an emission tool and a
calorie calculator, which is a new development for the smartphone crowdsourcing
application for cycling (Jackson et al., 2014).

Based on the GPS cycling trip data from Mon Ré&oV@o, deceleration rates at
intersections and on road segments were extracted by Strauss et al. (2017) to explore the
relationship between the deceleration rate (DR) and the number of injuries. The site
ranking based on the deceleration rate and the expected injury number were compared
utilizing Spearman’s rank correlation coefficient.

In addition, with the benefit of this innovative smartphone application, many
other research studies were conducted based on the data extracted from Mon Ré&oVéo.
Strauss and Miranda-Moreno (2017) utilized the GPS cycling data from Mon R&oVéo
to identify the performance measures in terms of delay, speed, and travel time on road
segments and at intersections in the whole city network on the island of Montreal. To
examine the impacts of geometric design and built environment on cycling speed on each

road segment, a linear regression model was adopted. The model results demonstrated
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that cycling speeds were higher along arterials than on local streets, and cyclists biked
faster on road segments with bicycle infrastructure. Furthermore, impact factors including
geometry characteristics, built environment features, travel purposes, peak hours were
found to affect the cycling speed significantly.
2.3.6. RenoTracks

RenoTracks is a smartphone application that builds based on Cycle Atlanta.
Therefore, all features were included in RenoTracks since CycleTracks. Similar functions
can be provided in this application including recording cycling information, collecting
travel distance, calculating travel speed, reporting issues, and collecting demographic
data from cyclists, etc. (RenoTracks 2013). In addition to these features adopted from the
previous smartphone crowdsourcing applications, RenoTracks created a customized user
interface as well as a “CO, Saved” calculator to compute the CO, that could be saved
compared to traveling by automobile.
2.3.7. ORcycle

Portland State University and Oregon Department of Transportation developed a
ORcycle based on the code for CycleTracks to collect cycling information from the
application users. This application was released for both Android and iOS platforms in
November 2014. Using this application, cycling data included bicycle trip trajectories,
user information, infrastructure issues, and crashes.

Therefore, with the help of ORcycle, useful data can be collected to design and
upgrade better bicycle facilities and analyze the impacts on cyclists’ comfort levels.
Blanc and Figliozzi (2016) leveraged ORcycle application to collect data for cyclists’

comfort level modeling. Factors including bicycle facilities, sources of stress associated
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with the cycling routes, travel purposes, distance, cycling frequency, and temporal
characteristics were considered in the model. Ordinal logistic regression models were
developed to examine the influence on cyclists’ comfort levels. Based on the model
results, bicycle boulevards, separated cycling paths, sources of stress associated with the
cycling routes, trip purposes, and cycling distance were found to affect cyclists’ comfort
levels significantly.

ORcycle data can also be utilized for safety analysis. Blanc and Figliozzi (2017)
investigated the impact factors on the urgency of a perceived potential safety issue. Based
on the statistical models, application users are usually reliable for the reported urgency of
safety issue and the infrastructure problems. The factors affected safety urgency and type
include user gender and income levels, traffic volumes, speed, and waiting times at
signalized intersections.

2.3.8. MapMyRide

MapMyRide is a sub-application of MapMyFitness, which is created to get the
most from the users’ bike ride and track their cycling trips especially for recreational
travel purposes. This application allows users from worldwide to plan their cycling route,
track their GPS trajectories, share links with others, and provide user information.
Cyclists using MapMyRide can view others’ cycling route through this application to
follow the popular cycling routes for comfortable and challenging activities. In addition
to the smartphone application, MapMyRide also provides a web version which can
present and summarize the statistics and the ridership of the users’ cycling trips (Figliozzi

and Blanc, 2015).
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As a smartphone application that can collect cycling data from the entire United
States, MapMyRide provides data for physical activity patterns investigation. Hirsch et al.
(2014) utilized data collected from MapMyFitness to analyze the users’ physical activity
patterns. It was concluded that this set of applications is a critical and useful platform to
explore travel patterns within large geographic and temporal scales.

2.3.9. Strava

Strava is the one of the best cycling applications for 2019 especially for tracking
recreational cycling trips in large cities (Best cycling apps, 2019). Similar to MapMyRide,
Strava allows users to track their cycling routes through the GPS-enabled smartphone and
view and share the trip trajectories afterwards via website or application. Summary
statistics including travel speed, trip distance, activity time, and other cycling route
information are provided and displayed. The unique features that Strava has are the
ability to track cycling performance of multiple cyclists on the same segment which
enables Strava users to compete with each other for the least segment time, highest speed,
etc. This particular functionality attracts numerous cyclists worldwide to use this
smartphone application for recording their cycling trips which provides Strava a large
dataset in extensive geographic and temporal scales.

With the large dataset, Strava has become one of the most prevalent smartphone
applications to collect cycling information from a variety of users. Multiple bicycle-
related research studies in different aspects were conducted based on Strava data.

Sun and Mobasheri (2017) utilized Strava data to analyze the spatial patterns of
cycling activities for different travel purposes and air pollution exposure in a large spatial

scale. The improved Multidirectional Optimum Ecotope-Based algorithm was utilized to
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identify the clusters associated with high non-commuting rate. Ordinary least squares,
support vector machine, random forest, and multilayer perceptron neutral network
methods were used to analyze the Strava users’ non-commuting cycling activities.
Results were found that more non-commuting cycling trips occurred in the outskirts of
the city. In addition, bicyclists biking for commuting were found to have a higher
probability to suffer from more severe air pollution.

Other research studies conducted based on Strava data include non-motorized
transport planning (Selala and Musakwa, 2016), cycling patterns and trends (Musakwa
and Selala, 2016), cycling behavior (Sun et al, 2017), bicycle trip volume (Hochmair et
al., 2019), etc.

To summarize the literature reviewed in this Section 2.3 regarding the summaries
of smartphone crowdsourcing applications developed for cycling information collection
and research studies based on the data extracted from the smartphone applications, two

tables are presented as follows.
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2.4.  Bicycle Volume

This section reviews the research studies regarding different methods of bicycle
volume estimation and prediction based on different types of data (obtained from both
traditional data collection methods and crowdsourcing). The potential impact factors that
might affect bicycle volume or cycling activities significantly are summarized through
the review of the state-of-the-art and the state-of-the-practice.

2.4.1. Research Based on Traditional Data Collection Methods

Although crowdsourcing is an innovative data collection method, the importance
of traditional data collection methods cannot be neglected. Manual count data and
automated counting data are the basic traditional data collected for annual average daily
traffic (AADT) estimation. Many research studies are conducted based on this kind of
data.

To synthesize the approach to estimating AADT with non-motorized traffic
monitoring, Lu et al. (2017) utilized three types of automated counters including
pneumatic tube, radio beam, and passive infrared to collect long-term counts, and
collected manual counts for short duration. A strong correlation was found between these
two types of data. NB models were developed for each site to estimate bicycle and
pedestrian volume. In addition, to estimate annual average daily traffic, day of year
scaling factors were applied for both non-motorized traffic counts. The volume of
bicycles and pedestrians were found to be positively affected by street functional class,
certain facilities for bicyclists and pedestrians, and proximity to campus.

Chen et al. (2017) investigated the impacts of built environment explanatory

variables on bicycle volume. A dataset of five-year bicycle volume in Seattle,
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Washington was utilized to develop a generalized linear mixed model (GLMM) assumed
to follow a Poisson distribution in order to model the variation of bicycle counts over
time. Model results indicated that exploratory variables including temporal characteristics
such as weekends and peak hours, bicycle facilities, non-winter seasons, employment
density were likely to affect bicycle volume positively. Lower bicycle volume was
associated with steep areas, while areas with more mixed land use, water bodies, and
workplaces were found to be high bicycle volume locations.

Miranda-Moreno et al. (2013) classified the bicycle volume data collected from
38 sites in five North American cities into four categories including recreational, mixed
recreational, mixed utilitarian, and utilitarian. The variation of bicycle volume in terms of
different times of day, days of week, months, and seasons was analyzed using
standardized hourly, daily, and monthly indexes, as well as traffic distribution indexes.

Esawey (2014) conducted a research study on estimating AADB with daily
adjustment factors (DAFs) and monthly adjustment factors (MAFs). Bicycle count data
collected from 12 permanent counting stations in VVancouver were utilized for adjustment
factor calculation. Subsequently, the calculated factors were used to estimate annual
average daily bicycle counts at other counting stations.

The standard K factor is another type of adjustment factor using for bicycle
volume estimation and calculation. Esawey and Mosa (2015) developed the standard K
factors (i.e., Kp/d and Kp/AADB) and provided an example of AADB calculation using
the developed standard K factors. Furthermore, the estimation accuracy based on the K

factors was examined.
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To address the issue of missing bicycle count data at counting stations, Esawey et
al. (2015) developed an innovative model called autoencoder neural network to fill in
data gaps and estimate missing daily bicycle volume using available data from nearby
and at the same location. The model parameters that might influence the estimation
accuracy were assessed and the sensitivity analysis was conducted.

Considering the impacts of weather and seasonal factors, Schmiedeskamp and
Zhao (2016) investigated the relationship between these factors and bicycle volume based
on the automated bicycle counts collected from Seattle, Washington. A NB model was
developed, and counterfactual simulation was used to estimate quantities of interest.
Model results demonstrated that variables including season, holidays, day of week,
temperature, and precipitation might affect the bicycle volume significantly.

Similarly, Lewin (2011) also analyzed the impact of temporal and weather factors
on bicycle volume. A standard linear regression model was developed based on the
detector data from two permanent bicycle count stations on multi-use paths in Boulder,
CO. The variables included in the model were carefully selected considering the temporal
patterns of bicycle volume and weather correlation results. The bicycle volume was then
estimated using the developed linear regression model.

To conclude, a summary of the studies on bicycle volume estimation and analysis
using traditional manual count data or automated count data is provided below in Table

2.4.
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2.4.2. Research Based on Crowdsourcing

Many researchers have conducted their studies using crowdsourced data. GPS
enabled smartphones provide researchers new opportunities to collect data from a broader
group of people and use them to conduct the research on bicycle volume estimation and
prediction. The existing use of crowdsourced data for this research area is presented as
follows.

Moore (2015) conducted a study to examine the impact of various factors on
bicycle counts using the crowdsourced bicycle data collected from Strava application. An
ordinal logistic regression model was developed to examine the effect of impact factors
on the cyclists’ route choice. GIS was applied to conduct a qualitative analysis to
investigate the specific areas and facilities to discover their differences from other
facilities. Results revealed that the selection of a road segment is highly associated with
the road characteristics and the land use.

Griffin and Jiao (2016) collected data from both CycleTracks smartphone
application and the Strava fitness application to conduct a data comparison between the
manual count and crowdsourced bicycle data. Five specific locations were selected in the
downtown Austin, Texas. All the data were compiled and compared in GIS for these five
locations.

To explore the relationship between manual count data collected in Victoria,
British Columbia, Canada and crowdsourced bicycle data from Strava application, a
generalized linear model was developed by Jestico et al. (2016). The bicycle volumes
were categorized into several levels, and a regression model was developed to predict

bicycle volume level. The maps that illustrate the distribution of bicycle volumes were
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created. Results revealed that the bicycle trips recorded by Strava are similar to the
commuting trips in the urban areas of the mid-size North American cities.

Data comparison was conducted by Watkins et al. (2016) to find out the
differences between Cycle Atlanta and Strava data in terms of the sociodemographic
information, total cycling trips on each road segment, and the cycling trips during each
time of day. In addition, the manual count data were compared to the crowdsourced
bicycle data from Cycle Atlanta in both AM and PM peak hours. The percentage of the
manual count data collected by Cycle Atlanta was calculated based on data selected from
78 intersections. The data comparison results indicated that noticeable differences exist in
the populations of the crowdsourced data. Thus, the bicycle data collected from
smartphone applications should be carefully utilized before conducting relevant research
studies.

Hochmair et al. (2017) used the crowdsourced bicycle data collected from Strava
application in the Miami-Dade County area to analyze the impact of demographic
information, network characteristics (especially bicycle facilities), and place specific
features on bicycle ridership. A series of linear regression models were developed to
predict the bicycle kilometers traveled for both commuting and non-commuting trips, and
trips occurred on both weekdays and weekends. Eigenvector spatial filtering was adopted
to avoid bias and model spatial autocorrelation. Results showed that Strava data performs
well for the analysis of the impact of explanatory variables on bicycle volumes for
commuting and non-commuting trips and during different days of week. In addition,
Strava data revealed the broad coverage of spatial and temporal information and that they

can be utilized as a critical supplement to bicycle volume estimation in large areas.
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Cycling activity analysis was conducted by LaMondia and Watkins (2017) based
on the crowdsourced bicycle data collected from Strava, Cycle Dixie and Cycle Atlanta.
The impact factors were identified by modeling the bicycle facility preferences. In
addition, cyclists’ route segment choice and route choice were analyzed. Results revealed
that sociodemographic information, land use, and road characteristics, have significant
Impacts on the route segment choice.

Proulx and Pozdnukhov (2017) developed a novel method with geographically
weighted data fusion for bicycle volume estimation utilizing crowdsourced data from
Strava smartphone application and Bay Area Bikeshare data. It can be found that the
method of Geographically Weighted Data Fusion can improve predictive accuracy for
link-level bicycle volume estimation.

To conclude, a summary of the studies on bicycle volume estimation and

predictionas well as cycling activity analysis is provided below in Table 2.5.
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2.5.  Bicyclist Injury Risk Analysis

Bicyclist injury risk analysis is another critical research concentration that needs
to be studied to better understand the variables contributing to high injury risk and
consequently help provide greener and safer cycling environment and promote biking in
large bicycle-friendly cities.

