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ABSTRACT 

ZIJING LIN. Evaluating the potential use of crowdsourced bicycle data for cycling 

activities and safety analysis. (Under the direction of DR. WEI FAN) 

 

 

Cycling, as a healthier and greener travel mode, has been encouraged for short-

distance trips by city planners and policymakers. Since cycling provides an efficient way 

to improve public health, alleviate traffic congestion, and reduce energy consumption, it 

is essential to analyze the contributing factors to the cycling activities on each roadway 

segment and bicyclist injury risk, so as to quantify the impact of certain attributes on 

bicycle volume as well as biking safety and further provide better cycling environment 

for cyclists to encourage non-motorized travels. 

To map ridership, data including network characteristics, sociodemographic 

factors, and temporal characteristics, are quite indispensable. There have been multiple 

bicycle volume data collection methods and the most commonly used ones include 

traditional manual counts, travel surveys, and crowdsourced data from the third party. 

Most of the previous research efforts used the first two methods mentioned above to 

collect the data of interest. However, such methods are expensive and time-consuming. 

Crowdsourced data, on the contrary, are cost effective and timesaving, and therefore they 

have been widely collected and used by many public agencies and private sectors in 

recent years. Among all the crowdsourced data, data collected from smartphone 

applications including Strava, CycleTracks, ORcycle, etc. have become more and more 

prevalent. Crowdsourcing has increased the availability of data collection and provided 

an efficient way to bridge the data gap for decision making and performance measures. 
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This research concentrates on evaluating the potential use of crowdsourced bike 

data and comparing them with the traditional bike counting data that are collected in the 

city of Charlotte, NC. Using the bike data from both the Strava smartphone cycling 

application and the bicycle count stations, the bicycle volume models are developed. 

Based on the results, a bicycle volume predictive model is presented, and a map 

illustrating the bicycle volume on most of the road segments in the City of Charlotte is 

generated. In addition, to gain a better understanding of the attributes that have an impact 

on cycling, other supporting data are also collected and combined with the Strava bicycle 

count data. Multiple discrete choice models are developed to analyze the Strava users’ 

cycling activities. Furthermore, bicyclist injury risk analysis is also conducted to explore 

the impact factors affecting biking safety by developing a series of safety performance 

functions. Several indicators for model comparison are utilized to select the best fitting 

model for bicyclist injury risk modeling. Finally, recommendations are made in order to 

help improve the cycling environment and safety and increase the bicycle volume in the 

future.  
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CHAPTER 1:  INTRODUCTION 

1.1. Problem Statement and Motivation 

With the increase in traffic demand, cities all over the world begin to encourage 

use of non-motorized travel modes, such as cycling, especially for short distance trips. It 

has been well known that cycling is an efficient way to provide healthier and greener 

travel which can help alleviate traffic congestion, reduce emissions, decrease energy 

consumption, and improve public health. In a safe and comfortable traveling environment, 

cycling will become a normal and common choice for travelers to get around, and in 

return, the city will benefit from it to have healthier and more energetic population. 

According to the Charlotte Department of Transportation (CDOT) Bicycle 

Program (CDOT, 2017), Charlotte is making every effort to offer an inclusive and 

comfortable cycling environment for all potential bicyclists. The program provides 

people of all ages and abilities the convenience to use their bicycles for traveling, fitness, 

and fun. Therefore, studies on identifying what attributes might have an impact on 

cycling are highly desirable and even become essential for city planners, policymakers, 

and researchers.  

Charlotte has been taking significant steps to become a bicycle-friendly city 

during the past fifteen years. A comprehensive bicycle plan has been adopted, and 

changes to the policies have been made that lead to changes on the ground for bicyclists. 

The first mile of bicycle lanes was constructed in 2001. With the changes in bicycle plans 

and policies, the bike network in Charlotte has increased to contain more than 90 miles of 

bicycle lanes, 40 miles of greenways and off-street paths, and 55 miles of signed routes 

(CDOT, 2017). According to a cycling survey conducted by CDOT (2017), 51% of the 
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residents in Charlotte would be willing to travel by bike more than they currently do. 

However, a majority of 62% of the respondents in this survey do not think it is easy to 

bicycle in Charlotte. This survey results clearly indicate that there is still a lot to do in 

order to improve cycling conditions in Charlotte. In addition, cyclists in the United States, 

compared to other developed countries, have a higher probability to suffer from fatal 

injuries (Pucher and Dijkstra, 2003). Based on the North Carolina Crash Data, 11,266 

crashes were cyclist-involved crashes from 2007 to 2018, of which 250 cyclists were 

fatally injured. It is clearly indicated that exploring the impact factors on cyclist injury 

and conducting injury risk analysis are meaningful and essential. It is expected that, when 

the cycling environment is properly improved, more travelers will choose cycling as their 

travel mode.  

To evaluate the factors that affect cycling activities on road segments and analyze 

bicyclist injury risk, data including network characteristics, sociodemographic 

information, location-specific elements, temporal factors, crash records and bicycle 

counts are essential. There have been multiple data collection methods and the most 

commonly used ones include traditional manual counts, travel surveys, and crowdsourced 

data from a third party. Most of the previous research efforts used the first two methods 

to collect the data of interest. However, such methods are expensive and time-consuming. 

Crowdsourced data, on the contrary, are cost effective and timesaving, and therefore have 

been widely collected and used by many public agencies and private sectors in recent 

years. Among all the crowdsourced data, data collected from smartphone applications 

including Strava, CycleTracks, and ORcycle, etc. have become more and more prevalent. 
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Crowdsourcing has increased the availability of data collection and provided an efficient 

way to bridge the data gap for decision making and performance measures. 

As an advanced data collection method, crowdsourcing enables practitioners and 

scholars to collect data from a broader range of people in a shorter and more cost-

efficient way. This method was first introduced by Howe (2006) in his “The Rise of 

Crowdsourcing” article. Crowdsourced data can greatly help planners develop models, 

analyze the travel behavior, estimate the traffic demand, evaluate bike facilities, and 

explain road traffic safety such as collisions. Different research efforts have been made 

with different definitions for crowdsourcing. According to Brabham (2008), 

crowdsourcing is “a strategic model to attract an interested, motivated crowd of 

individuals capable of providing solutions superior in quality and quantity to those that 

even traditional forms of business can.” 

Crowdsourcing is especially helpful and beneficial to transportation planning and 

management. It offers shared platforms and systems to invite a large amount of interested 

crowds to address common problems that influence them all. Recently, crowdsourcing 

techniques have developed rapidly. Some studies regarding its use in transportation have 

shown its tremendous potential in enhancing or taking the place of the traditional data 

collection methods. Since crowdsourcing has many advantages in data collection, it is 

leveraged in this research study.  

With the availability of crowdsourced data, many models have been developed, 

such as linear regression models, ordered logit models, ordered probit models, (expanded) 

path size logit models, recursive models, C-logit models, and safety performance 

functions. These models can be applied to analyze the bicycle travels in terms of bicycle 
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volume estimation, bicyclist cycling behavior analysis, bicycle safety assessment and 

other topics including air pollution exposure studies, bicycle level of service evaluation 

and bicycling comfort analyses. To conduct these research studies, crowdsourced data are 

not sufficient. Other data including road characteristics, demographic features, 

geographic factors, temporal information, air pollution measures, and bicyclist involved 

crash records, etc. are needed to be compiled and integrated. In the data fusion process, 

software such as ArcGIS, SAS, SPSS, or R can be used to accomplish the task of data 

processing.  

This research is intended to systematically develop bicycle volume prediction 

models, model cycling activities, and conduct bicyclist injury risk analysis with safety 

performance functions. Crowdsourced bicycle data from the Strava smartphone 

application are collected and combined with other relevant data (including NC road 

characteristics data, demographic data, slope data, manual count data from continuous 

count stations in Charlotte, temporal data, and bicycle facility data). Data comparison is 

conducted to demonstrate the difference between manual count data and Strava’s bicycle 

count data. Data processing and combination procedures are completed using ArcGIS and 

SAS. Based on the combined data, two linear regression models are developed. The 

relationship between manual count data and Strava data as well as other relevant data is 

built. Bicycle volume on most of the road segments in the City of Charlotte is predicted 

using the developed model. A bicycle ridership map is created to display a graphical 

representation of the bicycle counts. In addition, a series of discrete choice models are 

developed to analyze the Strava users’ cycling activities in the City of Charlotte. The 

bicyclist injury risk analysis is conducted based on the validated bicycle volume. Finally, 
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the conclusion is made to summarize the whole study, and directions for future research 

are also provided. 

1.2. Study Objectives 

The objective of this research is to evaluate and utilize the potential use of 

crowdsourced bicycle data in Charlotte to develop bicycle volume prediction models, 

model cycling activities, and conduct injury risk analysis with safety performance 

functions, as well as to map bicycle ridership and analyze biking safety influence. The 

detailed objectives are listed as follows: 

1. To compile bicycle data from all the available sources including Strava data, 

bicycle manual count data, NC road characteristics data, demographic data, slope 

data, temporal data, bicycle facility data, and bicyclist involved crash records as 

preparation of the follow-up work; 

2. To combine all the collected data using ArcGIS and SAS for model estimation; 

3. To develop bicycle volume prediction models based on the combined data; 

4. To calculate the predicted bicycle volume based on the developed models, and 

generate a bicycle ridership map for most of the road segments in the City of 

Charlotte; 

5. To develop discrete choice models to explore the impact of different variables on 

Strava bicycle count in the city of Charlotte; 

6. To develop safety performance functions based on bicycle volume for bicyclist 

safety analysis.  
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1.3. Expected Contributions 

To provide a better cycling environment and encourage more potential bicyclists 

to bike in the City of Charlotte, models need to be developed to analyze the factors that 

affect bicycle volume on each roadway segment. Prediction of the bicycle volume on 

most of the roadway segments in the City of Charlotte should be conducted and used to 

provide guidance for the bicycle facility construction and improvement in the future. The 

impacts of biking safety need to be analyzed. Along that line, the expected contributions 

of this research are summarized as follows: 

1. Present a systematic method for developing models to analyze the relationship 

between bicycle manual count data and Strava’s bicycle count data that can be 

applied to other regions; 

2. Generate a bicycle ridership map in the City of Charlotte to give an overview of 

the predicted bicycle volume that can be used as a reference for future bicycle 

facility construction/ improvement; 

3. Develop discrete choice models to analyze the factors contributing to Strava 

bicycle counts in the City of Charlotte. Based on the model estimation results, the 

factors that have a positive impact on bicycle volume can be identified and used 

as the basis for bicycle policy recommendation; 

4. Provide a method to develop safety performance functions for bicyclist injury risk 

analysis and mapping bicycle-vehicle crashes.  

1.4. Research Overview 

The research structure is organized as follows and Figure 1.1 will illustrate the 

whole research contents in summary.  
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In Chapter 1, the background of this research study is introduced, and the 

motivation of modeling cycling activities and conducting safety analysis are discussed. In 

addition, the objectives and expected contributions are described and presented in this 

chapter.  

Chapter 2 provides a comprehensive review of the state-of-the-art and state-of-

the-practice on the potential use of crowdsourced bicycle data. The data collection 

methods utilized for relevant research studies including crowdsourcing and other 

traditional data collection methods are summarized. Representative smartphone 

applications for crowdsourcing are presented and their use for different aspects of 

research is discussed. Methods for bicycle volume estimation and prediction, and 

bicyclist injury risk analysis are summarized.  

Chapter 3 gives an overview of the collected data and conducts a descriptive 

analysis based on the data collected from Strava smartphone application in terms of users’ 

demographics, different trip purposes, and Strava counts for different times of day, 

weekdays and weekends, months of year, and trip purposes. A simple data comparison 

between bicycle counts collecting from manual count stations and Strava application is 

provided. In addition, other supporting data are introduced in this chapter as well.  

Chapter 4 presents a method for data processing and develops two linear 

regression models to analyze the relationship between bicycle manual count data and 

Strava data as well as other relevant attributes. The bicycle volume on most road 

segments in the City of Charlotte is predicted using the developed model. A bicycle 

ridership map is also created to display a graphical representation of the bicycle counts.  
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Chapter 5 develops a series of discrete choice models for conducting the analysis 

of impacts on cycling activities. In addition, the model comparison is conducted based on 

several indexes, and the best-fit model is also identified.  

Chapter 6 provides a method to develop safety performance functions for bicyclist 

injury risk analysis. The method is based on the bicycle volume from previous chapter 

and other factors including bicycle facilities, annual average daily traffic (AADT), road 

characteristics, and the presence of bus stops. The indicators for model comparison are 

utilized to identify the best-fit model for bicyclist injury risk analysis.  

Chapter 7 concludes this research with a summary of the methods for modeling 

cycling activities and conducting bicyclist injury risk analysis, and a discussion of the 

directions for future research. 
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Figure 1.1: Research Structure 

Chapter 1: Introduction 

Chapter 2: Literature Review 

Chapter 3: Data Descriptive Analyses 

Chapter 4: Developing Bicycle Volume 

Models 

Chapter 5: Modeling Cycling Activities 

Chapter 6: Bicyclist Injury Risk Analysis 

Chapter 7: Summary and Conclusions 
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CHAPTER 2:  LITERATURE REVIEW 

2.1. Introduction 

This chapter presents a comprehensive literature review of current state-of-the-art 

and state-of-the-practice of relevant non-motorized transportation research studies, 

especially bicycle volume estimation and prediction, its impacts on bicycle activity, and 

bicyclist injury risk analysis. This literature review also summarizes the data utilized for 

the research studies, methods applied for bicycle volume estimation, prediction, and 

injury risk analysis and results concluded from previous and ongoing research.  

The remainder of this chapter is structured as follows. Section 2.2 introduces 

different types of data collection methods such as crowdsourcing, open data, big data, and 

other traditional data collection ones including travel survey and count data. Section 2.3 

summarizes the most prevalent smartphone crowdsourcing applications (e.g., 

CycleTracks, Cycle Atlanta, Mon RésoVélo, Strava, and ORcycle) and their use in 

different research aspects. Section 2.4 details the bicycle volume estimation and 

prediction methods based on both traditional data collection methods and crowdsourcing. 

Section 2.5 presents the approach to bicyclist injury risk analysis based on different types 

of data. Finally, section 2.6 concludes this chapter with a summary.  

2.2. Data Collection 

This section summarizes both the advanced and traditional data collection 

methods utilized for relevant research studies. An introduction to each type of data and 

the advantages and disadvantages of novel data and traditional data are provided. 
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2.2.1. Crowdsourcing 

Crowdsourcing is an innovative sourcing model which brings new developments 

to data collection and the data-driven research studies. Crowdsourcing techniques have 

evolved rapidly since they emerged approximately ten years ago. Crowdsourcing was 

first introduced by Howe (2006) in “The Rise of Crowdsourcing”, which was published 

in Wired Magazine in 2006 and was defined as follows: 

“Crowdsourcing represents the act of a company or institution taking a function 

once performed by employees and outsourcing it to an undefined (and generally large) 

network of people in the form of an open call. This can take the form of peer-production 

(when the job is performed collaboratively) but is also often undertaken by sole 

individuals. The crucial prerequisite is the use of the open call format and the large 

network of potential laborers.” (Howe, 2006) 

“Crowdsourcing is the act of taking a job traditionally performed by a designated 

agent (usually an employee) and outsourcing it to an undefined, generally large group of 

people in the form of an open call.” (Howe, 2008) 

Crowdsourcing is a mixture of two components which are crowd and outsourcing. 

Based on the definition of crowdsourcing provided by Howe (2006), numerous scholars 

have been interested in the new concept of data collection method. Different definitions 

have emerged based on their understanding of crowdsourcing. According to Brabham 

(2008), crowdsourcing is “a strategic model to attract an interested, motivated crowd of 

individuals capable of providing solutions superior in quality and quantity to those that 

even traditional forms of business can”. Later in Brabham’s (2013) book, crowdsourcing 

was defined as “an online, distributed problem-solving and production model that 
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leverages the collective intelligence of online communities to serve specific 

organizational goals”. Vukovic (2009) defined crowdsourcing as “a new online 

distributed problem-solving and production model in which networked people collaborate 

to complete a task”. Instead of interpreting crowdsourcing as a model that solves the 

problems of the crowd through an online platform, Chanal and CaronFasan (2008) 

defined crowdsourcing as “the opening of the innovation process of a firm to integrate 

numerous and disseminated outside competencies through web facilities”. Kleeman et al. 

(2008) found that the spirit of crowdsourcing is the intentional mobilization. The authors 

defined crowdsourcing as “a form of the integration of users or consumers in internal 

processes of value creation”. To explain it simply, La Vecchia and Cisternino (2010) 

describe crowdsourcing as “a tool for addressing problems in organizations and business”.  

With the development of crowdsourcing, researchers have analyzed various 

definitions of crowdsourcing from different articles/papers to find out the features and 

common elements. Estellés-Arolas and González-Ladrón-De-Guevara (2012) reviewed 

and summarized the studies on crowdsourcing in terms of the information about the 

crowd and crowdsourcer, the tasks need to be conducted by the crowd, the benefit for the 

crowd and crowdsourcer, and the process of crowdsourcing. A definition of 

crowdsourcing integrated using the critical elements extracted from the previous 

literature was created which defined crowdsourcing as “a type of participative online 

activity in which an individual, an institution, a non-profit organization, or company 

proposes to a group of individuals of varying knowledge, heterogeneity, and number, via 

a flexible open call, the voluntary undertaking of a task” (Arolas and González-Ladrón-

De-Guevara, 2012). Other analysis as well as the summary of crowdsourcing can be 
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found in (Świeszczak and Świeszczak, 2016, Estellés-Arolas, Navarro-Giner, and 

González-Ladrón-de-Guevara, 2015, Hosseini et al., 2014).  

To summarize, most of the crowdsourcing definitions contain three main features 

which are the crowd itself, the outsourcing procedure, and an internet-based platform 

(Saxton, 2013). It can be interpreted that crowdsourcing implied that individuals 

participate voluntarily to achieve the task which would tend to motivate both the experts 

and the individuals to find solutions to the tasks (Schenk, 2011). Table 2.1 presents a 

summary of the definitions of crowdsourcing in chronological order.  

Table 2.1: Summary of Crowdsourcing Definitions 
Author Year Definition 

Howe 2006 “The act of a company or institution taking a function once performed by 
employees and outsourcing it to an undefined (and generally large) network of 
people in the form of an open call.” 