Many research studies have been conducted to explore the bicyclist injury risk
using different functions and models from various perspectives. Strauss et al. (2013) are
the researchers who were interested in bicyclist activity and injury risk, and a series of
studies were conducted with multiple modeling approaches and different types of data.

Strauss et al. (2013) used a Bayesian modeling approach to analyzing cycling
activity and bicyclist injury risk at signalized intersections simultaneously. Impact factors
contributing to both bicyclist injury risk and bicycle volume were identified. This two-
equation modeling method reveals the potential existence of endogeneity and unobserved
heterogeneities and can also be applied to find the high-risk locations. The data utilized
for this research study included bicycle volume data and motor-vehicle counts collected
at 647 signalized intersections by Montreal Department of Transportation, geometric
design, built environment, bicycle facilities, and bicyclist injury data. Temporal and
weather adjustment factors were applied for manual bicycle counts normalization to
calculate AADB. Results revealed that higher bicycle volume would lead to more
bicyclist injuries yet lower bicyclist injury risk. In addition, total crosswalk length and
bus stops were found to increase the likelihood of bicyclist injuries, while raised medians

might have the opposite influence.
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Later on, a research study was conducted by Strauss et al. (2014) to analyze
multimodal injury risk including motor-vehicle, pedestrian, and bicyclist injury risk and
activities at signalized intersections as well as non-signalized intersections. Like the
previous research, a Bayesian modeling approach was utilized for safety and volume
analysis simultaneously based on the same dataset along with the injury and volume data
collected from 435 more non-signalized intersections. Afterwards, the Bayesian
multivariate Poisson models were calibrated and the explanatory variables contributing to
injury frequency were determined. A comparison of injury risk for different modes for
both intersection types was conducted. Results found that motor-vehicle traffic is the
primary cause of all multimodal injuries at signalized intersections and non-signalized
intersections. Additionally, bicyclists and pedestrians have a much higher injury risk on
average compared to motorists at signalized intersections. Factors including built
environment and some geometric design were found to have a significant impact on
injury risk for all three types of road users.

Furthermore, with the development of crowdsourcing, smartphone GPS data
collected from numerous applications were utilized for estimating bicycle volume as well
as bicyclist injury risk analysis. Strauss et al. (2015) introduced an approach to estimating
bicycle volume and map ridership and bicyclist injury risk in the whole city network in
Montreal for both roadway segments and intersections based on data collected from Mon
Ré&oVvdo smartphone application as well as the manual count data. An extrapolation
function approach was applied to combine the manual count bicycle data with
crowdsourced bicycle data for bicycle volume estimation. Then, safety performance

functions (SPFs) were developed based on the estimated AADB to validate the predicted
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AADB by comparing the parameter coefficients with the previous SPFs using manual
count data. After calibration, the annual average daily bicycle function can be adopted to
predict bicycle volume at intersections and on all the road segments within the whole city
network. Then, statistical models were utilized to compute empirical Bayes (EB) for
bicyclist injury risk analysis. Injury risk maps can be generated to illustrate the
distribution of bicyclist injury. According to the results, more injuries and higher injury
risk occurred at signalized intersections compared to non-signalized intersections. On
average, more injuries occurred on segments with cycle tracks, yet the injury risk per
bicyclist was lower because of the presence of cycle tracks.

In addition to Mon Ré&oVéo smartphone application, data from Strava can also
be utilized for the bicyclist injury risk analysis. According to a research study conducted
by Wang et al. (2016), bicycle safety performance functions including negative binomial
model, Poisson regression model, and zero-inflated negative binomial model, were
developed based on crowdsourced bicycle data. After model estimation, the best model
for SPF was identified utilizing the likelihood ratio test and Vuong non-nested hypothesis
test. The comparison results revealed that negative binomial model outperforms Poisson
regression model, and normal negative binomial model performs better than the zero-
inflated negative binomial model.

Similarly, Saad et al. (2019) estimated safety performance functions for bicyclist
injury risk analysis at intersections based on the crowdsourced bicycle data collected
from Strava application. Strava data were adjusted before being utilized as the input of
safety performance functions. Models based on the original Strava data, the Strava data

with manual bicycle count data adjustments, and Strava data with adjusted population
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were developed and compared. Negative binomial models were developed to predict
bicycle crash at intersection. The model estimation results demonstrated that the adjusted
Strava data with adjusted population and manual counts perform best in bicyclist injury
analysis. In addition, impact factors including signal control system, bicycle lanes, and
intersection size etc. would affect bicyclist injury at intersections.

Chen (2017) utilized a data-driven method to build the bicycle safety performance
functions in both micro and macro scales using Strava smartphone application data,
automatic bicycle count data and reported crash data. Negative Binomial model, Poisson
model, Zero-inflated Negative Binomial model, and Zero-inflated Poisson model were
developed to predict intersection crash frequency. A likelihood ratio test was utilized to
identify the explanatory variables that affect crash frequency significantly. Similarly, the
safety performance functions were developed for corridor crash frequency as well. Crash
severity distributions were adopted in the bicycle crash frequency prediction models.

Another approach to identifying injury risk factors other than developing SPFs
using smartphone applications is to collect volunteered geographic information (VGI)
from cyclists through websites or applications. von Stdpnagel and Krukar (2018)
assessed this type of crowdsourced data as well as the authoritative data as the indicators
for biking risk analysis. Volunteered bicyclists were asked to conduct the laboratory-
based virtual reality experiments to estimate their risk perception. Bicyclists were divided
into two groups for separate cases. The first group was tested as experienced and frequent
bicyclists who are not familiar with the selected test locations. The second group, on the
contrary, was tested as bicyclists who are both experienced and familiar with the test

locations. After that, the indicators of biking risk were obtained from the volunteered
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geographic information. Therefore, based on the indicators from VGI and collected
authoritative data, biking risk perception was estimated using linear mixed-effect models.
The model results revealed that the semantic severity described for cycling hazard and
the public response to the hazard might affect the risk perception significantly. Based on
the authoritative data, a Space Syntax analysis was conducted which demonstrated the
bicyclist sensitivity to street size and complexity.

Jestico (2016) utilized crowdsourced bicycle data to conduct research on bicycle
ridership and cycling safety analysis. The bicyclist safety and injury risk were analyzed
based on the bicycle volume in the certain area estimated using crowdsourced bicycle
data collected from Strava. Manual count data at intersections during peak hours were
also collected and used to compare with the crowdsourced data with a generalized linear
model. Results indicated that time of year, slope, traffic speeds, and on street parking
might affect the bicycle volume significantly. Based on the estimated bicycle volume,
bicyclist injury risk was analyzed using Poisson generalized linear model based on the
incident reports obtained from www.BikeMaps.org to examine the impacts of various
factors. Results revealed that motor-vehicle and bicycle volumes and lack of deceleration
factors were found to affect accident frequency significantly.

Al-Fugaha et al. (2017) developed and utilized a smartphone application called
BikeableRoute to analyze the risk factors based on crowdsourcing. This application
enables bicyclists to report hazards during their cycling trips as well as to track their
cycling information. The data collected from this application included risk report
generated by bicyclists, user evaluation on the bike ability of cycling routes, and cycling

information such as distance, cycling time, and speed. Using the data from


http://www.bikemaps.org/
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BikeableRoute, risk factors were categorized into three groups which are infrastructure-
related, facility-related, and traffic-related factors. An ordered probit model was
developed to analyze the perception of narrow bicycle lanes in terms of different ages and
skill levels. Results revealed that bicyclists from different age groups have different
perception of hazard. Table 2.6 provides a summary of research on bicyclist injury risk

analysis.
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2.6. Summary

A comprehensive review and the current and previous research studies regarding
different kinds of data collection methods including crowdsourcing, open data, big data,
and other traditional data collection methods were presented at the first section of this
chapter. Then, the most prevalent smartphone crowdsourcing applications and their use
on relevant research studies were summarized. Furthermore, the methods that were
applied by researchers to estimate and predict bicycle volume were provided. Finally,
bicyclist injury risk analyses conducted based on different types of data were discussed.
This is to provide a solid reference and assistance in bicycle volume estimation and

prediction, and injury risk analysis in future chapters.
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CHAPTER 3: DATA DESCRIPTIVE ANALYSES

3.1.  Introduction

As mentioned before, the first step of this research is to collect crowdsourced
bicycle data from Strava application and other relevant supporting data. This chapter
gives an overview of the collected Strava bicycle data, and other essential supporting data
for the later model development. The descriptive analyses of the collected Strava data are
also provided. Data comparison is conducted between bicycle manual count data from the
continuous count stations in Charlotte and the Strava bicycle data collected from the
smartphone application.

The following sections are organized as follows. Section 3.2 gives a brief
introduction to Strava. Section 3.3 presents the Strava metro delivery. Section 3.4 shows
the other relevant supporting data collected for this research. Section 3.5 describes the
Strava bicycle count data in terms of the heatmap based on different months of year, trip
purposes, weekdays and weekends. Section 3.6 gives a data comparison between bicycle
manual count data from the continuous count stations in Charlotte and the Strava bicycle
data from the smartphone application. Finally, Section 3.7 concludes this chapter with a
summary.

3.2.  Introduction to Strava

The field of possible GPS data has certainly been changing over time. The most
commonly used solutions today are the data from smartphone application with
completely different user structures and data types (such as Strava), data from bicycle
hire systems, or data collected from local initiatives. Most of the smartphone applications

including Strava tend to record route data directly collected from the users that utilized
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this application, together with the demographic information about the users derived from
the application. Such data contain various aspects of sensitive information, such as the
user’s place of residence or workplace. Such information can also be related to profile
information such as name, gender, age, and other freely provided information. When
passing data on to third parties, it is obliged to anonymize the users’ sensitive information
according to the data protection laws and general conditions of business. Therefore, the
buyers will only receive data that have already been aggregated by the vendors and
cannot trace back to the people that generated the data. Anonymized demographic
information (such as gender and age) is aggregated and permitted to remain in the
dataset. Such data generated from global vendors of smartphone applications will provide
information about the largest range and number of possible users. Considerable
differences can exist within the user structure. The route data are collected from each user
on a second to second basis, saved at the end of the trip and transmitted to a server. The
saved data can then be viewed by users on their smartphones and shared their trip
information with others. This allows the application (such as Strava) users to share their
recent routes with others or keep a training journal.

The cycling data utilized in this research are collected from Strava smartphone
application developed by a technology company recording the cyclist travel trajectory
with the GPS located in their smartphones. A screenshot showing the information about
cycling distance, time, and speed, etc. is presented in Figure 3.1. Most of the users are
cyclists or runners. When a cyclist or runner uses the Strava application, his/her trip
information including distance, elevation change, trip duration, and average speed is

recorded. In addition, the cycling route will also be saved in the application. This allows
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users to be able to look and see their cycling trajectory, and how well they performed

each time, and even compared with other users on the same segment/route.

A Ride A Segment
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Figure 3.1: Strava App Screen Shots

3.3.  Strava Data

The GPS data collected from the Strava users usually include the biking
information for both the link-level and the intersection-level of the network. The link-
level data set contains the Strava user counts on roadway segments and the intersection-
level data set includes cyclist counts at intersections as well as their waiting times. To
record the cycling route of the Strava users, the OD matrix data set is provided.

The data offered by Strava Metro usually contain three main components
including core data, roll-ups, and reports. The core data provide cycling information of
each minute in the city network at both link-level and intersection-level. In addition, it
provides the OD pairs for the cycling trips. The roll-ups data are the aggregated data

developed from the core data to obtain cycling information for different times and trip
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purposes. The reports of the data show a summary of the cyclists’ demographic
information. The detailed data deliveries of Strava Metro can be found below.
3.3.1. Core Data

1. Link-level data set: Database file that presents the cycling information
(especially bicycle counts) on each roadway segment during the time period of the
delivery.

2. Intersection-level data set: Database file that shows the cyclist counts and
waiting time at each intersection during the time period of the delivery.

3. OD data: Origin/Destination file that provides the cycling trip information
including the OD pairs during the time period of the delivery.
3.3.2. Roll-ups

The roll-up data are the categorized core datasets processed by Strava Metro. For
the link-level and intersection-level core dataset, several roll-ups are provided to
summarize the views that present total counts, hour groupings, monthly use,
weekday/weekend, and seasonality. In addition, other views of the roll-ups can be
generated by researchers based on the specific research needs.

The seasonality and hour groupings categorized for this research studies in the
City of Charlotte are shown as follows.

On season: From March to October

Off-season: From November to February

Early AM hours: 12:00 am - 5:59 am (labeled as_0)

AM peak hours: 6:00 am - 8:59 am (labeledas_1)

Mid-day hours: 9:00 am - 2:59 pm (labeledas_2)
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Peak afternoon hours: 3:00 pm - 5:59 pm (labeled as_3)

Evening hours: 6:00 pm - 7:59 pm (labeled as_4)

Late evening hours: 8:00 pm - 11:59 pm (labeled as_5)
3.3.3. Reports

1. Demographics: A report that summarizes the cyclist demographic information
in terms of differentage and gender.

2. Summary: The total Strava user counts and the cycling activities that were
recorded during the time period of the delivery.
3.4.  Other Supporting Data

Other supporting data collected for the following bicycle volume estimation and
prediction, cycling activity modeling, and injury risk analysis include bicycle counts from
manual count stations, road characteristics (e.g., route class, length of segment, number
of through lanes, and road direction, speed limit), demographic characteristics (e.g., total
population, median age in census blocks, household income, total families, and poverty
rate), slope, bicycle facilities (e.g., off-street paths, bike lanes, signed bike lanes,
suggested bike routes, suggested bike routes with low comfort, and greenway), zoning
data, bus stops, sidewalk, AADT, and bicyclist involved crash data. The following
figures show the bicycle facilities, total population, slope, and bicycle-vehicle crashes

distribution in the City of Charlotte.
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The crash data utilized in this research are the bicyclist-involved crash data
collected in the City of Charlotte from 2007 to 2017. The data are obtained from North
Carolina Department of Transportation. There are 1183 observations contained in the
dataset with most of the bicycle-vehicle crashes (1149) occurred in the urban areas. To
have a clear view of the crash number within each census block, Figure 3.6 is generated

as follows.
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3.5.  Strava Data Analysis
3.5.1. Demographics

The total cyclists using Strava application are 8,857 with a majority of 7,129 male
cyclists. Their total cycling trips from December 2016 to November 2017 were 140,428

miles. The proportion of Strava users’ gender is presented in Figure 3.7.

Strava User Gender

Blank Gender,
5%

Female, 15% -

Male, 80%

= Male = Female Blank Gender

Figure 3.7: Strava User Gender

From the age data, one can see that cyclists of all ages were using Strava
application to record their trips. This data indicate that a large number of cyclists, both
young and old, are familiar with Strava application based on the fact that age groups of
the Strava users range from under 25 to over 95 as presented in the figure below. Cyclists
from different age groups for both male and female cyclists is presented in Figure 3.8.

From the figure, one can see that most of the cyclists are between 25 and 54.
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Male and Female Cyclists from Different Age Groups
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Figure 3.8: Male and Female Cyclists from Different Age Groups

3.5.2. Trip purpose

According to the data, among a large number of cyclists recording their cycling
trips with Strava application, most of the trips are recreational trips. The proportion of
commute trips and non-commute trips is shown in the following pie chart where
commute trips account for only 18.33% of the total cycling trips and non-commute trips

account for 81.67% of the total cycling trips.
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Trip Purpose
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Figure 3.9: Cyclist Counts for Different Trip Purposes

3.5.3. Strava Count

The Strava bicycle counts vary from month to month, from day to day, and from
hour to hour. Therefore, comparisons are conducted to identify the difference between
each different aspect. Before comparison, a map that illustrates the total cyclists on each

road segment for the whole year is presented, as shown in Figure 3.10.
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Based on the bicycle volume in Figure 3.10, four locations where the volume of

Strava users are high are identified which involve greenway, school, airport, and park.

These are the popular cycling locations among Strava users.
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Figure 3.11: Four Popular Cycling Locations

The Strava bicycle counts under different situations are presented in detail as

follows.

3.5.3.1 Month of Year

Cycling is a kind of activity which is highly related to the weather condition.
Therefore, bicycle counts in different months of year vary with the temperature. Total

bicycle volume on each road segment in twelve months of a year is presented in the

following figures.
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ovember 2017

Based on the twelve maps generated to show the total bicycle volume on each

road segment, several results can be presented as follows:

1. The four popular cycling locations remain the same over the twelve months.

2. The total bicycle volume on each road segment begins to increase in February

and decreases in December.

3. Differentlocations have different variance in total bicycle volume.

4. The total bicycle volume on greenways begins to increase in February and

decrease in December. However, the total bicycle volume in the uptown area

and around airport begins to increase in April and decrease in October. And

the park area has high bicycle volume from August to November.

A total bicycle volume change for the whole year can be seen in the following

figure.
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Figure 3.13: Total Bicycle Volume in the Network
3.5.3.2 Weekdays and Weekends

The cycling activities occurred on weekdays and weekends are different. To see
the volume difference between weekdays and weekends on each road segment, a map is
generated in Figure 3.14 where red lines represent the higher bicycle volume on
weekends and green lines depict the higher volume on weekdays. According to Figure
3.14, the uptown area in the City of Charlotte appears to have more green lines which

indicates more weekday cycling trips in this location.
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Figure 3.14: Total Bicycle Volume on Weekdays and Weekends

3.5.3.3 Time of Day

The bicycle volume for each road segment varies with different times of day. The
variation of bicycle volume is presented in Figure 3.15. From the figure, one can see that
most of the cycling activities occurred from 5 am in the morning to 7 pm in the evening.
Two cycling peaks are identified in this figure which are around 8 am and 6 pm. The
bicycle volume at 5 am is higher than the volume at 6 am and 7 am. It can be assumed
that cyclists choose to bike early in the morning before working hour. There is a decrease
in the middle of the day. Two possible reasons can be identified. First, the temperature

around noon is high. Second, workers are busy during the day.
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Figure 3.15: Total Bicycle Volume for Different Times of Day
3.5.3.4 Trip Purpose
The trip purpose has an impact on the total bicycle volume on each road segment.

The commute trips are presented in the following figure.
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Figure 3.16: Total Commute Trips

3.6.  Data Comparison

Difference remains between manual count data and Strava data. Since
crowdsourced data usually involves a large number of people, the coverage of the road
segment that is being used can be broad. On the contrary, installing manual count stations
are costly and the coverage has to be limited. In other words, only the bicycle count at
some locations can be collected. In addition, Strava data contain the bicycle trip time and
the trip purpose (commuting or recreation), while manual count data cannot collect such

information. In this research, the bicycle manual count from different count stations and
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Strava user count at the same locations are compared in the following figure. In the figure,

one can see that the manual count is greater than the Strava count.
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Figure 3.17: Comparison of Manual and Strava Counts

3.7.  Summary

This chapter provides an overview of the data collected for this research. The
descriptive analyses based on the data collected are conducted by creating several
heatmaps for bicycle volume in different months of year, weekdays and weekends, and
for different trip purposes. A data comparison between bicycle manual count data from
the continuous count station in Charlotte and Strava bicycle data from the smartphone

applicationis also provided.
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CHAPTER 4: DEVELOPING BICYCLE VOLUME MODELS

4.1.  Introduction

This chapter provides a method to combine all the collected data for the
development of the bicycle volume models utilizing ArcGIS and SAS. After the data
processing procedure, two bicycle volume models are developed to quantify the
relationship between bicycle manual count data and Strava bicycle data as well as other
relevant variables. Model results are analyzed and bicycle volume on most of the road
segments in the City of Charlotte is calculated based on the model estimation results. In
addition, a map illustrating the bicycle ridership in the City of Charlotte is created.

The following sections are organized as follows. Section 4.2 introduces the
methods of data processing with ArcGIS and SAS. Section 4.3 presents the bicycle
volume models and the model estimation results. Section 4.4 provides the bicycle volume
prediction for most of the roadway segments in the City of Charlotte and creates a map to
give an overall view of the bicycle ridership in the City of Charlotte. Finally, Section 4.5
concludes this chapter with a summary.

4.2.  Data Processing

The data processing in this Chapter is conducted utilizing ArcGIS and SAS. Three
steps are followed to obtain the final combined data which can be seen in detail as
follows:

Step 1:

This step is done in SAS. First, the bicycle manual count data are collected from
the count stations and the Strava bicycle volume data from the smartphone application.

Both the data contain the bicycle counts on a specific roadway segment during different
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times of day. To analyze the bicycle volume during different time periods, a time period
variable is added to the data, where TP = 0 represents time from 00:00 to 05:59, TP =1
represents time from 06:00 to 08:59, TP = 2 represents time from 09:00 to 14:59, TP =3
represents time from 15:00 to 17:59, TP = 4 represents time from 18:00 to 19:59, and TP
= 5 represents time from 20:00 to 23:59. Then, the total bicycle volume is summed up by
each count station/road segment for the manual count data and Strava data separately to
get Data 1 and Data 2. From this step, one can see that Data 1 and Data 2 have a temporal
relationship in terms of date and time of day. The detailed data processing procedure for

this step is presented in Figure 4.1.

Bicycle counts collected from

Manual count data }—- each station/segment on specific 0—{ Strava data

time of day

00:00-05:59 TP=0
06:00-08:59 TP=1
) - B :00-14:5 = - ; )
Add time period variable }—- ?2331? Sg g _ i «—{ Add time period variable
18:00-19:59 TP=4

Roll up total bicycle 20:00-23:59 TP=5 Roll up total bicycle
volume by count station, volume by road segment,
date and time period date and time period

|j Date & Time of Day {j
Data 1 Temporal relationship Data 2
Figure 4.1: First Step of the Data Processing Procedure in SAS
Step 2:
This step is accomplished in ArcGIS. First, a point layer containing manual count
station information that was compiled in step 1 is created (which is called Data 1) here.
Second, other relevant supporting data including NC route characteristic data, Charlotte

zoning data, slope cell data, sociodemographic data, bicycle facility data, and Strava road

segment shapefile that shares the same road segment ID with Data 2 in step 1 are added
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to ArcGIS. Before combining all the supporting data with the manual count station point
layer, a data preprocessing is conducted. The NC route characteristic data are filtered by
Charlotte boundary and the slope information is extracted from the cell data. Third, all
the processed supporting data are combined together with Data 3 by spatial join in
ArcGIS. Finally, Datal and Data 3 are combined and the segments that have both manual
count and Strava data are kept to create Data 4 that show the spatial relationship between
Data 1 and Data 2. The detailed data processing procedure for this step is shown in

Figure 4.2.

Create point layer of
manual count station
|
Clip NC route
characteristic data
I
Collect Charlotte

zoning data
I Data 3

i Extract slope data from
| cell data

I
Collect

sociodemographic data
I

Strava road segment e o

shapefile L i
I

Collect bicycle facility
data

Combine all these
data by spatial join
!

Keep the segments that have both
manual count and strava data

| Datal | + | Data3 |

Spatial relationship between

DIk Data 1 and Data 2

Figure 4.2: Second Step of the Data Processing Procedure in ArcGIS

Step 3:
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Now that Data 4 contain the spatial relationship between Data 1 and Data 2 and
information on Data 1, and one will still need to add the temporal relationship to it to
obtain the final dataset. Thus, Data 4 and Data 2 are imported in SAS to create Data 5 by
joining them with the same road segment ID, date, and time of day. Finally, dummy
variables including weekdays and six time periods are added to Data 5. The detailed data

processing procedure is shown in Figure 4.3.

Data 1 Join by same segment ID,

date and time of da
y Data 2

Data 5
!

Add dummy variables including
weekday and time period 0-5

+ Data 4
| Data2 |- Data3

Figure 4.3: Third Step of the Data Processing Procedure in SAS

4.3.  Bicycle Volume Regression Models
4.3.1. Simple Linear Regression Model

To assess the relationship between Strava data and bicycle manual count data, a
simple linear regression model is developed, with manual count data being the dependent
variable and Strava count data as the independent variable. The model estimation is
conducted by using SAS, and the results are presented in the followingtable.

Table 4.1: Simple Linear Regression Model Estimation Results

Variable Label  Parameter Estimate Standard Error tValue Pr>|t|

Intercept  Intercept 8.78724 0.82601 10.64 <.0001

BikeCount  Strava 7.62895 0.17815 42.82 <.0001
R-Square 0.3562 Adj R-Square 0.3560
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Results reveal that total bicyclist counts on the specific road segment are about
7.63 times as high as the number of Strava users on the same road segment. However,
according to the values of R square (0.3562) and adjusted R square (0.3560), the
predictive accuracy of this model is low. That is probably because the manual count data
could be determined by many other factors that are not accounted for in this model.
Therefore, to estimate the impacts of other variables on bicycle manual count data on
each road segment, a multiple linear regression model is conducted below.
4.3.2. Multiple Linear Regression Model
To investigate the influence of contributing factors on manual count including

Strava user count, a multiple linear regression model is formulated as shown below, and
the variables considered in this model are presented in Table 4.2.

Manual Count=f (N, G, S, Z, T, B, C)

where:

N = Network characteristics data which include speed limit, segment length
and through lane.

G = Slope.

S = Sociodemographic data which include total population, median household
income and median age.

Z = Zoning data including residential, business and mixed use.

T = Temporal data including different time periods and weekday.

B = Bicycle facility data including off-street paths, bike lanes, signed bike
lanes, suggested bike routes, suggested bike routes with low comfort, and greenway.

C = Strava bicycle count.



Table 4.2: Variable Description
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Variable Type

Variable Label

Description

Network
Characteristics

Geometry

Sociodemographic

characteristics

Zoning

Temporal
Variables

Speed Limit
Segment length
Through lane
Slope
TOTPOP_CY
MEDAGE_CY
MEDHINC_CY
Residential
Business
Mixed use

Hour 0

Hour_1

Hour_2

Hour_3

Hour_4

Hour_5

The posted speed limit on
a roadway segment.

The length of the segment
in miles.

The number of through
lanes.

The slope of a road
segment at intersection.

Total population in each
census block.

The median age in each
census block.

Median household income
in each census block.

Charlotte  zoning  with
residential land use.

Charlotte  zoning  with
business land use.

Charlotte  zoning  with
mixed use land use.

If cycling time is during
00:00-05:59, then Hour_ 0
=1.

If cycling time is during
06:00-08:59, then Hour_1
=1.

If cycling time is during
09:00-14:59, then Hour_2
=1.

If cycling time is during
15:00-17:59, then Hour_3
=1.

If cycling time is during
18:00-19:59, then Hour_4
=1.

If cycling time is during
20:00-23:59, then Hour 5
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Variable Type

Variable Label

Description

Bicycle facilities

Weekday

Off_Street_Paths

Bike_ Lanes
Signed_Bike_Lanes
Suggested_Bike Routes

=1

If bike on a weekday, then
weekday = 1.

Off street paths

Bike lanes

Signed bike lanes
Suggested bike routes

Suggested_Bike_Routes_Lowcomfort Suggested bike routes with

low comfort
Greenway Greenway
Strava data BikeCount Strava user count on a

road segment.

The parameter estimation of this multiple linear regression model is conducted in
SAS, and the model estimation resultsare present in Table 4.3.