Brabham 2008 “A strategic model to attract an interested, motivated crowd of individuals 

capable of providing solutions superior in quality and quantity to those that 
even traditional forms of business can.” 

Chanal and 
CaronFasan 

2008 “The opening of the innovation process of a firm to integrate numerous and 
disseminated outside competencies through web facilities.” 

Howe 2008 “The act of taking a job traditionally performed by a designated agent (usually 
an employee) and outsourcing it to an undefined, generally large group of 
people in the form of an open call.” 

Kleeman et al. 2008 “A form of the integration of users or consumers in internal processes of value 
creation.” 

Vukovic 2009 “A new online distributed problem-solving and production model in which 

networked people collaborate to complete a task.” 

La Vecchia and 
Cisternino 

2010 “A tool for addressing problems in organizations and business.” 

Brabham 2013 “An online, distributed problem-solving and production model that leverages 
the collective intelligence of online communities to serve specific 
organizational goals.” 

 

With the development of crowdsourcing, it has brought improvement and benefit 

in data collection. This type of innovative data collection method shows its potential to 

augment the traditional data collection methods. Recently, Misra et al. (2014) studied 

how crowdsourcing was applied in transportation research area. In addition, as the 
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number of GPS-enabled smartphones increases, crowdsourcing with smartphones 

(Chatzimilioudis et al., 2012) sees more possibilities in transportation related research 

studies. A comprehensive summary of the existing smartphone applications utilized for 

different aspects of transportation research will be provided in the following section. 

2.2.2. Open Data 

Open data is another critical type of data that researchers might use for their 

studies. It can be easy to interpret that open data is open for anyone to use freely, and to 

reuse or redistribute it flexibly (Kitchin, 2014). In other words, an open data format 

should be “platform independent, machine readable, and made available to the public 

without restrictions that would impede the re-use of that information” (Attard et al., 

2015). Therefore, open data should be available for anyone with no additional restrictions 

or limitations.  

Most of the open data are provided by institutions or local government. The 

government-related data is also called open government data which is a specific type of 

open data (Kučera et al., 2013). This type of data is provided by the government and is 

released openly to the public which usually contains public transportation information, 

crash records, population, infrastructure, and land use, etc.  

2.2.3. Big Data 

Big data is a general type of data that refers to large volumes of data from various 

sources that need to be cleaned and pre-processed before being utilized for research 

studies (McAfee et al., 2012). The primary attributes of big data are the ‘3Vs’ which are 

volume (representing the size of the data), velocity (indicating the speed of the data 

collection or generation), and variety (referring to a synthetic range of sources) (Laney, 
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2001). Besides these three Vs, other researchers (Kitchin, 2014) have added other 

attributes to define big data including veracity demonstrating the quality of the data.  

However, most of the big data utilizing in the transportation research area are 

under the “volume” feature, since the data sources of a large number of data are from a 

single application, internet platform or data provider. In the transportation research area, 

the expansion and development of the smart card system for transit in several major cities 

(Pelletier et al., 2011), the increasing popularity of smartphone applications, the 

availability of GPS devices, and the broad range of online information (Romanillos et al., 

2016) have made great contribution to the development of big data.  

2.2.4. Traditional Data Collection Methods 

Traditional traffic data collection methods are the basic approach for data 

extraction which may not be replaced by some of the advanced data collection methods, 

since traditional data can provide accurate and useful information for relevant 

transportation research studies. Basically, there are two categories of traditional data 

collection methods which are data collected from traffic counting equipment and 

different kinds of travel surveys.  

The commonly used traffic counting equipment include piezo-electric sensors, 

inductive loops, microwave, radar, video image detection, and manual observation, etc. 

(Skszek, 2001). Using the equipment to collect data may cost a lot for installation and 

may be time consuming during the whole time of the collection process.  

The travel survey method can be divided into two categories which are web-based 

and paper-based travel surveys. The most well-known traditional travel survey is the 

household survey (Kagerbauer et al. 2015). Information relevant to their travel patterns 
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are collected through questionnaires. The process of filling out paper-based surveys and 

selecting useful and suitable answers usually takes a lot of time. The web-based travel 

surveys, on the other hand, are utilized later with smart filter management features. 

However, bias and other issues associated with this type of travel survey cannot be 

addressed and neglected. One of the problems with data collected from travel surveys 

may come from the respondents. Since young participants are able to get access to the 

internet more easily compared to old respondents, the proportion of young respondents 

might be higher than older ones. In addition, not all the questionnaires can be collected 

back, as the receiving rate can be lower than travel surveys conducted in person. Other 

traditional transportation survey methods such as workplace surveys, longitudinal and 

panel surveys, transit on-board ridership surveys, commercial vehicle (truck) surveys and 

external station surveys, usually have similar disadvantages. 

From another perspective, travel surveys can be divided as two categories, which 

are stated preference surveys (i.e., SP surveys) and revealed preference surveys (i.e., RP 

surveys) (Guan, 2004). The SP survey is to receive decision-making results of the 

respondents in terms of certain different conditions. And the RP survey refers to the 

survey of completed selective behavior. The differences between these two kinds of 

travel survey are: (1) the questions of SP survey usually contain the investigation content 

which has not really occurred yet or is intentionally designed for the specific research 

topics, while the RP survey is a questionnaire regarding investigation questions which 

has already taken place; (2) the scenario in SP survey can be designed flexibly with 

assumed values of choices and attributes that are needed for the research studies, while 

the results of choices and choice conditions in the RP survey are based on actual travel 
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choice behavior. According to the features of these two types of surveys, the advantages 

of them are revealed. SP surveys are able to arbitrarily design the questionnaires and the 

corresponding scenarios for the future conditions which will benefit transportation 

planning and design especially for upcoming constructions and establishments. RP 

surveys are able to show the results or phenomenon hidden in each individual’s choice 

which reflects the contribution of the impact factors and how individuals value these 

factors.  

To summarize the traditional data collection methods, Figure 2.1 shows a clear 

structure of the traditional data collection methods mentioned in this section.  
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2.3. Smartphone Crowdsourcing Applications 

As mentioned in Section 2.2.1, there are numerous forms of crowdsourcing. 

Based on the literature review on bicycle-related research utilizing crowdsourced data, 

smartphone crowdsourcing applications are most prevalent for this innovative data 

collection method. There are multiple smartphone crowdsourcing applications that have 

been utilized for relevant research studies. This section provides a comprehensive 

summary of the cycling applications and their use to conduct different aspects of research 

studies.  

2.3.1. CycleTracks 

The CycleTracks application is the first smartphone crowdsourcing application 

developed for collecting crowdsourced bicycle data for bicycle-related research studies 

(Blanc et al., 2016). It was designed by the San Francisco County Transportation 

Authority (SFCTA) in 2009 to utilize the built-in GPS in smartphones to collect cycling 

information and users space trajectories. In addition, some of the users’ demographic 

information can be collected (users optional answers to the demographic questions) to 

analyze the distinctive individual attributes for cycling behavior. The reported 

demographic information can be gender, age, home zip code, commute locations, and the 

frequency of cycling activities, etc. The comments field is provided for users to report 

their cycling trip purposes (e.g., commute, non-commute, recreational, exercise, shopping, 

school, work, social, etc.) during each trip (SFCTA, 2013). This information is also 

optionally filled in by CycleTracks users (Charlton et al., 2011).  

Most of the studies used CycleTracks to analyze cyclists cycling behavior. 

Charlton et al. (2011) collected the cycling data from CycleTracks from November 12, 
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2009 to April 18, 2010 to analyze these cyclists’ route choice in San Francisco. A total of 

7,096 cycling trips generated by 1,083 cyclists were collected and selected as the chosen 

routes in the modeling procedure. A doubly-stochastic choice set generation method was 

utilized for modeling cyclists’ route choice. The impacts of the length of the route, turns 

per mile, proportion of the route on wrong-way links, proportion on bike paths, bike lanes, 

and bike routes, infrequent cyclists, and average up-slope were considered in the path 

size multinomial logit model (Hood et al., 2011). Results revealed that the length of the 

route, turns per mile, proportion of route on wrong-way links, and average up-slope 

affected the cyclist’s route choice negatively, while other explanatory variables had 

positive impacts on route choice.  

Chen and Shen (2016) collected data from CycleTracks to analyze the impacts of 

road characteristics and land use on cyclists’ route choice. Labeling route approach and 

the K-shortest mean approach were utilized to create the route choice set to conduct the 

cyclist route choice analysis. A path size logit model was developed, and results were 

concluded that cyclists selected their cycling routes based on the consideration of utility, 

cycling safety, and suitability. Subsequently, Chen et al. (2018) explored the influences 

of built environment on cyclist route choice based on the same dataset. Another 

comprehensive discrete choice model (i.e., path-size-based mixed logit model) was 

developed in this research study.  

As the first application developed for cycling studies, researchers have compared 

this dataset with other data sources including traditional count data and data collected 

from other smartphone applications. Griffin and Jiao (2019) compared CycleTracks with 

traditional count data from five selected locations in Austin, Texas, and data provided by 
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Strava fitness application. The relationship between CycleTracks and count data, and the 

relationship between Strava and count data were examined utilizing ordinary least 

squares regression. In addition, spatial autocorrelation was also evaluated with 

OpenGeoDa software.  

Based on the first smartphone crowdsourcing applications, other applications 

designed for cycling including AggieTracks, Cycle Atlanta, Mon RésoVélo, RenoTracks, 

CyclePhilly, Toronto Cycling App, ORcycle, CycleSac, and C-Vill Bike mAPP, etc. were 

developed subsequently (Blanc et al., 2016). Some of the applications that were utilized 

for bicycle-related research studies are introduced in detail as follows.  

2.3.2. AggieTracks 

As mentioned in the previous section, AggieTracks was developed based on the 

open source code of CycleTracks by Texas A&M University to collect the cycling 

information on the users in the university area (Hudson et al. 2012). Travel purposes were 

collected after the cycling trips by filling the corresponding questions optionally. 

Classifications (e.g., student, faculty, or staff) were asked to be identified by the 

AggieTracks users. Additional information such as users’ living locations (on campus or 

not) and the car ownership was also collected. Since this application was developed to 

track cycling patterns within the university area, few research studies choose to utilize 

this data source.  

2.3.3. Cycle Atlanta 

Similar to AggieTracks, Cycle Atlanta was developed based on the open source 

code of CycleTracks application by the Georgia Tech research team (Figliozzi and Blanc, 

2015). In addition to the cycling route data, Cycle Atlanta can collect other information, 
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such as demographic information including gender, email, age, ethnicity, income, zip 

codes of home, school, or workplace, etc., and selection information including issues 

(e.g., pavement issue, traffic signal issue, bicycle lane design issue, enforcement request, 

bicycle parking request, and custom entry) and amenities (e.g., water fountains, bike 

parking facilities, bike shops, and public restrooms). 

Like other data collected from smartphone applications, cycling information data 

extracted from Cycle Atlanta were compared with other types of cycling data including 

manual count data as well as data from other applications. Watkins et al. (2016) 

conducted a study to compare data collected from Cycle Atlanta and Strava in terms of 

demographic data, cycling trip information, time of day, and different road segments to 

examine the ability of GPS data from smartphone applications for mapping cyclist 

ridership. In addition, manual count data were compared with data from Cycle Atlanta to 

investigate the proportion of Cycle Atlanta users to the total cyclists.  

Later on, Cycle Atlanta data were utilized for route choice modeling, street 

segment choice, evaluating bicycle level of service (BLOS), and measuring level of 

traffic stress (LTS). In a USDOT final report named “Using Crowdsourcing to Prioritize 

Bicycle Route Network Improvements”, LaMondia and Watkins (2017) conducted a 

research study on calculating BLOS, measuring LTS, modeling bicyclist route choice, 

and route segment choice using data collected from three smartphone applications which 

were Strava, CycleDixie and Cycle Atlanta. An ordinal logistic regression model was 

developed to analyze the route segment choice of Cycle Atlanta users. Explanatory 

variables including roadway characteristics, access groups, and socio-demographic 

accessibility were included in the model. To analyze the willingness of a bicyclist to 
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choose a detour over the shortest route, a binary logistic choice model was developed 

based on the alternative choice (i.e., shortest route) created by the A-star algorithm.  

In addition, different perspectives of bicyclist route choice modeling research 

studies were conducted. Misra and Watkins (2018) investigated the differences of 

bicyclist route choice between different genders and age groups. Multiple path size logit 

models were developed for different segmentations in terms of age and gender. Also, a 

pooled path size logit model based on the entire Cycle Atlanta cycling data were 

developed for comparison. Results revealed that traffic characteristics including annual 

average daily traffic (AADT) and speed might affect the cyclist route choice differently 

for different genders and ages of cyclists.  

2.3.4. Cycle Lane 

Cycle Lane is another smartphone application that is built on the code developed 

for CycleTracks (Roll, 2014). In order to collect the bicycle trip information, Central 

Lane Metropolitan Planning Organization (CLMPO) developed this Cycle Lane 

application in 2011. Demographic information (including age and gender) on the cyclists 

using this application can be collected through questions that are asked to fill out in the 

application. Additional information such as the frequency of riding is also collected 

before cycling.  

Zimmermann et al. (2017) modeled the bicyclist route choice using the Cycle 

Lane data to analyze the trade-offs that cyclists made while selecting cycling routes. 

Zimmermann et al. developed a recursive logit model for the bicyclist route choice 

modeling since this type of link-based route choice model does not require one to 

generate route choice sets compared to the path-based models such as path size logit 
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model. According to the results concluded, this recursive logit model may save a lot of 

computational time.  

2.3.5. Mon RésoVélo 

Mon RésoVélo is also a smartphone application for collecting bicyclist route 

information in the City of Montreal based on CycleTracks as well as Cycle Atlanta. 

Cycling trip information including travel distance, travel time, cycling route are collected. 

In addition, socio-demographic information and other attributes of the cyclists using this 

application are obtained through an anonymous questionnaire. Different from the two 

applications that Mon RésoVélo was built on, this application adds an emission tool and a 

calorie calculator, which is a new development for the smartphone crowdsourcing 

application for cycling (Jackson et al., 2014).  

Based on the GPS cycling trip data from Mon RésoVélo, deceleration rates at 

intersections and on road segments were extracted by Strauss et al. (2017) to explore the 

relationship between the deceleration rate (DR) and the number of injuries. The site 

ranking based on the deceleration rate and the expected injury number were compared 

utilizing Spearman’s rank correlation coefficient.  

In addition, with the benefit of this innovative smartphone application, many 

other research studies were conducted based on the data extracted from Mon RésoVélo. 

Strauss and Miranda-Moreno (2017) utilized the GPS cycling data from Mon RésoVélo 

to identify the performance measures in terms of delay, speed, and travel time on road 

segments and at intersections in the whole city network on the island of Montreal. To 

examine the impacts of geometric design and built environment on cycling speed on each 

road segment, a linear regression model was adopted. The model results demonstrated 
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that cycling speeds were higher along arterials than on local streets, and cyclists biked 

faster on road segments with bicycle infrastructure. Furthermore, impact factors including 

geometry characteristics, built environment features, travel purposes, peak hours were 

found to affect the cycling speed significantly.  

2.3.6. RenoTracks 

RenoTracks is a smartphone application that builds based on Cycle Atlanta. 

Therefore, all features were included in RenoTracks since CycleTracks. Similar functions 

can be provided in this application including recording cycling information, collecting 

travel distance, calculating travel speed, reporting issues, and collecting demographic 

data from cyclists, etc. (RenoTracks 2013). In addition to these features adopted from the 

previous smartphone crowdsourcing applications, RenoTracks created a customized user 

interface as well as a “CO2 Saved” calculator to compute the CO2 that could be saved 

compared to traveling by automobile.  

2.3.7. ORcycle 

Portland State University and Oregon Department of Transportation developed a 

ORcycle based on the code for CycleTracks to collect cycling information from the 

application users. This application was released for both Android and iOS platforms in 

November 2014. Using this application, cycling data included bicycle trip trajectories, 

user information, infrastructure issues, and crashes.  

Therefore, with the help of ORcycle, useful data can be collected to design and 

upgrade better bicycle facilities and analyze the impacts on cyclists’ comfort levels. 

Blanc and Figliozzi (2016) leveraged ORcycle application to collect data for cyclists’ 

comfort level modeling. Factors including bicycle facilities, sources of stress associated 
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with the cycling routes, travel purposes, distance, cycling frequency, and temporal 

characteristics were considered in the model. Ordinal logistic regression models were 

developed to examine the influence on cyclists’ comfort levels. Based on the model 

results, bicycle boulevards, separated cycling paths, sources of stress associated with the 

cycling routes, trip purposes, and cycling distance were found to affect cyclis ts’ comfort 

levels significantly.  

ORcycle data can also be utilized for safety analysis. Blanc and Figliozzi (2017) 

investigated the impact factors on the urgency of a perceived potential safety issue. Based 

on the statistical models, application users are usually reliable for the reported urgency of 

safety issue and the infrastructure problems. The factors affected safety urgency and type 

include user gender and income levels, traffic volumes, speed, and waiting times at 

signalized intersections.  

2.3.8. MapMyRide 

MapMyRide is a sub-application of MapMyFitness, which is created to get the 

most from the users’ bike ride and track their cycling trips especially for recreational 

travel purposes. This application allows users from worldwide to plan their cycling route, 

track their GPS trajectories, share links with others, and provide user information. 

Cyclists using MapMyRide can view others’ cycling route through this application to 

follow the popular cycling routes for comfortable and challenging activities. In addition 

to the smartphone application, MapMyRide also provides a web version which can 

present and summarize the statistics and the ridership of the users’ cycling trips (Figliozzi 

and Blanc, 2015).  



27 

 

 

 

As a smartphone application that can collect cycling data from the entire United 

States, MapMyRide provides data for physical activity patterns investigation. Hirsch et al. 

(2014) utilized data collected from MapMyFitness to analyze the users’ physical activity 

patterns. It was concluded that this set of applications is a critical and useful platform to 

explore travel patterns within large geographic and temporal scales.  