Table 4.3: Multiple Linear Regression Model Estimation Results

Variable Parameter Estimate Standard Error t Value
Intercept 4.53707 2.15121 2.11
Hour_1 5.05005 1.93230 2.61
Hour_2 25.29360 1.92312  13.15
Hour_3 24.72827 1.89316  13.06
Hour 4 16.67931 1.97334 8.45
Hour_5 10.91207 2.17965 5.01
weekday -9.16515 1.11290 -8.24
BikeCount 6.32098 0.15380  41.10
Bike_Lanes -22.10636 1.20746 -18.31
Off_Street_Paths 22.60260 1.23021  18.37
Suggested_Bike_Routes -13.94757 241011  -5.79

R-Square 0.6084 Adj R-Square  0.6073
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Based on the model estimation results in Table 4.3, variables including weekday,
time period except 00:00-06:00 am, Strava user count, off-street paths, bike lanes, and
suggested bike routes have a significant impact on the manual count. Specific analysis is
conducted in detail as follows:

Time period except 00:00-06:00 am has a positive impact on the total bicycle
volume on a road segment, which means cycling activity starts early in the morning and
ends late at night. Cyclists prefer to bike on weekends compared to weekdays. This is
probably because cyclists may need to work on weekdays which gives them less time for
cycling. Another possible reason is that most of the cycling trips may be recreational trips.
Therefore, weekday has a negative impact on the manual bicycle count. According to the
results, different bicycle facilities have different impacts on the total bicycle volume on
road segments. Interestingly, bike lanes and suggested bike routes have negative impacts
on the manual count, while off-street path has a positive impact on it. It can be interpreted
that compared with other bicycle facilities, off-street paths are the most popular ones
among cyclists in the City of Charlotte. The values of R square (0.6084) and adjusted R
square (0.6073) of this multiple linear regression model are higher than the simple linear
regression model, which indicates that this model has a higher prediction accuracy than
the previous one.

4.4. Bicycle Volume Prediction

Based on the model estimation results from the multiple linear regression model,

a bicycle volume prediction on most of the road segments in the city of Charlotte with

availability of Strava data and bike facility data is computed using the following equation:
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Bicycle volume = 4.53707 + 5.05005 * [Hour_1] + 25.29360 * [Hour_2] +
2472827 * [Hour 3] + 16.67931 * [Hour 4] + 10.91207 * [Hour 5] - 9.16515 *
[Weekday] + 6.32098 * [BikeCount] - 22.10636 * [Bike Lanes] + 22.60260 *
[Off_Street_Paths] - 13.94757 * [Suggested Bike Routes]

To obtain the annual average daily bicycle (AADB) prediction, the predicted
bicycle volume on each road segment calculated using the equation above are rolled up
for the whole year, which provides the aggregated whole year bicycle volume (Vr) on
each road segment in the city of Charlotte. Therefore, the AADB prediction can be
calculated using the following equation:

AADB = V7 /365
An AADB prediction of most of the road segments in the city of Charlotte is

presented in Figure 4.4.
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AADB Prediction in City of Charlotte

Legend

Edges

AADB

——— 0.00-864
8.65 - 28.71

, 2872 -60.35

{ 60.36 - 118.18

{ — 11819-28303

0 12525 5 75 10

Figure 4.4: AADB Prediction in the City of Charlotte

45. Summary

This chapter provides a method to combine all the collected data for the
development of the bicycle volume models utilizing the ArcGIS and SAS. After the data
processing, two bicycle volume models are developed to quantify the relationship
between bicycle manual count data and Strava bicycle data as well as other relevant
variables. Model results are analyzed and predicted bicycle volume on most of the road
segments in the city of Charlotte is calculated using the developed estimation model. In

addition, a map illustrating the bicycle ridership in the city of Charlotte is also created.
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CHAPTER 5: MODELING CYCLING ACTIVITIES

5.1.  Introduction

In this chapter, discrete choice models are developed to model cycling activities
and model comparison is conducted to identify the best-fit model for this cycling activity
analysis. To examine the different impacts of explanatory variables on cycling activities
during selected time periods, discrete choice models are developed separately.

The following sections are organized as follows: Section 5.2 provides a data
processing method to combine all the needed data for the later development of discrete
choice models. Section 5.3 through Section 5.6 provide the models developed for cycling
activities including ordered logit (ORL) model, partial proportional odds (PPO) model,
multinomial logit (MNL) model, and mixed logit (MXL) model respectively. Section 5.7
compares the models developed in the previous sections and identifies the best model
structure for this research study. Section 5.8 develops two models for different selected
time periods and a model comparison is provided in this section. Finally, Section 5.9
concludes this chapter with a summary.

5.2.  Data Processing

The data processing procedure is conducted utilizing ArcGIS and SAS. Two steps
are needed to obtain the final combined data which can be seen in detail as follows:

Step 1:

This step is done in ArcGIS. First Strava road segment shapefile is added in
ArcGIS (named Data 1 later). This data contain basic information on the Strava road

based on the Open Street Map with a column that records the road segment ID (i.e., Edge
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ID). This ID is used to relate it to the Strava user count data (Data 4) to match the bicycle
volume data to the Strava roadway network.

In addition, other relevant supporting data including NC route characteristics data,
slope cell data, sociodemographic data and bicycle facility data are also added to ArcGIS.
Before combining all the data together, data preprocessing is conducted. For the NC route
characteristics data, only the data in the City of Charlotte are selected to accelerate the
data processing speed later. Therefore, Charlotte boundary data are added to clip the NC

route data as shown in Figure 5.1.

uuuuuu

. Esri, HERE. Garmin, © OpenStreetMap contributors, and the GIS
user community

Figure 5.1: Clip in ArcGIS

To obtain the data from the slope cell data, the “Extract” tool in ArcGIS is utilized
to export the slope data. After all the data preprocessing, the Data 2 are acquired as a
combination of four supporting data. Then, Data 2 are combined with Data 1 in order to
join to Strava road segment shapefile. Finally, Data 3 are obtained as a combination of
Data 1 and Data 2. The detailed data processing procedure for this step is shown in

Figure 5.2.
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Data 4 | Datal | + | Data2
] | E——
Strava road segment " Data 3
Data | shapefile (Edge ID) <
I
]
With Charlotte Clip NC route
boundary characteristic data

|

Extract slope data from

cell data Combine all the collected data
| *» to join to Strava road segment
Collect sociodemographic shapefile by spatial join

data from census dataset
|

Collect bicycle facility

data
|
Data 2
Figure 5.2: Data Processing in ArcGIS
Step 2:

This step is accomplished in SAS. First, the Strava bicycle count data (Data 4)
collected from each road segment during a specific time of day in the City of Charlotte
are imported in SAS. A column with six time periods from 0 to 5 is created where TP =0
represents time from 00:00 to 05:59, TP = 1 represents time from 06:00 to 08:59, TP = 2
represents time from 09:00 to 14:59, TP = 3 represents time from 15:00 to 17:59, TP =4
represents time from 18:00 to 19:59, and TP =5 represents time from 20:00 to 23:59. In
order to add the day of week variable, one needs to first convert the day of year variable
to date using DATEJUL in SAS, and leading zeros are added to make sure that the day is
consistent with 3 digits. Based on the date, the WEEKDAY function is used to obtain the
day of week from the SAS data value. And then, a roll-up bicycle volume table is created

by road segment, date, and time period.
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After preprocessing the Strava count data, Data 3 from the previous step are
joined to Data 4 by the same segment ID. Dummy variables including weekday and time
period 0 — 5 are added to the data. The variable that indicates the level of the bicycle
volume on each road segment is created. Five categories are set up with bicycle counts
from low (0-39), low-average (40-79), average (80-119), high-average (120-159), to high
(160-200). And finally, Data 5 are obtained for the future model development. The

detailed data processing procedure for this step is shown in Figure 5.3.

Data 4

| Strava bicycle counts collected
Strava count data from each road segment on
specific time of day in Charlotte

k4

00:00-05:59 TP=0
v 06:00-08:59 TP=1

Add time period variable N 09:00-14:59 TP =2
and day of week variable 15:00-17:59 TP=3
¥ 18:00-19:59 TP=4

Roll up total bicycle 20:00-23:59 TP=35

volume by road segment,
date and time period

I Data 3
Join by same segment ID

)

Add dummy variables
including weekday and
time period 0-5

i Bicycle count: 0-39 Level =1

Create level of bicycle Bicycle count: 40-79 Level =2
volume variable for each * Bicycle count: 80-119 Level=3
road segment Bicycle count: 120-159 Level =4
i Bicycle count: 160-200 Level =5

Data 5

Figure 5.3: Data Processing in SAS
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5.3.  Ordered Logit Model
5.3.1. ORL Model Structure
The ordered logit model is one of the traditional discrete choice models using for
ordinal dependent variable analysis. In this research study, the number of bicycle counts
on each road segment is divided into five categories, which are low (0-39), low-average
(40-79), average (80-119), high-average (120-159), and high (160-200). In the ordered
logit model, the level of bicycle counts on a road segment is denoted as y;, which is
associated with the variable y;. The model specification is presented as follows:
yi =BXit+ &
where y;” demonstrates the bicycle volume, X; denotes a vector of the explanatory
variables contributing to the bicycle volume, S represents the coefficients that will be
estimated, and ¢; stands for the error term which is Gumbel distributed.
In this research, the continuous variable y; is divided by the cut-points §; (j = 1,
2, ..., J) into J intervals (J = 5 for this scenario) and the bicycle volume is shown as
follows:
(1,—00 <y <6,
2,0, <y’ <6,
yi=1% 3,0, <y <0;
4,0; <y <0,
50, <y <+
Thus, the probability of the level of bicycle counts on each road segment can be

presented as follows:

F(6. — B;X.).j =1
1-F(6-s = BX;)j =]

where F(.) represents the cumulative standard logistic distribution function.
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5.3.2. ORL Model Results

To analyze the level of bicycle counts on each road segment and examine the
impact factors on cycling activities of the bicyclists in the City of Charlotte, an ordered
logit model is developed. Explanatory variables are carefully selected for this ORL model
which include temporal variables, road characteristics, sociodemographic information,
geometry, and bicycle facilities. The detailed variable description is presented in Table
5.1.

Table 5.1: Explanatory Variable

Variable Description

Temporal Variables

Hour 0 If cycling time is during 00:00-05:59, then Hour_0 = 1.
Hour 1 If cycling time is during 06:00-08:59, then Hour 1 = 1.
Hour_2 If cycling time is during 09:00-14:59, then Hour_2 = 1.
Hour_3 If cycling time is during 15:00-17:59, then Hour_3 = 1.
Hour_4 If cycling time is during 18:00-19:59, then Hour_4 = 1.
Hour 5 If cycling time is during 20:00-23:59, then Hour 5 = 1.
Weekday If bike on a weekday, then weekday = 1.

Road Characteristics

Speed Limit The posted speed limiton a roadway segment.
RouteClassl Interstate

RouteClass2 US route

RouteClass3 NC route

RouteClass4 Secondary route

MPLength The length of the segment in miles.

ThruLane The number of through lanes.

Oneway If the road segment is one way, then oneway =1

Sociodemographic Characteristics
TOTPOP_CY Total population in each census block.
MEDAGE_CY The median age in each census block.




Variable Description

MEDHINC_CY Median household income in each census block.
Total HH Total households in each census block.
TotalFamily Total families in each census block.
Poverty Family poverty rate in each census block.
Geometry

Slope The slope of a road segment at intersection.
Bicycle Facilities

B_offstreet Off street paths

B_bikelane Bike lanes

B_signed Signed bike lanes

B_suggested

Suggested bike routes

B_suggest0

Suggested bike routes with low comfort

B_greenway

Greenway
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All the factors presented in Table 5.1 are considered in the ordered logit model to

determine the probability of segments being selected by the Strava users. The maximum

likelihood method is utilized to conduct the model estimation and to determine the

thresholds in the ordered logit model. This process is conducted in SAS 9.4. To keep the

variables that affect the level of bicycle counts on each road segment significantly, the

backward selection demand is used for the model estimation. The backward selection

results are presented in Table 5.2. The model estimation results, and the fit statistics are

shown in Table 5.3 and Table 5.4 respectively.