2.3.9. Strava 

Strava is the one of the best cycling applications for 2019 especially for tracking 

recreational cycling trips in large cities (Best cycling apps, 2019). Similar to MapMyRide, 

Strava allows users to track their cycling routes through the GPS-enabled smartphone and 

view and share the trip trajectories afterwards via website or application. Summary 

statistics including travel speed, trip distance, activity time, and other cycling route 

information are provided and displayed. The unique features that Strava has are the 

ability to track cycling performance of multiple cyclists on the same segment which 

enables Strava users to compete with each other for the least segment time, highest speed, 

etc. This particular functionality attracts numerous cyclists worldwide to use this 

smartphone application for recording their cycling trips which provides Strava a large 

dataset in extensive geographic and temporal scales.  

With the large dataset, Strava has become one of the most prevalent smartphone 

applications to collect cycling information from a variety of users. Multiple bicycle-

related research studies in different aspects were conducted based on Strava data.  

Sun and Mobasheri (2017) utilized Strava data to analyze the spatial patterns of 

cycling activities for different travel purposes and air pollution exposure in a large spatial 

scale. The improved Multidirectional Optimum Ecotope-Based algorithm was utilized to 
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identify the clusters associated with high non-commuting rate. Ordinary least squares, 

support vector machine, random forest, and multilayer perceptron neutral network 

methods were used to analyze the Strava users’ non-commuting cycling activities. 

Results were found that more non-commuting cycling trips occurred in the outskirts of 

the city. In addition, bicyclists biking for commuting were found to have a higher 

probability to suffer from more severe air pollution.  

Other research studies conducted based on Strava data include non-motorized 

transport planning (Selala and Musakwa, 2016), cycling patterns and trends (Musakwa 

and Selala, 2016), cycling behavior (Sun et al, 2017), bicycle trip volume (Hochmair et 

al., 2019), etc.  

To summarize the literature reviewed in this Section 2.3 regarding the summaries 

of smartphone crowdsourcing applications developed for cycling information collection 

and research studies based on the data extracted from the smartphone applications, two 

tables are presented as follows. 
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2.4. Bicycle Volume 

This section reviews the research studies regarding different methods of bicycle 

volume estimation and prediction based on different types of data (obtained from both 

traditional data collection methods and crowdsourcing). The potential impact factors that 

might affect bicycle volume or cycling activities significantly are summarized through 

the review of the state-of-the-art and the state-of-the-practice.  

2.4.1. Research Based on Traditional Data Collection Methods 

Although crowdsourcing is an innovative data collection method, the importance 

of traditional data collection methods cannot be neglected. Manual count data and 

automated counting data are the basic traditional data collected for annual average daily 

traffic (AADT) estimation. Many research studies are conducted based on this kind of 

data.  

To synthesize the approach to estimating AADT with non-motorized traffic 

monitoring, Lu et al. (2017) utilized three types of automated counters including 

pneumatic tube, radio beam, and passive infrared to collect long-term counts, and 

collected manual counts for short duration. A strong correlation was found between these 

two types of data. NB models were developed for each site to estimate bicycle and 

pedestrian volume. In addition, to estimate annual average daily traffic, day of year 

scaling factors were applied for both non-motorized traffic counts. The volume of 

bicycles and pedestrians were found to be positively affected by street functional class, 

certain facilities for bicyclists and pedestrians, and proximity to campus.  

Chen et al. (2017) investigated the impacts of built environment explanatory 

variables on bicycle volume. A dataset of five-year bicycle volume in Seattle, 
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Washington was utilized to develop a generalized linear mixed model (GLMM) assumed 

to follow a Poisson distribution in order to model the variation of bicycle counts over 

time. Model results indicated that exploratory variables including temporal characteristics 

such as weekends and peak hours, bicycle facilities, non-winter seasons, employment 

density were likely to affect bicycle volume positively. Lower bicycle volume was 

associated with steep areas, while areas with more mixed land use, water bodies, and 

workplaces were found to be high bicycle volume locations.  

Miranda-Moreno et al. (2013) classified the bicycle volume data collected from 

38 sites in five North American cities into four categories including recreational, mixed 

recreational, mixed utilitarian, and utilitarian. The variation of bicycle volume in terms of 

different times of day, days of week, months, and seasons was analyzed using 

standardized hourly, daily, and monthly indexes, as well as traffic distribution indexes.  

Esawey (2014) conducted a research study on estimating AADB with daily 

adjustment factors (DAFs) and monthly adjustment factors (MAFs). Bicycle count data 

collected from 12 permanent counting stations in Vancouver were utilized for adjustment 

factor calculation. Subsequently, the calculated factors were used to estimate annual 

average daily bicycle counts at other counting stations.  

The standard K factor is another type of adjustment factor using for bicycle 

volume estimation and calculation. Esawey and Mosa (2015) developed the standard K 

factors (i.e., Kp/d and Kp/AADB) and provided an example of AADB calculation using 

the developed standard K factors. Furthermore, the estimation accuracy based on the K 

factors was examined.  
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To address the issue of missing bicycle count data at counting stations, Esawey et 

al. (2015) developed an innovative model called autoencoder neural network to fill in 

data gaps and estimate missing daily bicycle volume using available data from nearby 

and at the same location. The model parameters that might influence the estimation 

accuracy were assessed and the sensitivity analysis was conducted.  

Considering the impacts of weather and seasonal factors, Schmiedeskamp and 

Zhao (2016) investigated the relationship between these factors and bicycle volume based 

on the automated bicycle counts collected from Seattle, Washington. A NB model was 

developed, and counterfactual simulation was used to estimate quantities of interest. 

Model results demonstrated that variables including season, holidays, day of week, 

temperature, and precipitation might affect the bicycle volume significantly.  

Similarly, Lewin (2011) also analyzed the impact of temporal and weather factors 

on bicycle volume. A standard linear regression model was developed based on the 

detector data from two permanent bicycle count stations on multi-use paths in Boulder, 

CO. The variables included in the model were carefully selected considering the temporal 

patterns of bicycle volume and weather correlation results. The bicycle volume was then 

estimated using the developed linear regression model. 

To conclude, a summary of the studies on bicycle volume estimation and analysis 

using traditional manual count data or automated count data is provided below in Table 

2.4.  
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2.4.2. Research Based on Crowdsourcing 

Many researchers have conducted their studies using crowdsourced data. GPS 

enabled smartphones provide researchers new opportunities to collect data from a broader 

group of people and use them to conduct the research on bicycle volume estimation and 

prediction. The existing use of crowdsourced data for this research area is presented as 

follows. 

Moore (2015) conducted a study to examine the impact of various factors on 

bicycle counts using the crowdsourced bicycle data collected from Strava application. An 

ordinal logistic regression model was developed to examine the effect of impact factors 

on the cyclists’ route choice. GIS was applied to conduct a qualitative analysis to 

investigate the specific areas and facilities to discover their differences from other 

facilities. Results revealed that the selection of a road segment is highly associated with 

the road characteristics and the land use. 

Griffin and Jiao (2016) collected data from both CycleTracks smartphone 

application and the Strava fitness application to conduct a data comparison between the 

manual count and crowdsourced bicycle data. Five specific locations were selected in the 

downtown Austin, Texas. All the data were compiled and compared in GIS for these five 

locations.  

To explore the relationship between manual count data collected in Victoria, 

British Columbia, Canada and crowdsourced bicycle data from Strava application, a 

generalized linear model was developed by Jestico et al. (2016). The bicycle volumes 

were categorized into several levels, and a regression model was developed to predict 

bicycle volume level. The maps that illustrate the distribution of bicycle volumes were 
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created. Results revealed that the bicycle trips recorded by Strava are similar to the 

commuting trips in the urban areas of the mid-size North American cities.  

Data comparison was conducted by Watkins et al. (2016) to find out the 

differences between Cycle Atlanta and Strava data in terms of the sociodemographic 

information, total cycling trips on each road segment, and the cycling trips during each 

time of day. In addition, the manual count data were compared to the crowdsourced 

bicycle data from Cycle Atlanta in both AM and PM peak hours. The percentage of the 

manual count data collected by Cycle Atlanta was calculated based on data selected from 

78 intersections. The data comparison results indicated that noticeable differences exist in 

the populations of the crowdsourced data. Thus, the bicycle data collected from 

smartphone applications should be carefully utilized before conducting relevant research 

studies.  

Hochmair et al. (2017) used the crowdsourced bicycle data collected from Strava 

application in the Miami-Dade County area to analyze the impact of demographic 

information, network characteristics (especially bicycle facilities), and place specific 

features on bicycle ridership. A series of linear regression models were developed to 

predict the bicycle kilometers traveled for both commuting and non-commuting trips, and 

trips occurred on both weekdays and weekends. Eigenvector spatial filtering was adopted 

to avoid bias and model spatial autocorrelation. Results showed that Strava data performs 

well for the analysis of the impact of explanatory variables on bicycle volumes for 

commuting and non-commuting trips and during different days of week. In addition, 

Strava data revealed the broad coverage of spatial and temporal information and that they 

can be utilized as a critical supplement to bicycle volume estimation in large areas.  
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Cycling activity analysis was conducted by LaMondia and Watkins (2017) based 

on the crowdsourced bicycle data collected from Strava, Cycle Dixie and Cycle Atlanta. 

The impact factors were identified by modeling the bicycle facility preferences. In 

addition, cyclists’ route segment choice and route choice were analyzed. Results revealed 

that sociodemographic information, land use, and road characteristics, have significant 

impacts on the route segment choice.  

Proulx and Pozdnukhov (2017) developed a novel method with geographically 

weighted data fusion for bicycle volume estimation utilizing crowdsourced data from 

Strava smartphone application and Bay Area Bikeshare data. It can be found that the 

method of Geographically Weighted Data Fusion can improve predictive accuracy for 

link-level bicycle volume estimation. 

To conclude, a summary of the studies on bicycle volume estimation and 

prediction as well as cycling activity analysis is provided below in Table 2.5. 
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2.5. Bicyclist Injury Risk Analysis 

Bicyclist injury risk analysis is another critical research concentration that needs 

to be studied to better understand the variables contributing to high injury risk and 

consequently help provide greener and safer cycling environment and promote biking in 

large bicycle-friendly cities.  

Many research studies have been conducted to explore the bicyclist injury risk 

using different functions and models from various perspectives. Strauss et al. (2013) are 

the researchers who were interested in bicyclist activity and injury risk, and a series of 

studies were conducted with multiple modeling approaches and different types of data.  

Strauss et al. (2013) used a Bayesian modeling approach to analyzing cycling 

activity and bicyclist injury risk at signalized intersections simultaneously. Impact factors 

contributing to both bicyclist injury risk and bicycle volume were identified. This two-

equation modeling method reveals the potential existence of endogeneity and unobserved 

heterogeneities and can also be applied to find the high-risk locations. The data utilized 

for this research study included bicycle volume data and motor-vehicle counts collected 

at 647 signalized intersections by Montreal Department of Transportation, geometric 

design, built environment, bicycle facilities, and bicyclist injury data. Temporal and 

weather adjustment factors were applied for manual bicycle counts normalization to 

calculate AADB. Results revealed that higher bicycle volume would lead to more 

bicyclist injuries yet lower bicyclist injury risk. In addition, total crosswalk length and 

bus stops were found to increase the likelihood of bicyclist injuries, while raised medians 

might have the opposite influence.  
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Later on, a research study was conducted by Strauss et al. (2014) to analyze 

multimodal injury risk including motor-vehicle, pedestrian, and bicyclist injury risk and 

activities at signalized intersections as well as non-signalized intersections. Like the 

previous research, a Bayesian modeling approach was utilized for safety and volume 

analysis simultaneously based on the same dataset along with the injury and volume data 

collected from 435 more non-signalized intersections. Afterwards, the Bayesian 

multivariate Poisson models were calibrated and the explanatory variables contributing to 

injury frequency were determined. A comparison of injury risk for different modes for 

both intersection types was conducted. Results found that motor-vehicle traffic is the 

primary cause of all multimodal injuries at signalized intersections and non-signalized 

intersections. Additionally, bicyclists and pedestrians have a much higher injury risk on 

average compared to motorists at signalized intersections. Factors including built 

environment and some geometric design were found to have a significant impact on 

injury risk for all three types of road users.  

Furthermore, with the development of crowdsourcing, smartphone GPS data 

collected from numerous applications were utilized for estimating bicycle volume as well 

as bicyclist injury risk analysis. Strauss et al. (2015) introduced an approach to estimating 

bicycle volume and map ridership and bicyclist injury risk in the whole city network in 

Montreal for both roadway segments and intersections based on data collected from Mon 

RésoVélo smartphone application as well as the manual count data. An extrapolation 

function approach was applied to combine the manual count bicycle data with 

crowdsourced bicycle data for bicycle volume estimation. Then, safety performance 

functions (SPFs) were developed based on the estimated AADB to validate the predicted 
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AADB by comparing the parameter coefficients with the previous SPFs using manual 

count data. After calibration, the annual average daily bicycle function can be adopted to 

predict bicycle volume at intersections and on all the road segments within the whole city 

network. Then, statistical models were utilized to compute empirical Bayes (EB) for 

bicyclist injury risk analysis. Injury risk maps can be generated to illustrate the 

distribution of bicyclist injury. According to the results, more injuries and higher injury 

risk occurred at signalized intersections compared to non-signalized intersections. On 

average, more injuries occurred on segments with cycle tracks, yet the injury risk per 

bicyclist was lower because of the presence of cycle tracks.  

In addition to Mon RésoVélo smartphone application, data from Strava can also 

be utilized for the bicyclist injury risk analysis. According to a research study conducted 

by Wang et al. (2016), bicycle safety performance functions including negative binomial 

model, Poisson regression model, and zero-inflated negative binomial model, were 

developed based on crowdsourced bicycle data. After model estimation, the best model 

for SPF was identified utilizing the likelihood ratio test and Vuong non-nested hypothesis 

test. The comparison results revealed that negative binomial model outperforms Poisson 

regression model, and normal negative binomial model performs better than the zero-

inflated negative binomial model. 

Similarly, Saad et al. (2019) estimated safety performance functions for bicyclist 

injury risk analysis at intersections based on the crowdsourced bicycle data collected 

from Strava application. Strava data were adjusted before being utilized as the input of 

safety performance functions. Models based on the original Strava data, the Strava data 

with manual bicycle count data adjustments, and Strava data with adjusted population 
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were developed and compared. Negative binomial models were developed to predict 

bicycle crash at intersection. The model estimation results demonstrated that the adjusted 

Strava data with adjusted population and manual counts perform best in bicyclist injury 

analysis. In addition, impact factors including signal control system, bicycle lanes, and 

intersection size etc. would affect bicyclist injury at intersections.  

Chen (2017) utilized a data-driven method to build the bicycle safety performance 

functions in both micro and macro scales using Strava smartphone application data, 

automatic bicycle count data and reported crash data. Negative Binomial model, Poisson 

model, Zero-inflated Negative Binomial model, and Zero-inflated Poisson model were 

developed to predict intersection crash frequency. A likelihood ratio test was utilized to 

identify the explanatory variables that affect crash frequency significantly. Similarly, the 

safety performance functions were developed for corridor crash frequency as well. Crash 

severity distributions were adopted in the bicycle crash frequency prediction models.  

Another approach to identifying injury risk factors other than developing SPFs 

using smartphone applications is to collect volunteered geographic information (VGI) 

from cyclists through websites or applications. von Stülpnagel and Krukar (2018) 

assessed this type of crowdsourced data as well as the authoritative data as the indicators 

for biking risk analysis. Volunteered bicyclists were asked to conduct the laboratory-

based virtual reality experiments to estimate their risk perception. Bicyclists were divided 

into two groups for separate cases. The first group was tested as experienced and frequent 

bicyclists who are not familiar with the selected test locations. The second group, on the 

contrary, was tested as bicyclists who are both experienced and familiar with the test 

locations. After that, the indicators of biking risk were obtained from the volunteered 



46 

 

 

 

geographic information. Therefore, based on the indicators from VGI and collected 

authoritative data, biking risk perception was estimated using linear mixed-effect models. 

The model results revealed that the semantic severity described for cycling hazard and 

the public response to the hazard might affect the risk perception significantly. Based on 

the authoritative data, a Space Syntax analysis was conducted which demonstrated the 

bicyclist sensitivity to street size and complexity. 

Jestico (2016) utilized crowdsourced bicycle data to conduct research on bicycle 

ridership and cycling safety analysis. The bicyclist safety and injury risk were analyzed 

based on the bicycle volume in the certain area estimated using crowdsourced bicycle 

data collected from Strava. Manual count data at intersections during peak hours were 

also collected and used to compare with the crowdsourced data with a generalized linear 

model. Results indicated that time of year, slope, traffic speeds, and on street parking 

might affect the bicycle volume significantly. Based on the estimated bicycle volume, 

bicyclist injury risk was analyzed using Poisson generalized linear model based on the 

incident reports obtained from www.BikeMaps.org to examine the impacts of various 

factors. Results revealed that motor-vehicle and bicycle volumes and lack of deceleration 

factors were found to affect accident frequency significantly.  

Al-Fuqaha et al. (2017) developed and utilized a smartphone application called 

BikeableRoute to analyze the risk factors based on crowdsourcing. This application 

enables bicyclists to report hazards during their cycling trips as well as to track their 

cycling information. The data collected from this application included risk report 

generated by bicyclists, user evaluation on the bike ability of cycling routes, and cycling 

information such as distance, cycling time, and speed. Using the data from 

http://www.bikemaps.org/
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BikeableRoute, risk factors were categorized into three groups which are infrastructure-

related, facility-related, and traffic-related factors. An ordered probit model was 

developed to analyze the perception of narrow bicycle lanes in terms of different ages and 

skill levels. Results revealed that bicyclists from different age groups have different 

perception of hazard. Table 2.6 provides a summary of research on bicyclist injury risk 

analysis. 
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2.6. Summary 

A comprehensive review and the current and previous research studies regarding 

different kinds of data collection methods including crowdsourcing, open data, big data, 

and other traditional data collection methods were presented at the first section of this 

chapter. Then, the most prevalent smartphone crowdsourcing applications and their use 

on relevant research studies were summarized. Furthermore, the methods that were 

applied by researchers to estimate and predict bicycle volume were provided. Finally, 

bicyclist injury risk analyses conducted based on different types of data were discussed. 

This is to provide a solid reference and assistance in bicycle volume estimation and 

prediction, and injury risk analysis in future chapters.  
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CHAPTER 3:  DATA DESCRIPTIVE ANALYSES 

3.1. Introduction 

As mentioned before, the first step of this research is to collect crowdsourced 

bicycle data from Strava application and other relevant supporting data. This chapter 

gives an overview of the collected Strava bicycle data, and other essential supporting data 

for the later model development. The descriptive analyses of the collected Strava data are 

also provided. Data comparison is conducted between bicycle manual count data from the 

continuous count stations in Charlotte and the Strava bicycle data collected from the 

smartphone application.  

The following sections are organized as follows. Section 3.2 gives a brief 

introduction to Strava. Section 3.3 presents the Strava metro delivery. Section 3.4 shows 

the other relevant supporting data collected for this research. Section 3.5 describes the 

Strava bicycle count data in terms of the heatmap based on different months of year, trip 

purposes, weekdays and weekends. Section 3.6 gives a data comparison between bicycle 

manual count data from the continuous count stations in Charlotte and the Strava bicycle 

data from the smartphone application. Finally, Section 3.7 concludes this chapter with a 

summary. 

3.2. Introduction to Strava 

The field of possible GPS data has certainly been changing over time. The most 

commonly used solutions today are the data from smartphone application with 

completely different user structures and data types (such as Strava), data from bicycle 

hire systems, or data collected from local initiatives. Most of the smartphone applications 

including Strava tend to record route data directly collected from the users that utilized 
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this application, together with the demographic information about the users derived from 

the application. Such data contain various aspects of sensitive information, such as the 

user’s place of residence or workplace. Such information can also be related to profile 

information such as name, gender, age, and other freely provided information. When 

passing data on to third parties, it is obliged to anonymize the users’ sensitive information 

according to the data protection laws and general conditions of business. Therefore, the 

buyers will only receive data that have already been aggregated by the vendors and 

cannot trace back to the people that generated the data. Anonymized demographic 

information (such as gender and age) is aggregated and permitted to remain in the 

dataset. Such data generated from global vendors of smartphone applications will provide 

information about the largest range and number of possible users. Considerable 

differences can exist within the user structure. The route data are collected from each user 

on a second to second basis, saved at the end of the trip and transmitted to a server. The 

saved data can then be viewed by users on their smartphones and shared their trip 

information with others. This allows the application (such as Strava) users to share their 

recent routes with others or keep a training journal.  

The cycling data utilized in this research are collected from Strava smartphone 

application developed by a technology company recording the cyclist travel trajectory 

with the GPS located in their smartphones. A screenshot showing the information about 

cycling distance, time, and speed, etc. is presented in Figure 3.1. Most of the users are 

cyclists or runners. When a cyclist or runner uses the Strava application, his/her trip 

information including distance, elevation change, trip duration, and average speed is 

recorded. In addition, the cycling route will also be saved in the application. This allows 



54 

 

 

 

users to be able to look and see their cycling trajectory, and how well they performed 

each time, and even compared with other users on the same segment/route.  

 

Figure 3.1: Strava App Screen Shots 

3.3. Strava Data 

The GPS data collected from the Strava users usually include the biking 

information for both the link-level and the intersection-level of the network. The link-

level data set contains the Strava user counts on roadway segments and the intersection-

level data set includes cyclist counts at intersections as well as their waiting times. To 

record the cycling route of the Strava users, the OD matrix data set is provided.  

The data offered by Strava Metro usually contain three main components 

including core data, roll-ups, and reports. The core data provide cycling information of 

each minute in the city network at both link-level and intersection-level. In addition, it 

provides the OD pairs for the cycling trips. The roll-ups data are the aggregated data 

developed from the core data to obtain cycling information for different times and trip 
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purposes. The reports of the data show a summary of the cyclists’ demographic 

information. The detailed data deliveries of Strava Metro can be found below. 

3.3.1. Core Data 

1. Link-level data set: Database file that presents the cycling information 

(especially bicycle counts) on each roadway segment during the time period of the 

delivery. 

2. Intersection-level data set: Database file that shows the cyclist counts and 

waiting time at each intersection during the time period of the delivery. 

3. OD data: Origin/Destination file that provides the cycling trip information 

including the OD pairs during the time period of the delivery. 

3.3.2. Roll-ups 

The roll-up data are the categorized core datasets processed by Strava Metro. For 

the link-level and intersection-level core dataset, several roll-ups are provided to 

summarize the views that present total counts, hour groupings, monthly use, 

weekday/weekend, and seasonality. In addition, other views of the roll-ups can be 

generated by researchers based on the specific research needs. 

The seasonality and hour groupings categorized for this research studies in the 

City of Charlotte are shown as follows. 

On season: From March to October 

Off-season: From November to February 

Early AM hours: 12:00 am - 5:59 am (labeled as_0) 

AM peak hours: 6:00 am - 8:59 am (labeled as_1) 

Mid-day hours: 9:00 am - 2:59 pm (labeled as_2) 
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Peak afternoon hours: 3:00 pm - 5:59 pm (labeled as_3) 

Evening hours: 6:00 pm - 7:59 pm (labeled as_4) 

Late evening hours: 8:00 pm - 11:59 pm (labeled as_5) 

3.3.3. Reports 

1. Demographics: A report that summarizes the cyclist demographic information 

in terms of different age and gender. 

2. Summary: The total Strava user counts and the cycling activities that were 

recorded during the time period of the delivery. 

3.4. Other Supporting Data 

Other supporting data collected for the following bicycle volume estimation and 

prediction, cycling activity modeling, and injury risk analysis include bicycle counts from 

manual count stations, road characteristics (e.g., route class, length of segment, number 

of through lanes, and road direction, speed limit), demographic characteristics (e.g., total 

population, median age in census blocks, household income, total families, and poverty 

rate), slope, bicycle facilities (e.g., off-street paths, bike lanes, signed bike lanes, 

suggested bike routes, suggested bike routes with low comfort, and greenway), zoning 

data, bus stops, sidewalk, AADT, and bicyclist involved crash data. The following 

figures show the bicycle facilities, total population, slope, and bicycle-vehicle crashes 

distribution in the City of Charlotte.  
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Figure 3.2: Bike Facilities in the City of Charlotte 

 

Figure 3.3: Total Population in the City of Charlotte 
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Figure 3.4: Slope in the City of Charlotte 

 

Figure 3.5: Bicycle-vehicle Crashes Occurred in the City of Charlotte 
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The crash data utilized in this research are the bicyclist-involved crash data 

collected in the City of Charlotte from 2007 to 2017. The data are obtained from North 

Carolina Department of Transportation. There are 1183 observations contained in the 

dataset with most of the bicycle-vehicle crashes (1149) occurred in the urban areas. To 

have a clear view of the crash number within each census block, Figure 3.6 is generated 

as follows. 

 

 

Figure 3.6: Number of Bicycle-vehicle Crashes within Census Blocks 
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3.5. Strava Data Analysis 

3.5.1. Demographics 

The total cyclists using Strava application are 8,857 with a majority of 7,129 male 

cyclists. Their total cycling trips from December 2016 to November 2017 were 140,428 

miles. The proportion of Strava users’ gender is presented in Figure 3.7.  

 

Figure 3.7: Strava User Gender 

 

From the age data, one can see that cyclists of all ages were using Strava 

application to record their trips. This data indicate that a large number of cyclists, both 

young and old, are familiar with Strava application based on the fact that age groups of 

the Strava users range from under 25 to over 95 as presented in the figure below. Cyclists 

from different age groups for both male and female cyclists is presented in Figure 3.8. 

From the figure, one can see that most of the cyclists are between 25 and 54.  

Male, 80%

Female, 15%

Blank Gender, 
5%

Strava User Gender

Male Female Blank Gender
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Figure 3.8: Male and Female Cyclists from Different Age Groups 

 

3.5.2. Trip purpose 

According to the data, among a large number of cyclists recording their cycling 

trips with Strava application, most of the trips are recreational trips. The proportion of 

commute trips and non-commute trips is shown in the following pie chart where 

commute trips account for only 18.33% of the total cycling trips and non-commute trips 

account for 81.67% of the total cycling trips. 
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Figure 3.9: Cyclist Counts for Different Trip Purposes 

 

3.5.3. Strava Count 

The Strava bicycle counts vary from month to month, from day to day, and from 

hour to hour. Therefore, comparisons are conducted to identify the difference between 

each different aspect. Before comparison, a map that illustrates the total cyclists on each 

road segment for the whole year is presented, as shown in Figure 3.10. 

Commute 
18%

Non-commute
82%

Trip Purpose

Commute Non-commute
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Figure 3.10: Total Cyclists Roll-ups  

 

Based on the bicycle volume in Figure 3.10, four locations where the volume of 

Strava users are high are identified which involve greenway, school, airport, and park. 

These are the popular cycling locations among Strava users.  

 
3.11.a Greenway                                                                   3.11.b School 



64 

 

 

 

 
3.11.c Airport                                                                        3.11.d Park 

Figure 3.11: Four Popular Cycling Locations  

The Strava bicycle counts under different situations are presented in detail as 

follows. 

3.5.3.1 Month of Year 

Cycling is a kind of activity which is highly related to the weather condition. 

Therefore, bicycle counts in different months of year vary with the temperature. Total 

bicycle volume on each road segment in twelve months of a year is presented in the 

following figures. 

 

3.12.a December 2016                     3.12.b January 2017                       3.12.c February 2017 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 
© OpenStreetMap (and) contributors, 

 CC-BY-SA 
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3.12.e March 2017                           3.12.f April 2017                             3.12.g May 2017 

 

3.12.h June 2017                               3.12.i July 2017                          3.12.j August 2017 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 
© OpenStreetMap (and) contributors, 

 CC-BY-SA 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 
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3.12.k September 2017                     3.12.l October 2017                  3.12.m November 2017 

Figure 3.12: Total Bicycle Volume in Each Month  

Based on the twelve maps generated to show the total bicycle volume on each 

road segment, several results can be presented as follows: 

1. The four popular cycling locations remain the same over the twelve months. 

2. The total bicycle volume on each road segment begins to increase in February 

and decreases in December.  

3. Different locations have different variance in total bicycle volume. 

4. The total bicycle volume on greenways begins to increase in February and 

decrease in December. However, the total bicycle volume in the uptown area 

and around airport begins to increase in April and decrease in October. And 

the park area has high bicycle volume from August to November.  

A total bicycle volume change for the whole year can be seen in the following 

figure. 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 
© OpenStreetMap (and) contributors, 

 CC-BY-SA 

© OpenStreetMap (and) contributors, 

 CC-BY-SA 
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Figure 3.13: Total Bicycle Volume in the Network 

3.5.3.2 Weekdays and Weekends 

The cycling activities occurred on weekdays and weekends are different. To see 

the volume difference between weekdays and weekends on each road segment, a map is 

generated in Figure 3.14 where red lines represent the higher bicycle volume on 

weekends and green lines depict the higher volume on weekdays. According to Figure 

3.14, the uptown area in the City of Charlotte appears to have more green lines which 

indicates more weekday cycling trips in this location.  
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Figure 3.14: Total Bicycle Volume on Weekdays and Weekends 

3.5.3.3 Time of Day 

The bicycle volume for each road segment varies with different times of day. The 

variation of bicycle volume is presented in Figure 3.15. From the figure, one can see that 

most of the cycling activities occurred from 5 am in the morning to 7 pm in the evening. 

Two cycling peaks are identified in this figure which are around 8 am and 6 pm. The 

bicycle volume at 5 am is higher than the volume at 6 am and 7 am. It can be assumed 

that cyclists choose to bike early in the morning before working hour. There is a decrease 

in the middle of the day. Two possible reasons can be identified. First, the temperature 

around noon is high. Second, workers are busy during the day.  

s 

s 
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Figure 3.15: Total Bicycle Volume for Different Times of Day 

3.5.3.4 Trip Purpose 

The trip purpose has an impact on the total bicycle volume on each road segment. 

The commute trips are presented in the following figure. 
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Figure 3.16: Total Commute Trips 

3.6. Data Comparison 

Difference remains between manual count data and Strava data. Since 

crowdsourced data usually involves a large number of people, the coverage of the road 

segment that is being used can be broad. On the contrary, installing manual count stations 

are costly and the coverage has to be limited. In other words, only the bicycle count at 

some locations can be collected. In addition, Strava data contain the bicycle trip time and 

the trip purpose (commuting or recreation), while manual count data cannot collect such 

information. In this research, the bicycle manual count from different count stations and 
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Strava user count at the same locations are compared in the following figure. In the figure, 

one can see that the manual count is greater than the Strava count. 

 

Figure 3.17: Comparison of Manual and Strava Counts 

3.7. Summary 

This chapter provides an overview of the data collected for this research. The 

descriptive analyses based on the data collected are conducted by creating several 

heatmaps for bicycle volume in different months of year, weekdays and weekends, and 

for different trip purposes. A data comparison between bicycle manual count data from 

the continuous count station in Charlotte and Strava bicycle data from the smartphone 

application is also provided. 
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CHAPTER 4:  DEVELOPING BICYCLE VOLUME MODELS 

4.1. Introduction 

This chapter provides a method to combine all the collected data for the 

development of the bicycle volume models utilizing ArcGIS and SAS. After the data 

processing procedure, two bicycle volume models are developed to quantify the 

relationship between bicycle manual count data and Strava bicycle data as well as other 

relevant variables. Model results are analyzed and bicycle volume on most of the road 

segments in the City of Charlotte is calculated based on the model estimation results. In 

addition, a map illustrating the bicycle ridership in the City of Charlotte is created.  

The following sections are organized as follows. Section 4.2 introduces the 

methods of data processing with ArcGIS and SAS. Section 4.3 presents the bicycle 

volume models and the model estimation results. Section 4.4 provides the bicycle volume 

prediction for most of the roadway segments in the City of Charlotte and creates a map to 

give an overall view of the bicycle ridership in the City of Charlotte. Finally, Section 4.5 

concludes this chapter with a summary. 

4.2. Data Processing 

The data processing in this Chapter is conducted utilizing ArcGIS and SAS. Three 

steps are followed to obtain the final combined data which can be seen in detail as 

follows: 

Step 1: 

This step is done in SAS. First, the bicycle manual count data are collected from 

the count stations and the Strava bicycle volume data from the smartphone application. 

Both the data contain the bicycle counts on a specific roadway segment during different 
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times of day. To analyze the bicycle volume during different time periods, a time period 

variable is added to the data, where TP = 0 represents time from 00:00 to 05:59, TP = 1 

represents time from 06:00 to 08:59, TP = 2 represents time from 09:00 to 14:59, TP = 3 

represents time from 15:00 to 17:59, TP = 4 represents time from 18:00 to 19:59, and TP 

= 5 represents time from 20:00 to 23:59. Then, the total bicycle volume is summed up by 

each count station/road segment for the manual count data and Strava data separately to 

get Data 1 and Data 2. From this step, one can see that Data 1 and Data 2 have a temporal 

relationship in terms of date and time of day. The detailed data processing procedure for 

this step is presented in Figure 4.1.  

 

Figure 4.1: First Step of the Data Processing Procedure in SAS 

Step 2: 

This step is accomplished in ArcGIS. First, a point layer containing manual count 

station information that was compiled in step 1 is created (which is called Data 1) here. 

Second, other relevant supporting data including NC route characteristic data, Charlotte 

zoning data, slope cell data, sociodemographic data, bicycle facility data, and Strava road 

segment shapefile that shares the same road segment ID with Data 2 in step 1 are added 
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to ArcGIS. Before combining all the supporting data with the manual count station point 

layer, a data preprocessing is conducted. The NC route characteristic data are filtered by 

Charlotte boundary and the slope information is extracted from the cell  data. Third, all 

the processed supporting data are combined together with Data 3 by spatial join in 

ArcGIS. Finally, Data1 and Data 3 are combined and the segments that have both manual 

count and Strava data are kept to create Data 4 that show the spatial relationship between 

Data 1 and Data 2. The detailed data processing procedure for this step is shown in 

Figure 4.2. 

 

Figure 4.2: Second Step of the Data Processing Procedure in ArcGIS 

Step 3: 
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Now that Data 4 contain the spatial relationship between Data 1 and Data 2 and 

information on Data 1, and one will still need to add the temporal relationship to it to 

obtain the final dataset. Thus, Data 4 and Data 2 are imported in SAS to create Data 5 by 

joining them with the same road segment ID, date, and time of day. Finally, dummy 

variables including weekdays and six time periods are added to Data 5. The detailed data 

processing procedure is shown in Figure 4.3. 

 

Figure 4.3: Third Step of the Data Processing Procedure in SAS 

4.3. Bicycle Volume Regression Models 

4.3.1. Simple Linear Regression Model 

To assess the relationship between Strava data and bicycle manual count data, a 

simple linear regression model is developed, with manual count data being the dependent 

variable and Strava count data as the independent variable. The model estimation is 

conducted by using SAS, and the results are presented in the following table.  

Table 4.1:  Simple Linear Regression Model Estimation Results 

Variable Label Parameter Estimate Standard Error t Value Pr > |t| 

Intercept Intercept 8.78724 0.82601 10.64 <.0001 

BikeCount Strava 7.62895 0.17815 42.82 <.0001 

R-Square 0.3562 Adj R-Square 0.3560 

 



76 

 

 

 

Results reveal that total bicyclist counts on the specific road segment are about 

7.63 times as high as the number of Strava users on the same road segment. However, 

according to the values of R square (0.3562) and adjusted R square (0.3560), the 

predictive accuracy of this model is low. That is probably because the manual count data 

could be determined by many other factors that are not accounted for in this model. 

Therefore, to estimate the impacts of other variables on bicycle manual count data on 

each road segment, a multiple linear regression model is conducted below. 

4.3.2. Multiple Linear Regression Model 

To investigate the influence of contributing factors on manual count including 

Strava user count, a multiple linear regression model is formulated as shown below, and 

the variables considered in this model are presented in Table 4.2. 

     Manual Count = f (N, G, S, Z, T, B, C) 

     where:  

     N = Network characteristics data which include speed limit, segment length 

and through lane. 

     G = Slope. 

     S = Sociodemographic data which include total population, median household 

income and median age. 

     Z = Zoning data including residential, business and mixed use. 

     T = Temporal data including different time periods and weekday. 

     B = Bicycle facility data including off-street paths, bike lanes, signed bike 

lanes, suggested bike routes, suggested bike routes with low comfort, and greenway. 

     C = Strava bicycle count. 
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Table 4.2:  Variable Description 

Variable Type Variable Label Description 

Network 

Characteristics 

Speed Limit The posted speed limit on 

a roadway segment. 

Segment length The length of the segment 

in miles. 

Through lane The number of through 

lanes. 

Geometry Slope  The slope of a road 

segment at intersection.  