Table 5.2: Summary of Backward Elimination

Summary of Backward Elimination

Step| Effect Removed | Wald Chi-Square|Pr > ChiSq
1| Hour 0 0.0000 0.9993
2| B_offstreet 0.0000 0.9951




Summary of Backward Elimination
Step| Effect Removed | Wald Chi-Square | Pr > ChiSq
3|Hour_4 0.0027 0.9586
4| SpeedLimit 0.1222 0.7266
5|Poverty 0.4548 0.5001
6| TOTPOP_CY 0.4030 0.5255
7|B_bikelane 0.6974 0.4037

Table 5.3: Ordered Logit Model Estimation Results
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Analysis of Maximum Likelihood Estimates
Parameter Level| Estimate| Standard Error Wald Chi- Pr > ChiSq
Square
Intercept 5 1.6165 1.0468 2.3847 0.1225
Intercept 4 3.6935 1.0534 12.2937 0.0005
Intercept 3 4.0366 1.0565 14.5970 0.0001
Intercept 2 5.4232 1.0882 24.8353 <.0001
Weekday -4.2510 0.3204 176.0312 <.0001
Hour 1 1.0789 0.4326 6.2192 0.0126
Hour_2 1.1850 0.4193 7.9859 0.0047
Hour_3 2.9484 0.4137 50.7871 <.0001
MPLength 1.0827 0.4673 5.3673 0.0205
ThruLane 0.6786 0.0853 63.2215 <.0001
MEDAGE_CY 0.0244 0.0115 4.4958 0.0340
MEDHINC_CY 0.000032 2.773E-6 129.7401 <.0001
Total HH 0.00119 0.000345 11.8828 0.0006
TotalFamily -0.00133 0.000470 8.0179 0.0046
Slope -0.0506 0.00959 27.8175 <.0001
B_signed -1.1172 0.1814 37.9421 <.0001
B_suggested 0.7100 0.3414 4.3260 0.0375
B_suggest0 -1.8420 0.3542 27.0457 <.0001
B_greenway 2.6567 1.0285 6.6720 0.0098
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Analysis of Maximum Likelihood Estimates
Parameter Level| Estimate| Standard Error Wald Chi- Pr > ChiSq
Square
RouteClass1 -0.6356 0.2719 5.4624 0.0194
RouteClass2 0.8828 0.2390 13.6409 0.0002
RouteClass3 -0.3567 0.1395 6.5407 0.0105
Oneway 0.9971 0.1553 41.2258 <.0001

Table 5.4: Model Fit Statistics

Criterion| Intercept Only | Intercept and Covariates
AIC 7480.648 5802.726
SC 7522.162 6114.085
-2LogL 7472.648 5742.726

According to the backward elimination summary in Table 5.2, variables including
time period from 00:00 to 05:59 and from 18:00 to 19:59, speed limit, off street paths,
bike lanes, speed limit, total population, and family poverty rate do not have significant
impacts on the level of bicycle counts on each road segment. Based on the model
estimation results presented in Table 5.3, variables including weekday, total family, slope,
signed bike lanes, suggested bike routes with low comfort, interstate route, and NC route
all have negative impacts on the level of bicycle counts, while other variables which are
time period from 6:00 to 17:59, segment length, number of through lanes, median age,
median household income, total household, suggested bike routes, greenway, US route,
and one-way road all have positive impacts on the level of bicycle counts. The detailed
interpretation of the influence of each factor on the level of bicycle counts will be
provided in Section 5.6. AIC and -2LogL presented in Table 5.4 are indicators that

measure the fitness of the model which will be used for model comparison in Section 5.6.
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5.4.  Partial Proportional Odds Model
5.4.1. PPO Model Structure

The partial proportional odds (PPO) model is developed based on the ordered
logit (ORL) model. In the ORL model, the proportional odds (PO) assumption is
subjected. It can be interpreted that the estimated parameters are restricted to be same
across all the alternatives. However, this assumption is unrealistic. To relax the
assumption mentioned above, the PPO model is developed.

The explanatory variables associated with each road segment are categorized into
two groups. One contains parameters satisfying the PO assumption, which is presented as
vector X, the other includes parameters violating the assumption which is shown as
vector Z;. The variables violating the PO assumption are able to affect the response
variables differently, while others remaining fixed parameters have the same effect across

different levels. Thus, the PPO model with logit functionis presented as follows:

expl6; — (X;B; + Zjv;)]

P(Y = j) =
l 1+expl6; — (X;B; + Zjv;)]

where j denotes the level of bicycle counts on each road segment and Y; represents
the bicycle counts for road segment i, 3 and y represents the coefficients that will be
estimated, and 6; demonstrates the threshold for jth cumulative logit.

To examine whether the PO assumption is violated or not, the Wald Chi-square
tests are utilized during the model development. This procedure helps divide the
explanatory variables into two groups which are categorized in either vector X;or vector

Zi.
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5.4.2. PPO Model Results

This PPO model is built based on the ORL model developed in Section 5.2. A
series of Wald Chi-square tests are conducted to determine if the explanatory variables
violate the PO assumption. These variablesare presentedin Table 5.5.

Table 5.5: Linear Hypotheses Testing Results

Label Wald Chi-Square | Pr > ChiSq
Hour_1 po 38.4832 <.0001
ThruLane_po 10.1651 0.0172
MEDHINC_CY_po 33.7202 <.0001
Total_HH_po 25.5679 <.0001
TotalFamily po 37.5464 <.0001
B_suggested po 12.4505 0.0060
RouteClass2_po 27.5757 <.0001
Oneway_po 17.0930 0.0007

Thus, variables including time period from 6 am to 9 am, the number of through
lanes, median household income, total households, total families, suggested bike routes,
US routes, and one-way road violate the PO assumption and affect different levels
variously.

The PPO model estimation results and the fit statistics are shown in Table 5.6 and

Table 5.7.
Table 5.6: Partial Proportional Odds Model Estimation Results
Analysis of Maximum Likelihood Estimates
Parameter Level | Estimate| Standard Error | Wald Chi-Square| Pr > ChiSq
Intercept 5 2.9121 2.1919 1.7651 0.1840
Intercept 4 8.2183 1.2527 43.0387 <.0001
Intercept 3 9.9807 5.1830 3.7081 0.0541
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Analysis of Maximum Likelihood Estimates
Parameter Level | Estimate| Standard Error |Wald Chi-Square| Pr > ChiSq
Intercept 2 10.7126 1.5216 49,5631 <.0001
Weekday -7.0154 1.2122 33.4937 <.0001
Hour_1 5 -0.2021 0.1664 1.4750 0.2246
Hour_1 4 3.1647 0.5676 31.0867 <.0001
Hour_1 3 0.3418 1.7064 0.0401 0.8412
Hour_1 2 -0.0473 2.3269 0.0004 0.9838
Hour_3 1.7205 0.1034 276.6263 <.0001
ThruLane 5 0.5160 0.0711 52.7303 <.0001
ThruLane 4 -0.2532 0.2544 0.9905 0.3196
ThruLane 3 -0.1234 0.4373 0.0796 0.7778
ThruLane 2 -0.5763 1.2314 0.2190 0.6398
MEDHINC_CY |5 0.000031 2.66E-6 138.3050 <.0001
MEDHINC_CY |4 0.000034 8.519E-6 15.7006 <.0001
MEDHINC_CY |3 0.000154 0.000022 50.5355 <.0001
MEDHINC_CY |2 0.000109 0.000035 9.8945 0.0017
Total_HH 5 0.00105 0.000334 9.8621 0.0017
Total_HH 4 0.00859 0.00280 9.4126 0.0022
Total_HH 3 0.0277 0.00534 26.9469 <.0001
Total_HH 2 0.0373 0.0206 3.2672 0.0707
TotalFamily 5 -0.00120 0.000458 6.8452 0.0089
TotalFamily 4 -0.0122 0.00377 10.4502 0.0012
TotalFamily 3 -0.0389 0.00617 39.7655 <.0001
TotalFamily 2 -0.0530 0.0253 4.3881 0.0362
Slope -0.0575 0.00891 41.5729 <.0001
B _signed -1.0671 0.1841 33.6052 <.0001
B_suggested 5 2.8458 0.9343 9.2777 0.0023
B_suggested 4 2.8330 1.1958 5.6128 0.0178
B_suggested 3 -3.4416 1.9230 3.2029 0.0735
B_suggested 2 -0.4743 2.3583 0.0404 0.8406
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Analysis of Maximum Likelihood Estimates
Parameter Level | Estimate| Standard Error |Wald Chi-Square| Pr > ChiSq
B_suggest0 -4.0556 0.9381 18.6881 <.0001
B_greenway 3.5327 1.4672 5.7973 0.0161
RouteClass2 5 1.4188 0.2791 25.8462 <.0001
RouteClass2 4 -3.7311 1.2443 8.9915 0.0027
RouteClass2 3 1.8386 2.2886 0.6454 0.4218
RouteClass2 2 0.3602 2.9464 0.0149 0.9027
Oneway 5 0.8081 0.1259 41.1903 <.0001
Oneway 4 3.4399 0.8487 16.4278 <.0001
Oneway 3 5.2436 1.3215 15.7451 <.0001
Oneway 2 1.1925 3.5373 0.1136 0.7360

Table 5.7: Model Fit Statistics

Criterion| Intercept Only | Intercept and Covariates
AIC 7480.648 5521.322
SC 7522.162 5957.225
-2Log L 7472.648 5437.322

Based on the PPO model estimation results shown in Table 5.6, variables that

satisfy the PO assumption include weekday, time period from 15:00 to 17:59, slope,

signed bike lanes, suggested bike routes with low comfort, and greenways remain the

same interpretation as the previous developed ORL model. Other variables are allowed to

have different effects across the outcomes. The detailed model interpretation and model

comparisonwill be presented in Section 5.6.

The model fit statistics provided in Table 5.7 indicate that the -2 LogL for the

PPO model is less than that of the ORL model and is less than the constant-only model. It

means the PPO model has a better fitness for the level of bicycle counts. To better
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examine the goodness of fit for this PPO model. The likelihood ratio index p? is utilized

and presented in the following equation:

sy LLB)
B LL(c)

where LL([?) is the log-likelihood value at convergence and LL(c) represents the
log-likelihood value for constant-only model. Based on the results presented in Table 5.7,
the likelihood ratio index p? is 0.27. According to Train (2009)’s research study, a better
model is associated with a higher value of p2, and it is good enough to have p? from 0.2
to 0.4 in real world case studies. Therefore, it can be concluded that the PPO model is
good enough to model the cycling activities for the Strava users in the City of Charlotte.
5.5.  Multinomial Logit Model
5.5.1. MNL Model Structure

The multinomial logit model developed in this section is used to analyze cycling
activities. In this model, it assumes that the alternative which yields the maximum utility
is always selected, which is called random utility theory (Train, 2009). The utility
function comprises an observed utility and an unobserved error term, which are shown in
the following equation:

U,, =V, +s&,

where Ui, is the utility function of the level of bicycle counts i for the road
segment n, Vi, denotes the observed utility of level i for the segment n, &i, represents the
unobserved error term of level i for the segment n. Vi, is usually taken as a linear utility

function as shown in the following equation:

N
Vio=5B+ Zkzlﬂk Xink
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where Xink represents the kth explanatory variable of level of bicycle counts i for
road segment n, N denotes the number of the explanatory variables, fo indicates the
constant term, and S« expresses the estimated coefficient of the kth explanatory variables.
It is assumed that ¢ conforms to a Gumbel distribution, and attributes are
independent of each other. Then the probability of the level of bicycle counts for each

road segment for this research study can be derived as follows:

5.5.2. MNL Model Results

The MNL model estimation result is shown in Table 5.8, in which the parameter
estimates are shown for each level of the bicycle counts. One category is selected as the
base case for this MNL model which is the low level of the bicycle counts. Variables that
do not have significant impacts on the bicycle counts at 0.05 level are removed from the
model utilizing the backward selection method.

Table 5.8: Multinomial Logit Model Estimation Results

Parameter Estimates
Parameter Level| Estimate|Standard Error|t Value| Approx Pr > [t|
Constant2 2 2.3112 0.4306| 5.37 <.0001
Constant3 3| -2.4150 1.0291| -2.35 0.0189
Constant4 4 5.9278 0.5980| 9.91 <.0001
Constant5 5 6.8923 0.7711| 8.94 <.0001
Weekday 5/ -4.1488 0.3084| -13.45 <.0001
Hour_2 2| -1.7464 0.4134| -4.22 <.0001
Hour_2 3| -1.4990 0.5230| -2.87 0.0042
Hour_2 5 1.2087 0.5109| 2.37 0.0180
Hour_3 5 1.8764 0.4731| 3.97 <.0001




Parameter Estimates
Parameter Level| Estimate|Standard Error |t Value | Approx Pr > |t|
Hour_4 4| -3.8902 0.4753| -8.19 <.0001
MPLength 5 1.5708 0.4601| 3.41 0.0006
ThruLane 5 0.5906 0.0775| 7.62 <.0001
TOTPOP_CY 3| 0.000278 0.000121| 231 0.0211
MEDHINC_CY 3/0.0000402 7.6282E-6| 5.27 <.0001
MEDHINC_CY 5/0.0000360 2.7568E-6| 13.06 <.0001
Total HH 4| 0.005706 0.001417| 4.03 <.0001
Total_HH 5| 0.006635 0.001381| 4.81 <.0001
TotalFamily 4| -0.007300 0.001749| -4.17 <.0001
TotalFamily 5| -0.008146 0.001691| -4.82 <.0001
Slope 4 0.0477 0.009090| 5.25 <.0001
B_suggest0 4 1.1859 0.1312| 9.04 <.0001
RouteClass2 4| -2.2344 0.3437| -6.50 <.0001
RouteClass4 5 0.4541 0.1313| 3.46 0.0005
Oneway 5 1.0411 0.1432| 7.27 <.0001
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According to the MNL model estimation results presented in Table 5.8. Variables

that have significant impacts on bicycle counts contain weekday, time period from 9:00
to 14:59, time period from 15:00 to 17:59, time period from 18:00 to 19:59, the length of
segment, the number of through lanes, total population, median household income, total
households, total families, slope, suggested bike routes with low comfort, US route,
secondary route, and one-way road. The explanatory variables being kept in the MNL
model are similar to those in the ORL and PPO models but are not exactly the same. The

detailed model result interpretation and comparison will be presented in Section 5.6.
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The MNL model fit summary is shown in Table 5.9. From the table, the log-
likelihood value at convergence is -2774. Therefore, -2 LogL is calculated which equals
to 5548. This value will be used for the model comparison in Section 5.6.

Table 5.9: Model Fit Summary

Number of Observations | 237673
Number of Cases 1188365
Log Likelihood -2774
Log Likelihood (LogL(c))| -3736
AIC 5596
Schwarz Criterion 5845

5.6.  Mixed Logit Model

The MXL model is different from the MNL model because it allows explanatory
variables to influence the mean of the random parameter distribution (Bhat, 1998; Revelt
and Train, 1998; McFadden and Train, 2000; Bhat, 2000; Hensher and Greene, 2003) and
it can address the unobserved heterogeneity. Similar to MNL model, the linear utility
function of the MXL model is shown as follows:

Ui, = B Xin 65

where Ui, denotes the utility function of the level of bicycle counts i on each road
segment n, fSin means a vector of coefficient estimates which are allowed to vary, Xin
represents a vector of explanatory variables which affect the level of bicycle counts, and
&in 1S the error term.

According to the research conducted by Train (2009), the MXL model structure is

shown in the following equation:
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— exp(ﬂi Xin)

= F(Ble)dp
Zexp(ﬂixm)

where f(|¢) represents the probability density function of S, ¢ denotes the
parameter vector, which shows the mean and variance of the density function. The
coefficent p can be flexible or fixed, and can be any (e.g., normal, uniform, lognormal or
triangular) distribution (Train 2009). In this research, the normal distribution is selected.
If all the parameters are fixed, the mixed logit model will collapse into a simple
multinomial logit model.

The MXL model is built based on the MNL model. Subsequently, all variables in
multinomial logit models are assumed to be randomly distributed at first and normal
distribution is employed for all the variables in the MXL model. Then, a backward
selection process is applied to determine the normally distributed parameters in the MXL
model. Parameters will be fixed if the standard deviation is not different from zero at 0.05
level of significance. 200 Halton draws are utilized during the simulation-based model
estimation process. It is verified by some scholars that 200 Halton draws are sufficient
and accurate for mixed logit model development (e.g., Koppelman et al. 2003). However,
the number of observations (237,673) is extremely large for the estimation of MXL
model which is not time efficient. Therefore, the peak hour data are selected to analyze
cycling activities and the MXL models will be developed in Section 5.8.

5.7.  Model Comparison
This section compares the results of ORL, PPO, and MNL models developed in

the previous sections. Indicators utilized for the model comparison include -2Log-
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likelihood, likelihood ratio index p?, the Akaike’s information criterion (AIC), and the
Bayesian information criterion (BIC).
5.7.1. Indicators for Model Comparison

The most commonly used indicators for model comparison are -2Log-likelihood,
AIC, BIC, and p2. To compare the models within the same structure (e.g., ORL and PPO),
all the indicators can be utilized. However, to compare models within different structures,
it is not appropriate to utilize the likelihood values.

The values of indicators (AIC and BIC) are calculated with the following
equations:

AIC=2p-2LL
BIC = pIn(Q) — 2LL

where p is the total number of parameters in the model, Q represents the total
number of observationsand LL indicates the value of log-likelihood.

Therefore, the four indicators for each model developed in the previous sections
are shown in Table 5.10.

Table 5.10: Indicators for Model Comparison

Model | No. of Obs (Q) | No. of Vars. (p) | -2LogL | AIC | BIC p?

ORL 237673 23 5743 | 5789 | 6028 | 0.2315
PPO 237673 42 5437 | 5521 | 5957 | 0.2724
MNL 237673 24 5548 | 5596 | 5845 | 0.2575

Comparing the traditional ORL model to the PPO model, the PPO has a smaller
value of -2LogL than that of the ORL model, which indicates that the PPO model

outperforms the ORL model for fitting the bicycle count data in Charlotte. To compare
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the three models with different structures, AIC and BIC values are utilized. Based on the
values of AIC, the partial proportional odds model shares the smallest, which reveals the
best fitness of the PPO model. However, the BIC value of PPO is not the smallest.
According to the BIC values, the MNL model performs better than the PPO model, and
the PPO model is better than the ORL model. The implication derived from the value of
p? demonstrates that the PPO model with the largest value performs better than the other
two models. The reason that the BIC value of the PPO model is larger than the MNL’s
can be interpreted that the PPO model has more estimated parameters than the MNL
model. The trade-off between better fitness of the model and the variable number should
be carefully considered and examined. In this research study, with the consideration of
the four indicators, conclusion can be provided that the PPO model fits best for this
cycling activity analysis.

5.7.2. Model Result Comparison

Based on the model estimation results in Table 5.3, Table 5.6, and Table 5.8,
variables that have significant impacts on cycling activities are identified and interpreted
for all three models including ORL model, PPO model, and MNL model. The detailed
analysis is provided as follows:

1. Temporal variables:

The cycling behavior varies with different time in terms of weekday/weekend and
time of day. According to the model estimation results from three models, weekdays have
a negative impact on the bicycle counts for each road segment especially for the category
of high-level bicycle counts. It can be interpreted that Strava users in the City of

Charlotte prefer to bike on weekends. And on weekdays, the probability of the high-level
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bicycle count occurrence will decrease. The conclusion of this result might be related to
the high proportion of the non-commute trips in the Strava dataset. Different times of day
will have different impacts on the bicycle counts since cycling activities vary with the
change of time. The time period from 06:00 to 17:59 has a positive overall impact on the
bicycle counts, while time period from 18:00 to 19:59 has a negative impact on the
bicycle counts. To be specific, time period from 06:00 to 08:59 has a positive impact on
average-high level. Time period from 09:00 to 14:59 has a negative impact on the low-
average and average level, while it affects the high level of bicycle counts positively.
Time period from 15:00 to 17:59 affects the high level of bicycle counts positively. And
time period from 18:00 to 19:59 has a negative impact on average-high level. To
conclude, cyclists prefer to bike during daytime, and time period from 06:00 to 17:59 is
associated with high likelihood of above average bicycle counts. Researchers can
therefore assume that: First, the light condition is better during the daytime. Second,
cyclists choose to bike during daytime considering the safety issue.

2. Road characteristics:

Road characteristics are highly related to the cycling conditions, which make the
road characteristics factors significantly affect the cycling activities. The explanatory
variables that influence the level of bicycle counts significantly include the length of the
road segment, number of through lanes, Interstate, US route, NC route, secondary route,
and one-way road. From the model estimation results, the length of the road segment has
a positive impact on the bicycle counts. In other words, cyclists prefer to bike on long-
distance road segments. This is probably because bicyclists are willing to bike on

roadway segments with bicycle facilities (e.g., greenways), which tend to be long-



103

distance road segments. The number of through lanes have a positive impact on the high-
level bicycle counts for each road segment. It can be interpreted that cyclists tend to
select road segments with a greater number of through lanes as a part of their cycling
routes. Interstate and NC route have a negative impact on the bicycle counts. In addition,
US route will positively affect the high-level bicycle counts, however, negatively
influence the average-high level. Secondary routes are associated with high-level bicycle
counts. Therefore, it can be concluded that more bicycle counts are likely to occur on US
routes and secondary routes. One-way road segments have a positive impact on the
bicycle counts especially for high-level category. This result is probably related to the
cycling preference in the uptown area where numerous one-way roads exist.

3. Sociodemographic characteristics:

Several sociodemographic characteristics have different impacts on the level of
bicycle counts on each road segment in the City of Charlotte. According to the model
estimation results, explanatory variables that have significant impacts on bicycle counts
contain total population, median age, median household income, total household, and
total families. Based on the MNL model estimation results, the total population in the
certain areas (census blocks) affects the average level of the bicycle counts positively,
which indicates that high population will be associated with average level of the bicycle
counts. Locations with higher median age have a positive impact on bicycle counts. It can
be interpreted that cyclists prefer to bike in the area with higher median age. The median
household income factor may affect the bicycle counts differently across different levels.
To be specific, the median household income affects the average and above average

levels positively, while it has a negative impact on the low-average level. An assumption
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can be made that the uptown area has higher median income and the bicycle counts in the
uptown location are higher since bicyclists prefer to bike in the center city area.
Interestingly, the total households and total families affect the level of bicycle counts
differently. The total households affect the higher levels of bicycle counts positively,
while the total families affect the higher levels of bicycle counts negatively. It can be
assumed that cyclists prefer to select locations with more rental apartments and less
family house neighborhood.

4. Geometry:

The slope is one of the impact factors that affect the bicycle counts significantly.
In the three discrete choice models, this variable is examined to discover the correlation
between the probability of selecting the road segment as a part of the cycling route and
the slope. The model estimation results reveal that slope affects the level of bicycle
counts on each road segment negatively. It is not hard to understand that bicyclists prefer
to bike on flat segments instead of steep segments.

5. Bicycle facilities:

Bicycle facilities are the critical consideration for cycling activities. Bicyclists
may have different preferences for different bicycle facilities, which are able to provide
higher cycling safety. Based on the model estimation results, bike facilities including
signed bike lanes, suggested bike routes (both regular and low comfort), and greenways
all have significant influences on the bicycle counts. Signed bike lanes affect the level of
bicycle counts negatively, while greenways increase the likelihood of higher level of
bicycle counts. The suggested bike routes with low comfort have a negative impact on

bicycle count levels expect for average-high level. And suggested bike routes have a
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positive impact on bicycle counts especially for the high-level category. It can be
interpreted that greenways and suggested bike routes may have a better road condition
compared to the other types of the bicycle facilities.
5.8.  Modeling Cycling Activities for Different Time Periods

Applying the methodology mentioned in Section 5.6, two MXL models are
developed to analyze the cycling activities for different time periods (AM peak hours and
PM peak hours). The model estimation procedure is conducted in SAS 9.4. The MXL
logit models developed in this section are based on the MNL models built for different
time periods. The MXL model developed for AM peak hours collapses into a MNL
model. The indicators for different time periods are shown in Table 5.11.

Table 5.11: Indicators for Different Time Periods

Time Periods | Model | No. of Obs | No. ofVars. | -2LogL | AIC BIC p?
Q) (P)
AM Peak MNL 43444 24 798.71 | 846.71 | 1055.01 | 0.1632
Hours
PM Peak MXL 48447 13 1789.96 | 1815.96 | 1930.21 | 0.1690
Hours

In Section 5.8.1 and Section 5.8.2, the MNL model and the MXL for AM peak
hours and PM peak hours respectively are presented. The analysis of the model
estimation results demonstrates the impacts of different explanatory variables on the
cycling activities for both peak hours.

5.8.1. AM Peak Hours
To analyze the cycling activities for AM peak hours, a MXL model is developed

with low level of bicycle counts selected as the base. However, standard deviations of all
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the levels in the MXL model are not different from zero at the significance level of 0.05.
In other words, the coefficients in this model are fixed. Therefore, this MXL model
collapses into a MNL model, and the MNL model estimation results are presented in

Table 5.12.

Table 5.12: MNL Model Estimation Results for AM Peak Hours

Parameter Estimates
Parameter Level| Estimate|Standard Error |t Value | Approx Pr > |t|
Constant 2 4.0770 0.9704| 4.20 <.0001
Constant 3| -11.5363 2.6558| -4.34 <.0001
Constant 4| -1.3841 3.0688| -0.45 0.6520
Constant 5 1.3761 1.8488| 0.74 0.4567
Weekday 5/ -1.8047 0.4723| -3.82 0.0001
MPLength 2| -12.1937 4.4586| -2.73 0.0062
SpeedLimit 4| -0.1408 0.0620| -2.27 0.0232
ThruLane 3 2.1545 0.8328| 2.59 0.0097
ThruLane 4 2.3905 0.6926| 3.45 0.0006
ThruLane 5 2.0612 0.6235| 3.31 0.0009
MEDHINC_CY 3/0.0000820 0.0000186| 4.40 <.0001
MEDHINC_CY 410.0000422 0.0000156| 2.70 0.0069
MEDHINC_CY 5/0.0000667 0.0000142| 4.70 <.0001
Total _HH 2| -0.002737 0.001125| -2.43 0.0150
Total HH 5| 0.003217 0.001249| 2.58 0.0100
TotalFamily 5/ -0.005797 0.001417| -4.09 <.0001
B_bikelane 2 1.9884 0.8153| 2.44 0.0147
B_bikelane 3 3.3529 0.8581| 3.91 <.0001
B_greenway 2 3.4877 1.0441| 3.34 0.0008
Oneway 3 3.4908 1.0794| 3.23 0.0012
Oneway 4 2.3318 0.9354| 249 0.0127
Oneway 5 2.4732 0.7732| 3.20 0.0014
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1. Temporal variables:

Similar to the MNL model developed for the whole dataset, weekday has a
negative impact on the high-level bicycle counts on each road segment. The same results
can be concluded that the cyclists in the City of Charlotte prefer to bike on weekends.
Weekdays will probably decrease the likelihood of the occurrence of high-level bicycle
counts.

2. Road characteristics:

The explanatory variables that affects the level of bicycle counts significantly are
different from the variables in the MNL developed with the whole dataset. According to
the model results presented in Table 5.12, the road characteristic variables that have
significant impacts on the level of bicycle counts contain the length of road segment,
number of through lanes, speed limit, and one-way road. The length of the road segment
affects the low-average level of bicycle counts negatively, which indicates that low-
average level of bicycle counts is likely to be associated with shorter road segments. The
posted speed limit on a road segment affects the bicycle count level (high-average)
negatively. It is not hard to imagine cyclists prefer to bike on roads with lower speed
limits. A greater number of through lanes increases the likelihood of high-level bicycle
counts (average and above). It can be interpreted that cyclists tend to select roads with
more through lanes. In addition, the one-way road remains to influence the high level of
bicycle counts (average and above) positively, which demonstrates that cyclists prefer to
bike on one-way roads.

3. Sociodemographic characteristics:
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Changes are also found in the sociodemographic variables having significant
impacts on the level of bicycle counts for AM peak hours. Based on the results
represented in Table 5.12, median household income, total households, and total families
all affect the bicycle counts significantly. The median household income affects the
average and above average levels of bicycle counts positively, which indicates that
cyclists prefer to bike in the areas with higher household income. This result is consistent
with the interpretation of the variable from models based on the whole dataset. Total
households influences low-average level of bicycle counts negatively, while this variable
affects the high level positively. This result reveals that the area with more households
increases the likelihood of high-level bicycle counts and decrease the probability of low-
average level. The impact of the total families remains the same as the MNL model
developed with the whole dataset.

4. Bicycle facilities:

The bicycle facilities that have significant impacts on bicycle counts are different
from the previous MNL model. Only bike lanes and greenways affect the level of bicycle
counts significantly. They both have a positive impact on the low-average or average
level of bicycle counts. It can be interpreted that bike lanes and greenways increase the
likelihood of low-average or average level of bicycle counts. It can be assumed that lots
of cycling trips that occurred during AM peak hours are in the center city where few

cyclists bike on these two types of bicycle facilities.
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5.8.2. PM Peak Hours

To explore the difference of impact factors between the cycling activities
occurred during AM peak hours and PM peak hours, the MXL model is developed and
the model results are presented in Table 5.13.