Sociodemographic 

characteristics 

TOTPOP_CY Total population in each 

census block. 

MEDAGE_CY The median age in each 

census block. 

MEDHINC_CY Median household income 

in each census block. 

Zoning 

Residential Charlotte zoning with 

residential land use. 

Business Charlotte zoning with 

business land use. 

Mixed use Charlotte zoning with 

mixed use land use. 

Temporal 

Variables 

Hour_0 If cycling time is during 

00:00-05:59, then Hour_0 

= 1. 

Hour_1 If cycling time is during 

06:00-08:59, then Hour_1 

= 1. 

Hour_2 If cycling time is during 

09:00-14:59, then Hour_2 

= 1. 

Hour_3 If cycling time is during 

15:00-17:59, then Hour_3 

= 1. 

Hour_4 If cycling time is during 

18:00-19:59, then Hour_4 

= 1. 

Hour_5 If cycling time is during 

20:00-23:59, then Hour_5 
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Variable Type Variable Label Description 

= 1. 

Weekday  If bike on a weekday, then 

weekday = 1. 

Bicycle facilities 

Off_Street_Paths Off street paths 

Bike_Lanes Bike lanes 

Signed_Bike_Lanes Signed bike lanes 

Suggested_Bike_Routes Suggested bike routes 

Suggested_Bike_Routes_Lowcomfort Suggested bike routes with 

low comfort 

Greenway Greenway 

Strava data BikeCount Strava user count on a 

road segment. 

 

The parameter estimation of this multiple linear regression model is conducted in 

SAS, and the model estimation results are present in Table 4.3. 

Table 4.3:  Multiple Linear Regression Model Estimation Results 

Variable Parameter Estimate Standard Error t Value 

Intercept 4.53707 2.15121 2.11 

Hour_1 5.05005 1.93230 2.61 

Hour_2 25.29360 1.92312 13.15 

Hour_3 24.72827 1.89316 13.06 

Hour_4 16.67931 1.97334 8.45 

Hour_5 10.91207 2.17965 5.01 

weekday -9.16515 1.11290 -8.24 

BikeCount 6.32098 0.15380 41.10 

Bike_Lanes -22.10636 1.20746 -18.31 

Off_Street_Paths 22.60260 1.23021 18.37 

Suggested_Bike_Routes -13.94757 2.41011 -5.79 

R-Square 0.6084 Adj R-Square 0.6073 
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Based on the model estimation results in Table 4.3, variables including weekday, 

time period except 00:00-06:00 am, Strava user count, off-street paths, bike lanes, and 

suggested bike routes have a significant impact on the manual count. Specific analysis is 

conducted in detail as follows: 

Time period except 00:00-06:00 am has a positive impact on the total bicycle 

volume on a road segment, which means cycling activity starts early in the morning and 

ends late at night. Cyclists prefer to bike on weekends compared to weekdays. This is 

probably because cyclists may need to work on weekdays which gives them less time for 

cycling. Another possible reason is that most of the cycling trips may be recreational trips. 

Therefore, weekday has a negative impact on the manual bicycle count. According to the 

results, different bicycle facilities have different impacts on the total bicycle volume on 

road segments. Interestingly, bike lanes and suggested bike routes have negative impacts 

on the manual count, while off-street path has a positive impact on it. It can be interpreted 

that compared with other bicycle facilities, off-street paths are the most popular ones 

among cyclists in the City of Charlotte. The values of R square (0.6084) and adjusted R 

square (0.6073) of this multiple linear regression model are higher than the simple linear 

regression model, which indicates that this model has a higher prediction accuracy than 

the previous one.  

4.4. Bicycle Volume Prediction 

Based on the model estimation results from the multiple linear regression model, 

a bicycle volume prediction on most of the road segments in the city of Charlotte with 

availability of Strava data and bike facility data is computed using the following equation: 
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Bicycle volume = 4.53707 + 5.05005 * [Hour_1] + 25.29360 * [Hour_2] + 

24.72827 * [Hour_3] + 16.67931 * [Hour_4] + 10.91207 * [Hour_5] - 9.16515 * 

[Weekday] + 6.32098 * [BikeCount] - 22.10636 * [Bike_Lanes] + 22.60260 * 

[Off_Street_Paths] - 13.94757 * [Suggested_Bike_Routes] 

To obtain the annual average daily bicycle (AADB) prediction, the predicted 

bicycle volume on each road segment calculated using the equation above are rolled up 

for the whole year, which provides the aggregated whole year bicycle volume (VT) on 

each road segment in the city of Charlotte. Therefore, the AADB prediction can be 

calculated using the following equation: 

AADB = VT /365 

An AADB prediction of most of the road segments in the city of Charlotte is 

presented in Figure 4.4. 
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Figure 4.4: AADB Prediction in the City of Charlotte 

4.5. Summary 

This chapter provides a method to combine all the collected data for the 

development of the bicycle volume models utilizing the ArcGIS and SAS. After the data 

processing, two bicycle volume models are developed to quantify the relationship 

between bicycle manual count data and Strava bicycle data as well as other relevant 

variables. Model results are analyzed and predicted bicycle volume on most of the road 

segments in the city of Charlotte is calculated using the developed estimation model. In 

addition, a map illustrating the bicycle ridership in the city of Charlotte is also created.   
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CHAPTER 5:  MODELING CYCLING ACTIVITIES 

5.1. Introduction 

In this chapter, discrete choice models are developed to model cycling activities 

and model comparison is conducted to identify the best-fit model for this cycling activity 

analysis. To examine the different impacts of explanatory variables on cycling activities 

during selected time periods, discrete choice models are developed separately.  

The following sections are organized as follows: Section 5.2 provides a data 

processing method to combine all the needed data for the later development of discrete 

choice models. Section 5.3 through Section 5.6 provide the models developed for cycling 

activities including ordered logit (ORL) model, partial proportional odds (PPO) model, 

multinomial logit (MNL) model, and mixed logit (MXL) model respectively. Section 5.7 

compares the models developed in the previous sections and identifies the best model 

structure for this research study. Section 5.8 develops two models for different selected 

time periods and a model comparison is provided in this section. Finally, Section 5.9 

concludes this chapter with a summary. 

5.2. Data Processing 

The data processing procedure is conducted utilizing ArcGIS and SAS. Two steps 

are needed to obtain the final combined data which can be seen in detail as follows: 

Step 1: 

This step is done in ArcGIS. First Strava road segment shapefile is added in 

ArcGIS (named Data 1 later). This data contain basic information on the Strava road 

based on the Open Street Map with a column that records the road segment ID (i.e., Edge 
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ID). This ID is used to relate it to the Strava user count data (Data 4) to match the bicycle 

volume data to the Strava roadway network.  

In addition, other relevant supporting data including NC route characteristics data, 

slope cell data, sociodemographic data and bicycle facility data are also added to ArcGIS. 

Before combining all the data together, data preprocessing is conducted. For the NC route 

characteristics data, only the data in the City of Charlotte are selected to accelerate the 

data processing speed later. Therefore, Charlotte boundary data are added to clip the NC 

route data as shown in Figure 5.1.  

 

Figure 5.1: Clip in ArcGIS 

To obtain the data from the slope cell data, the “Extract” tool in ArcGIS is utilized 

to export the slope data. After all the data preprocessing, the Data 2 are acquired as a 

combination of four supporting data. Then, Data 2 are combined with Data 1 in order to 

join to Strava road segment shapefile. Finally, Data 3 are obtained as a combination of 

Data 1 and Data 2. The detailed data processing procedure for this step is shown in 

Figure 5.2. 
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Figure 5.2: Data Processing in ArcGIS 

Step 2: 

This step is accomplished in SAS. First, the Strava bicycle count data (Data 4) 

collected from each road segment during a specific time of day in the City of Charlotte 

are imported in SAS. A column with six time periods from 0 to 5 is created where TP = 0 

represents time from 00:00 to 05:59, TP = 1 represents time from 06:00 to 08:59, TP = 2 

represents time from 09:00 to 14:59, TP = 3 represents time from 15:00 to 17:59, TP = 4 

represents time from 18:00 to 19:59, and TP = 5 represents time from 20:00 to 23:59. In 

order to add the day of week variable, one needs to first convert the day of year variable 

to date using DATEJUL in SAS, and leading zeros are added to make sure that the day is 

consistent with 3 digits. Based on the date, the WEEKDAY function is used to obtain the 

day of week from the SAS data value. And then, a roll-up bicycle volume table is created 

by road segment, date, and time period.  
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After preprocessing the Strava count data, Data 3 from the previous step are 

joined to Data 4 by the same segment ID. Dummy variables including weekday and time 

period 0 – 5 are added to the data. The variable that indicates the level of the bicycle 

volume on each road segment is created. Five categories are set up with bicycle counts 

from low (0-39), low-average (40-79), average (80-119), high-average (120-159), to high 

(160-200). And finally, Data 5 are obtained for the future model development. The 

detailed data processing procedure for this step is shown in Figure 5.3. 

 

Figure 5.3: Data Processing in SAS 
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5.3. Ordered Logit Model 

5.3.1. ORL Model Structure 

The ordered logit model is one of the traditional discrete choice models using for 

ordinal dependent variable analysis. In this research study, the number of bicycle counts 

on each road segment is divided into five categories, which are low (0-39), low-average 

(40-79), average (80-119), high-average (120-159), and high (160-200). In the ordered 

logit model, the level of bicycle counts on a road segment is denoted as 𝑦𝑖 , which is 

associated with the variable 𝑦𝑖
∗. The model specification is presented as follows: 

𝑦𝑖
∗ = 𝛽𝑋𝑖 + 𝜀𝑖 

where 𝑦𝑖
∗ demonstrates the bicycle volume, 𝑋𝑖 denotes a vector of the explanatory 

variables contributing to the bicycle volume, 𝛽 represents the coefficients that will be 

estimated, and 𝜀𝑖 stands for the error term which is Gumbel distributed.  

In this research, the continuous variable 𝑦𝑖
∗ is divided by the cut-points 𝜃𝑗  (j = 1, 

2, …, J) into J intervals (J = 5 for this scenario) and the bicycle volume is shown as 

follows: 

𝑦𝑖 =

{
 
 

 
 
1,−∞ ≤ 𝑦𝑖

∗ ≤ 𝜃1
2, 𝜃1 < 𝑦𝑖

∗ ≤ 𝜃2
3, 𝜃2 < 𝑦𝑖

∗ ≤ 𝜃3
4, 𝜃3 < 𝑦𝑖

∗ ≤ 𝜃4
5, 𝜃4 < 𝑦𝑖

∗ ≤ +∞

 

Thus, the probability of the level of bicycle counts on each road segment can be 

presented as follows: 

𝑃𝑖(𝑗) = {

F(𝜃1 − 𝛽𝑗𝑋𝑖), 𝑗 = 1

F(𝜃𝑗 − 𝛽𝑗𝑋𝑖) − F(𝜃𝑗−1 − 𝛽𝑗𝑋𝑖), 𝑗 = 2, … , 𝑗 − 1

1 − F(𝜃𝐽−1 − 𝛽𝑗𝑋𝑖),𝑗 = 𝐽

    

where F(.) represents the cumulative standard logistic distribution function.  
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5.3.2. ORL Model Results 

To analyze the level of bicycle counts on each road segment and examine the 

impact factors on cycling activities of the bicyclists in the City of Charlotte, an ordered 

logit model is developed. Explanatory variables are carefully selected for this ORL model 

which include temporal variables, road characteristics, sociodemographic information, 

geometry, and bicycle facilities. The detailed variable description is presented in Table 

5.1. 

Table 5.1:  Explanatory Variable 

Variable Description 

Temporal Variables  

Hour_0 If cycling time is during 00:00-05:59, then Hour_0 = 1. 

Hour_1 If cycling time is during 06:00-08:59, then Hour_1 = 1. 

Hour_2 If cycling time is during 09:00-14:59, then Hour_2 = 1. 

Hour_3 If cycling time is during 15:00-17:59, then Hour_3 = 1. 

Hour_4 If cycling time is during 18:00-19:59, then Hour_4 = 1. 

Hour_5 If cycling time is during 20:00-23:59, then Hour_5 = 1. 

Weekday  If bike on a weekday, then weekday = 1. 

Road Characteristics 

Speed Limit The posted speed limit on a roadway segment. 

RouteClass1 Interstate 

RouteClass2 US route 

RouteClass3 NC route 

RouteClass4 Secondary route 

MPLength The length of the segment in miles. 

ThruLane The number of through lanes. 

Oneway If the road segment is one way, then oneway = 1 

Sociodemographic Characteristics 

TOTPOP_CY Total population in each census block. 

MEDAGE_CY The median age in each census block. 
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Variable Description 

MEDHINC_CY Median household income in each census block. 

Total_HH Total households in each census block. 

TotalFamily Total families in each census block. 

Poverty Family poverty rate in each census block. 

Geometry 

Slope  The slope of a road segment at intersection.  

Bicycle Facilities 

B_offstreet Off street paths 

B_bikelane Bike lanes 

B_signed Signed bike lanes 

B_suggested Suggested bike routes 

B_suggest0 Suggested bike routes with low comfort 

B_greenway Greenway 

 

All the factors presented in Table 5.1 are considered in the ordered logit model to 

determine the probability of segments being selected by the Strava users. The maximum 

likelihood method is utilized to conduct the model estimation and to determine the 

thresholds in the ordered logit model. This process is conducted in SAS 9.4. To keep the 

variables that affect the level of bicycle counts on each road segment significantly, the 

backward selection demand is used for the model estimation. The backward selection 

results are presented in Table 5.2. The model estimation results, and the fit statistics are 

shown in Table 5.3 and Table 5.4 respectively.  

Table 5.2:  Summary of Backward Elimination 

Summary of Backward Elimination 

Step Effect Removed Wald Chi-Square Pr > ChiSq 

1 Hour_0 0.0000 0.9993 

2 B_offstreet 0.0000 0.9951 
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Summary of Backward Elimination 

Step Effect Removed Wald Chi-Square Pr > ChiSq 

3 Hour_4 0.0027 0.9586 

4 SpeedLimit 0.1222 0.7266 

5 Poverty 0.4548 0.5001 

6 TOTPOP_CY 0.4030 0.5255 

7 B_bikelane 0.6974 0.4037 

 

Table 5.3:  Ordered Logit Model Estimation Results 

Analysis of Maximum Likelihood Estimates 

Parameter  Level Estimate Standard Error Wald Chi-

Square 

Pr > ChiSq 

Intercept 5 1.6165 1.0468 2.3847 0.1225 

Intercept 4 3.6935 1.0534 12.2937 0.0005 

Intercept 3 4.0366 1.0565 14.5970 0.0001 

Intercept 2 5.4232 1.0882 24.8353 <.0001 

Weekday   -4.2510 0.3204 176.0312 <.0001 

Hour_1   1.0789 0.4326 6.2192 0.0126 

Hour_2   1.1850 0.4193 7.9859 0.0047 

Hour_3   2.9484 0.4137 50.7871 <.0001 

MPLength   1.0827 0.4673 5.3673 0.0205 

ThruLane   0.6786 0.0853 63.2215 <.0001 

MEDAGE_CY   0.0244 0.0115 4.4958 0.0340 

MEDHINC_CY   0.000032 2.773E-6 129.7401 <.0001 

Total_HH   0.00119 0.000345 11.8828 0.0006 

TotalFamily   -0.00133 0.000470 8.0179 0.0046 

Slope   -0.0506 0.00959 27.8175 <.0001 

B_signed   -1.1172 0.1814 37.9421 <.0001 

B_suggested   0.7100 0.3414 4.3260 0.0375 

B_suggest0   -1.8420 0.3542 27.0457 <.0001 

B_greenway   2.6567 1.0285 6.6720 0.0098 
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Analysis of Maximum Likelihood Estimates 

Parameter  Level Estimate Standard Error Wald Chi-

Square 

Pr > ChiSq 

RouteClass1   -0.6356 0.2719 5.4624 0.0194 

RouteClass2   0.8828 0.2390 13.6409 0.0002 

RouteClass3   -0.3567 0.1395 6.5407 0.0105 

Oneway   0.9971 0.1553 41.2258 <.0001 

 

Table 5.4:  Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 

AIC 7480.648 5802.726 

SC 7522.162 6114.085 

-2 Log L 7472.648 5742.726 

 

According to the backward elimination summary in Table 5.2, variables including 

time period from 00:00 to 05:59 and from 18:00 to 19:59, speed limit, off street paths, 

bike lanes, speed limit, total population, and family poverty rate do not have significant 

impacts on the level of bicycle counts on each road segment. Based on the model 

estimation results presented in Table 5.3, variables including weekday, total family, slope, 

signed bike lanes, suggested bike routes with low comfort, interstate route, and NC route 

all have negative impacts on the level of bicycle counts, while other variables which are 

time period from 6:00 to 17:59, segment length, number of through lanes, median age, 

median household income, total household, suggested bike routes, greenway, US route, 

and one-way road all have positive impacts on the level of bicycle counts. The detailed 

interpretation of the influence of each factor on the level of bicycle counts will be 

provided in Section 5.6. AIC and -2LogL presented in Table 5.4 are indicators that 

measure the fitness of the model which will be used for model comparison in Section 5.6. 
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5.4. Partial Proportional Odds Model 

5.4.1. PPO Model Structure 

The partial proportional odds (PPO) model is developed based on the ordered 

logit (ORL) model. In the ORL model, the proportional odds (PO) assumption is 

subjected. It can be interpreted that the estimated parameters are restricted to be same 

across all the alternatives. However, this assumption is unrealistic. To relax the 

assumption mentioned above, the PPO model is developed.  

The explanatory variables associated with each road segment are categorized into 

two groups. One contains parameters satisfying the PO assumption, which is presented as 

vector Xi, the other includes parameters violating the assumption which is shown as 

vector Zi. The variables violating the PO assumption are able to affect the response 

variables differently, while others remaining fixed parameters have the same effect across 

different levels. Thus, the PPO model with logit function is presented as follows:  

𝑃(𝑌𝑖 ≥ 𝑗) =
exp[𝜃𝑗 − (𝑋𝑖

′𝛽𝑗 + 𝑍𝑖
′𝛾𝑗)]

1 + exp[𝜃𝑗 − (𝑋𝑖
′𝛽𝑗 + 𝑍𝑖

′𝛾𝑗)]
 

where j denotes the level of bicycle counts on each road segment and Yi represents 

the bicycle counts for road segment i, β and 𝛾  represents the coefficients that will be 

estimated, and 𝜃𝑗  demonstrates the threshold for jth cumulative logit.  

To examine whether the PO assumption is violated or not, the Wald Chi-square 

tests are utilized during the model development. This procedure helps divide the 

explanatory variables into two groups which are categorized in either vector Xi or vector 

Zi. 
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5.4.2. PPO Model Results 

This PPO model is built based on the ORL model developed in Section 5.2. A 

series of Wald Chi-square tests are conducted to determine if the explanatory variables 

violate the PO assumption. These variables are presented in Table 5.5.  

Table 5.5:  Linear Hypotheses Testing Results 

Label Wald Chi-Square Pr > ChiSq 

Hour_1_po 38.4832 <.0001 

ThruLane_po 10.1651 0.0172 

MEDHINC_CY_po 33.7202 <.0001 

Total_HH_po 25.5679 <.0001 

TotalFamily_po 37.5464 <.0001 

B_suggested_po 12.4505 0.0060 

RouteClass2_po 27.5757 <.0001 

Oneway_po 17.0930 0.0007 

 

Thus, variables including time period from 6 am to 9 am, the number of through 

lanes, median household income, total households, total families, suggested bike routes, 

US routes, and one-way road violate the PO assumption and affect different levels 

variously.  

The PPO model estimation results and the fit statistics are shown in Table 5.6 and 

Table 5.7.  

Table 5.6:  Partial Proportional Odds Model Estimation Results 

Analysis of Maximum Likelihood Estimates 

Parameter Level Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept 5 2.9121 2.1919 1.7651 0.1840 

Intercept 4 8.2183 1.2527 43.0387 <.0001 

Intercept 3 9.9807 5.1830 3.7081 0.0541 
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Analysis of Maximum Likelihood Estimates 

Parameter Level Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept 2 10.7126 1.5216 49.5631 <.0001 

Weekday   -7.0154 1.2122 33.4937 <.0001 

Hour_1 5 -0.2021 0.1664 1.4750 0.2246 

Hour_1 4 3.1647 0.5676 31.0867 <.0001 

Hour_1 3 0.3418 1.7064 0.0401 0.8412 

Hour_1 2 -0.0473 2.3269 0.0004 0.9838 

Hour_3   1.7205 0.1034 276.6263 <.0001 

ThruLane 5 0.5160 0.0711 52.7303 <.0001 

ThruLane 4 -0.2532 0.2544 0.9905 0.3196 

ThruLane 3 -0.1234 0.4373 0.0796 0.7778 

ThruLane 2 -0.5763 1.2314 0.2190 0.6398 

MEDHINC_CY 5 0.000031 2.66E-6 138.3050 <.0001 

MEDHINC_CY 4 0.000034 8.519E-6 15.7006 <.0001 

MEDHINC_CY 3 0.000154 0.000022 50.5355 <.0001 

MEDHINC_CY 2 0.000109 0.000035 9.8945 0.0017 

Total_HH 5 0.00105 0.000334 9.8621 0.0017 

Total_HH 4 0.00859 0.00280 9.4126 0.0022 

Total_HH 3 0.0277 0.00534 26.9469 <.0001 

Total_HH 2 0.0373 0.0206 3.2672 0.0707 

TotalFamily 5 -0.00120 0.000458 6.8452 0.0089 

TotalFamily 4 -0.0122 0.00377 10.4502 0.0012 

TotalFamily 3 -0.0389 0.00617 39.7655 <.0001 

TotalFamily 2 -0.0530 0.0253 4.3881 0.0362 

Slope   -0.0575 0.00891 41.5729 <.0001 

B_signed   -1.0671 0.1841 33.6052 <.0001 

B_suggested 5 2.8458 0.9343 9.2777 0.0023 

B_suggested 4 2.8330 1.1958 5.6128 0.0178 

B_suggested 3 -3.4416 1.9230 3.2029 0.0735 

B_suggested 2 -0.4743 2.3583 0.0404 0.8406 
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Analysis of Maximum Likelihood Estimates 

Parameter Level Estimate Standard Error Wald Chi-Square Pr > ChiSq 

B_suggest0   -4.0556 0.9381 18.6881 <.0001 

B_greenway   3.5327 1.4672 5.7973 0.0161 

RouteClass2 5 1.4188 0.2791 25.8462 <.0001 

RouteClass2 4 -3.7311 1.2443 8.9915 0.0027 

RouteClass2 3 1.8386 2.2886 0.6454 0.4218 

RouteClass2 2 0.3602 2.9464 0.0149 0.9027 

Oneway 5 0.8081 0.1259 41.1903 <.0001 

Oneway 4 3.4399 0.8487 16.4278 <.0001 

Oneway 3 5.2436 1.3215 15.7451 <.0001 

Oneway 2 1.1925 3.5373 0.1136 0.7360 

 

Table 5.7:  Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 

AIC 7480.648 5521.322 

SC 7522.162 5957.225 

-2 Log L 7472.648 5437.322 

 

Based on the PPO model estimation results shown in Table 5.6, variables that 

satisfy the PO assumption include weekday, time period from 15:00 to 17:59, slope, 

signed bike lanes, suggested bike routes with low comfort, and greenways remain the 

same interpretation as the previous developed ORL model. Other variables are allowed to 

have different effects across the outcomes. The detailed model interpretation and model 

comparison will be presented in Section 5.6.  

The model fit statistics provided in Table 5.7 indicate that the -2 LogL for the 

PPO model is less than that of the ORL model and is less than the constant-only model. It 

means the PPO model has a better fitness for the level of bicycle counts. To better 
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examine the goodness of fit for this PPO model. The likelihood ratio index ρ2 is utilized 

and presented in the following equation: 

𝜌2 = 1−
𝐿𝐿(�̂�)

𝐿𝐿(𝑐)
 

where 𝐿𝐿(�̂�) is the log-likelihood value at convergence and 𝐿𝐿(𝑐) represents the 

log-likelihood value for constant-only model. Based on the results presented in Table 5.7, 

the likelihood ratio index ρ2 is 0.27. According to Train (2009)’s research study, a better 

model is associated with a higher value of ρ2, and it is good enough to have ρ2 from 0.2 

to 0.4 in real world case studies. Therefore, it can be concluded that the PPO model is 

good enough to model the cycling activities for the Strava users in the City of Charlotte.  

5.5. Multinomial Logit Model 

5.5.1. MNL Model Structure 

The multinomial logit model developed in this section is used to analyze cycling 

activities. In this model, it assumes that the alternative which yields the maximum utility 

is always selected, which is called random utility theory (Train, 2009). The utility 

function comprises an observed utility and an unobserved error term, which are shown in 

the following equation: 

in in inU V ε= +
 

where Uin is the utility function of the level of bicycle counts i for the road 

segment n, Vin denotes the observed utility of level i for the segment n, εin represents the 

unobserved error term of level i for the segment n. Vin is usually taken as a linear utility 

function as shown in the following equation: 

0 1

N

in k inkk
V β β X

=
= +  
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where Xink represents the kth explanatory variable of level of bicycle counts i for 

road segment n, N denotes the number of the explanatory variables, β0 indicates the 

constant term, and βk expresses the estimated coefficient of the kth explanatory variables.  

It is assumed that ε conforms to a Gumbel distribution, and attributes are 

independent of each other. Then the probability of the level of bicycle counts for each 

road segment for this research study can be derived as follows: 




=

n

jn

in

Cj

V

V

n
e

e
iP )(

 

5.5.2. MNL Model Results 

The MNL model estimation result is shown in Table 5.8, in which the parameter 

estimates are shown for each level of the bicycle counts. One category is selected as the 

base case for this MNL model which is the low level of the bicycle counts. Variables that 

do not have significant impacts on the bicycle counts at 0.05 level are removed from the 

model utilizing the backward selection method.  

Table 5.8:  Multinomial Logit Model Estimation Results 

Parameter Estimates 

Parameter Level  Estimate Standard Error t Value Approx Pr > |t| 

Constant2 2 2.3112 0.4306 5.37 <.0001 

Constant3 3 -2.4150 1.0291 -2.35 0.0189 

Constant4 4 5.9278 0.5980 9.91 <.0001 

Constant5 5 6.8923 0.7711 8.94 <.0001 

Weekday 5 -4.1488 0.3084 -13.45 <.0001 

Hour_2 2 -1.7464 0.4134 -4.22 <.0001 

Hour_2 3 -1.4990 0.5230 -2.87 0.0042 

Hour_2 5 1.2087 0.5109 2.37 0.0180 

Hour_3 5 1.8764 0.4731 3.97 <.0001 
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Parameter Estimates 

Parameter Level  Estimate Standard Error t Value Approx Pr > |t| 

Hour_4 4 -3.8902 0.4753 -8.19 <.0001 

MPLength 5 1.5708 0.4601 3.41 0.0006 

ThruLane 5 0.5906 0.0775 7.62 <.0001 

TOTPOP_CY 3 0.000278 0.000121 2.31 0.0211 

MEDHINC_CY 3 0.0000402 7.6282E-6 5.27 <.0001 

MEDHINC_CY 5 0.0000360 2.7568E-6 13.06 <.0001 

Total_HH 4 0.005706 0.001417 4.03 <.0001 

Total_HH 5 0.006635 0.001381 4.81 <.0001 

TotalFamily 4 -0.007300 0.001749 -4.17 <.0001 

TotalFamily 5 -0.008146 0.001691 -4.82 <.0001 

Slope 4 0.0477 0.009090 5.25 <.0001 

B_suggest0 4 1.1859 0.1312 9.04 <.0001 

RouteClass2 4 -2.2344 0.3437 -6.50 <.0001 

RouteClass4 5 0.4541 0.1313 3.46 0.0005 

Oneway 5 1.0411 0.1432 7.27 <.0001 

 

According to the MNL model estimation results presented in Table 5.8. Variables 

that have significant impacts on bicycle counts contain weekday, time period from 9:00 

to 14:59, time period from 15:00 to 17:59, time period from 18:00 to 19:59, the length of 

segment, the number of through lanes, total population, median household income, total 

households, total families, slope, suggested bike routes with low comfort, US route, 

secondary route, and one-way road. The explanatory variables being kept in the MNL 

model are similar to those in the ORL and PPO models but are not exactly the same. The 

detailed model result interpretation and comparison will be presented in Section 5.6. 
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The MNL model fit summary is shown in Table 5.9. From the table, the log-

likelihood value at convergence is -2774. Therefore, -2 LogL is calculated which equals 

to 5548. This value will be used for the model comparison in Section 5.6. 

Table 5.9:  Model Fit Summary 

Number of Observations 237673 

Number of Cases 1188365 

Log Likelihood -2774 

Log Likelihood (LogL(c)) -3736 

AIC 5596 

Schwarz Criterion 5845 

 

5.6. Mixed Logit Model 

The MXL model is different from the MNL model because it allows explanatory 

variables to influence the mean of the random parameter distribution (Bhat, 1998; Revelt 

and Train, 1998; McFadden and Train, 2000; Bhat, 2000; Hensher and Greene, 2003) and 

it can address the unobserved heterogeneity. Similar to MNL model, the linear utility 

function of the MXL model is shown as follows: 

in in in inU X = +
 

where Uin denotes the utility function of the level of bicycle counts i on each road 

segment n, βin means a vector of coefficient estimates which are allowed to vary, Xin 

represents a vector of explanatory variables which affect the level of bicycle counts, and 

εin is the error term.  

According to the research conducted by Train (2009), the MXL model structure is 

shown in the following equation: 
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where f(β|φ)  represents the probability density function of β, ϕ denotes the 

parameter vector, which shows the mean and variance of the density function. The 

coefficent β can be flexible or fixed, and can be any (e.g., normal, uniform, lognormal or 

triangular) distribution (Train 2009). In this research, the normal distribution is selected. 

If all the parameters are fixed, the mixed logit model will collapse into a simple 

multinomial logit model.  

The MXL model is built based on the MNL model. Subsequently, all variables in 

multinomial logit models are assumed to be randomly distributed at first and normal 

distribution is employed for all the variables in the MXL model. Then, a backward 

selection process is applied to determine the normally distributed parameters in the MXL 

model. Parameters will be fixed if the standard deviation is not different from zero at 0.05 

level of significance. 200 Halton draws are utilized during the simulation-based model 

estimation process. It is verified by some scholars that 200 Halton draws are sufficient 

and accurate for mixed logit model development (e.g., Koppelman et al. 2003). However, 

the number of observations (237,673) is extremely large for the estimation of MXL 

model which is not time efficient. Therefore, the peak hour data are selected to analyze 

cycling activities and the MXL models will be developed in Section 5.8.  

5.7. Model Comparison 

This section compares the results of ORL, PPO, and MNL models developed in 

the previous sections. Indicators utilized for the model comparison include -2Log-
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likelihood, likelihood ratio index ρ2, the Akaike’s information criterion (AIC), and the 

Bayesian information criterion (BIC).  

5.7.1. Indicators for Model Comparison 

The most commonly used indicators for model comparison are -2Log-likelihood, 

AIC, BIC, and ρ2. To compare the models within the same structure (e.g., ORL and PPO), 

all the indicators can be utilized. However, to compare models within different structures, 

it is not appropriate to utilize the likelihood values.  

The values of indicators (AIC and BIC) are calculated with the following 

equations: 

AIC = 2p – 2LL 

BIC = pln(Q) – 2LL 

where p is the total number of parameters in the model, Q represents the total 

number of observations and LL indicates the value of log-likelihood. 

Therefore, the four indicators for each model developed in the previous sections 

are shown in Table 5.10.  

Table 5.10:  Indicators for Model Comparison 

Model No. of Obs (Q) No. of Vars. (p) -2LogL AIC BIC ρ2 

ORL 237673 23 5743 5789 6028 0.2315 

PPO 237673 42 5437 5521 5957 0.2724 

MNL 237673 24 5548 5596 5845 0.2575 

 

Comparing the traditional ORL model to the PPO model, the PPO has a smaller 

value of -2LogL than that of the ORL model, which indicates that the PPO model 

outperforms the ORL model for fitting the bicycle count data in Charlotte. To compare 
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the three models with different structures, AIC and BIC values are utilized. Based on the 

values of AIC, the partial proportional odds model shares the smallest, which reveals the 

best fitness of the PPO model. However, the BIC value of PPO is not the smallest. 

According to the BIC values, the MNL model performs better than the PPO model, and 

the PPO model is better than the ORL model. The implication derived from the value of 

ρ2 demonstrates that the PPO model with the largest value performs better than the other 

two models. The reason that the BIC value of the PPO model is larger than the MNL’s 

can be interpreted that the PPO model has more estimated parameters than the MNL 

model. The trade-off between better fitness of the model and the variable number should 

be carefully considered and examined. In this research study, with the consideration of 

the four indicators, conclusion can be provided that the PPO model fits best for this 

cycling activity analysis.  

5.7.2. Model Result Comparison 

Based on the model estimation results in Table 5.3, Table 5.6, and Table 5.8, 

variables that have significant impacts on cycling activities are identified and interpreted 

for all three models including ORL model, PPO model, and MNL model. The detailed 

analysis is provided as follows: 

1. Temporal variables: 

The cycling behavior varies with different time in terms of weekday/weekend and 

time of day. According to the model estimation results from three models, weekdays have 

a negative impact on the bicycle counts for each road segment especially for the category 

of high-level bicycle counts. It can be interpreted that Strava users in the City of 

Charlotte prefer to bike on weekends. And on weekdays, the probability of the high-level 
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bicycle count occurrence will decrease. The conclusion of this result might be related to 

the high proportion of the non-commute trips in the Strava dataset. Different times of day 

will have different impacts on the bicycle counts since cycling activities vary with the 

change of time. The time period from 06:00 to 17:59 has a positive overall impact on the 

bicycle counts, while time period from 18:00 to 19:59 has a negative impact on the 

bicycle counts. To be specific, time period from 06:00 to 08:59 has a positive impact on 

average-high level. Time period from 09:00 to 14:59 has a negative impact on the low-

average and average level, while it affects the high level of bicycle counts positively. 

Time period from 15:00 to 17:59 affects the high level of bicycle counts positively. And 

time period from 18:00 to 19:59 has a negative impact on average-high level. To 

conclude, cyclists prefer to bike during daytime, and time period from 06:00 to 17:59 is 

associated with high likelihood of above average bicycle counts. Researchers can 

therefore assume that: First, the light condition is better during the daytime. Second, 

cyclists choose to bike during daytime considering the safety issue.  

2. Road characteristics: 

Road characteristics are highly related to the cycling conditions, which make the 

road characteristics factors significantly affect the cycling activities. The explanatory 

variables that influence the level of bicycle counts significantly include the length of the 

road segment, number of through lanes, Interstate, US route, NC route, secondary route, 

and one-way road. From the model estimation results, the length of the road segment has 

a positive impact on the bicycle counts. In other words, cyclists prefer to bike on long-

distance road segments. This is probably because bicyclists are willing to bike on 

roadway segments with bicycle facilities (e.g., greenways), which tend to be long-
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distance road segments. The number of through lanes have a positive impact on the high-

level bicycle counts for each road segment. It can be interpreted that cyclists tend to 

select road segments with a greater number of through lanes as a part of their cycling 

routes. Interstate and NC route have a negative impact on the bicycle counts. In addition, 

US route will positively affect the high-level bicycle counts, however, negatively 

influence the average-high level. Secondary routes are associated with high-level bicycle 

counts. Therefore, it can be concluded that more bicycle counts are likely to occur on US 

routes and secondary routes. One-way road segments have a positive impact on the 

bicycle counts especially for high-level category. This result is probably related to the 

cycling preference in the uptown area where numerous one-way roads exist.  

3. Sociodemographic characteristics: 

Several sociodemographic characteristics have different impacts on the level of 

bicycle counts on each road segment in the City of Charlotte. According to the model 

estimation results, explanatory variables that have significant impacts on bicycle counts 

contain total population, median age, median household income, total household, and 

total families. Based on the MNL model estimation results, the total population in the 

certain areas (census blocks) affects the average level of the bicycle counts positively, 

which indicates that high population will be associated with average level of the bicycle 

counts. Locations with higher median age have a positive impact on bicycle counts. It can 

be interpreted that cyclists prefer to bike in the area with higher median age. The median 

household income factor may affect the bicycle counts differently across different levels. 