Table 5.13: MXL Model Estimation Results for PM Peak Hours

Parameter Estimates
Parameter Level | Estimate|Standard Error |t Value| Approx Pr > [t|
Constant 2 1.0470 0.5182| 2.02 0.0433
Constant 3| -1.5170 0.8442| -1.80 0.0723
Constant 41 0.1042 1.0485| 0.10 0.9209
Constant 5/ 8.8208 0.7556| 11.67 <.0001
SpeedLimit 4| -0.0518 0.0159| -3.25 0.0012
TOTPOP_CY 5(-0.000402 0.000135| -2.97 0.0030
MEDAGE_CY 4/ 0.0765 0.0253| 3.02 0.0025
MEDHINC_CY 4(-0.000104 0.0000117| -8.86 <.0001
Total HH_ M 3| 0.001810 0.002016| 0.90 0.3691
Total HH_S 3/-0.002175 0.000682| -3.19 0.0014
Total_HH 4| 0.004110 0.001235| 3.33 0.0009
Total_HH 5| 0.005762 0.000981| 5.87 <.0001
Slope 4| -0.0799 0.0216| -3.70 0.0002

Compared to the MNL developed for the cycling behavior during AM peak hours,
the explanatory variables that remain to have significant impacts on the bicycle counts
during PM peak hours include speed limit, median household income, and total
households. In addition, different from the impact factors for cycling behavior during AM
peak hours, total population, median age, and slope are found to affect the level of

bicycle counts significantly during PM peak hours.
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Speed limit still affects the level of bicycle counts negatively, which is consistent
with the results of cycling behavior during AM peak hours. Different cycling behavior is
found in terms of the impact of total population. For example, during PM peak hours,
cyclist prefer to bike on roads located in areas with low population, which is opposite to
the results concluded from the models based on the whole dataset. The median age
variable affects the high-average level of bicycle counts positively, which remains the
same effect as mentioned before. However, median household income influences the
average-high level of bicycle counts negatively, which indicates that cyclists prefer to
bike in the area with low household income. Total households still have a positive impact
on average and above average levels, and the slope still has a negative impact on high-
average level of bicycle counts.

5.9.  Summary

This chapter develops several discrete choice models including ORL model, PPO
model, MNL model, and MXL model to analyze the cycling activities. Model
comparison is conducted to choose the best model structure for this study, and PPO
model outperforms the other discrete choice models. The cycling behavior in different
time periods including AM peak hours and PM peak hours is analyzed based on the
mixed logit model. Impact factors that are associated with different levels of bicycle

counts in the City of Charlotte are identified.
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CHAPTER 6: BICYCLIST INJURY RISK ANALYSIS

6.1. Introduction

This chapter develops a series of safety performance functions to analyze bicyclist
injury risk. The rest of this chapter is organized as follows. Section 6.2 provides the data
preparation procedure for the later bicyclist injury risk analysis. Section 6.3 through
Section 6.6 present the methodology for analyzing the impacts of cycling safety including
Negative Binomial (NB) model, Poisson model, Zero-inflated Negative Binomial (ZINB)
model, and Zero-inflated Poisson (ZIP) model. Section 6.7 compares the model
estimation results utilizing the goodness of fit and summarizes the model results with
different impacts of various explanatory variables. Finally, Section 6.8 concludes this
chapter with a summary.
6.2.  Data Preparation

The data preparation procedure is similar to the data processing procedure
presented Chapter 4 and Chapter 5. This process is conducted mainly using ArcGIS. The
primary function used in ArcGIS is spatial join that helps researchers join multiple layers
by the same location with different spatial and relative information. Based on the
literature review as well as the data availability, the following information including
bicycle volume, bicycle-vehicle crashes, road characteristics, sidewalk information,
bicycle facilities, bus stops, and AADT is collected for the model development of safety
performance functions. The detailed data description and sources are shown in Table 6.1

Table 6.1: Data Descriptionand Sources

Data Description Sources

Strava Bicycle volume data (December 2016 to November  Strava Metro
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Data Description Sources

2017) including bicycle counts on each road segment
in Charlotte and the Charlotte road network shapefile

Bike Crashes Bicycle-vehicle crashesoccurred in the city of NCDOT
Charlotte from 2007 to 2017

Road North Carolinaroad characteristics NCDOT

Characteristics

Sidewalks The sidewalk information in the city of Charlotte Charlotte Open

Data Portal

PBIN Bicycle facilitiesin North Carolina NCDOT

AADT Annual average daily traffic informationin North NCDOT
Carolina

To obtain the final combined dataset including the information mentioned above,
all the data are imported in ArcGIS, and “spatial join™ is utilized to identify the spatial
relationships between each dataset. To be specific, the Strava road segment shapefile
created based on the OpenStreetMap is used as the base of all the spatial join/table join.
First, layers including road characteristics, AADT, sidewalks, bus stops, and bicycle
facilities are joined spatially to the base layer (Strava road segment shapefile). Second,
Strava data including the bicycle volume on each segment and all the spatial joined layers
are compiled together with the same road segment ID to obtain the combined road
shapefile. Finally, each bicycle-vehicle crash is assigned to its closest road segment, and
the bicycle crash counts on each road segment are rolled up to generate the final complete
data for the development of safety performance functions. The data preparation procedure

can be seenin Figure 6.1.
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Before using the combined data, the data is imported in SAS to remove the
observations with missing values and convert variables into dummy variables. The
detailed explanatory variables considered in the following safety performance functions
and their descriptions are presentedin Table 6.2.

Table 6.2: Explanatory Variables

Variable Description

Volume Variables

AADB Annual average daily bicycle counts on each road segment
AADT Annual average daily traffic collected from AADT count
stations

Road Characteristics

Oneway If the road segment is one way, then oneway = 1, dummy
variable

MPLength The length of the segment in miles.

Functional Interstate, dummy variable

Classificationl

Functional Principal Arterial, dummy variable

Classification2

Functional Minor Arterial, dummy variable

Classification3

Functional Major Collector, dummy variable

Classification4

Functional Minor Collector, dummy variable

Classification5

Median The presence of a median, dummy variable

MedianWidth The width of the median

SpeedLimit The posted speed limiton a roadway segment

Sidewalk The presence of a sidewalk, dummy variable

SidewalkWidth The width of the sidewalk

Bus_Stop The presence of a bus stop

Bicycle Facilities

Bike_Lane The presence of a bike lane, dummy variable
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Variable Description

Paved_Shoulder The presence of a paved shoulder, dummy variable

6.3.  Poisson Model

Poisson regression model is known as one of the most prevalent models for
estimating count data. Many researchers have applied this method to numerous studies
regarding transportation count data. In this case, bicycle-vehicle crash counts are studied.
Thus, Poisson regression model is applied as a safety performance function to analyze
bicyclist injury risk. This Poisson regression model has an assumption, which is the mean
equals to its variance, which can be expressed in the following equation:

VAR[y;] = Ely]

where VAR denotes the variance; y; indicates that segment i has y times of crashes
happened in the studied time period; E represents the expected mean. The number of y
crashes follows a Poisson distribution with a condition mean and the characteristics of an
individual are related to the number of crashes. The expected value of crashes y and the
association with the considered explanatory variables are shown in the following
equation:

1 = EXP(BX;)

where EXP means the exponential; f denotes the estimated coefficient
corresponding to the independent variable X;; u; is the expected value of the dependent
variable representing the total number of bicycle-vehicle crashes happened at a specific
segment.

The probability of a segment i experiencing bicycle-vehicle crashes during the

certain research period is shown as the following equation:
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EXP (—p;)p”

P(y) = 7]

where P(y;) represents the probability of y; crashes occurred on a segment i; y;
denotes the Poisson parameter for the specific segment, which equals to E[y;].
6.4.  Negative Binomial Model

Although Poisson regression is a prevalent method for modeling transportation
count data, it has the assumption mentioned in the above section that the mean equals to
the variance. This assumption may bring bias to the model estimation results. In addition,
bicycle crash count data are usually over-dispersed based on the previous research studies,
which shows a higher variance than the sample mean. Hence, NB model is developed to
address the over-dispersed issue. The following equation shows the relationship between
the dependent and independent variables:

K = EXP(BX; + &)

where ¢ denotes the random error term that represents the unobserved attributes
neglected in the NB model. It is assumed that the error term has no correlation with X.
EXP(&;) means a disturbance term that follows Gamma distribution, where mean equals
to 1 and variance equals to a. With this distinctive term, the variance is not restricted to
be the same as the value of the mean. This can be expressed in the following equation:

VAR[y;] = E[y,][1 + aE[y;]] = Ely;] + aE[y;]?

As is seen in the above equation, it can be interpreted that if the overdispersion

parameter a equals to O, the variance will be the same as the value of the mean. The

probability function of the NB model is shown by the following equation:
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where T represents the gamma distribution function.
6.5.  Zero-inflated Poisson Model

One of the critical phenomena that cannot be neglected is that the number of
observations with zero crash during a certain study period can be an issue to the model
estimation. It can be found that zero crash may occurred on numerous roadway segments.
This problem is common since many road segments have no crash record.

In order to solve the zero-state issue, Zero-inflated Negative Binomial model and
Zero-inflated Poisson model are developed based on the zero model from the method of
modeling with zero. These two models separate the model estimation process into two
splitting means for zero counts and non-zero counts respectively.

It is assumed in the Zero-inflated Poisson model that the crashes Y =
V1, Y2, ---,» ¥n) Occurred on road segments are independent and the probability functions
for zero count and non-zero counts are shown in the following equations:

y; = 0 with probability p; + (1 — p;)exp (—u;)

(1 —p;)exp (—u)u”
y!

y; =y with probability

where p; is the probability of experiencing zero observation, y; is the number of
crashes occurred on a specific road segment during research period, where u; =
exp (BX;). The variance is shown in the following equation:

VAR[y|1X:, Z;] = w;(1 —p) (1 + wp;)
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6.6.  Zero-inflated Negative Binomial Model

Similar to ZIP model, ZINB model also splits the underlying data generating
process into two regimes. It is an extension of Negative Binomial model, which solves
the zero-state problem.

The ZINB model is presented in the following equations:

1

- 1

y; = 0 with probability p; + (1 — Pi)(l ¢ )a
E + Uu;
1

1 1 - Vi
, . ri+a) @\
y; =y with probability (1 —p;)| 1 1 1 ]
() \g+u/ \g+u

where the disturbance term following Gamma distribution has the mean of 1 and
the variance of . The variance of Zero-inflated Negative Binomial model is shown as
follows:

VAR[y;1X;,Zi] = w;(1 —p)(1 + w (p; + @)

6.7.  Model Result Analysis

To analyze the bicyclist injury risk on road segments and explore the impact
factors on the bicycle-vehicle crash counts in the city of Charlotte, several safety
performance functions including NB model, Poisson model, ZINB model, and ZIP model
are developed. Explanatory variables (presented in Table 6.2) are carefully selected for
the model estimation based on the literature review as well as the data availability.

All the explanatory variables presented in Table 6.2 are first included in the safety
performance functions to analyze the probability of certain crash counts. The maximum
likelihood method is applied to conduct the model parameter estimation. SAS 9.4 is

utilized to conduct the model estimation procedure. To keep the variables that affects the



119

crash counts on the roadway segments significantly, the backward selection demand is
utilized. The final model results for the four safety performance functions with significant
variablesonly are shown in the following tables.

Table 6.3: Poisson Model Estimation Results

Analysis of Maximum Likelihood Parameter Estimates
Parameter Estimate| Standard| Wald 95% Confidence Wald Chi-| Pr > ChiSq
Error Limits Square
Intercept -3.4211| 0.0502 -3.5195 -3.3227 4643.27 <.0001
AADB 0.0002| 0.0000 0.0002 0.0002 65.91 <.0001
Interstate -0.4781| 0.2473 -0.9627 0.0066 3.74 0.0532
Principal_Arterial| 0.6010| 0.1034 0.3984 0.8036 33.80 <.0001
Minor_Arterial 0.5042| 0.1046 0.2992 0.7092 23.24 <.0001
Major_Collector 0.4612| 0.1159 0.2340 0.6884 15.83 <.0001
Minor_Collector | 0.5449| 0.3055 -0.0538 1.1437 3.18 0.0745
Bus_Stop 1.2603| 0.0787 1.1061 1.4146 256.41 <.0001
Bike Lane 0.6181| 0.1103 0.4020 0.8342 31.43 <.0001

Table 6.4: Negative Binomial Model Estimation Results

Analysis of Maximum Likelihood Parameter Estimates
Parameter Estimate| Standard| Wald 95% Confidence Wald Chi-|Pr > ChiSq
Error Limits Square
Intercept -3.4578| 0.0551 -3.5658 -3.3499 3944.33 <.0001
AADB 0.0002| 0.0000 0.0002 0.0003 48.85 <.0001
Interstate -0.4791| 0.2580 -0.9847 0.0265 3.45 0.0633
Principal_Arterial| 0.6338| 0.1192 0.4001 0.8675 28.25 <.0001
Minor_Arterial 0.5029| 0.1209 0.2659 0.7399 17.30 <.0001
Major_Collector 0.5144| 0.1352 0.2494 0.7794 14.48 0.0001
Minor_Collector 0.6838| 0.3469 0.0039 1.3638 3.89 0.0487
Bus_Stop 1.3159( 0.0937 1.1322 1.4996 197.08 <.0001
Bike_Lane 0.6653| 0.1355 0.3998 0.9309 24.11 <.0001