To be specific, the median household income affects the average and above average 

levels positively, while it has a negative impact on the low-average level. An assumption 
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can be made that the uptown area has higher median income and the bicycle counts in the 

uptown location are higher since bicyclists prefer to bike in the center city area. 

Interestingly, the total households and total families affect the level of bicycle counts 

differently. The total households affect the higher levels of bicycle counts positively, 

while the total families affect the higher levels of bicycle counts negatively. It can be 

assumed that cyclists prefer to select locations with more rental apartments and less 

family house neighborhood.  

4. Geometry: 

The slope is one of the impact factors that affect the bicycle counts significantly. 

In the three discrete choice models, this variable is examined to discover the correlation 

between the probability of selecting the road segment as a part of the cycling route and 

the slope. The model estimation results reveal that slope affects the level of bicycle 

counts on each road segment negatively. It is not hard to understand that bicyclists prefer 

to bike on flat segments instead of steep segments.  

5. Bicycle facilities: 

Bicycle facilities are the critical consideration for cycling activities. Bicyclists 

may have different preferences for different bicycle facilities, which are able to provide 

higher cycling safety. Based on the model estimation results, bike facilities including 

signed bike lanes, suggested bike routes (both regular and low comfort), and greenways 

all have significant influences on the bicycle counts. Signed bike lanes affect the level of 

bicycle counts negatively, while greenways increase the likelihood of higher level of 

bicycle counts. The suggested bike routes with low comfort have a negative impact on 

bicycle count levels expect for average-high level. And suggested bike routes have a 
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positive impact on bicycle counts especially for the high-level category. It can be 

interpreted that greenways and suggested bike routes may have a better road condition 

compared to the other types of the bicycle facilities.  

5.8. Modeling Cycling Activities for Different Time Periods 

Applying the methodology mentioned in Section 5.6, two MXL models are 

developed to analyze the cycling activities for different time periods (AM peak hours and 

PM peak hours). The model estimation procedure is conducted in SAS 9.4. The MXL 

logit models developed in this section are based on the MNL models built for different 

time periods. The MXL model developed for AM peak hours collapses into a MNL 

model. The indicators for different time periods are shown in Table 5.11.  

Table 5.11:  Indicators for Different Time Periods 

Time Periods Model No. of Obs 

(Q) 

No. of Vars. 

(p) 

-2LogL AIC BIC ρ2 

AM Peak 

Hours 

MNL 43444 24 798.71 846.71 1055.01 0.1632 

PM Peak 

Hours 

MXL 48447 13 1789.96 1815.96 1930.21 0.1690 

 

In Section 5.8.1 and Section 5.8.2, the MNL model and the MXL for AM peak 

hours and PM peak hours respectively are presented. The analysis of the model 

estimation results demonstrates the impacts of different explanatory variables on the 

cycling activities for both peak hours.  

5.8.1. AM Peak Hours 

To analyze the cycling activities for AM peak hours, a MXL model is developed 

with low level of bicycle counts selected as the base. However, standard deviations of all 
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the levels in the MXL model are not different from zero at the significance level of 0.05. 

In other words, the coefficients in this model are fixed. Therefore, this MXL model 

collapses into a MNL model, and the MNL model estimation results are presented in 

Table 5.12. 

Table 5.12:  MNL Model Estimation Results for AM Peak Hours 

Parameter Estimates 

Parameter Level Estimate Standard Error t Value Approx Pr > |t| 

Constant 2 4.0770 0.9704 4.20 <.0001 

Constant 3 -11.5363 2.6558 -4.34 <.0001 

Constant 4 -1.3841 3.0688 -0.45 0.6520 

Constant 5 1.3761 1.8488 0.74 0.4567 

Weekday 5 -1.8047 0.4723 -3.82 0.0001 

MPLength 2 -12.1937 4.4586 -2.73 0.0062 

SpeedLimit 4 -0.1408 0.0620 -2.27 0.0232 

ThruLane 3 2.1545 0.8328 2.59 0.0097 

ThruLane 4 2.3905 0.6926 3.45 0.0006 

ThruLane 5 2.0612 0.6235 3.31 0.0009 

MEDHINC_CY 3 0.0000820 0.0000186 4.40 <.0001 

MEDHINC_CY 4 0.0000422 0.0000156 2.70 0.0069 

MEDHINC_CY 5 0.0000667 0.0000142 4.70 <.0001 

Total_HH 2 -0.002737 0.001125 -2.43 0.0150 

Total_HH 5 0.003217 0.001249 2.58 0.0100 

TotalFamily 5 -0.005797 0.001417 -4.09 <.0001 

B_bikelane 2 1.9884 0.8153 2.44 0.0147 

B_bikelane 3 3.3529 0.8581 3.91 <.0001 

B_greenway 2 3.4877 1.0441 3.34 0.0008 

Oneway 3 3.4908 1.0794 3.23 0.0012 

Oneway 4 2.3318 0.9354 2.49 0.0127 

Oneway 5 2.4732 0.7732 3.20 0.0014 
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1. Temporal variables: 

Similar to the MNL model developed for the whole dataset, weekday has a 

negative impact on the high-level bicycle counts on each road segment. The same results 

can be concluded that the cyclists in the City of Charlotte prefer to bike on weekends. 

Weekdays will probably decrease the likelihood of the occurrence of high-level bicycle 

counts. 

2. Road characteristics: 

The explanatory variables that affects the level of bicycle counts significantly are 

different from the variables in the MNL developed with the whole dataset . According to 

the model results presented in Table 5.12, the road characteristic variables that have 

significant impacts on the level of bicycle counts contain the length of road segment, 

number of through lanes, speed limit, and one-way road. The length of the road segment 

affects the low-average level of bicycle counts negatively, which indicates that low-

average level of bicycle counts is likely to be associated with shorter road segments. The 

posted speed limit on a road segment affects the bicycle count level (high-average) 

negatively. It is not hard to imagine cyclists prefer to bike on roads with lower speed 

limits. A greater number of through lanes increases the likelihood of high-level bicycle 

counts (average and above). It can be interpreted that cyclists tend to select roads with 

more through lanes. In addition, the one-way road remains to influence the high level of 

bicycle counts (average and above) positively, which demonstrates that cyclists prefer to 

bike on one-way roads. 

3. Sociodemographic characteristics:  
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Changes are also found in the sociodemographic variables having significant 

impacts on the level of bicycle counts for AM peak hours. Based on the results 

represented in Table 5.12, median household income, total households, and total families 

all affect the bicycle counts significantly. The median household income affects the 

average and above average levels of bicycle counts positively, which indicates that 

cyclists prefer to bike in the areas with higher household income. This result is consistent 

with the interpretation of the variable from models based on the whole dataset. Total 

households influences low-average level of bicycle counts negatively, while this variable 

affects the high level positively. This result reveals that the area with more households 

increases the likelihood of high-level bicycle counts and decrease the probability of low-

average level. The impact of the total families remains the same as the MNL model 

developed with the whole dataset.  

4. Bicycle facilities:  

The bicycle facilities that have significant impacts on bicycle counts are different 

from the previous MNL model. Only bike lanes and greenways affect the level of bicycle 

counts significantly. They both have a positive impact on the low-average or average 

level of bicycle counts. It can be interpreted that bike lanes and greenways increase the 

likelihood of low-average or average level of bicycle counts. It can be assumed that lots 

of cycling trips that occurred during AM peak hours are in the center city where few 

cyclists bike on these two types of bicycle facilities.  
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5.8.2. PM Peak Hours 

To explore the difference of impact factors between the cycling activities 

occurred during AM peak hours and PM peak hours, the MXL model is developed and 

the model results are presented in Table 5.13. 

Table 5.13:  MXL Model Estimation Results for PM Peak Hours 

Parameter Estimates 

Parameter Level Estimate Standard Error t Value Approx Pr > |t| 

Constant 2 1.0470 0.5182 2.02 0.0433 

Constant 3 -1.5170 0.8442 -1.80 0.0723 

Constant 4 0.1042 1.0485 0.10 0.9209 

Constant 5 8.8208 0.7556 11.67 <.0001 

SpeedLimit 4 -0.0518 0.0159 -3.25 0.0012 

TOTPOP_CY 5 -0.000402 0.000135 -2.97 0.0030 

MEDAGE_CY 4 0.0765 0.0253 3.02 0.0025 

MEDHINC_CY 4 -0.000104 0.0000117 -8.86 <.0001 

Total_HH_M 3 0.001810 0.002016 0.90 0.3691 

Total_HH_S 3 -0.002175 0.000682 -3.19 0.0014 

Total_HH 4 0.004110 0.001235 3.33 0.0009 

Total_HH 5 0.005762 0.000981 5.87 <.0001 

Slope 4 -0.0799 0.0216 -3.70 0.0002 

 

Compared to the MNL developed for the cycling behavior during AM peak hours, 

the explanatory variables that remain to have significant impacts on the bicycle counts 

during PM peak hours include speed limit, median household income, and total 

households. In addition, different from the impact factors for cycling behavior during AM 

peak hours, total population, median age, and slope are found to affect the level of 

bicycle counts significantly during PM peak hours. 
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Speed limit still affects the level of bicycle counts negatively, which is consistent 

with the results of cycling behavior during AM peak hours. Different cycling behavior is 

found in terms of the impact of total population. For example, during PM peak hours, 

cyclist prefer to bike on roads located in areas with low population, which is opposite to 

the results concluded from the models based on the whole dataset. The median age 

variable affects the high-average level of bicycle counts positively, which remains the 

same effect as mentioned before. However, median household income influences the 

average-high level of bicycle counts negatively, which indicates that cyclists prefer to 

bike in the area with low household income. Total households still have a positive impact 

on average and above average levels, and the slope still has a negative impact on high-

average level of bicycle counts.  

5.9. Summary 

This chapter develops several discrete choice models including ORL model, PPO 

model, MNL model, and MXL model to analyze the cycling activities. Model 

comparison is conducted to choose the best model structure for this study, and PPO 

model outperforms the other discrete choice models. The cycling behavior in different 

time periods including AM peak hours and PM peak hours is analyzed based on the 

mixed logit model. Impact factors that are associated with different levels of bicycle 

counts in the City of Charlotte are identified.  
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CHAPTER 6:  BICYCLIST INJURY RISK ANALYSIS 

6.1. Introduction 

This chapter develops a series of safety performance functions to analyze bicyclist 

injury risk. The rest of this chapter is organized as follows. Section 6.2 provides the data 

preparation procedure for the later bicyclist injury risk analysis. Section 6.3 through 

Section 6.6 present the methodology for analyzing the impacts of cycling safety including 

Negative Binomial (NB) model, Poisson model, Zero-inflated Negative Binomial (ZINB) 

model, and Zero-inflated Poisson (ZIP) model. Section 6.7 compares the model 

estimation results utilizing the goodness of fit and summarizes the model results with 

different impacts of various explanatory variables. Finally, Section 6.8 concludes this 

chapter with a summary.  

6.2. Data Preparation 

The data preparation procedure is similar to the data processing procedure 

presented Chapter 4 and Chapter 5. This process is conducted mainly using ArcGIS. The 

primary function used in ArcGIS is spatial join that helps researchers join multiple layers 

by the same location with different spatial and relative information. Based on the 

literature review as well as the data availability, the following information including 

bicycle volume, bicycle-vehicle crashes, road characteristics, sidewalk information, 

bicycle facilities, bus stops, and AADT is collected for the model development of safety 

performance functions. The detailed data description and sources are shown in Table 6.1 

Table 6.1:  Data Description and Sources 

Data Description Sources 

Strava Bicycle volume data (December 2016 to November Strava Metro 
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Data Description Sources 

2017) including bicycle counts on each road segment 

in Charlotte and the Charlotte road network shapefile 

Bike Crashes Bicycle-vehicle crashes occurred in the city of 

Charlotte from 2007 to 2017 

NCDOT 

Road 

Characteristics 

North Carolina road characteristics NCDOT 

Sidewalks The sidewalk information in the city of Charlotte Charlotte Open 

Data Portal 

PBIN Bicycle facilities in North Carolina NCDOT 

AADT Annual average daily traffic information in North 

Carolina 

NCDOT 

 

To obtain the final combined dataset including the information mentioned above, 

all the data are imported in ArcGIS, and “spatial join” is utilized to identify the spatial 

relationships between each dataset. To be specific, the Strava road segment shapefile 

created based on the OpenStreetMap is used as the base of all the spatial join/table join. 

First, layers including road characteristics, AADT, sidewalks, bus stops, and bicycle 

facilities are joined spatially to the base layer (Strava road segment shapefile). Second, 

Strava data including the bicycle volume on each segment and all the spatial joined layers 

are compiled together with the same road segment ID to obtain the combined road 

shapefile. Finally, each bicycle-vehicle crash is assigned to its closest road segment, and 

the bicycle crash counts on each road segment are rolled up to generate the final complete 

data for the development of safety performance functions. The data preparation procedure 

can be seen in Figure 6.1.  
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Before using the combined data, the data is imported in SAS to remove the 

observations with missing values and convert variables into dummy variables. The 

detailed explanatory variables considered in the following safety performance functions 

and their descriptions are presented in Table 6.2. 

Table 6.2:  Explanatory Variables 

Variable Description 

Volume Variables  

AADB Annual average daily bicycle counts on each road segment 

AADT Annual average daily traffic collected from AADT count 

stations 

Road Characteristics 

Oneway If the road segment is one way, then oneway = 1, dummy 

variable 

MPLength The length of the segment in miles. 

Functional 

Classification1 

Interstate, dummy variable 

Functional 

Classification2 

Principal Arterial, dummy variable 

Functional 

Classification3 

Minor Arterial, dummy variable 

Functional 

Classification4 

Major Collector, dummy variable 

Functional 

Classification5 

Minor Collector, dummy variable 

Median The presence of a median, dummy variable 

MedianWidth The width of the median 

SpeedLimit The posted speed limit on a roadway segment  

Sidewalk The presence of a sidewalk, dummy variable 

SidewalkWidth The width of the sidewalk 

Bus_Stop The presence of a bus stop 

Bicycle Facilities 

Bike_Lane The presence of a bike lane, dummy variable 
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Variable Description 

Paved_Shoulder The presence of a paved shoulder, dummy variable 

 

6.3. Poisson Model 

Poisson regression model is known as one of the most prevalent models for 

estimating count data. Many researchers have applied this method to numerous studies 

regarding transportation count data. In this case, bicycle-vehicle crash counts are studied. 

Thus, Poisson regression model is applied as a safety performance function to analyze 

bicyclist injury risk. This Poisson regression model has an assumption, which is the mean 

equals to its variance, which can be expressed in the following equation: 

𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖] 

where VAR denotes the variance; yi indicates that segment i has y times of crashes 

happened in the studied time period; E represents the expected mean. The number of y 

crashes follows a Poisson distribution with a condition mean and the characteristics of an 

individual are related to the number of crashes. The expected value of crashes y and the 

association with the considered explanatory variables are shown in the following 

equation: 

𝜇𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖) 

where EXP means the exponential; 𝛽  denotes the estimated coefficient 

corresponding to the independent variable 𝑋𝑖; 𝜇𝑖 is the expected value of the dependent 

variable representing the total number of bicycle-vehicle crashes happened at a specific 

segment.  

The probability of a segment i experiencing bicycle-vehicle crashes during the 

certain research period is shown as the following equation: 
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𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜇𝑖)𝜇𝑖

𝑦𝑖

𝑦𝑖 !
 

where 𝑃(𝑦𝑖) represents the probability of 𝑦𝑖  crashes occurred on a segment i; 𝜇𝑖 

denotes the Poisson parameter for the specific segment, which equals to 𝐸[𝑦𝑖].  

6.4. Negative Binomial Model 

Although Poisson regression is a prevalent method for modeling transportation 

count data, it has the assumption mentioned in the above section that the mean equals to 

the variance. This assumption may bring bias to the model estimation results. In addition, 

bicycle crash count data are usually over-dispersed based on the previous research studies, 

which shows a higher variance than the sample mean. Hence, NB model is developed to 

address the over-dispersed issue. The following equation shows the relationship between 

the dependent and independent variables: 

𝜇𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖 + 𝜀𝑖) 

where 𝜀 denotes the random error term that represents the unobserved attributes 

neglected in the NB model. It is assumed that the error term has no correlation with X. 

𝐸𝑋𝑃(𝜀𝑖) means a disturbance term that follows Gamma distribution, where mean equals 

to 1 and variance equals to 𝛼. With this distinctive term, the variance is not restricted to 

be the same as the value of the mean. This can be expressed in the following equation:  

𝑉𝐴𝑅[𝑦𝑖 ] = 𝐸[𝑦𝑖][1 + 𝛼𝐸[𝑦𝑖 ]] = 𝐸[𝑦𝑖 ] + 𝛼𝐸[𝑦𝑖]
2  

As is seen in the above equation, it can be interpreted that if the overdispersion 

parameter 𝛼 equals to 0, the variance will be the same as the value of the mean. The 

probability function of the NB model is shown by the following equation: 
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𝑃(𝑦𝑖 |𝑋𝑖) =
Γ (𝑦𝑖 +

1
𝛼)

𝑦𝑖 !Γ (
1
𝛼)

(

1
𝛼

1
𝛼 + 𝜇𝑖

)

1
𝛼

(
𝜇𝑖

1
𝛼 + 𝜇𝑖

)𝑦𝑖  

where Γ represents the gamma distribution function.  

6.5. Zero-inflated Poisson Model 

One of the critical phenomena that cannot be neglected is that the number of 

observations with zero crash during a certain study period can be an issue to the model 

estimation. It can be found that zero crash may occurred on numerous roadway segments. 

This problem is common since many road segments have no crash record.  

In order to solve the zero-state issue, Zero-inflated Negative Binomial model and 

Zero-inflated Poisson model are developed based on the zero model from the method of 

modeling with zero. These two models separate the model estimation process into two 

splitting means for zero counts and non-zero counts respectively.  