Table 6.5: Zero-inflated Poisson Model Estimation Results
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Analysis of Maximum Likelihood Parameter Estimates
Parameter Estimate| Standard| Wald 95% Confidence Wald Chi-| Pr> ChiSq
Error Limits Square
Intercept -2.0783| 0.1007 -2.2756 -1.8810 426.12 <.0001
Interstate -0.5033| 0.2543 -1.0017 -0.0049 3.92 0.0478
Principal_Arterial| 0.5817| 0.1143 0.3577 0.8057 25.90 <.0001
Minor_Arterial 0.4544| 0.1154 0.2283 0.6806 15.51 <.0001
Major_Collector 0.4507| 0.1288 0.1984 0.7031 12.26 0.0005
Minor_Collector | 0.6943| 0.3548 -0.0011 1.3896 3.83 0.0504
Bus_Stop 1.2172| 0.0904 1.0400 1.3945 181.22 <.0001
Bike_Lane 0.6704| 0.1256 0.4242 0.9166 28.49 <.0001
Analysis of Maximum Likelihood Zero Inflation Parameter Estimates
Parameter Estimate| Standard| Wald 95% Confidence Wald Chi-| Pr > ChiSq
Error Limits Square
Intercept 1.0395| 0.1190 0.8064 1.2726 76.37 <.0001
AADB -0.0004| 0.0001 -0.0005 -0.0002 19.64 <.0001

Table 6.6: Zero-inflated Negative Binomial Model Estimation Results

Parameter Estimates

Parameter Estimate| Standard Error t Value Approx Pr > |t|
Intercept -2.957305 0.063632 -46.48 <.0001
Interstate -0.472699 0.259744 -1.82 0.0688
Principal_Arterial 0.537115 0.118766 4.52 <.0001
Minor_Arterial 0.318137 0.118765 2.68 0.0074
Major_Collector 0.402069 0.130228 3.09 0.0020
Bus_Stop 1.111739 0.092795 11.98 <.0001
Bike_Lane 0.659989 0.128543 5.13 <.0001
Inf_Intercept 0.704238 0.169307 4.16 <.0001
Inf_AADB -0.113304 0.029687 -3.82 0.0001
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To compare the four safety performance functions, the indicators for model
comparison mentioned before in Section 5.7 is adopted. Therefore, the indicators for each
model including NB model, Poisson model, ZINB model, and ZIP model are presented in
the following table.

Table 6.7: Indicators for Model Comparison

Model No. of Obs (Q) | No. of Vars. (p) | -2LogL | AIC | BIC
Poisson Model 15664 9 6312 | 6329 | 6398
NB Model 15664 10 6156 | 6176 | 6252
ZIP Model 15664 10 6188 | 6208 | 6285
ZINB Model 15664 10 6090 | 6110 | 6186

As mentioned before in Chapter 5, smaller values of the indicators represent
better fitness. Comparing the four models with the values of -2LogL, AIC, and BIC,
ZINB model outperforms the other three safety performance functions. This model
comparison result is not hard to infer, since the estimation procedure of ZINB model is a
splitting data modeling process that consider the zero-state issue. The crash data utilized
in this research study contain a lot of road segments with zero crashes, which may lead to
biases when developing traditional Poisson model or Negative Binomial model.
Therefore, it is confirmed that ZINB is the best fit for this bicyclist injury risk analysis.

Summarizing the model estimation results presented in Table 6.3, Table 6.4,
Table 6.5, and Table 6.6, variables that have significant impacts on bicyclist injury risk
including annual average daily bicycle counts, interstate roads, minor arterials, principal

arterials, minor collectors, major collectors, the presence of bus stops, and the presence of
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a bicycle lane are identified and will be interpreted in detail. The explanation of the
impacts of significant variables on bicyclistinjury risk is provided as follows:

1. Volume variables:

As expected, the annual average daily bicycle counts affect the crashes occurred
on a road segment significantly. The number of bicycle counts on a road segment has a
positive impact on the bicyclist injury risk. In other words, if the road segment has more
bicycle counts, the probability of higher injury risk on this road segment is greater. In the
ZINB and ZIP models, the annual average daily bicycle counts are included in the zero-
inflation parameter estimation. In this process, the effect of the AADB is different from
that of the Poisson model and Negative Binominal model. It can be interpreted that the
higher bicycle counts on a road segment, the smaller probability of obtaining zero
bicycle-vehicle crashes.

2. Road characteristics:

Interstate roads, minor arterials, principal arterials, minor collectors, and major
collectors all have significant impacts on the bicyclist injury risk. It can be seen that the
function classification of a road segment is the major impact on the bicycle-vehicle crash
counts. The interstate roads have a negative impact on bicyclist injury risk, while minor
arterials, principal arterials, minor collectors, and major collectors affect the cycling
safety positively. This result indicates that the likelihood of higher crash counts on minor
arterials, principal arterials, minor collectors, and major collectors is higher, while the
probability of crashes occurred on interstate roads is lower.

In addition, the presence of bus stops on a road segment has a positive impact on

bicyclist injury risk, which indicates that the presence of bus stops may increase the
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probability of more bicycle-vehicle crashes. It can be imagined that if a bus stop is
located on a road segment, the conflict of bicyclists and bus may increase the probability
of a bicycle-vehicle crash.

3. Bicycle facilities:

The presence of a bike lane on a roadway segment affects the bicyclist injury risk
significantly. Interestingly, it is likely to increase the probability of crashes, which might
be different from the expectation. This result may be related to the bicycle facility
condition, and the higher likelihood of more cycling activities on bike lanes.

6.8. Summary

This chapter develops several safety performance functions including NB model,
Poisson model, ZINB model, and ZIP model to analyze the bicyclist injury risk. Model
comparison is conducted to select the best model structure for this research study. Impact
factors that are associated with the number of bicyclist-involved crashes occurred on

roadway segments in city of Charlotte are identified and interpreted.
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CHAPTER 7: SUMMARY AND CONCLUSIONS

7.1.  Introduction

Cycling has gained more attention from the citizens and planners recently, since it
can provide benefits not only for the society but also for the environment. By promoting
cycling especially for short-distance trips, Charlotte has been making every effort to
become a bike-friendly city. As an ideal travel mode, cycling is able to improve public
health, reduce energy consumption, and alleviate air pollution, etc.

To increase the mode share of cycling, research studies are needed to conduct to
explore the impacts on bicycle volume on a road segment in the whole city network and
the bicyclist injury risk. One of the most critical issues that need to be considered for the
bicycle volume estimation and prediction, cycling activity modeling, and bicyclist injury
risk analysis is the data collection method. Traditional data collection methods including
travel surveys and data from manual count machines can be time-consuming and
expensive. The novel crowdsourced data can address the issues brought by traditional
data collection methods and provide the temporal and spatial information on cycling to
bridge the data gap.

Based on the crowdsourced bicycle data collected from the Strava application,
this research study is conducted to estimate the bicycle volume on most of the road
segments in the City of Charlotte, to analyze cycling activities, and to develop safety
performance functions to analyze cycling safety.

The rest of this chapter is organized as follows. Section 7.2 provides a brief
review of the methods used to conduct the bicycle volume prediction, cycling activity

modeling, and safety analysis based on the novel crowdsourced bicycle data. The model
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results are concluded in this section, and the model comparison results indicating the best
model structure for this research study are summarized. Different cycling activities
during AM and PM hours are concluded in this section and policy-related
recommendations are provided here. Section 7.3 discusses the limitation of this study and
provides the future research directions in order to improve the research and also further
enhance cycling environment and safety.

7.2.  Summary and Conclusions

The primary objectives of this research are to estimate and predict the bicycle
volume on each roadway segment, model the cycling activities based on crowdsourced
bicycle data, and conduct cycling safety analysis. Based on the crowdsourced data
collected from Strava, the descriptive analyses are conducted in terms of the demographic
information on Strava users, cycling activities for different trip purposes, the cyclist
counts on each road segment in the City of Charlotte for each month of year,
weekdays/weekends, and time of day.

Crowdsourced bicycle data from Strava smartphone application are combined
with a series of other relevant data including NC road characteristics data, demographic
data, slope data, manual count data from continuous count stations in Charlotte, temporal
data, and bicycle facility data, etc. Data comparison is conducted to demonstrate the
differences between manual count data and Strava bicycle count data. Data process and
combination procedures are completed using ArcGIS and SAS. Based on the combined
data, two linear regression models are developed. The relationship between manual count
data and Strava data as well as other relevant data is analyzed. To be specific, variables

including weekday, time period except 00:00-06:00 am, Strava user counts, off-street
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paths, bike lanes, and suggested bike routes have significant impacts on the total bicycle
volume on a road segment, where cycling during time period except 00:00-06:00 am,
Strava user counts and cycling on off-street paths have positive impacts on the total
bicycle volume, while cycling on weekdays and bicycle facilities including bike lanes
and suggested bike routes have negative impacts on total bicycle volume. Bicycle volume
on most of the road segments in the City of Charlotte is predicted using the developed
model. A bicycle ridership map is created to have a graphical view of the bicycle counts
for the whole road network.

Several discrete choice models are developed to analyze cycling activities in the
City of Charlotte. Models including ORL model, PPO model, MNL model, and MXL
model are compared to select the best-fit model for this cycling activity analysis.
According to the model estimation results, variables including weekday, total family,
slope, signed bike lanes, suggested bike routes with low comfort, interstate route, and NC
route are found to affect the level of bicycle counts negatively, while other variables
which are time period from 6:00 to 17:59, segment length, number of through lanes,
median age, median household income, total household, suggested bike routes, greenway,
US route, and one-way road are identified to affect the level of bicycle counts positively
in the ORL model. In the PPO model, variables including time period from 6 am to 9 am,
the number of through lanes, median household income, total households, total families,
suggested bike routes, US routes, and one-way road violate the PO assumption and affect
different levels variously. Variables that satisfy the PO assumption including weekday,
time period from 15:00 to 17:59, slope, signed bike lanes, suggested bike routes with low

comfort, and greenways remain the same interpretation as the ORL model. The
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explanatory variables that have significant impacts on bicycle counts in MNL model
contain weekday, time period from 9:00 to 14:59, time period from 15:00 to 17:59, time
period from 18:00 to 19:59, the length of segment, the number of through lanes, total
population, median household income, total households, total families, slope, suggested
bike routes with low comfort, US route, secondary route, and one-way road which are
similar to the ORL and PPO model. By calculating the indicators (-2LogL, AIC, BIC, and
p?) for model comparison, PPO model is determined to be the best model structure for
this cycling activity analysis. To explore the different cycling activities for both AM and
PM peak hours, a MNL model and a MXL model are developed. Impact factors that are
associated with different levels of bicycle counts in the City of Charlotte are identified.

In addition, several safety performance functions are developed to analyze
bicyclist injury risk on road segments in the city of Charlotte. Models including NB
model, Poisson model, ZINB model, and ZIP model are compared to identify the best fit
for this cycling safety analysis. ZINB is identified to outperform the other three models.
Variables including AADB, minor arterials, principal arterials, minor collectors, major
collectors, and the presence of bus stops and a bike lane on a road segment all have
positive impacts on bicyclist injury risk, while the interstate roads affects the number of
bicycle-vehicle crasheson a road segment negatively.

According to the bicycle volume estimation model results and the bicyclist injury
risk analysis obtained and conclusions made in this research, some policy-related

recommendations can be provided as follows:
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1. Based on the modeling results that bicyclists prefer off street paths, planners
can design more off-street paths to offer better bike environment for bicyclists
in the City of Charlotte.

2. To promote biking to work, the locations of the off-street paths need to be
constructed in the uptown area. Since there are a lot of traffic in Charlotte
uptown area, especially during peak hours, and the bicycle volume is higher
there compared to other locations, constructing more off street paths should
attract more bicyclists to choose to bike other than private cars and public
transit (for short-distance trips).

3. According to the modeling results, the predicted bicycle volume on road
segments related to parks and greenways in the City of Charlotte has a higher
number. To encourage recreational bicycle trips, the bicycle facilities in the
park or greenway area should be improved.

4. It is important to identify the right of way on a roadway segment with bus
stops. It is recommended to constructed separated bike facilities especially for
bicyclists to avoid crashes.

If the above policy-related recommendations are followed, better bike
environment and cycling safety can be provided for the citizens in Charlotte to improve
their quality of life and to mitigate traffic congestion to some extent.

7.3.  Directionsfor Future Research

In this section, some of the limitations of this research are pointed out and the

directions for future research are also provided. The limitations of this research can be

summarized as follows:
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1. Bicycle volume:

(1) The bicycle manual count data have a limitation in the model development.
The availability of more count data from the bicycle count stations may
improve the model results.

(2) The manual count data are collected from the count stations which are located
in the center city. Most of the bicycle trips might be related to commuting
trips based on the trip locations. Since a large portion of the manual count data
that are used to predict bicycle volume might be commuting trips, and the
bicycle volume in the uptown area might be higher than other locations in the
City of Charlotte, biases might exist when predicting the bicycle volume.

(3) The two bicycle volume regression models are developed in the urban cycling
environment. Situations may vary in the rural area and in other metropolitan
centers, and as such, the model developed for predicting the bicycle volume
may not be representative in those cases.

(4) The majority of the cycling trips generated by Strava users are non-commute
trips which may be different from the cycling behavior for commute trips.

2. Cycling activities:

Some supporting data (e.g., roadway characteristics data) are not available for
certain roadway segments, and thus the records with blank information are
removed from the dataset.

Based on the limitations of this study and the literature review on relevant studies,

some improvements can be made in future studies.
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Since more manual count stations are under construction now, with more
bicycle manual count data, the bicycle volume regression models can be
improved.

Other models can be developed and tested to see if there is a better fitness for
relevant research studies.

The cycling activities occurred in various locations can be different.
Comparison can be conducted for cycling activities in different locations (e.qg.,
urban or rural areas).

Bicyclist injury risk at intersections can be examined since it is more likely to
experience crashes at intersections. It can be analyzed and compared with the

cycling safety on roadway segments.
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