It is assumed in the Zero-inflated Poisson model that the crashes 𝑌 =

(𝑦1, 𝑦2 , … , 𝑦𝑛) occurred on road segments are independent and the probability functions 

for zero count and non-zero counts are shown in the following equations: 

𝑦𝑖 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖 + (1 − 𝑝𝑖)exp (−𝑢𝑖) 

𝑦𝑖 = 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
(1 − 𝑝𝑖)exp (−𝑢𝑖)𝑢𝑖

𝑦

𝑦!
  

where 𝑝𝑖  is the probability of experiencing zero observation, 𝑦𝑖  is the number of 

crashes occurred on a specific road segment during research period, where 𝑢𝑖 =

exp (𝛽𝑋𝑖). The variance is shown in the following equation: 

𝑉𝐴𝑅[𝑦𝑖 |𝑋𝑖 , 𝑍𝑖] = 𝑢𝑖(1 − 𝑝𝑖)(1 + 𝑢𝑖𝑝𝑖) 
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6.6. Zero-inflated Negative Binomial Model 

Similar to ZIP model, ZINB model also splits the underlying data generating 

process into two regimes. It is an extension of Negative Binomial model, which solves 

the zero-state problem. 

The ZINB model is presented in the following equations: 

𝑦𝑖 = 0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖 + (1 − 𝑝𝑖)(

1
𝛼

1
𝛼 + 𝑢𝑖

)
1
𝛼 

𝑦𝑖 = 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝𝑖)[
Γ (𝑦𝑖 +

1
𝛼)

𝑦𝑖 ! Γ (
1
𝛼)

(

1
𝛼

1
𝛼 + 𝑢𝑖

)

1
𝛼

(
𝑢𝑖

1
𝛼 + 𝑢𝑖

)

𝑦𝑖

] 

where the disturbance term following Gamma distribution has the mean of 1 and 

the variance of 𝛼. The variance of Zero-inflated Negative Binomial model is shown as 

follows: 

𝑉𝐴𝑅[𝑦𝑖 |𝑋𝑖 ,𝑍𝑖 ] = 𝑢𝑖(1 − 𝑝𝑖)(1 + 𝑢𝑖(𝑝𝑖 + 𝛼)) 

6.7. Model Result Analysis 

To analyze the bicyclist injury risk on road segments and explore the impact 

factors on the bicycle-vehicle crash counts in the city of Charlotte, several safety 

performance functions including NB model, Poisson model, ZINB model, and ZIP model 

are developed. Explanatory variables (presented in Table 6.2) are carefully selected for 

the model estimation based on the literature review as well as the data availability. 

All the explanatory variables presented in Table 6.2 are first included in the safety 

performance functions to analyze the probability of certain crash counts. The maximum 

likelihood method is applied to conduct the model parameter estimation. SAS 9.4 is 

utilized to conduct the model estimation procedure. To keep the variables that affects the 



119 

 

 

 

crash counts on the roadway segments significantly, the backward selection demand is 

utilized. The final model results for the four safety performance functions with significant 

variables only are shown in the following tables.  

Table 6.3:  Poisson Model Estimation Results 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept -3.4211 0.0502 -3.5195 -3.3227 4643.27 <.0001 

AADB 0.0002 0.0000 0.0002 0.0002 65.91 <.0001 

Interstate -0.4781 0.2473 -0.9627 0.0066 3.74 0.0532 

Principal_Arterial 0.6010 0.1034 0.3984 0.8036 33.80 <.0001 

Minor_Arterial 0.5042 0.1046 0.2992 0.7092 23.24 <.0001 

Major_Collector 0.4612 0.1159 0.2340 0.6884 15.83 <.0001 

Minor_Collector 0.5449 0.3055 -0.0538 1.1437 3.18 0.0745 

Bus_Stop 1.2603 0.0787 1.1061 1.4146 256.41 <.0001 

Bike_Lane 0.6181 0.1103 0.4020 0.8342 31.43 <.0001 

 

Table 6.4:  Negative Binomial Model Estimation Results 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept -3.4578 0.0551 -3.5658 -3.3499 3944.33 <.0001 

AADB 0.0002 0.0000 0.0002 0.0003 48.85 <.0001 

Interstate -0.4791 0.2580 -0.9847 0.0265 3.45 0.0633 

Principal_Arterial 0.6338 0.1192 0.4001 0.8675 28.25 <.0001 

Minor_Arterial 0.5029 0.1209 0.2659 0.7399 17.30 <.0001 

Major_Collector 0.5144 0.1352 0.2494 0.7794 14.48 0.0001 

Minor_Collector 0.6838 0.3469 0.0039 1.3638 3.89 0.0487 

Bus_Stop 1.3159 0.0937 1.1322 1.4996 197.08 <.0001 

Bike_Lane 0.6653 0.1355 0.3998 0.9309 24.11 <.0001 
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Table 6.5:  Zero-inflated Poisson Model Estimation Results 

Analysis of Maximum Likelihood Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept -2.0783 0.1007 -2.2756 -1.8810 426.12 <.0001 

Interstate -0.5033 0.2543 -1.0017 -0.0049 3.92 0.0478 

Principal_Arterial 0.5817 0.1143 0.3577 0.8057 25.90 <.0001 

Minor_Arterial 0.4544 0.1154 0.2283 0.6806 15.51 <.0001 

Major_Collector 0.4507 0.1288 0.1984 0.7031 12.26 0.0005 

Minor_Collector 0.6943 0.3548 -0.0011 1.3896 3.83 0.0504 

Bus_Stop 1.2172 0.0904 1.0400 1.3945 181.22 <.0001 

Bike_Lane 0.6704 0.1256 0.4242 0.9166 28.49 <.0001 

Analysis of Maximum Likelihood Zero Inflation Parameter Estimates 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

Intercept 1.0395 0.1190 0.8064 1.2726 76.37 <.0001 

AADB -0.0004 0.0001 -0.0005 -0.0002 19.64 <.0001 

 

Table 6.6:  Zero-inflated Negative Binomial Model Estimation Results 

Parameter Estimates 

Parameter Estimate Standard Error t Value Approx Pr > |t| 

Intercept -2.957305 0.063632 -46.48 <.0001 

Interstate -0.472699 0.259744 -1.82 0.0688 

Principal_Arterial 0.537115 0.118766 4.52 <.0001 

Minor_Arterial 0.318137 0.118765 2.68 0.0074 

Major_Collector 0.402069 0.130228 3.09 0.0020 

Bus_Stop 1.111739 0.092795 11.98 <.0001 

Bike_Lane 0.659989 0.128543 5.13 <.0001 

Inf_Intercept 0.704238 0.169307 4.16 <.0001 

Inf_AADB -0.113304 0.029687 -3.82 0.0001 
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To compare the four safety performance functions, the indicators for model 

comparison mentioned before in Section 5.7 is adopted. Therefore, the indicators for each 

model including NB model, Poisson model, ZINB model, and ZIP model are presented in 

the following table.  

Table 6.7:  Indicators for Model Comparison 

Model No. of Obs (Q) No. of Vars. (p) -2LogL AIC BIC 

Poisson Model 15664 9 6312 6329 6398 

NB Model 15664 10 6156 6176 6252 

ZIP Model 15664 10 6188 6208 6285 

ZINB Model 15664 10 6090 6110 6186 

 

As mentioned before in Chapter 5, smaller values of the indicators represent 

better fitness. Comparing the four models with the values of -2LogL, AIC, and BIC, 

ZINB model outperforms the other three safety performance functions. This model 

comparison result is not hard to infer, since the estimation procedure of ZINB model is a 

splitting data modeling process that consider the zero-state issue. The crash data utilized 

in this research study contain a lot of road segments with zero crashes, which may lead to 

biases when developing traditional Poisson model or Negative Binomial model. 

Therefore, it is confirmed that ZINB is the best fit for this bicyclist injury risk analysis.  

Summarizing the model estimation results presented in Table 6.3, Table 6.4, 

Table 6.5, and Table 6.6, variables that have significant impacts on bicyclist injury risk 

including annual average daily bicycle counts, interstate roads, minor arterials, principal 

arterials, minor collectors, major collectors, the presence of bus stops, and the presence of 
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a bicycle lane are identified and will be interpreted in detail. The explanation of the 

impacts of significant variables on bicyclist injury risk is provided as follows:  

1. Volume variables: 

As expected, the annual average daily bicycle counts affect the crashes occurred 

on a road segment significantly. The number of bicycle counts on a road segment has a 

positive impact on the bicyclist injury risk. In other words, if the road segment has more 

bicycle counts, the probability of higher injury risk on this road segment is greater. In the 

ZINB and ZIP models, the annual average daily bicycle counts are included in the zero-

inflation parameter estimation. In this process, the effect of the AADB is different from 

that of the Poisson model and Negative Binominal model. It can be interpreted that the 

higher bicycle counts on a road segment, the smaller probability of obtaining zero 

bicycle-vehicle crashes.  

2. Road characteristics: 

Interstate roads, minor arterials, principal arterials, minor collectors, and major 

collectors all have significant impacts on the bicyclist injury risk. It can be seen that the 

function classification of a road segment is the major impact on the bicycle-vehicle crash 

counts. The interstate roads have a negative impact on bicyclist injury risk, while minor 

arterials, principal arterials, minor collectors, and major collectors affect the cycling 

safety positively. This result indicates that the likelihood of higher crash counts on minor 

arterials, principal arterials, minor collectors, and major collectors is higher, while the 

probability of crashes occurred on interstate roads is lower.  

In addition, the presence of bus stops on a road segment has a positive impact on 

bicyclist injury risk, which indicates that the presence of bus stops may increase the 
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probability of more bicycle-vehicle crashes. It can be imagined that if a bus stop is 

located on a road segment, the conflict of bicyclists and bus may increase the probability 

of a bicycle-vehicle crash.  

3. Bicycle facilities: 

The presence of a bike lane on a roadway segment affects the bicyclist injury risk 

significantly. Interestingly, it is likely to increase the probability of crashes, which might 

be different from the expectation. This result may be related to the bicycle facility 

condition, and the higher likelihood of more cycling activities on bike lanes.  

6.8. Summary 

This chapter develops several safety performance functions including NB model, 

Poisson model, ZINB model, and ZIP model to analyze the bicyclist injury risk. Model 

comparison is conducted to select the best model structure for this research study. Impact 

factors that are associated with the number of bicyclist-involved crashes occurred on 

roadway segments in city of Charlotte are identified and interpreted.  
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CHAPTER 7:  SUMMARY AND CONCLUSIONS 

7.1. Introduction 

Cycling has gained more attention from the citizens and planners recently, since it 

can provide benefits not only for the society but also for the environment. By promoting 

cycling especially for short-distance trips, Charlotte has been making every effort to 

become a bike-friendly city. As an ideal travel mode, cycling is able to improve public 

health, reduce energy consumption, and alleviate air pollution, etc.  

To increase the mode share of cycling, research studies are needed to conduct to 

explore the impacts on bicycle volume on a road segment in the whole city network and 

the bicyclist injury risk. One of the most critical issues that need to be considered for the 

bicycle volume estimation and prediction, cycling activity modeling, and bicyclist injury 

risk analysis is the data collection method. Traditional data collection methods including 

travel surveys and data from manual count machines can be time-consuming and 

expensive. The novel crowdsourced data can address the issues brought by traditional 

data collection methods and provide the temporal and spatial information on cycling to 

bridge the data gap.  

Based on the crowdsourced bicycle data collected from the Strava application, 

this research study is conducted to estimate the bicycle volume on most of the road 

segments in the City of Charlotte, to analyze cycling activities, and to develop safety 

performance functions to analyze cycling safety.  

The rest of this chapter is organized as follows. Section 7.2 provides a brief 

review of the methods used to conduct the bicycle volume prediction, cycling activity 

modeling, and safety analysis based on the novel crowdsourced bicycle data. The model 
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results are concluded in this section, and the model comparison results indicating the best 

model structure for this research study are summarized. Different cycling activities 

during AM and PM hours are concluded in this section and policy-related 

recommendations are provided here. Section 7.3 discusses the limitation of this study and 

provides the future research directions in order to improve the research and also further 

enhance cycling environment and safety.  

7.2. Summary and Conclusions 

The primary objectives of this research are to estimate and predict the bicycle 

volume on each roadway segment, model the cycling activities based on crowdsourced 

bicycle data, and conduct cycling safety analysis. Based on the crowdsourced data 

collected from Strava, the descriptive analyses are conducted in terms of the demographic 

information on Strava users, cycling activities for different trip purposes, the cyclist 

counts on each road segment in the City of Charlotte for each month of year, 

weekdays/weekends, and time of day.  

Crowdsourced bicycle data from Strava smartphone application are combined 

with a series of other relevant data including NC road characteristics data, demographic 

data, slope data, manual count data from continuous count stations in Charlotte, temporal 

data, and bicycle facility data, etc. Data comparison is conducted to demonstrate the 

differences between manual count data and Strava bicycle count data. Data process and 

combination procedures are completed using ArcGIS and SAS. Based on the combined 

data, two linear regression models are developed. The relationship between manual count 

data and Strava data as well as other relevant data is analyzed. To be specific, variables 

including weekday, time period except 00:00-06:00 am, Strava user counts, off-street 
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paths, bike lanes, and suggested bike routes have significant impacts on the total bicycle 

volume on a road segment, where cycling during time period except 00:00-06:00 am, 

Strava user counts and cycling on off-street paths have positive impacts on the total 

bicycle volume, while cycling on weekdays and bicycle facilities including bike lanes 

and suggested bike routes have negative impacts on total bicycle volume. Bicycle volume 

on most of the road segments in the City of Charlotte is predicted using the developed 

model. A bicycle ridership map is created to have a graphical view of the bicycle counts 

for the whole road network.  

Several discrete choice models are developed to analyze cycling activities in the 

City of Charlotte. Models including ORL model, PPO model, MNL model, and MXL 

model are compared to select the best-fit model for this cycling activity analysis. 

According to the model estimation results, variables including weekday, total family, 

slope, signed bike lanes, suggested bike routes with low comfort, interstate route, and NC 

route are found to affect the level of bicycle counts negatively, while other variables 

which are time period from 6:00 to 17:59, segment length, number of through lanes, 

median age, median household income, total household, suggested bike routes, greenway, 

US route, and one-way road are identified to affect the level of bicycle counts positively 

in the ORL model. In the PPO model, variables including time period from 6 am to 9 am, 

the number of through lanes, median household income, total households, total families, 

suggested bike routes, US routes, and one-way road violate the PO assumption and affect 

different levels variously. Variables that satisfy the PO assumption including weekday, 

time period from 15:00 to 17:59, slope, signed bike lanes, suggested bike routes with low 

comfort, and greenways remain the same interpretation as the ORL model. The 
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explanatory variables that have significant impacts on bicycle counts in MNL model 

contain weekday, time period from 9:00 to 14:59, time period from 15:00 to 17:59, time 

period from 18:00 to 19:59, the length of segment, the number of through lanes, total 

population, median household income, total households, total families, slope, suggested 

bike routes with low comfort, US route, secondary route, and one-way road which are 

similar to the ORL and PPO model. By calculating the indicators (-2LogL, AIC, BIC, and 

ρ2) for model comparison, PPO model is determined to be the best model structure for 

this cycling activity analysis. To explore the different cycling activities for both AM and 

PM peak hours, a MNL model and a MXL model are developed. Impact factors that  are 

associated with different levels of bicycle counts in the City of Charlotte are identified.  

In addition, several safety performance functions are developed to analyze 

bicyclist injury risk on road segments in the city of Charlotte. Models including NB 

model, Poisson model, ZINB model, and ZIP model are compared to identify the best fit 

for this cycling safety analysis. ZINB is identified to outperform the other three models. 

Variables including AADB, minor arterials, principal arterials, minor collectors, major 

collectors, and the presence of bus stops and a bike lane on a road segment all have 

positive impacts on bicyclist injury risk, while the interstate roads affects the number of 

bicycle-vehicle crashes on a road segment negatively.  

According to the bicycle volume estimation model results and the bicyclist injury 

risk analysis obtained and conclusions made in this research, some policy-related 

recommendations can be provided as follows: 
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1. Based on the modeling results that bicyclists prefer off street paths, planners 

can design more off-street paths to offer better bike environment for bicyclists 

in the City of Charlotte.  

2. To promote biking to work, the locations of the off-street paths need to be 

constructed in the uptown area. Since there are a lot of traffic in Charlotte 

uptown area, especially during peak hours, and the bicycle volume is higher 

there compared to other locations, constructing more off street paths should 

attract more bicyclists to choose to bike other than private cars and public 

transit (for short-distance trips). 

3. According to the modeling results, the predicted bicycle volume on road 

segments related to parks and greenways in the City of Charlotte has a higher 

number. To encourage recreational bicycle trips, the bicycle facilities in the 

park or greenway area should be improved.  

4. It is important to identify the right of way on a roadway segment with bus 

stops. It is recommended to constructed separated bike facilities especially for 

bicyclists to avoid crashes.  

If the above policy-related recommendations are followed, better bike 

environment and cycling safety can be provided for the citizens in Charlotte to improve 

their quality of life and to mitigate traffic congestion to some extent. 

7.3. Directions for Future Research 

In this section, some of the limitations of this research are pointed out and the 

directions for future research are also provided. The limitations of this research can be 

summarized as follows: 
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1. Bicycle volume: 

(1) The bicycle manual count data have a limitation in the model development. 

The availability of more count data from the bicycle count stations may 

improve the model results. 

(2) The manual count data are collected from the count stations which are located 

in the center city. Most of the bicycle trips might be related to commuting 

trips based on the trip locations. Since a large portion of the manual count data 

that are used to predict bicycle volume might be commuting trips, and the 

bicycle volume in the uptown area might be higher than other locations in the 

City of Charlotte, biases might exist when predicting the bicycle volume.  

(3) The two bicycle volume regression models are developed in the urban cycling 

environment. Situations may vary in the rural area and in other metropolitan 

centers, and as such, the model developed for predicting the bicycle volume 

may not be representative in those cases.  

(4) The majority of the cycling trips generated by Strava users are non-commute 

trips which may be different from the cycling behavior for commute trips. 

2. Cycling activities: 

Some supporting data (e.g., roadway characteristics data) are not available for 

certain roadway segments, and thus the records with blank information are 

removed from the dataset.  

Based on the limitations of this study and the literature review on relevant studies, 

some improvements can be made in future studies.  
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1. Since more manual count stations are under construction now, with more 

bicycle manual count data, the bicycle volume regression models can be 

improved. 

2. Other models can be developed and tested to see if there is a better fitness for 

relevant research studies.  

3. The cycling activities occurred in various locations can be different. 

Comparison can be conducted for cycling activities in different locations (e.g., 

urban or rural areas).  

4. Bicyclist injury risk at intersections can be examined since it is more likely to 

experience crashes at intersections. It can be analyzed and compared with the 

cycling safety on roadway segments.  
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